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ABSTRACT 

To reduce adverse impacts on nature, thus enabling future generations to lead a decent life, deep 

changes in present human behavior are urgently needed. Policymakers can assume a key role and 

aim at creating an environment that enables producers and consumers to move towards more 

sustainable behavioral patterns. However, in order to successfully implement policy interventions 

and to efficiently invest time and money in the most promising fields of action, policymakers are 

in need of a highly detailed level of quantitative information on prevailing consumption patterns 

and production systems. 

The goal of this dissertation was to investigate and develop new approaches that would be able to 

provide a thorough information base to support the design, prioritization and implementation of 

effective environmental policies. Thereby, a special focus was laid on the exploitation of Big Data 

and the application of data mining and machine learning techniques to extract new information 

tailored to the respective policymakers’ areas of influence. 

In order to achieve this goal, a two-track approach was pursued. Initially, building upon in-depth 

surveys and data collection, a database providing accurate data of local actors and activities was 

established for the municipality of Zernez, a Swiss mountain village, in the scope of a transdisci-

plinary research project. Subsequently, a comprehensive spatially resolved modeling framework 

was developed to estimate similarly detailed data for data-scarce regions. 

The in-depth analysis of the current carbon footprint in Zernez provided an effective planning 

basis for the research team to develop a concrete action plan. Yielding a greenhouse gas (GHG) 

reduction potential of 80%, the building stock was identified as a reasonable first step to devise 

GHG mitigation strategies in Zernez. The proposed actions could then lead to a reduction of 

13% and 17% of the municipality’s total carbon footprint from a consumption and production 

perspective, respectively. The experiences gained in this project demonstrated the importance of 

understanding and quantifying the variability of local actors (producers and consumers) to devel-

op and prioritize targeted GHG reduction measures. 

In order to provide other municipalities with similarly comprehensive information without labo-

rious data collection, an extensive modeling framework was established in a second stage. The 

models elaborated in this dissertation follow three principles. First, they are built from the bottom-

up, which allows for reproducing a realistic picture of the variability of local actors and for aggre-

gating simulation results on any desired regional scale. Second, the models source data from pub-

licly accessible databases and third, they adopt a life cycle consumption-based perspective, which 

means that they assess resource uses and emissions induced by the consumer demand in a certain 

area. The overall modeling framework takes thus individual households as central modeling ele-

ments and aims at deriving a realistic environmental profile for each household within a certain 

region. This resolution is important because purchase decisions are made on the level of house-

holds. 
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The overall modeling framework encompasses three sub-models: a physically-based building en-

ergy model, a data-driven consumption model and a mobility model building upon the results of 

an agent-based simulation. The overall model was applied to the whole of Switzerland in order to 

demonstrate its practical feasibility. Still, the concepts of the sub-models are generic enough to be 

applicable to other countries with comparable data. 

A global sensitivity analysis was applied to study the building energy model’s internal structure, 

and the database of Zernez allowed for an in-depth evaluation with primary data. Based on these 

insights, the model was then improved by integrating comprehensive large-scale geographic data, 

including the use of nationwide laser-scanning data to derive 3D-building geometries. The final 

model is able to provide estimates of energy demand for each residential building in Switzerland. 

A thorough evaluation of the model results with reported data concluded that this model can 

approximate a realistic picture of the overall characteristics of a certain building stock’s energy 

demand. 

The consumption model embarked on a novel approach to assess the variability of lifestyle-

induced environmental impacts. Based on an extensive use of data mining techniques, prevailing 

consumption patterns were studied and 28 consumption-based archetypes derived. These arche-

types were further investigated and revealed different behavior patterns within similar socio-

economic groups. Furthermore, archetypical behavior deviating from macro-trends, such as in-

creased environmental impacts with higher income, could be detected. The proposed archetype-

approach can thus be regarded as a promising basis to foster the understanding of current con-

sumption patterns and to contemplate effective policy measures to reduce consumption-induced 

environmental impacts. Moreover, these archetypes can serve as building blocks to model the 

demand of food, services, consumables and other goods of households within a specified region. 

For this, the archetypes were assigned to real Swiss households by means of a newly developed 

probability-based classification framework which simultaneously interlinks with both the building 

energy model and the mobility sub-model. The latter estimates the households’ transport de-

mands based on the results of an agent-based simulation framework that reproduces typical mo-

bility behavior of the Swiss population. 

The overall model predicts the demands in about 400 different consumption areas for all approx-

imately four million real Swiss households by taking into account the given circumstances of a 

specific household. A hybrid life cycle assessment (LCA) framework then assesses and subdivides 

the environmental impacts associated with these demands into more than 200 different catego-

ries. The applied LCA allows for computing different environmental indicators, and found that 

the estimated average consumption-based carbon footprint of Switzerland amounts to 9.5 tons 

CO2-equivalents per person per year. Besides interesting differences among household consump-

tion archetypes, the large-scale application of the overall model also reveals regional distinctions. 

For instance, mobility demands in rural areas tend to induce higher GHG emissions than their 

urban peers. Such differences should be further investigated to identify potential drivers of envi-

ronmental impacts. 
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The high resolution of the overall model and its ability to quantify the variabilities in both house-

hold- and region-specific behavior renders it a powerful information tool to understand locally 

occurring consumption patterns. It may thus help to find hotspots, identify areas of action, and 

allow for the designing of impactful environmental measures tailored to specific household 

groups to reduce their impacts. The model can further be used as a platform to evaluate policy 

scenarios in upcoming research. The physically- and component-based approach of the building 

energy model as well as the link to an agent-based mobility model in particular will allow for the 

analysis of future scenarios in the context of total household consumption. 

This dissertation demonstrated how Big Data and its analysis techniques can be employed to cre-

ate a comprehensive knowledge base to inform environmental policymaking at different regional 

scales. The developed model is a starting point for more detailed investigations and it is open for 

further developments, improvements and extensions in future.  
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ZUSAMMENFASSUNG 

Tiefgreifende Veränderungen des menschlichen Verhaltens sind dringend nötig, um weitere 

Schäden an der Natur zu vermindern und somit zukünftige Generationen nicht zu beeinträchtig-

ten. Hierbei können insbesondere politische Entscheidungsträger eine wichtige Rolle spielen, 

indem sie Rahmenbedingungen gestalten, die einen Anreiz für nachhaltigere Verhaltensmuster 

für Produzenten und Konsumenten geben. Um entsprechende Massnahmen erfolgreich zu im-

plementieren und sowohl Zeit als auch Geld effizient in die vielversprechendsten Aktionsfelder 

zu investieren, benötigen diese Entscheidungsträger detaillierte quantitative Informationen über 

das vorherrschende Konsumverhalten und die Produktionssysteme. 

Das Ziel dieser Dissertation bestand daher darin, neue Ansätze zur Erstellung einer entsprechend 

umfassenden Informationsbasis zu untersuchen und zu entwickeln. Diese Informationsbasis soll 

dabei so ausgelegt sein, dass sie die Gestaltung, Priorisierung und Implementierung von wir-

kungsvollen Umweltstrategien effektiv unterstützen kann. Ein spezieller Fokus wurde dabei auf 

die Nutzung von heute zur Verfügung stehenden grossen Datenmengen (Big Data) und die An-

wendung von Techniken aus den Bereichen Data-Mining und maschinellem Lernen gelegt. 

Für die Erreichung des Ziels der Dissertation wurde ein zweigleisiger Ansatz verfolgt. Einerseits 

wurde im Rahmen eines transdisziplinären Forschungsprojekts mit Hilfe von detaillierten Erhe-

bungen eine Datenbank für das kleine Schweizer Bergdorf Zernez aufgebaut, die Daten über 

lokale Akteure und deren umweltrelevanten Aktivitäten umfasst. Andererseits wurde eine um-

fangreiche räumlich aufgelöste Modellplattform entwickelt, die ähnlich detaillierte Daten für be-

liebige Regionen abschätzen kann. 

Die vertiefte Analyse des heutigen CO2-Fussabdrucks von Zernez wurde vom Forschungsteam 

als Planungsgrundlage genutzt, um einen konkreten Aktionsplan zu erarbeiten. Der Gebäudepark 

wies ein Treibhausgas-Reduktionspotential von 80% auf und wurde daher als ein vielverspre-

chendes erstes Aktionsfeld für die Konzipierung von Strategien zur Senkung von Treibhaus-

gasemissionen identifiziert. Die vorgeschlagenen Massnahmen könnten schliesslich den totalen 

CO2-Fussabdruck der Gemeinde um 13% (Konsumperspektive) beziehungsweise um 17% (Pro-

duktionsperspektive) reduzieren. Die Erfahrungen, die in diesem Projekt gesammelt wurden, 

zeigten auf, wie wichtig es für die Herleitung und Priorisierung von Massnahmen ist, dass der 

Vielfalt der lokalen Akteure (Produzenten und Konsumenten) Rechnung getragen und dabei die 

Variabilität in ihren Verhaltensmustern verstanden und quantifiziert wird. 

In einer zweiten Phase wurde ein umfangreiches Modell erarbeitet, welches ohne aufwendige 

Datenakquisition auch für andere Gemeinden Daten auf einem ähnlichen Detaillierungsniveau 

generiert. Die Entwicklung der Modellmodule dieser Dissertation basierte auf drei Grundprinzi-

pien: 1. Um ein realistisches Abbild der Variabilität der Verhaltensmuster von lokalen Akteuren 

zu reproduzieren und um die Modellresultate auf beliebigen geographischen Ebenen aggregieren 
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zu können, wurden sämtliche Modelle bottom-up („von unten nach oben“1) aufgebaut. 2. Die Mo-

dellmodule beziehen ihre Eingabedaten von öffentlich zugänglichen Datenbanken, damit sie oh-

ne grossen Datenerhebungsaufwand universell einsetzbar sind. 3. Sie nehmen eine konsumbasier-

te Lebenszyklusperspektive ein, das heisst, sie bewerten Ressourcenverbräuche und Emissionen, 

die aufgrund der Konsumnachfrage in einem Gebiet verursacht werden. Insgesamt bedeutet dies, 

dass das Gesamtmodell darauf abzielt, realistische Umweltprofile für jeden einzelnen Haushalt in 

einer bestimmten Region herzuleiten. Dies ist wichtig, weil Kaufentscheide auf der Haushalts-

ebene gefällt werden.  

Die Gesamtmodellplattform setzt sich aus drei Modellmodulen zusammen: ein physikalisch-

basiertes Gebäudeenergiemodell, ein rein datenbasiertes Konsummodell und ein Mobilitätsmo-

dell, das sich auf die Resultate einer agentenbasierten Simulation stützt. Das Gesamtmodell mit 

den verknüpften Modellmodulen wurde auf die gesamte Schweiz angewendet, um die praktische 

Umsetzbarkeit der entwickelten Ansätze zu demonstrieren. Die Konzepte der Modellmodule 

wurden jedoch generisch gehalten, so dass sie auch auf andere Länder mit vergleichbaren Daten 

angewendet werden könnten. 

Mit Hilfe einer globalen Sensitivitätsanalyse wurde die interne Struktur des Gebäudeenergiemo-

dells beleuchtet und zudem eine Modellevaluierung mittels Primärdaten aus der Zernezer Daten-

bank durchgeführt. Basierend auf den Erkenntnissen aus dieser Untersuchung wurde das Modell 

verbessert, indem umfangreiche räumliche Daten integriert wurden. Unter anderem wurden mit 

Hilfe von nationalen Lidar-Daten2 dreidimensionale Gebäudegeometrien bestimmt. Das endgül-

tige Gebäudeenergiemodell kann schliesslich für jedes Wohngebäude in der Schweiz den Ener-

giebedarf abschätzen. Eine detaillierte Gegenüberstellung von Modellresultaten und Messdaten 

zeigte, dass das Modell ein realistisches Bild des Wärmebedarfs eines Gebäudeparks nachzeich-

nen kann. 

Das Konsummodell verfolgt einen neuartigen Ansatz, um die Variabilität der durch unterschied-

liche Lebensstile hervorgerufenen Umweltauswirkungen zu untersuchen. Der intensive Einsatz 

von Data-Mining-Techniken ermöglichte die Analyse von heutzutage vorkommenden Konsum-

mustern und darauf aufbauend die Bestimmung von 28 konsumbasierten Archetypen. Diese Ar-

chetypen zeigten, dass unterschiedliche Verhaltensweisen innerhalb ähnlicher sozio-

ökonomischer Gruppen vorkommen können. Des Weiteren wurde auch archetypisches Verhal-

ten gefunden, das von Makrotendenzen, wie beispielsweise erhöhte Umweltfussabdrücke mit 

steigendem Einkommen, abweicht. Der vorgeschlagene Archetypenansatz kann als eine vielver-

sprechende Grundlage verstanden werden, um heutige Konsummuster besser zu verstehen und 

wirkungsvolle Strategien zur Reduktion von konsuminduzierten Umweltauswirkungen auszuar-

beiten. Darüber hinaus können die Archetypen auch als Modellbausteine verwendet werden, um 

den Haushaltsbedarf an Nahrungsmitteln, Dienstleistungen, Konsum- und weiteren Gütern in-

nerhalb einer bestimmten Region abzuschätzen. Aus diesem Grund wurden die Archetypen rea-

                                                 
1 Im konkreten Fall bedeutet dies, dass kleine Einheiten (z. B. einzelne Haushalte) einzeln modelliert werden und 
später zu einem Gesamtbild aggregiert werden können. 
2 Light detection and ranging: Höhenmessung mittels Laserstrahlen. 
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len Schweizer Haushalten mit Hilfe eines neu entwickelten wahrscheinlichkeitsbasierten Klassifi-

kationsverfahrens zugewiesen. Mit der Archetypenzuweisung verknüpft dieses Verfahren auch 

das Konsummodell mit dem Gebäudeenergiemodell und dem Mobilitätsmodell. Letzteres ermit-

telt den Mobilitätsbedarf von einzelnen Haushalten basierend auf den Resultaten einer agenten-

basierten Transportsimulation, die das Mobilitätsverhalten der Schweizer Bevölkerung zu repro-

duzieren versucht. 

Das Gesamtmodell berechnet schliesslich die Nachfrage in ca. 400 unterschiedlichen Konsumbe-

reichen für alle ungefähr vier Millionen Schweizer Haushalte, indem es den gegebenen Umstän-

den spezifischer Haushalte Rechnung trägt. Ein hybrides Ökobilanzierungsverfahren bewertet 

sodann die mit dieser Nachfrage einhergehenden Emissionen und Ressourcenverbräuche mit 

Hilfe von mehr als 200 Prozessmodellen. Die angewendete Ökobilanzierung erlaubt die Berech-

nung verschiedener Umweltindikatoren. So beträgt zum Beispiel der durchschnittliche konsum-

basierte CO2-Fussabdruck der Schweiz 9.5 Tonnen CO2-Äquivalente pro Person und Jahr. Ne-

ben interessanten Unterschieden zwischen Haushaltskonsumarchetypen, zeigt die grossmassstäb-

liche Anwendung des Gesamtmodells auch regionale Differenzen. Beispielsweise tendieren länd-

liche Gebiete dazu, mit ihrem Mobilitätsverhalten höhere Treibhausgasemissionen zu verursa-

chen als ihre städtischen Gegenstücke. Solche Unterschiede sollten zukünftig weiter erforscht 

werden, um mögliche Treiber von Umweltauswirkungen zu eruieren. 

Die hohe Auflösung des Gesamtmodells und seine Fähigkeit, die Variabilität von haushalts- und 

regionen-spezifischen Verhaltensweisen zu quantifizieren, erlauben die Erstellung einer nützli-

chen Informationsbasis, um lokale Konsummuster zu verstehen. Das Modell kann daher helfen, 

Umwelt-Hotspots und Handlungsbereiche zu identifizieren, sowie wirksame Massnahmen zur Re-

duktion von Umweltauswirkungen, die auf spezifische Haushaltsgruppen zugeschnitten sind, zu 

erarbeiten. Im Rahmen zukünftiger Arbeiten, kann das Modell schliesslich auch als Plattform für 

die Bewertung von Massnahmenszenarien dienen. Insbesondere der physikalisch- und kompo-

nentenbasierte Ansatz des Gebäudeenergiemodells sowie die Verknüpfung mit einem agentenba-

sierten Mobilitätsmodell erlauben die Analyse einer Vielfalt an Zukunftsszenarien im Kontext des 

Gesamthaushaltskonsums. 

Diese Dissertation demonstrierte wie Big Data und die entsprechenden Analysetechniken ange-

wendet werden können, um eine umfassende Wissensgrundlage zu generieren, die die Gestaltung 

von wirkungsvollen Umweltstrategien auf verschiedenen geographischen Ebenen unterstützen 

kann. Das entwickelte Gesamtmodell stellt einen Ausgangspunkt für detailliertere Analysen dar 

und ist offen für zukünftige Entwicklungen, Verbesserungen und Erweiterungen. 
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1.1 PROBLEM STATEMENT 

Melting glaciers, sea level rise, droughts compromising food supply, severe losses of biodiversity, 

mudslides and floods threatening human settlements as well as heatwaves and air pollution affect-

ing human health are just some of the environmental problems that are perceived by the public 

and make it to the headlines of newspapers year after year. In fact, there is also a large body of 

scientific reports and articles which underpins the increase of anthropogenic emissions, the use of 

resources and the consequential environmental problems. For instance, the Intergovernmental 

Panel on Climate Change (IPCC) scientifically confirms the existence of global warming, its po-

tential implications such as glacial melting, mudslides or sea level rise and points out the influence 

of human activities on the climate system [1]. The IPCC also warns of further warming and 

changes in the climate system if greenhouse gas (GHG) emissions continue. However, to limit 

the consequences on the climate system, substantial reductions of anthropogenic GHG emissions 

are necessary according to IPCC. Steffen and colleagues [2] reveal that environmental problems 

other than climate change also need attention. Besides global warming, they identify the effects of 

mankind in the areas of biosphere integrity, biogeochemical flows, and land-system change as 

exceeding the carrying capacity of the Earth system. Living beyond the “planetary boundaries” in 

these environmental spheres might substantially threaten the functioning of the Earth system and 

thus pose a severe risk for modern societies and mankind [2]. Facing these findings, a large con-

sensus among scientists exists that today’s consumption and production patterns are unsustaina-

ble and deep changes in human behavior, society and economy are urgently needed (see the calls 

in e.g. [3–10]). The scientific evidence has also triggered the action of politicians and different 

international agreements have been established and signed. In the recent past, the Paris Agree-

ment [11] and the United Nations’ Sustainable Development Goals1 (SDGs) [12] clearly demon-

strate the political willingness of nations to take action and to find new pathways towards more 

sustainable interaction with the environment while simultaneously keeping or increasing the level 

of human well-being. 

Despite the indisputable importance of international agreements and declarations of intents, a 

real change in present-day consumption behavior and production structure is an almost insur-

mountable challenge for all involved parties. By being embedded in complex and interacting eco-

nomic, societal and cultural systems and driven by economic profit, personal and social values, 

shifting towards more sustainable forms of consumption and production is difficult for individual 

consumers and producers [5, 13]. Against this background, and regardless of the question about 

who should assume responsibility, policymakers can play a key role in creating an enabling envi-

ronment for change [3, 5, 7, 13, 14]. They are not only in the position to reach and objectively 

inform consumers and producers about environmental implications, but they may also devise 

policies, set standards, enforce rules or create incentives. In this regard, local initiatives in particu-

lar have gained much attention in recent years and their importance has been widely acknowl-

                                                 
1 First and foremost SDGs 6 “Clean Water and Sanitation”, 7 “Affordable and Clean Energy”, 11 “Sustainable Cities 
and Communities”, 12 “Responsible Consumption and Production”, 13 “Climate Action”, 14 “Life below Water”, 
and 15 “Life on Land”. 
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edged [15]. This is likely due to the fact that local authorities and initiatives are close to the wants 

and needs of the individual stakeholders, who are needed to achieve substantial reductions of 

environmental impacts. However, to successfully derive, prioritize and implement a reasonable 

set of measures which aims at mitigating environmental problems, quantitative information is 

needed on prevailing consumption patterns and local production systems. 

A common first step to provide an adequate information base for policymakers is to environ-

mentally assess the current emissions and resource uses for a certain area. This usually involves 

coupling statistics on material and energy flows with environmental background data on emis-

sions and resource uses. In view of the importance of such analyses and given today’s priority on 

climate change issues, a large amount of carbon footprint studies, mainly focusing on nations or 

cities, have been conducted (see e.g. [16–23]). An important aspect of such environmental as-

sessments constitutes the system boundaries to adequately consider emissions and resource uses. 

In this regard, different frameworks have been established and comprehensive overviews of 

state-of-the-art balancing approaches are, for instance, given in [14, 24–26]. In spite of the many 

accounting schemes, two fundamentally different approaches can be distinguished: the produc-

tion and the consumption perspective. While production-based accounting focuses on the direct 

emissions caused by actors within certain geographical boundaries, the consumption perspective 

accounts for environmental impacts independent of their geographical occurrence but induced by 

the inhabitants residing within the considered territorial boundaries. Consequently, the two per-

spectives overlap in the consideration of domestic production for domestic demand and differ in 

accounting for imports to satisfy the final demand of the study area’s inhabitants (consumption 

perspective) and for export-oriented production within the geographical system boundaries (pro-

duction perspective). Several researchers emphasize the complementarity of both accounting 

schemes [14, 24, 26–28]. In fact, both frameworks provide important insights for local policy-

makers from different angles. The consumption perspective might be more suited for tackling 

consumption behavior and might pinpoint potential shifts of environmental burdens by adopting 

a life cycle perspective. In contrast, the production perspective considers all actors within the area 

of influence of local authorities and thus includes also the entire local trade and industry (com-

prising production for domestic demand and export from the study area). 

Even though the importance of both accounting perspectives is unquestionable, the consump-

tion-oriented viewpoint takes a special role in countries like Switzerland. The two emission-

intensive primary and secondary sectors contribute little to Switzerland’s Gross Value Added 

(0.7% and 25.9% respectively [29]). Hence, the territorial inventory for GHG emissions, with its 

approximately 58 million tons CO2-equivalents, is clearly below the estimated consumption-based 

footprint of about 91 million tons CO2-equivalents [30]. Jungbluth and colleagues [30] estimate 

that 50% of the GHG emissions induced by the average Swiss person are embodied in trade, 

meaning that they were caused by the final demand within Switzerland but occurred outside the 

national borders (see also [19, 21, 30–32]). Therefore, a life cycle perspective as provided by the 

consumption-based accounting is essential for such countries to prevent problem shifts (also 

known as “carbon leakage” in the case of GHG emissions). Furthermore, the focus on house-
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holds is another important aspect of the consumption perspective. Households are main drivers 

of economy. Their demand for products and services initiates diverse economic activities up- and 

downstream of the supply chains serving the households. In this respect, household consumption 

is estimated to cause 65% of global GHG emissions and 50% to 80% of global land, material, 

and water use [32]. The remaining shares can mainly be attributed to governmental consumption 

(5% – 7%) and gross capital formation (19% – 37%) [32]. Yet, the investments (gross capital 

formation) can be charged to the production of new goods and services and are thus induced by 

the final demand of households or governments. Additionally, it can be argued that governments’ 

final aim is to serve households. Households can thus be regarded as ultimately responsible for 

environmental impacts associated with economic and governmental activities that aim at satisfy-

ing their needs. Many studies also go a step further by investigating priority fields of household 

consumption and identify housing, mobility and food as the consumption areas contributing 

most to environmental impacts (e.g. [6, 21, 32, 33]). 

Most of the above-mentioned environmental assessment studies [16–23] deploy a top-down per-

spective. This means that they use aggregated data for the whole study area. Such assessments are 

very insightful to find environmental hotspots, to define priority areas or to reveal general 

tendencies. However, providing only total results or averaged data for the whole study area is too 

coarse to identify targeted environmental policies. Few consumption-based modeling approaches 

exist which attempt to estimate and map environmental footprints at spatially higher resolved 

levels than the study area as a whole: e.g. Baiocchi et al. [9], Minx et al. [34], Druckman and Jack-

son [35], and Jones and Kammen [36]. However, by focusing on the derivation and assessment of 

the average household of smaller sub-areas, these approaches still remain on aggregated levels to 

some extent. In order to derive effective measures which are tailored to the specific actors in the 

study area, more specific knowledge on and an understanding of the local processes and con-

sumption patterns are required. In a consumption perspective, this means that individual house-

holds living in the study area should be the central element of consideration. It is at this level that 

purchase decisions are taken and thus the right level to search for solutions to mitigate household 

environmental impacts. However, household behavior is diverse and influenced by many differ-

ent factors, ranging from living conditions and financial constraints to personal preferences, just 

to name a few. Therefore, to offer an in-depth knowledge base for policymaking, the variability 

of households or industrial actors needs to be captured in the case of a consumption-based or a 

production-based approach, respectively; especially if aspects of behavioral economics or psy-

chology shall be involved in the development of policies [13, 37]. Although some of the above-

mentioned spatially resolved modeling approaches [9, 34–36] rely on different household types or 

household characteristics data, none of these takes individual households as central elements and 

thus attempts to explicitly model the variability of household behavior within the study region. 

Furthermore, some of these models are either partly based on commercial and nontransparent 

data or are limited in scope; for instance by only considering certain consumption areas. Alt-

hough Girod and De Haan [38, 39] assess the behavior of individual households on a national 

level, their analysis neither allows for a regional model nor for subsequent scenario analysis, 
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which is important when investigating the effects of measures. The approaches of Saner and col-

leagues [40, 41] come closest to the suggestions above, but by modeling different consumption 

areas independent of each other, these models do not preserve the context of total household 

consumption and have not yet been applied on large scale. Nevertheless, these models can be 

regarded as a promising basis for further developments towards a comprehensive knowledge 

database for policymakers. 

Finally, it is a matter of fact, that nowadays more and more data is available. This huge amount of 

information even resulted in the term “Big Data”, which, according to Oxford Dictionaries [42], 

can be described as: “Extremely large data sets that may be analysed computationally to reveal 

patterns, trends, and associations, especially relating to human behaviour and interactions.” In the 

context of providing information for policymakers, not only the availability of large masses of 

data is of interest, but specifically also the techniques which are used to exploit these datasets. 

Such techniques are often summarized in terms like “Data Mining”2 or “Machine Learning”3 and 

may help to locate and interpret patterns in the data and also to make predictions for unknown 

variables [43, 44]. Therefore, considerable contributions to effectively support policymakers can 

be expected from Big Data and its analysis approaches. However, the application of the powerful 

tools of these data science disciplines requires careful and thorough investigations. 

1.2 GOAL AND RESEARCH QUESTIONS 

The goal of this dissertation is to investigate and provide new approaches to support im-

pactful environmental policymaking. Thereby, the focus lies on the retrieval and provision 

of comprehensive information for – particularly local – decision- and policymakers. The pro-

vided information base shall be tailored to local conditions and thus support the derivation, pri-

oritization and implementation of measures to abate adverse environmental impacts. However, it 

is beyond the scope of this dissertation to exhaustively explore and evaluate possible environ-

mental policies. 

More specifically, the present dissertation aims to address the following research questions (RQ): 

RQ 1 What kind of information on which level of detail can serve as a basis to derive targeted 

measures aimed at mitigating environmental impacts? 

RQ 2 What are efficient ways to provide this information, especially in view of constrained 

financial budgets to gather data and data scarcity in many sub-national regions? 

RQ 3 How can Big Data and machine learning techniques contribute to the support of envi-

ronmental policymaking? 

                                                 
2 Oxford Dictionaries [42]: „The practice of examining large pre-existing databases in order to generate new infor-
mation.“ 
3 Oxford Dictionaries [42]: „The capacity of a computer to learn from experience, i.e. to modify its processing on the 
basis of newly acquired information.“ 
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RQ 4 Specifically in a consumption-based scope: how can household consumption patterns 

be modeled to capture the context of total consumption and how can the variability of 

these patterns be regionalized and thus transferred to larger scales? 

RQ 5 What are the requirements and how should a framework be designed to evaluate and 

investigate large-scale effects of planned environmental measures? 

1.3 METHODOLOGICAL APPROACH 

In order to set up and prepare a detailed information base for policymaking, basically two differ-

ent pathways can be pursued: Either detailed data is collected locally by means of in-depth sur-

veys or data is estimated by modeling approaches. Accordingly, a dual approach is chosen for this 

dissertation. On the one hand, accurate data of actual actors in a small municipality is gathered in 

a transdisciplinary research project. In addition, this project enables for direct contact to local 

policymakers and thus particularly helps to address RQ1. On the other hand, building upon the 

insights and experiences gained in this project and with a view to responding to RQ2, a compre-

hensive spatially resolved modeling framework is developed. By adopting a consumption-based 

perspective, the goal of this bottom-up household consumption model is to derive a realis-

tic environmental profile for each household within a certain region. Thereby, a special 

focus is laid on the use of national statistics, publicly accessible data 4 and transparent, well-

established databases as input to the sub-models. The sub-models themselves are all developed 

with open-source software. Furthermore, the modeling framework is applied to the whole of 

Switzerland and thus provides estimates of the environmental footprints for all approximately 

four million individual Swiss households. In spite of this concrete demonstration, the proposed 

methods and developed approaches are generic enough to be transferable to other countries 

which have similar datasets available. 

An overview of the modeling approach is provided in Figure 1.1 in the form of a simplified flow 

scheme. The overall model consists of three sub-models: a physically-based building energy mod-

el, a model to assess mobility behavior and a data-driven consumption model. 

Building energy model  The housing energy demand model of Saner and colleagues [40] esti-

mates the energy needs of each residential building within a specified region. Additionally, 

it represents an interesting compromise between computational load and data requirements 

and is thus a promising approach for building stock investigations on large scales. In a first 

step, the model of Saner et al. [40] is subjected to an in-depth analysis. Thereby, a global 

sensitivity analysis is applied for an internal model evaluation, while empirical data is used 

for an external model evaluation. Building upon these insights, the model is improved and 

its data basis is enhanced with large-scale geographic information. The final model is able 

to assess the space heating demand for individual buildings based on simplified heat bal-

                                                 
4 This means that accessing the data is in principle open to everyone. However, it is possible that the data acquisition 
is not free of charge and might also require data protection contracts. 
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ances and to roughly estimate electricity demand and hot water production. The allocation 

of the housing energy use to individual real households is straight forward since the nation-

al census data [45] indicate in which building a household lives. 

Mobility model  Also based on the ideas of Saner et al. [40], the mobility behavior of house-

holds is modeled by means of MATSim simulation results (Multi-Agent Transport Simula-

tion) [46]. MATSim is an agent-based modeling framework and delivers spatially and tem-

porally resolved information on traffic modes and routes chosen by the simulated agents. 

However, this traffic simulation framework has been improved since the publication of 

[40] – especially with regard to modeling public transportation – and new simulation runs 

based on more recent mobility data [47] have become available for the whole of Switzer-

land [48]. While the concepts of [40] to assign simulated agents to real household members 

is only slightly improved, the achievements of this dissertation lie in integrating new data 

and scaling up the modeling approach to the whole of Switzerland.  

 

 

Figure 1.1: Simplified flow scheme providing an overview of the modeling approach d e-
veloped in this dissertation. Note that the results of the building energy mo d-
el and the mobility model are used in the assignment of the consumption 
model’s archetypes to households in order to interlink the three models.  
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Consumption model  In order to model the demand and associated environmental impacts of 

food, services, consumables, and other goods, novel approaches based on an extensive use 

of data mining techniques are developed. Thereby, the data of the Swiss Household Budget 

Survey [49] is explored to recognize consumption patterns and to identify consumption-

based archetypes in a first step. These archetypes are then allocated to individual census 

households within a newly developed probability-based classification framework in a sec-

ond step. Since the archetypes also provide estimates for mobility and housing behavior, 

the assignment of this archetypical behavior to households can be based on the results of 

the two other models, as well. Consequently, classifying a household as a certain archetype 

implicitly interlinks all three models and thus accounts for preserving the context of total 

household consumption. 

Environmental assessment  After having quantified all consumption areas of an individual 

household by means of the three sub-models, the environmental impacts associated with 

the household’s demands need to be determined. For this purpose, the life cycle assess-

ment (LCA) methodology is used. LCA systematically assesses the environmental impacts 

induced by all resource uses and emissions over the whole life cycle of an activity (e.g. a 

product, process or a service) comprising the stages of resource extraction, production, use 

phase, and disposal [6, 50, 51]. More specifically, a hybrid life cycle assessment (LCA) 

framework is established for this dissertation’s modeling approach. This means that life cy-

cle environmental impacts are computed using two methodologically different approaches: 

Environmentally-extended input-output models (EEIOM, see e.g. [6, 10]) and process-

based LCA (see e.g. [6, 50]). The first takes a top-down perspective and focuses on finan-

cial transactions between industry sectors of national economies or even between industry 

sectors of different countries in the case of multi-regional input-output models. It com-

putes environmental impacts of final demand by coupling environmental accounts of eco-

nomic sectors with these inter-sectoral financial flows. In contrast, process-based LCA 

goes in the direction of a bottom-up approach: Life cycle inventory databases provide de-

tailed information on emissions and resource uses in up- and downstream processes of an 

activity under consideration. While the specificity of process-based LCA is much higher, 

EEIOM is usually more comprehensive in scope since all industry sectors of economy and 

their interrelationships are considered. 

This assessment of environmental impacts shall also enable for the computation of differ-

ent environmental indicators and not only GHG emissions. Considering a range of envi-

ronmental pressures or a cumulative impact assessment method (e.g. ReCiPe [52]) may also 

help to avoid unintended shifts of environmental problems from one compartment to an-

other. 
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1.4 STRUCTURE OF THE DISSERTATION 

This PhD thesis is a cumulative dissertation and encompasses five scientific articles. Thereby, 

Chapters 2 to 5 constitute articles which are published in peer-reviewed scientific journals. Chap-

ter 6 corresponds to a conference proceeding which was accepted in a peer-review process. In 

the beginning of each chapter, the information on the respective publication is indicated. 

Chapter 2 summarizes our contribution in the transdisciplinary project Zernez Energia 2020. The 

municipality of Zernez, a small Swiss village in the Alps, initiated this project to find effective 

ways to decrease its greenhouse gas emissions. In the scope of the project, a thorough infor-

mation database is established in a laborious data collection process. Based on this database and 

as a starting point for deriving measures and policies, the current carbon footprint of this rural 

community is assessed by employing both a consumption and a production perspective. 

From Chapter 3 on, the modeling approach to provide a detailed information base for policy-

making without antecedent excessive data collection is presented. Figure 1.1 supports the outline 

of the dissertation’s modeling part by depicting which sub-model parts are described in which 

chapters. Because Chapter 2 identifies the building sector as a first step towards a reduction of 

greenhouse gas emissions for Zernez, Chapter 3 starts with the evaluation of a bottom-up build-

ing energy model. On the one hand, the model’s internal structure is scrutinized in the scope of a 

global sensitivity analysis. On the other hand, the detailed database of the research project in 

Zernez is used for an evaluation of the model results with primary data. Building upon these in-

ternal and external evaluations, Chapter 4 aims to overcome flaws of the investigated building 

model by integrating comprehensive geographic information and developing new approaches for 

large-scale building stock modeling. Thereby, the uncertainty of model results is assessed in a 

Monte Carlo simulation framework. The improved building energy model is finally evaluated 

again and provides simulation of space heating as well as estimates for hot water production and 

electricity demand for residential buildings. 

Chapter 5 elaborates a novel approach to study lifestyle-induced environmental impacts. By em-

ploying data mining techniques, consumption behavior patterns are studied and consumption-

based archetypes are identified. These archetypes quantify household needs in the context of total 

household consumption. Furthermore, a hybrid LCA framework is established to assess envi-

ronmental impacts associated with these archetypical behavior patterns. 

In addition to the direct support to identify targeted environmental measures, the archetypes of 

Chapter 5 can also be used as building blocks of a large-scale bottom-up household consumption 

model. Such a model is described in Chapter 6 and applied to the whole of Switzerland. Thereby, 

a probability-based classification approach is developed to assign the archetypes to actual house-

holds while interlinking the archetypes with the building energy model of Chapter 4 and a mobili-

ty model. The latter model estimates mobility demand of households based on the simulation 

results of an agent-based traffic simulation framework. Moreover, the hybrid LCA framework of 
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Chapter 5 is extended in order to also encompass the housing energy demands provided by the 

building energy model as well as the estimates of the household mobility behavior. 

Finally, the conclusions in Chapter 7 provide a synthesis of the whole dissertation. In addition, 

this chapter considers the dissertation in a broader context by discussing its scientific and practi-

cal relevance and finally gives an outlook on future research work. 
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SUMMARY 

The present chapter aims to determine the current carbon footprint (CF) of Zernez, a Swiss 

mountain village, and to identify reduction potentials of greenhouse gas (GHG) emissions. For 

this purpose, material and energy flows were assessed mainly based on detailed household sur-

veys, interviews and energy bills, but also by means of other information sources, for example, 

national statistics, traffic censuses, and literature values. To set up the GHG-balance, special at-

tention was paid to the consistent definition of system boundaries by adopting two fundamentally 

different perspectives: purely geographical accounting (PGA) and the consumption-based foot-

print (CBF) method. Each of these two perspectives total approximately 10 tonnes of carbon 

dioxide equivalents per capita per year. The PGA revealed that 70% of the direct emissions in 

Zernez are caused by agricultural activities, whereas no consumption area dominated the con-

sumption-induced CF. For the identification of targeted measures, both perspectives were con-

sidered in a complementary manner. The building stock and its underlying energy supply system 

showed a GHG reduction potential of 80%. The building sector was thus detected as a reasona-

ble first step for the municipality to adopt GHG mitigation strategies. In the case of Zernez, 

building-stock-related measures are predicted to decrease the current CF by 13% (CBF) and 17% 

(PGA) respectively. 

2.1 INTRODUCTION 

Urban and rural settlements constitute the heart of human activities and are thus central sources 

of anthropogenic greenhouse gas (GHG) releases. Local initiatives to reduce GHG emissions 

from human settlements are essential to abate climate change (UN-HABITAT 2011 [1]). In view 

of the important role that GHG accounting plays in the planning process of mitigation measures, 

a large body of carbon footprint (CF) studies on different scales has evolved, among them Ken-

nedy and colleagues (2009, 2010, 2014) [2–4], Frischknecht and colleagues (2014) [5], Minx and 

colleagues (2013) [6], Goldstein and colleagues (2013) [7], Jungbluth and colleagues (2011) [8], 

Larsen and Hertwich (2010) [9], Hertwich and Peters (2009) [10], Hillman and Ramaswami 

(2010) [11], and Ramaswami and colleagues (2008) [12]. Most of these studies concentrate on 

nations or cities. Given that around half of the global population currently lives in urban areas, 

with this share rapidly increasing in the future (UN 2012 [13]), many authors (e.g. Kennedy et al. 

2009, 2010, 2014 [2–4]; Goldstein et al. 2013 [7]; Baynes et al. 2011 [14]) emphasize that a focus 

on cities is crucial. Whereas the present and future importance of urban settlements is unques-

tionable, it should not be overlooked that a large part of the world’s population continues to live 

in the countryside. This is also true for both developing and industrialized nations. For instance, 

according to the “Degree of Urbanization (DEGURBA)”-definition of the European Union (Eu-

rostat 2016 [15]), approximately 65% of all Swiss municipalities are classified as “thinly populat-

ed” and are home to about 25% of the Swiss population (BFS 2014a, 2014b [16, 17]). However, 



 
2.1 Introduction 

17 

CF studies and local GHG mitigation initiatives in rural contexts are, to the best of our 

knowledge, less common (Minx et al. 2013 [6]). 

All of the abovementioned CF studies had to deal with an important question: how to set the 

system boundaries to adequately account for GHG emissions. This is an ongoing debate and 

different frameworks have emerged. Lin and colleagues (2015) [18], Chavez and Ramaswami 

(2013) [19], Baynes and Wiedmann (2012) [20], and Ramaswami and colleagues (2011, 2012) [21, 

22] provide comprehensive overviews of state-of-the-art carbon balancing approaches. According 

to these studies, there are basically two fundamentally different accounting perspectives (some 

aforementioned articles distinguish more): the consumption-oriented carbon footprint and the 

production-based approach. The first corresponds to a life cycle perspective and focuses on 

global GHG releases induced by the consumption behavior of the inhabitants living within the 

study area. In contrast, emissions related to activities and processes taking place within the study 

boundaries are the center of focus in production-based accounting schemes. The narrowest 

scope of a production-based accounting method accords with a territorial approach and concen-

trates solely on direct emissions within the geographical boundaries of the study area. This bal-

ancing scheme is often encountered in national-scale footprints and conforms to the so-called 

Scope 1-perspective of the World Resources Institute/World Business Council for Sustainable 

Development (WRI/WBCSD) (2004) [23]. Some studies (Ramaswami et al. 2008 [12]; Kennedy 

et al. 2009, 2010, 2014 [2–4]; Hillman and Ramaswami 2010 [11]; Lin et al. 2015 [18]) broaden 

this territorial inventory viewpoint to a “geographic-plus” (Ramaswami et al. 2011 [21]; Baynes 

and Wiedmann 2012 [20]) or “trans-boundary community-wide infrastructure” footprint (Chavez 

and Ramaswami 2013 [19]; Lin et al. 2015 [18]) by including Scope 2 (indirect emissions from 

electricity production) and Scope 3 emissions (indirect emissions from other key flows into the 

study area) (WRI/WBCSD 2004 [23]). By concentrating on key infrastructure, this approach is 

especially useful for urban planners and facility managers. 

The choice of a GHG accounting scheme depends on the question one seeks to answer. Howev-

er, it is important to be consistent within the chosen approach. As stated by several researchers 

(Ramaswami et al. 2011, 2012 [21, 22]; Baynes et al. 2011 [14]; Baynes and Wiedmann 2012 [20]; 

Lin et al. 2015 [18]), consumption-based and production-based accounting methods are comple-

mentary to each other. The consumption perspective supports the identification of measures 

without problem shifting by pursuing a life cycle perspective. Moreover, it facilitates the deriva-

tion of policies aimed at influencing consumption behavior (Baynes and Wiedmann 2012 [20]). 

By quantifying direct emissions within the geographical system boundaries, a purely territorial 

inventory pinpoints areas of action for local authorities since it takes into account the local condi-

tions. Both accounting frameworks hence provide important insights for local policy making 

from different viewpoints.  

The Swiss mountain village of Zernez initiated the research project Zernez Energia 2020 to identify 

ways to reduce its GHG emissions using both a consumption-based footprint and a purely geo-

graphical accounting. The assessment of the municipality’s CF is an important first step in the 
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project and is presented in this chapter. The analysis of the current CF allows for identifying the 

most relevant actors and sectors regarding GHG emissions as well as for discussing GHG reduc-

tion potentials. It also serves as a planning basis for the municipality of Zernez with the aim of 

developing a concrete action plan to implement GHG mitigation measures. This study can pro-

vide a baseline for similar studies in other municipalities and fills a knowledge gap by delivering 

insights into the CF of a village in an industrialized country. Additionally, there are advantages in 

focusing on a small village. Whereas many large-scale studies struggle with data scarcity, the lim-

ited size of Zernez allows, for example, for data collection through detailed surveys of all house-

holds and buildings in the village. Surveys with 100% coverage, as in the present study, are ex-

tremely rare. Therefore, the present study provides also a unique occasion for an in-depth analy-

sis of a rural community. 

The goal of the present chapter is twofold: it aims to assess the CF of Zernez as well as to discuss 

its GHG reduction potentials. Moreover, it intends to provide an insight into a rural area’s CF 

based on a unique data set. 

2.2 METHODOLOGY 

2.2.1 System Boundaries 

The municipality of Zernez, which was home to 1,140 inhabitants (BFS 2014c [24]) in the year 

2010, is situated in the Swiss Alps at an average altitude of 1,471 meters with an area of 203.85 

square kilometers (see Appendix A) (swisstopo 2014 [25]). Hosting large parts of the Swiss Na-

tional Park, Zernez belongs to the largest municipalities in Switzerland in terms of land area. 

The geographical system boundaries focused on the settlement area of the village’s core with 

1,003 residents. Additionally, all agricultural and forest areas within the municipal borders and 

managed by these persons or by the municipality were included in the analysis. Hamlets and re-

mote single houses located within the municipality’s borders as well as the Swiss National Park 

were excluded from consideration. 

In view of the specific benefits of the two GHG accounting schemes, the CF of Zernez was as-

sessed simultaneously by a production-based territorial inventory (only Scope 1/direct emissions) 

and from a consumption-based perspective (life cycle emissions from final consumption). Fol-

lowing the definitions given by Lin and colleagues (2015) [18], these applied accounting methods 

will be called henceforth “purely geographical accounting” (PGA) and “consumption-based 

footprint” (CBF), respectively. 

Computations and analyses of the present chapter refer, whenever possible, to the year 2010. 

2.2.2 Overview of the Applied Greenhouse Gas Accounting Approach 

In a preparatory step, all processes, activities, materials, and energy flows that are relevant for the 

municipality’s CF were identified. This systematic identification process was conducted in close 

collaboration with the municipality and built upon similar studies (Jungbluth et al. 2011, 2012 [8, 
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26]; BFS 2014d [27]). All processes and flows were then classified into nine categories (left part of 

Figure 2.1). 

 

Figure 2.1: Schematic overview of the allocation of GHG emissions from different catego-
ries to emission classes (“imported emissions”, “local emissions from local 
demand” and “local emissions from export”). The figure also shows how 
emission classes add up to CBF and PGA. [GHG = greenhouse gas] 

In order to set up the GHG balance according to CBF and PGA, a three-tiered approach was 

applied. First, the magnitude of all flows belonging to the above-mentioned nine categories was 

quantified. For example, in the category residential energy, this includes the amounts of electricity 

and fuels needed to provide buildings with heat. Second, the GHG emissions of these quantified 

entities were estimated based on life cycle inventory (LCI) databases, such as ecoinvent (ecoin-

vent Center 2013 [28]). Thereby, the CF of an activity is assessed on the basis of the global warm-

ing potentials published by the Intergovernmental Panel on Climate Change (IPCC) (2007) [29] 

for a time horizon of 100 years. 

In the third step, the GHG emissions of each of the modeled activities were classified into the 

following three emission classes (Figure 2.1, center): emissions outside Zernez caused by the con-

sumer demand of the inhabitants (“imported/embodied emissions”); emissions released within 

the geographical system boundaries that occur on account of the consumption behavior of the 

people in Zernez (“local emissions from local demand”); and emissions released within the geo-

graphical system boundaries, but induced by the demand of consumers outside Zernez (“export-

ed emissions”). 
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The use of background data from LCI databases results in life cycle GHG emissions for the 

modeled processes. For the aforementioned classification into emission classes, which is sche-

matically illustrated in Figure 2.1, this assessment of life cycle GHG emissions had thus to be 

split into local emissions and emissions occurring upstream in the supply chain. Thereby, the 

latter is allocated to the embodied emissions given that these emissions occur outside the village. 

However, imported/embodied emissions do not include re-exported embodied emissions be-

cause these GHG are not induced by the inhabitants of Zernez. An overview of the most im-

portant assumptions with regard to this classification can be found in Appendix A. 

The distinction into three emission classes allowed for appropriately summing up to CBF and 

PGA, respectively (Figure 2.1, right). 

All of these three steps (quantification of flows, assessment of GHG emissions, and allocation of 

emissions to emission classes) are explained in more detail in the subsequent section. Note that, 

in this chapter, “imports” and “exports” do not refer to a national level, but describe goods en-

tering and leaving the municipal boundaries. 

2.2.3 Quantification and Modeling of Activities 

A bottom-up approach was followed in the data collection for the quantification of material and 

energy flows. Within the scope of the project, surveys and interviews were conducted and energy 

bills and municipal statistics were gathered. A large part of the collected data was compiled into a 

building database containing comprehensive information about energy consumption as well as 

specific data for all buildings in the municipality (Wagner et al. 2015a [30]). This database is 

unique in terms of full coverage of buildings and represents one of the most important data 

sources for the present study. The combination of this database with energy bills and a census of 

enterprises (see Appendix A) provided data on final energy demand of all households and enter-

prises in the village. The building database scheme as well as further details on other bottom-up 

data used for the present study (e.g., operation information of district heating network, waste 

statistics, and information from the forestry administration) are described in Wagner and col-

leagues (2015a) [30] and in Appendix A. In addition to these data, further interviews were con-

ducted to gain detailed information on the operation of specific facilities in the municipality (e.g., 

a biogas plant). The whole data set was finally amended by statistics of federal and cantonal offic-

es, federal surveys, traffic censuses, and literature values. 

After quantifying the energy and material flows within the municipality, GHG emissions were 

assessed by adding suitable background data from process-based LCI databases (e.g., ecoinvent 

Center 2013 [28]). 

Table 2.1 provides a brief overview of the used data sources. Further, a detailed list of all mod-

eled activities and data sources used for the estimation of GHG emissions as well as the most 

important assumptions for the subdivision of emissions into emission classes are documented in 

Appendix A. 
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Table 2.1: Overview of the data sources used for the quantity and GHG assessment in 
the different categories. 

Category 
 

Quantity assessment 
GHG assessment 

(background data) Data source 
Scale of 

data 

Food consump-
tion 
  

  

HBS (BFS 2012 [31]) Nationala Saner et al. (2016) [32] 

GastroSuisse (2012) [33] Nationala ecoinvent Center (2013) [28] 

Electricity Bills (Wagner et al. 2015a [30]) Zernez   

Residential energy 
  
  
  

  

Building Database (Wagner et al. 2015a [30]) Zernez ecoinvent Center (2013) [28] 

Electricity Bills (Wagner et al. 2015a [30]) Zernez   

OI DHN (Wagner et al. 2015a [30]) Zernez   

Forestry Administration (Wagner et al. 2015a [30]) Zernez   

OI for Biogas Plant (Grass 2014 [34]) Zernez   

Mobility 
  
  

  

Mobility and Transport Microcensus (ARE et al. 2012 [35]) Cantonalb ecoinvent Center (2013) [28] 

Local Age Structure (AWT 2010 [36]) Cantonalc   

Automatic Traffic Counters (TBA 2011 [37], ASTRA 2014 [38]) Zernez   

Timetables of PT (PostAuto 2014 [39], SBB 2014 [40]) Zernez   

Drinking water 
and wastewater 
system and waste 
management 

Building Database (Wagner et al. 2015a [30]) Zernez ecoinvent Center (2013) [28] 

Electricity Bills (Wagner et al. 2015a [30]) Zernez   

OI WWTP (Filli 2014 [41]) Zernez   

Public services 
and health care 
  
  

  

Building Database (Wagner et al. 2015a [30]) Zernez ecoinvent Center (2013) [28] 

Electricity Bills (Wagner et al. 2015a [30]) Zernez Jungbluth et al. (2011) [8] 

OI DHN (Wagner et al. 2015a [30]) Zernez   

Census of Enterprises (see Appendix A) Zernez   

Jungbluth and colleagues (2011) [8] Nationald   

Consumables Jungbluth and colleagues (2011) [8] Nationald Jungbluth et al. (2011) [8] 

Services: Leisure 
activities and 
communications 
  
  
  
  
  

  

Building Database (Wagner et al. 2015a [30]) Zernez ecoinvent Center (2013) [28] 

Electricity Bills (Wagner et al. 2015a [30]) Zernez König et al. (2014) [42] 

OI DHN (Wagner et al. 2015a [30]) Zernez Jungbluth et al. (2011) [8] 

Mobility and Transport Microcensus (ARE et al. 2012 [35]) Cantonalb   

Survey of Travels of Swiss Residents (BFS 2011 [43]) Nationala   

Local Age Structure (AWT 2010 [36]) Cantonalc   

OI Swiss Post (Saner 2014 [44]) Zernez   

Census of Enterprises (see Appendix A) Zernez   

Jungbluth and colleagues (2011) [8] Nationald   

Agriculture and 
forestry 
  

  

Census of Enterprises (see Appendix A) Zernez ecoinvent Center (2013) [28] 

Farm Structure Survey (BFS 2014a [24]) Nationalc Nielsen et al. (2003) [45] 

Forestry Administration (Wagner et al. 2015a [30]) Zernez   

Local Trade & 
Industry 
  
  
  
  
  

  

Building Database (Wagner et al. 2015a [30]) Zernez ecoinvent Center (2013) [28] 

Census of Enterprises (see Appendix A) Zernez Jungbluth et al. (2011) [8] 

Electricity Bills (Wagner et al. 2015a [30]) Zernez   

OI DHN (Wagner et al. 2015a [30]) Zernez   

OI Gravel Quarry (SOSA GERA SA 2014 [46]) Zernez   

OI Swiss Post (Saner 2014 [44]) Zernez   

Jungbluth and colleagues (2011) [8] Nationald   
aAdjusted for Zernez (e.g., by taking local age structure into account; see text for more information). 
bAdjusted to represent the canton's rural areas and adjusted for Zernez by taking into account the local age structure. 
cSpecifically retrieved for Zernez from a national or cantonal database. 
dScaled down to Zernez on a per-capita basis 
HBS = Swiss Household Budget Survey; OI = operation information; DHN = district heating network; 
PT = public transportation; WWTP = wastewater treatment plant. 
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In addition, an independent alternative approach was followed by applying Saner and colleagues’ 

(2013) [47] model to Zernez in order to assess the consumption-related CF in the areas of resi-

dential energy and mobility (see Appendix A). This model is able to determine housing and land-

based mobility demand of individual households. Because it is mainly based on national databases 

and simulation results of MATSim (Multi-Agent Transport Simulation) (Balmer et al. 2006 [48]; 

Meister et al. 2010 [49]), no extra data acquisition is needed beforehand. MATSim, which is the 

basis for the mobility sub-model, was calibrated and validated for Switzerland (Balmer et al. 2006 

[48]; Meister et al. 2010 [49]), whereas the housing sub-model was evaluated by Froemelt and 

Hellweg (2017) [50] (see Chapter 3). 

2.2.3.1 Food Consumption 

All liquid and solid food has to be “imported” from outside the municipality given that no indus-

trial food processing takes place in Zernez. Because sales data of the two largest local retailers 

could not be accessed, food consumption was estimated by means of the Swiss Household Budg-

et Survey (HBS) (BFS 2012 [31]). Among other things, the HBS provides detailed insight into the 

quantities of more than 100 different food categories bought by an average Swiss household. 

This also includes farm gate sales and food produced in gardens. These two food production 

processes were allocated to “imported/embodied emissions” instead of “local emissions from 

local demand” because they were assumed to play a minor role and detailed data were lacking. 

Food consumed in restaurants was estimated by combining the HBS with a survey of the Associ-

ation for Hotels and Restaurants in Switzerland (GastroSuisse 2012 [33]) and the menu cards of 

local restaurants. 

Preparation of food at home or in the restaurants is not accounted for in this category, but cov-

ered by the categories residential energy and services: leisure activities and communications (see 

corresponding sections below). 

The life cycle GHG emission factors for food consumption were retrieved from Saner and col-

leagues (2016) [32], who consolidated different databases and studies (e.g., ecoinvent Center 2013 

[28]; Thrane 2006 [51]; Büsser and Jungbluth 2009 [52]; Stoessel et al. 2012 [53]). However, these 

factors include neither transport to the shops nor electricity and space heating demand of the 

shops. These processes were additionally modeled by electricity bills of the local retailers and by 

transport distances from the food distribution centers of the respective company to the shop in 

Zernez. 

2.2.3.2 Residential Energy 

In the scope of the research project Zernez Energia 2020, a survey was conducted in order to col-

lect data on the quantities of energy carriers used, including fuel oil, wood chips, firewood, dis-

trict heating, and electricity. Besides interviews with all households, the municipality provided 

detailed electricity and district heating energy bills for all households and enterprises. In addition 

to final energy consumption data, the municipality and the inhabitants supplied also detailed in-

formation on installed heating systems and on different building characteristics. This enabled the 

setup of a unique database with full coverage of all buildings (Wagner et al. 2015a [30]). More 
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information on this building database as well as on data from electricity bills and the district heat-

ing network is presented in Appendix A. 

The municipality draws its electricity from two main sources: a power company that delivers cer-

tified electricity from a run-of-river power plant through the national grid and a reservoir power 

plant located partly in the municipality. The latter is therefore regarded as locally produced ener-

gy. Local electricity is also produced by photovoltaic (PV) systems and a biogas plant; however, 

this power is exported to the national grid and, consequently, only considered in the PGA. Using 

a combined heat and power plant, the biogas plant operating on agricultural waste produces heat 

in addition to electricity. Detailed plant operation information was provided by the owner (Grass 

2014 [34]). 

Data on wood chip supplies for the local district heating network were provided by the operators, 

the municipality, and the forestry administration (see section 2.2.3.8 (Agriculture and Forestry) below 

as well as Appendix A). Imported firewood was calculated as the difference between used 

amounts of log wood and the amount of firewood sold by the forestry administration (Wagner et 

al. 2015a [30]). 

In order to model the energy supply for residential buildings in detail, suitable ecoinvent process-

es were chosen and adjusted (ecoinvent Center 2013 [28].). The building database, as well as the 

information above, was also used to model building-energy-related parts of the categories public 

services, education, and health care, services: leisure activities and communications, and local trade and industry 

(see sections below). 

2.2.3.3 Mobility 

The Mobility and Transport Microcensus of the canton of Grisons provides comprehensive in-

sight into the mobility behavior of the canton’s population (ARE et al. 2012 [35]). Because the 

municipality of Zernez is located in a rural area of Grisons, the canton’s only region with an ur-

ban character (the city of Chur) was separated and removed from the results of the Microcensus. 

Details on chosen traffic modes, distances driven, as well as purpose and character of trips were 

deduced for different age cohorts representing the canton’s rural population. To set up the car-

bon balance for the CBF, these results were applied to Zernez by taking into account the local 

age structure (AWT 2010 [36]). 

A totally different approach had to be chosen for the PGA. In this view, the mobility demands of 

the inhabitants are not of interest, but instead the traffic volume within the municipality’s bor-

ders. For this purpose, automatic traffic counters (operated by the cantonal administration) were 

analyzed (TBA 2011 [37]; ASTRA 2014 [38]). Public transportation within the municipality was 

assessed by means of timetables and route information (PostAuto 2014 [39]; SBB 2014 [40]). 

For the allocation of GHG to emission classes according to Figure 2.1, both approaches needed 

to be combined. The information provided by the Microcensus includes data on distances, dura-

tion, traffic mode, as well as purpose and number of trips. This allowed for estimations of trips 

within the municipal geographical boundaries and therefore to assess “local emissions from local 

demand.” These emissions were then subtracted from the above-described total mobility CBF 
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and total mobility PGA, leaving the remainder as the “imported/embodied emissions” and the 

“local emissions from export,” respectively. 

2.2.3.4 Drinking Water System, Wastewater Treatment and Waste Management 

The municipality’s drinking water system is composed of two spring water catchments, one 

groundwater pumping station and one reservoir to which the water has to be pumped. No fur-

ther treatment steps are needed. Together with the electricity demand of the pumps in 2010, the 

drinking water system could be modeled with ecoinvent activities (ecoinvent Center 2013 [28]). 

In order to represent the wastewater treatment plant (WWTP), ecoinvent activities (ecoinvent 

Center 2013 [28]) were adjusted and remodeled according to interviews with operators and oper-

ating data (Wagner et al. 2015a [30]; Filli 2014 [41]). Biogas produced in an anaerobic digester was 

used to satisfy parts of the WWTP’s heating demand. Usually, excess biogas is converted into 

electricity and exported to the national grid. However, in the year 2010, the WWTP heating de-

mand exceeded biogas production and was supplemented by burning fuel oil. 

Detailed data were available to represent the waste management system (see Appendix A) (Wag-

ner et al. 2015a [30]). Municipal solid waste (MSW), cardboard, paper, and waste glass are sepa-

rated by the citizens and then collected regularly by a garbage truck. After trans-shipping to a 

freight train, MSW is transported to an MSW incinerator, whereas cardboard, paper, and waste 

glass are conveyed to recycling processes. Background data were taken from ecoinvent (ecoinvent 

Center 2013 [28]). 

2.2.3.5 Public Services, Education and Health Care 

Public services subsume all services from governmental institutions, excluding waterworks, 

wastewater system, and waste management (already covered by the section above). Local emis-

sions stemming from the operation of public buildings could be assessed based on the building 

database (cf. section 2.2.3.2 (Residential Energy)) and a census of enterprises (cf. Appendix A). 

However, many of the emissions from the public sector, for example, those caused by the opera-

tion of federal offices or by the national defense, have to be allocated to all Swiss inhabitants. 

Therefore, Swiss average values were applied from Jungbluth and colleagues (2011) [8] to cover 

remaining emissions of this category, all of which were assumed to take place outside the village. 

Swiss average values were also used for emissions from education and health care (Jungbluth et 

al. 2011 [8]). 

2.2.3.6 Consumables 

Very little data were available for consumables such as clothing, furniture, and domestic applianc-

es. Just as comestible goods, these products are mostly imported to Zernez. Therefore, Swiss 

average values retrieved from Jungbluth and colleagues (2011) [8] were used for this consumption 

area. 

2.2.3.7 Services: Leisure Activities and Communications 

This section encompasses all services consumed that are not already covered in other categories. 

For instance, recreational traffic is accounted for in mobility, food consumption includes eating out, 

and the consumables category already accounts for leisure equipment. 
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An estimation of the residents’ leisure behavior was facilitated by the Microcensus (ARE et al. 

2012 [35]) from which information on purpose and destination of the residents’ trips could be 

retrieved. A combination of this information with the estimation of trips within the geographical 

system boundaries (see section 2.2.3.3 (Mobility)), a census of enterprises (cf. Appendix A), and 

further interviews (e.g., with the operators of the indoor hot spa swimming pool regarding the 

number of sold tickets) allowed for a rough assessment of leisure services consumed within 

Zernez by residents and thus the computation of “local emissions from local demand.” 

Vacations are an important area not included in other categories. The Swiss Federal Statistical 

Office published data on the travel patterns of the Swiss population, including number of trips, 

duration of trips, destinations, and number of hotel overnight stays (BFS 2011 [43]). Because this 

statistical analysis was performed for different age groups, the data could be used to determine 

the vacations of people from Zernez by considering the local age structure (AWT 2010 [36]). A 

study that assessed GHG emissions for different vacation scenarios (König et al. 2014 [42]) was 

adjusted and used for GHG intensity factors for hotel overnight stays. 

Further services considered in this category are newspaper consumption, which was modeled by 

ecoinvent activities (ecoinvent Center 2013 [28]) and data from the Swiss Post (Saner 2014 [44]), 

as well as communications. For the latter, Swiss average values from Jungbluth and colleagues 

(2011) [8] were applied because no specific data were available for Zernez and because it is plau-

sible to assume that people in Zernez behave similarly and cause similar emissions in terms of 

communications as the Swiss average citizen. 

2.2.3.8 Agriculture and Forestry 

Just as in most other Alpine regions, livestock farming dominates Zernez’s agricultural sector. 

Arable farming was negligibly small (total arable area in Zernez is only 4.2 hectares) (BFS 2014c 

[24]) and not further considered. A list of all animals kept in the municipality was obtained from 

the Farm Structure Survey of the Swiss Federal Statistical Office (BFS 2014c [24]). Building upon 

this information and in combination with a census of enterprises (cf. Appendix A), the agricultur-

al sector was modeled by adjusting appropriate processes of ecoinvent (ecoinvent Center 2013 

[28]) and the life cycle assessment food database (Nielsen et al. 2003 [45]). 

The municipal forestry administration provided detailed data on sales of firewood, trunk wood, 

wood chips, and other unspecified wood (see Wagner et al. [2015a] [30] and Appendix A). Ten 

percent of the trunk wood is processed by the forestry administration themselves, whereas the 

rest is sent to different sawmills in Switzerland, Austria, and Italy. Operating records on amounts 

of diesel and petrol used were available. The forestry sector was then modeled by adapting ecoin-

vent activities (ecoinvent Center 2013 [28]) accordingly. 

2.2.3.9 Local Trade and Industry 

According to the census of enterprises (cf. Appendix A), local trade comprises mostly restau-

rants, hotels, offices, and local retailers. Direct emissions induced by tourism, an important eco-

nomic sector for Zernez, are thus accounted for in this category. Most emissions caused by the 

aforementioned industries are determined by modeling the respective energy use based on com-
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bining the building database (cf. section 2.2.3.2 (Residential Energy)) with the census of enterprises 

(cf. Appendix A). 

Two important enterprises, a large gravel quarry and the office of the Swiss Post, were assessed in 

more detail. For the post office, detailed data regarding information about amounts of letters, 

parcels, transport distances, and means of transportation were available from interviews with the 

sustainability department of the Swiss Post (Saner 2014 [44]). This allowed for a detailed model-

ing of the Post’s activities. For modeling the gravel quarry (SOSA GERA SA 2014 [46]), an ap-

propriate ecoinvent activity (ecoinvent Center 2013 [28]) was chosen. 

Housing construction is also included in this category. Though local companies are often respon-

sible for on-site building construction, most emissions from these activities are generated in the 

supply chain outside of the municipal geographical boundaries through the production of con-

struction materials. Because of a lack of more-detailed data, the modeling of housing construc-

tion was based on Swiss average values (Jungbluth et al. 2011 [8]). Building upon the findings of 

Zhang and colleagues (2013) [54], we assumed that 10% of these construction emissions are re-

leased locally. 

2.3 RESULTS AND DISCUSSION 

Figure 2.2 (top) shows the split of the total GHG into embodied emissions, direct emissions in-

duced by local demand, and exported emissions. These emissions are then summed appropriately 

in order to represent the CBF and the PGA, respectively. In Figure 2.2 (bottom), the results for 

these two accounting methods were divided by the number of inhabitants. This normalization 

facilitates the comparison of the results with other CF studies. 

Even though the two viewpoints are fundamentally different, the result of the consumption per-

spective (9.9 tonnes of carbon dioxide equivalents per person per year [t CO2-eq/(cap·yr)]) is – 

by coincidence – similar to the production perspective (10.6 t CO2-eq/(cap·yr)) in the case of 

Zernez. Thereby, embodied emissions, taking place outside the municipal boundaries of Zernez, 

account for around 85% of the total consumption GHG, whereas exported emissions represent 

also approximately 85% of the total territorial GHG emissions. These figures confirm that this 

small Alpine village is not self-sustaining, but highly integrated in the Swiss and global economy. 

2.3.1 Purely Geographical Accounting 

The PGA quantifies direct emissions in Zernez and therefore identifies the most important local 

GHG emitters. Figure 2.2 (bottom) reveals that the agriculture and forestry sector clearly dominates 

the PGA and causes 70% of the direct GHG releases. Thereby, agricultural activities are respon-

sible for more than 99% of the total GHG emissions in this category, especially attributed to 

large enteric methane (CH4) emissions and nitrous oxide (N2O) releases stemming from livestock 

farming. This means that the territorial and the consumption perspective differ also in the com-
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position of GHGs. Whereas the former shows a large share of CH4 and N2O emissions, the latter 

is rather dominated by CO2 releases. 

 

Figure 2.2: Top: Total GHG emissions divided into “embodied emissions,” “local emi s-
sions from local demand,” and “exported emissions.” Bottom: Per -capita car-
bon footprint of Zernez according to the CBF and the PGA, respectively. Va l-
ues are rounded to 100 t CO2-eq/yr or 0.1 t CO2-eq/(cap·yr). The category 
services includes leisure activities and communications. [DW & WWT & WM 
= drinking water system, wastewater treatment, and waste management; GHG 
= greenhouse gas; t CO2-eq/yr = tonnes of carbon dioxide equivalents per 
year; t CO2-eq/(cap·yr) = tonnes of carbon dioxide equivalents per cap ita per 
year] 

2.3.2 Consumption-Based Footprint 

The CBF provides a life cycle perspective of the consumer behavior. It encompasses all GHG 

emissions worldwide induced by the demand of the people living within the geographical system 

boundaries. The consumption-caused total life cycle GHG emissions in Zernez are approximate-
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ly 22% below the Swiss average of 12.8 t CO2-eq/(cap·yr) according to Jungbluth and colleagues 

(2012) [26] (please see Appendix A for a graphical comparison of Zernez’s CBF with the national 

CBF of Switzerland). 

Though mobility spearheads GHG emissions, all categories are of similar importance (see Figure 

2.2). Many studies (Jungbluth et al. 2007, 2011, 2012 [8, 26, 55]; Hertwich and Peters 2009 [10]) 

identify food consumption, mobility, and housing (here, the sum of residential energy and drinking 

water system, wastewater treatment, and waste management) as the most important consumption domains 

from an environmental viewpoint. These three categories are responsible for more than 50% of 

Zernez’s GHG emissions; however, they do not outstrip the other categories. 

Mobility GHG emissions in Zernez (2.3 t CO2-eq/(cap·yr)) correspond well to the Swiss average 

of 2.4 t CO2-eq per person per year (Jungbluth et al. 2012 [26]). Motorized private transportation 

is responsible for more than 70% of the Swiss mobility emissions; however, its contribution in 

Zernez amounts to more than 85%. 

Despite the prevailing cold climate (mean annual air temperature is approximately 5°C) (Ore-

hounig et al. 2014 [56]), housing-induced GHG emissions (comprising the categories of residential 

energy and drinking water system, wastewater treatment, and waste management) in Zernez average out to 

1.7 t CO2-eq/(cap·yr) and are considerably below the national mean of 3.0 t CO2-eq/(cap·yr) 

(Jungbluth et al. 2012 [26]). This large deviation can be explained by two main reasons: First, oil 

boilers cause around 90% of the residential energy GHG, but only supply around 40% of the local 

heat demand for space heating and hot water. A large amount of the local heat demand is cov-

ered by wood-based and direct electric heating systems (around 30% and 20%, respectively), both 

of which involve low GHG emissions. Second, electricity is exclusively supplied by hydropower 

plants, which exhibit very low carbon intensities. 

Part of the deviation of Zernez’s CF from the national average may also be explained by different 

methodological approaches, such as different GHG emission factors or different reference years. 

The areas of housing and mobility were double-checked with the model of Saner and colleagues 

(2013) [47] and revealed to be consistent with the model results (for further results, see Appendix 

A). 

2.3.3 Identification of Greenhouse Gas Reduction Potentials 

Although the political system in Switzerland grants some liberties to municipalities, their ability to 

implement measures to reduce GHG emissions is nevertheless limited. They may extend their 

own infrastructure, provide advice to consumers in different areas, and are free to set financial 

incentives. But taxes or mandatory measures are usually introduced at national or cantonal levels 

and only exceptionally at the municipal stage. Making laws stricter is possible for municipalities in 

some domains, but depends strongly on the canton. Facing this restrictive scope of action, areas 

susceptible to municipal policies, consumer-driven areas, and areas of supraregional importance 

are distinguished in order to discuss sectors where the municipality could intervene. On account 
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of their complementary nature, the following discussion examines simultaneously both foot-

prints, PGA and CBF. 

2.3.3.1 Areas Susceptible to Municipal Policies 

The municipality has the ability to reduce mobility emissions through awareness-raising campaigns 

(e.g., promoting the use of bikes or public transportation or the avoidance of air travels), financial 

incentives (e.g., for energy efficient and electric vehicles), or an extension of public transportation 

possibilities. However, decreasing GHG emissions through improved public transport services 

needs a careful optimization of timetables in order to increase the occupancy of trains and buses. 

This requires a supraregional perspective, usually lying with the respective railway/bus companies 

and not directly with the municipality. Implementation of a car sharing system could reduce 

GHG stemming from commuting. 

In contrast, technical options for the building stock are available and can be implemented at the 

municipal level for both the building energy supply and the building stock materials. Possible 

measures comprise the extension of the existing district heating network or financial support for 

private refurbishment initiatives aimed at both replacing fossil-fuel-based heating systems or at 

decreasing heating demand by improved insulation. The possibility of tightening the regulations 

for building design to some extent might also be taken into consideration. Changing the building 

energy system could affect around 70% of the direct emissions from local residential energy demand 

(see Figure 2.2), but also affects embodied, direct, and exported GHG in the areas of services: lei-

sure activities and communications, local trade and industry (e.g., hotels, restaurants, and offices), as well 

as public services, education, and health care. 

2.3.3.2 Consumer-Driven Areas 

Consumer behavior dictates large parts of the GHG emissions in different areas of the CBF, in-

cluding mobility, food consumption (nutrition), consumables, services: leisure activities and communications, and 

residential energy. In view of Figure 2.2, a special focus should be laid on the areas of mobility, food 

consumption, and residential energy. 

Influencing and changing behavioral patterns can be challenging, but will be necessary in order to 

achieve a sustainable level of GHG emissions. Some options, such as raising awareness and fi-

nancial incentives, have already been mentioned. Raising awareness of sustainable consumption 

can be achieved by organizing information events, distributing leaflets or by setting up an infor-

mation center. A successful reduction of GHG emissions depends on local consumers assuming 

responsibility for their consumption patterns. 

2.3.3.3 Areas of Supraregional Importance 

As mentioned above, many aspects are beyond the control of a Swiss municipality. For instance, 

agriculture belongs to domains that are mainly regulated at the national level. Regardless, mitigat-

ing GHG from agricultural activities in Zernez would be difficult, given that Alpine livestock 

farming is the nearly only feasible and economically viable agricultural activity in Zernez. In addi-

tion, eliminating meat and milk production in Zernez in an effort to reduce local GHG emissions 

may simply lead to the relocation of said activities rather than to overall emission savings, as long 
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as the demand for meat and dairy products do not change. However, introducing regulations to 

alter livestock production practice could be an option from a pure GHG perspective. Nguyen 

and colleagues (2010) [57] and Peters and colleagues (2010) [58] found that intensive meat pro-

duction systems tend to perform more efficiently than extensive ones with regard to GHG. 

However, a deepened analysis would be required to assess whether these study results also apply 

to the prevailing circumstances in Zernez. Nguyen and colleagues (2010) [57] further indicate that 

targeted feeding strategies might minimize enteric CH4 emissions and improved manure man-

agement could decrease N2O emissions. 

The municipality of Zernez and its inhabitants have only a limited scope of action available to 

reduce GHG in domains such as public services or health care. Local authorities account for only 

a minor contribution to GHG emissions in this area. Therefore, the largest potential is at canton-

al and national levels, for example, through federal programs (Schweizerische Eidgenossenschaft 

2013 [59]; RUMBA 2015 [60]). 

 

Figure 2.3: Overview of the municipality’s areas of action, which are mentioned in the 
text. Rough estimates for two extreme mobility  scenarios were conducted (re-
placing all car trips by the best internal combustion engine vehicle and the 
best electric vehicle, respectively).  The reduction potential of technical 
measures in the building sector was extracted from Wagner and colleagues 
(2015a, 2015b) [30, 61]. Bottom right corner: Simplified illustration of the cur-
rent and the predicted community-wide infrastructure footprint of the build-
ing stock’s energy demand (see text for more information) and contributing 
energy carriers (Wagner et al. 2015b [61]). [CBF = consumption-based foot-
print; CF = carbon footprint; PGA = purely geographical accounting; PV = 
photovoltaics] 
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2.3.3.4 Overview of Areas of Action 

Figure 2.3 gives an overview of all above-mentioned options for action. In addition, rough esti-

mates of theoretical reduction potentials, which can be achieved by implementing technical 

measures, are also shown. 

The discussion above reveals that it is generally difficult to adopt GHG reduction strategies at the 

municipal level given that many GHG areas are behavior driven or need to be tackled at a su-

praregional scale. The municipality of Zernez decided to focus on the CF of the building stock’s 

energy demand as a first step. This is a reasonable starting point given that Swiss municipalities 

are in the position of setting financial incentives, providing helpdesks, and also have the ability to 

adopt new building design regulations. In addition, they often own energy utilities (e.g., electrical 

power supply or district heating networks). 

2.3.4 Derivation of Targeted Measures 

For the assessment of the CF and for the identification of GHG reduction potentials, the present 

study focused on the PGA and CBF because these two accounting methods allow for consistent-

ly assessing each category and complement each other in an easily understandable way (cf. Figure 

2.2). However, for the derivation of measures targeted at the optimization of infrastructure, such 

as the building energy system, a “trans-boundary community-wide infrastructure” footprint (CIF) 

is more appropriate (Chavez and Ramaswami 2013 [19]; Lin et al. 2015 [18]). Appendix A pro-

vides information on the determination of the CIF for the building energy system in Zernez as 

well as a detailed flow scheme and a table showing the current energy flows related to the build-

ing stock. 

Taking the CIF as a concrete planning basis to reduce GHG from the operation of the building 

stock, the municipality and its inhabitants entered an extensive stakeholder engagement process 

in the scope of the research project Zernez Energia 2020 (Wagner et al. 2015a, 2015b [30, 61]). The 

project used an interdisciplinary approach to integrate building optimization options, renewable 

energy production, and urban planning. Additionally, the municipal authorities, the residents, and 

private companies were involved to include socioeconomic aspects of technical measures. Based 

on this transdisciplinary process, an action plan was developed for Zernez to mitigate GHG 

emissions caused by building energy demand (Wagner et al. 2015b [61]). Measures include re-

placement of oil boilers, extension of the district heating network, installation of PV cells, and 

targeted refurbishments of specific buildings and building components. The implementation of 

all of the proposed actions is forecasted to decrease the CIF of the building stock from the cur-

rent value of approximately 2,225 to approximately 400 t CO2-eq/yr for an 80% emission reduc-

tion (see bottom right corner in Figure 2.3). The project Zernez Energia 2020 intends to compen-

sate for these remaining emissions by exporting low carbon solar power to the national grid. By 

achieving a “CO2-neutrality” for the building stock, total embodied emissions could decrease by 

3%, total direct emissions from local demand by 76%, and exported emissions by 8% (percent-

ages are related to Figure 2.2). This equals a reduction of the total footprint by 13% for the CBF 

and by 17% for the PGA, respectively (Figure 2.3). 
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2.3.5 Limitations of the Study 

The presented approach to quantify the CF of Zernez involves many assumptions. Although the 

assessment of the GHG emissions was conducted with due care, the presented results contain 

uncertainties for example, attributed to simplifications, estimations, or inaccurate data. However, 

a lack of uncertainty information in the collected data hindered performing a detailed uncertainty 

analysis. Nevertheless, it has to be emphasized that the present study is based on a data set that is 

unique in its detail. This data set allowed for deducing results that provide a clear order of magni-

tude of the different categories and uncover how these different areas perform compared to one 

another. 

Further, global warming is just one environmental concern of several. Besides different global-

level indicators, local environmental impacts also need consideration given that they directly af-

fect local living conditions and can also provide feedback to the functioning of the Earth system 

as a whole (Steffen et al. 2015 [62]; Rockström et al. 2009 [63]). GHG emissions illustrate the 

main focus of the project Zernez Energia 2020 because global warming tops the political discussion 

regarding environmental impacts. However, recommendations for sustainable measures require a 

holistic perspective and should thus take different environmental indicators into account. For 

example, a large share of buildings in Zernez are heated by direct electricity or wood-based sys-

tems (wood logs or wood chips), both of which are low-carbon technologies. But the former 

wastes high-quality energy for low-quality purposes and thus prevents a more-efficient energy 

use, whereas the latter may cause significant emissions of particulate matter (Szidat et al. 2007 

[64]), which may lead to serious health damage ranging from asthma to respiratory illness and 

lung cancer. Technical measures to reduce these emissions need to be implemented as well. 

Moreover, biogenic CO2 emissions from wood-based heating systems were not considered in the 

presented CF, although they might have an impact on the global climate in the short term (Che-

rubini et al. 2011 [65]). 

2.4 CONCLUSIONS AND OUTLOOK 

The transformation of the building stock, especially of the energy supply system, was identified as 

a field of action for Swiss municipalities. The implementation of the action plan (Wagner et al. 

2015b [61]) will lead to a significant reduction of GHG in Zernez and will increase the shares of 

renewable energy sources. Albeit these building-stock-oriented measures need to be followed by 

further action in other sectors, it is already a good step forward and might act as an example for 

other rural or Alpine municipalities. In the present case of Zernez, the current CF of the building 

stock is already below the national average, meaning the reduction potential may be higher in 

other Swiss municipalities. 

However, the purpose of this chapter is not to compare Zernez with other municipalities. De-

tailed household- and building-level data are available for Zernez, but no other municipality pos-

sesses a comparable database. Whereas this unique data set enabled the exemplification of how a 
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rural community can quantify and reduce its GHG emissions, we attempt to develop a detailed 

bottom-up consumption model based on nation-wide data in follow-up research. This model will 

build upon the ideas of Saner and colleagues (2013) [47] and on the detailed insights of the pre-

sent study. The planned model will allow for computing the CBF on different aggregation levels 

and will thus enable comparisons between different municipalities and cities. Further, it shall 

support the development of targeted measures also in Swiss municipalities with less data available 

than Zernez. 
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SUMMARY 

The residential sector constitutes a major energy consumer, particularly on account of its needs 

for space heating. Offering a high leverage potential, this sector is a suitable starting point for 

greenhouse gas mitigation policies. By providing predictions of the energy demand of building 

stocks, bottom-up building energy models represent a first step toward deriving strategies for 

abatement of detrimental effects related to housing energy use. 

This chapter aims at evaluating the performance of a simplified bottom-up housing energy 

model. A global sensitivity analysis was performed to study the model’s structure and the im-

pact of individual model parameters. Moreover, an extensive final energy consumption data set 

allowed for an in-depth comparison of this model with primary data in the scope of a case study 

in a Swiss municipality. 

On an individual building scale, the model fails to accurately simulate the energy demand. Devi-

ations can be attributed to a range of factors, such as variability in occupants’ behavior and 

problems of representativeness in the underlying statistical database. Nevertheless, such under- 

or overestimations level off on an aggregated scale. In particular, the model reproduces the 

overall characteristics of the residential building stock’s heating demand well. It is therefore well 

suited as a building stock model and provides a promising basis for an extended assessment of 

housing energy demands. In future research work, we will apply this model to a larger region in 

order to study various types of settlements from a life cycle perspective and to derive targeted 

measures aimed at reducing environmental impacts. 

3.1 INTRODUCTION 

Energy is an integral component of economic and societal development. However, the depend-

ence of today’s energy systems on fossil or other nonrenewable energy sources not only engen-

ders economic and societal consequences, but also causes a range of adverse environmental 

impacts, among which is climate change. Approximately 65% of the global anthropogenic 

greenhouse gas (GHG) emissions are estimated to be energy related (Herzog 2009 [1]). 

Although the figures vary from country to country, the residential sector, with its associated 

heating and cooling loads as well as its electricity demand, is responsible for an estimated 24% 

(Lucon et al. 2014 [2]) to 30% (Saidur et al. 2007 [3]) of world-wide final energy consumption. 

Therefore, the residential building stock presents a high potential leverage for GHG mitigation 

initiatives. However, this sector is a complex system with several characteristics that influence 

energy consumption, such as building geometries, component materials, heating systems, and 

human behavior. Therefore, a holistic, life cycle-based approach is needed in order to identify 

and evaluate strategies for a sustainable development of urban settlements and for abatement of 

negative energy-related effects. Many important decisions are taken on a household or building 

level, which calls for a bottom-up approach. In addition to this, from an urban planning and 
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policymaking point of view, it is important to obtain energy predictions for the whole building 

stock of a region and not only for individual buildings. It is at these larger scales that regulations 

for building design or the construction of district heating networks are planned. Consequently, 

there is a need for regionalized bottom-up models to support effective political decision mak-

ing. 

Estimates of the housing energy demand are prerequisites for a life cycle assessment (LCA) of 

the residential sector as well as for subsequent planning and exploring of different policy sce-

narios. Currently, a wide variety of different building energy models exist. For example, Swan 

and Ugursal (2009) [4] as well as Kavgic and colleagues (2010) [5] give a comprehensive over-

view of current residential building stock models. In both studies, these models are categorized 

into top-down and bottom-up approaches. 

Top-down models regard the housing sector as an energy sink and relate the total energy de-

mand of the building stock to certain – usually socio-economic – input variables based on his-

torical data. Although such models are attractive because of their simplicity and are well suited 

for regional supply analyses, they only provide cumulative estimates and are generally incapable 

of assessing improvement options, such as the introduction of new technologies (Swan and 

Ugursal 2009 [4]; Kavgic et al. 2010 [5]). 

In contrast, bottom-up models examine smaller sections of the residential sector, such as single 

buildings, groups of dwellings, or different energy end users, which are then aggregated to pro-

ject the energy demand of the whole building stock. Bottom-up approaches cover a broad spec-

trum of different degrees of detail and hierarchical levels. Swan and Ugursal (2009) [4] distin-

guish two bottom-up mainstreams: statistical and engineering methods. Similar to top-down 

models, statistical bottom-up models often build upon historical data and regression analysis to 

relate energy needs to econometric indicators. Other techniques include conditional demand 

analysis and neural network methods. In contrast to top-down techniques, statistical bottom-up 

models allocate the energy consumption to particular end uses in order to attain a disaggregated 

analysis. Statements about the total energy demand of the residential stock are only possible by 

weighted combination and extrapolation of the model’s forecasts. A further advantage of these 

kinds of bottom-up models is the implicit consideration of the large variation in occupants’ 

behavior by utilizing statistical data. These methods are therefore suitable for the determination 

of typical energy demand patterns and for analysis of the contribution of different end uses to 

overall energy consumption (Swan and Ugursal 2009 [4]). However, statistical models are always 

bound to the data source they were derived from. Unreported energy uses or effects going be-

yond the observed historical data remain uncaptured. 

Engineering models are based on building physics and explicitly compute energy demands of 

different end-use categories. The engineering approach then makes it possible to evaluate the 

effects of physical measures, such as component refurbishments or replacement of heating sys-

tems. These models feature the highest degree of flexibility and capability with regard to new 

technologies (Swan and Ugursal 2009 [4]; Kavgic et al. 2010 [5]). Yet, the determination of en-
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ergy demands by solving complex physical equations requires a large amount of input data and 

is often accompanied by a heavy computational burden. Further, these models are unable to 

relate energy consumption to economic factors and show difficulties in reproducing “unreason-

able” energy use originating from behavioral aspects (Swan and Ugursal 2009 [4]; Kavgic et al. 

2010 [5]). 

This chapter regards building stock models as tools to support the identification and explora-

tion of environmental impact reduction strategies from a life cycle point of view. Mitigation 

measures are very likely to involve the deployment of new technologies and materials. There-

fore, this study focuses on physical bottom-up models. A range of such bottom-up building 

energy models exist. Kavgic and colleagues (2010) [5] compared nine bottom-up building stock 

models, five of which focus on the building stock in the UK. All of these UK models, including 

the Community Domestic Energy Model CDEM developed by Firth and colleagues (2010) [6], 

use BREDEM (The Building Research Establishment’s Domestic Energy Model) or modified 

versions of it (e.g., Dickson et al. (1996) [7]) as the core calculation engine. For annual or 

monthly predictions of an individual dwelling’s energy demand, this engine relies on heat bal-

ance equations and empirical relationships. Other thermal energy calculation engines include 

HOT2000 (CanmetENERGY 2011 [8]), which is used by CREEM (the Canadian Residential 

Energy End-use Model) (Farahbakhsh et al. 1998 [9]), or the software TRNSYS (The University 

of Wisconsin 2007 [10]). The latter is applied in the Belgrade Domestic Energy Model 

(BEDEM), which was developed and evaluated by Kavgic and colleagues (2013) [11]. A large-

scale application of an engineering modeling approach is pursued by the TABULA project (Ty-

pology Approach for Building Stock Energy Assessment) and its successor: the EPISCOPE-

project (Energy Performance Indicator Tracking Schemes for the Continuous Optimisation of 

Refurbishment Processes in European Housing Stocks). Both projects investigate the residential 

building stock of 16 European countries based on building typologies (TABULA Project Team 

2012 [12]; IWU 2015 [13]). In Switzerland, an important dynamic city simulation tool is CitySim 

(Robinson et al. 2009, 2011 [14, 15]; Kämpf 2009 [16]; Kämpf and Robinson 2007 [17]). This 

complex modeling tool is based on dynamic heat transfer calculations. However, just as with 

most of the aforementioned bottom-up engineering models, CitySim requires an extensive 

amount of input information and the effects of occupants’ behavior have to be assumed. 

The simplified housing energy demand model of Saner and colleagues (2013) [18] is an interest-

ing compromise between computational effort and data requirements and hence a promising 

approach for a rough assessment of urban energy flows in general. Based on the Swiss Standard 

SIA 380/1 (SIA 2009 [19]), this model provides estimates of space heating, domestic hot water, 

and electricity use for each residential building in Switzerland without antecedent excessive data 

acquisition requirements. For example, heating demand is quantified using heat balances, ac-

counting for heat losses (ventilation, thermal transmission) and heat gains (solar heat gains and 

internal gains) in a simplified manner. The model by Saner and colleagues (2013) [18] can be 

used to perform LCAs of individual households’ housing demand. However, this model has not 
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yet been properly validated, so an in-depth evaluation is needed before it is applied to a larger 

region, for example, to a Swiss canton or even to the whole of Switzerland. 

The goal of this chapter is therefore to evaluate the model performance of this simplified bot-

tom-up housing energy demand model. For this purpose, the model is applied to a case study. A 

global sensitivity analysis is performed in a first step in order to understand the interactions 

between model parameters and how these parameters affect model results. In a second step, the 

model results are compared with an extensive data set of measured heating loads. This compari-

son is conducted on two different scales: A detailed analysis on an individual building scale shall 

reveal the strengths and flaws of the model, whereas an aggregated perspective shall investigate 

the model’s suitability as a building stock model. 

Housing energy demand consists in principle of three major end-use groups (space heat-

ing/cooling, domestic hot water, and electricity demand for appliances and lighting). However, 

this chapter only focuses on space heating because it is the most important building-specific 

energy consumption component. Hot water use and electricity demand for appliances depend 

on the users, rather than on the buildings, and are considered by means of standard values in 

the simplified model. 

3.2 DATA AND METHODOLOGY 

3.2.1 Case Study and Energy Demand Data Collection 

Zernez is a small municipality located in the Swiss Alps at an altitude of approximately 

1,471 meters above sea level (swisstopo 2014 [20]). Annual global horizontal solar irradiance 

amounts to 1,170 kilowatt-hours (kWh) per square meter, and the average annual ambient tem-

perature was 4.8°C for the time period from October 2010 to September 2011 (Orehounig et al. 

2014 [21]). 

In 2010, 1,140 inhabitants lived in Zernez (BFS 2014 [22]) in 279 residential buildings (BFS 

2013 [23]) erected between 1250 and 2010 (BFS 2013 [23]; ETHZ and Zernez 2015 [24]). In 

1872, a major fire devastated 117 of the 154 buildings existing at that time. Most buildings were 

reconstructed in a short time. In order to protect the village from future fires, the buildings 

were re-erected in an architectural style that is atypical for the region. However, just as the tradi-

tional buildings, these edifices feature thick stone walls that do not correspond to an average 

building of this time in Switzerland. 

Presently, 39% of all residential buildings in Zernez are heated by burning fuel oil, 24% possess 

direct electrical heating systems, and 21% use log wood (BFS 2013 [23]). A small district heating 

network, which is fed by a wood chip furnace, supplies heat to another 5% of the residential 

buildings (BFS 2013 [23]). The remaining 11% use air-source heat pumps, ground-source heat 

pumps, or energy carriers that are not further specified (e.g., solar thermal collectors). 
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One of the goals of the municipality of Zernez is to replace fossil energy carriers for space heat-

ing and hot water production with renewable energy sources until 2020. For this purpose, the 

research project Zernez Energia 2020 was initiated. In the context of this project, a survey was 

conducted within the municipality in order to gather data on fuel oil consumption, on the 

amount of wood chips and logs used, as well as on district heating and electricity demand. The 

main data sources were energy bills and interviews of inhabitants. Further, the municipality 

supported the establishment of a database containing detailed information on installed heating 

systems and on different building characteristics, such as age, type, construction method, and 

insulation quality. However, the survey was limited to the core part of the village and excluded 

hamlets and remote single houses located within the municipality’s borders. The final database 

comprises information on all 309 buildings of the village’s core (ETHZ and Zernez 2015 [24]). 

One hundred ninety-four of these edifices are residential buildings (ETHZ and Zernez 2015 

[24]). 

For the evaluation of the model results with primary data, the amounts of energy carriers col-

lected in the survey were converted to net energy demand required for space heating. Thereby, a 

problem was encountered given that electricity bills did not distinguish between electricity used 

for appliances and for resistance heaters or heat pumps, respectively. In order to split the total 

electricity consumption into the various uses, typical electricity demands for appliances and 

lighting were derived for some buildings in the scope of the project (ETHZ and Zernez 2015 

[24]). These typical electricity demands were then extrapolated to buildings with electricity-

driven heating technologies and deducted from the total electricity consumption to derive the 

electricity demand for heating (ETHZ and Zernez 2015 [24]). 

In a next step, the amounts of energy carriers were translated to final energy demand for heat-

ing. The electricity bills and the operator of the district heating network provide data in kWh or 

megajoules (MJ). For buildings, relying on fuel oil or firewood as an energy source, the energy 

contents were assumed to be 36.7 MJ per liter and 10,080 MJ per cubic meter, respectively, in 

order to compute the net calorific value (Orehounig et al. 2014 [21]; ETHZ and Zernez 2015 

[24]). The resulting amount of energy corresponds to the delivered energy entering a building 

(final energy). In order to derive the actual heating demand (useful energy), the efficiency of the 

installed heating system was considered in a third step. The great variety of different heating 

systems found in Zernez rendered it almost impossible to determine the exact efficiency value 

for each system. Therefore, standard conversion efficiencies related to the net calorific value 

were assigned to the different energy carriers (electricity: 95%; fuel oil: 75% to 104%; district 

heating: 95%; wood: 75% to 93%) (Orehounig et al. 2014 [21]; ETHZ and Zernez 2015 [24]; 

Burri and Knecht 2014 [25]). The resulting amounts of used energy represent the sum of the 

heat demanded for hot water production and for space heating. In order to subtract the energy 

needs for domestic hot water (DHW), typical energy uses for hot water were assumed (Nipkow 

et al. 2007 [26]). Given the large share of holiday flats and secondary homes in Zernez and giv-

en the fact that DHW was already separated for some buildings, the subtraction of these typical 

DHW energy requirements results in an underestimation of the effective space heating demand. 
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In order to cover the uncertainty in the heating demands derived from measurements, two val-

ues of space heating demand were calculated to form a range. For the minimum, the heating 

demand with subtracted DHW needs and with low conversion efficiencies was computed. For 

the maximum, the heating demand with high conversion efficiencies was calculated. This range 

is referred to henceforth as “empirical database range.” A schematic description of the applied 

procedure to derive this empirical database range can be found in Appendix B. 

3.2.2 Model Description 

The underlying idea of Saner and colleagues’ (2013) [18] model is the establishment of simpli-

fied energy balances for each building according to the Swiss Standard SIA 380/1 (SIA 2009 

[19]), published by the Swiss Society of Engineers and Architects (SIA). The core of the hourly 

energy balance to estimate the heating energy demand (Qh) for a specific building in the time 

period from tbegin to tend is formed by equation (3.1). 

𝑄ℎ = ∑ (𝑄𝑇,𝑡 + 𝑄𝑉,𝑡) − 𝜂𝑔(𝑄𝑠,𝑡 + 𝑄𝑖𝑃,𝑡 + 𝑄𝑖𝐸𝑙,𝑡)
𝑡𝑒𝑛𝑑
𝑡=𝑡𝑏𝑒𝑔𝑖𝑛

  (3.1) 

In this formula, the heating energy demand is computed as the difference between thermal loss-

es and thermal gains. The latter includes solar gains (Qs) through windows, internal gains from 

the presence of people (QiP), and internal gains attributed to the use of electricity (QiEl). The sum 

of all thermal gains is multiplied by ηg, which is the degree of utilization for heat gains and de-

pends on the thermal storage capacity of the building mass (SIA 2009 [19]). Thermal losses 

comprise transmission losses through the building’s envelope (QT) as well as ventilation losses 

(QV). 

The input data for this energy balance are retrieved from three main sources: climatic data pro-

duced by the software Meteonorm (METEOTEST 2012 [27]), the Swiss Federal Register of 

Buildings and Dwellings (FRBD) (BFS 2013 [23]), which contains up-to-date building-specific 

data about each residential building in Switzerland, and different building-specific statistics (e.g., 

from Wallbaum et al. [2010] [28]). Although the data sources for this simplified model are very 

comprehensive, some important information could only be derived by means of assumptions. 

These include, among others, the window area share, the renovation year of a specific building 

component, the roof type and inclination, as well as the building orientation. The distributions 

of each one of these parameters was simulated by Latin Hypercube sampling, so as to gain a 

better grasp on the variability of these parameters (a full list of all stochastically modeled param-

eters can be found in Appendix B). In the scope of the case study in Zernez, 1,000 simulation 

runs were performed. A discussion of the model results for individual buildings can be found in 

Appendix B. For the comparison with the municipal data set, the model results were averaged 

for each building (see Appendix B). 

A more detailed description of this simplified building energy demand model can be found in 

Saner and colleagues (2013) [18]. A simplified flow chart in Appendix B illustrates the interac-

tions of the different model components, and how the input data and the stochastically mod-
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eled parameters enter the computations to finally derive the heating demand according to equa-

tion (3.1). 

3.2.3 Global Sensitivity Analysis 

Before comparison of the model predictions with primary data, a global sensitivity analysis was 

performed in order to learn more about model inherent effects and investigate the impact of 

individual model parameters on the model results. Only model parameters subjected to Latin 

Hypercube sampling and therefore associated with a probability distribution were part of this 

global sensitivity analysis, whereas the variation of parameters represented by default values 

(e.g., internal gains from the presence of people [QiP]) and the input data (e.g., measured out-

door temperature) were not taken into account in the quantitative analysis and are only dis-

cussed qualitatively. The global sensitivity analysis followed the density-based approach intro-

duced by Plischke and colleagues (2013) [29] using Borgonovo’s moment-independent  as a 

measure for the global sensitivity of the model results. This approach derives global sensitivity 

indices from given data at the minimum computational cost and is thus predestinated for inves-

tigating models with underlying Monte Carlo or Latin Hypercube sampling. 

The density-based moment-independent measure () used to express the global sensitivity is 

normalized between 0 and 1. If the model output is independent of parameter i, a bias reduc-

tion filter based on a Kolmogorov–Smirnov test sets i to zero (Plischke et al. 2013 [29]). In 

contrast, the larger i, the higher is the impact of parameter i on the model result. 

3.2.4 Model Evaluation with Empirical Data 

The geographical boundaries of this study are the borders of the case study municipality of 

Zernez. The simplified housing energy demand model was applied to the whole building stock 

resulting in heating energy demand predictions for each of the 279 residential buildings within 

the municipal borders. The database, which was established in collaboration with the inhabit-

ants and the municipality, contains information on 194 residential buildings. However, the in-

formation in the database is not equally reliable for all buildings. For instance, the consumption 

of wood logs was not determined by measured quantities, but estimated by the owners of the 

buildings using firewood for space heating. Another example: No data were collected on energy 

savings from solar thermal systems. 

Further difficulties arose when results of the model had to be compared to buildings in the da-

tabase. The model produced heating demand estimates for entries in the FRBD, which did not 

always correspond to database buildings. For instance, two houses attached to each other fea-

tured sometimes only one entry in the FRBD, but two entries in the municipal database and 

vice versa. Whereas such problems could be tackled in the majority of cases, there were also 

cases where no clear juxtaposition was possible. Facing these problems, it was thus decided to 

consider only those residential buildings with reliable and unambiguous data entries for the 

evaluation of the model. In the end, 133 residential buildings were used for a building-wise 

evaluation of the model by the measured heating loads of the municipal database. 
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The temporal resolution of the model is on an hourly basis. However, data collected for the 

energy consumption of the municipality of Zernez contains annual values only. Therefore, the 

comparisons were conducted on a yearly aggregated basis. Because the empirical dataset of the 

case study was established from October 2010 to September 2011, the inputs for the model 

were referred to this time period wherever possible. 

Classical descriptive statistical indicators were calculated to compare the sum of all model esti-

mates and the measured total annual heating demand of the building stock considered, namely, 

the average, standard deviation, correlation coefficient, minimum, maximum, as well as absolute 

and relative difference. The detailed building-wise comparison focused primarily on absolute 

and relative differences. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Internal Model Evaluation: Global Sensitivity Analysis 

The global sensitivity analysis evaluates the model from an internal perspective and reveals the 

importance of individual model parameters within the model structure. Given that the parame-

ter sampling for a certain building depends on the specific situation and on specific building 

characteristics, the same parameter took different s for different buildings, pointing out that a 

certain parameter is not of the same importance for all buildings. The application of Plischke 

and colleagues’ approach [29] to the 133 case-study buildings therefore resulted in a distribution 

of s, which is shown in Figure 3.1 as box plots. It is important to note that this figure presents 

the results for only some of the parameters to facilitate the interpretation of the sensitivity anal-

ysis. For instance, results for the time of wall refurbishment are not presented, but results for 

the choice of U-values – which is directly dependent on time of wall refurbishment – are indeed 

presented and have an impact on model results, which is easier to understand. Details on the 

global sensitivity analysis results can be found in Appendix B. 

Figure 3.1 clearly shows that effective room temperature and U-values for walls are the two 

most influential parameters at the building stock level. This outcome, especially the importance 

of indoor temperature, is also in line with the findings of other sensitivity studies (Firth et al. 

2010 [6]; Kavgic et al. 2013 [11]). Old buildings are dominated by U-values given that their long 

lifetime enables the Latin Hypercube sampling to choose many different years of refurbishment, 

resulting in a large spectrum of different U-values. Contrary to that, U-values for newer build-

ings are restricted to a narrow distribution. The most extreme case in this regard would be a 

building erected in the year 2010, for which the Latin Hypercube sampling is only allowed to 

choose one U-value. In such cases, the indoor temperature becomes the predominant factor 

influencing the model results. 

Evidently, parameters such as deviation from the South, thermal storage capacity, floor U-

values, roof type, and roof inclination do not have a big influence on overall heating demand. 

The latter two are used for the determination of roof U-values and for the effect of solar ther-
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mal collectors. However, in the present case study, no solar collector systems are considered 

and U-values for slanted and flat roofs are very similar. 

Compared to the other components, floor U-values seem to be much less important. According 

to SIA 380/1, various reduction factors are applied to the chosen U-value on account of the 

floor’s direct connection to the soil. By rendering similar U-values for all floors, these factors 

make up for any impact of different floor ages. 

 

Figure 3.1: Box plots of the density-based sensitivity measure  for different model pa-
rameters after applying Plischke and colleagues’ approach (2013) [29] to the 
133 case-study buildings. More information about the applied stochastic 
modeling and presented results is given in Appendix B. [U-values = heat 
transfer coefficients; g-values = solar energy transmittance]  

The global sensitivity analysis permitted to take into consideration only those parameters with a 

distribution simulated by Latin Hypercube sampling. This should not hide the fact that also 

other factors can exhibit a crucial impact on the model predictions. For example, Firth and col-

leagues (2010) [6] and Kavgic and colleagues (2013) [11] found their models to be very sensitive 

to outdoor temperature, which was here considered as a deterministic parameter from tempera-

ture records. In addition to climatic input data, Heeren and colleagues (2015) [30] identified the 

ventilation rate to be essential for their model, which is another parameter not examined in our 

global sensitivity analysis (in fact, ventilation rate was modeled individually per building, but it 

was not varied in the sensitivity analysis). However, comparisons with other sensitivity studies 

are only possible to a limited degree. None of these other analyses performed a density-based 

global sensitivity analysis, and the building characteristics as well as the building models varied 
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between studies. For example, Heeren and colleagues (2015) [30] applied their detailed model to 

a hypothetical new building and not to a building stock. 

3.3.2 External Model Evaluation: Comparison of the Model with Primary Data  

3.3.2.1 Individual Building Scale 

Figure 3.2 presents the building-wise comparison of model results and reported heating loads. 

Figure 3.2a relates the average model results to the mean of the empirical database range, 

whereas Figure 3.2b compares the 95% confidence intervals of the model results with the em-

pirical database range. For most of the subsequent analyses, only the average model results are 

considered. 

 

 

Figure 3.2: (a) Building-wise comparison of annual heating demand estimated by the 
model and reported heating loads according to the empirical database. Error 
bars in the y-direction represent the 95% confidence intervals of the model 
results, whereas error bars in the x-direction show the empirical database 
range. Straight line corresponds to a 1:1-relationship (perfect match). (b) 
Building-wise comparison of the model’s 95% confidence intervals with the 
empirical database range.  
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As can be seen in Figure 3.2a, the data points scatter around the 1:1 line and the correlation 

coefficient is equal to 0.59. The model’s 95% confidence intervals overlap with the empirical 

database range for 65 of 133 buildings (Figure 3.2b). Yet, this figure shows clearly that simulat-

ed heating demands largely deviate from database entries for some individual buildings. In order 

to understand the origin of such deviations, the building characteristics were examined in the 

cases where the model performed poorly. Two building properties turned out to be most inter-

esting in this regard: the year of construction and the amount of space heating demand accord-

ing to the empirical database. Figure 3.3 displays, for all 133 case-study buildings, absolute and 

relative deviations between average model results and database entries sorted by recorded heat-

ing energy demands and construction year, respectively. Larger absolute differences occur for 

larger measured space heating demands, whereas relative deviations are larger for smaller data-

base entries (Figure 3.3a and 3.3b). It can be deduced from Figure 3.3a that the model tends to 

underestimate larger effective energy demands. This might arise from not adequately reproduc-

ing the occupants’ behavior or from an intrinsic model structure problem that prevents the 

model from predicting extreme values. For instance, if the U-value of a building component is 

above the maximum U-value of the model’s range and causes a large heating demand, the mod-

el will not be capable of reproducing this building’s large heating load. Another example con-

cerns the model simplifications regarding the building’s shape (see Appendix B): Here, we as-

sumed buildings to be cubes, which is an optimistic assumption, because it results in a mini-

mum envelope to volume ratio. This leads to an underestimation of thermal transmission losses 

for elongate structures. 

Figure 3.3c and 3.3d shows that heat demands for older buildings are often overestimated, 

whereas the model tends to underestimate newer buildings. Further, in Figure 3.3d, it can be 

seen that relative deviations are higher for older buildings and lower for newer buildings. The 

largest absolute as well as the largest relative deviations are observed for the period of recon-

struction after the fire in 1872. This is also supported by Figure 3.4, in which the relative devia-

tions are separately depicted for the reconstructed and all other buildings. The box plots illus-

trate that the width of relative deviations is larger for the re-erected buildings compared to that 

of other buildings. As mentioned earlier, the dwellings built after the fire show an atypical style 

for this time period. In addition to these buildings, the traditional buildings do not conform to 

the Swiss average of their time either. On account of harsh winter conditions, the traditional 

style of buildings in the Engadin valley dictates the need for thick stone walls as well as few and 

small windows. However, being bound to the statistical findings of Wallbaum and colleagues 

(2010) [28], the model can be expected to perform well only if the simulated buildings corre-

spond to the average of buildings of a certain time period. Yet, in the case of traditional and 

postfire buildings, the statistical basis here predicts worse insulation than encountered in reality 

and thus overestimates thermal transmission losses (Figure 3.3c,d). 
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Figure 3.3: Absolute [(a) and (c)] and relative [(b) and (d)] differences between model 
results and empirical database, sorted by measured space heating demand 
[(a) and (b)] and construction year [(c) and (d)]. Error bars indicate vari a-
tion of the differences that arise because of referenc ing once to the maxi-
mum and once to the minimum database estimations.  

 

In addition to the problems of statistical representativeness of specific buildings, there are other 

reasons that explain the large deviations for some single buildings. Approximately 18% of the 

apartments in Zernez are holiday flats or secondary homes and are therefore only occasionally 

occupied. Long periods of absence during which the homes are not – or only partially – heated 

are not accounted for in this simplified model. In general, the occupants’ behavior poses a ma-

jor difficulty for bottom-up engineering models. Several articles emphasize that the large varia-

tion in behavior of inhabitants can impact the total energy demand of a certain home by 100% 

or more (Nipkow et al. 2007 [26]; Swan and Ugursal 2009 [4]; Kavgic et al. 2013 [11]; Robinson 

et al. 2007 [31]; Haldi and Robinson 2011 [32]). The influence of the dwellers’ behavior on a 

building’s energy demand emerges in the present case also from the results of the global sensi-

tivity analysis. For instance, Figure 3.1 highlights the importance of the indoor temperature, 

which is chosen by the occupants. 
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Figure 3.4: Box plots illustrating relative deviations of model predictions from the em-
pirical database. Relative deviations refer to the mean of the empirical dat a-
base heating demand range. 

3.3.2.2 Building Stock Perspective 

One of the main intentions of this chapter is to investigate the suitability of this simplified 

housing energy demand model as a building stock model. For this purpose, Figure 3.5 compares 

the model results with the empirical database range on an aggregated level. 

The total annual heating demand of all 133 buildings is appropriately simulated by the applied 

model. The relative deviation of the cumulated model results from the building cluster’s heating 

demand ranges from an underestimation of 20% to an overestimation of 13%. From the de-

scriptive statistical indicators (see table in Figure 3.5) the model seems to adequately emulate the 

overall characteristics of the residential building stock’s heating demand. 

Figure 3.5 considers cumulative curves of the heating demands because this presentation gives a 

better overview of the stock’s behavior than that on an individual basis (cf. Figure 3.2). Two 

important properties of the diagram in Figure 3.5 may help to evaluate the model from a build-

ing stock perspective: The proximity and the slope of the curves. First, if the model’s cumula-

tive curve follows the empirical database curve closely, this suggests that the total annual heat-

ing demand of the building stock is met on different levels of aggregation and not only for the 

whole building stock. Second, and more important, the model’s performance can directly be 

judged by comparing the similarity in the slopes of the two curves. Discontinuities indicate a 

bad model performance for one or a group of buildings. But, if after the discontinuity, the curve 

regains a trajectory parallel to the empirical one, this means that the model reproduces the data-

base entries well for the subsequent buildings. 

Analyzing Figure 3.5 in detail, three areas can be distinguished: The cumulative model curve 

exceeds the maximum of the empirical database for low heating demands, follows then the edge 

of the maximum space heating demand derived from the empirical database, and settles down 

between the minimum and the maximum of the empirical database range for large heating de-
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mands (this behavior can be explained by means of Figure 3.2b and Figure 3.3a). Overall, both 

the proximity of the lines and the slopes point to a good model performance: The model’s line 

is, in general, plotted closely, and more or less parallel, to the reported cumulative annual heat-

ing demand. In Figure 3.5, the buildings are ranked according to the heating demand of the 

empirical database because this facilitates the assessment of the slopes. Additional diagrams 

showing the buildings sorted in a different manner are presented in Appendix B. 

 

Figure 3.5: Cumulative annual heating demand of buildings sorted by ascending hea t-
ing demand according to the mean of the empirical database range. The 
cumulative curve of the model (red) was built by accumulating the simulat-
ed heating demands corresponding to the sorted buildings. Analogously, the 
lower blue line shows the cumulated minimum of the empirical database 
range whereas the upper blue line denotes the cumulated maximum of the 
empirical database range. [SD = standard deviation; Max = maximum value; 
Min = minimum value; Database (min) = minimum of empirical database 
range; Database (max) = maximum of empirical database range] 

3.4 CONCLUSION AND OUTLOOK 

The extensive data set of reported heating loads of this study presented an excellent opportuni-

ty to evaluate the performance of housing energy demand models. In our evaluation procedure, 

we aimed to quantitatively account for many sources of uncertainty introduced by both the em-

pirical data and model assumptions, respectively. However, some potential sources of error 

were not part of the present analysis, such as inaccuracy of climatic input parameters, correct-

ness of data from the FRBD (BFS 2013 [23]), and some default values (e.g., internal gains from 

the presence of people). These unconsidered uncertainties as well as those induced by the as-

sumptions made to derive heating demands from the empirical database hinder exact statements 
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about the model’s accuracy, but it was possible to identify general trends and directions as well 

as general flaws and strengths of the model. The comparison of primary data and model results 

revealed that the model of Saner and colleagues (2013) [18] is not very accurate in predicting 

heating demand of single buildings. However, it was rather strong in simulating the overall 

characteristics of the residential building stock’s heating demand. 

The analysis of the traditional and the postfire buildings showed that the statistical building 

stock data of Wallbaum and colleagues (2010) [28] was not representative for the old buildings 

in the municipality investigated here and led to systematic model errors. The global sensitivity 

analysis supports this conclusion by revealing the important impact of U- and g-values on the 

model outputs. Whereas the model especially tends to deviate for old buildings, the heating 

demand of newer edifices is generally better reproduced. This suggests that the model may per-

form better for building stocks with newer buildings. 

Model assumptions on occupants’ behavior are another major source of uncertainty. In the case 

of Zernez, this is particularly important because of the high ratio of holiday flats and secondary 

homes, which are irregularly heated. An interesting analysis on the impacts of dwellers on ener-

gy demands by their interactions with windows and shading devices is given by Haldi and Rob-

inson (2011) [32]. Given the high relevance of behavioral patterns, large differences between 

model results and the municipal database for some single buildings are no surprise, because 

variation in user behavior was only partially considered. The global sensitivity analysis con-

firmed the significance of behavioral aspects by highlighting the important impact of the chosen 

indoor temperature on model results. The comparison of the model results with primary data 

leads, however, to the conclusion that the standard and default values, which were applied to 

cover individual behavior, work well on a building stock level where under- and overestimations 

cancel each other out. Nevertheless, future research should focus on a better representation of 

the interaction of dwellers with buildings. 

Further improvement of the model could be achieved by replacing the simplified assumptions 

regarding the building’s shape by three-dimensional building geometries. Current work is at-

tempting to derive such information from nation-wide laser-scanning data. 

By providing estimates of the energy demand of an entire building stock, bottom-up building 

energy models, such as the one examined in this chapter, constitute powerful tools for urban 

planners and local authorities, who need a district or municipality perspective. Many important 

decisions are made at this level, related to regulations for building design, the construction of 

district heating networks, or to financial support for private refurbishment initiatives, to name a 

few. There are numerous fields of application of such models: They can support scenario plan-

ning and identify strategies for the abatement of environmental impacts related to housing en-

ergy use. For example, in the present case study, several recommendations were made for the 

municipality; among them a detailed list with indications on the buildings and the specific build-

ing components that should be given priority for refurbishment, as well as a concrete proposi-

tion to extend the district heating network (ETHZ and Zernez 2015 [24]). 
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Another possibility is to combine the housing stock model with optimization techniques, as 

demonstrated by Saner and colleagues (2014) [33], who applied mixed integer linear program-

ming to the simplified energy demand model examined in this chapter. Further, the model may 

be integrated in household consumption studies (Saner et al. 2013 [18]). Regionalized LCAs of 

household consumption might support the search for holistic and sound environmental impact 

mitigation strategies. 

We conclude that the simplified model of Saner and colleagues (2013) [18] performed well on 

an aggregated level. Therefore, this model provides a promising basis for the investigation of 

heating energy demand of the residential building stock, for instance, in the context of decision-

supporting scenario analyses or regionalized LCA studies. The findings of this study, and the 

fact that this model features a fast performance and does not require antecedent excessive data 

acquisition, provide motivation to continue our work with this model. In a first step, we will 

further improve the model by integrating the aforementioned three-dimensional building geom-

etries. Subsequently, we will apply the model to a larger region, such as a whole canton or the 

whole of Switzerland. This will allow for an in-depth analysis of housing patterns on a large 

scale and an assessment of different urban settlement typologies related to building energy de-

mand. 

In principle, the applicability of the model itself is not restricted to Switzerland, but it could also 

be used for other countries. Yet, the availability of adequate input data has to be scrutinized, 

especially with regard to building-specific information (here provided by the FRBD [BFS 2013 

[23]]) and thermophysical parameters (here provided by Wallbaum et al. [2010] [28]). 
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ABSTRACT 

Building heat demand is responsible for a significant share of the total global final energy con-

sumption. Building stock models with a high spatio-temporal resolution are a powerful tool to 

investigate the effects of new building policies aimed at increasing energy efficiency, the introduc-

tion of new heating technologies or the integration of buildings within an energy system based on 

renewable energy sources. Therefore, building stock models have to be able to model the im-

provements and variation of used materials in buildings. In this chapter, we propose a method 

based on generalized large-scale geographic information system (GIS) to model building heat 

demand of large regions with a high temporal resolution. In contrast to existing building stock 

models, our approach allows to derive the envelope of all buildings from digital elevation models 

and to model location dependent effects such as shadowing due to the topography and climate 

conditions. We integrate spatio-temporal climate data for temperature and solar radiation to 

model climate effects of complex terrain. The model is validated against a database containing the 

measured energy demand of 1845 buildings of the city of St. Gallen, Switzerland and 120 build-

ings of the Alpine village of Zernez, Switzerland. The proposed model is able to assess and inves-

tigate large regions by using spatial data describing natural and anthropogenic land features. The 

validation resulted in an average goodness of fit (R2) of 0.6. 

4.1 INTRODUCTION 

Energy consumption of buildings plays a significant role in global energy demand. Lucon et al. [1] 

estimated that in 2014 buildings were responsible for 32% of the world-wide final energy con-

sumption. In view of the large contribution of fossil-fuel based energy systems to climate change, 

the building stock yields a high reduction potential of global anthropogenic greenhouse gas 

(GHG) emissions. 

However, new challenges emerge with the integration of renewable energy sources into the exist-

ing energy system. For instance, electricity production becomes fluctuating and requires load bal-

ancing capabilities [2, 3]. Research studies demonstrate that buildings can play a major role for 

the integration of renewable energy production with novel concepts and technologies. Examples 

are distributed swarms of combined heat and power (CHP) plants [4, 5] or time controlled opera-

tion of heat pumps [6, 7]. 

To investigate the potential contribution to load balancing and GHG mitigation of these tech-

nologies, as well as planning their implementation, it is necessary to model the heat demand of 

buildings. Such models are typically referred to as building stock models or urban building energy 

models. In the past, such models were developed for different applications, such as to estimate 

future development of energy consumption of the building stock [8, 9], costs [10], retrofit scenar-

ios [11, 12] or environmental impact [13, 14]. A review of different building stock models can be 

found in Swan and Ugursal [15], Kavgic et al. [16], Keirstead et al. [17] or Reinhart et al. [18]. 
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In general, the models can be divided into either top-down or bottom-up. Top-down models use 

aggregated data as input, which are a fit of historical time series of national energy consumption 

or CO2 emissions data [16]. However, top-down models do not allow for investigating decentral-

ized energy production in detail. Bottom-up models use disaggregated data as input, and thus 

need extensive databases of empirical data to describe each component of a building [16]. To 

model larger areas, typically only one or multiple cohorts of buildings with simulated or measured 

heat demand consumption are used [16, 19]. Major limiting factors to model all buildings individ-

ually include the dependency on local data sources for the required input parameters of the heat 

demand simulation tools, the computational performance of the heat demand simulation and 

data processing or the limited availability of data. Current studies that model buildings individual-

ly rely on data sources that are not available on a large scale. In Zucker et al. [20] it was reported 

that the simulation of 72 buildings using EnergyPlus required 45 min. Therefore, this method is 

not suitable to perform simulations of large areas. 

Current geographic information systems (GIS) [21] allow for using large spatial datasets, which 

have become more and more available in recent years, and thus for an intensive and detailed spa-

tio-temporal analyses of different natural and anthropogenic processes and phenomena. Howev-

er, in building stock modeling GIS is not currently used to its potential. Rather, it is primarily 

used for retrieving data of individual buildings from existing spatial databases or to visualize re-

sults. In Heiple and Sailor [22] building energy demand on a parcel level is estimated for large 

cities in the USA. Other studies describe modeling of the building heat demand in Switzerland [9, 

14, 23] using spatial datasets of the official registry of buildings. In most of the studies [9, 14, 22–

24] the use of GIS is limited to governmental spatial databases, and includes data such as net 

dwelling areas, number of floors, building age or building category (such as single or multifamily 

houses). Typically, these datasets are associated with the approximate location of a building and 

do not contain detailed information about its geometry and surfaces. These surfaces, which are 

the input data of physically-based heat demand models, are estimated in various ways: for in-

stance, in [14] they are estimated using net dwelling areas combined with the assumption that all 

buildings have a cube shape. On the other hand, in [25] additional building footprint data, in 

combination with the number of floors, retrieved from registry data, are used to estimate building 

dimensions. In Froemelt and Hellweg [26] (see Chapter 3), transmission losses of exterior walls 

were identified as the most important influencing factor when modeling building heat demand 

and, thus, the estimate of the building surface is a crucial parameter, bringing into question the 

validity of the simplified building geometry assumptions in [14]. Ma and Cheng [27] use machine 

learning techniques to model building energy demand in New York City. Due to their different 

modeling approach, the use of GIS is not aimed at deriving building features such as surfaces but 

to determine predictors such as the distance to the coast line or nearest subway entrance. In 

Alhamwi et al. [28] GIS is used to process OpenStreetMap building data. 

For energy related applications specific requirements need to be met. For instance, buildings need 

to be spatially linked to the electricity distribution grid. This can only be done if the exact posi-

tion of each building is known. Both the production and the consumption of energy are fluctuat-
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ing and can only be approximated but not accurately predicted [29, 30]. Despite the thermal iner-

tia of buildings as well as integrated short-term heat storage (e.g. hot water tanks) that can attenu-

ate the temporal variation of heat demand, many energetic applications require models with at 

least daily or intra daily temporal resolutions. This requires the usage of climate data of similar 

temporal resolution. Furthermore, external factors such as the characteristics of the surrounding 

topography (e.g. mountains) and objects (e.g. other buildings or vegetation) can have a significant 

effect on solar gains of windows through shadowing or on local weather phenomena such as sun 

duration and exposition. In addition, the topography can cause temperature differences in rela-

tively small areas due to elevation differences, which is common, for example, in mountainous 

regions. Thus, a high spatial resolution of the climate data is required in order to detect such vari-

ations that have an impact on the energy demand of each building. 

Table 4.1 shows an overview of recent physical based bottom up building stock models. Existing 

bottom-up models are limited by their ability to simulate large regions or use archetypes buildings 

to simulate the building stocks heat demand. Thus, their use is limited for assessing the load-

balancing capabilities of buildings on a large scale. 

Table 4.1: Comparison of different bottom up building stock models.  

 
Individual 

buildings 

Building 

dimensions 
Shading 

Spatial 

climate 

data 

Uncer-

tainty 

analysis 

Scale Heat model Validation 

This work ✓ ✓a ✓e ✓ ✓ Country SIA 380/1 1845 + 120 

Tuominen et al. (2014) [8]      Country IDA ICE  

Mata et al. (2013) [10]      Country ECCABS 1400 

Exner et al. (2017) [11]      Regions EN 832  

Balaras et al. (2016) [12]      Regions TEE-KENAK  

Saner et al. (2013) [14] ✓ (✓)c (✓)d  ✓ Regions SIA 380/1 126 [26] 

Heiple et al. (2008) [22]      City DOE2  

Österbring et al. (2016) [25] ✓ ✓b (✓)d   City ECCABS 433 

Nageler et al. (2017) [31] ✓ ✓b (✓)d   Town IDA ICE 69 

Zucker et al. (2016) [20] ✓  (✓)d   
Neighbor-

hoods 
EnergyPlus  

a Digital surface model. 

b 2.5D vector dataset. 

c Cube shape assumption. 

d Simplified buildings. 

e Complete surrounding topography. 

The aim of this chapter is to present a method for building stock modeling over large regions 

using GIS and spatio-temporal data: the proposed model is intended to be applicable for differ-

ent purposes in the energy field such as deriving new energy policies, spatial distribution of heat 

demand, detailed analyses of refurbishment scenarios, assessment of building-related environ-

mental impacts, combined response of power grid analyses and heat demand at different time 

resolution. In this work, the developed model is based on studies carried out by Saner et al. [14] 

but with an extensive use of GIS. To simulate the heat demand of each individual building the 

SIA 380/1 [32] model is used. The model relies entirely on nationwide available datasets, such as 
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registry data, digital elevation models and spatial climate data. We present novel approaches to 

derive building geometries and volumes from digital elevation models. By extensive use of GIS 

methods in combination with spatial datasets, such as digital surface models and building foot-

prints, we overcome the issue of making assumptions about the shape of buildings. Furthermore, 

we are able to model the effect of shared walls between adjacent heated buildings. The model is 

generic and can be applied to any region where the aforementioned data are available. 

Using spatial climate datasets allows for a time resolution of up to half an hour for the past 30 

years. This enables for simulation of arbitrary periods, long-term averages or extrema periods. 

These are typically referred to as typical meteorological year (TMY) or future meteorological year 

(FMY) [33]. The digital surface models, including natural and anthropological objects above the 

ground, allow for estimating solar gains through windows, including shading effects by the sur-

rounding topography and structures. Furthermore, since building registry data are known to not 

be spatially accurate [11] (i.e., not matching the corresponding buildings), we propose an algo-

rithm to improve the joining of registry data with building datasets. Uncertainties due to gaps in 

the available data are accounted for by performing a Monte Carlo simulation for each building. 

This is especially important when the model is used for combined response of power grid anal-

yses when the building energy demand can be the limiting factor [5]. At present, no work has 

demonstrated its ability to estimate, with such level of detail, the spatio-temporal distribution of 

heat demand of each individual building over large regions. To simulate the heat demand of each 

individual building the Swiss standard to determine space heat demand (SIA 380/1 [32]) is used, 

as shown in Saner et al. [14] This physically-based model depicts a reasonable compromise be-

tween the required input data as well as computation performance. The method for heat demand 

is applied to Switzerland and validated against 1845 buildings in the city of St. Gallen and 120 

buildings in the alpine town of Zernez. 

We first present the datasets used (section 4.2), followed by the discussion of our method to de-

rive the heat demand for each individual building from these datasets (section 4.3). This is fol-

lowed by a comparison of the simulated heat demand with measured heat demand (section 4.4). 

Finally, we conclude this chapter with the discussion of the obtained results (section 4.5). 

4.2 DATA 

In the following, the different datasets used for this research are described. 

4.2.1 Building Footprints 

The building footprint is used to define the boundaries of a building, relate other spatial datasets 

such as climate data and derive building dimensions with the help of digital elevation models. 

Thus, the quality of the building footprints is crucial. In general, the building footprints of the 

cadastral survey have the best quality, as they are measured in the field by professionals. As the 

cadastral survey does not yet contain a digital record of every buildings footprint (coverage of 

89%), OpenStreetMap [34] as well as the Swiss cartographic SwissTLM dataset [35] were used to 
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fill data gaps, adding 7% and 4% of the total number of buildings, respectively. Concerning the 

latter, only footprints not intersecting a footprint from another dataset were included, to avoid 

double counting. The final dataset contains all buildings as of 2013, including residential build-

ings, offices, and other buildings. 

4.2.2 Digital Elevation Models 

Digital elevation models represent the topographic surface [36]. Typically, the elevation is either 

represented as a regularly spaced grid (or raster data) or as triangulated irregular networks (TIN). 

Digital surface models (DSM) represent the surface including all objects above ground, such as 

canopies of vegetation or building roofs, while digital terrain models (DTM) model the elevation 

at ground level. 

The Swiss Federal Office of Topography (swisstopo) provides both a DSM and DTM raster da-

taset with a spatial resolution of two meters for Switzerland. Both datasets are derived from the 

same LIDAR (LIght Detection And Ranging) point cloud. The point cloud was created between 

2001 and 2008 and has as a low point density of approximately one point per square meter. Due 

to the applied smoothing and the low spatial resolution the DSM does not represent buildings 

accurately. Buffat [37] introduced a new DSM with a resolution of 0.5 m, which was derived from 

the raw LIDAR data using an optimized interpolation method for buildings. The method uses 

error tolerant fitted planes to interpolate building roofs and improves the accuracy considerably 

[37]. 

For the cantons Basel-Landschaft, Bern, Geneva, Glarus, Schaffhausen, Solothurn, Zug and Zur-

ich newer DSMs exist in a 0.5-m resolution. For buildings located in these cantons, the new data 

is used. 

4.2.3 Climate Data 

The Swiss weather service MeteoSwiss produces raster datasets with daily mean free-air tempera-

ture two meters above the ground for Switzerland [38]. This dataset contains data series from 

1961 onwards and has a spatial resolution of 0.02 degree in latitude and longitude (equal to a res-

olution of roughly 1.6 km in longitude and 2.3 km in latitude). It was spatially interpolated using 

the method from Frei et al. [39] from the measurements of between 70 and 110 weather stations 

that measure the temperature two meters above the ground. The mean absolute error of the da-

taset is in the range from 0.5 °C over flat and hilly terrain in summer to 1.5 °C in the Alps in win-

ter [39]. 

The Satellite Application Facility on Climate Monitoring (CM SAF) Surface Solar Radiation Data 

Set - Heliosat (SARAH) [40] provides solar radiation data for the whole of Switzerland (i.e., 

±65 degree longitude and ±65 degree latitude with a spatial resolution of 0.05 degrees, corre-

sponding to a resolution of roughly 3.8 km in longitude and 5.6 km in latitude). The dataset pro-

vides time series from 1983 to 2013 with a temporal resolution of 30 min. For each day and for 

each half an hour the dataset provides global irradiance (i.e., total irradiance on a flat surface), the 

direct normal irradiance (direct beam component of the global irradiance normalized with the 
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cosine of the solar zenith angle) as well as the cloud albedo (amount of light reflected by the at-

mosphere). In [41], the dataset was validated for Switzerland with measured data from 104 

weather stations. The dataset showed a mean bias of 0.18 ± 8.54 W/m2 for stations below 1000-

m elevation. With higher elevations, the dataset underestimates the solar irradiance. Around 87% 

of all Swiss buildings are located below a 1000-m elevation [41]. 

4.2.4 Buildings and Dwellings Statistics 

The Swiss Federal Statistical Office maintains the Federal Register of Buildings and Dwellings 

(FRBD) [42]. For each included building, the register collects attributes such as a unique building 

identification number, parcel identification number, occupation (e.g. single family houses, multi-

family houses or houses with mixed residential usage), building construction period, building 

footprint area, number of floors, coordinates of the building and type of the building heating 

system for space heating as well as warm water. It is mandatory that every Swiss residential build-

ing is included in the register. 

Before 2001, the data of the register was collected by means of questionnaires that are sent to 

each household as part of the national census [43]. Since then the municipalities are responsible 

for maintaining the dataset. Kulawik [44] found that (at least for the canton of Lucerne) data 

quality is limited. For instance, coordinates of buildings may be outside of building footprints, 

and the footprint area can deviate from the area derived from the cadastral survey. Furthermore, 

there is no systematic quality control of the entries, which leads to differing regional data quality. 

In Appendix C, a comparison of the building footprint area between the cadastral building foot-

prints and the FRBD building footprint area can be found. As the FRBD is the only comprehen-

sive dataset available in Switzerland, it is widely used for building heat demand estimation [5, 14, 

45]. Furthermore, Froemelt and Hellweg [26] (see Chapter 3) showed that the bottom-up build-

ing energy demand model of Saner et al. [14], which is partly based on the FRBD, achieved rea-

sonable results for residential building stocks. However, it cannot be ruled out that differences 

between measured energy demand and the modeled result are due to inaccurate area attributes of 

the FRBD. Therefore, where possible the other available data sources presented in section 4.2.1 

were used, leaving only building type, building construction period and, for the model validation, 

the type of energy carrier of the FRBD attributes. 

4.3 METHODS 

Physically-based building heat models need a wide range of different input parameters to simulate 

the heat demand of one building [16, 46]. These parameters range from building dimensions (sur-

faces of walls, floors, windows, roofs) to physical properties of materials (thermal transmittance 

of walls, windows), user behavior (ventilation behavior, room temperature) and climate data (so-

lar radiation, temperature). 
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Figure 4.1: Simplified workflow of presented method. Input parameters of the heat model 
are derived from spatial data where possible. If not possible, input parameters 
are sampled based on assumed probability distributions or statistical data. 
[ERA: Energy reference area, FRBD: Federal Register of Buildings and 
Dwellings] 

Commonly, these data are not available in a single database and need thus to be extracted from 

different data sources rendering the collection of data for each building not trivial. Therefore, an 

integral part of this section is the derivation of the required input parameters for each individual 

building. Figure 4.1 shows an overview of the developed workflow to derive the necessary input 

parameters from the heterogeneous data sources presented in section 4.2 including spatial da-

tasets, registry datasets and statistical data. While many parameters, such as building dimensions 

and climate, can be derived from spatial datasets, some parameters, such as the physical proper-

ties of building components, need to be derived differently. For instance, no large scale available 

dataset records the building materials used to construct each building or the user behavior of the 

residents. However, these data gaps can be derived from statistical information or literature-

informed assumptions [9, 26]. For example, the probability distributions of the facade to window 

ratios or the room temperature can be collected from a smaller number of buildings. A value can 

then be sampled from these distributions to provide an absolute value as an input to simulate the 

heat demand with a physically-based heat model. Thus, the simulated heat demand is subject to 

uncertainty. To account for this uncertainty we perform a Monte Carlo simulation with 2000 

iterations, sampling from these distributions in each run. Table 4.2 lists all distributions used for 

the simulation. Thus, we do not calculate only one heat profile for each building, but as many as 

there are iterations of the Monte Carlo simulation. This results in a distribution of the heating 

demand for each simulated building. Figure 4.2 shows such a distribution for a randomly selected 

building. 

In the following, we describe our approach in more detail. 
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Table 4.2: Parameters sample in the Monte Carlo simulation. [SFH: Single-family house, 
MFH: Multi-family house] 

Name Distribution Parameters Description 

Facade to window ratio for con-

struction period:<1919 [%] 
Normal μ = 15.4,σ = 4.6 (min = 5,max = 30) Based on [47] 

Facade to window ratio for con-

struction period: 1919–1970 [%] 
Normal μ = 13.6,σ = 4.2 (min = 6,max = 25) Based on [47] 

Facade to window ratio for con-

struction period: 1971–1980 [%] 
Normal μ = 15.2,σ = 4.1 (min = 10,max = 25) Based on [47] 

Facade to window ratio for con-

struction period: 1981–2000 [%] 
Normal μ = 18.5,σ = 4.1 (min = 10,max = 28) Based on [47] 

Facade to window ratio for con-

struction period:>2000 [%] 
Normal μ = 16.4,σ = 3.9 (min = 10,max = 28) Based on [47] 

Room temperature [°C] Normal μ = 20.0,σ = 1.5 Based on SIA 380/1 [32] 

Surcharge if room temperature 

controller [K] 
 

0 if hydronic system newer than 2006; 

Random selection of {1, 2} 
Based on SIA 380/1 [32] 

Heat gains - electricity [MJ/m2 ] Normal 
SFH: μ = 100.0,σ = 7.0, 

MFH: μ = 80.0,σ = 7.0 
Based on SIA 380/1 [32] 

Shadow factor (FS,2) Uniform (0.9, 1.0) Based on SIA 380/1 [32] 

Thermal storage capacity 

[MJ/(m2·K] 
Triangular left = 0.1,mode = 0.4,right = 0.5 From Saner et al. [14] 

Time of refurbishment - hydronic 

system 
  According to Wallbaum et al. [48] 

Time of refurbishment - roof 

(flat+tilted) 
  According to Wallbaum et al. [48] 

Time of refurbishment - floor   According to Wallbaum et al. [48] 

Time of refurbishment – walls   According to Wallbaum et al. [48] 

Time of refurbishment - windows   According to Wallbaum et al. [48] 

Ventilation rate Dec-Feb [h−1] Lognormal μ = −0.798,σ = 0.673 From Murray and Burmaster et al. [49] 

Ventilation rate March-May [h−1] Lognormal μ = −1.177,σ = 0.807 From Murray and Burmaster et al. [49] 

Ventilation rate Jun-Aug [h−1] Lognormal μ = −0.588,σ = 0.612 From Murray and Burmaster et al. [49] 

Ventilation rate Sept-Nov [h−1] Lognormal μ = −1.173,σ = 0.540 From Murray and Burmaster et al. [49] 

 

Figure 4.2: Violin plot of the results of the Monte Carlo simulation for one building. In 
this plot, the heat demand profiles  of each Monte Carlo iteration are aggre-
gated to yearly values. The blue area indicates the measured heat demand 
with respect to the uncertainty from the efficiency of the heating system. 
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4.3.1 Space Heating Demand Model 

The SIA 380/1 Norm [32] is a building heat model used in Switzerland to verify that new and 

renovated buildings satisfy heat insulation obligations. It was developed by the Swiss Society of 

Engineers and Architects (SIA). The model is based on the EN ISO 13790 norm [50] and uses a 

monthly steady-state method to estimate heat demand based on equations modeling the heat 

balance of a building [32]. This algorithm has also been implemented in calculating heat demand 

in building stocks, since it offers a promising compromise between accuracy and computational 

effort [9, 14]. 

The model defines the heat demand of a building (Qh) as the sum of the heat losses subtracted by 

the utilized heat gains as in equation (4.1). Heat losses and gains are thereby calculated for differ-

ent time periods t. 

𝑄ℎ = ∑ 𝑄𝑇,𝑡 + 𝑄𝑉,𝑡 − 𝜂𝑔𝑡 ∙ (𝑡 𝑄𝑆,𝑡 + 𝑄𝑖𝑃,𝑡 + 𝑄𝑖𝐸𝐿,𝑡)  (4.1) 

In equation (4.1) QT,t , are the transmission heat losses, QV,t , ventilation heat losses, ηgt the degree 

of utilization of the heat gains, QS,t , solar heat gains, QiP,t heat gains from inhabitants, and QiEL,t 

heat gains from electric devices. 

Transmission heat losses (QT,t,c) include the heat losses of different building components (c) such 

as walls, roof, ceilings, floors, windows and thermal bridges and are calculated as shown in equa-

tion (4.2). These losses are modeled based on the temperature differences between heated and 

unheated areas (ΔT), the area (or in case of thermal bridges the length) of the components (Ac) 

and the thermal transmittance (U-values, respectively ψ-values for thermal bridges) of the materi-

als used. Reduction factors (bc) account for surfaces with reduced thermal loss, for example, walls 

against unheated rooms or soil. 

𝑄𝑇,𝑡,𝑐 = 𝐴𝑐 ∙ 𝑈𝑐 ∙ ΔT ∙ 𝑏𝑐  (4.2) 

Heat gains from inhabitants (QiP,t) are modeled based on the number of inhabitants and the heat 

produced per inhabitant. The heat gains of electric devices (QiEL,t) are calculated based on the en-

ergy reference area (ERA) and typical mean yearly electricity heat gains per ERA. We sample the 

typical heat gains using a normal distribution with the mean heat gain from [32] and an assumed 

standard deviation of 7 MJ/m2. Solar heat gains are modeled based on equation (4.3) using the 

window area (Aw,α) for a specific orientation (α), the global solar radiation 𝐼s̅is,t,α,β=90° of period t 

(see section 4.3.4), a reduction factor Fsoil of 0.9 for soiling, the total energy conductivity of a 

window (g-values, g⊥), the reduction factor for window frames (FF = 0.7 from [32]) and the re-

duction factor for shadowing (FS,α, see section 4.3.2). Just as the U-values, the g-values are sam-

pled from probability distributions distinguished by building type and age [14, 51] (cf. section 

4.3.3 for more information). 

𝑄𝑠,𝛼,𝑡 = 𝐼�̅�𝑖𝑠,𝑡,𝛼,𝛽=90° ∙ 𝐴𝑤,𝛼 ∙ 𝐹𝑠𝑜𝑖𝑙 ∙ 𝑔⊥ ∙ 𝐹𝐹 ∙ 𝐹𝑆,𝛼  (4.3) 

The original model uses the monthly mean radiation data for a set of weather stations in Switzer-

land. This dataset provides only the long-term average monthly radiation for four orientations 
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[52]. As we are able to derive location-specific radiation data for arbitrary orientations (see sec-

tion 4.3.4) we increase the number of orientations to 24 by grouping the facade orientations into 

15 degree wide segments. 

4.3.2 Building Dimensions 

Equations (4.2) and (4.3) need the areas of building components as input. Therefore, the accurate 

determination of building geometries is crucial for modeling building energy demand. We pro-

pose a novel method for doing so. 

4.3.2.1 Wall and Roof Areas 

The SIA 380/1 model distinguishes between two types of wall areas: exterior walls against ambi-

ent air and exterior walls against neighboring buildings. All areas of walls and roofs are derived 

using the building footprint in combination with the digital surface models. The process is divid-

ed into two steps. In the first step, the wall areas located on the building perimeter are deter-

mined. For the second step, the inside of the building footprint is processed to derive the roof as 

well as exterior wall surfaces located within a building footprint. 

For each segment of the perimeter of a building footprint the corresponding wall area is calculat-

ed using the height difference between the DSM and the DTM. For adjoining buildings with 

touching perimeters, the wall area shared between both buildings needs to be derived. This is 

achieved by determining the building height of both buildings using a buffer region. The buffer is 

constructed using a depth of two meters as shown in Figure 4.3. This area is then used to sample 

the average height of each building within the buffer and subsequently the shared wall area for 

this segment. 

 

Figure 4.3: The shared area between building A and B is determined using the difference 

of the average elevation of region one and two.  

In the second step, the area within a building footprint is processed. Each cell of the digital eleva-

tion models is partitioned into 8 triangles connecting to the midpoints of the neighboring cells as 

shown in Figure 4.4a, as was done similarly in [53]. These triangles can either be classified as roof 

triangles or exterior wall triangles as shown in Figure 4.4b. The classification is based on the slope 

angle (α) of the triangle. As the distance between the middle points of two neighboring cells is 

determined by the resolution of the dataset and is always greater than zero, the slope of a triangle 
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belonging to a wall will always be less than 90 degrees but higher than typical roof slopes. We 

classify wall triangles as triangles with a slope greater than 60 degrees. This threshold was empiri-

cally determined using a sample of buildings. The area of roof triangles contributes only to the 

roof area (AR), whereas the area of wall triangles is split into a vertical wall (AW) and horizontal 

roof component. 

The SIA 380/1 model differentiates between flat and slanted roofs. To classify the roofs, slope 

maps of each building are created using Horns formula [54] and the DSM. A building is classified 

as having a flat roof if the median slope of the cells within the building footprint is less than five 

degrees. 

 

Figure 4.4: (a) Vectorization (black lines) used to derive surface  areas from the elevation 
raster data (blue). (b) The area of individual faces can, depending on the 
slope (α) of the face, contribute to only the roof area (AR) (case 1) or both the 
roof as well as the wall area (AW) (case 2). 

4.3.2.2 Window Areas and Shadows 

To estimate the window areas of each facade we use facade to window area ratios. These ratios 

can vary between building type, construction period and region. In Ramallo-González et al. [55] 

facade to window ratios were surveyed for six large, culturally varied cities across the globe using 

Google StreetView. It was found that the ratio differs for each city. In Meier [56], a bachelor the-

sis supervised by the authors of this study, a similar approach was used to analyze Swiss buildings 

using Google StreetView. Over 539 were analyzed and a mean ratio of 12.3% was found. This 

corresponds well with the results from [55]. However, the study was not able to validate their 

method and results as no validation data was available. 

In this work, we used a dataset with manually measured ratios from buildings of the village of 

Zernez [47]. From this, we estimated the mean and variance for the different construction peri-

ods listed in Table 4.2. Furthermore, we assumed that the ratios follow a normal distribution. To 

avoid extreme outliers, we assume a minimum and maximum ratio. The sampling is repeated 

until a ratio within these bounds is selected. These distributions are based on a sample of build-

ings in the village of Zernez [47]. 
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The length of the thermal bridges of windows is derived by multiplying the window area with a 

factor of three, which is recommended in [32]. Based on the threshold value for thermal bridges 

of windows defined in [57], a ψ value of 0.1 is assumed. 

The solar gain of windows is reduced for periods when the sun is blocked by obstacles, such as 

mountains or neighboring buildings. To account for this, the SIA 380/1 heat model provides 

three reduction factors (FS,α = FS,α,1·FS,α,2·FS,α,3) for the solar gain based on the horizon angle and 

orientation from the viewpoint of a window. The first reduction factor, FS,α,1, accounts for the 

effects of the topography and neighboring buildings. As exact positions of windows are un-

known, horizon angles are sampled from the midpoint of a building at its average height. For 

each of the 24 orientations, a five-kilometer-long straight line starting from the midpoint of the 

building is used to sample the horizon angle every 2 m. All sample points within the current 

building footprint are ignored. This approach is reasonable to account for the influence of the 

topography - which plays an important role in Switzerland - and to some extent the influence of 

neighboring buildings. However, the effect of neighboring buildings might not be modeled accu-

rately for buildings with a large footprint area, as the windows may be located too far away from 

the midpoint of the building. 

The second and third reduction factors (FS,α,2, FS,α,3) are for shadows due to overhangs such as 

balconies and other elements at the side of the window. As we do not know if a building has a 

balcony we sample the second reduction factor uniformly between 0.9 and 1.0. A reduction fac-

tor of 0.9 corresponds to an overhang of 30 degrees. We do not model the influence of side ele-

ments and therefore set the third reduction factor to 1.0. 

4.3.2.3 Energy Reference Area 

The so-called energy reference area (ERA) is defined in [58] and is used in [32] to calculate the 

energy demand of electric devices and occupancy. It is estimated by deriving the area of each 

floor as shown in Figure 4.5. A ceiling height of 2.8 m based on [5] is assumed. To calculate the 

building height, the DSM is subtracted from the DTM. For each floor, the area of the floor with 

a ceiling height of at least one meter (as defined by [32]) is added to the ERA. This reduces the 

ERA for floors below a slanted roof. 

 

Figure 4.5: Estimation of ERA by aggregating the floor area.  
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4.3.3 Physical Properties 

As shown in equation (4.2), heat transmission losses of building elements such as walls or floors 

depend on the surface areas as well as on the U-values of the materials. In equation (4.3) solar 

energy transmittance values (g-values) for windows are required. While surface areas can be de-

rived from the building footprints and digital elevation models for each building individually (see 

section 4.3.2), U- and g-values are unknown on a building level. However in [9, 48] typical Swiss 

U- and g-values and retrofit rates were collected for different time periods. As in [14], the U- and 

g-values of a building are sampled based on the construction period and the retrofit rate. 

4.3.4 Climate Data 

In [14] synthetic climate data was used, which introduces additional uncertainty [59]. The interpo-

lation of climate data is especially challenging in complex terrain, as found in the Alps [39, 60]. 

Thus, spatial climate raster datasets are used to obtain accurate, location specific climate data with 

a high temporal resolution. Building the model upon spatial climate data with a long time series 

has multiple benefits. For example, the ability to simulate specific time periods is especially useful 

if validation data is only available for certain time periods. Additionally, it allows simulating sce-

narios such as local historic extreme periods. In building simulation, standardized weather scenar-

ios, such as the typical meteorological year (TMY) or future meteorological year (FMY) are used. 

In Herrera et al. [61] an overview of different such weather scenarios used in building simulations 

are given. 

To estimate the long-term outside temperature we use the daily mean temperature datasets de-

scribed in section 4.2.3. As the global mean temperature is rising, only the period from 1994 to 

2013 is used to calculate the mean temperatures. 

The amount of solar irradiance on tilted surfaces is dependent on the date, time of the day, and 

atmospheric condition, as well as orientation and slope of the surface [62]. To estimate the solar 

radiation on facades monthly mean radiation datasets were created for 24 different angles of azi-

muth (α), each separated by 15 degrees, and a slope (β) of 90 degrees. For each half hour (t), the 

SARAH data set provides the direct irradiance (Isid,t) as well as the global irradiance (Isis,t) on hori-

zontal surfaces. The diffuse irradiance (Idif,t) is then calculated with equation (4.4). 

𝐼𝑑𝑖𝑓,𝑡 = 𝐼𝑠𝑖𝑠,𝑡 − 𝐼𝑠𝑖𝑑,𝑡  (4.4) 

Direct irradiance on tilted surfaces (Isid,t,α,β) can be calculated geometrically [62]. Different models 

exist to estimate diffuse radiation on inclined surfaces (Idif,t,α,β) [63]. We use the model of Perez 

[64] as it showed good results in [63]. Reflected solar radiation on inclined surfaces (Iref,t,α,β) is 

calculated using [63]. Global irradiance on tilted surfaces is then derived using equation (4.5): 

𝐼𝑠𝑖𝑠,𝑡,𝛼,𝛽 = 𝐼𝑑𝑖𝑓,𝑡,𝛼,𝛽 + 𝐼𝑠𝑖𝑑,𝑡,𝛼,𝛽 + 𝐼𝑟𝑒𝑓,𝑡,𝛼,𝛽  (4.5) 

Solar irradiance on tilted surfaces was calculated for every half hour and azimuth angle. The half 

hour irradiance was then used to calculate the mean irradiance 𝐼s̅is,t,m,α,β for each month (m) and 



 
4.3 Methods 

71 

half hour interval (t). This results in a typical daily profile for every month, which was then aggre-

gated to retrieve the solar radiation for each month using equation (4.6). 

𝐼�̅�𝑖𝑠,𝑚,𝛼,𝛽 = 𝑑𝑎𝑦𝑠𝑚 ∙ 0.5∑ 𝐼�̅�𝑖𝑠,𝑡,𝑚,𝛼,𝛽𝑡   (4.6) 

4.3.5 User Behavior 

Apart from the buildings physical properties the user-specific parameters (e.g. indoor room tem-

perature, heat gains from electric devices and air exchange rate) enter the heat demand calcula-

tion. These are also sampled from probability distributions based on [14, 26, 49, 51]. The parame-

ters used can be found in the Appendix C. 

Ventilation heat losses are modeled based on the specific heat storage capacity of air, derived by 

the elevation above sea level of the building, the air exchange rate and the volume of a building. 

The volume of a building above ground is derived using the DSM and DTM. However, this vol-

ume includes also unheated spaces, such as stair cases. The net volume relevant for the air ex-

change is then calculated using a reduction factor of 0.8, or 0.76 for residential buildings with less 

than 3 floors based on [65]. In Murray and Burmaster [49] empirical air exchange rates are deter-

mined for four climatic regions differentiated by the number of heating days and four seasons of 

the continental US. Air exchange rates can heavily depend on the behavior of the inhabitants (e.g. 

by leaving windows open). Murray and Burmaster [49] reflect the dependence of air exchange 

rates on inhabitants by providing fitted probability distributions to the measurements rather than 

single values. We use the distributions of the second coldest climatic region as the heating days of 

this region correspond best to Switzerland. However, due to Murray and Burmaster low number 

of measurements for the summer season, distributions of the next warmest region are utilized for 

this season. Despite the fact that no distributions are available for Europe, the distributions used, 

with a median of 0.41 h-1 and higher air exchange rates in summer compared to winter are com-

parable to European data [66–68]. 

4.3.6 Data Integration 

In our model, a building is defined by its building footprint. We determine these by combining 

different datasets (section 4.2). Integrating the building footprints with the raster data is a 

straightforward process as the spatial relation can be used to connect the data. For example, a 

building footprint is joined with the temperature dataset by using the cell of the temperature ras-

ter which contains the centroid of a building. 

This is different for the FRBD dataset. While this dataset includes both a unique building identi-

fier as well as coordinates for each building, this identifier is often not present in the footprint 

dataset. As shown in Figure 4.6, where the blue dots represent the coordinates of the FRBD 

buildings and the dark grey polygons the building footprints of one parcel (light grey), the FRBD 

coordinates are not always within the corresponding building footprints. This makes matching of 

FRBD records to building footprints difficult. An example is shown in Figure 4.6, where match-

ing a FRBD record simply to the nearest building footprint would lead to wrong matches. 
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We developed an algorithm to match building footprints and the FRBD dataset. This algorithm 

uses multiple techniques to match records of both datasets, including the detection of typograph-

ical errors using the Damerau-Levenshtein distance [69] and minimum cost matching [70]. A 

detailed description of the algorithm can be found in Appendix C. 

 

Figure 4.6: Matching of FRBD building coordinates (blue) to building footprints (dark 
grey) for one parcel (light grey). The green lines show the assignment of 
FRBD records to building footprints. 

4.4 RESULTS AND VALIDATION 

For validation, the model was applied to the city of St. Gallen, located in eastern Switzerland, as 

well as the Alpine village of Zernez. Due to the small size of the validation dataset of Zernez, its 

results are only shown in Appendix C. St. Gallen is the eighth largest city in Switzerland with a 

population of roughly 75,000 inhabitants. It holds the label of Energy city and has set the target 

to reduce its energy consumption from 2005 to 2020 by 15%. To monitor the progress, the city 

collects data about the yearly energy consumption of its building stock. Specifically, it collects 

final energy consumption of all buildings connected to either the gas grid or district heating net-

works. The dataset contains the energy measured at so-called energy reference points, which are 

either the locations of gas boilers or heat meters for district heating networks. A reference point 

can measure the energy demand of one building but also multiple adjoined buildings or neighbor-

ing buildings connected with a micro district heating network. In order to avoid ambiguity issues, 

only reference points that correspond to exactly one simulated building were used in the valida-

tion. 

Figure 4.7 shows the distributions of normalized heat consumptions for different building types 

and construction periods. The consumed heat was normalized using the above ground volume as 

this number can be accurately calculated using the building footprints and digital elevation mod-

els. The number of buildings of the validation dataset is not evenly distributed for the different 

categories of construction periods and building types. For example, the dataset contains signifi-

cantly more buildings built before 1946 than newer buildings. This influences the results when 
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the age of the buildings is not considered. The heat consumption is highest for buildings built 

between 1920 and 1990, however it is lower for buildings constructed outside of these years. This 

pattern is present for all building types and is in accordance with existing studies [71]. It should 

be noted that the variation of the heat consumption per category (construction period and build-

ing type) is rather large. 

 

Figure 4.7: Violin plots of measured heat consumption of space heat (including warm 
water) normalized by the above ground building volume for different co n-
struction periods and the building types single-family houses (SFH), multi-
family houses (MFH), and mixed residential usage (MIXED). Numbers below 
the violins represent the sample size.  

To compare the simulated heat demand, the final energy consumption (measured energy de-

mand) was converted to the useful heating energy by using the efficiency of the heating system as 

was done in Froemelt and Hellweg [26] (see Chapter 3). As the efficiency of the heating system 

of a particular building is not known, a low, average and high efficiency, depending on the energy 

source (gas or district heating), is assumed. The consumed energy of a reference point is not nec-

essarily used exclusively for space heating. It can be also used to produce domestic hot water or 

for cooking in the case of gas. Based on the FRBD dataset we can distinguish between the energy 

source of the heating system for space heating and warm water. If the energy source is not the 

same for both heating systems, we can assume that the energy is exclusively used for space heat. 

Domestic hot water heat demand is responsible of roughly 10% of the total heat demand for 

buildings constructed before 1980 (see Appendix C). In [72], the energy demand for cooking was 

estimated to be roughly six times smaller than the warm water energy demand. As the energy 

sources of stoves are not known and the heat demand for cooking is in the lower single-digit 

percentage range we neglect the amount of gas that is used for cooking. 

For the validation, we used two different sets of buildings. The first set only considers buildings 

with a different energy source for space heating and warm water. With this set we eliminate the 

uncertainty of the warm water modeling but this considerably limits the number of samples. The 

second set of buildings includes all buildings. For this set we take also warm water into account. 

Warm water heat demand (Qww) is modeled by equation (4.7) with the number of inhabitants (P) 

as well as a typical annual hot water demand per inhabitant of 833 kWh taken from [32]. 
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𝑄𝑤𝑤 = 𝑃 ∙ 833  (4.7) 

Figure 4.8 shows boxplots of the relative errors between the median simulated heat demand of 

the Monte Carlo simulation and the measured energy demand converted to the useful heating 

demand by using the median efficiency of the heating system for different construction periods 

and building types. It can be seen that the model overestimates the heat demand of single family 

houses. The relative error is smaller for multi-family houses and buildings with mixed residential 

usages. A more detailed figure, also showing the different construction periods, can be found in 

Appendix C. This figure shows that energy demand of single family houses older than 1961 are 

predominantly underestimated while for newer houses the relative error of the model is much 

smaller. As 82% of the single-family houses of the validation dataset are built before 1961, the 

results of Figure 4.8 are skewed. The opposite is the case for multi-family houses. While the me-

dian relative error is close to zero for buildings built before 1961, the heat demand of newer mul-

ti-family houses built after 1960 are underestimated. 

 

Figure 4.8: Relative error of simulated heat demand (only space heating and space hea t-
ing+warm water) to the measured consumed energy demand for differ ent 
building types. Sample size n is given below the plots. The boxes indicate the 
interquartile range (IQR) between the first and the third quartile. The whis k-

ers extend until 1.5·IQR. The notches in the boxes indicate  the confidence in-
terval for the median. The numbers colored in white represent the median 
values. 

Figure 4.9 illustrates scatter plots between the measured and simulated space heating demand, 

distinguishing between the different building types. Again, median simulated heat demands and 

average heat system efficiencies are used. Single family houses typically have a smaller volume 

and thus also a smaller heat demand. Especially for houses with a heat demand of less than 

40 MWh/a the results show a high variance. The smaller volume of single family houses makes 

their estimated heat demand more sensitive to heated basements or unheated spaces above 

ground such as garage. The model performs better when simulating larger single-family houses. 

In general, buildings with a large energy demand above 200 MWh/a tend to be underestimated. 

However, most of these buildings are of mixed residential usage, thus can have additional heat 

demands that are not accounted for. It is possible that these samples are outliers, but due to the 
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small sample size no statements can be made. A version of Figure 4.9 that also distinguishes be-

tween different construction periods can be found in Appendix C. Overall the model fits the 

measured heat demand quite well with an R2 of over 0.5. Exceptions are the construction periods 

of 1961–1970 and 1971–1979 as well as single-family houses. 

 

Figure 4.9: Comparison of simulated and measured space heating demand for the buil d-
ing types single-family houses (SFH), multi-family houses (MFH), and mixed 

residential usage (MIXED). 

More statistical metrics which investigate the goodness of the model can be found in Appendix 

C, including mean absolute error (MAE), root mean squared error (RMSE), mean relative error 

(MRE), mean bias error (MBE) as well as the coefficient of determination (R2) for the different 

building categories and building construction periods. As the average heat demand within each 

category can differ significantly the MAE, RMSE and MBE are given as percentage to the aver-
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age heat demand of their category (building type, construction period). The formulas used to 

calculate the different statistics are given in Appendix C.1. 

For Figures 4.8 and 4.9 only the median simulated heat demand is used. This ignores the modeled 

uncertainty of the Monte Carlo simulation. Especially for old buildings, the uncertainty can be 

high, due to a wide range of possible retrofit scenarios. In Figure 4.10, both the modeled uncer-

tainties as well as the uncertainties of the validation data are visualized in a manner similar to [26] 

(see Chapter 3). This plot compares for each building type both the measured (green), as well as 

the simulated (blue) warm water and space heating demands. The x axis contains all buildings 

sorted by their measured heat demand while the y axis shows the cumulative heat demand of all 

buildings with a smaller heat demand than the current building. The uncertainty of the measured 

heat demand results from the minimum and maximum efficiency of the heating system of a 

building. For the simulated heat demand both the 50% percentile range (dark blue, using the 25% 

and 75% percentiles) as well as the 90% percentile range (light blue, using the 5% and 95% per-

centiles) are shown. 

 

Figure 4.10: Cumulative space heating and warm water demand of simulated (blu e) and 
measured (green) heat demand. The 50% and 90% percentile range (PR) of 
simulated heat demand, indicating the interval between the 25% and 75%, r e-
spectively 5% and 95% percentiles are shown.  

The model shows a better fit for the multi-family houses as well as mixed residential usage when 

considering all buildings. Again, in Appendix C a version of Figure 4.10 can be found also distin-

guishing between the different construction periods. It can be seen that buildings with low 

agreement between modeled and measured demand level themselves out over the study area. The 

cumulative simulated energy demand for single family houses is still within the 90% percentile 

range of the model, while it overlaps with the 50% percentile range for the other building types. 
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For single-family and multi-family houses the slope of the measured and simulated heat demands 

are generally similar, which means that the error of the model is small. Thus, the error of the 

model is found mainly with buildings of either small or large heat demand. For mixed residential 

usage, we see an increase of the slope for buildings with higher measured energy demand while 

the simulated and measured heat demand overlap. This indicates that although these buildings 

can have heat demands other than space heat or warm water, or different usage patterns, a fair 

share of the mixed residential buildings can be accurately modeled. 

4.5 DISCUSSION 

4.5.1 Building Data 

The heat demand of a building is dependent on many parameters. In [26, 51] the most sensitive 

parameters for space heating demand were room temperature and U-values (see Chapter 3). 

From equation (4.2) it can be seen that an error in the estimation in a components area contrib-

utes equally to the error of heat demand estimation than the U-value of this component. This 

means that, for example, a 10% error in the estimation of the wall area is equal to a 10% error of 

the U-value of this wall. Likewise, thermal losses due to ventilation are highly dependent on the 

building volume. By using precise building footprints of the cadastral survey as well as high reso-

lution digital elevation models the surface areas and building volumes can be derived more accu-

rately compared to previous work such as [14, 26]. Knowing the spatial location of buildings ena-

bles us to incorporate the effect of shadowing into the estimation of the solar gains as well as to 

derive location specific climate data for each building. 

Digital elevation models and building footprints do not allow for differentiating between heated 

and unheated floor area. Building wings such as staircases or garages located within the building 

footprint remain usually unheated. While staircases typically comprise only a small part of the 

volume of buildings, other unheated parts (e.g. elevated cellars or attics) might be more im-

portant. However, there might also be heated space below ground which will not be considered 

by our model resulting in an underestimation of the effective heating demand Therefore we had 

to make assumptions concerning the estimation of heated floor area (ERA, see section 4.3.2), 

which introduced a source for errors. However, the influence of the ERA parameter in the SIA 

380 heat model is limited since it is only used to sample the heat gains due to inhabitants and 

electric devices. Both were not identified as significant parameters in [26] (see Chapter 3). 

4.5.2 User Behavior 

It is well known that user behavior is one of the major factors contributing to the discrepancy 

between simulation prediction and real energy use [73]. This increases the uncertainty of the 

model. However, improving the model for this aspect will be difficult as no better data are avail-

able or could easily be collected on a large scale. It is known that the occupants behavior can 

impact the energy demand by more than 100% [15, 16, 74, 75]. Causes are the choice of the room 

temperature, non-optimal ventilation patterns (e.g. leaving windows or doors open), changing 
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occupancy of buildings during certain time periods (e.g. holidays or secondary residences) or the 

number of inhabitants can be larger or smaller compared to a typical household. Variation in-

duced by user behavior was covered by Monte Carlo simulations as far as possible. 

4.5.3 Climate Data 

The importance of using spatial climate datasets arises when large regions are analyzed. For small 

regions, such as a village or town, the change in temperature and solar radiation can be assumed 

to be equal, allowing the use of a single weather station as source for the climate data. However, 

for a country like Switzerland with its complex topography, where in mountainous regions a dis-

tance of a few kilometers can result in an elevation change of several 1000 m, the spatial resolu-

tion of the climate data is important. A 1000-m elevation change results in a temperature change 

of several degrees, which is relevant for building heat demand modeling [76]. 

4.5.4 Energy Demand Model 

The validation showed that energy demand of single-family houses is overestimated by the mod-

el. This overestimation can have many possible origins, such as different estimations of the ERA 

or an increased level of renovations. Additionally, as discussed earlier, the impact of unheated 

spaces is likely to be higher in small buildings such as single-family houses. The heat demand of 

multi-family houses built after 1960 is underestimated. Both effects could be a consequence of an 

over-optimistic or, respectively, pessimistic selection of U-values or user behavior. 

As buildings are renovated over their lifetime their energy efficiency changes. Building compo-

nents, such as windows, can be replaced multiple times during the lifespan of a building. Many 

different scenarios are possible in particular for older buildings. We model these uncertainties by 

using statistical retrofit rates. Thus, the variance in the comparison using only the median simu-

lated value, as in Figure 4.8 is higher for old buildings compared to recent buildings with no ren-

ovations. Nevertheless, we account for this as can be seen in Figure 4.10. 

The model seems to have a systematic error for space heating demand. For instance, old single-

family houses are consistently overestimated and newer multi-family houses are underestimated. 

Such an error suggests that certain assumptions should be investigated further in the future. One 

possible source could be faulty or outdated data in the typology that was used [48]. Furthermore, 

thermal bridges have a higher relative impact on highly insulated buildings. U-values of buildings 

as well as retrofit rates might have regional dependencies that are not accounted for. This re-

quires additional datasets with measured heat demand. 

4.5.5 Data Availability 

While some datasets we used are specific to Switzerland, similar datasets can be found for many 

other countries. For example, we use building footprints from the cadastral survey. Such foot-

prints are surveyed in many other industrialized countries, such as Germany, France or the Neth-

erlands. An alternative source are the widely available building footprints of OpenStreetMap. 

Several countries exist that have a complete coverage of LIDAR data (Finland, Netherlands, Slo-
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venia) or are in the process of doing so (Latvia, Poland, Spain, Sweden, England) [77]. Google 

maps demonstrates that in the near future, 3D buildings models created from aerial photos could 

be available worldwide. Building registries similar to the FRBD are available for many different 

countries with a national census, such as Germany [78] or Austria [79]. In fact, the building classi-

fication is standardized among the countries of the European Union [80] and Switzerland. The 

CM SAF SARAH solar dataset covers Europe and most of Africa. As weather satellites cover 

most of the inhabited regions worldwide, similar dataset exists for other parts of the world, such 

as North America [81]. Similarly, spatial temperature datasets can be computed for regions where 

readings from land based measurement stations are available. This is the case for most of the 

industrial nations. Thus, the applicability of the developed method is not limited to Switzerland. 

4.5.6 Applications 

The number of applications of a physically-based bottom-up building energy stock model is man-

ifold. Recent studies begin to study the interaction between buildings and the electricity grid [5, 

82, 83]. Our model allows large scale analysis of such concepts for Switzerland on different scales 

ranging from neighborhoods to the whole nation. 

Furthermore, the model can be used as a basis for an energetic retrofit decision support system 

for policy makers or building owners [84]. As our model includes each residential building in 

Switzerland, users of such a system could use the modeled building data to test different retrofit 

scenarios for their environmental, economic and energetic performance. 

4.6 CONCLUSIONS 

This chapter presents new approaches for building stock modeling and illustrates their implemen-

tation. Using spatial datasets such as building footprints and digital elevation models allows for 

the derivation of wall and roof areas individually for each building. This reduces model uncertain-

ties compared to previous models, such as Saner et al. [14]. 

Replacing synthetic climate data with spatial datasets allows simulating heat demand with location 

specific data. Due to their high temporal resolution of a half hour respectively daily the time reso-

lution of the model can be increased. The high temporal resolution of the data used facilitates 

also the application of the model for complex optimizations such as the sizing and operation 

strategies of existing and novel energy systems [5]. Additionally, using historical data allows for 

the simulation of extrema periods and facilitates validation with measured data. 

The model was validated against an extensive database revealing that the model performance 

varies with building types and construction periods. Single-family houses especially are less accu-

rately modeled compared to multi-family houses and buildings with mixed usage. However, given 

the uncertainty due to data gaps, the results can be considered good with an overall goodness of 

fit R2 of 0.6. For some categories, the goodness of fit reaches up to an R2 of 0.81. 
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We intend to further improve the model. As determined in Froemelt and Hellweg [26] (see Chap-

ter 3), the age of buildings and thus the large span of possible renovations is responsible for a 

large part of the uncertainties. A dataset with a sufficiently large number of samples would allow 

the model to derive more up-to-date input parameters through statistical analysis. We also intend 

to include environmental assessments in the future. Furthermore, we developed a construction 

material model of the Swiss building stock, which can be integrated with the current model in a 

future step [85]. This will reduce uncertainty concerning thermal resistance of the building enve-

lope as we account for actual construction elements. 

The spatial and temporal resolution of the model allows for a coupling with other models, with 

the Multi-Agent Transport Simulation (MATSim) [86] model being an especially interesting op-

tion. This would allow for a better understanding of the occupancy of buildings and would thus 

provide better insights into the energy consumption of households. 
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ABSTRACT 

Household consumption is a main driver of economy and might be regarded as ultimately re-

sponsible for environmental impacts occurring over the life cycle of products and services. Given 

that purchase decisions are made on household levels and are highly behavior-driven, the deriva-

tion of targeted environmental measures requires an understanding of household behavior pat-

terns and the resulting environmental impacts. To provide an appropriate basis in support of 

effective environmental policymaking, we propose a new approach to capture the variability of 

lifestyle-induced environmental impacts. Lifestyle-archetypes representing prevailing consump-

tion patterns are derived in a two-tiered clustering that applies a Ward-clustering on top of a pre-

conditioning self-organizing map. The environmental impacts associated with specific archetypi-

cal behavior are then assessed in a hybrid life cycle assessment framework. The application of this 

approach to the Swiss Household Budget Survey reveals a global picture of consumption that is 

in line with previous studies, but also demonstrates that different archetypes can be found within 

similar socio-economic household types. The appearance of archetypes diverging from general 

macro-trends indicates that the proposed approach might be useful for an enhanced understand-

ing of consumption patterns and for the future support of policymakers in devising effective en-

vironmental measures targeting specific consumer groups. 

5.1 INTRODUCTION 

Households are major drivers of the economy. Their consumption behavior triggers a multitude 

of economic activities along the supply chain of each product and service, which subsequently 

involves the use of resources and the release of emissions. Household consumption is estimated 

to be responsible for 65% of global greenhouse gas emissions and 50% to 80% of total land, ma-

terial, and water use [1]. The United Nation’s Sustainable Development Goal 12 (“Sustainable 

Consumption and Production”) [2] demonstrates a large consensus that today’s consumption 

patterns are unsustainable and changes in consumer behavior are urgently needed [3–11]. How-

ever, changing household consumption behavior is challenging [4, 6, 12], as it is embedded in 

complex economic, social, technological and cultural systems. In addition to informing house-

holds about their environmental impacts, policymakers should frame an enabling environment 

for individuals to change toward more sustainable lifestyles [4, 6, 8, 12]. 

Several studies quantified environmental impacts induced by household consumption (see e.g., [7, 

8, 13–15] for reviews). While many studies focus on a national average household and on identi-

fying environmental priorities of different consumption areas [1, 3, 7, 13, 14, 16, 17], several re-

searchers acknowledge the importance of investigating the environmental consequences of dif-

ferent household groups (e.g., [5, 7, 10, 11, 18–25]). Being highly influenced by socio-cultural and 

economic factors, as well as driven by individual preferences, household behavior and conse-

quential purchase decisions are diverse, and “one-size-fits-all”-recommendations are likely to fail 



 
5.2 Methodology 

89 

[5, 11, 26]. Therefore, understanding the variability of consumption patterns and associated envi-

ronmental impacts is required for devising targeted environmental policies. 

Studies attempting to capture this lifestyle-induced variability usually combine household budget 

surveys (also called consumer expenditure surveys) with environmentally-extended input-output 

models (EEIOMs) and then assess the environmental impacts of different socio-economic co-

horts [3, 5, 9–11, 17, 20, 22, 23, 26], or fit regression models with socio-economic characteristics 

as explanatory variables [24, 27]. The findings of both (sometimes combined) approaches are very 

insightful, especially if the applied regression models aim at explaining the drivers of environmen-

tal consequences [10, 16, 20, 22, 23, 25, 26]. However, Girod and De Haan [19] found that there 

might still be significant variability of behavior within investigated household types. This raises 

the question if the use of household segments that are pre-defined solely based on socio-

economic characteristics might prevent recognition of important behavioral patterns by assuming 

all households within a segment behave similarly. How could the support for policymaking be 

improved, especially in view of recent calls to increase the involvement of behavioral economics 

and psychology when deriving environmental measures [4, 12, 28]? Building upon the mentioned 

lifestyle-studies, we propose a new approach: Instead of pre-defined household segments, we 

suggest deriving clusters of households which are not only based on socio-economic aspects but 

also on real observed behavior. The proposed two-stage clustering allows for studying behavior-

associated environmental impacts in the context of total consumption and is simultaneously able 

to capture non-linear effects. This approach thus allows for investigating the nature and implica-

tions of different household behaviors in detail. The emergence of archetypes might then form a 

new information basis to derive environmental policies tailored to actual consumption patterns.  

The goal of this chapter is twofold: First, we will demonstrate the clustering of household behav-

ior by applying our approach to the Swiss Household Budget Survey (HBS). Second, this applica-

tion will result in ready-to-use consumption archetypes with associated environmental modeling 

for Switzerland. While the transferability of the Swiss archetypes to other countries is unclear, the 

proposed methods can definitely be applied to different expenditure surveys. 

5.2 METHODOLOGY 

Grouping households based on their characteristics and on their consumption behavior repre-

sents the core of our approach to studying household environmental impacts. Utilizing groups of 

households is also important because of the so-called “infrequency of purchase problem” [22, 25] 

that is encountered when working with expenditure surveys in which households participate only 

during a limited time period. To obtain a representative picture of a certain population group’s 

consumption behavior, in which infrequent or season-specific purchases average out, several 

similar households need to be clustered. In previous lifestyle-studies, this is implicitly solved by 

averaging over pre-defined household segments. In our approach (Figure 5.1), we first form 

groups of similarly behaving households and then in a second step derive archetypes representing 

the average behavior of these groups. Finally, the environmental impacts of these archetypes will 
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be assessed by means of a hybrid life cycle assessment (LCA) that sources environmental back-

ground data from both EEIOMs and process-based life cycle inventory databases. With a hybrid 

LCA framework, known issues with EEIOMs (e.g., the “product quality problem” [7, 9, 18, 20, 

22, 25]) can be partly overcome by using physical functional units, and the EEIOMs can com-

plement missing data of process-based LCA [7]. Furthermore, the applied LCA-modeling will 

also allow for the computation of different impact assessment methods and not only carbon 

footprints or energy requirements as done in previous studies [3, 5, 9, 10, 13, 16–20, 22, 24, 29]. 

Thus, the chosen LCA-approach might also help to reveal potential burden shifts induced by 

planned environmental measures. Although suggested by several authors [1, 3, 13, 15], the appli-

cation of hybrid LCA is, to our knowledge, rare. That said, it would still be possible to directly 

couple the archetypes with EEIOMs or even more sophisticated macro-economic models as 

used, for example, in [21, 30]. 

All computation steps will be described in more detail below (see also Figure 5.1). 

 

Figure 5.1: Simplified flow scheme providing a synopsis of the whole modeling approach. 
For each step, sections of Chapter 5 and Appendix D are indicated in which 
more detailed descriptions can be found.  

5.2.1 Consumption Data 

The main data source of this study is the Swiss HBS [31] (2009-2011) which provides detailed 

information on the characteristics and consumption behavior for 9734 households. Households 

participating in the survey report on daily expenditures, income, and quantities of bought goods 

(e.g., for food) during one month. In addition, they also report on periodic expenditures (e.g., 

newspaper subscriptions), possession of durable goods and on extraordinary purchases or reve-

nues in the last few months (e.g., buying a car within the last year). Data on household character-

istics and on household members are also collected. For each household, the final data set com-

prises statistics on 20 different durable goods, 8 income categories (plus 4 on aggregated levels), 

19 household variables, 6 attributes for each household member and 356 (plus 175 on aggregated 

levels) consumption categories classified based on the United Nations’ “Classification of Individ-

ual Consumption according to Purpose” (COICOP) [32]. For consumption areas, purchased 
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amounts in liters or kilograms are available for 92 categories (plus 14 on aggregated levels). Fur-

ther information on the categorization and a list of survey attributes is provided in Appendix D. 

5.2.2 Pre-Processing of Consumption Data 

The present section describes how variables needed for the computations in sections 5.2.3 (pat-

tern recognition) and 5.2.4 (LCA) were created based on the original HBS-data. 

Besides converting categorical variables to numerical data by a set of binary variables, several 

count-statistics were created to better compare household member information (see Appendix 

D). Moreover, for some categories, more detailed information than specified in the HBS-data is 

required to apply LCA (cf. section 5.2.4). This particularly concerns housing-related categories 

and public transport demand. With regard to the first, especially tenants typically do not have full 

information on the exact breakdown of their utility bills into refuse and sewage collection, water 

supply, electricity, and heating. To impute this missing information, a modeling approach using 

K-Nearest-Neighbor-Regression [33], Random-Forest-Regression [34, 35] and LASSO-

Regression [36] was employed (see Appendix D). The predicted data was then converted to quan-

tities by means of price data [37–40]. These prices were retrieved as close as possible to the spe-

cific circumstances of each household by taking into account household type, location, and sur-

vey year. The pre-processed HBS-data was then validated against national statistics [40–44] (cf. 

Appendix D). 

The demand for public transport is a second issue. While kilometers driven by car can be esti-

mated with liters of fuel purchased, HBS-information on public transport mainly relates to season 

tickets and travel card expenditures, thereby lacking information on effectively driven kilometers 

by public transport. Therefore, this demand was estimated for each household using data from 

the Swiss Mobility Microcensus 2010 [45], which provides detailed information on the mobility 

behavior of the Swiss population (see Appendix D). 

5.2.3 Pattern Recognition and Clustering of Households 

5.2.3.1 Preparation for Pattern Recognition 

Because of seasonality and storage effects, the survey month might bias the results of individual 

households in the HBS [31]. Consequently, the determination of household clusters with similar 

characteristics and behavior requires the data set to be pre-processed and filtered for household 

features which make similar behavior identifiable independent of the month in which the survey 

took place. 

A flow scheme in Appendix-section D.3.1 visualizes the following preparatory step. Each HBS-

attribute was judged separately whether it shall be included for pattern recognition or not. Note 

that exclusion only concerns the pattern recognition steps in sections 5.2.3.2 (Self-Organizing Map 

(SOM)) and 5.2.3.3 (Clustering), while the deduction of archetypes in section 5.2.3.4 (Deriving Con-

sumption Archetypes) will resort to all available attributes. Household characteristics including the 

count-statistics of section 5.2.2, durable goods statistics, periodic expenditures, and revenues 

were all considered in the pattern recognition. In contrast, daily purchase attributes were only 
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included if they are bought on a regular basis and not stored for more than a month. Otherwise, 

it was appraised if the attribute’s inclusion within an aggregated level is reasonable (e.g., if an ag-

gregated attribute such as “fruits” shall rather be included than “grapes” which are rarely bought 

from January to June in Switzerland). 

In a next step, all candidate attributes were checked for seasonality. The application of ANOVA 

[46] and the Kruskal-Wallis-tests [47] revealed if the influence of the survey month is statistically 

significant. In the case of statistical significance, the respective attribute was corrected for season-

ality (see Appendix-section D.3.1). 

The final data set for pattern recognition comprises 157 attributes in total, thereof 85 consump-

tion and income categories. 

5.2.3.2 Self-Organizing Map (SOM) 

A two-tiered approach was applied to find patterns in the HBS-data based on which the house-

holds shall be grouped. In a first stage, a self-organizing map (SOM) [48, 49] pre-conditioned and 

reduced the data set, which was then clustered in a second stage. Such two-step clusterings 

demonstrated to perform well and are robust even in the case of noisy and high-dimensional data 

sets [50–53]. 

The SOM was proposed by Kohonen [48, 49] and belongs to the class of unsupervised artificial 

neural networks. It generally combines vector quantization and non-linear projection to a lower-

dimensional space; usually to a discrete 2D-lattice of neurons. Thereby, the SOM learns the pat-

terns in the data set in an ordered fashion and is thus able to preserve the topology of the data. 

This means that neighboring neurons in the map have similar characteristics. A prototype vector 

with the same dimension as the vectors of the input data set is associated with each neuron. Dur-

ing the training phase of the SOM, this set of prototype vectors is optimized to become a repre-

sentative substitute for the original data set. The resulting map is thus a reduced, but still repre-

sentative, data set that is not only smoothed with regard to noise but also facilitates the recogni-

tion of patterns, be it for subsequent clustering algorithms or visually for the human eye (see 

component maps in Appendix D).  

For the present study, the SOM was tuned by generating several SOMs with different parameters 

(number of neurons, arrangement of neurons, initial and final neighborhood radius, neighbor-

hood function, and number of epochs) based on literature recommendations [48, 49, 54–56] and 

then by choosing the model with a topographic error close to zero and the lowest quantization 

error [56]. The topographic error evaluates the order of the map (e.g., if it is twisted) and repre-

sents the share of samples in the input data set for which the first and second closest neurons are 

not adjacent in the map [56], while the quantization error judges the representativeness and thus 

the accuracy of the map [56]. The final map consists of 987 neurons arranged in a 21:47-planar-

lattice (see Appendix D for more tuning information and a short introduction to SOMs). 

5.2.3.3 Clustering 

In the second stage of pattern recognition, we apply clustering algorithms on top of the SOM to 

form groups of neurons. Since each clustering technique has its strengths and weaknesses, two 
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well-known approaches, which differ in their basic principles, were tested and evaluated: K-

Means [57–59] and agglomerative clustering [60, 61]. While k, the number of clusters to be built, 

was the only tuning parameter for K-Means, agglomerative clustering was run in different com-

binations of affinity metrics (e.g., Euclidean distance, L1-norm) and linkage criteria (Ward [62] 

and average).  

The evaluation of clusters – and thus the “best” choice of clustering techniques and associated 

parameters – is not a trivial task if the ground truth is unknown [63]. For the present study, we 

mainly focused on two performance methods: Silhouette coefficients (S) [64] and U-Matrix. S 

relates the distances between one point in a cluster and all other points in the same cluster to the 

distances from that point to all points in the second closest cluster. The so-called U-Matrix (uni-

fied distance matrix) is an important visualization of a SOM and supports clustering on top of the 

map. At the map position of each neuron, an U-Matrix depicts the sum of distances in the high-

dimensional space between the prototype vector of the respective neuron and the prototype vec-

tors of all adjacent neurons [52, 65, 66]. Large U-heights indicate that a neuron’s prototype vector 

is distant from others, while small U-heights are associated with prototypes that are surrounded 

by other vectors in the data space [66]. The U-Matrix thus suggests visually which neurons should 

be grouped together to form clusters. 

The quest for the best clustering was subdivided into two parts (see Appendix D for details): 

First, a pre-selection of parameters within each approach was conducted mainly based on S. Af-

terward, a detailed comparison of the two alternatives and fixing the number of clusters for both 

was based on the U-Matrix. For this, the cluster borders were projected on the U-Matrix and the 

clustering methods were judged by their ability to redraw the visible groupings of neurons in the 

U-Matrix. Additionally, two other criteria broadened the information basis for the final decision: 

ANOVA-tests were run for each attribute to obtain an impression if reasonable results are pro-

duced. Second, the number of households per cluster was determined to get some indication 

about the representativeness of the clusters. Considering all these criteria, an agglomerative clus-

tering technique with Ward-linkage, which produces 34 clusters, was finally selected. Further-

more, the applied agglomerative clustering implementation [67] allows for including connectivity 

constraints, meaning that only clusters which are adjacent on the map can be merged by the algo-

rithm. This ability was seen as another advantage over K-Means. 

5.2.3.4 Deriving Consumption Archetypes 

Considering the statistical basis of the analyses of the Federal Statistical Office [31], we assumed a 

cluster to be representative for a population’s group if at least 130 HBS-households are member 

of this cluster. Since not all clusters built in section 5.2.3.3 (Clustering) comply with this criterion, 

some post-processing in the sense of manually merging clusters was needed. Indeed, this merging 

is also justified by the dendrogram in Appendix D which shows a blur between 34 and 24 clus-

ters, indicating that some clusters are close to each other. Cutting the dendrogram at different 

positions might be reasonable in the presence of sub-clusters [51] (see Appendix D for more 

reasons). Therefore, starting with 34 clusters, all clusters with less than 130 households were 

merged with adjacent clusters if these merges happen in the dendrogram between 24 and 34 clus-
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ters. This resulted in 26 fair clusters and 2 clusters with less than 130 households. These two clus-

ters will continue to be part of the subsequent analysis, but they will be marked accordingly. 

The behavior-archetypes are now constituted by the centroids of the clusters. Note that the com-

putation of the clusters’ centroids follows the averaging-procedure of the Federal Statistical Of-

fice and includes a representativeness-weight [31]. Furthermore, the attributes which were filtered 

out in section 5.2.3.1 (Preparation for Pattern Recognition) were now reused and also entered the vec-

tor of the archetypes. 

5.2.4 LCA-Modeling 

The final modeling step comprised the coupling of the archetypes’ demands with detailed life 

cycle background data in order to quantify the environmental impacts of the archetypes’ con-

sumption behavior. The overall functional unit for the LCA was chosen to be one year of house-

hold consumption. The life cycle inventory data were extracted from three well-known and 

transparent databases in the following priority order: ecoinvent v3.3 [68], Agribalyse v1.2 [69], 

and EXIOBASE v2.2 [70, 71]. 

The functional units of ecoinvent- and Agribalyse-activities require quantities instead of expendi-

tures. While section 5.2.2 prepared housing- and public-transport-related categories for this pur-

pose, conversions based on price data (e.g., [37–39, 72]) or further information [73] were neces-

sary for other consumption areas. Fortunately, for almost all food categories, quantities are di-

rectly available in the HBS-data set. The process models for processed food closely followed the 

modeling of Walker et al. [74], but adjusted to Swiss conditions. Generally, we always attempted 

to adapt the process models as close as possible to the domestic conditions of Switzerland. For 

instance, Swiss market activities for food were constructed based on the import statistics provid-

ed by Scherer and Pfister [75] and car fleets and energy mixes for heating technologies were 

based on national statistics [40, 76]. 

The creation of process models with EXIOBASE-sectors including the conversion of purchaser-

prices (HBS) to basic-prices (EXIOBASE) generally followed the suggestions of Steen-Olsen et 

al. [3] 

Finally, it needs mentioning that only environmental impacts directly associated with a certain 

household’s behavior were considered. For instance, only direct spending on education or health 

care and thus retraceable to a specific household were taken into account. This leads to an under-

estimation of impacts from “health” and “education” since the Swiss education system is largely 

financed by the government, while health expenses are usually covered by insurances whose pre-

miums are not necessarily indicative of the health care utilization of households and thus of the 

effectively caused impacts. Furthermore, governmental consumption was not re-distributed to 

households as done in other studies [77, 78]. Details of the LCA-modeling are disclosed in Ap-

pendix D. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Drivers of Clustering 

The U-Matrix and the final clustering are presented in Figure 5.2. The two clusters not reaching 

full representativeness are named “OA” and “OB”, while all other clusters are labeled with ran-

dom letters. The illustration of clusters on top of the SOM together with the distance infor-

mation given in the U-Matrix also reveals relationships between clusters. For instance, “N” will 

be more similar to the adjacent “O” than to “J”. 

 

Figure 5.2: (Top) U-Matrix of the SOM. Contours were inserted to improve visibility of 
distances. Note that a pixel in the map corresponds to the map position of a 
neuron. (Bottom) Final clustering on top of the SOM. The clusters “OA” and 
“OB” are the clusters with less than 130 households. 

Building upon the clustering selection procedure in 5.2.3.3 (Clustering), the quality of the final 

clustering was further analyzed by a visual appraisal of the 95%-confidence intervals of the clus-

ters’ means of each attribute and by the ANOVA-tests (see section 5.2.3.3 (Clustering) and Ap-

pendix D). These tests indicated that for all attributes there is at least one cluster significantly 

differing from the others (largest p-value: 2.45 x 10-14). ANOVA and the qualitative visual judg-

ment support the reasonability of the final clustering. In addition, ANOVA provides a possibility 
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to analyze the underlying drivers of the clustering process. An attribute’s test statistics (F-values) 

can be considered as a measure of “distinction power”. Among the top 20 distinctive attributes, 

there are, in particular, geographic variables and employment status, but also variables related to 

household size, consumption areas, and durable goods statistics. Attributes which are rated to be 

least important for forming the clusters are either variables which concern only few households 

(e.g., university fees) or consumption areas for which obviously less distinct patterns could be 

found (e.g., consumption of “coffee, tea and cocoa”). All results can be found in Appendix D. 

5.3.2 Individual Archetypes and Their Interrelations 

A simplified description of all archetypes is available in Table 5.1. In this table, the clusters’ cen-

troids are categorized according to income and average number of persons per household. How-

ever, note that the clusters emerged from many different – including also non-socio-economic – 

attributes. The attributes presented in Table 5.1 and those used in the following analysis are thus 

just of an indicative nature meant to help better grasp the archetypes (see also additional details 

and results in Appendix D). 

The environmental impacts of the individual archetypes are presented in Figure 5.3. Even though 

the applied LCA-modeling allows for the computation of all environmental indicators that are 

supported by the background life cycle inventory databases, only greenhouse gas emissions 

(GHG) according to IPCC 2013 (100a) [79] and total endpoints of ReCiPe 2008 (H,A) [80] are 

discussed in the following (see Appendix D for results of the Ecological Scarcity method [81]). 

Besides allowing for comparison to other studies, GHG have the highest priority in political dis-

cussions due to climate change, while the ReCiPe-endpoints shall help to calculate the overall 

environmental relevance of household consumption. 

In the scope of this chapter, only a few comparisons between some of the archetypes are pre-

sented. Thereby, selected examples in the aspects of income, household size, age structure, and 

footprint composition will be discussed. To support these comparisons, Figure 5.3 resumes in-

formation from Table 5.1 and shows some general characteristics of the archetypes such as in-

come, number of persons, and average age of adults and children. 

In the upper part of Figure 5.3, a correlation between household income and total impacts can be 

observed. However, a few high-income households (e.g., C (“family with babies”), D (“young, 

unmarried couples”), and Q (“divorced, middle-aged males”)) are an exception to this. In addi-

tion to income, household size is crucial for total emissions. This becomes apparent in the per-

capita-bar plots in the lower part of Figure 5.3 when we observe how the order of archetypes 

changes. The archetypes with the largest incomes (OA (“very high-income family”), OB (“very 

high-income retired couple”), S (“small families with self-employed persons”)) still spearhead the 

per-capita figure. But OB outstrips OA, and except for OA and S, most other family archetypes 

(e.g., A (“family with primary school children”), B (“single-parent-families”), and Z (“young 

adults with babies”)), including some with high-income (e.g., J (“family with teenagers”) or C), 

can be found on the bottom of the per-capita-impact-ranking. In contrast, single-person house-

holds (e.g., H, N, O, and R) show low total annual impacts, while in a per-capita perspective 
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these archetypes move to the middle field. H (“old, widowed females”), together with V (“low-

income, retired couple”) and Y (“low-income, very old couple”), also reveal a certain generation 

gap with regard to footprint composition: all three of these clusters – which are also neighbors in 

the SOM – are relatively older in age, have low communications and mobility impacts, and have 

higher housing energy and health impacts compared to other archetypes. This is for instance in 

contrast with the “young” D archetype, which exhibits high transport, but low housing, impacts. 

Table 5.1: Simplified categorization of archetypes (clusters’ centroids) along the axes of 
income (vertical) and number of persons per household (horizontal) a. 

  
Single-person 
households 

(1.1 - 1.3) 

Small house-
holds 

(1.5 - 1.7) 

Two-persons 
households 

Small families 
(2.4 - 3.2) 

Families 
(3.4 - 3.6) 

Large families 
(>4) 

Very high 
income 

(>19000) 

    OB (around 
retirement) 

S (self-
employed; some 
with primary 
school kids/ 
teenagers) 

OA (homeown-
ers with primary 
school kids/ 
teenagers) 

  

High income 
(13000 - 19000)       

L (with primary 
school kids/ 
teenagers) 

C (rather young 
adults with 
babies) 

J (homeowners 
with teenagers; 
"technophile") 

Medium-high 
income 

(9500 - 13000) 

  
Q (divorced 
middle-aged 
males) 

D (young, 
unmarried; w/o 
children) 

K (Swiss-Italian; 
with primary 
school kids/ 
teenagers; 
homeowners) 

F (Swiss-
French; with 
teenagers; ten-
ants) 

A (homeowners 
with primary 
school kids) 

    
M (Swiss-
French; around 
retirement) 

      

    
P (Swiss-Ger-
man; around 
retirement) 

      

    

X (Swiss-Ger-
man; Zurich; 
around retirement, 
older than P) 

      

Medium in-
come 

(7800 - 9500) 

  

G (Northwest-
ern Switzerland; 
middle-aged 
adults w/o 
children) 

    
Z (very young 
adults with 
babies) 

  

  

U (Central Swit-
zerland, well-
mixed-not-
retired adults 
with children) 

    

B (tenants with 
primary school 
kids/ teenagers; 
depend on other 
households; by 
trend: 1 adult 
and 2 children) 

  

Medium-low 
income 

(5000 - 7800) 

O (Swiss-
German; Zur-
ich; well-mixed-
not-retired adults) 

I (Swiss-French; 
well-mixed-not-
retired adults 
w/o children) 

Y (very old 
people) 

      

R (Eastern 
Switzerland; 
well-mixed-not-
retired adults) 

W (Swiss-
French; slightly 
older middle-
aged adults w/o 
children) 

T (Swiss-Italian; 
retired) 

      

N (Swiss-Ger-
man; Bern; well-
mixed-not-
retired adults) 

E (Swiss-Italian; 
middle-aged 
adults w/o 
children) 

V (Swiss-Ger-
man; retired) 

      

Low income 
(< 5000) 

H (old, wid-
owed females) 

          

aThe numbers in parentheses show income in Swiss Francs per month and average numbers of persons per house-
hold respectively. 



Chapter 5 - Using Data Mining To Assess Environmental Impacts of Household 
Consumption Behaviors 

98 

 

Figure 5.3: (Top) Total annual impacts per archetype; colors illustrate income, while size 
of the markers represents prevalence of the archetypes (number of households 
per cluster). The red dashed line depicts the prevalence-weighted average 
(AVG). Indicative archetype characteristics are given in parentheses: P stands 
for average number of persons per archetype, while A provides the  average 
age of adults/children.  (Bottom) Bar plots showing the composition of the 
environmental impacts on a per-capita basis. GHG values (IPCC 2013, 100a) 
are shown in the left part of the figure and results of ReCiPe 2008 (total en d-
points, H,A) are on the right-hand side. Ranks of total footprints are given in 
parentheses to facilitate the comparison of top and bottom figures.  

Interestingly, there are also archetypes with similar socio-economic conditions but different total 

emissions and footprint compositions. O and R are adjacent in the SOM and both are single-

person households with similar age and income range. However, archetype O is related to urban 
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households (Zurich), while R has its origin in the more rural Eastern Switzerland. R’s mobility 

impacts are higher on account of larger emissions from car-driven distances. This is, however, 

partly compensated by O’s large demand for air travel and taxi rides. Furthermore, O has larger 

impacts induced by eating out. 

Finally, the comparison of J and F reveals another interesting aspect. Both archetypes are similar 

in regard to size, income, age (“families with teenagers”), per-capita footprints, and compositions. 

However, for devising targeted measures to abate housing-induced emissions, there is one espe-

cially important difference between the two clusters: J households are homeowners, whereas F 

households are tenants. 

5.3.3 Archetypes in the Collective and Environmental Hotspots 

The analysis of the archetypes can help policymakers in identifying target groups. For instance, 

OA and OB have large footprints and have money available to invest in environmentally benefi-

cial technologies to cover, for example, their transport and housing demand. However, even 

though the signaling effect to target these groups may be large, they are not very prevalent. Con-

sequently, it is also important to look at the overall picture and investigate how the different ar-

chetypes contribute to cumulative impacts; which is in the case of OA and OB together less than 

2.5%. Since HBS-data can be assumed to be representative for Switzerland, we used the number 

of households per cluster as an indication of prevalence. This information is also illustrated by 

the size of the markers in the scatterplots of Figure 5.3. The upper part of Figure 5.4 depicts the 

prevalence-weighted contributions of both the archetypes and the consumption areas. The lower 

part of Figure 5.4 then relates the archetypes’ prevalence-weighted total impact shares to their 

per-capita-emissions in a simplified attempt to group the archetypes based on the prospects to 

target them. It becomes apparent that the three family archetypes A, J, and L, which are ranked 

first, fifth, and sixth by frequency, are together responsible for about 27% of total impacts. While 

the per-capita-emissions are rather low for types A and J, their high contribution to total impacts 

is due to their size (>4 persons per household on average) and their sheer abundance. In contrast, 

type L is not only frequent, but also causes large per-capita and total footprints. These small, 

high-income and home-owning families with teenagers could be an interesting target group for 

reducing consumption impacts. However, this is just one example since type L’s contribution is 

about 8% of total emissions and further archetypes need to be targeted as well. An analysis of the 

main consumption areas in more detail shows that V (“low-income, retired couple”) and D 

(“young couple”) appear to be important. Being among the three archetypes with largest per-

capita-emissions for air travel and car trips, type D has particularly large transport impacts and is 

also responsible for high emissions in the category “restaurants and hotels”. In contrast, type V 

shows high health and housing impacts in addition to large per-capita food emissions. However, 

while the lower part of Figure 5.4 classifies D as a “promising target”, V seems to be a borderline 

case which requires more careful consideration. 
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Figure 5.4: (Top) Prevalence-weighted contributions of the archetypes and main co n-
sumption areas to total environmental impacts as well as prevalence -weighted 
contributions of archetypes and consumption-subcategories within the main 
consumption areas (ordered by magnitude of contribution). Except for the 
Swiss total, only contributions with a cumulative effect of about 50% are di s-
played. (Bottom) Per-capita-emissions in relation to prevalence-weighted 
contributions to total impacts. The divisive horizontal and vertical lines co r-
respond to the medians of the x- and y-values, respectively. Archetypes men-
tioned in the text are highlighted in red. [Non-dur gds.: Non-durable house-
hold goods; Pkg. holiday: Package holiday; SpS: Sporting services; CulS: Cu l-
tural services; PC: Computer, office appliances and other peripherals]  
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The second perspective provided in Figure 5.4 (upper) identifies, just as in many previous studies 

[1, 3, 7, 14–16], food, housing, and transport as the most important consumption categories. 

While transport and housing each account for about 25% of total GHG emissions, transport 

takes the lead in ReCiPe-endpoints with 24%, closely followed by food and housing (each 21%). 

Thereby, transport is clearly dominated by car trips (about 90%) and housing by energy use 

(about 85%). For food, dairy products (especially semi-hard/hard cheese) and meat (mainly beef) 

are of similar importance; each with shares around 30% in the GHG-perspective and about 25% 

with regard to ReCiPe-endpoints. 

The computed prevalence-weighted average for Switzerland totals at 9.0 t CO2-eq/person/year. 

This is between the top-down study of Jungbluth et al. [77] with 11.0 t CO2-eq/person/year and 

8.6  t CO2-eq/person/year found by Girod and De Haan [18] in another HBS-based study. Note 

that both studies refer to a prior time period and that the original average of [77] (12.8 t CO2-

eq/person/year) was adjusted to account for our study’s underestimation of health care and edu-

cational services, and for not redistributing governmental consumption. 

5.3.4 Limitations of the Study 

The presented archetypes were formed based on behavior and characteristics of households. 

Thereby, the goal of our approach was to provide the most generalized basis for further investi-

gations. Yet, within these post-analyses – such as the application of LCA with a specific envi-

ronmental indicator – some clusters become seemingly very similar. Depending on the policy 

goals, it may thus be reasonable to further group the archetypes according to their environmental 

impacts.  

Another limitation of this study pertains to the underreporting in the HBS. Although participat-

ing households are closely supervised and receive advice from specialists [82], previous studies 

that have made use of consumer expenditure surveys revealed that underreporting is a common 

issue [3, 22, 29]. This could also explain the slightly lower total carbon footprint assessed here in 

comparison to the economy-wide study of Jungbluth et al. [77]. 

Finally, the applied hybrid LCA-modeling was done with great care and adjusted as much as pos-

sible to Swiss conditions. Still, LCA-modeling always requires assumptions, average mixes, and 

simplifications that might affect the final results. Hereby, the uncertainties induced by the con-

version of expenditures to functional units via price data, the uncertainties arising from convert-

ing HBS-purchaser-prices to EXIOBASE-basic-prices [3, 9, 10, 29], and the limited number of 

biosphere flows in EXIOBASE need special mentioning. The latter is discussed in Appendix D 

and may lead to a slight under-accounting of ReCiPe-endpoints. Follow-up research aims at de-

veloping a framework to capture uncertainties involved in the archetype-approach. 
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5.4 OUTLOOK 

The proposed archetype-approach is meant to deliver important insights into households’ con-

sumption behavior for policymakers to derive and prioritize targeted measures. In this context, 

our approach can also be used for identifying drivers of environmental impacts as done in previ-

ous studies [10, 16, 20, 22, 25, 26]. To demonstrate this application, a univariate correlation analy-

sis between environmental impacts and main household characteristics is presented in Appendix 

D. The computation of such correlations, as well as studying the drivers for clustering and the 

prevalence-weighted analyses, help to capture the big picture and support thus the identification 

of general tendencies, hotspots, and potential target groups of households. However, since the 

overall trends do not necessarily apply to particular archetypes, the deduction of targeted actions 

requires an in-depth understanding of the target groups and should thus be done on the basis of 

individual archetypes. For this, the archetype-approach offers a predestined basis by allowing for 

backtracking environmental impacts to the living conditions of real households and observable 

consumption behavior. 

While this study aimed to provide the basis for identifying strategies, the specific analyses need to 

be done by local environmental policymakers according to their political agendas. Thereby, they 

could follow the comprehensive framework proposed by Schanes et al. [4] and also consider sug-

gestions from related research in behavioral economics and psychology [28]. The input from 

these disciplines, which aim to understand motivational factors and cognitive biases, could pro-

vide support to go even beyond “conventional” measures, such as taxes, regulations, or subsidies, 

and allow for profiling households. On this basis, personalized messages and measures could be 

formulated which directly address different consumer groups in order to effectively raise aware-

ness and to encourage them to change toward more sustainable consumption patterns. But be-

fore investigating how people could be motivated to lower their environmental impacts, it is of 

high importance to know which archetypes prevail in the local policymakers’ sphere of influence. 

The prevalence-weighted analyses illustrates a first attempt in this direction at a national level, but 

the archetypes can further be used as a basis for a regionalized model. In follow-up research, the 

archetypes will be assigned to real households based on the national census within a probabilistic-

classification approach. In addition, this use of archetypes will simultaneously be combined with 

other nationwide bottom-up models such as the building energy model of Buffat et al. [83] (see 

Chapter 4) and agent-based mobility models as used by Saner et al. [84]. The final model will es-

timate a realistic environmental profile for each real household in Switzerland and thus provide 

information for analyses on any desired regional scale. 
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SHORT ABSTRACT 

Besides governmental consumption, household consumption is the main driver of economy, and 

is thus ultimately responsible for the environmental impacts that occur over the whole life cycle 

of products and services that households consume. Therefore, assessing environmental foot-

prints of households is an important basis to identify environmental policies. This study aimed to 

develop a comprehensive regionalized bottom-up model for Switzerland that is able to assess the 

environmental impacts induced by individual households. The purpose of this model is to pro-

vide a virtual platform for detailed scenario analysis which shall support effective political deci-

sion making on different scales. 

Three existing bottom-up models were merged: a building stock energy model, an agent-based 

transport simulation and a household consumption model. All of them were tested and evaluated 

beforehand. The physically-based building energy model establishes simplified energy balances 

for each residential building based on spatially and temporally resolved climate data, building 

characteristics and 3D-geometries. It provides estimates of space heating, hot water and electrici-

ty demand for each Swiss household. The mobility sub-model builds upon the results of an 

agent-based traffic simulation framework which was applied to Switzerland and reproduces mo-

bility patterns of Swiss inhabitants in space and time. The third sub-model pursues a data-driven 

approach and enables the quantification of consumption of food, consumables, and other goods 

and services for each Swiss household by means of data mining techniques. Linking these sub-

models with environmental background data allowed for computing an environmental profile for 

each household in Switzerland. 

The application of this model to the current situation of Switzerland reveals interesting differ-

ences between individual households, different regions and different consumption areas. By cov-

ering the variability of household behavior and quantifying the demands and environmental foot-

prints of households within a certain area, the model delivers important insights for local policy-

makers to derive targeted environmental strategies tailored to the specific problems and house-

hold types in a region. Furthermore, the high resolution of all three sub-models permits testing of 

policies and in-depth analyses of scenarios, ranging from detailed building refurbishment pro-

grams to future mobility solutions such as autonomous vehicle systems. 

6.1 INTRODUCTION 

Households are the main drivers of the economy by triggering a multitude of activities along the 

supply chain of products and services they consume. Therefore, household consumption can be 

regarded as ultimately responsible for any environmental impacts that occur over the life cycle of 

products and services. However, most household consumption studies apply top-down ap-

proaches and provide estimates of the impacts of the average national household. This is not an 

appropriate method to support local policymakers in their quest for specific strategies to reduce 

environmental impacts in their particular regions. The deduction and prioritization of targeted 
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measures requires an understanding and a quantification of the variability in behavior of individu-

al households within a certain area. A few approaches for such bottom-up models exist, but most 

are either limited in scope or do not capture the context of total household consumption. The 

goal of this study is to develop a comprehensive regionalized bottom-up household consumption 

model which is able to derive a realistic environmental profile for each household in a region. 

The presented approach was applied to the whole of Switzerland. 

6.2 METHODOLOGY 

Three existing bottom-up models were merged in the new regionalized household consumption 

model: a building stock energy model, an agent-based transport simulation and a data-driven con-

sumption model. The physically-based building energy model [1] estimates space heating, hot 

water and electricity demand for each residential building in Switzerland based on simplified en-

ergy balances as a function of time, site, climate data, building characteristics, surrounding topog-

raphy and 3D-geometries derived from laser-scanning data. Since the Swiss national census [2] 

indicates in which building a household lives, these housing energy estimates can be directly allo-

cated to individual households. The mobility sub-model builds upon the simulation results of 

MATSim [3], an agent-based traffic simulation framework. The application of MATSim to Swit-

zerland [4] reproduced the mobility behavior of the Swiss population and provides spatio-

temporal information on chosen traffic modes and driven routes for each agent. Building upon 

spatial information and a number of personal characteristics, the simulated agents and their asso-

ciated mobility demands were assigned to household members by means of a partially random-

ized optimization approach. The third sub-model [5] identified consumption patterns based on 

the Swiss Household Budget Survey [6] and derived 28 different consumption-based archetypes 

through extensive data mining techniques. These archetypes quantify the consumption behavior 

for food, consumables, and other goods and services for different clusters of households. To 

assign these archetypes to the households and thus to cover the remaining parts of consumption, 

a Random-Forest-Classifier was trained based on geographic information and household charac-

teristics, as well as on housing energy and mobility demand, for merging the consumption model 

with the building energy model and the mobility sub-model. Because the national census [2] does 

not provide all information that is necessary to classify precisely a specific household as a certain 

archetype, we used the calibrated classifier to compute the probabilities with which the different 

archetypes can be assigned to a census household and then randomly sampled among these ar-

chetypes in question. This probabilistic assignment shall ensure the reproduction of a realistic 

variability of household behavior within a certain area. In a final step, the estimated housing, mo-

bility and consumption demands were coupled with detailed life cycle background data in order 

to assess the resource uses and emissions along the whole supply chain. Pursuing a hybrid life 

cycle assessment approach, we included data from ecoinvent v3.3, Agribalyse v1.2 as well as EX-

IOBASE v2.2 to compute the environmental footprints of individual Swiss households. 
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6.3 RESULTS AND DISCUSSION 

The interlinked model assesses the current environmental footprints for all 4 million Swiss 

households as a realistic estimate taking into account the given circumstances of a particular 

household (Figure 6.1b shows the distribution of all household carbon footprints). The results of 

bottom-up models can be aggregated on any desired regional scale and thus, for instance, provide 

benchmarking maps of municipalities as shown in Figure 6.1a. In addition, different spatial struc-

tures can be compared. In Figure 6.1c, it becomes obvious that different degrees of urbanization 

exhibit similar total emissions per capita. However, the compositions of the footprints reveal that 

rural areas tend to cause larger mobility GHG emissions per person than urban regions. This is 

due to larger mobility demands and higher shares of car-driven kilometers. But even more de-

tailed analyses of compositions are possible: more than 200 different consumption areas can be 

investigated in the model’s highest resolution. Moreover, our model is able to apply all life cycle 

impact assessment methods supported by the background databases. However, we only show 

carbon footprints in Figure 6.1 to enable for comparison with existing top-down studies. For 

instance, the composition of the estimated Swiss average carbon footprint shown in Figure 6.1d 

is comparable with [7] while the absolute amount deviates by less than 15%. Housing, mobility 

and food are identified as the most important consumption areas in both studies. 

 

Figure 6.1: Results for GHG: a) Average per capita emissions per municipality, b) V i-
olinplot of the carbon footprints of all Swiss households, c) Comparison of 
different spatial structures on a per capita basis, d) Comparison of Swi ss av-

erage with [7]. 

6.4 CONCLUSIONS AND OUTLOOK 

This highly resolved model enables for the comparison of households, regions, and different 

consumption areas. It provides insights into the specific problems of a region and allows for the 

analysis of consumption patterns within this area. The model may not only be used to derive tar-
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geted incentives for more sustainable consumption, but also to investigate in detail future scenar-

ios and thus effects of planned measures. For instance, the component-based approach of the 

building model facilitates the analysis of detailed refurbishment scenarios, while the link to 

MATSim allows for including future mobility scenarios such as electric car penetration, increased 

home office activities or even autonomous vehicle systems. The model might thus be regarded as 

a virtual platform to evaluate policy scenarios aimed at lowering environmental impacts from 

household consumption. In the future, it could also serve as a basis for a complete agent-based 

model for Switzerland in which agents can manage their expenditures as well as interact with 

buildings and the mobility system. This improved model can then be used for analyzing dynamic 

scenarios such as diffuse penetrations of new technologies and might even capture associated 

rebound effects.  
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7.1 SYNTHESIS 

The goal of this dissertation was to examine and develop new approaches to support effective 

environmental policymaking. The focus was placed on the collection, preparation and supply of 

data for decision- and policymakers on different scales. While it was not the goal to exhaustively 

investigate or to evaluate potential environmental policies, this dissertation aimed to provide in-

formation tailored to the decision-makers’ spheres of influence and suited for facilitating the der-

ivation, prioritization and implementation of targeted measures to mitigate negative impacts on 

the environment. 

In Chapter 1, the following five research questions (RQ) were formulated: 

RQ 1 What kind of information on which level of detail can serve as a basis to derive targeted 

measures aimed at mitigating environmental impacts? 

RQ 2 What are efficient ways to provide this information, especially in view of constrained 

financial budgets to gather data and data scarcity in many sub-national regions? 

RQ 3 How can Big Data and machine learning techniques contribute to the support of envi-

ronmental policymaking? 

RQ 4 Specifically in a consumption-based scope: how can household consumption patterns 

be modeled to capture the context of total consumption and how can the variability of 

these patterns be regionalized and thus transferred to larger scales? 

RQ 5 What are the requirements and how should a framework be designed to evaluate and 

investigate large-scale effects of planned environmental measures? 

In order to address these research questions, a dual approach was pursued. On the one hand, 

local policymakers were informed by processing detailed survey data within the scope of a trans-

disciplinary project in a small rural municipality. On the other hand, modeling approaches were 

developed to provide similarly detailed information for regions where in-depth surveys are miss-

ing. These two lines of research also reflect the two opposing possibilities to establish a compre-

hensive database for local policymakers: either data is gathered in surveys or generated by models. 

While responses to RQ1 can be found throughout the whole thesis, the research project Zernez 

Energia 2020 was especially insightful in this regard (our contribution to this project is presented 

in Chapter 2). There it became apparent that a detailed comprehensive database should be the 

starting point for any policy tailored to local conditions. Based on an extensive stakeholder en-

gagement process, the project derived targeted measures and developed a concrete action plan to 

reduce greenhouse gas emissions from the operation of the building stock [1, 2]. Thereby, the 

action plan foresees an extension of the district heating network, the installation of photovoltaic 

cells, and proposes replacements of heating systems and refurbishments of specific building 

components for actual buildings in the municipality [2]. The highly resolved database, which was 

established in the course of this project, not only enabled for the identification of these targeted 

actions, but was also an important tool to estimate the impact of such measures and thus to 
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communicate with both the municipal authorities and the residents of Zernez. The experiences 

gained in this project confirm the importance of thorough databases as planning tools. The 

knowledge of the actors and processes within the geographical system boundaries especially 

proved its usefulness, be it e.g. for the intended placement of photovoltaic cells or for sugges-

tions with regard to increased insulations in specific buildings. Understanding and quantifying the 

variability of the local actors also helped to prioritize measures. Furthermore, the analyses in 

Chapter 2 reveal the suitability of considering the environmental impacts of a geographical region 

from two angles, the production-based and the consumption-based perspective. Both accounting 

frameworks provided insights from different viewpoints and allowed for identifying areas of ac-

tions for the municipal authorities on account of their complementarity. 

However, the laborious data collection process in Zernez also made obvious that such an effort is 

not a feasible option for other municipalities, particularly in view of constrained financial budgets 

for data collection. Furthermore, even the unique project database of Zernez with 100% coverage 

of all buildings will face future challenges pertaining to updating and maintaining the data1. This 

clears the stage for RQ2 which asks for more efficient ways to provide comprehensive infor-

mation without the need for antecedent excessive data acquisition. In response to this research 

question, a model framework was elaborated in Chapters 3 to 6 (see also flow scheme in Figure 

1.1 of Chapter 1). Based on the insights with regard to RQ1 in the Zernez-project and the rea-

soning in Chapter 1, mainly three basic principles were followed while developing the models: 1. 

The models were constructed bottom-up. This means that the starting point of the models are 

individual units or entities in a study area (e.g. individual buildings or individual households). This 

allows for capturing the variability among different actors and thus supports the quest for an-

swers to questions such as: Who should be targeted? What are promising measures for these tar-

get groups? What is the reduction potential for individual actors, but also with regard to total 

impacts? Furthermore, in Chapter 2, it was also revealed that the abilities to implement measures 

are limited for municipal authorities. There, we indicated that some fields of actions are of su-

praregional importance and need to be tackled by cantonal or national authorities. In this regard, 

another advantage of bottom-up models is their capability to aggregate results on any desired 

regional scale. They are thus not only tailored to a municipal scope, but can also be used by re-

gional, cantonal or national authorities. 2. As a second principle, the input data of the models was 

sourced from national statistics and publicly accessible databases which are transparent and 

well-established. The motivation for this was threefold. First, many – especially rural – municipal-

ities lack detailed data. In such data-scarce situations, national statistics and federal registers pro-

vide a promising starting point for models attempting to generate more specific data. Additional-

ly, these databases are regularly updated and help to keep the models up-to-date. Second, the use 

of such data also ensures a consistent modeling over a large area and thus allows for comparing 

and benchmarking different regions or municipalities. Third, similar registers and statistics are 

also maintained in other countries. Although the application of the developed models was 

demonstrated for the case of Switzerland, the approaches could also be used for other nations. 3. 

                                                 
1 Note that one of the measures in the action plan [2] also comprises updating the database. 
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As mentioned in Chapter 1, consumption-oriented accounting is particularly important for coun-

tries like Switzerland given the large share of embodied emissions in the total impacts induced by 

Swiss residents. For this dissertation, the scope of the models was thus restricted to providing a 

consumption-based life cycle perspective. In combination with the first principle (bottom-up 

modeling), this means that the central modeling element of the overall model framework were 

individual households. However, for the respective sub-models which serve the overall model, 

other units could be considered (e.g. individual buildings in the case of the building energy mod-

els in Chapters 3 and 4). 

The model approaches presented in Chapters 3 to 6 build upon the above principles and offer 

answers to RQ2. Additionally, our approaches were not kept in a theoretical stage but their prac-

tical applicability was demonstrated on large scale for the case of Switzerland. With respect to the 

physically-based building energy model, this required an evaluation of the model performance in 

advance. For this purpose, Chapter 3 scrutinizes the building stock model of Saner and col-

leagues [3]. The evaluation of this model with the detailed building database of Zernez showed 

that it is generally well suited for building energy modeling and is able to provide a realistic pic-

ture of a municipality’s building stock. Furthermore, it complies with the above requirements by 

building upon publicly accessible databases and providing estimates for individual buildings, 

while simultaneously allowing for a municipal or district view. The comparison with primary data 

and the global sensitivity analysis in Chapter 3 also reveals improvement potential. This could be 

attributed in particular to the used heat transfer coefficients and the behavior of occupants. In an 

attempt to overcome these flaws and to take advantage of the possibilities of Big Data, Chapter 4 

enhanced the building energy model in several aspects by integrating comprehensive geographic 

data. Apart from several new approaches including the consideration of shadowing effects from 

topography, the building energy model of Chapter 4 also allows for deducing the envelope of 

individual buildings from digital elevation models. This reduces model uncertainties and immedi-

ately addresses one of the main weaknesses pointed out in Chapter 3; since the areas of walls, 

roofs and windows are directly multiplied with heat transfer coefficients (see equation (4.2)), im-

proved estimates of the envelope have a similar effect as updated coefficients. Hence, the 

achieved improvements in Chapter 4 demonstrate the potential of using Big Data and also re-

spond to RQ3. 

The train of thought driven by RQ3 is further investigated in Chapter 5. In this chapter, we pro-

pose a novel approach to assess environmental impacts induced by household consumption be-

havior. By employing data mining techniques, we exploit the data of the Swiss Household Budget 

Survey (HBS) [4]. While missing information was successfully imputed with regression models, 

the application of a two-staged clustering enabled for the recognition of consumption patterns 

and consequently for deriving consumption-based archetypes. These archetypes constitute in-

sightful building blocks for policymakers. They provide the quantification and environmental 

assessment of a manageable set of typical household consumption patterns based on real observ-

able behavior and thus capture and preserve the context of total consumption (first part of RQ4). 

Previous studies have also aimed at quantifying the variability of environmental impacts of differ-
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ent household groups based on consumer survey data [5–14]. Indisputably, these studies have 

delivered valuable insights for the understanding of household consumption, but all of them used 

pre-defined household segments based on solely socio-economic characteristics. Several of these 

studies point out that there might still be an important variability of behavior within the consid-

ered household types. Girod and De Haan [15] confirm this assumption quantitatively. The ap-

plication of clustering techniques in our approach allowed for including consumption data along 

with socio-economic parameters and thus forming new household groups with comparable living 

conditions and similar behavior concurrently. This resulted in the recognition of patterns that can 

be regarded as archetypical behaviors and whose environmental impacts could then be investigat-

ed. In fact, the analyses in Chapter 5 show that households in similar socio-economic circum-

stances might differ in their consumption behavior and consequently in their environmental 

footprints, be it with regard to total impacts or with regard to composition. Additionally, arche-

types that deviate from general macro-trends emerge. For instance, Chapter 5 observes generally 

increased impacts with higher income; however, few archetypes diverge from this by causing 

comparably low impacts with continued high income. Understanding the nature and implications 

of such different household behavior is the first step towards the derivation and prioritization of 

policies tailored to specific consumer groups. The proposed archetype-approach allows for anal-

yses at household level and forms thus a promising basis for further investigations. In this con-

text, it should be noted that recent studies emphasize that behavioral economics and psychology 

ought to be involved in the development of successful measures [16–18]. In conclusion, Chapter 

5 provides needed information (RQ1) in a modeling approach (RQ2) which seizes household 

consumption in a coherent context (RQ4) using machine learning and data mining techniques to 

gain new information for environmental policymaking (RQ3). 

The second part of RQ4 goes a step further and asks not only how household behavior can be 

modeled and analyzed, but also how this variability of household consumption can be regional-

ized and thus applied to estimate the environmental impacts of real households. This is of high 

importance to local policymakers. They are capable of devising and prioritizing environmental 

strategies only if they know the consumption patterns and the associated environmental hotspots 

in their regions. For this purpose, Chapter 6 embarks on a novel approach by employing again 

techniques from the data mining toolbox (RQ3). A direct assignment of archetypes to real 

households of the national census [19] in the scope of a classification framework was considered 

to not deliver reasonable results; the census only provides socio-demographic information and 

thus lacks important variables which were used to derive the archetypes in Chapter 5. A reliable 

matching of census households with archetypes could thus not be expected. Therefore, in a first 

step, we deployed a Random-Forest-Classifier [20] to compute the probabilities that a census 

household would belong to a specific archetype. In a second step, an archetype was allocated to 

this census household in a random sampling process based on these probabilities. Furthermore, 

this probabilistic classification approach comprises data not only from the national census, but 

also from the building energy model (Chapters 3 and 4) and the mobility sub-model in order to 

maintain the interrelations of consumption areas (see also Figure 1.1). The mobility model intro-
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duced in Chapter 6 builds upon the preliminary works of Saner et al. [3] and Froemelt in [21]. 

Based on the results of an agent-based transport simulation of Switzerland with MATSim (Multi-

Agent Transport Simulation) [22], this sub-model assesses mobility demand of households by 

assigning simulated agents to household members. The overall, interlinked model provides realis-

tic estimates of the environmental footprints for all households in Switzerland. Therefore, it an-

swers RQ4 and additionally proves the feasibility of large-scale bottom-up models (RQ2) supply-

ing in-depth knowledge for environmental decision-makers (RQ1). In fact, the model is highly 

resolved in space and detail by estimating the demands in almost 400 consumption areas for 

about four million real households and by subdividing the resulting environmental impacts into 

more than 200 categories. Consequently, this model constitutes a predestined knowledge base to 

analyze the status quo, find hotspots, identify fields of actions and target groups of households 

for reducing consumption impacts, and finally to start developing targeted environmental policies 

on any desired regional scale. The bottom-up character of the model offers a high flexibility to 

policymakers in terms of the provided level of detail and delivers insights into locally occurring 

consumption patterns. 

Bearing the experiences from the Zernez-project in mind and coming back to RQ1, another im-

portant piece of needed information are assessments of the consequences of planned actions. 

Therefore, an important question has this far remained open; how should a framework be de-

signed to enable a thorough evaluation of intended environmental policies (RQ5)? For the mod-

els elaborated in the scope of this dissertation, this aspect was already considered in the develop-

ment phase. For instance, a physical engineering model was favored over a statistical model for 

estimating building energy demand (see also the reasoning in Chapter 3). These models build 

upon physical principles and are thus capable of evaluating the effects of physical measures such 

as the refurbishment of building components [23]. Indeed, the bottom-up and component-based 

structure of the building energy model (Chapter 4) follows also the ideas of Heeren and col-

leagues [24] and will allow for evaluating detailed building refurbishment scenarios. For instance, 

the model is not only able to consider the effects of refurbishing specifically chosen individual 

buildings, but also the effects of retrofitting only particular components of these edifices (e.g. 

what are the effects of only exchanging windows and insulating walls, but not improving the 

roof?). Similarly, the link to the implementation of the agent-based transport simulation frame-

work MATSim [22] facilitates the analysis of future mobility scenarios [21]. Being interlinked with 

the estimates of archetypical behavior, all scenarios analyzed in our modeling framework will not 

only be considered in the context of total household consumption, but may also be evaluated 

with regard to potential burden shifts between consumption areas (rebounds). Additionally, the 

consumption model enables the simulation of further scenarios such as changes in diets. Further 

application possibilities for scenario analysis are contemplated in section 7.3. 

Last but not least, we would like to point out that we see our modeling efforts in the light of be-

ing supportive for policymakers. The modeling framework shall provide realistic estimates to 

bridge knowledge gaps and thus complement available information. However, the model’s high 

level of detail shall not obscure the fact that it remains a model, meaning that it is an approxima-
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tion of reality and accordingly needs to be treated with common sense. Or to conclude with a 

famous quotation of George Box (1978): “All models are wrong but some are useful”. In this 

sense, we hope that our model will be useful for future environmental policymaking. 

7.2 SCIENTIFIC AND PRACTICAL RELEVANCE 

The main scientific contribution of this dissertation is the development and the application of a 

comprehensive large-scale bottom-up model to assess demands and associated environmental 

impacts from individual households. Thereby, novel approaches were elaborated in different as-

pects, but especially in the light of how the exploitation of Big Data and the application of data 

mining techniques might create insights in support of environmental policymaking. Key innova-

tions range from the use of digital elevation models to derive building envelopes and to consider 

location-specific shadowing including effects from topography (Chapter 4), the identification of 

household behavior archetypes and their environmental impacts (Chapter 5) to the large-scale 

assignment of these archetypes to real households (Chapter 6). We hope that these ideas may 

either help other modelers in solving problems encountered or spark ignition to come up with 

creative thoughts and with better models. As will be discussed in section 7.3, our model allows 

for further investigations in many ways. For instance, the modular structure of the overall model 

facilitates the coupling with models of other researchers. In this sense, the modeling framework 

of this dissertation could serve as an input to other scientific models or vice versa: other models 

could supply more detailed information to our model. Both ways could be fruitful and deliver 

more insights for effective environmental policymaking. Moreover, the availability of the ready-

to-use archetypes for Switzerland (Chapter 5) could also offer an interesting basis to analyze con-

sumption behavior for economists, psychologists or sociologists. This could finally support fos-

tering the efforts to achieve a better understanding of household consumption behavior. Last but 

not least, the input datasets for all models in this dissertation are often also available in other 

countries. Following our concepts, it would be possible to set up similar models for countries 

other than Switzerland. This would not only be interesting for policymakers in these nations, but 

also to compare and study consumption patterns on an international level. 

This dissertation is not only relevant for science, but it has specifically also aimed at being im-

portant for practice. First, we would like to emphasize its practical relevance with regard to the 

research project in Zernez. Unfortunately, current administrative processes in connection with re-

organizations and the fusion with neighboring municipalities have caused some delay for applying 

the developed action plan. Nevertheless, the municipality still intends to implement the planned 

measures which would lead to a significant reduction of greenhouse gas emissions in Zernez. On 

the one hand, this will contribute to the Sustainable Development Goal 13 (“Climate Action”) 

[25] and thus to the global fight against climate change. On the other hand, Zernez could also 

serve as a role model for other comparable municipalities. 

The overall model developed in the context of this dissertation provides a highly resolved data 

basis which can be used either by consultants or directly by policymakers in order to develop 
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impactful environmental strategies. In addition, the current model results, as well as the computa-

tion of scenarios of planned actions, can help to communicate intended measures to stakehold-

ers, such as inhabitants, local companies, utility operators, or authorities on a different level (e.g. 

national or cantonal agencies). In this regard, the outcomes of this dissertation could effectively 

lead to a reduction of adverse environmental impacts. Although these direct model uses are in 

principle possible, it should not be overlooked that the current model is still in a rather academic 

state. Consequently, in order to achieve practical relevance, the challenge of disseminating our 

approaches and results needs to be tackled. In respect thereof, first attempts have been undertak-

en. For instance, a prototype of a web-based decision support tool based on the building energy 

model of Chapter 4 was presented in September 2017 at the CISBAT-conference [26]. This tool 

is designed for homeowners and allows them to select and compare different refurbishment op-

tions for their buildings. In an adjusted format, this tool could also inform policymakers about 

the effects of different building retrofit scenarios. Additionally, ongoing research in the scope of 

the SCCER Mobility (Swiss Competence Center for Energy Research: Efficient Technologies and 

Systems for Mobility) [27] aims at designing a decision support system building upon the overall 

model of this dissertation – but with a special focus on the mobility sub-model – which shall help 

to identify optimal mobility portfolios for municipalities and potential incentive schemes. Last 

but not least, it is also envisaged to provide the model results in the form of a footprint atlas for 

Switzerland, similar to the data visualizations which have been developed for the Carbon Foot-

print of Nations [28]. 

7.3 CRITICAL APPRAISAL AND OUTLOOK 

7.3.1 Model Evaluation and Uncertainty Analysis 

A model can only be considered useful if it meets the initial intentions within a certain accuracy 

range. The goal of the modeling framework developed in this dissertation is to provide a realistic 

picture of variability in environmental footprints induced by individual households. Chapter 3 

and 4 subject the building energy model to an in-depth evaluation and appraise this sub-model as 

suitable for the present purpose. Also, the performance of MATSim applications to Switzerland 

have been investigated including juxtapositions with automated traffic counters [29]. Additionally, 

we analyzed the mobility demands resulting from the assignment of agents to actual household 

members in the context of the overall model; in an attempt to evaluate how well the computed 

person-kilometers reproduce the real variability, differently aggregated results were compared 

with the Swiss Mobility and Transport Microcensus 2010 [30]. A selection of these comparisons 

is presented in Appendix E. In conclusion, the mobility sub-model was deemed reasonable for 

the overall model’s aim. The archetypes in Chapter 5 were derived from the Swiss Household 

Budget Survey [4] which can be regarded as representative for Switzerland [31]. However, as long 

as the ground truth is unknown, a clustering procedure is difficult to evaluate [32]. Nevertheless, 

in Chapter 5, we carefully followed good modeling practice and used internal evaluation measures 

in several steps [33]. For instance, the regression models used to impute data were subjected to 
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10-fold cross-validation in the training phase and their results were afterwards compared to over-

all national statistics. The clustering itself used different performance indicators. In addition, it 

took a minimum number of households into account which can be regarded as representative for 

household groups according to the Federal Statistical Office [31]. The question remains if the 

extrapolation of the archetypes to real households in Chapter 6 still provides a realistic picture of 

household consumption. First, it needs mentioning that the applied Random-Forest-Classifier 

[20] was again tuned in an internal cross-validation process based on a 90% training-set and the 

probabilities were subsequently calibrated with the remaining 10% of the dataset [33–35]. Second, 

to prevent problems with class imbalance and thus to account for prevalence, a stratified splitting 

was used during the cross-validation procedure and the clusters themselves were weighted within 

the Random-Forest-Classifier according to their frequency in the original dataset [33, 34]. These 

measures were successful and resulted in correlation coefficients of 0.86 (Pearson) and 0.87 

(Spearman) for the archetypes’ prevalence in the HBS [4] and the overall model, respectively. 

This means that the assignment of the archetypes to real households yielded a similar frequency 

distribution of archetypes in the model as in the original HBS-data. Correspondingly, the com-

parisons of differently aggregated expenditures and revenues of the model with the original HBS 

resulted in a good agreement (see Appendix E). Additionally and similar to Appendix D.2.4 the 

national statistics for housing-related data could be satisfactorily reproduced. Finally, Chapter 5 

and 6 both relate the resulting environmental impacts of the model to other consumption-based 

studies of Switzerland [36, 37]. This further underpins the plausibility and the reasonability of the 

model results. 

We would like to point out that – apart from the above-mentioned internal validation-

mechanisms (e.g. cross-validation) – no possibility exists to evaluate the model in a household-

by-household comparison since external primary data in such a high resolution is not available. 

However, the goal of the model was to provide a realistic – but not necessarily an accurate – es-

timate of the consumption-induced environmental impacts for individual households and a realis-

tic – but not necessarily an accurate – picture of the variability in household footprints within a 

certain area. The internal cross-validations as well as the above-presented attempts to analyze the 

model’s ability to reproduce the overall characteristics of national statistics confirm that the mod-

el points in the right direction and is able to calculate realistic assessments of consumption foot-

prints. Nevertheless, we see it as an open task to look for more data and to further improve our 

validation attempts. 

Especially in situations facing difficulties to perform in-depth external validations, it is important 

to include uncertainty analyses. Thereby, we would like to emphasize that a comprehensive Mon-

te Carlo simulation is incorporated in the building energy model of Chapter 4. In spite of the fact 

that uncertainty data is lacking for the Swiss Household Budget Survey [4], current research aims 

at developing an uncertainty framework also for the archetypes. As a possible way to capture 

uncertainties of the archetypes’ centroid vectors, we conceive to conduct bootstrap-sampling2 

                                                 
2 See for instance [33] for a description of bootstrap-sampling. 
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within each cluster. Furthermore, Monte Carlo simulations can directly be implemented in the 

allocation of archetypes to households as well as in the assignment of MATSim-agents to house-

hold members. The latter has already been done in the preliminary works of Saner and colleagues 

[3]. In addition to capturing uncertainties introduced by the modeling of demands, also uncertain-

ty originating from the environmental background databases shall be included in future research. 

7.3.2 Insights for Deriving Targeted Measures 

The results of the individual archetypes provide a valuable basis for identifying strategies tailored 

to the different archetypical behaviors. One interesting direction of future work could comprise a 

systematic development of targeted measures for all 28 archetypes. Schanes and colleagues [16] 

elaborated a methodical framework to deduce strategies aiming at reducing consumption-induced 

carbon footprints. The application of such frameworks to the consumption-based archetypes 

could come up with ready-made measures for different target groups. Further insights are also 

conceivable with regard to prioritization of strategies, e.g. in the case some measures turn out to 

be more impactful than others or some policies apply to more than only one archetype. Moreo-

ver, as mentioned in Chapter 5, drivers of environmental impacts could – and should – be inves-

tigated based on the archetype-approach. In this regard, it would also be interesting to apply simi-

lar clustering attempts to other countries or larger datasets. This could further improve our un-

derstanding of today’s consumption patterns. Finally, the derivation of successful measures needs 

to be accompanied by additional input from other disciplines including economics and psycholo-

gy to achieve an effective and long-lasting change of consumption patterns. For instance, Freder-

iks and colleagues [17] argue that people sometimes do not respond in an expected nor desired 

manner to incentives (be it rewards or sanctions). While the archetypes provide quantitative in-

formation for the development of interventions, it is thus also crucial to understand motivational 

factors and cognitive biases of households that should be encouraged changing towards more 

sustainable consumption. 

7.3.3 Scenario Analyses: Effects of Planned Measures 

The overarching model of this dissertation constitutes a comprehensive information base and can 

also function as a virtual platform for detailed scenario analysis to seize the effects of planned 

measures. As mentioned above, the highly resolved bottom-up structure of the model allows for 

setting up and analyzing detailed policy scenarios. For instance, the physically- and component-

based approach of the building energy model enables computing the effects of retrofitting specif-

ic building components (i.e. roofs, walls, windows, and floors) of individual buildings. Conse-

quently, various refurbishment programs can be investigated encompassing best case scenarios or 

scenarios targeting only specific buildings, specific geographical regions or specific homeowners 

(e.g. target groups which were identified due to their consumption behavior and living condi-

tions). 

The coupling with the MATSim framework opens up a plethora of possibilities to analyze future 

mobility scenarios. In the scope of the THELMA-project [21] (Technology-centered Electric 
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Mobility Assessment), future scenarios including increased home office activities, the impacts of 

teleshopping and different scenarios of electric car penetrations were already computed and could 

directly be fed to our model. Additionally, efforts have been made to analyze the introduction of 

autonomous vehicles [38, 39] with MATSim. Such groundbreaking systems have gained a lot of 

attention in recent years and it would be important to analyze their environmental implications in 

a broader picture, e.g. in the scope of this dissertation’s modeling approach. 

The consumption sub-model enables the simulation of scenarios such as changes in diets as well 

as the consideration of policy scenarios in the context of total household consumption. In this 

regard, follow-up research envisages capturing rebound effects of policy measures. For instance, 

if policies lead to demand reductions (e.g. less heating demand on account of better insulation) 

and consequently to lower expenditures in one consumption area for a certain household, this 

could lead to a change in the archetypical behavior of this household. The most basic approach in 

this regard could be to assign another archetype to the respective household. However, it would 

also be possible to elaborate more sophisticated models which build upon the variability of 

household behavior within the clusters of Chapter 5 and which thus allow for capturing also 

small behavior changes. 

In addition to the computation of future scenarios, we also see further research options in the 

analysis of the current situation. Chapter 6 already provides a first rudimentary comparison of 

different regions in Switzerland. However, an in-depth study of different municipalities, cities, 

and interrelations of consumption areas could deliver important insights to deriving successful 

policies in addition to the efforts mentioned in section 7.3.2. Such a spatial comparison and 

benchmarking analysis could help municipalities to learn from each other. 

7.3.4 Model Improvement and Extension 

The future research possibilities discussed so far relate to direct applications of the developed 

approaches and models. Yet, a multitude of opportunities to improve and extend the existing 

model already exist. For instance, Chapter 3 reveals improvement potential for the building ener-

gy model with regard to heat transfer coefficients and the consideration of occupants’ behavior. 

While the first issue is addressed in Chapter 4, the second one remains unsolved. Possible im-

provements regarding occupational behavior modeling could be achieved either by deriving ar-

chetypical behavior patterns for housing energy3 or by reinforcing the connection to the agent-

based MATSim-model. The latter possibility could even be pursued until a complete merger of 

the two frameworks resulting in a full-fledged agent-based model. In such a model, agents would 

not only interact with the mobility system, but also with buildings and even manage their finan-

cial budgets and purchase decisions. The highly dynamic structure would allow for analyzing pol-

icy scenarios in an unprecedented detail and capturing complex, non-linear effects of planned 

measures. In particular, temporal aspects such as the diffuse penetration of new technologies 

could be anticipated. 

                                                 
3 This could be done analogous to the procedure in Chapter 5 but this time applied to e.g. smart meter data. 
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Another line of possible model extensions concerns the coupling with macro-economic models. 

Econometric models enable for further investigating supply chains and additionally for tracking 

system-wide impacts induced by policy measures. Hereby, the consideration of rebound effects 

plays an important role. Even though section 7.3.3 discusses a straight-forward implementation 

for this in the scope of the current model, the application of sophisticated econometric models as 

e.g. used by Sommer and Kratena [40] or by Duarte et al. [41] could provide more comprehen-

sive insights in this respect. These two studies coupled input-output tables with computable gen-

eral equilibrium models and could thus reproduce economy-wide feedbacks and rebounds of 

measures. 

Last but not least, we would like to challenge the adopted system perspective in the developed 

model. As is argued above and in Chapter 1, a consumption-based perspective is justified for our 

model. The responsibility of households is conceptually reasonable and they can definitely be 

considered as key actors when it comes to reducing environmental impacts. However, it should 

not be ignored that households do not have full control of the supply chains serving them [18, 

42]. They are able to send indirect signals by their purchase choices, but they cannot directly 

change economic activities or economic systems. Consequently, only focusing on households will 

not suffice to reduce emissions and resource uses to more sustainable levels. The environmental 

impacts of local industry and trade need to be tackled as well and producers must accept their 

responsibility [43]. Consequently, a useful complement to the consumption-focused approaches 

would be a bottom-up model which reproduces a production-based view of a particular region. 

To provide a realistic impression of the variability of local actors, this “industry model” should 

take individual companies or enterprises as the central modeling elements. The idea of such a 

model is also in line with the findings of Chapter 2 which highlight the complementarity of both 

system perspectives and its importance to derive effective environmental measures. The availabil-

ity of both perspectives in a single model would provide deeper insights into interventions along 

the production-consumption dichotomy [43]. Even though such a model is not directly evolvable 

from the presented approaches, the successful application of data mining techniques and the ex-

ploitation of Big Data in this dissertation are encouraging that a production-oriented bottom-up 

model building upon national statistics and registers could be feasible. 

Although improvement potential exists and interesting enhancements should be envisaged, we 

would like to conclude that the present consumption-based model provides already now a thor-

ough knowledge base which helps local policymakers to understand and quantify prevailing con-

sumption patterns in their sphere of influence. It is not only able to support the identification of 

strategies tailored to specific regions and different household types, but can also be regarded as a 

virtual platform for scenario analysis. Finally, it also constitutes a starting point for more detailed 

investigations to understand today’s consumption patterns and is open for further developments 

and extensions. 
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A.1 MAP OF THE MUNICIPALITY OF ZERNEZ 

The map below shows how the municipality of Zernez is situated within Switzerland and details 

the area of Zernez’s core village. Map information is provided by swisstopo (2014) [1] and Wag-

ner et al. (2015) [2]. 
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A.2 HOUSEHOLD CONSUMPTION MODEL OF SANER ET AL. 

(2013) [3] 

A.2.1 Model Description 

Figure A.1 illustrates a simplified flow chart of the household consumption model according to 

Saner et al. (2013) [3]. The model estimates the space heating demand for each residential build-

ing by means of simplified heat balances according to the Swiss Standard SIA 380/1 (SIA 2009) 

[4] and based on the Swiss Federal Register of Buildings and Dwellings (BFS 2013) [5], building 

specific statistics (e.g. Wallbaum et al. 2010) [6] as well as on climatic data (METEOTEST 2012) 

[7]. Domestic hot water needs and electricity demand are covered by default values provided by 

the SIA 380/1. 

 

Figure A.1: Simplified flow chart of Saner et al. (2013)’s household consumption model  
[3]. 

The land-based mobility demand is assessed based on the simulation results of MATSim (Multi-

Agent Transport Simulation) (Meister et al. 2010 [8]; Balmer et al. 2006 [9]). MATSim is an agent-

based traffic model which simulates the mobility behavior of the Swiss population by means of 

data from the National Census (BFS 2000) [10] and the Mobility and Transport Microcensus of 
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Switzerland (BFS and ARE 2012) [11]. The MATSim-results provide information on chosen traf-

fic modes and driven kilometers for each agent. 

The agents are then matched with household members based on the personal characteristics pro-

vided by the National Census (BFS 2000) [10] in order to derive the household’s mobility de-

mand. Furthermore, the model assigns households to appropriate apartments in order to associ-

ate housing demand with a specific household. 

Finally, environmental impacts of households are assessed based on the ecoinvent-database 

(ecoinvent Center) [12]. 

A.2.2 Results of Saner et al. (2013)’s Model [3] 

By quantifying the environmental impacts for each household, this model is capable of capturing 

the variability of individual households’ behavior. Figure A.2 reveals that in Zernez approximately 

26% of the households with the largest impacts are responsible for about 50% of the greenhouse 

gas (GHG) emissions stemming from housing and mobility. 

 

Figure A.2: Life cycle GHG emissions induced by the mobility and housing demand of 
individual households according to Saner et al.  (2013)’s model [3]. 

Figure A.3 depicts separately the results of the application of Saner et al. (2013)’s model [3] to 

Zernez for housing and mobility. 
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Figure A.3: Life cycle GHG emissions of individual households according to Saner et al.  
(2013)’s model [3] caused by the consumption areas of housing (a) and mobil i-
ty (b). 

In Figure A.4, the model results presented in Figure A.2 and Figure A.3 are normalized by the 

respective household size. These allows for a more intuitive comparison of the behavior of indi-

vidual households. 

 

Figure A.4: Per-capita-life cycle GHG emissions of individual households induced by 
housing and mobility (a) and separately presented for housing (b) and mobil i-
ty (c). 
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The model of Saner et al. (2013) [3] estimates the per capita consumption-induced mobility GHG 

to be 2.2 t CO2-eq per year (Figure A.4). The model only considers land-based mobility. Subtract-

ing air travels, mobility GHG estimated for Zernez and for Switzerland (Jungbluth et al. 2012 

[13]) both amount to about 2.1 t CO2-eq per person and year. This accordance of the study re-

sults and the model prediction gives confidence to use Saner et al. (2013)’s [3] approach for fur-

ther analyses. 

A similar conclusion can be drawn by the comparison of housing energy emissions. The model of 

Saner et al. (2013) [3] computes 1.6 t CO2-eq per year as the average residential energy GHG 

emissions per person, while the presented carbon footprint study found 1.2 t CO2-eq/(cap·yr) 

(cf. Figure 2.2 in Chapter 2). 

 

Figure A.5: Simplified illustration of the outcomes of the cluster analysis applied to r e-
sults of Saner et al. (2013) [3]’s model. The size of the circles is proportional 
to the number of households in a certain cluster. It has to be pointed out that 
the clusters A – F are only of an indicative nature suggesting how the hous e-
holds tend to behave in a certain cluster.  
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We took further advantage of the model’s ability to assess environmental impacts on a household 

level and conducted a cluster analysis on the basis of the model results. This cluster analysis was 

carried out analogously to the one presented in Saner et al. (2013) [3] and is illustrated in a simpli-

fied manner in Figure A.5. 

According to the model-based cluster analysis, oil boilers and apartment area per person are the 

most important factors regarding housing GHG. In terms of mobility, the GHG emissions of 

clusters B and D are mainly induced by commuting. Cluster A shows high mobility GHG as well. 

This cluster exclusively comprises retired persons which cover their large demand for recreational 

traffic and for shopping by car. 

It has to be pointed out that the model might deviate strongly from reality for some individual 

households, but it is capable of reproducing the statistical properties of the behavior of the en-

tirety of all households. 

A.3 COMPARISON OF THE CONSUMPTION-BASED CARBON 

FOOTPRINT (CBF) OF ZERNEZ WITH THE NATIONAL CBF 

OF SWITZERLAND 

The consumption-based carbon footprint (CBF) of Zernez is compared to the Swiss national 

CBF according to Jungbluth et al. (2012) [13] in Figure A.6. Note that in Figure A.6 the original 

categories used by Jungbluth et al. (2012) [13] were re-ordered and renamed in order to match the 

categories used in the present study. Even though the subdivision into different emission catego-

ries is similar in both studies, two major differences have to be kept in mind for an in-depth 

comparison. First, Jungbluth et al. (2012) [13] did not distinguish between residential energy and 

drinking water system, wastewater treatment and waste management. For Zernez, these two categories were 

thus summed up in order to form the category housing. 

Second, Jungbluth et al. (2012) [13] had a separate category “hotel and restaurant industry”. In 

Figure A.6 this category was fully assigned to the category services for the Swiss CBF. While vaca-

tions and leisure activities can also be found in the category services for Zernez, food eaten in a 

restaurant or hotel are allocated to the category food in the CBF of Zernez. 

The biggest differences are for housing, which is discussed in Chapter 2, followed by food and ser-

vices. Those are – just as mentioned in Chapter 2 – partly explainable by different methodological 

approaches, but also by the aforementioned differences in allocation of emissions to emission 

categories. In contrast to all other categories, these reasons play indeed an important role for 

services. However, there are more reasons for the differences. For instance, the age group of 18- to 

24-aged persons is – compared to the national average – underrepresented in Zernez (AWT 2010 

[14]). However, according to BFS (2011) [15] this age cohort covers the largest distances and 

often undertakes air travels. Therefore, emissions due to vacations are lower for Zernez com-

pared to the Swiss average (see also section 2.2.3.7 (Services: Leisure Activities and Communications) in 

Chapter 2 for a description of how emissions from vacations were determined). 
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Figure A.6: Comparison of the per-capita consumption-based carbon footprint (CBF) of 
Zernez with the national CBF of Switzerland according to Jungbluth et al. 
(2012) [13]. Please note that the difference in the category consumables is due 
to rounding differences.  
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A.4 BUILDING ENERGY SYSTEM 

A.4.1 Energy Flows of the Building Stock 

Table A.1 and Figure A.7 are based on the building database (Wagner et al. 2015) [2] which was 

established during the project Zernez Energia 2020 (see also section A.5 Description of Bottom-Up 

Data from Wagner et al. [2] in this Appendix) and show the energy flows within the building stock 

of Zernez in detail. 

Table A.1: Energy balance for the building stock of Zernez based on Wagner et al. (2015) [2]. 
An illustration of these energy flows is given by a Sankey-diagram in Figure A.7. 
[WWTP = Wastewater Treatment Plant].  
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Figure A.7: Sankey-diagram illustrating the energy flows within Zernez’s  building stock 
based on Wagner et al. (2015) [2]. Detailed information on the energy flows is 
provided in Table A.1. [WWTP = Wastewater Treatment Plant].  
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A.4.2 Derivation of the Trans-Boundary Community-Wide Infrastructure Footprint 

of the Building Energy System 

A “trans-boundary community-wide infrastructure footprint” (CIF) provides urban planners and 

infrastructure managers with a holistic view by considering local activities (similar to purely geo-

graphical accounting (PGA)) but from a life cycle perspective (similar to CBF). This approach is 

useful for infrastructure, which is not only constructed to serve residents but also local businesses 

and industries (Chavez and Ramaswami 2013) [16]. Having identified the building stock as an 

important area of action for the municipality of Zernez, a CIF of the building energy system con-

stitutes thus an important planning basis. 

In order to deduce the CIF for the building energy system for Zernez, embodied, direct and ex-

ported emissions of the residential energy category as well as of all building-related activities of the 

categories public services, education and health care, services: leisure activities and communications, and local 

trade and industry were summed up (cf. also corresponding sections Chapter 2). Finally, re-exported 

emissions induced by the operation of buildings were added. The resulting CIF is presented in 

the bottom right corner of Figure 2.3 in Chapter 2. 

A.5 DESCRIPTION OF BOTTOM-UP DATA FROM WAGNER ET AL. 

(2015) [2] 

The present study is largely based on the bottom-up data which is described and presented in 

aggregated form in Wagner et al. (2015) [2]. From this data collection, we specifically used the 

following five datasets: the building database, electricity bills, operation information of the district 

heating network, waste statistics, and the data from the forestry administration. The available data 

and the attributes of these datasets will be explained in the following. 

The building database was the most important data source. This database comprises all buildings 

in Zernez and was established based on interviews, surveys, electricity bills, and operation infor-

mation of the district heating network. Table A.2 provides an overview of the attributes available 

in the building database. 

Even though the operation information of the district heating network and the electricity bills 

were integrated in the building database, we still needed the original information from these two 

sources for the quantification of some activities in Zernez. For instance, the distinction of energy 

consumption by residential and different commercial activities could only be retrieved from the 

electricity bills and the operation information of the district heating network, but not from the 

building database which supplies data on a building level. The available operation information of 

the district heating network and the attributes of the electricity bills are described in Table A.3 

and Table A.4. The final energy consumption of commercial activities was further used to set up 

a census of enterprises (see A.6 Census of Local Enterprises in this Appendix). 

Furthermore, available statistics pertaining to the municipal waste management is described in 

Table A.5, while data from the forestry administration is characterized in Table A.6. 
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Table A.2: Original and translated attributes available in the building database accor d-
ing to Wagner et al. (2015) [2]. One building was randomly chosen and is pre-
sented in this table in order to illustrate the entries of the database. Due to 
data privacy protection some attributes were replaced by “xxx”.  

Attributes (original name) Attributes (translated) Building XXX (example) Building … 

ID Identification Number of Building xxx … 

Bemerkung_Allgemein Remarks - … 

Nutzung Use Wohnen … 

Adresse Address (Street) xxx … 

Bezeichnung Name xxx … 

Gebäude_Nummer Building Number xxx … 

Nummer Address (Number) xxx … 

Bewohnt Occupied [yes/no] ja … 

Anzahl_Einwohner Number of Inhabitants 7 … 

Anzahl_Wohneinheiten Number of Apartments 3 … 

Stockwerke_ohne_UG_ Number of Floors (w/o Basement Floor) 1.5 … 

UG_Untergeschoss_ Basement Floor [0/1] 1 … 

BGF_Bruttogeschossfläche__m2____0_10_Konstruktion_und_ohne_UG_ Gross Floor Area (w/o Basement Floor) in m2 540 … 

EBF_Energiebezugsfläche_m2_ Energy Reference Area in m2 324 … 

System_für_Warmwasser_WW_ 
Type of Domestic Hot Water System Boiler - Solarthermie + 

Elektrisch + Holz … 

Lage_des_WW_Systems Position of Hot Water System zentral - beim Heizsystem … 

Einbaujahr_Heizsystem Year of Installation of Heating System 1981 … 

Heizsystem Type of Heating System Elektrisch oder Elektrisch/Holz … 

Wärme_Abgabesystem_zum_Beispiel_Heizkörper_Fussbodenheizung_ Type of Heat Distribution System Elektroheizung … 

Verbrauch_Öl_Liter_a_ Amount of Fuel Oil Used in liters/a - … 

Verbrauch_Holz_Pellets_m3_a_ Amount of Wood Chips Used in m3/a 10 … 

Verbrauch_Holz Amount of Log Wood Used in m3/a - … 

Produktion_Wärmepumpe_Falls_ablesbar_in_kWh_a_ Heat Production by Heat Pumps in kWh/a - … 

Zusätzliche_Wärmeproduktion_mit_Kamin_Ofen 
Additional Heat Production (e.g. Solar Thermal Systems, Wood Log 
Heating) 

Solar, Ofen 
… 

Winter_Hochverbrauch_Strom__kWh_a_ Electricity Consumption During Wintertime in kWh/a 44212 … 

Sommer_Niederverbrauch_Strom__kWh_a_ Electricity Consumption During Summertime in kWh/a 10906 … 

Gesamt_Stromverbrauch_10_2010_10_2011_kWh_a_ Total Electricity Consumption 55118 … 

Eigene_Stromproduktion_Photovoltaik_Blockheizkraftwerk_Biogas_in_ 
kWh_a_ 

Electricity Production (e.g. Photovoltaic Cells, CHP at Biogas Plant) 
Keine 

… 

Verbrauch_Wärmepumpe_Falls_ablesbar_in_kWh_a_ Electricity Consumption by Heat Pumps in kWh/a - … 

Verbrauch_Gas_m3_a_ Gas Consumption in m3/a - … 

Lüftung_WRG_Wärmerückgewinnung_ Type of Ventilation System Keine … 

Baujahr_1872_Brand_ Year of Construction 1981 … 

Denkmalschutz_Erhaltungsbereich Class of Monument Protection Nein … 

Zustand Condition (of the Built Volumes) gut … 

Bauweise Construction Type / Architectural Style Massivbauweise … 

Traufhöhe_m_ Eaves Height in m 5+7 … 

Fassadekonstruktion Type/Materials of Facades Verputzt - Mauerwerk … 

Fassaden_Dämmung_cm_ Insulation of Facades in cm 10 … 

Fassadenfarbe Color of Facades rose … 

Letzte_Sanierung_Jahr_ Last Refurbishment 2010 … 

Sanierte_Bauteile Refurbished Building Components Heizsystem … 

Fensteranteil_Prozent_ Share of Window Area in % 15 … 

Fensterart Type of Windows zweifach verglast … 

Fensterrahmen Type of Window Frame Holz … 

Anschluss_Strom Connection to Electricity [yes/no] ja … 

Anschluss_Wasser Connection to Water [yes/no] ja … 

Anschluss_Fernwärme Connection to District Heating Network [yes/no] nein … 

Anschluss_Gas Connection to Gas [yes/no] nein … 

Dachform Type of Roof Giebeldach … 

Dacheindeckung Roof Covering Eternit - Schindel … 

Fläche_Solarthermie_WW_m2_ Area of Solar Thermal System in m2 - … 

Verbrauch_Fernwärme_für_Zeitraum_04_2010_04_2011__kWh_a_ Consumption of Heat from District Heating Network in kWh/a - … 

Dachneigung_°_geschätzt_ Roof Inclination (estimated) 30 … 

Dachausrichtung_Sonne Roof Orientation to Sun Südost … 

Gesammte_Dachfläche_nach_Himmelsrichtung_m2_ Total Roof Area Depending on Orientation in m2 100 … 

Gebäudetyp Building Type Wohnhaus … 

Anteil_Konstruktion Share of Construction in Gross Floor Area 17 … 

Nettogeschossflaeche Net Floor Area   … 

Eigentümer Owner xxx … 

Adresse_Eigentümer Address of Owner xxx … 

Nummer_Eigentümer Identification Number of Owner 31D … 

Wohnort_Eigentümer Owner's Place of Residence xxx … 

GGF_Gebäudegrundfläche_Gesamte_Parzelle__m2_ Total Area of Building Footprints in the Parcel in m2 256 … 

Parzellen_Nummer Identification Number of Parcel xxx … 

Parzellenfläche_m2_ Area of Parcel in m2 2081 … 

Bauzone Construction Zone W3 - Wohnzone 3 … 

Letzte_Bearbeitung Last Modification (of Entry) xxx … 

Letzte_Aktualisierung Last Update (of Entry) xxx … 
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Table A.3: Original and translated attributes of the operation data of the district heating 
network according to Wagner et al.  (2015) [2]. 

Supply of Wood Chips 
 

  Attributes (original name) Attributes (translated) 

data quint Date 

furnitur Name of Wood Chips Supplier 

import Costs 

quantità Supplied Amount of Wood Chips 

  Supply of Consumers with Heat 

  Attributes (original name) Attributes (translated) 

nom Name of Consumer 

kWh Supplied Heat in kWh/a 

tariffa Price per kWh 

total Total Price 

 

Table A.4: Original and translated attributes of the available electricity bills according to 
Wagner et al. (2015) [2]. 

Attributes (original name) Attributes (translated) 

Abo-Nr Identification Number 

Name Name 

Objekt Object 

Strasse Address (Street) 

Ort Location 

Hoch-Verbrauch Consumption of Electricity (High-Rate Tariff) 

Nieder-Verbrauch Consumption of Electricity (Low-Rate Tariff) 

Total-Verbrauch Consumption of Electricity (Total) 

 

Table A.5: Original and translated attributes of the municipal solid waste statistics a c-
cording to Wagner et al.  (2015) [2]. 

Attributes (original name) Attributes (translated) 

Gemeinde Municipality 

Jahr Year 

Gewicht Kehricht (to) Weight of Municipal Solid Waste in Tons 

Sammelzeit (min) Collection Time in Minutes 

km Distance Driven for Collection in km 

Karton (to) Cardboard in Tons 

Papier (to) Waste Paper in Tons 

Glas (to) Waste Glass in Tons 

Totalgewicht (to) Total Weight in Tons 
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Table A.6: Original and translated attributes of the statistics provided by the forestry 
administration according to Wagner et al.  (2015) [2]. 

Attributes (original name) Attributes (translated) 

Waldfläche (nur Hochwald) Forest Area (only timber forest) 

Zuwachs Brutto (m3/ha/Jahr) (Waldinventur 2010/11) Gross Growth Rate in m3/ha/yr 

Zuwachs Brutto (m3/Jahr) Gross Growth Rate in m3/yr 

Vorratsabbau Decrease in Stock 

Zuwachs Schaftderbholz in Rinde Gain of Merchantable Wood Under Bark 

Verkauf Sales (in m3) 

Eigengebrauch Wood for Own Use (in m3) 

Liegengelassen Left in Forest (in m3) 

Total Total (in m3) 

Verbrauch an Diesel Amount of Diesel Used 

Verbrauch an Petrol Amount of Petrol Used 

 

  



 
A.6 Census of Local Enterprises 

147 

A.6 CENSUS OF LOCAL ENTERPRISES 

In the scope of the present study, a detailed census of all enterprises which are located within the 

geographical system boundaries was compiled. This census encompasses the following infor-

mation: 

 Name of company 

 Building identification number (to match with the building database (see Table 

A.2)) 

 Electricity consumption (see also Table A.4) 

 Fuel oil consumption (see also Table A.2) 

 Heat bought from the district heating network (see also Table A.3) 

Table A.7 provides an overview in terms of number and types of different enterprises in Zernez. 

Table A.7: Statistical overview of different enterprise types in Zernez. 

Type of Enterprise Number of 
Companies 

Agricultural Enterprises 20 

Forestry 1 

Mining and Quarrying 1 

Manufacturing of Wood Products, Metal Products, Furniture and Other Products 4 

Electricity Supply 1 

Wastewater Treatment 1 

Waste Management 1 

Construction Companies (incl. Specialized Companies and Architectural/Engineering Enterprises) 16 

Trade and Repair of Motor Vehicles 2 

Wholesale Trade 3 

Retail Trade 10 

Transport Companies and Transport-Related Companies (incl. Service Stations) 5 

Postal and Courier Activities 3 

Accommodation (e.g. Hotels) 13 

Restaurants 2 

Financial Services 3 

Travel Agencies 2 

Public Administration 5 

Education 2 

Human Health Activities 2 

Cultural Activities 2 

Churches 1 

Other Services 3 
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A.7 DETAILED LIST OF MODELED ACTIVITIES FOR THE AS-

SESSMENT OF GREENHOUSE GAS EMISSIONS 

 C
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A.8 OVERVIEW OF ASSUMPTIONS FOR THE EMISSION CLASSIFI-

CATION 

Table A.8 summarizes the most important assumptions which were used to allocate the emis-

sions of a certain category to either “imported/embodied emissions”, “local emissions from local 

demand” or “local emissions from export” (cf. Figure 2.1 in Chapter 2). This table is meant to be 

a complement to the explanations in section 2.2.3 Quantification and Modeling of Activities in Chapter 

2. It shall be pointed out that only the most important data sources which are helpful to under-

stand the emission classification approach are mentioned in Table A.8 (see Table 2.1 in Chapter 2 

for a full list of data sources which were used for the quantification and greenhouse gas assess-

ment). 
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Table A.8: Overview of the most important assumptions for the classification of emis-
sions of different categories into “imported/embodied emissions”, “local 

emissions from local demand” and “local emissions from export”.  

Category Emission Classes 

  
Imported / embodied 

emissions 
Local emissions from local 

demand 
Local emissions from 

export 

Food Consumption 
- Assumption: food consu-
med by residents is imported 

- - 
  
Residential Energy 

- Upstream emissions ac-
cording to ecoinvent Center 
(2013) [12] 

- Local emissions estimated by 
BDB, OI DHN, EB (Wagner et 
al. 2015 [2]) and according to 
ecoinvent Center (2013) [12] 

- Electricity production 
by photovoltaic cells 

  

  
  - Local production of wood 

chips 
  

    - Local electricity production   

  
  - Heat production by biogas 

plant 
  

Mobility 
- Computation of total mo-
bility CBF based on 
Microcensus (ARE et al. 
2012 [27]) minus local emis-
sions from local demand 

- Rough estimation of trips 
within system boundaries by 
means of Microcensus (ARE et 
al. 2012 [27]) 

- Computation of total 
mobility PGA based on 
automatic traffic coun-
ters minus local emissi-
ons from local demand 

  

  

Drinking Water &  
- Upstream emissions ac-
cording to ecoinvent Center 
(2013) [12] 
- Emissions from waste 
treatment 

- Local emissions estimated by 
OI WWTP (Filli 2014 [20]), 
BDB, EB (Wagner et al. 2015 
[2]) and according to ecoinvent 
Center (2013) [12] 

- Wastewater System &  

Waste Management 

Public Services & 
- Total CBF of public ser-
vices & health care estimated 
by Jungbluth et al. (2011) 
[21] minus local emissions 
from local demand 

- Local emissions estimated by 
BDB, OI DHN, EB (Wagner et 
al. 2015 [2]), census of enterpri-
ses and according to ecoinvent 
Center (2013) [12] 

- Health Care 

  

Consumables 
- Assumption: all consumab-
les consumed by residents 
are imported 

- - 
  

Services: 
- Upstream emissions ac-
cording to ecoinvent Center 
(2013) [12] 
- Vacations 
- Assumption: emission from 
newspaper production are all 
released outside Zernez 
- Assumption: emission from 
communications are all re-
leased outside Zernez 

- Local emissions estimated by 
combination of information 
from Microcensus (ARE et al. 
2012 [27]), census of enterprises, 
interviews and BDB, OI DHN, 
EB (Wagner et al. 2015 [2]) 

- 

Leisure Activities & 

Communications 

  

Agriculture & Forestry 

- 

- Local emissions from produc-
tion of wood chips for residents 
is already considered in the 
residential energy category 

- All forestry and agri-
cultural products are 
exported 

  

Local Trade & Industry 
- 90% (assumption based on 
Zhang et al 2013 [28]) of 
emissions from housing 
construction according to 
Jungbluth et al. (2011) [21] 
- Upstream emissions from 
the activities of the Swiss 
Post according to ecoinvent 
Center (2013) [12] 

- Local emissions from the acti-
vities of the Swiss Post accord-
ing to ecoinvent Center (2013) 
[12] 
- 10% (assumption based on 
Zhang et al 2013 [28]) of emissi-
ons from housing construction 
according to Jungbluth et al. 
(2011) [21] 

- Local emissions esti-
mated by BDB, OI 
DHN, EB (Wagner et 
al. 2015 [2]) and census 
of enterprises 
- Emissions from gra-
vel quarry 

  

  

Definitions: 
   BDB = building database; OI = operation information; DHN = district heating network; EB = electricity bills; 

CBF = consumption-based footprint; PGA = purely geographic accounting; WWTP = wastewater treatment plant;  
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B.1 COMPUTATION OF THE EMPIRICAL DATABASE RANGE 

In order to evaluate the housing energy demand model of Saner et al. (2013) [1], the model re-

sults were compared with final energy consumption data collected within the project Zernez 

Energia 2020 (ETHZ and Zernez 2015 [2]). For this comparison, the amounts of energy carriers 

had to be converted to net energy demand required for space heating. Figure B.1 explains in 

detail how we proceeded for this conversion per building. This procedure was applied to all 133 

case-study buildings.  



 
B.1 Computation of the Empirical Database Range 

157 

 

Figure B.1: Schematic description of the derivation of the empirical database range for 
one building. This procedure was applied to all 133 case-study buildings. 
Amounts of energy carriers and energy demands refer to annual values.  



Appendix B - Assessing Space Heating Demand on a Regional Level: Evaluation of a 
Bottom-Up Model in the Scope of a Case Study 

158 

B.2 MODEL DESCRIPTION 

The housing energy demand model of Saner et al. (2013) [1] is based on the Swiss Standard SIA 

380/1 (SIA 2009 [6]) and establishes heat balances for each building according to equation (3.1) 

in Chapter 3. 

Besides SIA 380/1, three main sources supply input data to the model: Meteonorm (METE-

OTEST 2012 [7]), the Swiss Federal Register of Buildings and Dwellings (FRBD) (BFS 2013 

[8]) and building-specific statistics such as the analyses of Wallbaum et al. (2010) [9]. Meteonorm 

version 7 (METEOTEST 2012 [7]) is capable of generating climatological data of a typical year 

for any location in the world. This software was thus used for data on hourly outdoor tempera-

tures as well as direct horizontal and diffuse horizontal radiation in Zernez. The FRBD contains 

up-to-date building-specific data about each residential building in Switzerland, including in-

formation about geographical coordinates of the building, construction year, construction peri-

od, building area, number of stories, number of apartments, area of each apartment, number of 

rooms of each apartment, heating and hot water system as well as corresponding energy carri-

ers. The data from FRBD was combined and enhanced with statistical data provided by 

Wallbaum et al. (2010) [9], who assessed various aspects of four different building components 

(roof, walls, floor and windows) encompassing refurbishment rates, U-values (heat transfer co-

efficients), and g-values (solar energy transmittance of windows) and referred their findings to 

the construction year of a building as well as to the year of renovation of the respective building 

component. In order to determine the different terms of the energy balance in equation (3.1), 

the surface areas of these four components (roof, walls, floor and windows) have to be known 

for each building. Unfortunately, information about the shape of buildings is not available in the 

FRBD. Therefore, each building is assumed to be a cube with a base area corresponding to the 

sum of all apartment areas divided by the number of stories. The building surface is then de-

rived by the multiplication of this bottom area with a correction factor and a building envelope 

factor (Wallbaum et al. 2010 [9]; Dettli et al. 2007 [10]). The subtraction of floor and roof areas, 

which both equal the base area, from the building surface results in the façade area. Finally, the 

share of window area is assumed to be 18% (Jagnow et al. 2002 [11]) in order to split the façade 

area into window and wall area. 

Based on these assumptions and data sources, the different components of equation (3.1) can 

be derived. While QiP and QiEl are estimated by standard values provided by SIA 380/1, the de-

termination of the solar gains is more complex: The total area of the windows is deduced by the 

aforementioned assumptions, glass properties are extracted from Wallbaum et al. (2010) [9] by 

means of the construction year which is provided by the FRBD, and shading of nearby build-

ings is taken into account by geographical coordinates given in the FRBD and according to the 

SIA 380/1. Finally, relevant climatic data was extracted from the software Meteonorm (METE-

OTEST 2012 [7]). The sum of all thermal gains is multiplied by ηg which is the degree of utiliza-

tion for heat gains and depends on the thermal storage capacity of the building mass (SIA 2009 

[6]). 
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Table B.1: Overview of stochastically modeled parameters for the computations of the 
space heating demand in the simplified model (table adapted from Saner et 

al. (2013) [1]). [CoV = Coefficient of variation] 

Variable name Remarks   Distribution type   Parameter CoV 

Room temperature Average room temperature  normal  =20°C, =2°C 0.1 

Deviation from 
south 

Deviation of a building facing to-
wards south 

 normal  =0°, =9° 0.2 

Thermal storage 
capacity 

Thermal storage capacity of a build-
ing mass (SIA 2009 [6]) 

 triangular  mean=0.4, 
min=0.1, 
max=0.5 

 

Temperature con-
trol 

Addition to room temperature due 
to inadequate control of room tem-
perature (SIA 2009 [6]) 

 triangular  mean=1°C, 
min=0°C, 
max=2°C 

 

Mechanical ventila-
tion 

Share of buildings with mechanical 
ventilation 

 according to Salvi et 
al. (2010 [12]) 

   

Renovation type Determines the refurbished compo-
nent for buildings where a renova-
tion period is indicated in the FRBD 

 uniform  min=0, max=1  

Roof type Slanted roof or flat roof  discrete uniform  min=0, max=1  

Roof inclination Inclination of slanted roofs  normal  =30°, =6° 0.2 

Time of refurbish-
ment of roof 

  according to 
Wallbaum et al. 
(2010) [9] 

   

Time of refurbish-
ment of walls 

  according to 
Wallbaum et al. 
(2010) [9] 

   

Time of refurbish-
ment of floor 

  according to 
Wallbaum et al. 
(2010) [9] 

   

Time of refurbish-
ment of windows 

  according to 
Wallbaum et al. 
(2010) [9] 

   

Share of window 
area 

Window area divided by total façade 
area (Jagnow et al. 2002 [11]) 

  normal   =0.18, =0.036 0.2 

 

 

Transmission losses are estimated by means of heat transfer coefficients (U-values) for walls, 

roof, floor, and windows, the corresponding component area and the temperature gradient 

through the building envelope. The U-values are retrieved from Wallbaum et al. (2010) [9], 

while the areas of the components are estimated by the FRBD combined with the above men-

tioned assumptions. Finally, calculations for ventilation losses (QV) draw on hourly differences 

between outdoor and ambient room temperature as well as on standard values for hourly air 

exchange flows (SIA 2009 [6]). 
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Figure B.2: Simplified flow chart of the housing energy demand model of Saner et al. 
(2013) [1]. The dices stand for the stochastically modeled parameters of Ta-
ble B.1. The variables denote the following: Qh = space heating demand; QT 
= transmission losses; QV = ventilation losses; ηg = degree of utilization for 
heat gains; Qs = solar gains; QiP = internal gains due to occupancy; QiEl = in-
ternal gains due to electricity use; T i = indoor temperature; Ta = outdoor 
temperature; A j = area of component j; Uj = heat transfer coefficient of com-

ponent j; V = hourly air exchange; a = density of air; ca = specific heat ca-
pacity of air; Gs,j = hourly global solar radiation for façade j; Aw,j = window 
area of façade j; fs,j, fF = reduction factors for shading of buildings and wi n-
dow frame; g = solar energy transmittance of windows; QEl = electricity de-
mand; fEl = reduction factor; AE = heated floor area. 
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As mentioned in Chapter 3, Latin Hypercube sampling was applied to capture the uncertainty 

and variability of parameters for which assumptions had to be taken. Table B.1 was adapted 

from Saner et al. (2013) [1] and gives an overview of all parameters that were modeled stochas-

tically. Contrary to Saner et al. (2013) [1], Table B.1 shows only variables used for modeling 

space heating demand and lists neither parameters used for estimating hot water production, 

electricity demand nor for assigning demands to specific households. 

The flow chart in Figure B.2 illustrates in a simplified manner how the different model compo-

nents interact in order to calculate the space heating demand of a certain building. The dices 

symbolize the stochastically modeled parameters listed in Table B.1. 

B.3 MODEL RESULTS FOR SINGLE BUILDINGS 

The Latin Hypercube sampling results in distributions of the estimated space heating demand 

for each single building. Three examples for randomly chosen buildings are depicted in Figure 

B.3. 

 

Figure B.3: Normalized frequency distributions of the space heating demand estima-
tions for three randomly chosen buildings (applying “Sturges’ Rule” (Sturg-
es 1926 [13])). The simulation results of each building were normalized with 
the respective average prediction. 

Figure B.3 reveals two important aspects. On the one hand, large variations in the predictions 

can be observed for some buildings (e.g. building 3 in Figure B.3), whereas the frequency distri-

bution of others is rather narrow (e.g. building 2 in Figure B.3). A slight tendency for newer 

buildings to feature lower coefficients of variation than older ones was observed. This might 

arise from the fact that the time of refurbishment of a building component is modeled stochas-

tically. Thereby, older buildings may introduce larger uncertainties by offering a larger time span 
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in which refurbishments could take place compared to recently erected buildings. This conclu-

sion is also supported by the results of the global sensitivity analysis. The two peaks in the fre-

quency distribution of building 3 are probably also due to this effect since this building was 

constructed in the year 1600. On the other hand, the frequency distributions illustrate that the 

demand predictions are generally not normally distributed, although the building-wise compari-

son of the average with the median of the sample estimates revealed that these two indicators 

are close to each other. The maximum deviation of the median from the average is 10%, while 

in 90% of the cases the deviation amounts to less than 5% (mostly even less than 1%). There-

fore, the conclusions are likely to stay the same regardless of the choice between these two sta-

tistical indicators. For the comparisons with primary data, it was decided to take the average of 

the space heating demand estimates. 

B.4 GLOBAL SENSITIVITY ANALYSIS 

Figure B.4 gives a full overview of the results of the global sensitivity analysis. In this figure, 

green box plots symbolize the results for parameters which were explicitly sampled by the Latin 

Hypercube simulation and correspond to Table B.1. Red boxes however stand for parameters 

which are not directly varied by the model but which are in direct dependence of model param-

eters and which can help to better understand the results of the global sensitivity analysis. For 

instance, room temperature as well as temperature control were sampled. The sum of these two 

parameters is the effective indoor temperature which actually enters the model computations 

and which is much easier to interpret than its separated constituents. Similarly, this applies to 

the time of refurbishment of a certain component (roof, floor, walls, and windows). While the 

time of refurbishment is actually subjected to Latin Hypercube sampling, this parameter is 

harder to interpret from an intuitive point of view than for instance a U-value which directly 

depends on the time of refurbishment. 

Figure B.4 suggests that the model results are most sensitive to effective room temperature and 

U-values of walls. Though, according to the box plots,  of the wall’s U-value can become zero 

and  of room temperature is close to zero for some buildings. The question arises whether one 

of these two parameters is always important to the model result of a certain building. Figure B.5 

shows that there is a negative correlation between the  of these two parameters and that in all 

cases at least one of these two parameters takes a relatively large value compared to all other 

parameters. In Figure B.6, the -values of the wall’s U-value and of the effective room tempera-

ture are sorted by the age of the corresponding building. It becomes obvious that the model 

results of old buildings are dominated by the U-values of walls while effective room tempera-

ture is more important for heat demand predictions for new buildings. 
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Figure B.4: Resulting distributions of the density-based sensitivity measure  for differ-
ent model parameters after applying Plischke et al.’s approach (Plischke et 
al. 2013 [14]) to the 133 case-study buildings. Green boxes correspond to the 
model parameters of Table B.1 (directly varied by Latin Hypercube sam-
pling), while red boxes symbolize derived parameters which directly depend 
on model parameters.  

 

Figure B.5: -values for U-values of walls against -values for the effective room temper-
ature. See text, Table B.1 and Figure B.4 for more information.  
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The s of the U- and g-values of all components are depicted in Figure B.7, again sorted by the 

building’s age. In this figure, one can observe that  decreases in distinct steps. These drops are 

in line with the steps of U-values in the statistical database of Wallbaum et al. (2010) [9]. Old 

buildings offer a large time span in which refurbishments can take place. Therefore, U-values 

will spread over a large range of values. For new buildings however, the possible range of U-

values is much more restricted. The most extreme case in this regard is a building constructed in 

the year 2010. For such a building, no refurbishment can be modeled and hence the U-values 

will stay the same for all 1000 model runs. As a consequence, U-values are not thought to influ-

ence the model predictions of new buildings and the corresponding  becomes zero. 

 

Figure B.6: -values for U-values of walls and for effective room temperature sorted by 
the construction year of the corresponding buildings.  

As a conclusion, one can state that the applied restriction of the Latin Hypercube sampling to 

building-specific properties has direct consequences on which parameters are important for the 

model predictions of which building. This effect cannot only be observed for U-values and ef-

fective room temperature, but also for other parameters. For instance, mechanical ventilation is 

just important for newer buildings since this parameter is only allowed to be non-zero for build-

ings constructed after 2001. Another example is given by the parameter “renovation type”. This 

parameter only plays a role for buildings for which a renovation period is indicated by the 

FRBD. The specification of the renovation period is not mandatory which is why this entry is 

empty for many buildings in the FRBD. However for those buildings with a renovation period 

indicated, no further information is given about what component was refurbished. The uni-

formly distributed random variable “renovation type” determines therefore the component that 

was refurbished in the indicated renovation period. Consequently,  takes only a non-zero value 

for buildings where a renovation period is given in the FRBD. For these buildings however,  

can become large as “renovation type” directly affects the modeled U-values of components. 
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Figure B.7: -values for U-values of roof, walls, floor, and windows as well as -values 
for the g-values of windows, sorted by the age of the buildings.  

B.5 FURTHER RESULTS 

Figure B.8 supports the conclusions drawn in the context of Figure 3.5 in Chapter 3. Irrespec-

tive of how the buildings are sorted, the cumulative annual heating demand curves are close to 

one another and more or less parallel to each other. 

 

Figure B.8: Cumulative annual heating demand of buildings (empirical database range 
in dark blue). Buildings are in random order in (a), while in (b), buildings 
are sorted by construction year (from oldest to newest date). The cumulative 
curve of the model (red) was built by accumulating the simulated heating 
demands corresponding to the sorted buildings.  
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C.1 STATISTICAL FORMULAS 

For the following formulas x is the measured value whereas y is the simulated value. 

Mean absolute error: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1   (C.1) 

Root mean squared error: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑥𝑖)2
𝑛
𝑖=1   (C.2) 

Mean relative error: 

𝑀𝑅𝐸 =
1

𝑛
∑

𝑦𝑖−𝑥𝑖

𝑥𝑖
∙ 100.0𝑛

𝑖=1   (C.3) 

Mean bias error: 

𝑀𝐵𝐸 =
1

𝑛
∑ 𝑦𝑖 − 𝑥𝑖
𝑛
𝑖=1   (C.4) 

Coefficient of determination: 

𝑅2 = 1.0 −
∑ (𝑥𝑖−𝑦𝑖)

2𝑛
𝑖=1

∑ (𝑥𝑖−�̅�)
2𝑛

𝑖=1

  (C.5) 

C.2 WARM WATER 

In [1] a typical heat demand of warm water of 21 kWh/m2 for single-family houses and 

14 kWh/m2 for multi-family houses is specified. Table C.1 shows the percentage of the warm 

water heat demand to the total building heat demand estimated in [2]. 

Table C.1: Percentage of warm water heat demand to the total heat demand f or different 
building construction periods of single-family houses and multi-family hous-
es. 

Construction period SFH [%] MFH [%] 

< 1919 13.9 9.9 

1919-1945 11.9 9.0 

1946-1960 13.9 9.9 

1961-1970 13.9 10.3 

1971-1980 14.9 10.7 

1981-1985 16.7 12.1 

1986-1990 17.4 13.9 

1991-1995 18.1 14.6 

1996-2000 18.9 17.4 

2001-2005 19.8 17.4 

2006-2010 23.1 21.7 

2011-2015 37.9 39.7 
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C.3 DETAILED RESULTS 

Table C.2: Overview of normalized mean absolute error (MAE%), root mean squared 
error (RMSE%), mean bias error (MBE%) and coefficient of determination 
(R2) for the different building types and construction periods for both space 
heating demand, and space heating demand and warm water heat demand. 

 

 

Age # MAE% RMSE% MRE MBE% R
2

# MAE% RMSE% MRE MBE% R
2

<1919 50 50.1 59.3 71.4 46.6 0.09 101 45.8 54.1 60.8 38.6 0.21

1919-1945 92 49.0 60.9 63.4 42.0 -0.49 155 45.4 56.0 55.9 36.8 -0.20

1946-1960 45 54.3 66.4 70.5 54.1 0.58 89 56.7 70.1 67.5 56.2 0.12

1961-1970 8 30.8 37.2 -15.6 -16.7 -0.27 47 18.7 25.3 -0.4 -2.7 0.00

1971-1980 17 28.0 38.4 7.2 6.2 -0.26 37 24.5 39.5 -0.4 -4.8 0.40

1981-1990 30 27.8 38.3 21.8 11.2 -0.16 51 23.3 31.0 14.7 6.5 0.28

1991-2000 31 35.5 45.6 37.0 25.4 -0.66 48 29.6 38.2 32.6 20.0 0.35

All 273 44.7 56.9 52.6 35.9 0.14 528 39.8 51.8 43.7 28.9 0.13

<1919 199 32.0 41.1 29.6 13.6 0.40 513 26.1 33.1 20.8 7.9 0.53

1919-1945 75 30.5 63.4 29.1 6.8 0.53 241 25.3 41.8 19.3 4.5 0.62

1946-1960 16 27.2 44.1 2.4 -17.4 0.60 36 24.8 37.1 -2.2 -18.0 0.67

1961-1970 2 63.3 82.2 -54.3 -63.3 -0.22 31 35.3 51.3 -24.3 -32.9 0.22

1971-1980 3 41.5 49.0 -14.3 -28.9 0.18 19 28.6 38.2 -16.1 -23.2 0.62

1981-1990 5 39.1 55.8 -35.2 -39.1 0.46 29 32.0 51.1 -24.3 -31.2 0.57

1991-2000 9 38.5 53.4 -21.1 -33.9 0.08 41 25.4 34.3 -17.2 -22.7 0.34

All 309 32.7 55.3 24.6 3.4 0.52 910 26.7 40.3 14.0 -1.6 0.61

<1919 121 26.6 38.4 20.3 3.3 0.59 261 26.9 37.9 15.7 0.0 0.64

1919-1945 31 30.7 55.4 1.7 -15.5 0.61 71 26.0 43.0 7.2 -7.6 0.67

1946-1960 9 26.9 35.6 -1.8 -15.0 0.41 23 51.7 117.1 -16.1 -45.1 0.36

1961-1970 5 34.5 48.7 -31.2 -34.5 -0.29 18 42.0 71.4 -36.1 -42.0 0.22

1971-1980 2 18.8 25.8 44.5 17.6 0.81 11 38.9 57.9 -17.7 -37.1 0.39

1981-1990 6 41.6 58.5 -14.5 -36.9 0.45 16 43.2 72.3 -19.9 -41.0 0.49

1991-2000 1 47.1 47.1 -47.1 -47.1 0.00 7 25.3 33.5 -14.7 -15.5 0.57

All 175 28.6 46.2 13.1 -5.9 0.59 407 33.0 82.0 7.3 -15.6 0.51

<1919 370 31.0 41.6 32.2 11.5 0.56 875 27.3 36.4 23.9 6.6 0.64

1919-1945 198 34.9 67.0 40.7 8.6 0.63 467 28.5 46.3 29.6 6.7 0.70

1946-1960 70 34.9 54.1 45.6 3.8 0.76 148 43.4 142.7 37.5 -16.8 0.52

1961-1970 15 43.6 87.6 -26.0 -41.7 0.42 96 36.2 83.9 -14.8 -33.1 0.55

1971-1980 22 29.6 40.5 7.7 1.0 0.20 67 31.6 62.5 -7.7 -24.1 0.68

1981-1990 41 36.7 83.2 9.6 -24.5 0.72 96 34.1 73.9 -2.8 -28.0 0.68

1991-2000 41 37.6 69.0 22.2 -10.7 0.61 96 26.1 41.5 7.9 -15.0 0.77

All 757 33.2 56.5 32.0 5.4 0.63 1845 30.2 66.5 21.1 -2.8 0.60

Room heat demand Room heat + warm water demand
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Figure C.1: Relative error of simulated heat demand (only space heating and space hea t-
ing + warm water) to the measured consumed energy demand for different 
building types. Sample size n is given below the plots. The boxes indicate the 
interquartile range (IQR) between the first and the third quartile. The whisk-
ers extend until 1.5·IQR. The notches in the boxes indicate the confidence in-
terval for the median. 
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Figure C.2: Comparison of simulated and measured space heating demand for the buil d-
ing types single-family houses (SFH), multi-family houses (MFH), and mixed 
residential usage (MIXED). 
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Figure C.3: Cumulative space heating and warm water demand of simulated (blue) and 
measured (green) heat demand. The 50% and 90% percentile range (PR) of 
simulated heat demand, indicating the interval between the 25% and 75%, re-
spectively 5% and 95% percentiles are shown.  
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C.4 ZERNEZ 

The community of Zernez is located in the Swiss Alps at an elevation of roughly 1500-meter ele-

vation. In Froemelt & Hellweg [3] (Chapter 3), the model of Saner et al. [4] was validated with 

buildings located in Zernez. For completeness we also evaluated our model with this dataset. 

Figure C.4 shows the overview of the measured heat demand normalized by the building volume 

for different construction periods and building types. Thereby the same categories as in Chapter 

4 are used. In Figures C.5 and C.6 it can be seen that the fit of the model is good for construction 

periods after 1960 and not so good for buildings built before 1945. In our model we estimate 

physical properties of building based on the construction period from Wallbaum et al. [5]. It is 

likely that the cohort of buildings used in Wallbaum et al. considerably deviates from the build-

ings found in Zernez. Furthermore, old buildings, especially in rural locations, can include un-

heated spaces such as old stables within the building footprint. This can lead to a significant 

overestimation of our model. 

In Figure C.7 the simulated heat of both our model and the model of Saner et al is compared to 

the measured heat demand. Due to the low sample size it is impossible to make a statement 

which model performs better. 

 

Figure C.4: Violin plots of measured heat consumption of space heat including warm w a-
ter normalized by the building volume above ground for different construc-
tion periods and the building types single-family houses (SFH), multi-family 
houses (MFH), and mixed residential usage (MIXED).  Numbers below the 
violins represent the sample size.  
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Figure C.5: Comparison of simulated and measured space heating demand for different 
construction periods as well as the different building types single -family 
houses (SFH), multi-family houses (MFH), and mixed residential usage 
(MIXED). 
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Figure C.6: Relative error of simulated heat demand (only space heating and space hea t-
ing + warm water) to the measured consumed energy demand for different 
building types and construction periods. Sample size n is given below the 
plots. 
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Figure C.7: Comparison of simulated space heat demand of this work, simulated demand 
from Saner et al. [4] validated in Froemelt & Hellweg [3] (Chapter 3) and 
measured heat demand for the village of Zernez.  
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C.5 BUILDING MATCHING 

This section describes the implemented process to match FRBD building with building foot-

prints. 

C.5.1 Data Sets 

C.5.1.1 Swissboundaries3D 

The Swissboundaries3D [6] dataset contains the area geometries of each municipality in Switzer-

land. Each municipality has an assigned unique id (FOSNR). 

C.5.1.2 Historic Municipality Mutations 

The Swiss Statistical Office provides a regularly updated dataset in XML format with all historic 

municipality mutations since 1960. As municipalities can merge or split, the municipality numbers 

between datasets created at a different time need not be the same. Therefore, we were required to 

update the municipality numbers in all datasets to the current municipality number according to 

the historic municipality mutations. This allows grouping all datasets by the current municipality 

numbers and thus parallelizing the matching process. 

C.5.1.3 Building Footprints 

The cadastral survey building footprints data set contains polygons for every recorded building as 

well as the attributes EGID, FOSNR and date of change. The EGID key can be used to directly 

combine the building with FRBD data points if available. However, as seen in Figure C.8a, the 

EGID is not used in large parts of Switzerland. From 2,990,415 building footprints 35.1% have a 

value for the EGID. 

We also include building footprints from OpenStreetMap and the SwissTLM dataset. These 

footprints do not have an EGID attribute. 

 

 (a) Buildings (b) Building entrances 

Figure C.8: Presence of EGID in the building footprint and building entrances dat aset. 

C.5.1.4 Lots 

For each lot the polygon geometry as well as the attributes LOTNR, FOSNR and date of change 

are available. From 3,426,153 lots 98.4% have a value for the LOTNR. 
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C.5.1.5 Building Entrances 

For each entrance of a building a dataset with point coordinates of the entrances and the attrib-

utes EGID, FOSNR and date of change are available. Multiple building entrance points can be 

located on the same building polygon, as a building can have multiple entrances. The EGID at-

tribute can be used as link to the FRBD data points to the building footprint the entrance point is 

located in. As seen in Figure C.8b the EGID value is not present in every region of Switzerland. 

From 2,134,984 building 48.29% have a value for the EGID. 

C.5.2 Attributes 

This section discusses the relevant attributes of the used datasets shown in Figure C.9. 

 

Figure C.9: Used data sets and relevant attributes.  

C.5.2.1 FOSNR 

Each municipality in Switzerland is represented with a unique identification number (FOSNR). 

When municipalities split or merge the number will be updated. However, no merge of munici-

palities occurred recently. The resulting municipality can either receive a completely new FOSNR 

assigned or reuse one of the numbers assigned to one of the original municipalities. 

C.5.2.2 LOTNR 

Each real estate in Switzerland has an assigned number (LOTNR). A municipality can be divided 

into several zones. This can have historic reasons, such as when municipalities merged in the 

past, the old LOTNR are kept and each zone represents an old municipality. 

C.5.2.3 EGID 

Every building in Switzerland used for habitation is assigned a unique identification number 

(EGID) by the Federal Statistical Office. 

C.5.3 Handling Data Inconsistencies 

Errors or inconsistencies in the data can occur for multiple reasons. Reasons can be that the da-

tasets are managed independently. Thus when a building changes, e.g. when a new building is 

created or an existing extended, this change can be reflected already in one but not necessary all 

datasets. Further the definition of a building in the cadastral survey is not exactly the same as in 

the FRBD as the FRBD consists mainly from buildings with habitation use. As the cadastral sur-

vey is not completely covered digitally in all regions cadastral buildings might be missing. De-
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pending on the organization of the municipality the data is collected by another person than en-

tered in the system. The data might even be first collected handwritten before entered in the sys-

tem. Thus errors in the process of collection and input can occur. 

We assume that persons not familiar with the data are less able to identify errors (both in the 

original data or the detection of typographic errors while inputting the data into the system). E.g. 

if a person needs to enter every time the same FOSNR, he will more likely detect a typographic 

error in the FOSNR he entered. Similar for postal codes or street names a person familiar with 

the region he lives is more likely to recognize if the street name is wrong or not existent inside 

the postal code area. However, for humans it is difficult to check coordinates thus we assume it is 

more likely that typographic errors occur in coordinates. 

Errors can be detected by the system through automatically validating the input data. For some 

attributes this can be done easily. For example, the municipality number can be checked against 

the municipality of the person is working for entering the data. Other attributes are much harder 

to validate. For example, it is impossible to validate that FRBD coordinates are within the corre-

sponding building footprint without access to a digital version of this building footprint. 

In order to handle data inconsistencies and errors the FRBD points and buildings are matched 

with different matching strategies. Each of the strategy tries to find if it can detect path between a 

FRBD point and a building by matching attributes or spatial relationships. 

Typographic errors can be detected by string matching. Various algorithms exist today for match-

ing strings [7]. For our cases we decided to measure the edit distance between two strings using 

the Damerau-Levenshtein [8] distance. The Damerau-Levenshtein distance measures the mini-

mum number of operations needed to transform a string to another. Supported operations are 

the insertion of a character at any position, the deletion of a character, the substitution of a char-

acter with another and the transposition of two adjacent characters. An edit distance of 1 allowed 

operation or for coordinates an absolute distance of at least 10 meter was defined as typographic 

error. 

C.5.4 Method 

Figure C.10 shows an overview of the implemented architecture to match the data. First, the 

FOSNRs of all input datasets are updated to the current FOSNR. Then the data is partitioned by 

the FOSNRs to allow parallelized computation. The workflow was due to the large amount of 

data (around 9 GB) that needed to be processed. 

C.5.4.1 Pre-Processing 

Using the swissboundaries3D dataset each building footprint and building entrance is assigned 

the current FOSNR. If building footprints overlap multiple municipalities they are assigned to 

the municipality they overlap with the most. Then the FOSNRs are updated with the historic 

FOSNR dataset to the FOSNR of the current municipality. The FOSNRs of the FRBD dataset 

were only updated with the historic FOSNR dataset, because it was assumed that the coordinates 

of the cadastral datasets can be trusted more than the coordinates of the FRBD dataset. 
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Figure C.10: Workflow of the FRBD matching process.  

C.5.4.2 Matching Strategies 

The data model allows different possibilities to match FRBD data points with buildings. Errors in 

the data prevent successful matches or lead to erroneous matches. Different matching strategies 

were implemented using different error correction methods. These strategies are presented in this 

section. 

Building Footprint + EGID 

As seen in Figure C.11 in this strategy all FRBD points are matched to buildings with a matching 

EGID attribute. A FRBD point needs be inside a matching building. 

 

Figure C.11: Matching strategy for buildings with matching EGID. 

Building Footprint + Building Entrance + EGID 

In this strategy FRBD data points are linked to buildings with the help of the building entrances 

as seen in Figure C.12. The EGID of the FRBD point and the building entrance point need to 

match and both the FRBD point and the building entrance point need to be inside the same 

building. 

 

Figure C.12: Matching strategy over building entrances with matching EGID.  
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Mincost Distance 

 

Figure C.13: Matching strategy using a min cost assignment.  

This strategy does not rely on the EGID to match buildings. It is applied if the number of build-

ings on a lot match the number of buildings assigned to this lot. If multiple lots with the same 

LOTNR exist in the same municipality, a FRBD building is assigned its nearest lot with the same 

LOTNR. Min cost matching, also known as assignment problem, is used to match the buildings. 

Min cost matching can be solved with the Hungarian method in polynomial time [9]. The costs 

are in our case the distance between the buildings and the FRBD points. Figure C.14 shows a real 

case where the min cost matching is superior to a nearest neighbor matching with a spatial join as 

in the case of a spatial join two buildings would be matched to the same building. 

 

Figure C.14: Mincost matching recovering faulty coordinates.  

Error Aware Building Footprint + EGID 

With the building EGID matching strategy two sources of errors can occur as shown in Figure 

C.15. The coordinates of a FRBD point can lie outside a building with a matching EGID or a 

FRBD point can be on a building with a different EGID. In this strategy, for each FRBD point 

outside a building with a matching EGID it is checked if a typographic error in the coordinates 

can be detected so that the FRBD point would land within the building. A typographic error is 

allowed to occur in either the X or Y coordinate but not both. If a FRBD point is inside a build-

ing with a different EGID, then it is checked if the difference can be explained by a typographic 

error. 
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Figure C.15: Matching strategy with typographic error corrections for buildings with 
matching EGID. Red arrows indicate that EGIDs do not match. This relation 
is only valid if the mismatch of the EGIDs can be explained by a typographic 
error. 

Error Aware Building Footprint + Building Entrance + EGID 

Two kinds of errors are detectable when FRBD points are matched to building footprints over a 

common EGID and building entrance points. The FRBD point can be inside a building but none 

of the FRBD points of the building have the same EGID as the FRBD point or a FRBD point 

can be outside a building with a building entrance point with the same EGID. This situation is 

shown in Figure C.16. For the first case, a match is established if a typographic error in the 

EGID can be found. In the second case, a match is established if a typographic error in the co-

ordinates of the FRBD point would move the point within the building. 

 

Figure C.16: Matching strategy with typographic error corrections for building entrances 
with matching EGID. Red arrows indicate that EGIDs do not match. This re-
lation is only valid if the mismatch of the EGIDs can be explained by a typ o-
graphic error. 

Same LOTNR and Typographic Error in Coordinates 

Figure C.17 shows the case that a FRBD point is outside a lot with a matching LOTNR and an 

unequal number of FRBD points and building matching to this lot. In this case, it is checked if a 

typographic error in the coordinates can be found that would move the point within a building 

on the lot. As only an edit distance of 1 is allowed for both coordinates buildings need to be ei-

ther on the same X or Y axis. 

 

Figure C.17: Matching strategy for FRBD points with erroneous coordinates.  

Spatial 

In this strategy FRBD points are matched to buildings according to their spatial relationship. The 

matching is divided in different quality levels according to if the LOTNR of the FRBD points 
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equals the LOTNR of real estate the building is on. If a FRBD point is inside a building and the 

LOTNR are equal the quality is 1. If a FRBD point is outside a building it is matched to the near-

est building within 5 meters. If the LOTNR matches, the match quality is 2. For FRBD points 

without a matching LOTNR, the quality is 3 for FRBD points inside a building and 4 for an 

FRBD point within 5 meters to a building. 

C.5.5 Best Matching Selection 

For each FRBD points all detected matchings are ranked according to our assumptions which 

errors are more likely. For each FRBD point the matching with the highest ranked strategy is 

selected. The ranking of the different strategies from best to worst is as follows: 

1. Building Footprint + Building Entrance + EGID 

2. Building Footprint + EGID 

3. Mincost Distance 

4. Error Aware Building Footprint + Building Entrance + EGID 

5. Error Aware Building Footprint + EGID 

6. Same LOTNR and Typographic Error in Coordinates 

7. Spatial 
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D.1 GENERAL REMARKS 

D.1.1 Open-Source Software 

All computations for this study were performed with the following open-source software: 

PostgreSQL 9.4 [1] 

Python 3.6.1 [2] 

Python packages: 

 Brightway2 (2, 1, 1) [3] 

 SciKit-learn 0.18.1 [4] 

 NumPy 1.12.1 [5] 

 SciPy 0.19.0 [6] 

 Pandas 0.19.2 [7] 

 psycopg2 2.7.1 [8] 

 SOMPY [9] 

 Matplotlib 2.0.0 [10] 

 Seaborn 0.8.0 [11] 

D.1.2 Used Categorization 

The applied categorization and especially the subdivisions, subcategories and different aggrega-

tion levels are based on the structure of the Swiss Household Budget Survey (HBS) data [12] 

which itself is based on the United Nation’s “Classification of Individual Consumption according 

to Purpose” (COICOP) [13]. The HBS-structure can be found in the supplemental EXCEL-file1. 

Throughout the study, we mainly refer to the following 11 main categories: Food, Restau-

rants&Hotels, Clothing, Housing, Furnishings, Health, Transport, Communication, Recreation, 

Education and Others. These main categories correspond to the top level of the HBS-structure 

and COICOP, except for some additional merges for Food and Others: 

 Food comprises the two categories “Food and non-alcoholic beverages” as well as “Al-

coholic beverages, tobacco and narcotics”. 

 Others encompasses “Miscellaneous goods and services”, “Insurance” (in contrast to 

COICOP, this category is separated in HBS from “Miscellaneous goods and services”) as 

well as “Fees”. 

For the other top categories, the official description of COICOP is as follows: 

 Restaurants&Hotels: “Restaurants and hotels” 

                                                 
1  The EXCEL-file can be downloaded at https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452 or it can be 
requested via froemelt@ifu.baug.ethz.ch. 

https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452
mailto:froemelt@ifu.baug.ethz.ch
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 Clothing: “Clothing and footwear” 

 Housing: “Housing, water, electricity, gas and other fuels” 

 Furnishings: “Furnishings, household equipment and routine household maintenance” 

 Health: “Health” 

 Transport: “Transport” 

 Communication: “Communication” 

 Recreation: “Recreation and culture” 

 Education: “Education” 

For the subcategories in Figure 5.4 in Chapter 5, we used the second lowest level according to 

HBS-structure. 

D.2 PRE-PROCESSING OF CONSUMPTION DATA 

This section explains in detail how new variables that are needed for the clustering as well as for 

the life cycle assessment (LCA) were created based on the HBS-data [12]. The procedure is brief-

ly outlined in section 5.2.2 in Chapter 5. 

D.2.1 Creation of Dummy Variables and Count-Statistics 

The Python-implementations of regression and clustering techniques [4] that were used require 

continuous input values. Therefore, categorical variables that feature distinct, but unordered cate-

gories need to be transformed to so called “dummy variables”, also known as “one-hot encod-

ing” or “one-of-K encoding” [4]. This means that for each categorical value, a new binary varia-

ble that takes 1 if the sample features the respective categorical value and 0 otherwise is intro-

duced. For instance, a household living in the canton of Zurich gets a 1 for the dummy variable 

“Zurich” and zeros for all other canton dummy variables. 

The following categorical household variables were converted to dummy variables (categorical 

values are in parentheses): 

 Major region (Lake Geneva, Espace Mittelland, Northwestern Switzerland, Zurich, East-

ern Switzerland, Central Switzerland, and Ticino) 

 Language region (German- / Rhaeto-Romanic-speaking, Italian-speaking, French-

speaking) 

 Canton (Aargau, Bern, Geneva, Lucerne, St. Gallen, Ticino, Vaud, Zurich, other canton) 
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Based on the data that were available for the members of a specific household, the following 

count-statistics were computed: 

 Females aged between 0 and 4 

 Females aged between 5 and 14 

 Females aged between 15 and 24 

 Females aged between 25 and 34 

 Females aged between 35 and 44 

 Females aged between 45 and 54 

 Females aged between 55 and 64 

 Females aged between 65 and 74 

 Females at the age of >75 

 Males aged between 0 and 4 

 Males aged between 5 and 14 

 Males aged between 15 and 24 

 Males aged between 25 and 34 

 Males aged between 35 and 44 

 Males aged between 45 and 54 

 Males aged between 55 and 64 

 Males aged between 65 and 74 

 Males at the age of >75 

 Number of foreigners in the household 

 Number of Swiss persons in the household 

 Number of divorced persons in the household 

 Number of married persons in the household 

 Number of unmarried persons in the household 

 Number of widowed persons in the household 

Please note that the chosen age cohorts correspond to the age groups used by the Federal Statis-

tical Office for their statistical analyses based on the HBS [14]. 
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D.2.2 Estimating Full Detail of Utility Costs 

As mentioned in section 5.2.2 in Chapter 5, an in-depth environmental assessment requires full 

detail of utility costs for each household. Full details of utility costs comprise expenditures for 

water supply, wastewater collection, refuse collection, electricity, and heating fuels. However, this 

is not available for all households taking part in the HBS. The following subsections will describe 

the applied approach to impute missing information on dwelling extra costs. Subsection D.2.2.1 

(Description of the Procedure) will start with a textual description on the applied procedure, while 

subsection D.2.2.2 (Details of the Modeling Framework) will provide information on technical details. 

D.2.2.1 Description of the Procedure 

For imputing missing information, the following steps were completed one after the other (de-

tails will be given further below): 

1. Missing water supply costs were estimated based on wastewater information if latter was 

available and vice versa 

2. Modeling of total utility costs 

3. Modeling heating costs as shares in total utility costs 

4. Modeling wastewater costs as shares in total utility costs 

5. Modeling water costs as shares in total utility costs 

6. Modeling electricity in kilowatt-hours 

7. Modeling refuse collection as amounts of waste bags 

8. Computing quantities or expenditures based on the modeled estimates 

Step 1: In case information on wastewater expenditures was available, but not on water supply, 

then water supply costs were estimated by assuming that the amount of consumed water equals 

the amount of discharged wastewater. This assumption is plausible given the price formation [15] 

for water and wastewater in Switzerland which indeed assumes the same amounts for water and 

wastewater. However, for applying this assumption, wastewater expenditures needed to be first 

converted to quantities (see section D.2.3 for details). Once the amounts were set equal, the water 

supply costs were then computed by means of the prices given in section D.2.3. Understandably, 

the same procedure was applied vice versa if water supply data was available, but no information 

given on wastewater. 

Step 2: It is important to know that in Switzerland, many tenants (and depending on the munici-

pality also some homeowners) might not have full insight into the breakdown of their utility 

costs, but very often they have a specification of a part of these costs. All other utilities are paid 

in a lump sum (in German called “Nebenkosten pauschal”, and hereafter called “utility lump 

sum”). This means that the missing details of utility costs are “hidden” in the aggregated form of 

that utility lump sum (note that the utility lump sum comprises different costs for different 

households). This is at least some piece of information that can be used to model missing data in 

the following. Indeed, 85% of all households in the HBS have either full details available or have 
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at least information on a part of the utility costs as well as on the utility lump sum. However, in 

order to use the information given in the utility lump sum for further modeling, this utility lump 

sum needed to be estimated for the remaining 15% of HBS-households in a first step. For these 

households, we thus modeled the total dwelling extra costs and then subtracted the known utility 

costs (see subsection D.2.2.2 (Details of the Modeling Framework) for the details of the modeling). 

Steps 3-5: In order to use the hidden information in the utility lump sum to impute missing wa-

ter supply, wastewater collection and heating costs, these three housing categories were modeled 

one after the other as respective shares in the total of utility costs (= sum of utility lump sum, 

water supply, wastewater collection, electricity, heating, and maintenance costs). 

Step 6: Even though electricity demand could have been estimated also as shares in total utility 

costs, we modeled electricity directly as amounts of bought kilowatt-hours for two reasons: First, 

most households have separate electricity bills available which renders the situation easier than 

for other housing categories. Only 3% of all HBS-households have no information on power 

consumption. This large amount of training data encourages for a direct modeling of electricity. 

Second, electricity was modeled in kilowatt-hours instead of expenditure in Swiss Francs since 

detailed price data was available (see section D.2.3) which allows for de-coupling the dependency 

of expenditures on local electric power companies. 

Step 7: Expenditures for refuse collection are not part of the utility lump sum and needed thus to 

be estimated separately. Furthermore, there are some municipalities in which no fees are de-

manded for waste treatment, which of course does not mean that these households do not pro-

duce waste. Therefore, waste production was modeled as amount of waste bags and not as ex-

penditure in Swiss Francs (see section D.2.3 for the conversion of expenditures to waste bags). 

Step 8: Finally, the life cycle assessment step will need the conversion of expenditures into the 

respective functional units. Therefore, water and wastewater costs (estimated in steps 1, 4 or 5) 

were translated into cubic meters and heating costs (step 3) into mega-joules. In order to provide 

consistent data for subsequent computations, electricity demand (step 6) and amount of waste 

bags (step 7) produced were back-calculated to expenditures (refer to section D.2.3 for more de-

tails regarding the conversion from expenditures to quantities). 

Please note that only the results of steps 1 and 2 entered the modeling in the subsequent steps 3-

8, while the results of steps 3-8 did not interfere with each other. 

D.2.2.2 Details of the Modeling Framework 

Steps 2 to 7 in subsection D.2.2.1 (Description of the Procedure) refer to “modeling data”. In the pre-

sent case, this means that missing data was predicted based on given data in the HBS. For all 

these modeling steps, the scheme presented in Figure D.1 was applied which is described in more 

detail below. 
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Figure D.1: Modeling scheme that was applied for imputing missing details on utility 
costs. 

Data input: The full HBS-dataset with all data on the lowest level as well as on aggregated levels 

of course features many multicollinearities. However, not every regression model is able to han-

dle these multicollinearities [16]. Therefore, three different datasets were created based on the 

HBS: the full HBS-dataset, a filtered dataset which corresponds to the dataset used for training 

the self-organizing map (see filtering step in section D.3.1) as well as a basic dataset which only 

consists of household characteristics and housing-relevant expenditures. Each of these three da-

tasets were then further subdivided into the respective dataset as a whole and a dataset in which 

renter-households are distinguished from homeowners. This resulted in a total of six datasets 

which entered the model selection process of the regression models. 

Regression models: Three different regression model types were then trained based on each of 

the different datasets. The hyperparameters of these models were tuned by means of 10-fold 

cross-validation [16]. In general, standardized data was used, except for Random-Forest-

Regression [17] for which also the use of non-standardized data was tested. 

 PCA-LASSO-Regression: LASSO [18] (least absolute shrinkage and selection operator) 

belongs to the generalized linear models. By introducing a regularization/penalty term 

(called alpha) to the least squares model, LASSO can turn non-informative features to ze-

ro. The value of alpha was determined by evaluating 1000 different alphas in the 10-fold 

cross-validation step. However, just as other linear models, also LASSO can become un-

stable if between-predictor relationships are present [16] (collinearities or multicollineari-

ties). We therefore decided to apply principal component analysis (PCA) [19, 20] to the 

dataset in a preparatory step in order to transform the data into principal components 

which are de-correlated. Based on the variable selection ability of LASSO, we then let the 

LASSO choose the principal components which are important for the respective predic-

tion. 
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 Random-Forest-Regression: Random-Forest-Regressors [17] are robust, do not need ex-

tensive preparation and can also capture non-linearities [16]. It shall be mentioned that 

the Python-Implementation of Random-Forests in the SciKit-Learn-Package [4] that was 

used – just as many other software programs – does not exactly correspond to the regres-

sion model presented in Breiman 2001 [17] (which uses a sort of regression model tree 

[16]), but applies as a base learner an improved version of a CART (Classification and 

Regression Tree) that was proposed by Breiman 1984 [21]. The hyperparameters (number 

of trees and maximum number of features considered in a split step) of the Random-

Forest were tuned in a 10-fold cross-validation [16] procedure and based on the recom-

mendations of [22–24]. Instead of using the “best” number of trees, we applied the “one-

standard-deviation”-rule [16] and chose the number of trees of the model whose mean 

squared error was within one standard deviation from the model with the best perfor-

mance. Furthermore, the scoring function for the splits in the Random Forest was set to 

minimizing the mean squared error. 

 K-Nearest-Neighbor-Regression: A K-Nearest-Neighbor-Regression [25] using Euclidean 

distances was also applied to the datasets. The number of neighbors was determined 

again in 10-fold cross-validation [16]. Just as for the Random-Forest-Regression, the 

“one-standard-deviation”-rule was also applied for choosing the number of neighbors in 

this regression model. 

Model selection: After determining the best hyperparameters for all regression models, these 

best-tuned models entered a model selection competition. The criteria for selecting the best 

model for a certain housing cost category were the following: 

1. Mean squared error was used as the most important criterion. 

2. As a second criterion the coefficient of determination (R2) was also considered. 

3. A visual plausibility check based on basic diagnostic plots (see Figures D.2-8) was also 

taken into account. It needs to be mentioned that models predicting negative values were 

excluded regardless of their other performance scores. 

Modeling: In the following, the basic diagnostic plots as well as the performance metrics of the 

eventually chosen models will be presented. 

 Modeling total of utility costs: 

o Chosen regression model: PCA-LASSO-Regression 

o Chosen dataset: Full dataset with split renters/homeowners 

o MSE renters: 0.0031 

o MSE homeowners: 0.0077 

o R2 renters: 0.997 

o R2 homeowners: 0.992 
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Figure D.2: Basic diagnostic plot for modeling total of utility costs; Chosen model: PCA-
LASSO-Regression (full dataset, here only homeowners). Upper left: Ob-
served versus predicted values; Lower left: Residual plot; Right: Comparison 
of the distributions in the observed training dataset and in the predicted ta r-
get dataset (please note that this is only meant for a visual plausibility check 
since these distributions need not to be equal).  

 

Figure D.3: Basic diagnostic plot for modeling total of utility costs; Chosen model: PCA -
LASSO-Regression (full dataset, here only renters). Upper left: Observed ver-
sus predicted values; Lower left: Residual plot; Right: Comparison of the di s-
tributions in the observed training dataset and in the predicted target dataset 
(please note that this is only meant for a visual plausibility check since these 
distributions need not to be equal).   
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 Modeling heating costs (shares in total utility costs): 

o Chosen regression model: Random-Forest-Regression 

o Chosen dataset: non-standardized filtered dataset 

o MSE: 0.0349 

o R2: 0.330 

 

 

Figure D.4: Basic diagnostic plot for modeling heating costs; Chosen model: Random -
Forest-Regression (filtered dataset). Upper left: Observed versus predicted 
values; Lower left: Residual plot; Right: Comparison of the distributions in 
the observed training dataset and in the predicted target dataset (please note 
that this is only meant for a visual plausibility check since these distributions 
need not to be equal).  
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 Modeling wastewater costs (shares in total utility costs): 

o Chosen regression model: Random-Forest-Regression 

o Chosen dataset: non-standardized basic dataset 

o MSE: 0.0043 

o R2: 0.099 

 

 

Figure D.5: Basic diagnostic plot for modeling wastewater costs; Chosen model: Random -
Forest-Regression (basic dataset). Upper left: Observed versus predicted va l-
ues; Lower left: Residual plot; Right: Comparison of the distributions in the 
observed training dataset and in the predicted target dataset (please note that 
this is only meant for a visual plausibility check s ince these distributions 
need not to be equal).  
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 Modeling water supply costs (shares in total utility costs): 

o Chosen regression model: Random-Forest-Regression 

o Chosen dataset: non-standardized basic dataset 

o MSE: 0.0041 

o R2: 0.056 

 

 

Figure D.6: Basic diagnostic plot for modeling water supply costs; Chosen model: Ra n-
dom-Forest-Regression (basic dataset). Upper left: Observed versus predicted 
values; Lower left: Residual plot; Right: Comparison of the distributions in 
the observed training dataset and in the predicted target dataset (please note 
that this is only meant for a visual plausibility check since these distributions 
need not to be equal).  
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 Modeling electricity demand: 

o Chosen regression model: Random-Forest-Regression 

o Chosen dataset: non-standardized full dataset 

o MSE: 26244.3 

o R2: 0.869 

 

 

Figure D.7: Basic diagnostic plot for modeling electricity demand; Chosen model: Ra n-
dom-Forest-Regression (full dataset). Upper left: Observed versus predicted 
values; Lower left: Residual plot; Right: Comparison of the distributions in 
the observed training dataset and in the predicted target dataset (please note 
that this is only meant for a visual plausibility check since these distributions 
need not to be equal). 
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 Modeling waste production: 

o Chosen regression model: Random-Forest-Regression 

o Chosen dataset: non-standardized full dataset 

o MSE: 87.56 

o R2: 0.030 

 

 

Figure D.8: Basic diagnostic plot for modeling waste production; Chosen model: Ran-
dom-Forest-Regression (full dataset). Upper left: Observed versus predicted 
values; Lower left: Residual plot; Right: Comparison of the distributions in 
the observed training dataset and in the predicted target dataset (please note 
that this is only meant for a visual plausibility check since these distributions 
need not to be equal).  

D.2.3 Conversion of Utility Costs to Quantities 

The use of the process-based life cycle inventory database ecoinvent [26] to assess housing-

related environmental impacts requires functional units in terms of quantities (cubic meters, kilo-

watt-hours, etc.) instead of expenditures in Swiss Francs. Although more information on LCA-

modeling is given in section D.4, the conversion of utility costs to quantities was implicitly need-

ed in section D.2.2 and shall thus be discussed below. 

Electricity: Detailed price information was available for electricity [27]. Expenditures on electric-

ity could thus be converted to kilowatt-hours based on year, canton and household type. It needs 

mentioning that Swiss power supply companies set their prices depending on the total volume of 

purchased electricity and on the time of the purchase. Therefore, the electricity prices strongly 
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depend on the electricity use behavior of households. In order to be able to perform reasonable 

price comparisons and thus come up with representative prices, the Federal Electricity Commis-

sion (ElCom) [27] defines seven “household types”. Thereby, a household type not only exhibits 

a total annual demand, but features also a typical diurnal load profile. However, the HBS-data 

only provides expenditure data and hence, does not allow for drawing conclusions about diurnal 

profiles. Since also the total annual electricity demand is not known initially and dependent of the 

price data, the corresponding household price type for a certain HBS-household was determined 

iteratively. Table D.1 shows the prices used for the conversion. 

Table D.1: Electricity prices retrieved from [27] in centimes per kilowatt-hour 
(Rp./kWh). The household types are based on different characteristics and 
show the following annual power consumption: H1: 1600 kWh; H2: 2500 kWh; 
H3: 4500 kWh; H4: 4500 kWh; H5: 7500 kWh; H6: 25000 kWh; H7: 13000 kWh.  

  Canton H1 H2 H3 H4 H5 H6 H7 

2
0
0
9
 

Canton Zurich 20.12 17.46 13.50 15.61 12.81 9.72 12.18 

Canton Bern 31.46 27.62 20.94 24.68 19.94 14.88 18.26 

Canton Lucerne 32.86 29.07 22.42 25.96 21.31 14.35 18.73 

Canton St. Gallen 26.38 22.50 17.69 20.13 16.70 12.72 14.69 

Canton Aargau 25.09 21.42 16.86 18.73 15.71 12.14 14.62 

Canton Ticino 25.12 22.67 18.33 20.79 17.42 15.45 17.25 

Canton Vaud 28.64 26.71 21.48 24.26 20.58 16.83 19.86 

Canton Geneva 23.43 23.00 19.54 22.64 19.74 16.58 20.24 

Swiss Average (other cantons) 25.17 22.76 17.76 20.90 17.10 13.31 16.53 

2
0
10

 

Canton Zurich 21.25 18.45 14.25 16.47 13.51 10.24 12.84 

Canton Bern 31.46 27.44 20.91 24.57 19.86 14.88 18.26 

Canton Lucerne 32.86 29.07 22.42 25.96 21.31 14.35 18.73 

Canton St. Gallen 27.17 23.36 18.32 20.23 16.96 13.40 15.17 

Canton Aargau 25.10 21.41 16.82 18.67 15.65 12.31 14.57 

Canton Ticino 25.12 22.64 19.46 21.86 18.50 16.55 18.33 

Canton Vaud 28.75 26.71 21.58 24.38 20.58 16.92 19.93 

Canton Geneva 22.89 22.46 19.00 22.10 19.20 16.04 19.70 

Swiss Average (other cantons) 26.10 23.63 18.77 21.69 18.14 14.31 17.47 

2
0
11

 

Canton Zurich 23.60 20.69 16.50 18.60 15.74 12.45 15.01 

Canton Bern 31.69 27.89 21.93 25.17 21.12 16.25 19.49 

Canton Lucerne 31.08 27.45 21.19 24.57 20.16 13.88 17.90 

Canton St. Gallen 27.68 23.63 19.34 21.12 18.09 15.14 16.19 

Canton Aargau 25.05 21.85 18.12 19.46 17.09 13.54 16.26 

Canton Ticino 26.22 23.04 19.11 21.24 18.00 16.12 17.82 

Canton Vaud 28.24 26.76 22.36 24.76 21.84 18.09 21.30 

Canton Geneva 22.26 21.86 18.53 21.49 18.74 15.69 18.92 

Swiss Average (other cantons) 26.98 24.32 19.76 22.26 18.98 15.24 18.19 

Heating energy: Expenditures on heating fuels were converted to mega joules of final energy. 

However, the energy carrier used by the household’s heating system is unknown in the HBS [12]. 

Therefore, an average Swiss energy mix needed to be assumed and the conversion implied several 

steps. Note that the conversions took into account the year in which a particular household was 

surveyed. 

First, we assumed fuel oil as the household’s energy carrier and computed liters of final energy 

based on the prices retrieved from [28] (see Table D.2). The lower calorific value was then calcu-

lated by means of figures from [29] (0.86 kg/l x 42.6 MJ/kg). 
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Table D.2: Fuel oil prices according to [28] in Swiss Francs per 100 liters (CHF/100l). 

 

Purchased amount 

 

800 - 1500 l 1501 - 3000 l 3001 - 6000 l 6001 - 9000 l 9001 - 14000 l 14001 - 20000 l > 20000 l 

2009 80.86 72.83 68.90 67.45 66.39 65.18 64.60 

2010 97.08 89.14 85.41 84.00 82.97 81.94 81.39 

2011 109.32 101.71 98.03 96.74 95.71 94.66 94.13 

Second, natural gas was assumed as the household’s heating energy carrier. Final energy was 

computed based on gas prices presented in Table D.3. As the prices refer to the upper calorific 

value, lower calorific values were computed based on data from [29] (50.4 MJ/kg for upper calo-

rific value and 45.5 MJ/kg for lower calorific value). 

Table D.3: Prices for natural gas according to [28] in Swiss Francs per kilowatt-hour 
(CHF/kWh). 

  Purchased amount 

  20,000 kWh 50,000 kWh  100,000 kWh 500,000 kWh 

2009 0.0959 0.0908 0.0889 0.0863 

2010 0.0911 0.0866 0.0848 0.0828 

2011 0.0953 0.0911 0.0896 0.0875 

Third, analogous computations were done assuming wood pellets as heating energy carrier. For 

this, the prices given in Table D.4 were used and the energy density of 18 MJ/kg was extracted 

from [30]. 

Table D.4: Prices for wood pellets according to [28] in Swiss Francs per 6000 kg 
(CHF/6000kg). 

 
Wood pellets 

 
6000 kg 

2009 2309.00 

2010 2378.35 

2011 2344.28 

Finally, these three estimates of final energy in MJ of lower calorific values were weighted based 

on the nationwide final energy consumption statistics for households [30] given in Table D.5 and 

then averaged. 

Table D.5: Statistics on final energy consumption of households in Switzerland [30]. Note 
that the shares were adjusted for the present purpose . The original data also 
contains information on coal, district heating and other renewable energy 
sources, but these shares were negligibly low.  

 

Shares in final energy consumption of households 

 

Fuel oil Natural gas Wood energy 

2009 0.63 0.26 0.11 

2010 0.62 0.27 0.11 

2011 0.60 0.28 0.12 

Waste, wastewater collection and water supply: The expenditures on refuse collection, 

wastewater treatment and water supply were converted to number of waste bags, cubic meters of 

wastewater and cubic meters of water, respectively. The prices were retrieved from [15] and are 
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presented in Tables D.6-8. Note that [15] only provides data for individual municipalities. Since 

the residential municipality of the HBS-households was unknown, we assumed the largest munic-

ipality within a canton (usually its capital) to be representative for the whole canton. Furthermore, 

the household types used by [15] to compute the prices are based on more living conditions than 

just number of household members. However, this was the only information provided by the 

HBS in this regard. 

Table D.6: Prices for waste bags according to [15] in CHF per 35-liters-bag. HH1: 1-
person household; HH2: 2-persons household; HH3: 3-persons household; 
HH4: 4-persons household. Note that prices for HH2 could not be retrieved 
from [15] but were computed as the average of HH1 and HH3. Refer to su b-
section D.2.2.2 (Details of the Modeling Framework) for a description on how 
municipalities without waste prices (e.g. Geneva) were dealt with.  

Canton HH1 HH2 HH3 HH4 

Canton Zurich 3.65 2.86 2.39 2.22 

Canton Bern 3.51 2.97 2.74 2.89 

Canton Lucerne 2.49 2.22 2.19 2.19 

Canton St. Gallen 2.60 2.29 2.22 2.18 

Canton Aargau 2.92 2.52 2.40 2.34 

Canton Ticino 2.82 2.30 2.03 1.93 

Canton Vaud 3.64 3.17 3.05 3.24 

Canton Geneva 0.00 0.00 0.00 0.00 

Swiss Average (other cantons) 3.37 2.80 2.54 2.44 

Table D.7: Prices for wastewater treatment according to [15] in CHF per m3. HH1: 1-
person household; HH2: 2-persons household; HH3: 3-persons household; 
HH4: 4-persons household. Note that prices for HH2 could not be retrieved 
from [15] but were computed as the average of HH1 and HH3.  

Canton HH1 HH2 HH3 HH4 

Canton Zurich 3.36 3.05 2.73 3.57 

Canton Bern 2.44 2.41 2.38 3.09 

Canton Lucerne 1.73 1.73 1.73 1.73 

Canton St. Gallen 2.14 2.12 2.11 2.46 

Canton Aargau 1.56 1.40 1.25 1.35 

Canton Ticino 0.78 0.78 0.78 0.78 

Canton Vaud 1.30 1.30 1.30 1.30 

Canton Geneva 2.49 2.59 2.69 3.07 

Swiss Average (other cantons) 2.21 2.12 2.02 2.19 

Table D.8: Prices for water supply according to [15] in CHF per m3. HH1: 1-person 
household; HH2: 2-persons household; HH3: 3-persons household; HH4: 4-
persons household. Note that prices for HH2 could not be retrieved from [15] 
but were computed as the average of HH1 and HH3.  

Canton HH1 HH2 HH3 HH4 

Canton Zurich 1.93 1.80 1.68 2.04 

Canton Bern 2.36 2.36 2.37 2.80 

Canton Lucerne 1.96 1.87 1.78 2.31 

Canton St. Gallen 3.11 3.05 3.00 3.92 

Canton Aargau 1.35 1.35 1.35 1.49 

Canton Ticino 1.64 1.59 1.54 2.36 

Canton Vaud 2.39 2.35 2.32 3.26 

Canton Geneva 2.18 2.19 2.19 2.57 

Swiss Average (other cantons) 2.04 1.88 1.72 2.01 
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D.2.4 Evaluation of the Imputed Housing Data 

In view of the many assumptions behind the computations in sections D.2.2 and D.2.3, plausibil-

ity checks with nationwide statistics were conducted as explained below. The modeled and con-

verted final energy demand for heating totals at 21,222 MJ per person per year. This corresponds 

well with the national statistics [30], which indicates an average final energy consumption for 

heating of 22,890 MJ per person per year for the years 2009 to 2011. Similarly, the average final 

energy consumption of electricity based on the HBS was computed to be 2,101 kWh per person 

per year, while the national statistics [30] reveals an average value of 2,308 kWh per person per 

year in the years 2009 to 2011. 

According to [31], the current average direct daily water consumption amounts to 142 liters per 

person or 52 m3 per person and year. Our estimated average of 68 m3 per person and year is 

slightly higher. It still might be considered a reasonable estimate since the statistics itself is an 

approximation rather than a measured value and it also does not specifically refer to the years 

2009 to 2011. 

Finally, waste statistics [32–34] amount to 344 kg per person per year in the years 2009 to 2011. 

The computed average of 187 kg per person and year based on the models in D.2.2 and D.2.3 is 

definitely too low, but still in the same order of magnitude. This discrepancy can partly be at-

tributed to the fact that the waste statistics comprises all municipal solid waste and this also in-

cludes commercial waste apart from household waste. However, this probably does not explain 

the entire difference and the possibility exists that the modeling approach underestimates real 

waste production of households. Nonetheless, a rough sensitivity analysis with the final LCA 

results showed negligible effects even in the case of doubling the waste production. Note that the 

estimated amount of waste bags was converted to kilograms according to [35] (4.44 kg/bag). 

D.2.5 Estimating Public Transport and Bicycle Demand 

As mentioned in Chapter 5, the HBS-data does not allow for estimating kilometers driven by 

public transport and bicycles. In order to be able to assess environmental impacts on account of 

public transport and bicycle use nevertheless, person-kilometers of these traffic modes were es-

timated based on data from the Swiss Mobility and Transport Microcensus [36]. The data re-

trieved from this survey is compiled in Table D.9. 

Based on the data provided in Table D.9, four different estimates for public transport (train, 

coach, urban vehicles) and bicycle demand were performed by taking into account the house-

hold’s circumstances with regard to size, monthly income and age and gender of household 

members. These four estimates were finally averaged. 
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Table D.9: Daily distances per person in kilometers according to [36]. 

  

Daily distance 
train 
(km) 

Daily distance 
coach 
(km) 

Daily distance 
tram and bus 

(km) 

Daily distance 
bicycle 
(km) 

  
Average Average Average Average 

H
o

u
se

h
o

ld
 s

iz
e
 

1 person 8.0  0.1  1.5  0.6  

2 persons 7.0  0.1  1.1  0.7  

3 persons 7.1  0.1  1.5  0.7  

4 persons 6.1  0.2  1.5  0.9  

5 persons and more 7.9  0.2  1.8  1.0  

M
o

n
th

ly
 i

n
c
o

m
e
 <= 2000 CHF 4.6  0.1  1.4  0.3  

2001 - 6000 CHF 5.3  0.2  1.3  0.5  

6001 - 10000 CHF 6.8  0.1  1.4  0.9  

10001 - 14000 CHF 9.6  0.1  1.5  1.1  

> 14000 CHF 10.9  0.1  1.5  1.1  

A
g

e
 

age: 6-17 4.6  0.2  2.2  1.0  

age: 18-24 15.6  0.3  3.2  0.8  

age: 25-44 8.0  0.1  1.2  0.8  

age: 45-64 6.1  0.1  0.9  0.9  

age: >= 65 4.6  0.1  1.0  0.4  

G
e
n

d
e
r 

Males 7.4  0.1  1.3  1.0  

Females 6.7  0.1  1.5  0.6  

D.3 PATTERN RECOGNITION AND CLUSTERING OF HOUSE-

HOLDS 

D.3.1 Preparation for Pattern Recognition 

This section shall provide more details on the filtering approach described in subsection 5.2.3.1 

(Preparation for Pattern Recognition) in Chapter 5. The overall goal of this preparatory step was to 

find attributes of the HBS-data that make similarly behaving households identifiable independent 

of the month in which they were surveyed. While the general procedure was presented in Chapter 

5, Figure D.9 illustrates it visually. Furthermore, the present section will focus on some additional 

details. For instance, the fourth diamond shape (“Is it representative for a month?”) and its asso-

ciated processing step (“Consider using an aggregated level”) did not lead to the simultaneous use 

of an aggregated level together with its own sub-levels. This means for instance, if “fruits” (ag-

gregated level) and simultaneously some of its sub-categories (e.g. “apples” or “pears”) had ful-

filled the requirements for inclusion, then either the aggregated level or the sub-levels were con-

sidered for the next steps, but not both (please note that this was just a clarifying example and 

does not correspond to an effective case). Furthermore, there seems to be some subjectivity at-

tached to the fifth diamond shape (“Is this attribute very specific and consumed on an irregular 

basis?”) in Figure D.9. This is true to some extent, but it also needs to be mentioned, that these 

decisions were informed by statistics for the respective attribute including histograms, boxplots, 
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different percentiles, mean and coefficient of variation. It should also be noticed that only 10 

attributes were excluded because of this decision point. 

Attribute under 

consideration

Is it a

household 

charac-

teristic?

IncludeYes

Is it a durable 

goods statistic?

No

IncludeYes

Is it periodic? IncludeYes

No

Is it 

representative for 

a month?

No

Exclude

Is this

attribute very 

specific and  

consumed on an 

irregular

basis?

Yes

Exclude

Yes

Include

No

Consider using 

an aggregated 

level

No

If not

reasonable

or not possible

Check for 

seasonality via 

ANOVA / Kruskal-

Wallis-tests

Enter pattern 

recognition step

Is test 

rejected?

No

Correct for 

seasonality
Yes

à Is it something that 

is bought regularly 

every month?

à Is it something that 

is usually stored for 

less than one month?

à Is it reasonable 

to group households 

according to this 

attribute?

à Are there no 

obvious ’outliers’ 

present?

 

Figure D.9: Flow scheme outlining the general procedure for preparing data for the su b-
sequent pattern recognition.  
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Finally, we also would like to mention that housing-related and public transport-related data that 

were imputed in section D.2 were completely excluded for the clustering, to avoid introducing 

uncertainties from the modeling procedure. 

As mentioned in Chapter 5, the final dataset for pattern recognition comprises 157 attributes in 

total, thereof 85 consumption and income categories covering about 80% of all expenditures and 

95% of total income. The 20% of excluded expenditures pertain mainly to infrequent expenses 

on durable goods (e.g. purchase of a new car). However, since the finally bought durable goods 

entered the clustering via the durable goods statistics (e.g. number of new cars), this piece of in-

formation is not lost but just considered in a different attribute. 

The full list of attributes which entered the following computations can be found in the supple-

mental EXCEL-file2 (column “Pattern recognition filter”). Furthermore, attributes that were cor-

rected for seasonality were marked accordingly in the EXCEL-file (column “Correction for sea-

sonality”). The seasonality correction is also illustrated in Figure D.10 for the example of “fruits”. 

The figure shows the original data on the left and the corrected, “de-seasonalized” data on the 

right-hand side. 

 

Figure D.10: Example of correcting for seasonality for “fruits” including test statistics of 
ANOVA and Kruskal-Wallis-test. Left: original data; right: corrected data; Er-
ror bars are the 95%-confidence interval of the monthly mean.  

The correction procedure as such can be described as follows: The dataset is partitioned into 

monthly subsets (e.g. “expenditures on fruits in January”, “expenditures on fruits in February”, 

etc.). In a next step, the original values are then replaced by its monthly quantile ranks. This 

                                                 
2  The EXCEL-file can be downloaded at https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452 or it can be 
requested via froemelt@ifu.baug.ethz.ch. 

mailto:froemelt@ifu.baug.ethz.ch
https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452
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means, if e.g. a household buys fruits for 7 Swiss Francs in January, this corresponds to a quantile 

rank of 0.42 in this month; or in other words: 42% of the expenditures for fruits of all house-

holds in January were below 7 Swiss Francs. Finally, the original value of 7 Swiss Francs is re-

placed by 0.42. Please note that this is a made-up example. 

As mentioned in Chapter 5, the need for seasonality correction was judged based on ANOVA 

[37] and Kruskal-Wallis-test [38]. With these tests, we tested if the survey month shows a statisti-

cally significant influence. While the null hypothesis of ANOVA assumes the means of different 

data groups (here: monthly groups) are the same, Kruskal-Wallis focuses on the groups’ medians. 

If the tests suggest rejection of the null hypothesis, this means that monthly samples do not orig-

inate from the same distribution and thus that seasonality is present (so the survey month shows 

a statistically significant impact). The -levels for both tests were set at 0.05 and we decided to 

correct for seasonality if at least one of the tests indicated rejection of the null hypothesis (how-

ever, in almost all cases, there was no contradiction between the two tests). 

D.3.2 Self-Organizing Map (SOM) 

Even though there is plenty of literature available describing how self-organizing maps (SOM) 

work (e.g. [39–43]), we would like to support the reader with a brief overview (note that the sub-

sequent description is closely based on the very helpful explanations of Vesanto [43] and that the 

description is simplified to a certain degree): 

A SOM consists of so-called neurons which are arranged on a regular low-dimensional grid. A 

so-called prototype vector is attached to each neuron which features the same dimension as the 

input vectors (here, the input vector is a HBS-household with all of its attributes after the prepa-

ration step in section D.3.1). Moreover, each neuron is linked to neurons which are adjacent on 

the map by a neighborhood function. This neighborhood relation then dictates the topology of 

the map. There are two different possibilities for training the SOM: sequential and batch mode. 

Even though batch mode was used for the present study, we start explaining the sequential algo-

rithm because it is easier to understand from our point of view. 

In the sequential algorithm, the SOM is trained iteratively: in each step, an input vector is chosen 

randomly and the distance between it and all the prototype vectors is computed using Euclidean 

distances. The closest neuron is called the “Best-Matching Unit” (BMU). After identifying the 

BMU, its prototype vector as well as the prototype vectors of its neighboring neurons are updat-

ed, such that they move closer to the input vector. Depending on the neighborhood function, the 

BMU might move most, while the neighbors are adjusted the less the further away they are locat-

ed from the BMU. Such a behavior can for instance be achieved by a Gaussian neighborhood 

function whose kernel is at the BMU. A possible update rule can look like equation (D.1) [44]: 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡) ⋅ ℎ𝑐𝑖(𝑡) ⋅ [𝑥(𝑡) − 𝑚𝑖(𝑡)]  (D.1) 

𝑚𝑖 : prototype vector of neuron i 

𝑥: vector from input dataset 

𝛼: learning rate 

ℎ𝑐𝑖 : neighborhood kernel around BMU c 

𝑡: epoch  



 
D.3 Pattern Recognition and Clustering of Households 

207 

The first so-called epoch is accomplished if all input vectors were exposed to the SOM. The next 

epoch works in exactly the same way, except for the fact that the neighborhood radius (this de-

termines which neurons on the map are considered neighbors) and the learning rate decrease. 

This process is then repeated over many epochs until the SOM “converges”. However, it is to be 

noted that “convergence” is not really provable [45], but according to Tan and George [45], good 

maps can be produced if the SOM is trained with “enough” epochs. It is generally recommended 

to subdivide the training into a rough training and a fine-tuning phase. The first starts with rela-

tively large initial learning rates and neighborhood radius. In the second, both, learning rate and 

neighborhood radius, are small from the beginning. In simplified terms, one could say that “co-

operative learning” usually prevails in the first phase, while “competitive learning” is predominant 

in the second phase because the neighborhood radius is small and in the end usually comprises 

only one neuron. 

The batch training algorithm works basically along the same lines as explained above. Instead of 

using a single input vector at a time, the whole input dataset is exposed to the SOM before any 

updates are conducted. In each epoch, the dataset is partitioned into Voronoi-regions to deter-

mine which input vector is closest to which neuron. The updated prototype vector is then a 

weighted average of the data samples. Thereby, the weights are based on the neighborhood func-

tion. In this batch-mode, no learning rate is needed anymore [46]. 

According to literature [39, 40, 42–45] and above description, the following parameters need to 

be tuned to obtain the “best” SOM: number of neurons, arrangement of neurons, initial and final 

neighborhood radius of the rough training phase, initial and final neighborhood radius of the 

fine-tuning phase, neighborhood function, and number of epochs for both: the rough and fine-

tuning phases. However, a tuning procedure also implicitly needs an evaluation measure to finally 

determine the “best” choice. Thereby, we followed Tan and George [45] and used the topograph-

ic error in a first instance and looked at the quantization error in a second instance. The quantiza-

tion error thus only played a role to decide among maps with similar topographic errors. Unfor-

tunately, the computational burden of training a SOM did prevent from an exhaustive search of 

the whole parameter space in the sense of computing all parameter value combinations. There-

fore, we decided to take literature recommendations [39, 43–45] as a starting point and tried then 

to find the way towards the best map by applying the following iterative approach (in the end we 

computed more than 35 different maps): 

1. Radii: We started tuning the radii of the rough and fine-tuning training phases since these 

are apparently the most important parameters [43]. Besides the recommendations in [39, 

43–45], we also experimented with more extreme radii. All other parameters were set to 

the recommendations of [43]. 

2. Epochs: For tuning the number of epochs (for rough and fine-tuning phase), we set all 

other parameters according to [43] and then applied again different literature recommen-

dations [39, 43–45] as well as own trials. 



Appendix D - Using Data Mining To Assess Environmental Impacts of Household 
Consumption Behaviors 

208 

3. Number of neurons: While in principle, the procedure was exactly the same as for steps 1 

and 2, it needs to be mentioned that radii and number of epochs were set dynamically 

since the recommendations in [43] are dependent on the number of neurons. 

4. In a fourth step, the settings of different (less important) parameters were tested: neigh-

borhood function (bubble vs. Gaussian), initialization (PCA vs. random), as well as dif-

ferent map ratios. Please note that all sources generally agree that the ratio of the side 

lengths shall correspond to the ratio between the two greatest eigenvalues of the covari-

ance matrix of the training data. 

5. Based on all findings above, we constructed a “best” combination of parameters. Taking 

this “best” map as a basis, we experimented again with the radii. 

6. And finally we also tested different numbers of epochs on top of this “best” combina-

tion. However, we realized that at this point, the U-Matrices obviously hardly change in-

dicating that convergence is probably reached already in step 5. 

Table D.10 shows the finally selected SOM-parameters. To give an impression of the achieved 

improvements by the above tuning procedure, the largest topographic error of all maps was 0.400 

and the largest quantization error 10.050, while the final map reached 0.063 and 9.266 for these 

performance metrics. The following figures deliver full insight into the so-called component 

maps of the final SOM. These component maps provide a wealth of information since they visu-

ally depict correlations among attributes. For instance, in Figure D.11 we see that higher numbers 

of persons per households can be found on the left-hand side of the map. At the same time, the 

number of pensioners per household is larger on the right-hand side of the map, which in turn 

also correlates strongly with the income from “pensions and social benefits”. Overlaying these 

maps with the clustering maps presented in section 5.3.3 and in Chapter 5 thus also gives insights 

into the archetypes’ characteristics and consumption behavior. Further maps (e.g. a hits-map) are 

presented in section D.3.3. Note that pixels in these maps correspond to the map positions of 

neurons. 

Table D.10: Parameters of the final SOM. 

Parameter Value 

Normalization Standardized data 

Initialization PCA 

Neighborhood Gaussian 

Map-Ratio 21:47 

No. of neurons 987 

No. of epochs (rough training phase) 7896 

No. of epochs (fine-tuning phase) 31584 

Initial radius (rough training phase) 35 

Final radius (rough training phase) 9 

Initial radius (fine-tuning phase) 9 

Final radius (fine-tuning phase) 1 

Topographic error 0.063 

Quantization error 9.266 
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Figure D.11: Component maps of the final SOM. The units are as follows:  income and con-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.12: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.13: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.14: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.15: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quant ities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.16: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.17: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quantities (marked with a “Q”) ar e in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.18: Component maps of the final SOM. The units are as follows: income and con-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.19: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count-statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.20: Component maps of the final SOM. The units are as follow s: income and con-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.21: Component maps of the final SOM. The units are as follows: income and co n-

sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 
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Figure D.22: Component maps of the final SOM. The units are as follows: income and co n-
sumption expenditures in CHF/month; quantities (marked with a “Q”) are in 
liters or kg/month; durable goods statistics, count -statistics and dummy vari-
ables do not have a unit (-); Note that variables corrected for seasonality are 
in monthly quantiles (-). 

D.3.3 Clustering 

The present section shall provide more technical details on the two applied clustering approach-

es: K-Means [47–49] and agglomerative clustering [50, 51] as well as on the procedure to deter-

mine the final clustering. 

K-Means separates data in a predefined number of k groups by minimizing the “within-sum-of-

squares”, resulting in clusters of similar size and variance. Agglomerative clustering uses a bot-

tom-up approach and begins with each prototype vector as its own cluster. The clusters are then 

successively merged starting with the two closest clusters. Various agglomerative clustering tech-

niques differ in the use of affinity metrics (“which distance”) and in the linkage criteria (“how this 

distance is computed”). 

D.3.3.1 Technical Details of the Clustering Algorithms 

For the present study, the implementation of the clustering approaches in [4] was used. The set-

tings for the computations were as follows: 

 K-Means: 

o K-Means++ [49] was applied for seeding. This ensures that the initialized cen-

troids are generally distant from each other leading to faster convergence and 

more robust results than random initialization [49]. 

o Even though K-Means++ already helps to prevent convergence to local minima, 

we still applied 100 independent runs. 

o An absolute number of maximum iterations was not set. The iterations stopped 

due to a tolerance criterion with regard to inertia. 

o The only tuning parameter: number of clusters. 
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 Agglomerative clustering: 

o Affinity metrics investigated: Euclidean distance, L1-norm (Manhattan distance) 

and cosine distance. 

o Linkage criteria investigated: Ward [52] and average. Similar to the objective func-

tion of K-Means (minimizing the “within-sum-of-squares”/inertia), Ward-linkage 

minimizes variances, but applied in the scope of an agglomerative hierarchical ap-

proach. In contrast, average-linkage minimizes the average of the distances be-

tween all member vectors of pairs of clusters. The applied implementation [4] al-

lows Ward-linkage only in combination with Euclidean distance, while for aver-

age-linkage, also the other affinity metrics were analyzed. 

o Connectivity: A very interesting feature of the agglomerative clustering implemen-

tation [4] is the possibility to take connectivity constraints into account. This 

means that the hierarchical algorithm is allowed to merge only clusters which are 

adjacent to each other on the SOM. All combinations above are therefore com-

puted in both modes: once with connectivity constraints and once without. 

D.3.3.2 Evaluation of the Best Clustering 

As mentioned in Chapter 5, a two-step evaluation procedure was applied to determine the “best” 

clustering: A pre-selection which only focused on the parameters within each approach followed 

by a final comparison between the two clustering methods. 

Pre-Selection 

In this pre-evaluation, Silhouette-Coefficients (S) [53] constituted the main evaluation metric. 

However, according to Liu et al. [54], S might face problems in the presence of sub-clusters. 

Therefore, we also took the Calinski-Harabasz-Coefficient (CH) [55] into consideration which 

evaluates scatter between groups and within groups and which succeeded in the cases where S 

failed. However, CH might fail in the case of noise and skewed distributions, but S fortunately 

performed well in the respective experiments of [54]. 

The pre-selection applied to the two approaches: 

 K-Means: 

o The pre-selection basically narrowed down the possible range of the number of 

clusters (k). Note that we refrained from just taking the k with the largest S-value 

since especially in the case of sub-clusters [54], it seems to be reasonable to de-

termine a range of k with similar (large) S-values. 

o The k’s for further investigations, were determined based on a range of high S-

values, a range of high CH-values as well as on the “elbow” of the inertia-plot: 25 

to 93 clusters. 
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 Agglomerative Clustering: 

o Based on the plots of S (overall average) and CH for different numbers of clus-

ters, the best combination of parameters was determined: Euclidean distance with 

Ward-linkage [52] including connectivity constraints. 

o Just as for K-Means, also the range of numbers of clusters to be further investi-

gated was selected based on a range of high S-values, a range of high CH-values 

as well as the largest gap in the dendrogram: 20 to 153 clusters. 

Final Evaluation 

In the second evaluation step, the pre-selected clustering algorithms were judged according to 

their ability to reproduce the structure of visible groups of neurons in the U-Matrix. Further-

more, two other criteria entered the decision process: 

 ANOVA-tests: ANOVA was performed for each attribute separately. Rejection of the 

null hypothesis (see also section D.3.1) shows that there is at least one cluster which sta-

tistically significantly differs from the others. This test shall thus give an impression of 

how reasonable the clustering might be. 

 Number of HBS-households per cluster to get an indication of representativeness of the 

clustering. Besides statistics for each cluster, also overall statistics such as mean, mini-

mum, maximum and median were computed. Furthermore, it was also analyzed if all sur-

vey months are represented in each cluster and if not, which are missing. 

Note that these two aspects were meant to broaden the information basis rather than being the 

main decision criteria. Moreover, at this advanced stage of evaluating the clustering, the null hy-

pothesis of ANOVA was rejected for all attributes in all of the investigated clusterings. 

For the agglomerative clustering, comparing the U-Matrices of different numbers of clusters was 

interesting since the use of connectivity constraints enabled the tracking of merging clusters. 

Therefore, we could directly judge how reasonable the merge of two clusters (breaking the bor-

ders) is. 

The two best versions of each clustering algorithm are shown in Figure D.23. After careful con-

sideration of all criteria, we decided for the agglomerative clustering approach with Ward-linkage 

and connectivity constraints. Apart from all criteria being either in favor of this approach or 

show reasonable results, the preservation of connectivity was seen as an advantage over K-Means 

which distributed some clusters across the whole U-Matrix. In addition, the use of these connec-

tivity constraints is also in line with the suggestions of Vesanto and Sulkava [56] who propose a 

similar approach to perform clustering on top of a SOM. 
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Figure D.23: Comparison of the best K-Means (31 clusters, top) and the best Ward-
clustering (34 clusters, bottom). The borders of the found clusters were pr o-
jected onto the U-Matrix. 

D.3.3.3 Final Clustering and Deriving Archetypes 

As explained in Chapter 5, some manual merging of clusters was applied in a post-processing 

step. This was primarily necessary because not all clusters reached the minimum count of house-

holds (130) that was regarded as being representative for performing statistics [14]. Additionally, 

this manual post-processing is also supported by the dendrogram in Figure D.24 which shows 

some “Fuzziness” between 34 and 24 clusters indicating that there are several clusters which are 

close to each other. This might also be a consequence of using connectivity constraints. Also 

Vesanto and Alhoniemi [46] point out that in case of sub-clusters, it might be reasonable to cut a 

dendrogram at different positions. Therefore, we decided to merge all clusters with less than 130 

households with their closest neighboring clusters if these merges would also happen in the den-

drogram between 34 and 24 clusters. This procedure resulted in 26 clusters that were considered 

representative (more than 130 households as members) and 2 clusters for which the minimum 
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count of households was not reached. These two clusters will be part of all subsequent analyses, 

but they will be marked as “outlier A” (OA) and “outlier B” (OB). To name all other clusters, a 

random letter was assigned. Note that in all clusters all survey months are present which indicates 

another aspect of representativeness and also shows that the applied correction for seasonality 

worked. 

 

Figure D.24: Simplified and truncated dendrogram for the agglomerative clustering a p-
proach with Ward-linkage and connectivity constraints. The red zone approx-
imates the blur between 34 and 24 clusters.  

However, the question might arise why not directly working with 24 clusters. There are several 

reasons against this: First of all, the version with 34 clusters outperformed 24 clusters in the eval-

uation procedure above. Second, the two “outlier” clusters would not change and still persist. 

Third, Vesanto and Alhoniemi [46] suggest that for clustering the SOM, also the so-called hits-

map shall be consulted. This map depicts the hits per neuron, which means that it shows how 

many times the neuron became a BMU (see Figure D.25). Or in other words: it indicates the 

number of HBS-households for which a certain neuron is closest. Vesanto and Alhoniemi [46] 

argue that interpolating neurons (neurons with few or even zero hits) might obscure cluster bor-

ders or the other way around: the localization of zero-hit-neurons can be utilized to identify clus-

ter borders. The hits-map in Figure D.25 shows indeed some zero-hit-neurons along the borders 

of clusters which would be merged on the way from 34 to 24 clusters. We took these zero-hit-

neurons as indication for not breaking these borders. To a certain degree, this is also in line with 

other literature recommendations suggesting that for clustering on top of a SOM, also density 

information should be used [57]. Taking the hits-map as a rough approximation of a P-Matrix 

[58] (similar to the U-Matrix, but based on density instead of distances), this would result in the 

same conclusion not to conduct all possible merges between 34 and 24 clusters. 
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Figure D.25: Hits-maps showing the count of how many times a neuron became BMU. 
Top: Hits-map with cluster borders; bottom: hits-map as heatmap. 

 

The following figures (Figures D.26-40) show some more evaluation results and quality checks of 

the final clustering and Table D.11 gives information on the number of households per cluster. 
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Figure D.26: Top: U-Matrix of the final SOM. Bottom: cluster borders projected onto the 
U-Matrix. 

 

Figure D.27: Similar to Figure D.26, but with contour lines to improve visibility of sugges t-
ed groupings of neurons by the U-matrix. Top: U-Matrix of the final SOM. 
Bottom: cluster borders projected onto the U-Matrix. 
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Figure D.28: Silhouette plot [53] of the final clustering, showing the silhouette scores for 

all samples. The sample scores are grouped by their cluster membership and 
ranked in decreasing order within each cluster. The red vertical line indicates 
the overall average Silhouette coefficient.  

Table D.11: Statistics of number of households per cluster in the final clustering. 

Cluster name No. of households 

A 730 

B 450 

C 182 

D 597 

E 351 

F 244 

G 296 

H 691 

I 414 

J 561 

K 315 

L 557 

M 257 

N 369 

O 420 

P 433 

Q 139 

R 428 

S 137 

T 146 

U 224 

V 576 

W 191 

X 320 

Y 296 

Z 285 

OA 68 

OB 57 
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Figure D.29: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.30: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.31: Plots to check the quality of the clustering. The points il lustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.32: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.33: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.34: Plots to check the quality of the clustering. The points illu strate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.35: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.36: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.37: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.38: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.39: Plots to check the quality of the clustering. The points illustrate the centroids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  
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Figure D.40: Plots to check the quality of the clustering. The points illustrate the cen troids 
of the archetypes, while the error bars visualize the 95%-confidence interval of 
the centroids. The data is unit-less since standardized and partly corrected for 
seasonality. Quantity-attributes are marked with “Q:”.  

D.4 LCA-MODELING 

The whole LCA-modeling applied in this study is disclosed in the accompanying EXCEL-file3. 

This section shall explain how this EXCEL-file needs to be read and provide more insights into 

some peculiarities. 

First of all, the EXCEL-file should be gone through line-by-line. All unit processes in a row form 

the process model which approximates the consumption category. Each unit process comprises 5 

columns providing more information on how to include the unit process in the process model: 

“On” determines if the unit process is active (whether it shall be included or not); “Activity” 

holds the key to find the activity in the respective database via brightway2 [3]; this also shows if 

the unit process originates from ecoinvent [26], Agribalyse [59] or EXIOBASE [60, 61]; “DB 

Act” shows a human readable name of the unit process; “CFL Act” indicates a conversion factor 

for individual unit processes. Different uses of the “CFL Act”-field will be explained below. In 

the case of food categories, this factor corresponds to a conversion factor from Scherer and 

Pfister [62] which translates the unit process as it is given in the respective database into the actu-

ally needed product for the process model. The idea to use the factor from [62] is based on the 

LCA-modeling of food by Walker et al. [63]. “Amount Act” finally shows the amount needed for 

the functional unit of the respective consumption category. Thereby, the “Amount Act”-entry 

needs to be multiplied with the “CFL Act”-entry when the unit process enters the process model. 

Last but not least, the finally computed LCA-factor (characterization factor) for the functional 

unit of the process model is multiplied by the entry in the column “ConversionDem2FU” in or-

der to convert the functional unit of the process model into the units of the demand. In the case 

of EXIOBASE-activities, this means for instance that the functional unit of the process model in 

                                                 
3  The EXCEL-file can be downloaded at https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452 or it can be 
requested via froemelt@ifu.baug.ethz.ch. 

mailto:froemelt@ifu.baug.ethz.ch
https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452
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millions of € of basic-prices are translated into purchaser-prices in Swiss Francs (see below). 

While for the very most of all cases, this conversion is self-explanatory since it is either the 

aforementioned translation of EXIOBASE-activities or simply the factor of 1 (in the case the 

HBS already provides the demands in kilograms or liters), some very few conversions need more 

explanations: 

 For housing-related activities please refer to section D.2.3. 

 The following categories needed to be converted from Swiss Francs to kilograms mainly 

based on price and weights data from the largest retailers in Switzerland [64, 65]: 

o Bakery products [64, 65] 

o Sandwich [64, 66] 

o Fresh eggs, processed eggs [67, 68] 

o Culinary herbs [64] 

o Confectionery [64, 65] 

o Other sugar or cocoa based foods [64, 65] 

o Sauces, seasonings and spices [64, 65] 

o Soups and bouillons [64, 65] 

o Ready-to-cook meals [64, 65] 

o Vegetarian soy products [64] 

o Newspapers and periodicals [64, 68] 

o Body wash and bath additive [69, 70] 

Table D.12: Data to convert bought liters of petrol to vehicle -kilometers according to [26] 
and based on the density of 0.75 kg/l from [29]. 

ecoinvent-activity           Petrol use Conversion 

              kg/km km/l 

'transport, passenger car, small size, petrol, EURO 3' (kilometer, RER, None) 0.058 12.974 

'transport, passenger car, small size, petrol, EURO 4' (kilometer, RER, None) 0.054 14.006 

'transport, passenger car, small size, petrol, EURO 5' (kilometer, RER, None) 0.050 14.897 

'transport, passenger car, medium size, petrol, EURO 3' (kilometer, RER, None) 0.070 10.789 

'transport, passenger car, medium size, petrol, EURO 4' (kilometer, RER, None) 0.065 11.475 

'transport, passenger car, medium size, petrol, EURO 5' (kilometer, RER, None) 0.062 12.084 

'transport, passenger car, large size, petrol, EURO 3' (kilometer, RER, None) 0.081 9.232 

'transport, passenger car, large size, petrol, EURO 4' (kilometer, RER, None) 0.077 9.720 

'transport, passenger car, large size, petrol, EURO 5' (kilometer, RER, None) 0.074 10.166 

Furthermore, bought liters of petrol and diesel were converted to vehicle-kilometers. This was 

done based on the density information given in [29] (0.75 kg/l for petrol and 0.84 kg/l for diesel) 

and the amounts of kilograms of diesel and petrol used to drive 1 kilometer according to ecoin-

vent [26]. For convenience, this data is also made available in Table D.12 and Table D.13 and 

entered accordingly the “CFL Act”-field in the EXCEL-file. By the way, the “Amount Act” in 

the EXCEL-file for the use of diesel and petrol corresponds to the shares of the different petrol 

and diesel cars in the total Swiss petrol and diesel car fleet [71]. Similarly, the “Amount Act”-field 
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for trains and urban vehicles contains the shares based on Swiss public transportation statistics 

[72]. 

Table D.13: Data to convert bought liters of diesel to vehicle -kilometers according to [26] 
and based on the density of 0.84 kg/l from [29]. 

ecoinvent-activity           Diesel use Conversion 

              kg/km km/l 

'transport, passenger car, small size, diesel, EURO 3' (kilometer, RER, None) 0.045 18.688 

'transport, passenger car, small size, diesel, EURO 4' (kilometer, RER, None) 0.043 19.333 

'transport, passenger car, small size, diesel, EURO 5' (kilometer, RER, None) 0.042 20.169 

'transport, passenger car, medium size, diesel, EURO 3' (kilometer, RER, None) 0.061 13.850 

'transport, passenger car, medium size, diesel, EURO 4' (kilometer, RER, None) 0.057 14.622 

'transport, passenger car, medium size, diesel, EURO 5' (kilometer, RER, None) 0.056 15.095 

'transport, passenger car, large size, diesel, EURO 3' (kilometer, RER, None) 0.076 11.017 

'transport, passenger car, large size, diesel, EURO 4' (kilometer, RER, None) 0.072 11.740 

'transport, passenger car, large size, diesel, EURO 5' (kilometer, RER, None) 0.070 12.061 

As mentioned in Chapter 5, we generally attempted to adjust the process models as close as pos-

sible to the situation of Switzerland. With regard to ecoinvent-activities, this means, we tried to 

construct “Swiss Markets” in the case there are no Swiss activities directly available. Thereby, the 

different production activities were weighted according to the import shares provided by Scherer 

and Pfister [62]. Due to a lack of information, associated transport activities could not be adjust-

ed and correspond thus to the transport modeling provided by ecoinvent [26] for the respective 

global markets. In the EXCEL-file, these global market transport processes are indicated to be 

located in a database called “heia”, which only contains manually adjusted ecoinvent-activities. Of 

course, if neither import shares are given by Scherer and Pfister [62] nor ecoinvent [26] distin-

guishes different production processes, the global-market-activities were taken to approximate 

the respective part of a process model. 

Additionally, the previously mentioned “heia”-database also contains a fruit- and vegetable-mix 

(called “fruitnes” and “vegetablenes”). These mixes were also created based on the import data 

from Scherer and Pfister [62] and their composition is presented in Table D.14. Again, whenever 

possible, Swiss markets were also generated for activities being part of these mixes. 

Table D.14: Swiss fruit- and vegetable-mixes to cover process models which need a gen-
eral unit activity for fruits or vegetables. The shares are retrieved from [62]. 

Fruitnes Vegetablenes 
Fruit Share Vegetable Share 

Lemon 0.027 Spinach 0.0611 
Orange 0.171 Fennel 0.0170 
Mandarin 0.021 Celery 0.0170 
Banana 0.112 Onion 0.0862 
Apple 0.381 Cabbage red 0.0604 
Pear 0.081 Cabbage white 0.0604 
Peach 0.047 Cauliflower 0.0331 
Apricot 0.032 Tomato 0.3567 
Melon 0.040 Fava bean 0.0018 
Pineapple 0.066 Aubergine 0.0134 
Palm date 0.003 Zucchini 0.0182 
Kiwi 0.017 Green bell pepper 0.0182 
Papaya 0.002 Cucumber 0.0893 

 
  Carrot 0.1468 

 
  Asparagus green 0.0102 

    Asparagus white 0.0102 
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Similar to the modeling of the car-driven kilometers, also the heating technologies need some 

more explanations. The conversion of expenditures to final energy was already explained in sec-

tion D.2.3. The “Amount Act”-field in the EXCEL-file carries the averaged shares given in Table 

D.5 while the “CFL Act” contains an average efficiency to translate final energy to useful energy 

based on data given by [73]. To split the shares among technologies with the same energy carrier, 

either additional data could be used from [73] or equal shares needed to be assumed. However, a 

quick sensitivity analysis revealed that this assumption is of minor importance. 

Another issue with regard to housing energy are expenditures for secondary residences. Unfortu-

nately, the HBS does not provide a detailed breakdown of expenditures for secondary homes. 

Environmental impacts induced by secondary residences are thus approximated as follows: The 

total of secondary home costs are – just virtual – proportionally distributed to the primary home 

categories. The increase in primary home expenditures is then directly transferred to an analogue 

increase in amounts of energy, electricity, water, wastewater, and waste bags. The difference be-

tween the environmental impacts caused by this “virtual” increase and the environmental impacts 

before this increase are determined as the impacts originating from secondary homes. 

As mentioned in Chapter 5, the coupling of HBS-consumption categories with EXIOBASE-

activities followed the recommendations of Steen-Olsen et al. [74]. In the following, we will give 

a short overview of the linking-process and highlight where our approach deviates from [74]: 

1. Back-calculating from HBS-prices (2009, 2010, 2011) to prices of 2007 (EXIOBASE-

basis) by means of data from [70]. 

2. Conversion from million € to Swiss Francs based on [75]. 

3. We then matched HBS-consumption categories with EXIOBASE-activities based on the 

ISIC rev. 3.1 [76] descriptions. However, EXIOBASE obviously merged some industry 

sectors and for some parts uses the ISIC rev. 4. We thus tried to follow the EXIOBASE-

documentation and the respective ISIC-descriptions, but also double-checked with the 

Federal Statistical Office in order to match to the correct consumption categories. In the 

case of one-to-many-matches, Steen-Olsen et al. [74] applied an optimization process to 

determine the shares of different EXIOBASE-sectors for a certain consumption catego-

ry. Because of the different modeling structure in our hybrid LCA, we were not able to 

employ the same optimization approach, but decided to determine the shares of different 

sectors by the Swiss final demand vector provided by EXIOBASE (these shares entered 

the “CFL Act”-fields). Similarly, the contributions from different countries and regions to 

a certain industry sector were also weighted according to the household consumption 

vector of Swiss households (these shares entered the “Amount Act”-fields). 

4. Finally, the purchaser-prices (HBS-data) needed to be converted to basic-prices (EXI-

OBASE-basis). The “ConversionDem2FU”-field in the EXCEL-file thus not only con-

siders the conversions in steps 1 and 2, but also the subtraction of taxes as well as trade 

and transport margins. The trade and transport margins were then re-distributed to the 
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trade- and margins-sectors which also become part of the different EXIOBASE-process 

models. For these sectors, the “Amount Act”-field contains the share of the respective 

margin-sector according to EXIOBASE, while the “CFL Act”-entry corresponds to the 

share of a purchase going to the margins-sectors. 

Finally, we need to point out that EXIOBASE provides a large, but – compared to e.g. ecoinvent 

– limited number of biosphere flows. Thereby, greenhouse gases are well covered. This limitation 

is thus not an issue for the results according to IPCC 2013 (100a). However, the comprehensive 

impact assessment method of ReCiPe is slightly affected. While climate change, acidification, 

eutrophication, particulate matter formation, photochemical oxidant formation and impacts of 

land use are well considered, toxicity can fairly be accounted for and resource depletion at least in 

parts. However, ozone depletion and ionizing radiation – to our knowledge – cannot be assessed 

by the environmental data provided by EXIOBASE. But we also would like to highlight that the 

most important biosphere flows for ReCiPe [77] are included in EXIOBASE and that mobility, 

food and housing, which are the three most important consumption areas from an environmental 

perspective (see e.g. [74, 78–82]), are anyway modeled by ecoinvent-activities. Moreover, the pre-

sented ReCiPe-results can also be regarded as plausible since the prevalence-weighted Swiss aver-

age of this study amounts to 0.98 kPts. per person per year, which is very close to the 1.0 kPts. 

per person per year for the average citizen in the European Union (please note that this average 

of 1000 points per person per year are the result of the normalization and weighting step of ReC-

iPe and thus set by definition for the average footprint of EU-citizens in the year 2000 [77]). 

Last but not least, system boundaries with regard to invitations and donations were set as follows: 

if a household invites another household to a restaurant or hotel, the environmental impacts are 

allocated to the invited household, except for the case, the invitation takes place at the inviting 

household’s home. Even though these assumptions might be questionable or seem to be contra-

dictory to some extent, it is the only way to avoid double-counting and to make full use of the 

HBS-data. The food bought for an invitation to one’s own home cannot be distinguished from 

other food purchases. At the same time, the expenditures for restaurants and hotels also include 

costs which were not paid by the surveyed household. 

D.5 ADDITIONAL RESULTS 

D.5.1 Results in the Excel-File 

The supplemental EXCEL-file4 was already mentioned and partly described in sections D.1.2 

(overview of HBS-structure), D.3.1 (indication of which attributes passed the filtering process 

and which of them were corrected for seasonality), and D.4 (full description of LCA-modeling). 

Besides the aforementioned information, the EXCEL-file also contains the following additional 

results: 

                                                 
4  The EXCEL-file can be downloaded at https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452 or it can be 
requested via froemelt@ifu.baug.ethz.ch. 

https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452
mailto:froemelt@ifu.baug.ethz.ch
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 Results of ANOVA applied to all clustering attributes as well as results of visual quality 

check. 

 The centroid vector of all clusters containing the average demands, amounts, expendi-

tures, household characteristics, income and durable goods statistics for all attributes pro-

vided by the HBS. 

 The LCA-results for IPCC 2013 (100a) [83]. 

 The LCA-results for ReCiPe 2008 (total endpoints, H,A) [84]. 

D.5.2 Heatmaps of Household Characteristics 

In addition to the full results of the centroid vector provided in the supplementary EXCEL-file5, 

Figure D.41 and Figure D.42 visually support the comparison of the archetypes’ household char-

acteristics. These heatmaps are normalized along the attribute’s axis on a minimum-maximum-

scale. For instance, if gross income shall be compared, the cluster with the largest gross income is 

assigned a value of 1, while the minimum income receives a 0. All others are scaled proportional-

ly between 0 and 1. 

 
Figure D.41: Heatmap of most important household characteristics (total view, not per-

capita). 

                                                 
5  The EXCEL-file can be downloaded at https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452 or it can be 
requested via froemelt@ifu.baug.ethz.ch. 

mailto:froemelt@ifu.baug.ethz.ch
https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452
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Some characteristics are better compared on a per-capita basis. Therefore, this view is also pro-

vided in Figure D.42. Please note that in both figures, not all household characteristics are dis-

played, but only the most important ones and some characteristics are provided in an aggregated 

form. 

 

Figure D.42: Heatmap of most important household characteristics (per -capita). 

D.5.3 Heatmaps of Household Demands 

Similar to the previous section, Figure D.43 and Figure D.44 help to compare the archetypes’ 

centroid vectors with regard to expenditures. Again, a minimum-maximum-scaling was applied 

and Figure D.43 shows the totals-perspective, while Figure D.44 enables a per-capita comparison. 

It was not possible to show all expenditures in a single heatmap. Besides excluding durable goods 

statistics, the second and sometimes the third lowest level of expenditures according to the HBS-

structure is shown. Furthermore, some categories which were considered “less important” were 

also excluded for constructing the heatmaps. However, we would like to point out that all results 

are provided in the supplementary EXCEL-file6. 

                                                 
6  The EXCEL-file can be downloaded at https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452 or it can be 
requested via froemelt@ifu.baug.ethz.ch. 

mailto:froemelt@ifu.baug.ethz.ch
https://pubs.acs.org/doi/suppl/10.1021/acs.est.8b01452
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Figure D.43: Heatmap of selected expenditures (total view, not per-capita). 
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Figure D.44: Heatmap of selected expenditures (per-capita). 
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D.5.4 Heatmaps of Environmental Impacts 

This section shall finally also provide a visually enhanced way to compare the environmental im-

pacts of the archetypes. Figures D.45-48 visualize the results of greenhouse gas emissions (IPCC 

2013, 100a), while Figures D.49-52 show the results of ReCiPe-endpoints (H,A). Additionally, 

different views are presented: 

 Figure D.45 (greenhouse gas emissions) and Figure D.49 (ReCiPe-endpoints) take a “per-

cluster-view”. This means, the minimum-maximum-scaling is applied along the arche-

type’s axis and allows comparing the main consumption categories within each archetype. 

 Figure D.46 (greenhouse gas emissions) and Figure D.50 (ReCiPe-endpoints) provide a 

“per-category-view” and allows for comparisons among archetypes but within a certain 

consumption category. 

 Figure D.47 (greenhouse gas emissions) and Figure D.51 (ReCiPe-endpoints) are preva-

lence-weighted and are not scaled enabling comparisons among different archetypes and 

different consumption areas at the same time. 

 Finally, Figure D.48 (greenhouse gas emissions) and Figure D.52 (ReCiPe-endpoints) en-

able a prevalence-weighted “per-category-view”. 

 

Figure D.45: Greenhouse gas emissions (IPCC 2013, 100a), “per-cluster-view”: Minimum-
maximum-scaling along the archetype’s axis to compare the consumption 
categories for each archetype separately. Left and right figures show the 
same, but the left-hand side also provides annotations of the applied scaling.  
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Figure D.46: Greenhouse gas emissions (IPCC 2013, 100a) , “per-category-view”: Minimum-
maximum-scaling along the consumption area axis to compare different a r-
chetypes within a consumption area. Left : total-view; Right: per-capita view. 

 

Figure D.47: Greenhouse gas emissions (IPCC 2013, 100a), prevalence-weighted results to 
compare archetypes and consumption categories at the same time. Left: total-
view; Right: per-capita view. 
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Figure D.48: Greenhouse gas emissions (IPCC 2013, 100a), prevalence-weighted “per-

category-view”: Minimum-maximum-scaling along the consumption area axis 
to compare different archetypes within a consumption area. Left: total-view; 
Right: per-capita view. 

 
Figure D.49: ReCiPe-endpoints (H, A), “per-cluster-view”: Minimum-maximum-scaling 

along the archetype’s axis to compare the consumption categories for each 
archetype separately. Left and right figures show the same, but the left -hand 
side also provides annotations of the applied scaling.  
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Figure D.50: ReCiPe-endpoints (H,A), “per-category-view”: Minimum-maximum-scaling 
along the consumption area axis to compare different archetypes within a 
consumption area. Left: total-view; Right: per-capita view. 

 

Figure D.51: ReCiPe-endpoints (H,A), prevalence-weighted results to compare archetypes 
and consumption categories at the same time. Left: total-view; Right: per-
capita view. 
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Figure D.52: ReCiPe-endpoints (H,A), prevalence-weighted “per-category-view”: Mini-
mum-maximum-scaling along the consumption area axis to compare different 
archetypes within a consumption area. Left: total-view; Right: per-capita 
view. 

 

D.5.5 Correlation Analysis 

As mentioned in Chapter 5, a correlation analysis was performed with the LCA-results of the 

archetypes’ demands and their respective household characteristics. Please note that this analysis 

is just a rudimentary univariate correlation analysis and its only goal is to demonstrate that the 

archetype-approach can also be used for such investigations. This is also the reason for only con-

sidering correlations between different consumption areas and income, age and household size 

which are often cited as the most important household characteristics affecting the environmen-

tal footprints of households [82, 85]. The results of this analysis are depicted in Figures D.53-56. 

Note that the Spearman-Correlation-Coefficients as well as the linear regressions shown in these 

figures were computed on a prevalence-weighted basis. Figure D.53 and Figure D.55 show the 

results for greenhouse gas emissions (IPCC 2013, 100a), while Figure D.54 and Figure D.56 pro-

vide the findings of the correlation analysis of ReCiPe-endpoints (H,A). Furthermore, Figure 

D.53 and Figure D.54 are based on the total environmental impacts per archetype and Figure 

D.55 and Figure D.56 illustrate the correlation with per-capita footprints. 

The Spearman-Correlation-Coefficients between total emissions and income (0.91 for both im-

pact methods) as well as for household size (0.86) confirm the overall picture in Figure 5.3 in 

Chapter 5. Additionally, while a strong correlation can be found between income and recreation 



 
D.5 Additional Results 

253 

(0.93), income correlates less strongly with food impacts (0.73 for ReCiPe and 0.67 for green-

house gas emissions) and exhibits even a negative correlation with per-capita food impacts. This 

is also in line with the findings of Girod and De Haan [86] and with e.g. the footprints of OA 

and OB. Both archetypes show high impacts in the field of leisure activities (especially due to 

“package holidays”, but also because of “major durable goods for recreation”, and “pets ser-

vices”), but impacts induced by food do not differ from other archetypes. 

Total footprints often negatively correlate with age. This might be surprising since the analyses in 

Chapter 5 demonstrate that elder archetypes, particularly the “retired-couple”-cluster V, can be 

responsible for considerable contributions. However, from a per-capita perspective, the tenden-

cies found in Chapter 5 for elder clusters can be confirmed. For instance, H (“old, widowed fe-

males”), V (“low-income, retired couple”) and Y (“low-income, very old couple”) show larger 

housing and health per-capita footprints than other archetypes. Corresponding to this, Figure 

D.55 and Figure D.56 reveal large Spearman-Correlation-Coefficients between age and housing 

(0.88 for both impact methods) and between age and health (0.93 for both impact methods). 
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Figure D.53: Correlation analysis of prevalence-weighted total greenhouse gas emissions 
(IPCC 2013, 100a). 
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Figure D.54: Correlation analysis of prevalence-weighted total ReCiPe-endpoints (H,A). 
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Figure D.55: Correlation analysis of prevalence-weighted per-capita greenhouse gas emis-
sions (IPCC 2013, 100a).  
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Figure D.56: Correlation analysis of prevalence-weighted per-capita ReCiPe-endpoints 
(H,A). 
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D.5.6 Results of Ecological Scarcity 

Finally, we also present the results of the archetypes for the Ecological Scarcity (2013) [87] meth-

od. Since this is a Switzerland-tailored impact assessment method and our study is also focused 

on Switzerland, the following results might be interesting for Swiss policymakers. The overall, 

prevalence-weighted footprint is given in Figure D.57. Similar to the comparisons based on 

greenhouse gas emissions conducted in Chapter 5, these results again prove agreement with the 

study of Jungbluth et al. [88] although the prevalence-weighted per-capita footprint of 13.8 Mio. 

UBP (Umweltbelastungspunkte=”environmental impact points”) deviates by about 20% from 

the 17.3 Mio. UBP found in Jungbluth et al. [88]. Please note that the original value of Jungbluth 

et al. [88] (20 Mio. UBP) was again adjusted for better comparison. We also would like to point 

out that Jungbluth et al.’s study refers to another time period as the present study and that they 

used Ecological Scarcity 2006 [89] instead of 2013. Finally, also the footprint compositions on a 

total and a per-capita basis are provided in Figure D.58. 

 

Figure D.57: Prevalence-weighted Swiss average footprint based on the Ecological Scarcity 
(2013) [87] method. 
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Figure D.58: Results of Ecological Scarcity (2013) [87]. The archetypes are ranked accord-
ing to their footprints in both subfigures. Left: total footprint composition; 

Right: Per-capita footprints. 
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E.1 OUTLOOK: MODEL EVALUATION 

This appendix aims at giving an impression of the plausibility of the model results by presenting a 

selection of comparisons of national statistics with the results of the mobility sub-model, the 

consumption sub-model as well as the overall model (see Figure 1.1 in Chapter 1). 

E.1.1 Mobility Sub-Model 

Table E.1 compares the mean daily distance (kilometers per person per day) according to the 

model in Chapter 6 with the Swiss Mobility and Transport Microcensus 2010 [1] in different ag-

gregations, whereas Table E.2 shows a similar comparison but with regard to modal splits. Note 

that in respect of cities, Geneva, Basel and Lugano were not considered because of their proximi-

ty to the national borders. Since routine cross-border trips were not simulated in the used 

MATSim-applications [2], we anticipated that the comparisons with these cities might not yield 

reasonable results. Furthermore, we would like to mention that the modal split relate only car 

trips and public transportation trips to each other and do not take bike and walk trips into ac-

count. Note that the modal splits are computed based on kilometers driven. 

The used “PT-classes” in Tables E.1 and E.2 need some more explanation: The Federal Office 

for Spatial Development subdivides the whole area of Switzerland into five classes according to 

the goodness of public transport (PT) access. While a PT-class A indicates a very good public 

transport service, a not-classified area means no or very infrequent public transport access [3]. 

Table E.1: Comparison of the mean daily distance of the mobility sub -model results 
(Chapter 6) with the Swiss Mobility and Transport Microcensus 2010 [1]. [rel. 
Diff. = relative difference; abs. Diff. = absolute difference ; PT = Public 
transport] 

Mean daily distance 
(km/pers/day) 

Microcensus Model rel. Diff. abs. Diff. 

T
o

ta
l 

Total 36.7 37.1 0.011 0.4 

S
p

a
ti

a
l 

S
tr

u
c
tu

re
s Agglomeration (cores and 

isolated cities) 
32.1 30.9 -0.037 -1.2 

Agglomeration (other munici-
palities) 

37.0 37.2 0.005 0.2 

Rural municipalities 41.3 43.8 0.061 2.5 

H
o

u
se

h
o

ld
 T

y
p

e
s 

1-Person HH 33.2 33.9 0.021 0.7 

2-Persons HH 37.2 36.3 -0.024 -0.9 

3-Persons HH 38.7 38.1 -0.016 -0.6 

4-Persons HH 36.6 38.5 0.052 1.9 

5+-Persons HH 37.0 38.8 0.049 1.8 

C
it

ie
s 

Winterthur 37.8 39.4 0.042 1.6 

Zurich 35.6 35.2 -0.011 -0.4 

Bern 38.9 30.2 -0.224 -8.7 

Lucerne 37.2 33.2 -0.108 -4.0 

Lausanne 32.7 34.2 0.046 1.5 

P
T

-c
la

ss
e
s PT-class A 29.3 27.6 -0.058 -1.7 

PT-class B 31.3 32.2 0.029 0.9 

PT-class C 37.1 37.1 0.000 0.0 

PT-class D 39.1 41.3 0.056 2.2 

not classified 40.5 45.1 0.114 4.6 
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Table E.2: Comparison of the modal splits in the mobility sub-model (Chapter 6) with 
the Swiss Mobility and Transport Microcensus 2010 [1]. [rel. Diff. = relative 
difference; abs. Diff. = absolute difference] 

Modal splits (%) Microcensus Model rel. Diff. abs. Diff. 

T
o

ta
l Total: Car 73.9 72.4 -0.021 -1.6 

Total: PT 26.1 27.6 0.060 1.6 

H
o

u
se

h
o

ld
 T

y
p

e
s 

1-Person HH: Car 67.0 64.0 -0.045 -3.0 

1-Person HH: PT 33.0 36.0 0.091 3.0 

2-Persons HH: Car 75.2 70.6 -0.062 -4.6 

2-Persons HH: PT 24.8 29.4 0.187 4.6 

3-Persons HH: Car 75.0 71.7 -0.045 -3.3 

3-Persons HH: PT 25.0 28.3 0.134 3.3 

4-Persons HH: Car 75.8 72.8 -0.039 -3.0 

4-Persons HH: PT 24.2 27.2 0.124 3.0 

5+-Persons HH: Car 69.8 72.5 0.038 2.7 

5+-Persons HH: PT 30.2 27.5 -0.088 -2.7 

C
it

ie
s 

Winterthur: Car 56.0 67.0 0.198 11.1 

Winterthur: PT 44.0 33.0 -0.251 -11.1 

Zurich: Car 65.2 67.0 0.028 1.8 

Zurich: PT 34.8 33.0 -0.053 -1.8 

Bern: Car 64.9 69.9 0.077 5.0 

Bern: PT 35.1 30.1 -0.143 -5.0 

Lucerne: Car 67.7 78.3 0.157 10.6 

Lucerne: PT 32.3 21.7 -0.329 -10.6 

Lausanne: Car 79.1 74.9 -0.053 -4.2 

Lausanne: PT 20.9 25.1 0.201 4.2 

E.1.2 Consumption Sub-Model 

Tables E.3-9 compare a selection of modeled revenues and expenditures with the original data 

from the Swiss Household Budget Survey (HBS) [4]. Deviations of more than 10% are indicated 

in red. 

Table E.3: Selection of modeled revenues and expenditures in the overall model (Chapter 
6) compared with the original HBS-data [4]. Here, all households are includ-
ed. [rel. Diff. = relative difference; abs. Diff. = absolute difference] 

(Swiss Francs per month) All households 

  
HBS Model rel. Diff. abs. Diff. 

 Earned income 7227 7498 0.04 270 
 Primary income 7600 7908 0.04 307 
 Pensions and social benefits 1805 1762 -0.02 -43 
 Gross income 9530 9797 0.03 267 
 Compulsory transfer expenditure 2600 2720 0.05 120 
 Disposable income 6741 6888 0.02 147 
 Other insurances, fees and transfers 568 579 0.02 11 
 Total expenditures 5417 5564 0.03 147 
  Food and non-alcoholic beverages 654 663 0.01 9 
  Alcoholic beverages and tobacco 108 109 0.02 2 
  Restaurants and hotels 543 557 0.03 14 
  Clothing and footwear 234 240 0.03 6 
  Housing, water, electricity, gas and other fuels 1489 1542 0.04 52 
  Furnishings/household equip. and routine maintenance 277 286 0.03 9 
  Health 266 269 0.01 4 
  Transport 750 768 0.02 19 
  Communication 178 180 0.01 3 
  Recreation and culture 624 640 0.03 16 
  Miscellaneous goods and services 295 309 0.05 14 
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Table E.4: Selection of modeled revenues and expenditures in the overall model (Chapter 
6) compared with the original HBS-data [4]. Here, the households are differ-
entiated according to major regions (will be continued in Table E.5). [rel. 
Diff. = relative difference; abs. Diff. = absolute difference] 
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Table E.5: Selection of modeled revenues and expenditures in the overall model (Chapter 
6) compared with the original HBS-data [4]. Here, the households are differ-
entiated according to major regions (continued from Table E.4). [rel. Diff. = 
relative difference; abs. Diff. = absolute difference] 

 (S
w

is
s 

F
ra

n
c
s 

p
e
r 

m
o

n
th

)

H
B

S
M

o
d

e
l

re
l.

 D
if

f.
a
b

s.
 D

if
f.

H
B

S
M

o
d

e
l

re
l.

 D
if

f.
a
b

s.
 D

if
f.

H
B

S
M

o
d

e
l

re
l.

 D
if

f.
a
b

s.
 D

if
f.

H
B

S
M

o
d

e
l

re
l.

 D
if

f.
a
b

s.
 D

if
f.

E
a
rn

e
d

 i
n

c
o

m
e

7
9
5
3

7
9
1
7

0
.0

0
-3

6
7
1
3
2

7
5
2
7

0
.0

6
3
9
5

7
6
4
0

7
6
9
1

0
.0

1
5
1

6
2
4
0

6
3
3
1

0
.0

1
9
1

P
ri

m
a
ry

 i
n

c
o

m
e

8
4
0
7

8
3
3
7

-0
.0

1
-7

0
7
4
7
1

7
9
3
5

0
.0

6
4
6
5

8
0
9
5

8
0
9
9

0
.0

0
3

6
6
3
8

6
6
7
8

0
.0

1
4
0

P
e
n

si
o

n
s 

a
n

d
 s

o
c
ia

l 
b

e
n

e
fi

ts
1
8
6
0

1
6
7
5

-0
.1

0
-1

8
5

1
4
8
5

1
6
9
2

0.
14

2
0
6

1
5
7
1

1
7
5
4

0.
12

1
8
3

1
8
1
3

1
8
2
8

0
.0

1
1
5

G
ro

ss
 i

n
c
o

m
e

1
0
3
8
0

1
0
1
3
2

-0
.0

2
-2

4
8

9
0
8
6

9
7
6
4

0
.0

7
6
7
8

9
8
1
4

9
9
8
3

0
.0

2
1
7
0

8
5
9
4

8
6
3
5

0
.0

0
4
1

C
o

m
p

u
ls

o
ry

 t
ra

n
sf

e
r 

e
x

p
e
n

d
it

u
re

2
7
3
2

2
7
9
0

0
.0

2
5
8

2
4
0
9

2
6
9
8

0.
12

2
8
9

2
3
6
8

2
7
4
2

0.
16

3
7
4

2
2
5
3

2
3
1
3

0
.0

3
6
0

D
is

p
o

sa
b

le
 i

n
c
o

m
e

7
4
6
1

7
1
4
4

-0
.0

4
-3

1
6

6
5
0
1

6
8
8
4

0
.0

6
3
8
3

7
2
9
2

7
0
7
1

-0
.0

3
-2

2
0

6
1
2
9

6
1
7
1

0
.0

1
4
2

O
th

e
r 

in
su

ra
n

c
e
s,

 f
e
e
s 

a
n

d
 t

ra
n

sf
e
rs

5
6
0

5
7
9

0
.0

3
1
9

5
6
5

5
7
1

0
.0

1
6

5
6
0

5
8
6

0
.0

5
2
6

5
9
8

5
6
4

-0
.0

6
-3

5

T
o

ta
l 

e
x

p
e
n

d
it

u
re

s
5
9
7
2

5
7
3
6

-0
.0

4
-2

3
6

5
1
1
3

5
5
3
3

0
.0

8
4
2
0

5
5
9
4

5
6
9
0

0
.0

2
9
6

5
0
1
6

5
0
4
6

0
.0

1
3
0

F
o

o
d

 a
n

d
 n

o
n

-a
lc

o
h

o
li

c
 b

e
v
e
ra

g
e
s

6
2
1

6
4
6

0
.0

4
2
6

6
4
4

6
6
4

0
.0

3
2
1

6
5
9

6
8
9

0
.0

5
3
0

6
3
6

6
2
7

-0
.0

1
-9

A
lc

o
h

o
li

c
 b

e
v
e
ra

g
e
s 

a
n

d
 t

o
b

a
c
c
o

1
1
2

1
1
2

0
.0

1
1

9
6

1
0
7

0.
11

1
1

1
1
4

1
1
1

-0
.0

3
-3

1
0
3

1
0
4

0
.0

1
1

R
e
st

a
u

ra
n

ts
 a

n
d

 h
o

te
ls

6
4
1

5
9
8

-0
.0

7
-4

3
5
2
4

5
6
8

0
.0

8
4
4

5
9
9

5
8
4

-0
.0

3
-1

5
4
3
1

4
5
9

0
.0

6
2
7

C
lo

th
in

g
 a

n
d

 f
o

o
tw

e
a
r

2
6
2

2
5
1

-0
.0

4
-1

1
2
3
4

2
4
2

0
.0

3
8

2
4
8

2
4
9

0
.0

0
1

2
2
9

2
1
9

-0
.0

4
-1

0

H
o

u
si

n
g

, 
w

a
te

r,
 e

le
c
tr

ic
it

y
, 
g

a
s 

a
n

d
 o

th
e
r 

fu
e
ls

1
7
1
0

1
5
9
8

-0
.0

7
-1

1
2

1
3
4
2

1
5
1
9

0.
13

1
7
7

1
5
3
3

1
5
5
7

0
.0

2
2
4

1
3
5
8

1
4
1
6

0
.0

4
5
8

F
u

rn
is

h
in

g
s/

h
o

u
se

h
o

ld
 e

q
u

ip
. 
a
n

d
 r

o
u

ti
n

e
 m

a
in

te
n

a
n

c
e

2
9
6

2
9
9

0
.0

1
3

2
6
6

2
8
3

0
.0

7
1
8

2
9
4

2
9
2

-0
.0

1
-2

2
4
8

2
5
2

0
.0

1
3

H
e
a
lt

h
2
8
7

2
6
5

-0
.0

8
-2

2
2
4
0

2
6
5

0.
10

2
5

2
5
0

2
7
5

0.
10

2
5

2
5
1

2
5
1

0
.0

0
-1

T
ra

n
sp

o
rt

7
8
2

7
9
4

0
.0

2
1
2

7
2
4

7
5
4

0
.0

4
2
9

8
1
0

7
8
1

-0
.0

4
-2

9
7
5
2

7
2
7

-0
.0

3
-2

5

C
o

m
m

u
n

ic
a
ti

o
n

1
7
9

1
8
2

0
.0

2
3

1
6
5

1
7
7

0
.0

7
1
2

1
6
9

1
7
8

0
.0

5
9

2
0
1

1
8
8

-0
.0

6
-1

3

R
e
c
re

a
ti

o
n

 a
n

d
 c

u
lt

u
re

6
9
3

6
6
2

-0
.0

4
-3

0
6
0
9

6
4
6

0
.0

6
3
7

6
2
5

6
6
0

0
.0

6
3
5

5
5
5

5
4
0

-0
.0

3
-1

5

M
is

c
e
ll

a
n

e
o

u
s 

g
o

o
d

s 
a
n

d
 s

e
rv

ic
e
s

3
8
9

3
2
8

-0
.1

6
-6

2
2
6
9

3
0
8

0.
15

3
9

2
9
3

3
1
4

0
.0

7
2
1

2
5
1

2
6
5

0
.0

5
1
3

M
a
jo

r 
re

g
io

n
s

Z
u

ri
c
h

E
a
st

e
rn

 S
w

it
z
e
rl

a
n

d
C

e
n

tr
a
l 

S
w

it
z
e
rl

a
n

d
T

ic
in

o



 
Appendix E - Outlook: Model Evaluation 

270 

Table E.6: Selection of modeled revenues and expenditures in the overall model (Chapter 
6) compared with the original HBS-data [4]. Here, the households are differ-
entiated according to income classes (will be continued in Table E.7). [rel. 
Diff. = relative difference; abs. Diff. = absolute difference] 
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Table E.7: Selection of modeled revenues and expenditures in the overall model (Chapter 
6) compared with the original HBS-data [4]. Here, the households are differ-
entiated according to income classes (continued from Table E.6). [rel. Diff. = 
relative difference; abs. Diff. = absolute difference] 

(Swiss Francs per month) Income classes (Swiss Francs per month) 

 
  9703 - 13170 > 13171 

    HBS Model rel. Diff. abs. Diff. HBS Model rel. Diff. abs. Diff. 

Earned income 9443 10615 0.12 1172 16099 14716 -0.09 -1383 

Primary income 9718 10840 0.12 1122 17074 15755 -0.08 -1319 

Pensions and social benefits 1441 935 -0.35 -507 1221 905 -0.26 -316 

Gross income 11255 11854 0.05 599 18448 16772 -0.09 -1675 

Compulsory transfer expenditure 2957 3111 0.05 154 5447 5357 -0.02 -91 

Disposable income 8108 8351 0.03 243 12682 11242 -0.11 -1441 

Other insurances, fees and transfers 630 646 0.03 16 897 874 -0.03 -23 

Total expenditures 6246 6521 0.04 274 8604 8703 0.01 99 

 
Food and non-alcoholic beverages 768 778 0.01 10 891 992 0.11 101 

 
Alcoholic beverages and tobacco 129 127 -0.01 -2 159 155 -0.02 -4 

 
Restaurants and hotels 659 704 0.07 46 975 933 -0.04 -42 

 
Clothing and footwear 290 295 0.02 5 436 430 -0.01 -6 

 
Housing, water, electricity, gas and other fuels 1611 1728 0.07 117 2061 1955 -0.05 -105 

 
Furnishings/household equip. and routine maintenance 307 322 0.05 15 522 544 0.04 22 

 
Health 290 257 -0.11 -33 344 378 0.10 34 

 
Transport 942 1004 0.07 63 1279 1274 0.00 -6 

 
Communication 210 217 0.03 7 237 238 0.01 1 

 
Recreation and culture 722 764 0.06 42 1113 1106 -0.01 -7 

 
Miscellaneous goods and services 319 325 0.02 6 588 699 0.19 110 

 

Table E.8: Selection of modeled revenues and expenditures in the overall model (Chapter 
6) compared with the original HBS-data [4]. Here, the households are differ-
entiated according to household types (will be continued in Table E.9). [rel. 
Diff. = relative difference; abs. Diff. = absolute difference] 

(Swiss Francs per month) All 1-person households All couples with children 

    HBS Model rel. Diff. abs. Diff. HBS Model rel. Diff. abs. Diff. 

Earned income 3899 5769 0.48 1870 10770 10111 -0.06 -659 

Primary income 4254 6122 0.44 1868 11004 10479 -0.05 -525 

Pensions and social benefits 1815 1660 -0.09 -155 780 1158 0.49 379 

Gross income 6156 7896 0.28 1740 11890 11803 -0.01 -87 

Compulsory transfer expenditure 1620 2151 0.33 531 3291 3290 0.00 0 

Disposable income 4273 5519 0.29 1246 8510 8374 -0.02 -136 

Other insurances, fees and transfers 419 473 0.13 54 622 648 0.04 26 

Total expenditures 3696 4534 0.23 839 6868 6641 -0.03 -227 

 
Food and non-alcoholic beverages 378 491 0.30 113 909 852 -0.06 -56 

 
Alcoholic beverages and tobacco 75 89 0.18 14 101 118 0.17 17 

 
Restaurants and hotels 365 447 0.22 82 654 670 0.02 16 

 
Clothing and footwear 136 182 0.34 46 338 316 -0.07 -22 

 
Housing, water, electricity, gas and other fuels 1249 1414 0.13 166 1772 1686 -0.05 -86 

 
Furnishings/household equip. and routine maintenance 155 209 0.34 53 362 360 -0.01 -3 

 
Health 181 210 0.16 29 279 293 0.05 14 

 
Transport 458 600 0.31 142 968 944 -0.02 -24 

 
Communication 124 156 0.26 32 226 216 -0.04 -10 

 
Recreation and culture 400 502 0.25 102 815 790 -0.03 -25 

 
Miscellaneous goods and services 174 234 0.35 60 444 395 -0.11 -49 
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Table E.9: Selection of modeled revenues and expenditures in the overall model (Chapter 
6) compared with the original HBS-data [4]. Here, the households are differ-
entiated according to household types (continued from Table E.8). [rel. Diff. 
= relative difference; abs. Diff. = absolute difference] 
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The comparisons in Tables E.3-9 show that the model is able to satisfactorily reproduce the sta-

tistics according to the HBS in different aggregations, be it grouped by geographical major re-

gions, income classes or household types. Only in two tables, larger deviations can be observed: 

for the income class “< 4880 Swiss Francs per month” in Table E.6 and for “1-person house-

holds” in Table E.8. Even though these deviations are still in an acceptable range, they are also 

explainable. In fact, only one archetype shows an income lower than 4880 Swiss Francs per 

month, which is H – the “old, widowed females”-cluster. This means that only one specific ar-

chetype was considered in this income class and deviations were clearly to be expected. In other 

words: The subdivision of income classes according to the official HBS-statistics is not reasona-

ble for comparing with our model. Though, this does not apply for single-person households. 

Here, the reasons for the deviations originate from the averaging procedure to derive the arche-

types and the classification approach to assign the archetypes to households. Since there is no 

archetype which is a “pure” single-person household (average number of persons equals exactly 

1), it is very likely that larger households in the same cluster tend to increase the average values of 

“almost” single-person household archetypes. Indeed, Table E.8 shows overestimations by trend. 

E.1.3 Comparison with National Statistics 

Table E.10 provides a similar evaluation of the model results as was already presented in Appen-

dix D.2.4 for the archetypes. Final energy demand for heating, electricity as well as total energy 

demand correspond well with national statistics [5]. The modeled water consumption is higher 

than the current direct water consumption according to [6]. As already mentioned in D.2.4, the 

model results can still be regarded reasonable since the statistics itself is not a measured value but 

an estimation and does not specifically refer to a particular year. Also in respect of waste produc-

tion, the same reasoning as presented in Appendix D.2.4 applies: The underestimation of the 

model can partly be explained by the fact that the waste statistics [7] takes not only household 

waste but also commercial waste into account. However, a rough sensitivity analysis revealed that 

the final life cycle assessment results are only negligibly affected even in the case of doubling the 

waste production. 

Table E.10: Comparison of national statistics with model results. Final energy demand 
statistics originate from [5] and refer to the year 2013, while water consump-
tion was retrieved from [6] and waste statistics from [7]. 

 

Statistics Model 

Total final energy for heating (GJ/pers/yr) 23.5 19.6 

Final energy for heating (only fuel oil) (GJ/pers/yr) 12.2 10.8 

Final energy for electricity (kWh/pers/yr) 2306 2389 

Water consumption (m3/pers/yr) 52 69 

Waste production (kg/pers/yr) 344 193 
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