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Abstract

Dam breach models are commonly used to predict outflow hydrographs of potentially

failing dams and are key ingredients for evaluating flood risk. In this paper a new dam breach

modeling framework is introduced that shall improve the reliability of hydrograph predictions

of homogeneous earthen embankment dams. Striving for a small number of parameters,

the simplified physics-based model describes the processes of failing embankment dams by

breach enlargement, driven by progressive surface erosion. Therein the erosion rate of dam

material is modeled by empirical sediment transport formulations. Embedding the model

into a Bayesian multilevel framework allows for quantitative analysis of different categories of

uncertainties. To this end, data available in literature of observed peak discharge and final

breach width of historical dam failures was used to perform model inversion by applying

Markov Chain Monte Carlo simulation. Prior knowledge is mainly based on non-informative

distribution functions. The resulting posterior distribution shows that the main source of

uncertainty is a correlated subset of parameters, consisting of the residual error term and

the epistemic term quantifying the breach erosion rate. The prediction intervals of peak

discharge and final breach width are congruent with values known from literature. To finally

predict the outflow hydrograph for real case applications, an alternative residual model was

formulated that assumes perfect data and a perfect model. The fully probabilistic fashion

of hydrograph prediction has the potential to improve the adequate risk management of

downstream flooding.

1 Introduction

Earthen dams have been built by humans to store water for multiple purposes for millennia

(Schnitter , 1994). While they are regarded as safe structures, history taught us that they

nevertheless may fail. Extensive literature is available reporting historic dam failures (e.g.

Broich, 1996). To protect people and infrastructure downstream of a potentially failing

1



dam, today’s supervising authorities and dam operators take precautionary measures, install

emergency warning systems, and set up evacuation plans. To do so, reliable predictions

about the amount and timing of released water in case of a dam failure are needed. This

information comes from dam break models which provide outflow hydrographs for subsequent

flood routing models.

In this paper the focus is on homogeneous and non-cohesive earthfill embankment dams.

Processes that belong to the breach formation are of interest here, whereas any analysis

concerning probability of failure, breach initiation, or flood propagation downstream is not

considered. Herein the main breach formation process is regarded as the enlargement of an

initial breach due to slope erosion of dam material leading to increasing breach discharge.

Research has put much effort into understanding the complex natural phenomena of breach

formation processes, both by field tests (e.g. Morris and Hassan, 2005) and laboratory exper-

iments (e.g. Schmocker and Hager , 2012; Frank , 2016). The gained insights help understand

the breach formation process and provide relevant information for model development. How-

ever, their application to real-life breach situations is often limited due to simplifications and

scale effects (ASCE/EWRI , 2011). Regardless of the complexity and high non-linearity of

dam breach processes, the necessity of dam breach prediction tools induced the development

of a multitude of numerical models over the last decades. The physical properties usually

investigated are the outflow hydrograph and the size of the final breach. Dam breach mod-

eling techniques vary strongly in complexity and can be classified according to their level of

detail:

1. Statistically-based models are purely data-driven and rely on regression analysis of

historical dam breach events and make estimations about embankment breach charac-

teristics, e.g. peak discharge, time to failure, or final breach width. The dam breach

model thereby can be described either by power functions of governing dam-reservoir

quantities (Froehlich, 2008) or by applying methods of artificial intelligence (Amini

et al., 2011; Hooshyaripor and Tahershamsi , 2012). Since no physics are considered in

these models, their reliability and explanatory power is generally low.

2. Simplified physics-based models take into account the description of selected physical

processes, e.g. draw-down of the reservoir and enlargement of the breach over time due

to erosion of dam material. Because of their simplicity, many a-priori assumptions have

to be made, e.g. initial breach size, breach geometry, flow over the breach, sediment

transport, and geomechanical concepts. The computational cost of these models is

low and the number of parameters that have to be defined is commonly small, hence

allowing for real time applications (Ma and Fu, 2012). A comprehensive list of simplified

dam breach models can be found in ASCE/EWRI (2011).

3. Detailed physics-based models describe the embankment breaching process in one, two,

or even three dimensions by applying sophisticated numerical approaches. During
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the last decades these models became popular due to advances in computer sciences

(e.g. Broich, 1996; Wang and Bowles, 2006; Faeh, 2007; Wu et al., 2009; Volz , 2013).

Nevertheless, describing and parameterizing not only the macroscopic but also the

microscopic phenomena of a gradually failing dam is very challenging. In particular,

the interaction between water and dam material inside the breach, the short term

stability of saturated and compacted soils, and the quantification of high-concentration

sediment transport capacity pose difficulties.

Before dam breach models are applied as prediction tools, no matter what type of model,

they are often calibrated to a data set. Historical dam breach data are therefore used to

feed the models, but data on real-life embankment failures are usually poorly documented

for various reasons (ASCE/EWRI , 2011). Uncertainties on breach properties, such as av-

erage breach width and failure time, have been reported in Froehlich (2008), and their

relation to outflow hydrograph are investigated in Ahmadisharaf et al. (2016). Uncertainties

of dam breach models are often quantified in terms of prediction errors, which are mini-

mized during model calibration by selecting appropriate data and fitting procedures. To

the best of our knowledge, full quantification of uncertainties in physical dam and reservoir

properties and output variables has not been explored in dam breach modeling. In simpli-

fied physics-based models systematic sensitivity analysis has been carried out (Fread , 1984;

Walder and O’Connor , 1997; De Lorenzo and Macchione, 2014), unlike in detailed models

where the computational cost is too high. Surrogate modeling techniques, also known as

meta-modeling or response surface modeling, could offer an alternative to this end, such as

Kriging (Santner et al., 2003) and polynomial chaos expansion (Xiu and Karniadakis, 2002).

Wahl (2004) assessed the prediction errors of various statistically-based embankment breach

models by applying them to a set of 108 dam failures. The resulting prediction intervals

are approximately ±1/3, and ±1/2 to 1 orders of magnitude for predicted breach width and

peak outflow, respectively. In 2013 the International Committee of Large Dams (ICOLD)

organized a numerical benchmark where the participants were invited to predict the breach

outflow hydrograph of a hypothetical dam failure, i.e. the true outcome was not known (Zenz

and Goldgruber , 2013). The results demonstrate that the variations between the predicted

hydrographs of different dam breach models/modelers are large and can significantly influ-

ence the result of hydrodynamic calculations (Escuder-Bueno et al., 2016). The origin of

the discrepancies in the resulting hydrographs of the benchmark participants can be mainly

attributed to variability of the erodibility of embankment material as a result of different soil

types, compaction effort, and water content (Morris et al., 2008). Ultimately, on the basis of

a single model the wide range of possible breach outflow hydrographs cannot be quantified

reliably enough for prediction purposes.

On these grounds many researchers emphasized the need for a systematic quantification

of all types of uncertainties in dam breach models to reliably predict embankment dam
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failure processes (Wahl , 2004; Froehlich, 2008; ASCE/EWRI , 2011) and consequently to

incorporate into comprehensive risk management systems (Altinakar et al., 2009). This has

been achieved e.g. in hydrological sciences by first promoting the use of uncertainty estima-

tion as routine (Pappenberger and Beven, 2006), setting up an integrated risk management

framework (Büchele et al., 2006), critically discussing the deterministic and probabilistic

approaches (Di Baldassarre et al., 2010), and proposing new methodologies within the prob-

abilistic framework (Alfonso et al., 2016).

Generally, uncertainties are categorized as (i) aleatory, that describe the natural variabil-

ity of a physical process, (ii) epistemic, that describe the lack of knowledge in parametric

description of the process, and (iii) global model inadequacy and data uncertainty (Kennedy

and O’Hagan, 2001). Based on this classification Nagel and Sudret (2016) proposed a unified

framework to quantify uncertainties on all levels by using Bayesian inverse modeling and a

deterministic model as backbone. Related frameworks were applied in different fields, such

as 3-D environment modeling (Balakrishnan et al., 2003), sediment entrainment modeling

(Wu and Chen, 2009), groundwater modeling (Laloy and Vrugt , 2012; Shi et al., 2014), rat-

ing curve derivation (Mansanarez et al., 2016), or design flood estimation (Steinbakk et al.,

2016).

The goal of the present paper is to enhance the reliability of hydrograph predictions by

developing a new dam break model in a fully probabilistic manner. The model is herein

regarded as a strong approximation of an open system. Accordingly the verification and

validation of the truth of such a model is nearly impossible (Oreskes et al., 1994). However,

a model can be conditionally confirmed, similar to the original idea of Rev. Thomas Bayes:

for given evidence in certain circumstances, find the model, out of a set of feasible models,

that explains the evidence best. The model predictions will supposedly be more reliable

(i) the more evidence is consulted to conditionally confirm the model, (ii) the higher the

evidence quality is, (iii) the more widely accepted physical knowledge is implemented in the

model, (iv) the more sophisticated methods are applied to find the best model.

In this vein, a new deterministic dam breach model is proposed that is embedded into

a Bayesian multilevel framework (Nagel and Sudret , 2016). Therein the vector of model

parameters is split into different parameter types according to their uncertainty character.

The underlying parameter distributions are defined by Bayesian inference, in which the

prior information is specified by empirical knowledge and the reference data is based on

measured quantities of dam failures. The underlying population of the data is represented

by worldwide and historically failed, man-made, homogeneous embankment dams. The

novelty comprises a complete quantification of parametric as well as residual uncertainties

in dam breach modeling. The latter consists of both data and structural model errors.

The outcome of the present study is not only the final probabilistic dam breach model,

but instead providing a framework that allows the integration of further data. Since the
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underlying deterministic model is treated as a black-box, it can be replaced in a simple

manner for future analysis. As stated by Morris et al. (2008), it is not easy to improve the

accuracy of dam breach models, that is the degree to which model predictions represent a real

dam failure. Nevertheless, by incorporating the information about model uncertainties these

predictions become more reliable, i.e. they are more trustworthy in case of not knowing

the true outcome of a possible dam failure. The enhanced reliability of predicted breach

hydrographs is of major importance regarding the quality of risk quantification induced by

dam failures.

This paper is organized as follows: The deterministic dam breach model formulation and

its parameters is introduced in Section 2. The outline of the Bayesian multilevel approach

is given in Section 3, including successfully embedding the dam breach model into the prob-

abilistic framework. The resulting quantification of uncertainties of all levels is shown in

Section 4. Finally critical points are discussed within an examplary model application in

Section 5and conclusions are drawn in Section 6.

2 Dam Breach Model

The aim of this section is to present the development of the deterministic dam breach model,

which is the backbone of the probabilistic framework proposed in this paper. The model

under investigation can be attributed to simplified physics-based dam breach models. Be-

cause of prevailing lack of data in dam breach modeling, the number of parameters is kept

as small as possible to circumvent the risk of too many degrees of freedom. In addition it is

of paramount importance to have a computationally efficient model due to its probabilistic

inversion where million evaluations are needed. At the same time the model must be able

to reproduce the main dam breach phenomenon. The physical basis of the breach formation

process is the water-sediment interaction: the discharging water is the driving force of breach

erosion, and vice versa the breach enlargement controls the rate of discharge (e.g. Singh and

Scarlatos, 1988).

2.1 Formulation of the Physical Processes

Processes that lead to an initial breach are not considered here. In reality, the initial breach

is being formed by a multitude of different failure causes, e.g. overtopping, internal erosion,

slope instabilities, or foundation problems (Foster et al., 2000). This breach initiation process

is much slower than the subsequent breach enlargement and varies strongly between different

failure causes. Regardless, discharge rates are still low and do not influence the hydrograph of

a failing dam (Wahl , 2004; Morris et al., 2008). After developing a sufficiently large breach,

the flow rate increases rapidly and the failure cannot be prevented.

This breach formation process is essentially dominated by the mechanics of overtopping
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Figure 1: Longitudinal (a) section L− L and transverse (b) control section C − C of the dam-

reservoir system, and (c) breach shape definition. Thick arrows indicate the unknown variables

Hr and Wb in Eq. (1).

(Singh, 1996; ASCE/EWRI , 2011; De Lorenzo and Macchione, 2014)) and according to

literature the main physical processes involved are (i) gradual erosion of dam material, (ii)

breach enlargement, (iii) increasing breach outflow, and (iv) decreasing water level in the

reservoir. These four processes can generally be formulated by a system of two ordinary

differential equations (ODE) (see notation in Figure1)

dHr

dt
= −Qb

(
dVr
dHr

)−1

(1a)

dWb

dt
= Qs

(
dVb
dWb

)−1

. (1b)

Eq. (1a) represents a continuity equation for conserving the water volume stored in the

reservoir Vr
[
m3
]
, where the depletion of the reservoir level Hr [m] over time t [s] is described

by the discharge of breach outflow Qb
[
m3 s−1

]
and the rate of change of reservoir volume

with respect to reservoir level dVr

dHr

[
m2
]
. The continuity equation Eq. (1b) is conserving the

volume of eroded dam material Vb
[
m3
]
, where the increasing breach widthWb [m] over time is

controlled by the discharge of dam material that is transported out of the breach Qs
[
m3 s−1

]

and the rate of change of breach volume with respect to breach width dVb

dWb

[
m2
]
. Similar

formulations have been adopted by Singh and Scarlatos (1988) and Macchione (2008). In the

model presented here, processes that belong to the mechanism of progressive surface erosion

are considered only, whereas the mechanisms of head cutting (cohesive dam material) and

interlocking (coarse dam material) are neglected. Dams showing cohesive or rockfill materials

are clearly outside of the application range of this model.
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 (1)

(2)

β=const

fixed bottom

Figure 2: Breach shape development with constant breach side angle β at the top and fixed

bottom (Hb,min): stage of vertical erosion (1), i.e. from initial breach to fixed bottom (Hb >

Hb,min); and stage of lateral widening (2), i.e. no further deepening of the breach (Hb = Hb,min).

In case of low erodibility the stage of vertical erosion will never be exceeded, what can be referred

to as partial failure.

As depicted in Figure 2, the breach enlargement is split into two distinct breach develop-

ment states in time. In a first stage the breach development is dominated by vertical erosion.

The breach width Wb is enlarged and breach bottom level Hb [m] is lowered at the same time

with constant rate, preserving self-similarity of the breach shape over time (Pickert et al.,

2011; Frank , 2016). When the breach bottom reaches the foundation of the dam Hb,min [m]

it is assumed that no further deepening of the breach is possible and lateral widening is

controlling the breach enlargement only (e.g. Coleman et al., 2002; Chinnarasri et al., 2004).

Thus the development of the breach bottom is described by the following simple ODE:

dHb

dWb

=





− hb

Wb
if Hb > Hb,min,

0 if Hb = Hb,min,

(2)

where hb = hd −Hb [m] is the breach height and hd [m] is the dam height (see Figure 1).

Despite reducing the complex physical processes of breach formation into simple continu-

ity equations (1a) and (1b), it has been shown that the physical processes contained in this

are sufficient to reproduce the hydrograph of rather detailed models (Vonwiller et al., 2015)

or laboratory experiments (Chinnarasri and Saelim, 2009). Below further details are given

about assumptions that are made in this study to parameterize and quantify the variables

of the right-hand side in the system of equations (1).

2.2 Breach Geometry

In this section the simplifications of the breach geometry description are stated. The final

goal is to quantify the breach volume change rate dVb

dWb
(see Eq. (1b)), which is dependent on

geometrical parameters only.

The longitudinal breach shape is reminiscent of an hourglass shape and the hydraulic

control section is defined by the curved weir crest at the inlet of the breach (Walder et al.,

2015). In order to lower the complexity of the model and to reduce the number of model

parameters, the three dimensional breach geometry is simplified as a prismatic channel. Its
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cross-section is regarded as the hydraulic control section (see Eq. (10)). For different existing

parameter models the description of the cross-sectional shape is varying, i.e. triangular,

trapezoidal, rectangular, or parabolic (ASCE/EWRI , 2011). To include all types of shapes

here, the breach area is described as a power law of h, i.e. A ∝ hk (see Figure 1c), where k

is a shape parameter ranging from k = 1 representing a rectangular breach shape to k = 2

representing a triangular shape. Strictly speaking, the model requires k < 1 and the breach

shape converges to a rectangular shape for k → 1. A similar approach describing breach

shapes of instantaneous dam breaks is followed by Pilotti et al. (2010). For given top width

Wb and bottom level Hb the breach side wall is obtained as

S (w) = hb

(
2|w|
Wb

) 1
k−1

, (3)

where w ∈
[
−Wb

2 , Wb

2

]
is a control variable running across the breach section, starting at the

breach center (see Figure 1c). The length of the breach wall on one side in the interval [a, b]

is

SL (a, b) =

b∫

a

√
1 + S′2 dw, (4)

where

S′ (w) =
hb
k − 1

(
2

Wb
w2−k

) 1
k−1

(5)

is the breach side slope (for w ≥ 0). This is not calculated analytically and has to be

integrated numerically. Further, for given water level h inside the breach, the water surface

width W and the corresponding breach area A are

W (h) = Wb

(
h

hb

)k−1

, A (h) =
Wb

khk−1
b

hk. (6)

The breach volume is calculated by integration of A (h) along the breach (i.e. across the

dam) with wc being the crest width and se the embankment slope of the dam, hence

Vb =
Wbhb
k

(
wc +

2sehb
k + 1

)
. (7)

The breach side angle β at the top of the breach (see Figure 1c and Figure 2) represents

the short-term critical failure angle of the dam material and is assumed to be constant during

the erosion process (Chinnarasri et al., 2004; Frank , 2016). This angle can exceed the long-

term critical failure angle by far even for non-cohesive soil materials, due to stabilizing effects

of the apparent cohesion (Volz , 2013; Volz et al., 2017). Setting the breach side slope at the

top S′
(
Wb/2

)
= tanβ (see Eq. (5)), the shape exponent is then given by

k =
2hb

Wb tanβ
+ 1. (8)

The breach volume rate of change dVb

dWb
in Eq. (1b) is different for the two breach develop-

ment states vertical erosion Hb > Hb,min and lateral widening Hb = Hb,min. In the first case

the breach depth grows steadily with increasing top width (see Figure 1 and Eq. (2)) and
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therefore both dhb

dWb
and k are constant. After the breach bottom has reached the dam foun-

dation, the breach depth does not change anymore, but k is now decreasing with enlarged

breach (see Eq. (8)). After some algebraic calculations the breach volume rate of change is

finally given by

dVb
dWb

=





hb

[
2
kwc + 6

k2(k+1)sehb

]
if Hb > Hb,min,

hb

[
2k−1
k2 wc +

2(3k2−1)
k2(k+1)2

sehb

]
if Hb = Hb,min.

(9)

2.3 Breach Hydraulics

In this section all hydraulic variables inside the breach are defined, including information

about the underlying assumptions. Finally the breach outflow Qb to be used in Eq. (1a) is

estimated.

The hydraulic variables are defined within the prismatic channel where the occurrence of

critical flow (Froude number Fr = 1) is assumed to hold (see Figure 1a). The effect of the

streamline curvature, implicating an energy head loss and Fr < 1 (Walder et al., 2015), is

not included here. This effect could be incorporated by introducing an additional parameter,

e.g. discharge coefficient, or the Froude number. The breach geometry of this control section

is assumed to be representative for the entire breach. At the same time it acts only as a

hydraulic control section and therefore the location of this transition in flow regime is not

relevant for the model (Singh, 1996; Coleman et al., 2002; Macchione, 2008). The energy

head is given by

He = Hr −Hb = h+
v2

2g
, (10)

where h is the water depth, v is the average flow velocity within the breach and g is the

acceleration due to gravity. The critical flow condition implies the maximum breach discharge

for given He. Thus the critical water depth and flow velocity are

hc =
2k

2k + 1
He, vc =

√
g
hc
k
. (11)

Consequently the breach discharge can be written as

Qb = A (hc) vc =
Wb

hk−1
b

√
g

k3
hc
k+1/2. (12)

In addition the hydraulic radius of the critical cross-section (h = hc) can be calculated

through the following relation

rh =
A (h)

Pw (h)
, Pw (h) = 2 · SL

(
0,
W (h)

2

)
(13)

where Pw (h) is the wetted perimeter along the breach side walls up to level h (see Eq. (4)

and Eq. (6)).
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2.4 Breach Erosion

In this section the parameters that control the sediment transport rate inside the breach are

introduced. Ultimately the sediment transport rate out of the breach Qs is defined, which

is needed in Eq. (1b).

The flow velocity v and the corresponding hydraulic radius rh are supposed to control the

sediment transport within the breach. Empirical sediment transport formulas that quantify

bed, suspension or total load are commonly formulated as qs ∝ (τb − τc)c1 vc2rc3h
[
m2 s−1

]
,

where τb ∝ rhJ is the bottom shear stress for steady flow conditions and τc is the critical

shear stress for incipient motion. The breach formation process is regarded as intense bedload

phenomena, where τb >> τc, and the threshold τc is neglected therefore. The energy slope

J can be defined by applying empirical flow formulas of type v ∝ rc4h J
0.5. Exponents c1...4

are constants that differ between distinct empirical formulas. Knowing the flow velocity v

from Eq. (11) and hydraulic radius rh from Eq. (13))in the control section of the breach, the

transport rate is then

qs = γ · vν · rhη (14)

with γ being a global scaling coefficient that acts as a tuning factor to accelerate or hinder

the erosion process, and ν = 2c1+c2 and η = c1 (1− 2c4)+c3 are exponents that combine the

empirical formulation of transport and friction laws. For example Macchione (2008) applied

the sediment transport equation by Meyer-Peter and Müller (c1 = 3
2 , c2 = c3 = 0) and the

friction law by Strickler (c4 = 2
3 ), which yields ν = 3 and η = −0.5. The two exponents

are physically interpreted as: (i) the larger ν (> 0) is, the stronger will be the influence of

the hydraulic condition on the sediment transport (high flow velocity leads to more erosion);

and (ii) the smaller η (< 0) is, the stronger will be the influence of breach geometry on the

sediment transport (narrow shapes leads to more erosion).

The rate of sediment that is transported out of the breach is finally quantified as

Qs = Pe · qs, Pe = 2 · SL
(
w0,

W (h)

2

)
, (15)

where Pe is the erodible perimeter, defined by the length along the breach side wall SL

bounded by

w0 =





0 if Hb > Hb,min,

2−k
k

W (h)
2 if Hb = Hb,min,

(16)

and the transverse location where the water surface intersects with the breach side. Hence

in case of vertical erosion the erodible perimeter is equal to the wetted perimeter. During

lateral widening the erodible perimeter is dependent on the breach shape: for triangular shape

(k = 2) the complete wetted perimeter is accessible for sediment transport, for rectangular

shape (k → 1) only the vertical part of the breach is erodible, and for all intermediate breach

shapes a smooth transition between these two extremes occurs, i.e. the closer the breach
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shape is to a rectangle, the smaller will the erodible zone get due to fixed dam foundation

in the middle of the breach.

2.5 Reservoir Depletion

The aim of this section is to quantify the reservoir volume change rate dVr

dHr
. It is the last

missing variable for the characterization of the ODE in Eq. (1).

The reservoir retention curve is parameterized by a power function

Vr = Vr,0

(
Hr

Hr,0

)α
, (17)

where Vr,0 and Hr,0 are initial values for the water volume and its associated reservoir level,

e.g. the storage volume and full supply level. The exponent α characterizes the reservoir

topography, i.e. α = 1.0 represents a rectangular basin whereas α = 4.0 denotes a basin

located in rather mountainous valleys (Kühne, 1978). Consequently, the reservoir volume

depletion rate can be described as

dVr
dHr

=
αVr,0
Hr,0

αHr
α−1. (18)

2.6 Summary and Numerical Solution of the Parametric Breach

Model

To solve the system of ODEs in Eq. (1), the geometrical properties of the dam-reservoir

system (hd, wc, se, β, α) have to be defined. Furthermore the state variables of the system

and their initial values have to be set given all model parameters (see Table 1): the drop in

reservoir level ∆Hr, released reservoir volume ∆Vr, and final breach height ∆Hb. Detailed

information are provided in Appendix A.

In each time step, the depletion rate of the reservoir level dHr

dt and the widening rate

dWb

dt are calculated through Eqs. (9), (12), (15), and (18). The system of ODEs is numeri-

cally integrated using classic four step Runge-Kutta scheme, initially choosing a large time

step. By re-integration with decreased time step, the peak of the resulting breach outflow

hydrograph will be closer to its exact value. This iteration is done until a certain relative

precision is reached. In this study a value of 1‰ was chosen.

3 Probabilistic Model Calibration

The deterministic dam breach model outlined in the previous section is hereinafter treated as

’black box’ where no use of information about the mathematical model implemented by the

numerical code is made (Kennedy and O’Hagan, 2001). Generally, the calibration procedure

described in this section may be applied without fundamental modifications to other dam
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Table 1: Parameter vector x of the deterministic dam breach model, categorized by their physical

meaning.

description x

dam properties:

dam height [m] hd

crest width [m] wc

embankment slope [−] se

reservoir properties:

reservoir basin shape [−] α

reservoir level drop [m] ∆Hr

released reservoir volume [m3] ∆Vr

breach properties:

breach side angle [°] β

final breach height [m] ∆Hb

initial breach depth relative to ∆Hr [-] r0

erosion properties:

exponent for flow velocity [−] ν

exponent for hydraulic radius [−] η

scaling coefficient for transport rate [−] γ

breach models than the one previously introduced, varying in level of details and/or parame-

terization. However, overly detailed models with many parameters significantly increase the

risk of over-parametrization, especially when only scarce or poor-quality data is available.

The model of concern is formally described as a function

ỹ =M (x) , (19)

where the vector of model parameters x is mapped to the vector of model outputs ỹ. The

parameters x are listed in Table 1. The model outputs of interest in this study are

ỹ =
(

log10 Q̃p, log10 W̃f

)
, (20)

with Q̃p
[
m3 s−1

]
being the peak discharge of the outflow hydrograph and W̃f = W̃b/k [m] the

average breach width at the end of the breaching process. According to literature, where

errors of these quantities are given as orders of magnitude (Wahl , 2004; ASCE/EWRI , 2011),

a logarithmic scale is chosen here.
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When applying the proposed dam breach model to predict a hydrograph of an existing but

potentially failing embankment dam, some model parameters in x can be easily quantified

(e.g. crest width wc), while others are not known due to lack of data (e.g. basin reservoir

shape α) or they are unobservable and act as tuning coefficients (e.g. scaling coefficient of

sediment transport γ). Parameters that show a strong epistemic character, e.g. parameters

that quantify the breach erosion (see Eq. (14)), will undergo a Bayesian update in the

present study. These parameters are defined as vector φ and called Quantities of Interest

(QoI ) hereafter. The goal is to draw conclusions about the epistemic model inputs from real

observation data 〈yi〉. Henceforward 〈yi〉 stands for a sequence 〈yi〉1≤i≤n = (y1,y2, . . . ,yn)

of n experiments, containingQp andWf of historically failed embankment dams (see Table 2).

Applying Bayes’ rule yields the joint posterior density

π
(
φ | 〈yi〉

)
=
L
(
φ; 〈yi〉

)
· π (φ)

C
, (21)

where L
(
φ; 〈yi〉

)
is the likelihood function, π (φ) the prior distribution of the model param-

eters, and C is a normalization constant such that the integral of the posterior distribution

π
(
φ | 〈yi〉

)
is equal to one.

The unknown parameters in φ are subsequently quantified by Bayesian inference, that is

“the process of fitting a probability model to a set of data and summarizing the result by

a probability distribution on the parameters of the model and on observed quantities such

as predictions for new observations” (Gelman, 2014). This is achieved by performing the

following steps of classical Bayesian data analysis:

1. Setting up a full probabilistic model, i.e. the previously defined dam breach model is put

into a Bayesian multilevel framework to assess different levels of uncertainty according

to the underlying physical problem. This includes the specification of prior knowledge

and the formulation of the likelihood function.

2. Conditioning the model on observed data, i.e. setting up a residual model that de-

scribes the forward model discrepancy, quantifying the prior knowledge, defining the

likelihood function with given data of historical dam failures, and finally calculating

the appropriate posterior distribution of the unobserved quantities of interest.

3. Evaluating the goodness-of-fit, i.e. analyzing the posterior distribution and compare

the output of the now calibrated model with the observed data.

These three steps are further detailed in the next sections. Further steps would consist

of including additional data not considered yet for model conditioning, i.e. performing the

three steps again whereas the posterior distribution now represents the new prior knowledge.

3.1 Bayesian Multilevel Framework

The probabilistic shell that is shaped around the deterministic dam breach model can be

represented by a Bayesian network (see Figure 3). The Bayesian multilevel approach applied

13



herein is adopted from Nagel and Sudret (2016). It provides “a natural framework for solving

complex inverse problems in the presence of natural variability and epistemic uncertainty”.

The multilevel character of the method at hand is given by the hierarchically composed

sub-models, such as the deterministic forward model itself, different categories of parameter

uncertainty and/or variability described by the prior model, and prediction errors of the

forward model specified in the residual model.

Figure 3: Directed acyclic graph (DAG) representing the probabilistic multilevel modeling ap-

proach followed in this study: vertices represent known (���) or unknown (◦) quantities, whereas

directed edges symbolize their deterministic (→) or probabilistic (99K) relations (adapted from

Nagel and Sudret (2016)). On the left side the general formulation is shown (a), whereas on

the right side the actual parameters of the dam breach model and their role in the multilevel

framework are shown (b).

The parameters in x of the forward model (see Eq. (19)) can be categorized according to

their physical meaning (see Table 1). Alternatively they can be classified according to four

different categories of parameters (see Figure 4)

x = (m,u, z,d) (22)

that differ in their (un)certain nature, as done in Eicher (2014). This classification is based

on general data availability on the one hand, and quality of empirical parameter knowledge

on the other hand. The classification proposed in this study is one possible solution. Under

different circumstances and/or available expert knowledge the result might be an alternative

classification.

The first category is defined as well-known experimental conditions d = (hd,∆Hr,∆Vr,∆Hb, r0),

that are normally reported for historical dam failure events. These quantities are assumed

to be perfectly known for each experiment i and they can be considered as deterministic

arguments of the dam breach model (see Table 2). The second category of parameters

z = (wc, se, α, β) are subject to known and experiment-specific aleatory uncertainty. Their

14
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Figure 4: Classification of the dam breach model parameters according to their (un)certain

nature: the combinations of aleatory and epistemic uncertainty result in four different classes.

The parameters with known values and known probability distribution function (pdf) (d, z

respectively) are experiment specific whereas the the parameters with unknown values and

unknown hyper-parameters (m, u respectively) are assumed to be fixed for all experiments

(see Figure 3).

true values are not known as for d but follow the probability distributions fZ (zi;θZ). That

is, the hyper-parameters θZ are assumed to be well-known, whereas the vector of realizations

zi throughout the experiments i = 1 . . . n is not known. Parameters belonging to this class

are usually not reported for historical dam failures but there is data available from which

we can define the population distribution function (Eicher , 2014). Furthermore, parame-

ters that are subject to epistemic uncertainty m = (ν, η), i.e. exponents of the transport

rate formula in Eq. (14), are treated as constant model parameters, but their true values

are not known. Ultimately, u represents unknown parameters that are subject to aleatory

uncertainty that itself is unknown and not changing across the experiments. In case of the

dam breach model at hand the scaling coefficient γ controlling the velocity of dam material

erosion via the sediment transport in Eq. (14) is the only parameter that belongs to this

category. Thereby not only the realizations are unknown, but as well the hyperparameters

θU describing the probability function fU (ui;θU ) from which realizations ui are drawn.

Therein contained is the parametric uncertainty of the erosion process itself. However, the

distribution family of fU is assumed to be known.

3.2 Residual Model

Even when assuming perfectly known model parameters (m,ui, zi,di), predictions ỹi are

expected to deviate from real observations yi due to the output imperfection ε, that can

be regarded as a container of measurement errors, numerical approximations, and general

model inadequacies. In that sense observations

y = ỹ + ε (23)
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are interpreted as outcomes of a random process and the underlying random generating

mechanism, the joint probability distribution of the model parameters, is investigated. Im-

perfections ε are hereinafter referred to as residuals and are assumed to be realizations of

a Gaussian random variable E ∼ fE (ε; Σε), usually centered around 0 with variance Σε.

Errors due to numerical approximations and model inadequacies are collected as structural

errors herein. To separate them from imperfections ε, more sophisticated residual error

models could be used, e.g. representing the structural errors by a functional error term

(Brynjarsdóttir and O’Hagan, 2014). This analysis is not included in this study because of

missing information about dam breach data uncertainties and because it is out of the scope

of this study.

The unknown error of observed quantities Qp and Wf and of model inadequacies is

taken into account during the calibration procedure, referred to as residual calibration. For

simplicity uncorrelated and normally distributed errors are assumed with variances

Σε =


 σQ

2 0

0 σW
2


 . (24)

The standard deviations of both the error in peak discharge σQ
[
log10 m3/s

]
and final breach

width σW [log10 m] are collected in the vector σ =
(
σQ, σW

)
such that Σε = σ2I2 and will

be quantified through inference analysis.

3.3 Prior Knowledge

In a Bayesian fashion prior or expert knowledge is seen as a subjective degree of belief about

the true values of the parameters. Prior parameter knowledge is formulated by means of

probability distribution functions. Through Bayesian data analysis this prior knowledge is

updated with a set of data resulting in posterior parameter distributions. It is distinguished

between (1) structural priors and (2) parametric priors.

The former include information about the prior model of experiment-specific unknowns

zi and ui. It is referred to as prescribed uncertainty because the corresponding variabilities

are integrated out in the marginalized formulation of the likelihood function (more details

in Section 3.4). Therefore, this type of prior knowledge cannot be improved by additional

experiments. The structural priors in this study are formulated as distribution functions

fZ (zi;θZi) to draw samples zi of the parameter vector z (see Table 2) and

fU (ui;θU ) = LN (γi;λ, ζ) (25)

being a lognormal distribution to draw samples of the scaling coefficient γi. The hyper-

parameters θU = (λ, ζ) are unknowns associated with parametric priors (see below) and

composed by the location parameter λ (mean value of the associated normal distribution)

and the scale parameter ζ > 0 (standard deviation of the associated normal distribution).

17



Second, the parametric priors describe the knowledge about the global unknowns m, θU ,

and σ. Model parameters that belong to one of the aforementioned categories are herein

referred to as quantities of interest QoI during Bayesian inferential analysis and collected

as the vector φ = (m,θU ,σ). Their prior formulation will be updated when Bayesian data

analysis is applied. In case of m = (ν, η) the expert knowledge falls back on empirical

formulas quantifying sediment transport and hydraulic friction (see Appendix B) and are

herein defined as bivariate normal distribution

πM (m) ∼N2 (µm,Σm) (26)

with µm consisting of mean values µν = 4.0 and µη = −0.5, and Σm being the covariance

matrix with σν = 0.9, ση = 0.3, and ρνη = −0.1. The hyperparameters θU = (λ, ζ) that

quantify the structural prior of the scaling coefficient γi cannot be guessed based neither

on expert nor on empirical knowledge. This is due to lack of data or even unobservability.

Therefore the prior

πΘU (θU ) =


πΛ

πZ


 ∼


U (−15, 5)

U (0, 2)


 (27)

does not contain any valuable information apart from physically feasible and broad enough

ranges. The prior knowledge about structural model and data uncertainty constituted in

random variable ε is represented by non-informative uniform distributions

πE (Σε) =


πσQ

πσW


 ∼


U (0.0, 0.6)

U (0.0, 0.6)


 . (28)

Finally, the joint prior distribution is defined as a function of the quantities of interest

π (φ) = π (m,θU ,Σε) = πM (m) · πΘU (θU ) · πE (Σε) (29)

and can be applied in Bayes’ formula to evaluate the posterior distribution (see Eq. (21)).

3.4 Definition of the Likelihood Function

The probability of observed data yi for given model parameters (m,θU ) and residual vari-

ability Σε is defined as the likelihood function

L
(
m,θU ,Σε; 〈yi〉

)
=

n∏

i=1

f
(
yi |m,θU ,Σε

)
. (30)

The data yi used in this study are listed in Table 2. The likelihood depends on the ex-

periment specific knowns (θZi
,di) and is conditional on the unknowns (m,θU ,Σε). Here a

marginalized (or integrated) formulation

f
(
yi |m,θU ,Σε

)
=

∫

Du

∫

Dz

fE
(
yi −M (m,ui, zi,di) ; Σε

)

fU |ΘU
(
ui | θU

)
fZ|ΘZ

(
zi | θZ

)
dui dzi

(31)
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is used, wherein the aleatory uncertainty in the so-called latent variables (u, z) is integrated

out (Nagel and Sudret , 2016). This formulation focuses on global unknown parameters and

therefore can be seen as a function of quantities of interest φ = (m,θU ,Σε). Alternatively

the latent variables (u, z) can be inferred, avoiding the numerical integration of Eq. 31.

However, the knowledge about future realizations of (u, z) cannot be improved thereby.

The formal likelihood function f
(
yi |m,θU ,Σε

)
of data set i is numerically approxi-

mated by Monte-Carlo integration. Through independently sampling of
(
u

(k)
i , z

(k)
i

)
from

their population distributions and further calculating the vector of residuals ε
(k)
i = yi −

M
(
m,u

(k)
i , z

(k)
i ,di

)
the approximation of the formal likelihood function is determined.

The distribution function fE of the residuals, described by the covariance matrix Σε (see

Eq. (24)), is applied directly and the likelihood is therefore estimated as

f̂
(
yi |m,θu,Σε

)
=

1

K

K∑

k=1

fE

(
ε

(k)
i ; Σε

)
. (32)

During the process of likelihood estimation the number of model evaluations K is incremen-

tally increased until a relative precision on the estimated likelihood f̂
(
yi |m,θU ,Σε

)
of 1%

is reached. Usually K = 104 model evaluations are needed to reach this target.

3.5 Model Inversion

In a deterministic framework inverse modeling connotes finding the parameter set which pro-

duces the model output that fits best the observed data. In a Bayesian world inverse modeling

implies updating the prior knowledge with observed data to end up with the posterior dis-

tribution. In addition to this full uncertainty picture, point estimates of the posterior, like

mean or mode, are chosen as characterization of the high dimensional distribution in prac-

tice. With φ = (m,θU ,Σε) being the vector containing the QoI of the multilevel framework

introduced in Eq. (22), the joint posterior distribution in Eq. (21) is recalled as

π
(
φ | 〈yi〉

)
∝ L

(
φ; 〈yi〉

)
· π (φ) . (33)

To perform inferential analysis, random samples are needed from the posterior distribution.

Even if the d-dimensional posterior is well defined in the space of the unknown parameters

d = Dφ = Dm × DθU × DΣε , drawing samples from it is not trivial nonetheless. The

standard approach to circumvent this challenge is the method of MCMC. In this study a

differential evolution Markov chain (DE-MC) algorithm is applied (ter Braak , 2006) (see

Appendix C for more details). Thereby generated samples of the target distribution, i.e. the

joint posterior distribution in Eq. (33), can be further processed to finalize inference analysis

and interpreting the impact on the breach model.
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4 Inference Analysis Results

Statistical inference of the proposed dam breach model will be presented here. First, the

methodology of how to interpret the results of inference analysis is introduced. Second, the

results of the model inversion are demonstrated with φ =
(
λ, ζ, ν, η, σQ, σW

)
. Third, the

results are discussed, especially with the focus on real case applications, where results of

additional analysis is presented.

4.1 Methodology of Interpretation

MCMC simulation was run with the choice of population size N = 12, satisfying N = 2∗d for

unimodal target distribution (ter Braak , 2006). Details concerning the MCMC performance

are given in Appendix D. The total number of model evaluations during MCMC simulation

was approximately I ·N · n ·K ≈ 5 · 109. An efficient implementation of deterministic dam

breach model and highly parallel execution yields 104 model evaluations per second, resulting

in a total run time of roughly 150h.

Since the initial motivation of this study was to improve the reliability of dam breach

model predictions, the goodness-of-fit (GoF) of the presented parameter model is discussed.

For this purpose the model is run using the same input data as used for model inversion,

including the structural priors and the updated parametric prior, i.e. the posterior of QoI.

The most probable parameter set φ̂ of the d-dimensional joint posterior is taken to run the

dam breach model. Hence, the variability ỹ originates purely from aleatory uncertainty.

Goodness-of-fit evaluations are done by visually comparing the predicted quantities ỹ with

the observed data y in form of violin plots (Hintze and Nelson, 1998). Further the GoF

statistics

r = ỹ − y + ε (34)

are processed in a descriptive manner. The expected value Ê [r] is calculated for each data

i and afterwards averaged over the whole sequence of n data sets to estimate potential

prediction biases. Furthermore, the sequence 〈pi〉 with pi = Pr [ri ≤ 0] being the percentile

of data i is presented in form of a percentile plot. This way the location of potential prediction

biases is visualized. As it is done for existing dam breach models (Wahl , 2004), the 95%

interval Î95 [r] ≈ 2.0

√
V̂ar [r] is estimated to quantify the width of prediction band, where

V̂ar [r] is the sample variance of GoF statistics r. All analysis is done for overall objectives

y and separately for both objectives peak discharge Qp and final breach width Wf . This is

because the model inversion is performed including the information of both objectives and

any potential bias in predicting solely e.g. Qp must be prevented.

Comparing the GoF statistics simplifies the interpretation of the resulting model accuracy

and reliability and the implication on the application to predict a potential dam breach

hydrograph. Quantitative summaries of this analysis are found in Table 3 and Table 4.
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Figure 5: Posterior distribution samples: the diagonals show the marginals, posterior (red) as

well as prior (blue) for purposes of comparison; the upper right part indicates the correlation

coefficient between parameters; the scatter plots in the lower left part illustrate the actual bi-

variate distributions between the parameters. The highlighted (λ, ν, η) (yellow) and
(
ζ, σQ, σW

)

(green) parameters stand for quantities that show clear correlation patterns among themselves.

The yellow subspace seems to be independent of its green counterpart.

4.2 Posterior Distribution

In Figure 5 the posterior distribution is visualized in terms of iid samples. The clear corre-

lation pattern between the QoI indicates that the scale parameter ζ of the log-normal dis-

tribution describing the breach erosion, i.e. quantifying the uncertainty in the global scaling

coefficient, is almost independent of other model parameters (λ, ν, η). They show consider-

able correlation coefficients among themselves, with ρλ,ν = −0.95 being the most distinct

correlation close to linear dependency. On the one hand it indicates an over-parametrization,

i.e. one of the two parameters could be neglected in the model formulation without losing

information or abandoning physics. On the other hand correlations are commonly caused by

data that is not informative enough. The prior correlation between the erosion formula expo-

nents ρν,η = −0.1, from the epistemic point of view, changed to a more noticeable relation in

the posterior with ρν,η = −0.69. Physically speaking, the dependency between highly intense

sediment transport and the impact of cross-sectional shape is more accentuated. Looking at

the marginal distributions in the diagonals of Figure 5, the inferential information contained

in the data used for the Bayesian update (see Table 2) is evident. The non-informative

priors πΛ and πZ changed to peaky shaped distributions. Otherwise the marginal posteriors

of exponents ν and η are not far from their prior πM (m) in Eq. (26). For η the mean value
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Figure 6: Performance evaluation of model inversion: comparing observed data including cali-

brated residual uncertainties (gray violins) with modeled data (colored violins). The 15 historic

dam failure events used for model inversion (see Table 2) are shown in the upper plot containing

peak discharge Qp data (red) and final breach width Wf data (blue), respectively, in the lower

plot.

is slightly shifted to a more negative value, whereas µν did not change significantly, but σν

decreased notably. The marginal distribution of the scale parameter ζ shows a wide plateau

close to zero. A second correlation pattern is noticed between the parameters
(
ζ, σQ, σW

)

which describe uncertainties of the dam breach model. The lower the uncertainty in erosion

quantification is, i.e. lower values of ζ, the higher will be the values of structural model and

data uncertainties σQ and σW . This additional pattern seems to be nearly independent of the

correlations between parameters (λ, ν, η) that characterize the dam breach erosion but not

the associated uncertainties. Estimating the most probable values of the joint posterior dis-

tribution for all QoI, roughly yields
(
λ̂, ζ̂, ν̂, η̂, σ̂Q, ˆσW

)
= (−8.4, 0.34, 4.1,−0.61, 0.22, 0.14)

(see Table 3).

4.3 Goodness of Fit

Running the dam breach model with data used for model inversion and estimated most

probable values for unknown parameters, raises the possibility to evaluate the performance

of the model inversion. In Figure 6 both objectives Qp and Wf are displayed. Observed

data of peak discharge and final breach width spread over two and one orders of magnitude,
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Figure 7: Percentile plot of model inversion performance evaluation, from left to right: summing

up both objectives Qp and Wf (grey); and splitting objectives peak discharge (red) and breach

width (blue). Uncertainty bounds were estimated through sampling with replacement, also

referred to as bootstrapping (Efron, 1979): median value (line), [25, 75] % interval (dark area),

and [5, 95] % interval (light area).

respectively, represented by probabilistic means (violins) because of superimposed residual

uncertainties σQ and σW . In many cases an almost complete overlap of the violins based

on modeled and observed data is evident. Otherwise large parts of the violin tails show

agreement, i.e. the model inversion appears to have succeeded. A quantitative summary of

inversion performance is given in Table 4. The average inversion error amounts to Ê [r] =

−0.03 ± 0.04 and implies no biased performance as expected. Analyzing the objectives

separately shows small but not significant biases Ê
[
rQ
]

= −0.06± 0.06 and Ê [rW ] = 0.01±
0.04, respectively. This insight is disclosed visually in Figure 7. Final breach width tends to

be overestimated, whereas peak discharge predictions tend towards underestimation in the

mid percentile range and overestimation in the upper percentile range. Considering both

objectives, as done during the process of model inversion, these trends diminish over the

full range of percentiles. The average 95% prediction interval is approximately 0.4 order

of magnitude when considering both objective quantities. Evaluating only peak discharge

yields Î95

[
rQ
]
≈ 0.5, being within the known range for peak discharge predictions. A

clearly smaller interval is observed when looking exclusively at breach width Î95 [rW ] ≈ 0.35

compared to the literature (Wahl , 2004). Further, the correlation measure between GoF

statistics ρ̂
[
rQ, rW

]
≈ 0.2 is fairly small. This indicates that even the simple residual model

in Section 3.2 is sufficiently adequate in the case at hand. The results are justified by

the assumption of a residual model where only the residual widths of the model output

are investigated but no inference about their correlation is allowed for. Considering the

variances of error sources (see Table 4) the inference analysis indicates that about 2/3 of the

total variance arises from residual uncertainty V̂ ar [ε] whereas the remaining part seems to

originate from parametric uncertainty V̂ ar [y − ỹ].
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4.4 Alternative of Zero Noise Assumption

The results of the successful inference analysis in the previous Section is not directly ap-

plicable for hydrograph predictions of a potentially failing dam. The reasons are twofold.

On the one hand the observed data Qp and Wf used for model calibration is not equivalent

to the main output of the computational model, which is the outflow hydrograph used as

input for flood wave propagation models. This ambiguity restricts potential model errors

to be incorporated into the dam breach model for hydrograph predictions. On the other

hand the simple residual model applied in this study (see Eq. (24)) prevents to distinguish

between structural model errors measurement errors, both represented as part of the resid-

uals ε. Consequently neglecting the residuals when predicting the hydrograph, for reasons

mentioned before, will likely lead to an underestimation of the model uncertainties and the

reliability of model predictions is at stake.

The correlation pattern observed in the posterior distribution (see Figure 5) suggests that

changes in the residual model presumably will not affect the set of model parameters (λ, ν, η),

but will have an impact on ζ. This represents a quite particular case, while the parameters

are usually affected by a change of the residual model (e.g. Thyer et al., 2009). Due to

the modularity concept of the Bayesian multilevel framework (Nagel and Sudret , 2015), a

change of the residual model does not considerably impinge on the other modules from a

methodological and technical point of view. Thus, to quantify the parameter uncertainties

for direct and predictive model application, a further simplification in the residual model is

constituted.

The previous residual model in Eq. (24) is based on the strong assumptions of additivity,

homoscedasticity, and Gaussianity. Now these assumptions are substituted by assuming

“perfect” data and model. Hence, all imperfections

‖Σε‖ → 0 (35)

are expected to diminish, i.e. their variability is not bounded to the assumptions of additivity,

homoscedasticity, and Gaussianity anymore, but will be compensated by the variability of

model parameters. This residual model is referred to as zero noise limit hereinafter. Accord-

ingly the QoI are reduced to φ = (λ, ζ, ν, η) representing a subset of the residual calibration.

Now the QoI comprise the hyper-parameters (λ, ζ) of the log-normal distribution for γi and

the exponents ν and η, quantifying the sediment transport within the breach.

The assumption of ‖Σε‖ → 0, i.e. noise-free measurements and a perfectly accurate

forward model, is obviously far from the true representation of ε in case of dam breach data,

but no information about the level of measurement errors is at hand and potential structural

errors will be compensated by parametric uncertainties in ζ. Variability in the data is still

present due to varying inputs across several experiments. To incorporate the change of the

residual model in Eq. (35) into the framework outlined in Section 3, the estimation of the
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Figure 8: Posterior distribution samples, assuming zero noise limit: illustration is similar to

Figure 5. The correlation pattern of parameters (λ, ν, η) (yellow) remains, whereas the model

parameter ζ is independent.

integrated likelihood formulation (see Eq. (31)) is slightly modified and defined as the kernel

density function

f̂
(
yi |m,θu

)
=

1

K

K∑

k=1

K
(
ε

(k)
i

)
, (36)

where K
(
ε

(k)
i

)
are Gaussian kernels and the bandwidth selection is based on the normal

distribution approximation (Silverman, 1986).

This calibration configuration of the zero noise limit is seen as an alternative to the

residual calibration. Reusing the data in Table 2 is legitimate as long as the knowledge

inferred from residual calibration is not applied. Therefore the prior distribution defined

in Section 3.3 is not changed, except from neglecting πE (Σε). The performance of the

MCMC simulation can be found in Appendix D.1. The posterior resulting distribution is

illustrated in Figure 8. Neither the correlation pattern nor the shape of the marginals of

parameters (λ, ν, η) have changed compared to the residual calibration. The most probable

parameter values
(
λ̂, ν̂, η̂

)
= (−8.3, 4.2,−0.67) show negligible differences (see Table 3). A

major difference is observed in the marginal distribution of the scale parameter ζ. Now

a distinct peak is noticed around ζ̂ = 0.83, suggesting that the uncertainty in the scaling

coefficient increased, compensating for missing residual variability, not only for structural

model errors, but for measurement errors as well.

Table 4 shows the average expected residual is approximately zero. The average 95%

prediction interval is approximately half order of magnitude, slightly more than in case

residual calibration. Î95 [rW ] ≈ 0.4 is significantly larger, suffering most from the increased
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Table 3: Most probable parameter value estimations of the joint posterior distribution including

the estimation errors measured through bootstrapping.

QoI
residual model

residual calibration zero noise limit

λ̂ −8.37 ± 0.06 −8.25 ± 0.02

ζ̂ 0.340± 0.010 0.833± 0.003

ν̂ 4.12 ± 0.04 4.17 ± 0.01

η̂ −0.610± 0.003 −0.669± 0.006

σ̂Q 0.220± 0.003

σ̂W 0.139± 0.002

correlation measure ρ̂
[
rQ, rW

]
≈ 0.8. The GoF statistics rQ and rW are strongly correlated

and therefore the residuals r do not show properties of white noise. These correlated errors

are attributed to either global model inadequacies and/or data inconsistencies, caused by

the simplification of the zero noise assumption.

4.5 Comparison of Residual Models

Comparing the posterior distributions in Figure 5 and Figure 8 clearly illustrates, that on

the one hand the characterization of the sediment transport formula within the breach (see

Eq. (14)) is independent of the residual model approach. The correlation pattern among

the parameters (λ, ν, η) as well as the set of their most probable values is not dependent

on the choice of the residual model. This can be interpreted as a plausibility check for the

resulting posteriors. Taking the median value eλ̂ of the log-normal distribution describing

the stochastic scaling coefficient γ and writing the transport formula in a deterministic way,

one finds qs ≈ 0.00025 · v4.15 · r−0.65
hy . The exponents ν = 4.15 and η = −0.65 are not

much different from prior knowledge (see Eq. (26)). On the other hand, parameters that

contain information about the model uncertainties
(
ζ, σQ, σW

)
are strongly dependent on

the residual model. When assuming uncorrelated residuals, the model and data uncertainty

is represented by σQ = 0.22 and σW = 0.14 and parametric uncertainty describing the scaling

coefficient γ is quantified by the QoI ζ = 0.34. For zero noise limit assumption all residual

uncertainty is covered by parametric uncertainty of the breach erosion process, consequently

ζ is increased from 0.34 to 0.83.

The differences between the two residual models is evident by performing a variance

decomposition of model residuals (see Table 4). When assuming diminishing residuals dur-

ing inversion, the overall output variance is increased from 0.052 to 0.057. No increase is

observed in the variance of peak discharge residuals (originally 70% assigned to the data un-
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Table 4: Error statistics of the model inversion performance evaluation: Estimated mean error,

95% confidence interval, correlation coefficient between objective quantities Qp and Wf , and

variances of different error sources.

residual

model

output

quantity
Ê [r] Î95 [r] ρ̂ [rQ, rW ]

V̂ ar [r] V̂ ar [y − ỹ] V̂ ar [ε]

(expressed in 10−2)

residual

calibration

Qp −0.06 ± 0.06 0.50 ± 0.01 7.1 ± 0.3 2.2 ± 0.3 4.0

Wf 0.01 ± 0.04 0.35 ± 0.01 3.2 ± 0.2 1.2 ± 0.2 1.7

Qp,Wf −0.03 ± 0.04 0.44 ± 0.02 0.20 ± 0.03 5.2 ± 0.3 1.7 ± 0.2 2.9

zero

noise

limit

Qp −0.03 ± 0.06 0.52 ± 0.03 7.1 ± 0.8 7.1 ± 0.8 0.0

Wf 0.05 ± 0.04 0.41 ± 0.02 4.2 ± 0.3 4.2 ± 0.3 0.0

Qp,Wf 0.01 ± 0.04 0.47 ± 0.02 0.84 ± 0.04 5.7 ± 0.5 5.7 ± 0.5 0.0

certainty parameter σQ). A more prominent increase in variance is detected for final breach

width prediction errors, namely, from 0.032 to 0.042 (primarily 60% covered by σW ). This

is explained by the strong correlation of residuals rQ and rW for the zero noise assumptions,

where model outputs ỹ =
(
Q̃p, W̃f

)
are correlated due to the physical breach formation

processes implemented in the dam breach model. Breaking up this tie during residual cal-

ibration shows, that the global uncertainty in Qp is responsible of overestimating the error

in Wf predictions. Furthermore, the residual calibration suggests that more than half of the

global uncertainties are associated with residual variability. To assign these global uncer-

tainties to model inadequacies and measurement errors, more sophisticated error modeling

would be needed that is beyond the scope of this study, but being a topic for future work.

While pure measurement errors are typically closer to white noise, the model inadequacies

can be modeled by a functional error term, often represented by Gaussian processes and

dependent on the classes of known model parameters d and z (e.g. Kennedy and O’Hagan,

2001; Brynjarsdóttir and O’Hagan, 2014).

To qualitatively compare the two calibrated dam breach models, differing in the under-

lying residual model, and selecting the right one is known under Bayesian model selection

(Schöniger et al., 2014). This has not been accomplished in this study due to the compu-

tational cost of evaluating the evidence C (see Eq. (21)). The motivation to perform the

non-standard alternative of zero noise limit (see Section 4.4) is crucial when facing a real

case application where reliable hydrograph predictions are requested.

5 Discussion of Model Application

The probabilistic modeling framework and the according calibration results have been dis-

cussed in the previous section. Here the applicability of the resulting probabilistic dam

breach model is discussed by applying the proposed model in a test case.
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Figure 9: Application example of proposed probabilistic dam breach model (input data taken

from Zenz and Goldgruber (2013)). Dam breach hydrograph predictions of hypothetical em-

bankment dam by modeling physical breach formation processes: 5000 model evaluations and

resulting peak discharge Qp and final breach width Wf and their marginal distributions (a); and

explicitly showing time series of two different samples, indicated with (�) and (N), for breach

outflow, breach width, and breach bottom level ((b) and (c)).

The problem statement of a hypothetical dam failure originates from a numerical bench-

mark organized by the International Commission on Large Dams ICOLD that took place in

Graz 2013 (Zenz and Goldgruber , 2013). The parameter definition is given as follows (com-

pare with Table 1). The embankment dam is characterized by dam height hd = 61 m, crest

width wc = 24 m, and embankment slope se = 3. The reservoir is described by a drop in

reservoir level ∆Hr = hd = 61 m and according release of water volume ∆Vr = 38 276 344 m3,

and the reservoir basin shape parameter approximately follows a uniform distribution α ∼
U (2.5, 3.2) (estimated from retention curve). The breach side angle at the top is assumed

to be uniformly distributed β ∼ U (50, 85), the maximal breach height is ∆Hb = 61 m, and

the initial breach depth is assumed to be Yb,0 = 50 m, and therefore r0 = 0.82. The erosion

of dam material is quantified by the transport formula in Eq. (14). For reasons of applica-

bility and reliability discussed in Section 4.4 the calibration results under the assumption

of zero noise are considered here. Making use of the most probable values as point esti-

mates (see Table 3), the applied transport formula yields qs ≈ γ · v4.2 · r−0.67
hy m2 s−1 where

γ ∼ LN (−8.3, 0.83).

Running a Monte-Carlo simulation of 5000 model evaluations leads to 5000 different

progressive breach formation processes. Here a Latin Hypercube Sampling (LHS) was chosen
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as sampling strategy for the purpose of faster convergence of the MC simulation. In Figure 9

the resulting distribution of the hydrograph’s peak discharge and the final breach width are

shown. Two distinct behaviors can be observed in Figure 9a: parameter sets with high erosion

rates (large γ parameter realization) lead to total failure of the dam, indicated by final breach

Wf being larger than dam height hd = 61 m, whereas parameter sets with low erosion rates

(small γ parameter realization) lead to a partial failure only. In this exemplary application

the driving force of the reservoir water does not seem to be sufficient to erode the large

body of dam material in many parameter combinations. Two representative hydrographs for

complete and partial failure are shown in Figure 9. In case of total failure the progression

is obvious and peak breach outflow is reached within less than 1 h, nearly at the same time

when the breach bottom hits the fixed bottom, i.e. transition from vertical erosion to lateral

widening. In case of partial failure the gradual erosion is not fast enough to initiate a

progressive failure mechanism and the breach bottom never reaches the fixed bottom. Here

the duration of the failure process is much longer (a few hours).

The performance of the breach model proposed in this study is based on simple physi-

cal assumptions. Thus the model behavior is assumed to be close to physical processes of

real dam failures, including the related probabilities of observing one or the other forma-

tion process. The resulting peak discharge distribution (see Figure 9a) is therefore much

wider than the predicted peak discharges of the benchmark participants (ranging from 10 to

40× 103 m3 s−1). Neglecting the possibility of partial failure in this case might lead to a sig-

nificant overestimation of the predicted hydrograph. In this case, the consequent flood wave

calculation would result in too intensive hydraulic impact, hence the according quantification

of the dam break risk is biased.

6 Conclusions

Real dam break risk analysis requires for reliable breach models capable to predict possible

breach outflow hydrographs. The challenge to predict a worst case scenario, that still is

regarded as a physically feasible event, is of particular interest for engineering applications.

By contrast, seeking for more accurate breach models often loses sight of reliably predicting

less probable events. In this study the lack of knowledge in describing the progressive process

accurately is compensated by the development of a probabilistic dam breach model frame-

work where uncertainties on different levels are quantified. The focus is on homogeneous and

non-cohesive earthen embankment dams whose potential failures need to be analyzed for the

purpose of further flood risk assessment.

Uncertainties in the quantification of dam material erosion is used to tune the newly

proposed dam breach model in a Bayesian fashion. Prior information about dam breach

model parameters together with data from historical dam failure events are used to perform

Bayesian inference. Model inversion is accomplished by sampling from the posterior distribu-
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tion through DE-MCMC simulations. The convergence to the posterior distribution and the

consequent statistical inference of the multilevel model was successful using the information

contained in a data set of 15 real dam failure events. The very same data has been used

to carry out deterministic model calibration of simplified physics-based dam breach models

comparable to the model developed in the study at hand (e.g. Macchione, 2008). By re-using

the same data the focus is on the proposed framework itself instead of possible changes in

prediction quality due to different data.

Observed data of peak discharge Qp and final breach width Wf are used as output quan-

tities. Output imperfections, consisting of structural model errors and measurement errors,

are defined as residuals and their prior knowledge is represented by independent Gaussians

for each output quantity. Inferring for parametric and residual uncertainties results in a

posterior distribution with a distinct correlation pattern. Model parameters that character-

ize the sediment transport rate inside the breach are independent of residual uncertainty.

Moreover, they are not related to the hyper-parameter describing the aleatory uncertainty of

the global scaling coefficient γ. The characterization of the average sediment transport can

be best described by qs ≈ 0.00025 ·v4.15 ·r−0.65
hy m2 s−1. Comparing this formulation with the

theoretical values from the transport law by Meyer-Peter & Müller and the friction law by

Manning (ν = 3.0 and η = −0.5), the transport within the breach can be attributed to total-

load-like (ν > 3.0) and more sensitive to cross-sectional geometries (η < −0.5). However,

the variability of qs, described by the hyper-parameter ζ, is dependent on the variability of

the residuals. The latter are correlated among themselves in addition.

Assessing the goodness-of-fit (GoF) statistics of the performed model inversion yields a

95% confidence interval for model predictions around half orders of magnitude for the model

output peak discharge Qp, falling in the range of values reported in literature for other dam

breach prediction tools (Wahl , 2004; Froehlich, 2016). The model output final breach width

Wf shows a 95%confidence interval around third orders of magnitude. The variability of the

GoF statistics is explained by roughly 60% from the residual variability and 40% covered by

the different parametric uncertainties.

The quantities Qp and Wf representing the observed data are not conforming with the

final model output in real model applications. It is the main motivation of the proposed prob-

abilistic dam breach model to predict the time series of breach outflow (breach hydrograph)

needed as upper boundary condition in state-of-the-art flood routing models. Assuming

non-zero residuals and consequently incorporating reversely the estimated residuals of Qp

into predicted hydrographs is impractical. The clear correlation pattern in the posterior dis-

tribution and the hierarchical character of the Bayesian multilevel framework allows for an

alternative formulation of the residual model, where residual uncertainties are assumed to di-

minish. This zero noise limit represents a subspace of the full problem. The inference results

in this unusual setup show, that the characterization of qs does not change, but uncertainty
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due to both structural model errors and measurement errors is compensated by parametric

uncertainty of the sediment transport rate quantification. As a result the uncertainty of

model predictions is overestimated, whereas it is probably underestimated in the case of

full residual calibration. On these grounds the zero noise assumption is still favorable when

applying the proposed modeling framework to a real case, when the computational model

predicts full hydrographs instead of maximum flows only. To avoid the non-standard resid-

ual model zero noise limit, two additional ingredients are needed in the proposed modeling

framework: (i) improved error modeling, allowing for disentangling structural model errors

and measurement errors; and (ii) development of a physically based technique to reversely

apply uncertainties of Qp and Wf to predicted hydrographs. In fact the community is encour-

aged to quantify and/or reduce the uncertainties contained in the observed data and thereby

improving the precision of the model substantially (Morris et al., 2008; ASCE/EWRI , 2011).

The probabilistic dam breach model was successfully applied to a test case, which consists

of a hypothetical embankment dam (Zenz and Goldgruber , 2013). It clearly demonstrated

the benefits of the proposed modeling framework, when taking into account the parametric

uncertainties that were quantified in this study. The simplified model, which allows for

physical interpretation of the results, combined with the motivation of improving prediction

reliability, enabled by enhanced methodologies, provides an adequate compromise between

model accuracy and model reliability.

Improving the formulation of the deterministic and simplified dam breach model, such as

introducing additional physical parameters (e.g. discharge coefficient), requires to re-assess

all parametric uncertainties by inference analysis. To strengthen and/or critically assess

the proposed dam breach model framework, the same inferential analysis can be performed

subsequently by inferring from an additional data set of observed data, where the prior

is defined by the posterior of this study, as done in Peter (2017). Since the validity of

similar dam breach model formulations have been proven (e.g. Chinnarasri and Saelim,

2009; Capart , 2013; Vonwiller et al., 2015), observed data from real dam failure events is

regarded to provide its maximum value within the proposed calibration procedure to further

improve the empirical knowledge of model configurations. The gathering of dam failure data

containing qualitatively and quantitatively enough information remains a main challenge.

Eventually, to deal with a probabilistic breach outflow hydrograph, the need for fast

and accurate flood wave calculation tools is of paramount importance. Recent advances in

computer sciences open a new door to fill this gap (Kalyanapu et al., 2011; Lacasta et al.,

2014; Reguly et al., 2015). The possibility of running two dimensional flood wave calculation

as Monte-Carlo simulation with random hydrograph is real (Peter , 2017). The information

contained in the resulting probabilistic flood maps is abundant. Finally, there is a strong

need for engineering design aids and standard procedures for embankment breach analysis

and hazard management that quantitatively incorporate uncertainties.
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A Dam breach model initial conditions

Fixed breach bottom Hb,min, initial breach level Hb,0, initial reservoir level Hr,0 and corre-

sponding reservoir volume Vr,0 are calculated through (see Figure 1)

Hb,min = hd −∆Hb (37a)

Hb,0 = Hb,min + (1− r0) ∆Hr (37b)

Hr,0 = Hb,min + ∆Hr (37c)

Vr,0 = ∆Vr
Hr,0

α

Hr,0
α −Hb,min

α . (37d)

Furthermore, having the breach side angle β, that is a proxy for the embankment material

property, and the initial breach level Hb,0 is not sufficient. An initial value of the breach

top width Wb is needed in addition. In case of triangular breach shape (β = 45◦) the initial

breach width Wb,0 = 2hb is unique and the according breach discharge

Qb,ref =

√
512

3125
gHe

5 (38)

is taken as reference value. However, Wb,0 is not unique for all other choices of β. Thus, the

restriction is set, that the initial breach discharge Qb
(
β,Wb,0

)
is equal to initial discharge

of a triangular breach in Eq. (38)) (Franca and Almeida, 2005). When assuming that the

reservoir is filled to capacity (Hr,0 =̂ hd), the initial breach width can then be approximated

as

Wb,0 (β) ≈ 16

25

(
5− β

24

)(
hd −Hb,0

)
. (39)

B Empirical transport and friction formulas

The exponents ν and η in Eq. (14) vary strongly depending on the field of application.

Existing transport, respectively friction quantification tools, are based on laboratory and/or

field test data that is further processed to result in simple empirical formulas. Numerous

examples of such formulas can be found in the literature. According to Wu (2008) and

Machiels et al. (2011) lower and upper bounds for the exponents c1...4 (see Section 2.4) are

assumed in this study as

c1 ∈ [1.0, 2.2] (40a)

c2 ∈ [0.0, 2.0] (40b)

c3 ∈ [−0.6, 0.0] (40c)

c4 ∈ [0.4, 0.72] . (40d)

Uniformly sampling from the above ranges leads to an empirical approximation of possible

model parameter combinations ν = 2c1 + c2 and η = c1 (1− 2c4) + c3.
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C Markov Chain Monte Carlo (MCMC) algorithm

The MCMC algorithm applied in this study (ter Braak , 2006) runs N Markov chains in

parallel and has been proven to ensure both detailed balance and ergodicity. Modifications

with improved efficiency for high dimensional posterior are available in Vrugt et al. (2009) or

Laloy and Vrugt (2012). The heart of this MCMC algorithm is the absence of a predefined

and fixed proposal distribution, but new parameter configurations are instead proposed in

an adaptive manner for j’th chain as

φp = φj + δ (φr2 − φr1) + e, (41)

with φj being the actual parameters of chain j, r1 and r2 are randomly selected chains

different from j, δ = 2.38/
√

2d is a scaling factor for the jumping width to ensure efficient

acceptance rates. To ensure ergodicity of the Markov Chain, e is drawn from a symmetric

distribution with a small variance compared to that of the target, but with unbounded

support. Initial states are generated by sampling from the prior distribution π (φ). In

addition, classic Metropolis algorithm is applied, i.e. accepting proposed parameters φp

with probability

a = min

(
1,
π
(
φp | 〈yi〉

)

π
(
φj | 〈yi〉

)
)
. (42)

D MCMC performance

MCMC simulations run in this study showed time series with acceptance rates between

0.25 and 0.30 over the total number of iterations I, ensuring good mixing of the random

walk and therefore converging optimally to the stationary posterior distribution (Roberts

and Rosenthal , 2001). Starting from initial states, samples of Ib iterations are rejected until

the stationary target distribution was reached, also known as burn-in period. To monitor

convergence of MCMC to the target distribution, the diagnostic potential scale reduction

factor PSRF was applied (Brooks and Gelman, 1998), in which the variances (covariances

in case of multivariate analysis) within each MCMC-chain and between the N -chains are

compared. Convergence is assumed to be reached if PSRF < 1.1 and the effective number of

iterations is Ieff = I− Ib. Samples of Ieff show strong autocorrelation because of the Markov

Chain generation mechanism. The number of effective samples, that is samples showing

properties of iid (independent and identically distributed) random samples, is estimated

through

N̂eff =
N · Ieff

1 + 2
∑L
l=1 ρ̂l

, (43)

where ρ̂l is the sample autocorrelation with lag l and maximum lag L is the first odd integer

for which ρ̂L+1 + ρ̂L+2 < 0 (Gelman, 2014). MCMC simulation runs until N̂eff > 1000

for each QoI. The denominator in Eq. (43) is applied as thinning lag tl to get rid of the
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Figure 10: Time Series of the Markov Chain Monte Carlo simulation (differential evolu-

tion algorithm with 12 parallel chains (ter Braak , 2006)) for the quantities of interest φ =
(
λ, ζ, ν, η, σQ, σW

)
.

autocorrelation. Finally, the remaining samples represent independent samples of the joint

posterior distribution that will undergo further analysis.

D.1 Residual Calibration

Running the MCMC simulation with N = 2d = 12 parallel chains results in the time series

given in Figure 10 obtained using a total of I = 3000 iterations. The time series plot does

not show any pattern of bad mixing what is congruent with a mean acceptance rate over all

chains of 0.29. The convergence to a stationary distribution is illustrated by the potential

scale reduction factor PSRF in Figure 11. After 300 iterations the chains are already close

to their stationary distribution. The last quantity to reach the limit of PSRF < 1.1 is the

multivariate diagnostic and σQ at Ib = 800 iterations. After having rejected iterations of

the burn-in period, the remaining 2200 iterations are thinned with tl = 26 (see Eq. (43))

to finally obtain approximately 1000 iid posterior samples put together from the N parallel

chains.
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Figure 11: Convergence diagnostic after Brooks and Gelman (1998) for the four QoI and their

multivariate version: after Ib = 800 iterations all parallel chains in MCMC simulation seem to

have reached the stationary target distribution (potential scale reduction factor PSRF < 1.1).

D.2 Zero Noise Limit

Compared to the residual calibration the number of chains N = 12 was not changed. The

mean acceptance rate of 0.28 is still within the known range of optimal convergence behavior.

Due to smaller parameter space d = 4 convergence is slightly faster and the burn-in period

Ib = 600 is shorter accordingly. Likewise the autocorrelation has decreased and a thinning

lag lt = 19 was applied to gain iid samples. The MCMC simulation was run with I = 2200

iterations to end up with approximately 1000 posterior samples.

Acknowledgments

The authors would like to thank the Federal Office of Energy of Switzerland (SFOE) for

their financial support of the project “Dam Break Analysis under Uncertainty” and namely
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