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Abstract

A major means to encode and share scientific knowledge are publications, which cite
each other and which are authored by one or more scientists. Citation networks
of publications are commonly used to proxy the structure of scientific knowledge.
Coauthorship networks are used to represent the social network between collaborating
scientists. Yet, these two networks are rarely considered together even though they
are interconnected. The multilayer collaborative knowledge network that results from
combining the two allows us to study how the social relations among authors affect the
structure and dynamics of the citation layer. To address this issue, we apply network
theory.

In the first part, we analyse the structure of collaborative knowledge networks. Our
goal is to study dyadic interactions between individual pairs of authors in the context
of the whole network. The ability to perform such a study will allow investigating
individual citation behaviours of authors, as well as their deviations from community
standards. For this, we develop a novel statistical method to extract how much
authors’ citations to each other deviate from a certain expectation. It builds on
three methodological contributions. The first one is a flexible probabilistic model
for complex networks that can encode heterogeneity in dyadic interactions. The
second one is a procedure to formulate statistical null models for networks that respect
temporal ordering of nodes and community structures. The third contribution is a new
nonparametric probabilistic measure to quantify the deviation of an observed value
from a distribution. With this method at hand, we present the deviations of authors’
citations from the expectation formed based on the behaviour of the community
at large. We also show how to use these deviations to highlight the intricate sub-
community structures within the larger communities.

In the second part, we study the evolution of collaborative knowledge networks. We
show that the often neglected social layer has a significant effect on the citation layer.
Particularly, we find that the overall likelihood of a publication to be cited scales with
the number of previous publications by its authors, as well as with the number of their
previous collaborators. To obtain this finding, we develop amethod to fit and compare
probabilistic growth models of multilayer networks. We further look into how the
citations are distributed over time for a given publication and we find that citations
arrive faster for the authors with more collaborators and more publications.

The scientific contribution of this thesis is twofold. First, we develop novel statistical

v



methods to study evolving multilayer complex networks. These methods can be
applied in various fields. Second, we apply these methods to study citation and
collaboration networks from the unified viewpoint of a multilayer network, which
leads us to findings that could not be reached by merely considering the two layers
in isolation.
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Kurzfassung auf Deutsch

Das vorrangige Mittel um wissenschaftliche Erkenntnisse festzuhalten und zu verbre-
iten sind Publikationen. Publikationen zitieren sich gegenseitig und werden von min-
destens einem Autor verfasst. Zitationsnetzwerke wissenschaftlicher Publikationen
werden üblicherweise als Abbild der Struktur wissenschaftlicher Erkenntnis verwen-
det, während Netzwerke von Koautoren als Abbild des sozialen Netzwerks zwischen
kollaborierenden Wissenschaftlern gesehen werden. Obwohl diese beiden Netzw-
erke eng miteinander verbunden sind, werden sie kaum gemeinsam analysiert. Das
mehrere Ebenen umfassende kollaborative Wissensnetzwerk, welches sich aus der
Kombination der beiden Netzwerke ergibt, erlaubt es uns zu untersuchen, wie soziale
Beziehungen zwischen den Autoren die Struktur und Dynamik der Zitier-Ebene bee-
influssen. Wir untersuchen diese Fragestellung mit Methoden der Netzwerktheorie.

Im ersten Teil dieser Dissertation analysieren wir die Struktur kollaborativer Wis-
sensnetzwerke. Unser Ziel ist es dyadische Interaktionen zwischen einzelnen Forscher-
paaren im Kontext des gesamten Netzwerkes zu untersuchen. Die Fähigkeit eine
solche Studie durchzuführen wird sowohl die Erforschung des Zitationsverhaltens
Einzelner als auch die Abweichung von Standards in Wissenschaftsgemeinschaften
ermöglichen. Zu diesem Zweck entwickeln wir eine neuartige statistische Methode,
mittels der wir signifikante Abweichungen in der Tendenz von Forschern sich gegen-
seitig zu zitieren erkennen können. Diese Methode baut auf drei Beiträgen auf. Der
erste Beitrag ist ein flexibles probabilistisches Modell komplexer Netzwerke, welches
Heterogenität in dyadischen Interaktionen miteinbeziehen kann. Der zweite Beitrag
ist ein Verfahren zur Erstellung statistischer Nullmodelle für Netzwerke, welches die
zeitliche Reihenfolge der Knoten und Gruppen berücksichtigt. Der dritte Beitrag ist
ein non-parametrisches statistischesMass der Abweichung eines beobachtetenWertes
von einer Verteilung. Mithilfe dieser Methoden untersuchen wir die Zitationsmuster
zwischen Autoren in verschiedenen Forschungsfeldern. Weiterhin zeigen wir wie
diese Abweichungen genutzt werden können um komplexe Strukturen zwischen Un-
tergemeinschaften hervorzuheben.

Im zweiten Teil der Dissertation konzentrieren wir uns aud die Evolution kollab-
orativer Wissensnetzwerke. Wir zeigen dass die oft vernachlässigte soziale Ebene
einen signifikanten Einfluss auf die Ebene der Zitationen aufweist. Die Wahrschein-
lichkeit einer Publikation zitiert zu werden steigt mit der Anzahl vorhergehender
Publikationen des Autors, sowie mit der Anzahl vorheriger Mitautoren. Diese Ent-
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deckung basiert auf einer neuartigen Methode zur Kalibrierung und zum Vergleich
von probabilistischen Wachstumsmodellen von Mehrebenen-Netzwerken. Weiterhin
untersuchen wir die zeitlichen Veränderungen in der Zitationsrate und stellen fest,
dass Zitationen sich schneller bei Autoren ansammeln welche über mehr Koautoren
und Publikationen verfügen.

Der wissenschaftliche Beitrag dieser Dissertation ist zweifach: Erstens entwickeln
wir neuartige statistische Methoden zur Analyse von sich verändernden komplexen
Mehrebenen-Netzwerken. Diese Methoden können auch in vielen anderen Bereichen
Anwendung finden. Zweitens wenden wir diese Methoden auf die Untersuchung
von Zitier- undMitautor-Netzwerken unter der vereinheitlichenden Perspektive eines
Mehrebenen-Netzwerks an. DiesesVorgehen ermöglicht uns einenErkenntnisgewinn
welcher durch die getrennte Betrachtung der beiden Netzwerke nicht möglich ist.

viii



Chapter 1

Introduction

In order to be effective, policies on how to govern and invest in science must be well-
informed. In particular, the mechanisms of how scientific knowledge evolves must
be understood. Advancing this knowledge often involves collaborative effort from
scientists. In this dissertation, we investigate the co-evolution and interdependence of
scientific knowledge and collaborations from the perspective of network theory.

Scientific publications, along with their references to each other, can be considered
a representation of scientific knowledge. In these publications, scientists state the
results of their research, describe theirmethods, review previously published literature
and discuss the relation to their own research. Sharing the knowledge, obtained from
conducting research, is the main goal of publishing scientific papers.

Published papers affect future research, e.g., by acting as inspiration for new ideas.
This future research results in new publications. Ideally, the authors of a new publi-
cation refer to older publications that inspired them or are otherwise closely related
to their own. The formal way to state a reference to a publication is a citation. The
publications and the citations between them form a directed network, called citation
network. Readers who use citations to navigate in the large body of scientific literature
are effectively traversing the citation network. Because of this, the citation network
can be seen as an instance of a knowledge map of science [112].

There are different disciplines in science, such as natural and formal sciences, social
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2 Chapter 1. Introduction

sciences, humanities and medicine. Research differs across disciplines in many ways:
studied problems, methods, applications, culture, etc. Each discipline is further di-
vided into specific research fields and topics. The body of scientific knowledge can be
seen as embedded in an abstract knowledge space [112, 167, 191], the dimensions of
which correspond to different scientific concepts [194, 220]. The more concepts two
research topics have in common, the closer they are in this space.

In practice, scientific publications are often classified according to a semantic scheme [90].
These schemes are an explicit representation of the corresponding knowledge space, in
which the publications have specific positions. For example, many journals of physics
used for a long time the Physics andAstronomyClassification Scheme (PACS), while the
JEL classification codes are used in economics. The abstract knowledge space can be
represented in ways other than predefined schemes. For example, natural language
processing allows unsupervised extraction of the main concepts in a publication.
Then, the set of all concepts from a corpus of publications—for instance, all of sci-
entific literature—defines the knowledge space. As an alternative to citation networks,
concept-based knowledge spaces are commonly used to map science [31, 58, 59, 113].

The interactions of authors within a scientific collaboration can be very intricate [38].
When conducting research, scientists interact in different manners: they discuss
ideas, divide and coordinate workload, teach skills by showing, build and operate
hardware together, etc. Unfortunately, it is impossible to know how precisely these
collaborations unfold, at least at a large scale. Instead, we have to resort to the
representation of collaborations by coauthorship relations. These are built from the
often long list of authors on a publication.

It is important to note at this point that the content of scientific publications does not
represent all of the scientific knowledge but only the explicit knowledge. From a widely
accepted view introduced by Polanyi, knowledge also has a tacit dimension [155]
comprising all the aspects that are not possible to encode formally. This kind of
knowledge can be shared only through joint practice [53, 108]. A popular elucidating
example for the tacit knowledge is riding a bicycle: one can teach another by showing
(joined practice), but never by providing, say, a written algorithm of how to keep the
balance on the bicycle. One can consider the collaboration relations between scientists
as an indication of sharing tacit knowledge. Hence, if the citation network is a map of
explicit scientific knowledge, the coauthorship network—the proxy for collaborations—
can be seen as a map over which tacit knowledge is shared [22].
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The above discussion about scientific knowledge can be extended to other domains. A
closely related one is Research andDevelopment, where the patents encode the explicit
knowledge. Similar to scientific publications, patents usually reflect a collaborative
effort of a team of inventors. As in science, there are different sectors in R&D,
e.g., pharmaceuticals, computer software and hardware, electronic components, etc.
Therefore, the outcomes of science and R&D are prominent examples of collaborative
knowledge spaces. Throughout the dissertation we interchangeably refer to scientific
publications and patents, or, more generally, to knowledge artifacts. Similarly, we
discuss authors of knowledge artifacts, which also refers to inventors in the the case of
R&D networks.

1.1 Collaborative knowledge networks

In this dissertation, we investigate collaborative knowledge spaces from the perspec-
tive of network theory. Thus, we use the term collaborative knowledge network.

Figure 1.1: Multi-layer network representation
of interconnected citation and coauthorship
networks. Blue nodes are knowledge artifacts
and yellow nodes are authors (inventors).

Although both citation and coauthor-
ship networks are widely investigated
in separation, we argue that studying
them together will lead to new insights
about collaborative knowledge spaces.
The main reason for this is the fact that
the dynamics of these two networks are
strongly coupled. Over time, new au-
thors enter the coauthorship network
when adding new knowledge artifacts
into the citation network. Other authors
leave the network, and the artifacts con-
tributed by them age, attracting fewer
citations [105]. It is also known that
the structure of one network may affect
the dynamics of the other network. For
example, in the context of scholarly pub-
lications, previous collaborations among
scientists are known to facilitate future
citations between them [165].
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To study the two networks together, we
represent them as a so-called multi-layer
network [208], shown in Fig. 1.1. Each of the two essential layers—the citation layer
and the coauthorship layer—comprises a different type of nodes. In the citations
layer (second layer from the top in Fig. 1.1), nodes represent knowledge artifacts
(blue in the figure). In the coauthorship layer, nodes represent authors (yellow in the
figure). All connections between nodes stem from two base types of edges: the citation
relations between knowledge artifacts and the authorship relations between authors
and the artifacts. Edges of the latter type span between two layers. The authorship
relations are projected into coauthorship relations between authors (third layer in
Fig. 1.1). Additional layers may also be constructed. These can be projections of one
layer onto another through inter-layer edges. For instance, a useful projection is the
author–author citation network, shown as the bottom layer in Fig. 1.1. Other layers
can represent additional relations between nodes, such as topical similarities between
knowledge artifacts or authors (see Section 5.1.3).

The focus of this dissertation is to investigate how the layers of the collaborative
knowledge network evolve together and influence each other. To achieve this, suitable
methodologies are developed. Whenever possible, the methodology is developed in
a general manner, such that it can be applied or adapted for applications beyond
collaborative knowledge networks. For instance, the network ensembles and the
corresponding hypothesis testing procedure developed in Chapter 3 are useful for
studying any co-occurrence data. Similarly, the new measure of deviation introduced
in Chapter 4 can be used to infer signed relations in any data on pairwise interactions.
The approach to modelling network growth described in Chapter 6 can be used to
study any growing multi-layer networks.

1.2 Generative modelling of complex social systems

The networks representing collaborative knowledge spaces are: (i) large, (ii) decen-
tralized, meaning that there is mostly no central planning and control, (iii) open
to new contributors and publication, and (iv) heterogeneous both in structure and
dynamics. These properties generate complexity in structure [18, 139]. The structure
and size of both citation and coauthorship networks change over time [138]. In the
context of a multi-layer network, the dynamics of one layer influences the dynamics
of another layer. These bidirectional dependencies lead to feedback loops and non-
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linear dynamics—another known source of complexity [12]. All of the above makes
collaborative knowledge spaces instances of complex systems and their network repre-
sentations instances of complex networks.

The general trend of increasing availability of data popularised an opinion that theo-
retical and hypothesis-driven research becomes obsolete. However, data do not speak
by themselves and there is a large gap between data and knowledge. Instead, newly
available data should be utilised to test more precise scientific hypotheses [154, 198,
219]. This dissertation seeks balance between data-oriented and hypothesis-driven
approaches. To achieve this balance, we formalize our hypotheses as generative proba-
bilistic models [107] and we apply these to large data sets on scientific publications and
patents (see Chapter 2).

In probability and statistics, there are two approaches to finding dependencies between
the variables of interest. Thefirst approach is calleddiscriminativemodelling. Statistical
classification and regression fall under this approach. In discriminative modelling,
one starts with the observed data and aims at identifying the conditional probability to
observe the dependent variable, given the independent variable. The second approach
is generative modelling, which aims at a deeper understanding of the relations between
the variables. The objective is to find the joint probability underlying the observed data.
Hence, a successful generative model can shed light on the real process generating the
data.

Social aspects A publication should be cited when it is of high relevance to the
citing one—this and other mechanisms driving the formation of collaborative knowl-
edge networks we have discussed so far can be characterised as normative aspects in
science [16]. Many quantitative studies in bibliometrics and scientometrics implicitly
or explicitly account only for such aspects, e.g., when measuring the scientific impact
of a publication by its number of citations [19, 102, 161, 199, 204]. Yet, science is
done by scientists who are, like all humans, susceptible to subjective biases. Clearly,
citation behaviour can be influenced by a large number of social aspects. Below we
only mention three aspects, which have been shown to universally influence social
relations.

The first of these social influences is homophily [122]. Homophily is the universal
tendency of human beings to preferentially connect with others who are similar to
them, e.g., with respect to ethnicity, language, religion, age, education, occupation,
gender, and political position. The influence of homophily can be observed in regard
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to a variety of social relations, including marriage, work relations, friendship, and
information exchange. The universality of homophily strongly suggests that citation
relations between scientists should also be subject to its influence. For our purposes,
we have to distinguish between two kinds of homophily. The first one is based on the
similarity of the research fields of two scientists. If two scientists work on very similar
subjects, they will cite each othermore often than scientists who work in very different
fields. While still a form of homophily (similarity leading to interactions), this kind of
behaviour cannot be attributed to subjective biases. There is no reason why we would
expect researchers from different disciplines to cite each other as often as researchers
whowork on the same subject. In contrast, homophily based on non-scientific criteria,
such as race, nationality, or religion, can be called social bias.

The second social influence factor is reciprocity. Researchers distinguish between
positive and negative reciprocity. Positive reciprocity denotes the tendency of an
individual to return a positive action, such as a favour, by another individual in
kind. However, if an individual feels that her interests were harmed by an action
of another individual, she will strive to retaliate—this is what is called negative reci-
procity. Sociologists have long identified reciprocity as one of the most important
drivers of social interactions [84]. More recently, the importance of reciprocity has
also been recognized in game theory and behavioural economics [6, 21]. Repeated
acts of positive reciprocity can give rise to friendship relations, whereas repeated acts
of negative reciprocity can trigger feuds. The universality of reciprocity in human in-
teractions makes it likely that it also affects science, particularly the citation behaviour
of scientists.

While homophily and reciprocity focus on dyadic (pairwise) relations, the third social
factor, structural balance, concerns triadic relations, i.e., relations between three indi-
viduals. It assumes the existence of positive and negative relations between individuals.
Structural balance postulates that there are unstable and stable triads, with the former
having a tendency to transform themselves into the latter over time [34, 50]. A triad
is stable either if it consists of three friends, or two friends with a common enemy.
Two enemies having a friend in common, as well as three enemies, form an unstable
triad. These postulates for social networks build upon a psychological theory that
relates a person’s cognitive consistency or dissonance to the structural balance of
her liking/disliking relationships with various concepts, objects or people [89]. This
principle has been known since ancient times, as illustrated by the proverbs “the friend
ofmy friend ismy friend”, “the enemy ofmy friend ismy enemy”, and “the enemy ofmy
enemy ismy friend”. In social networks, which predominantly represent positive social
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relations (such as friendships), structural balance is expressed as triadic closure, i.e., the
tendency of two individuals sharing a friend to form a friendship of their own [83].

Research gap We have a reason to believe that the three aspects discussed—as well
as other social aspects—exert influence on citation behaviour, introducing what we
call social biases. The overwhelming majority of studies addressing the social aspects
in science are qualitative [16, 47, 103, 158]. For instance, Merton discusses at length
the psychological and social mechanisms involved in the reward and communication
in science [126]. He himself acknowledges the need for quantitative investigation of
the issues he raises. In another example, Larivière et al. analyse the homophily in
collaborations due to language and geographical proximity, but they do so at a highly
aggregated level [106].

To disentangle social biases from normative aspects is a big challenge. Let us assume
an observation that two scientists cite each others’ publications very frequently. We
might explain this observation with homophily due to, e.g., the two authors coming
from the same country or graduating from the same university. Or we can explain
it with reciprocity, i.e., the two authors exchange citations with each other as favours.
Finally, it might be a product of triadic closure: the two authors have many friends
in common, thus they start to exchange citations with each other, effectively forming
what is known as a citation cartel [67]. However, it could also be that the high citation
count between the two scientists is not an outcome of a social bias, but a result of
normatively justifiable aspects. Namely, both authors work on very close subjects,
publishing papers highly relevant for each other. Thus, they cite each other frequently
for purely scientific reasons. It is not a simple task to identify which of the scenarios
is the likely cause of the high observed number of citations. We believe that advanced
statistics and generative modelling techniques are necessary in order to distinguish
between different aspects leading to the observed citations and coauthorship relations.
The following statement summarises the broad research gap, which this dissertation
attempts to bridge.

There is a lack of quantitative techniques for disentangling normative aspects from
social aspects in collaborative knowledge networks.
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Network ensembles as null models Let us now briefly illustrate how generative
modelling by means of network ensembles can help to address the stated research
gap. If we only consider two authors in isolation, we cannot separate the effects of
normative and social aspects on their citation behaviour. Instead, we must look into
their behaviour towards each other and compare this to the behaviour towards other
members of the scientific community.

Figure
1.2: Con-
figuration
model

If two authors write and cite many publications, we would expect
them to cite each other more frequently by mere chance than two less
prolific authors. Such difference in expectation is due to combinatorial
effects. This expectation can be quantified using a statistical network
ensemble, which is the collection of all possible networks satisfying
certain conditions. We will provide the formal definition of network
ensembles in Section 2.4.1. A network that is part of the ensemble
is often referred to as a realisation of the ensemble. The ensemble
also describes the probability of each realisation. To familiarize the
reader with the concept, let us introduce one such ensemble called
configuration model [129]. All networks in this ensemble have the same
total number of nodes and edges. Moreover, each node has a fixed
number of edges across all networks. What changes from network to
network within the ensemble, is to which other nodes these edges are
connected. Figure 1.2 illustrates a configuration model for five nodes
and five edges. The ensemble sets the number of outgoing and incoming
edges for each node. The top panel in Fig. 1.2 presents these in the

form of severed edges, or “stubs”. Then, the realisations of the ensemble are formed by
randomly connecting the outgoing stubs to incoming stubs. The bottom two panels
in Fig. 1.2 show two such network realisations. The configuration model does not put
any additional constraints, so all the networks that are part of the ensemble are equally
probable.

Now, how do we use a network ensemble to differentiate between the aspects influenc-
ing the formation of collaborative knowledge networks? The outlined configuration
model can already account for the combinatorial effects. Specifically, an ensemble
with fixed number of citations that each author gives and receives describes all possible
ways that these citations can be distributed among the authors. If we focus on a certain
pair of nodes (authors), the ensemble provides the distribution of the citation counts
between the two authors. This is illustrated in Fig. 1.3 for a network of five authors,
where the thickness of the edges is proportional to the number of corresponding
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citations. According to the shown distribution, the most probable number of citations
from author 2 to author 3 is equal to six. Then, we can colour the values in the
distribution according to how far they are from a central value (e.g., expectation,
median or mode). If the value is probabilistically much larger than the central value,
we observe significant over-citation (shown in green). Similarly, we observe significant
under-citation (shown in red) if the value ismuch smaller than the expectation. Under-
citations have been used to address the problem of identifying missing links [42].
According to the illustration, the observed ten citations are only non-significantly
more than expected. The deviation of observed number of citations against the
distribution can be described in terms of a signed relation between two authors. A
positive sign corresponds to over-citation and a negative sign to under-citation. The
absolute value describes the extent of the deviation.
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Figure 1.3: Illustration for the prob-
ability distribution of the number of
citations from author 2 to author 3
according to a network ensemble.

When a network ensemble is used like in the pro-
cedure above—that is, to compare the observed
network to other networks withmatching certain
characteristics—it is said to be a null model. The
differences found between the observed network
and the ensemble in such a comparison highlight
the characteristics of the observed network that
cannot be explained by the conditions that define
the ensemble. In other words, these conditions
are “nullified” in the comparison. In our com-
parison of the empirically observed number of
citations to the expected from the configuration
model, we nullify the combinatorial effect of the total number of edges each node has.
That is, if we find that the observed number of citations between a given pair of authors
is close to the expectation according to the configurationmodel, we can state that such
citation behaviour can be expected by mere chance.

While being good for identifying the combinatorial effects, the comparison of the
observed network to the configuration model does not enable us to differentiate
between normative and social aspects discussed above. To achieve this ability, we
need more sophisticated null models. Specifically, we need a network ensemble that
encodes all aspects that we consider normative. Then, with the normative aspects
nullified, the deviations from this null model will correspond to social biases. The
development of such ensembles is one of the research questions addressed in this
dissertation.
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1.3 Research questions

There is a large body of literature treating both citation networks [139] and the coau-
thorship networks [98, 138] as complex networks. There is also a growing number of
studies on multi-layer networks [17, 143, 208]. These two lines of research have an
unexplored potential: the co-evolution of citation and coauthorship networks can be
studied from the multi-layer network perspective.

Network structure In the first part of the dissertation, we study the effect that
the positions of authors in the coauthorship network have on the structure of the
citation network. We have already discussed one scenario of using network ensembles.
There are other scenarios for choosing statistical ensembles of random networks to
investigate complex systems of many interacting elements. For instance, individual
interactions may be unknown, while the macroscopic properties of the system (and
the corresponding network) are known. Or, the system may be too large to represent
all the interactions to the fullest detail, so a network ensemble is used to compress the
information with the “random” part accounting for the discarded details. But most
importantly, network ensembles are a perfect choice when the observations of edges
include noise—either due to the data collection technique, or due to the intrinsically
stochastic nature of the system that the network represents.

A general feature of existing network ensembles is to not distinguish between nodes
of a network [20, 136]. That means, the network does no change if two nodes with the
same degree are swapped. This assumption of indistinguishable nodes is too strong
when representing social systems. For instance, social agents (represented by network
nodes) may have intrinsic and unobservable preferences with whom to interact. To
the best of our knowledge, there are no analytically tractable network ensembles that
allow for heterogeneous preferences for nodes with whom to interact. As discussed
earlier, authors in collaborative knowledge networks tend to cite authors who work on
similar topicsmore often, meaning that the topical similarity defines the heterogeneity
in citations between different authors. Hence, a new network ensemble is needed to
study collaborative knowledge networks. This leads us to the first research question in
this dissertation.

RQ 1. Develop a network ensemble for collaborative knowledge networks. The
ensemble must account for known explicit heterogeneity in the network structure.
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The ensemble proposed in Chapter 3 goes beyond the assumption of indistinguish-
able nodes. It introduces the notion of edge propensity, which expresses the relative
preference of one node to connect with another. Because of the dyadic nature of the
edge propensity, one can construct a network from it and consider it as a layer in
a multi-layer network. And vice versa, different relations between nodes, as well as
combinations of these relations, can be used as propensities [35, 36]. In the context
of collaborative knowledge networks, we use propensities to encode topical similarity
between authors into a network model of citations among authors.

We formulate our network ensemble such that the following question can also be
answered.

RQ 1(a). How can we identify significant edges in a network using the network
ensemble from RQ 1?

To answer this question, we start with the network ensemble that incorporates edge
propensities. However, in this casewe donot encode prior information (such as topical
similarity) into propensities but use these as free parameters, which allows us to fit the
ensemble to the observed data. Then, the fitted propensities that are valued above a
certain threshold provide us with a so-called backbone of the network—a subset of the
network comprising particularly strong interactions, which ideally is subject to less
noise than the whole network. This approach of inferring the backbone is applicable
whenever the data captures repeated interactions between nodes [41, 55].

It is generally a challenge to find a ground truth for statistical inference problems
(procedures of consecutive model selection, parameter fitting and interpretation). For
that reason we employ not only empirical, but also synthetic data sets. For the latter,
we develop an agent-based model inspired by location sharing social networks [41].
We then compare the inferred backbone of the co-location network with the ground
truth that stems from the rules of the agent-based model.

The two research questionsRQ 1 andRQ 1(a) are complementary. In the first question,
we use propensities to encode the known heterogeneity in interactions, while in the
second, we infer the unknown heterogeneity.

Deviations in network structure We conjecture that the number of citations be-
tween two authors bears the footprint of the social biases one author has in favour
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of or against the other author. As the first step towards identifying these biases, we
assume that a normative expectation can be formulated for how an author should
distribute citations to other authors [42]. Once this expectation is formed, the social
biases between two authors will be reflected in the deviation of the observed number
of citations from the expectation. In a recent study, Ciotti et al. make the first
step in quantifying the deviations in the network structure from a null model by
aiming to identify missing links in the network [42]. Their argument is based on
the theory of homophily [123]. To our knowledge, the study was the first to infer
signed relations [51, 88, 111] from data on unsigned interaction counts. However, the
method is tailored for the specific system and the problem of the study and is not
easily generalisable. Instead, we develop a general statistical method for inferring
signed relations from repeated unsigned interactions. We then provide a procedure
to identify significant over- and under-citations among authors. As discussed in the
previous section, if all normative factors are accounted for in the nullmodel, these over-
and under-citations represent the social biases between authors. We also hypothesise
that more prominent authors are more prone to social biases among each for such
reasons as, e.g., stronger competition for attention and funding. The prominence of
an author will be reflected by a more central position in the network. We pose the
problem of identifying social biases and their relation to author centrality as our next
research question.

RQ 2. Quantify biases authors have against or in favour of each other. Study the
relation between these biases and centralities of authors.

As already discussed, authors are not expected to distribute citations uniformly among
each other. Instead, one is expected to cite more frequently an author whose work
is topically closer. The network ensemble developed under RQ 1 is used to find
the expected number of citations between each pair of authors. Topical similarities
between authors are accounted for by means of edge propensities.

Quantifying the topical similarities between two authors is a challenge for two reasons.
First, as mentioned earlier, there is no one absolute way to represent the knowledge
space on which the topical similarities are measured. Second, we need an asymmetric
measure of similarity. This need is due to the fact that the citations are directed, so
two authors can be expected to cite each other differently and the edge propensities
must account for this. For the first challenge, we use topological measures of topical
similarity, such as bibliographic coupling and co-citations [212]. To address the second
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challenge, we modify an established metric, the Jaccard index [95].

Once the network ensemble is constructed, the empirical network is to be compared
against it. The comparison shall identify the significant over- and under-citations
between authors. For this, we develop a new method to measure the deviation of
an observation against a distribution. For the citation network between authors, the
method leads to signed relations between them. The absolute value of a positive and
negative relation shows the significance of the over- or under-citation, respectively.

Network growth The majority of works on the dynamics of multi-layer networks
is related to a special class of multiplex networks. Each layer of these networks has a
different type of edges but one and the same set of nodes [131, 143]. In the second
part of the dissertation, we develop a growth model for multi-layer networks with
different sets of nodes on different layers and we apply it to investigate the coupled
dynamics of coauthorship and citation layers. For collaborative knowledge networks,
assuming only the growth—i.e., only the addition and not the removal of nodes and
edges—reflects the fact that once a publication is made, in principle, it stays accessible
for the scientific community. Technically, retracted publications are removed from
the network but such retraction are rare, so they do not influence the outcomes of
statistical analyses [65].

We further address the issue of attention in science from the perspective of coupled
dynamics of the network layers. A recent study by Parolo et al. sets a good ground
for the this issue by showing that attention, measured in terms of citation rate of an
artifact, decays over time [149]. They also quantify general trends of attention decay
over a long time period.

There are multiple established and thoroughly studied growth models for networks
that describe the growth of citation networks to a different extent [98]. Similarly, mod-
els of social network formation [183] and team formation [86] have been proposed and
used to describe coauthorship formation. However, all these models do not account
for the interdependence of collaboration and citation structures. This leads us to the
next research question of this dissertation.

RQ 3. Define a growth model to describe the coupled growth of the collaborative
knowledge networks. How does this model compare to modelling the citation and
coauthorship networks separately?
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The aim is to develop the growth model with a focus on the coupling between network
layers. To achieve this, established models for each of the two layers are chosen as
components in the coupled model. In this way, the model becomes a framework
and allows selection and reassessment of one-layer models in the context of coupled
growth of a multilayer network. The examples analysed in this dissertation con-
centrate on the growth of the citation network, dependent on the earlier states of
both citation and coauthorship networks. This complements the approach from my
Master’s thesis [133], where the coauthorship network growth was studied in a similar
context. Nevertheless, we provide a general recipe for formulating and analysing the
simultaneous growth of the network layers. Additionally, we develop amodel selection
procedure for the coupled growth. We assess the goodness of a model based on the
likelihood of each edge that is added to the network. This is different from the common
approach of estimating the model based on aggregate features of the network, such
as the final degree distribution [133, 176]. Our model selection procedure has two
additional advantages. First, it allows to estimate the error in model parameters—
uncommon in modelling network growth. Second, it is scalable to large networks
under certain conditions.

Social position of authors and attention decay One aspect of an author’s social
position in the collaborative knowledge network is measured by centrality in the
coauthorship layer. The simplest among these measures is degree centrality, defined
as the number of edges a node has. In a coauthorship network, degree centrality
captures the total number of coauthors of a given author. In scientific communities,
the number of coauthors follows a broad distribution [138]. That means that the
majority of authors are peripheral around a small fraction of highly central authors.

Existing findings in science may trigger new ideas and new research. Most of the
times these triggers come from more recent publications. Authors try to be informed
about the newest scientific advancements in their field in search of inspiration and
to properly position their research. However, it becomes harder and harder for an
individual to stay informed due to the accelerating pace of knowledge growth (e.g,
measured by the rate of new publications). As a result, it becomes easy to overlook
important publications [42].

There is evidence that authors rely on their coauthorship networks in the search of
relevant publications. It is shown that authors cite their previous collaborators signifi-
cantly more often than expected [165]. This leads us to the last research question.
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RQ 4. How does the position of an author in the coauthorship network influence
the attention towards her knowledge artifacts?

We measure the attention towards a publication by the citation rate, i.e., the number
of new citations per time unit. On average, the highest citation rate comes a short
time after publication and rapidly decays afterwards [149]. We test the hypothesis that
authors who have more coauthors get attention towards their new publications faster.

The answers to the research questions posed above can be summarized as a twofold
contribution. First, new methods in network theory, which can be applied in various
research fields, are introduced. Second, with the help of these methods, the interplay
between the social position of authors and the citations to their publications is studied
from multiple angles.

1.4 Dissertation overview

Chapter 2
From data to networks

Chapter 3
Generalized hypergeometric 

network ensembles
Chapter 4

Significant deviations in 
network topology

Chapter 5
Friend or Foe?

Chapter 6
Growth of Collaborative

Knowledge NetworksChapter 7
Social Influence on

Attention Decay

Figure 1.4: Roadmap for reading

Figure 1.4 presents possible paths that the reader
can follow in this dissertation. In all cases it is ad-
visable to start from Chapter 2, which introduces
themain concepts and the notation, as well as the
data sets used in the later chapters. Chapters 3, 4
and 6 assume basic knowledge of probability and
statistics and will be of interest for readers seek-
ing new methods of network theory. Chapters 3
and 4 lay the ground for Chapter 5. These three
chapters are grouped in one part that addresses
the topological properties of networks. Chapter 6
and Chapter 7 address two different aspects of
network dynamics. Below is a more detailed description of each chapter.

Chapter2 formalises themulti-layer network representation of collaborative knowl-
edge networks. It introduces the notation, as well as the general methods used
throughout the dissertation. It also describes the data sets that are studied.
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Chapter 3 develops generalised hypergeometric network ensembles. The ensemble
allows for testing hypotheses about the heterogeneity in edge formation. It introduces
a new procedure to extract the backbone of a network using the ensemble.

Chapter 4 presents a novel non-parametric measure of deviation of an observation
from a distribution. This measure can be applied to a broad range of probability
distributions—continuous or discrete, skewed and/or bounded. The application of
this measure to networks is also discussed.

Chapter 5 combines the methods developed in Chapters 3 and 4 to study the
structure of collaborative knowledge networks. Specifically, the citation network
among authors is investigated. A special formulation of the ensemble is tailored
to respect the temporal order of the publications. Multiple definitions of topical
similarity between authors are discussed. Finally, over- and under-citations among
authors are quantified by what we call a friend-or-foe matrix.

Chapter 6 introduces a procedure for analysing mechanisms of the coupled growth
collaborative knowledge networks. The procedure relies on maximum likelihood esti-
mation to find the parameters of the growth models. The numerical algorithm that
provides parameter errors is discussed. The conditions and performance of scaling to
large networks are also investigated.

Chapter 7 focuses on the decay of attention towards publications. Linear regression
analysis highlights a significant relation between the parameters of the decay and the
position of the authors in the collaborative knowledge network.



Chapter 2

From data to networks

Summary

In this chapter we formally introduce the collaborative knowledge networks. We
begin with the general mathematical notation of networks and network measures.
We discuss the procedure that translates the available data into networks and the
caveats of such network representation. In particular, we discuss the meaning of
co-authorship edges in the case of very large collaborations. We further describe
the three main data sets on patents and scientific publications, which we use
throughout the dissertation. Finally, we introduce the methods from statistics
that are used in the later chapters.

This chapter has been written specifically for this dissertation.

17
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Knowledge spaces have been represented as networks since the establishment of the
fields of bibliometrics, informetrics and scientometrics [159] (these fields have lately
been called science of science [70]). With the emergence of the field of complex
networks over the last three decades, the interest towards network representation of
knowledge spaces has grown considerably [160]. With the aim of understanding how
science evolves and organizes itself, variousmethods—fromvisualisation to generative
modelling techniques—have been applied to networks of citations, co-authorships,
co-citations, bibliometric coupling, keyword co-occurrence, [57, 70, 159] etc. These
networks, collectively known as bibliometric networks, are derived from a small set
of notions that describe knowledge artifacts (scientific publications, patents). These
notions are called metadata. The most used elements of metadata to construct the
networks are: a unique identifier (e.g., DOI) of the artifact, the list of authors with
their affiliations, a list of keywords, publication venue, publication date, and the list of
cited publications.

Below we discuss the general procedure of constructing networks from the metadata
on knowledge artifacts. But first, we introduce the necessary concepts and notation
from network theory.

2.1 Network theory

There is no lack of excellent textbooks and review papers that offer an overview of
network theory. In the following, we mostly adopt the notation from the seminal
book by Newman [136]. More formally networks are called graphs. Correspondingly,
network theory is known as graph theory in mathematics. A network is an object
comprising a set of nodes, which are connected by a set of edges. Nodes are alternatively
referred to as vertices and edges as links.

A simple graphG = (V, E) comprises a set of nodesV and a set of edges E ⊆ V×V. Two
nodes i and j are called neighbours if they are connected by an edge. The corresponding
edge is fully identified by the pair of nodes i and j that it connects, thus we denote it as
(i, j). The size of a network is characterised by the number of nodes n = |V| and the
number of edges m = |E|.

A graph can be described in terms of the adjacency matrix A. For a simple graph, the
binary entries of the adjacency matrix show if two nodes are connected by an edge or
not. That is, Aij = 1 if nodes i and j are connected and Aij = 0 otherwise. For a simple
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graph A is symmetric, Aij = Aji, and has zero entries on the diagonal, Aii = 0.

2.1.1 Networks types

Building on the notation for simple graphs, let us now generalise it to networks that
are: directed, with self-loops, weighted, signed, multi-edged, time-stamped, bipartite,
multiplex and multi-layer.

In a directed graph the pair of nodes defining an edge is ordered,meaning that generally
Aij ≠ Aji. A network is said to have self-loops if there are edges that connect a node
with itself, i.e., ∃i such that Aii ≠ 0. In a weighted network, edges are characterised by
an additional attribute, the weight w∶ E → ℝ+. The adjacency matrix of a weighted
network incorporates these weights, such thatAij = w((i, j)) for (i, j) ∈ E. The network
is called signed if the weights are allowed to also take negative values.

An important type of networks are the multi-edged networks, or multi-graphs. These
are the networks that allow multiple parallel edges between a given pair of nodes. The
adjacency matrix in this case is integer-valued and represents the multiplicity of edges
between the nodes, Aij ∈ ℤ. It is important to distinguish weighted networks and
multi-graphs, even though both may have the same adjacency matrix representation.
The weight is an attribute of the one and only edge between a given pair of nodes. In
principle, the two concepts of multi-edges and weights are not mutually exclusive, so
a multi-graph can be weighted, with each of the parallel edges having its own weight.
Other attributes, such as time-stamps, can also make parallel edges distinguishable.
This said, drawing the multiplicity of edges in multi-edge networks as weights can
improve the readability of network visualisations.

A temporal network, also known as dynamic graph or time-stamped graph, is a graph
GT = (V, ET) that has time-stamped edges ET ⊆ V × V × [0, T] [39, 62, 172]. In
many applications, the time-stamped edges are considered to be instantaneous, i.e.,
present only at one moment in time [172]. Instead, in the case of growing networks,
the time-stamp corresponds to the moment when the edge is added to the network.
In growing networks, nodes are also added over time. Thus, we denote a growing
network as G(T) = (V(T), E(T)) with V(T) and E(T) being the set of nodes and the
set of edges that have been added to the network up to the time T. In contrast with
temporal networks, non-time-stamped networks are often called static.

A bipartite networkG = (Vs, Vt, Est) represents relationsEst = Vs×Vt between two sets
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of nodes Vs and Vt. The matrix representation of a bipartite network is a rectangular
incidence matrix B of the shape |Vs| × |Vt|.

It is a common technique to project a bipartite network onto one of the node sets [217].
Let us consider such one-mode projection onto the set Vs. Then, two nodes i, j ∈ Vs are
connected with a projected edge if there is a node k ∈ Vt that they both are connected
to in the original bipartite network. Hence, the adjacency matrix As of this projection
writes as

As
ij = ∑

k∈Vt
BikBjk. (2.1)

The value of As
ij can be interpreted both as a weight and a multi-edge. We opt for the

latter because, as mentioned above, it can preserve more information. For instance,
each of the projected parallel edges can store the corresponding node k ∈ Vt from
which it was projected as an attribute. One-mode projections of a bipartite network
create structures known as cliques. A clique is such a subset of nodes that any twonodes
in it are connected by an edge. In a projection on to Vs there is a clique corresponding
to each k ∈ Vt that comprises all neighbours of k. Because of this property, one-mode
projections are instances of hypergraphs—objects in which edges connect more than
two nodes.

A multiplex network G = (V; E1, … , EL) is a special case of multi-layer networks that
comprises L layers, each of which hosts one set of edges El ⊆ V × V between one and
the same set of nodes.

More generally, a multi-layer network is a type of network that comprises multiple
types of nodes and/or edges. A multi-layer network M = (V,E,EB) with L layers,
each comprising one set of nodes from V = {V1, … VL} and one set of edges from
E = {E1, … EL}. It also comprises inter-layer edges that connect nodes across layers,
EB = {Est ⊆ Vs × Vt ∣ s, t ∈ {1, … , L}; s ≠ t}.

A multi-layer network can be decomposed into separate graphs for each layer, Gl =
(Vl, El) for l ∈ {1, … , L}, and bipartite networks between layers, Gst = (Vs, Vt, Est)
for s, t such that Est ∈ EB. The set of nodes on some of the layers can be the same, in
which case these layers form a multiplex. In that case, the inter-layer links provide a
one-to-one correspondence between the nodes on different the layers.

A multi-layer network is described by a supra-adjacency matrix that has a block struc-
ture [208]. Each block Al, l ∈ {1, … , L}, on the diagonal of this matrix corresponds
to the adjacency matrix of the layer l in the multi-layer network. Each off-diagonal
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blockBst corresponds to the inter-layer connections between two layers s and t. When
the two layers have different sets of nodes, the matrix Bst is the incidence matrix of
the corresponding bipartite network. When the layers s and t form a multiplex, the
corresponding matrix Bst is an identity matrix, i.e., Bst

ii = 1 and Bst
ij = 0 for i ≠ j.

Different projections can be made in a multi-layer network, similar to one-mode
projections of a bipartite network. One way is to project the inter-layer edges onto
a one of the layers, in the exact manner as for bipartite networks. The co-authorships
layer in Fig. 1.1 on Fig. 1.1 is an example of this. Another way is to project edges on
one layer onto the nodes of the other layer through the inter-layer edges. In this case,
the projection of an edge (i, j) ∈ El through the inter-layer edges Est is the set of edges
{(p, q)} on a new layer l′ for all (p, i) ∈ Est and (q, j) ∈ Est. For example, the bottom
layer of Fig. 1.1 is the projection of the second layer on the third layer.

The last type of graphs utilised in this dissertation is called directed acyclic graphs
(DAGs). A directed acyclic graph is a directed graph GDAG = (V, E) in which there
are no cycles—i.e., no sequence of adjacent edges originating and ending with the same
node (i, j), (j, k), … , (q, i) for i, j, k, q ∈ V. A defining feature of DAGs is the topological
ordering, which means that there is an order of vertices v1, v2, … vn such that for any
(vi, vj) ∈ E the inequality i > j holds. This means that the adjacency matrix of a
topologically orderedDAG is a triangularmatrix. Some growing networks formDAGs.
This happens when the network grows by addition of nodes and when the edges are
formed only by the newly added node, pointing in the same direction.

2.1.2 Network measures andmetrics

We have already mentioned the simplest measures that characterise the size of a
network—the number of nodesn and the number of edgesm. These can be generalised
for a multi-layer network M = (V,E,EB) as n = {n1, … , nL}, m = {m1, … , mL} and
mI = {mst, … }, where nl = |Vl|, ml = |El| and mst = |Est| for Est ∈ EB.

Node degree The number of edges of a node is called degree. For a simple graph,
i.e., an undirected and unweighted network, the degree of node i is calculated from
the adjacency matrix as

ki =
n

∑
j=1

Aij. (2.2)



22 Chapter 2. From data to networks

For a directed network, the degree is split into out-degree and in-degree, corresponding
respectively to the number of edges that point away from and towards the node.

kout
i =

n

∑
j=1

Aij, kin
i =

n

∑
j=1

Aji. (2.3)

The degrees of all nodes add up to twice the number of edges in the case of undirected
networks. In the case of directed networks, the sum of all out-degrees equals the sum
of all in-degrees, which is equal to the number of edges in the network,

m =
n

∑
i=1

kout
i =

n

∑
i=1

kin
i . (2.4)

The degree sequence is a vector of size n comprising the degrees of all nodes in the
network, Kout/in(G) = {kout/in

1 , … , kout/in
n }.

We can generalise the concept of node degree to multi-layer networks. Nodes of each
layer have a degree with respect to the edges within the layer and degrees with respect
to inter-layers edges. Thus, the node i on layer l will have a degree kl

i = ∑j∈Vl Al
ij

within the layer and degrees klt
i = ∑j∈Vt Alt

ij for each layer t ≠ l. If some of the
layers are directed, the corresponding degrees are substituted by in- and out-degrees,
as Eqs. (2.2) and (2.3) show for a single-layer network.

Paths A path on a network is a sequence of nodes in which each consecutive pair is
connected by an edge.

πλ,ij = {vh1
, … , vhλ+1} , (2.5)

where hl ∈ {1, … n} represents the index of l-th node on the path, h1 = i, hλ+1 = j
and (vhl

, vhl+1
) ∈ E for l ∈ {1, λ}. The length of a path, λ, is the number of edges

it traverses on the network. In this dissertation, we consider only self-avoiding paths,
meaning that each node on the path can be visited only once, i.e., vhl

≠ vhk
if hl ≠ hk.

For an unweighted network, the number of paths of length λ between a pair of nodes
is given by the λ-th power of the adjacency matrix,

|{πλ,ij}| = [Aλ]ij (2.6)

The definition of paths can be extended to multi-layer networks. We are particularly
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interested in two cases. The first case comprises the paths of length two that go through
inter-layer edges between two layers. They originate and end on the same layer. The
second case comprises the paths of length three that originate and end on the same
layer but also traverse an edge on the second layer. These two types of paths are related
to network projection discussed earlier. Indeed, by comparing Eq. (2.1) and Eq. (2.6)
we see that the number of multi-edges between a pair of nodes in the one-mode
projection equals to the number of paths of length two in the corresponding inter-layer
edges (which form a bipartite network) between the same pair of nodes. Similarly, the
paths of length three in the second case correspond to the projection of the edges of one
layer onto the nodes of another layer. We will utilize this correspondence throughout
the dissertation.

Centrality When studying networks, a common question to answer is how impor-
tant certain nodes and edges are. Such a measure of importance is called centrality.
Depending on the context, there are different ways to define node centrality. The
simplest one is the degree centrality, which is equal to the degree of the node. While the
degree centrality captures only the direct neighbourhood of a node, other measures
capture more information about the topology of the network. Spectral measures,
such as eigenvector centrality and PageRank, assign higher centrality to nodes that are
connected to other central nodes [146]. Other measures are based on paths that pass
through a given node. Closeness centrality is inversely proportional to the average
length of shortest paths from a given node to all other nodes. Betweenness centrality
captures how many shortest paths between any two nodes pass through a given node.
Throughout this dissertation we will use the degree centrality due to its simplicity.
However, most of the discussion can be refined by substituting the degree by a different
centrality measure.

Node similarity Another important question in network theory addresses how sim-
ilar nodes are. One approach to measure similarity between nodes is called structural
equivalence. According to it, the more common neighbours two nodes have, the more
similar they are. Two often-used formulations are the cosine similarity and the Jaccard
index. For two nodes, both measures capture the number of common neighbours
relative to the total number of neighbours of the two. We use Jaccard index, which
is generally defined for two mathematical sets as the number of common elements
divided by the number of all unique elements in the two sets. For a simple graph, it
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writes as

σij =
∑k AikAjk

ki + kj − ∑k AikAjk
. (2.7)

To count the number of unique neighbours of the two nodes in the denominator of
Eq. (2.7), we corrected for the fact that the sum of two degrees counts the common
neighbours twice. The above definition can be extended for directed, as well as for
multi-layer networks. In our application in Chapter 5, we will also extend the notion
of similarity by making it asymmetric.

The list of network measures and metrics introduced above is not extensive. Only the
ones that are relevant for this dissertation are described. Some other measures, such
as reciprocity and structural balance will be introduced later within the corresponding
context.

2.2 Building the networks

Following the common approach in scientometrics [24, 57, 59, 112, 191], we use the
metadata on knowledge artifacts to study the evolution and structure of collaborative
knowledge spaces. In this section, we provide explanation of how we construct
collaborative knowledge networks from a collection of knowledge artifacts. Figure 2.1
shows the progression from the original form of the knowledge artifact intended for
human readers to the data model behind the networks that we construct.

Figure 2.1: (Left) A scientific publication intended for human readers, (middle) its meta-data
in machine-readable JSON format, and (right) the data model underlying our networks.

We start our analysis from the metadata of the artifacts. There are various sources
providing metadata on large number of knowledge artifacts in a convenient machine-
readable format (such as JSON objects, shown in the middle of Fig. 2.1). However,
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most of these sources suffer a crucial drawback. In these, the authors of knowledge
artifacts are listed by their names and affiliations, which does not guarantee a unique
identification of a person across all her publications. Resolving such ambiguity is a
large research topic in itself known as record linkage and entity resolution [13, 114, 210].
Instead of performing the author disambiguation ourselves, we choose data sources
that already include the disambiguation. We will discuss the data sources in more
detail later in this chapter but we list these here:

 theU.S. patent inventor database for the years 1975–2010 compiled byLi et al. [114]

 INSPIRE High Energy Physics (HEP) information system1

 physics publications in the journals published by American Physical Society
(APS)2 with author disambiguation provided by Sinatra et al. [181]

Only a limited part of the metadata is needed for building our networks. We use
a unique identifier for each knowledge artifact. These are digital object identifiers
(DOIs) for scientific publications and the United States Patent and Trademark Office
(USPTO) patent numbers for the U.S. patents. For each artifact, themetadata provides
the list of unique identifiers of the cited artifacts. A unique identifier for each author
(inventor) is also provided. In the INSPIRE data, these identifiers are curated by the
community using the INSPIRE platform. In the other two data sets, the author names
are disambiguated using entity resolution techniques.

Next, we include the journal in which a scientific article is published and the classes
under which the patents are categorised. We do so because we want to perform our
analyses on networks corresponding to certain scientific fields and patent classes. We
will focus on the citations networks within a single journal or patent class for two
reasons: (i) to have conveniently small networks for which the analysis is very fast,
(ii) to make sure there are no large differences in the community practices whithin
one network, the mixture of those could conceal relevant patterns from the analysis.
However, we believe that all the analyses and most of the outcomes will hold also for
larger networks, e.g., the ones corresponding to a whole data set. We also account
for the time-stamps of the knowledge artifacts—the publication dates of scientific
publications and the granting date of patents. The time-stamp of a publication is also

1The data is released under CC0 license and is available at https://inspirehep.net
2The data is provided by APS for research, https://journals.aps.org/datasets

https://inspirehep.net
https://journals.aps.org/datasets
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attributed to all edges attached to it, with the citation edge having the time-stamp of
the citing publication. This is necessary for analysing the growth of the networks.

Combining all of the above, we arrive at the data model shown on the right of Fig. 2.1.
A citation originates from a publication (blue node and edge) and arrives at a publi-
cation; an author authors (yellow node and edge) a publication; and a publication is
published in a journal (green node and edge).

Multi-layer collaborative knowledge network The data model described above
serves as a blueprint for our collaborative knowledge networks. First, we choose the
journal (patent class) for which we want to build the network. Then, we add nodes in
the “paper citations” layer of the network for the publications in the selected journal (or
patents in the class), in the order of publication date, after which we draw the directed
citation edges to the already added nodes3. In parallel to adding a knowledge artifact
node, we draw inter-layer authorship edges between the artifact node and the nodes
representing disambiguated authors. We add a node for the author that is not yet in the
network, i.e., authors are added to the network when they first publish. The resulting
network is illustrated in Fig. 2.2. The figure shows the network in two consecutive time
steps corresponding to the addition of a new publication, i.e., to a growth event in the
network. Specifically, publication k is added to the network together with the citations
towards publications i and j. Authorship relations of the three authors are also added.
Authors α and β were already in the network before publication k was added, as they
had previously authored publication j. In contrast, publication k is the first for author
γ so she is added at the same time as the publication. Authors α and β are referred
to as incumbents and γ as a newcomer in the literature on the growth of collaboration
networks [74, 86].

Let us now specify the notation introduced in Section 2.1 for our collaborative knowl-
edge networks. A collaborative knowledge network shown in Fig. 2.2 is a two-layer
network. One layer comprises of knowledge artifact nodes Vp and the citation edges
Epc among them. We call this layer Gpc = (Vp, Epc). The other layer comprises author
nodes Va and no edges. The inter-layer edges between these two layers represent the
authorship relations between the authors and publications. We refer to the bipartite
network corresponding to these inter-layer edges asGa = (Va, Vp, Ea). Without loss of
generality, we assume that the inter-layer edges are directed, pointing from the author

3There are some citations in the data that go from an older publication to a newer one. However, these
are extremely rare and we ignore them.
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Figure 2.2: A small sample from a collaborative knowledge network corresponding to a physics
journal. Only the edges directly observed in the data are shown. Blue nodes represent publica-
tions, yellow nodes represent authors. Blue edges are citations, yellow edges are authorships.
(Left) the network before publication k is added, (right) publication k is added, along with its
authors and citations to other publications.

to the publication. This gives the following meaning to the inter-layer in-degrees and
out-degrees. The in-degree shows the number of authors for a publication node and
is zero for author nodes. The out-degree shows the number of publications a given
author wrote and is zero for publications. Later, when aggregating these degrees (e.g.,
computing the average), we only count the non-trivial nodes, i.e., only the publications
for in-degree and only authors for out-degree.

Based on these basic layers we create two new layers by projection, shown in Fig. 2.3.
First, we construct the co-authorship layer by projecting the inter-layer authorship
edges onto authors. This layer shown on the left of Fig. 2.3 is a multi-edge network to
which we refer as Gaa = (Va, Eaa). Next, we project the citations between publications
onto the authors. We obtain amulti-edge network with self-loops, which we callGac =
(Va, Eac). We will use other projections, such as co-citation and bibliometric coupling,
which we describe in Chapter 5 within the context.

Co-authorshipasproxyof collaboration Asmentioned inChapter 1, co-authorships
are used to proxy collaborations due to the lack of alternatives. However, one must
exercise caution when extending the findings based on co-authorship relations to
collaborations in general. There has been a growing trend towards longer author
lists in the recent years [52, 128]. What does this imply about the contributions of
individual authors and the collaborative efforts among them? Yitzhaki finds only a
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Figure 2.3: Projections of the network shown in Fig. 2.2 onto authors showing the (left) the
citation relations and (right) the co-authorship relations between them.

moderately positive correlation or no correlation between the “informativeness” of a
publication title and the number of authors in most of the studied cases [214]. A study
by Pravdić and Oluić-Vuković investigates the relation between the productivity of
authors (measured by the number of publications) and coauthorship patterns among
them. They find that the mere number of coauthors is not sufficient to explain the
productivity level. Instead, the “quality” of coauthorship edges must be accounted for.
The frequency of coauthorship edge with the same collaborator and the type of the
edge (e.g., supervisor–assistant, inter-organisational, international) affect the quality.
With respect to relative contributions of different authors, Drenth speculates thatmore
senior authors have more influence on the decisions about authorship and abuse this
influence at the expense of junior researchers [52]. As an extreme of such behaviour,
Cronin introduces the term “hyperauthorship” to describe the practice of having a list
of more than a hundred authors [48].

Ringelmann effect states that individual productivity tends to decrease as the size of
the team increases. It has been shown to affect teams in different contexts, such as
collaborative software development [170]. One explanation for this decrease is the
coordination cost, which increases with the team size [94, 170]. It is reasonable to
assume that team of authors writing a publication is also subject to this effect. There
are n(n − 1)/2 coauthorship edges for a publication with n authors, i.e., the number
of coauthorship edges grows quadratically with the length of the author list. Each
edge represents a possible communication channel, thus it is reasonable to assume
that coordination cost also increases super-linearly with the team size. At the limit of
hyperauthorship, we can safely assume that not every pair of authors communicates
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directly with each other, meaning that not all coauthorship edges derived from a long
author list represent real collaborations.

There have been different proposals for how to treat coauthorships in such cases [156].
A radical approach is to attribute all the credit only to the first author [43], which may
be suitable for measuring authors’ productivity in some cases. However, it is not at all
suitable for studying collaborations because it ignores all of them. Another approach
is the adjusted, or fractional count. A weight, usually the inverse of the team size, is
assigned to coauthorship edges in this case.

In our analysis, we choose a different approach, as there is no consensus on how to
best treat very large author lists. We analyse communities that do not suffer from the
phenomenon of hyperauthorship. As Cronin argues, life sciences and high-energy
physics are the fields that suffer the most. Note that we do not put emphasis on
the negative connotation of the hyperauthorship, as put by Cronin, but we rather
see it as the transition to the regime when co-authorship relations cannot possibly
reflect individual collaborations. In our data set on high-energy physics, INSPIRE,
we find publications with more than 5000 authors. As we explain in the next section,
in INSPIRE data we will only analyse the journals that do not publish considerable
amount of publications with an enormous author list.

2.3 Data sets

In this section, we briefly summarise the data we use in the following chapters. The
three data sets were obtained in various machine-readable text formats, such as JSON,
XML and CSV. To facilitate the analyses, they were pre-processed and stored in
relational (SQLite) and graph (Neo4j) databases.

INSPIRE The data set is obtained from the INSPIRE online information system for
High-Energy Physics developed by a collaboration of CERN, DESY, Fermilab, IHEP,
and SLAC. The system replaces the previously used Invenio and SPIRES databases. It
consolidates information on High-Energy Physics publications, researchers, collabo-
rations and research data and allows access through a web interface, API and bulk
downloading of metadata. The major advantage of this data set is the high quality
of author disambiguation4. It is facilitated by personalised features, such as author

4See http://inspirehep.net/info/general/project/index

http://inspirehep.net/info/general/project/index
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Table 2.1: Size summary of the INPIRE data. The number of nodes and edges, as well as the
median in-degrees and out-degrees of the edges of each type.

Nodes Count

Publications 1212731
Authors 116846
Journals 2370

Edges Count out-deg.
(median)

in-deg.
(median)

Citations 6713902 8 2
Authorships 1371921 2 1

profiles and paper claiming.

Table 2.1 summarises the data set. A total of 1212731 publications in 2370 journals
are authored by a total of 116846 authors. There are 6713902 citations among these
publications. The median number of citations given by a publication is 8 and the
median number of received citations is 2. The median number of publications written
by an author is 2 (out-degree inGa) and themedian number of authors of a publication
is 1 (out-degree in Ga).

Asmentioned above, this data set suffers from the hyperauthorship phenomenon. This
is shown in Fig. 2.4. There are 1278 publications with more than a thousand authors.
While this represents only 0.1% of publications, it corresponds to more than a billion
coauthorship edges. These edges do not represent direct collaborations between pairs
of authors, but they can have a strong effect on the statistical outcomes of the analyses.
For example, Newman points out for the related SPIRES data set that the authors in
High-Energy Physics have, on average, 173 coauthors, while in other fields the number
ranges from 3.87 to 18.1 [138].

Figure 2.4: Distribution of the number of authors of a publication. Red dots correspond to the
full data and the blue dots correspond to the four journals filtered by Zingg [218].
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Table 2.2: Network summary for the four largest journals in the Inspire-HEP data set.

Network |Vp| |Va| |Epc| |Ea|
JHEP 15739 7994 191990 39056

PR-HEP 44829 33908 213625 115237
Phys. Lett. 22786 18078 56332 53089
Nuc. Phys. 24014 18733 125252 60018

To address the problem, Zingg proposed criteria for selecting the sub-fields in High-
Energy Physics that suffer the least from hyperauthorship [218]. As the first step,
the publications are identified, which are made by large and named collaborations,
such as ATLAS Collaboration and associated with large experiments, such as CERN-
LHC-ATLAS. Expanding this step, all publications explicitly tagged as experimental
are identified. This is done using the additional information in the metadata, which
we did not include in our data model (Fig. 2.1). These are the publications that tend
to have the highest number of authors. Next, publications tagged as theoretical and
general physics are identified. These generally have fewer authors. Finally, the fraction
of publications corresponding to the two steps is computed in different journals, and
the ones with the emphasis on the theoretical and general physics are selected. The
ones with a considerable amount of publications are: The Journal of High Energy
Physics (JHEP), High Energy Physics in Physical Review Journals (PR-HEP)5, Physics
Letters (Phys. Lett.), and Nuclear Physics (Nuc. Phys.). Hence, we select these four
journals for our analyses. Table 2.2 summarises these by the numbers of publications
|Vp|, authors |Va|, citations among publications |Epc|, and the authorship relations
|Ea|.

APS journals American Physical Society has been publishing physics journals since
1893. From its foundation up to 1970, thePhysical Review journal published articles on
all of the areas of physics. The format of short letters was introduced in 1958 together
with the journal Physical Review Letters aiming to publish notable findings from all
areas of physics in a rapid fashion. With the general acceleration of publications, in
1970 Physical Review was split into four journals according to fields in physics. As of
2018, there are twelve journals published by APS.

APS provides the metadata on all their publications “for use in research about net-

5not one journal, but the collection of all publications from Physical Review family of journals that are
indexed in INSPIRE data set.
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Table 2.3: Size summary of the APS data. The number of nodes and edges, as well as themedian
in-degrees and out-degrees of the edges of each type (see Fig. 2.1).

Nodes Count

Publications 577870
Authors 236884
Journals 13

Edges Count out-deg.
(median)

in-deg.
(median)

Citations 6713902 9 5
Authorships 1371921 2 2

works and the social aspects of science”6. Table 2.3 summarises the data that includes
the publications up until 2015. There are 577870 publications by more than 236884
authors in 13 journals (the early Physical Review is counted separately and the two
newest journals were introduced later). The reported number of authors is the lowest
boundary as it corresponds to only the ones that were disambiguated by Sinatra
et al. [181]. The upper bound is 1371921, the number of authorship relations, as
prior to disambiguation each name on each publication may be considered a unique
person. The disambiguation is performed by merging authors iteratively according to
the following three criteria. First, the authors must have identical last names. Second,
the other initials and, when provided, full first names must be the same. Third, one
the following must hold: (i) there is at least one citation between the two authors, (ii)
the two have at least one common (already merged) coauthor, (iii) the two authors
have a similar affiliation. Sinatra et al. test the quality of the disambiguation based
on a selection of 200 pairs of publications identified as written by the same author
and 200 pairs that are identified to be written by different authors. For these 400
publications, they manually check whether the outcome of the disambiguation is
correct by searching for the webpage, Google Scholar profile, if any, affiliations, etc. As
a result, they find a 2% false positive rate—rate of merging two authors by mistake—
and a 12% false negative rate—the rate of mistakenly splitting the author.

As with the INSPIRE data set, we construct the collaborative knowledge networks lim-
ited to specific journals. We select the following five: Physical Review (PR), Physical
Review A (PRA), Physical Review C (PRC), Physical Review E (PRE), and Reviews of
Modern Physics (RMP). The first covers the period from 1893 to 1970 and the others
start after 1970. RMP is special in this selection as it focuses on review papers, i.e., pub-
lications that consolidate the current state of a research topic instead of contributing
original research outcomes. Table 2.4 summarises these networks.

6https://journals.aps.org/datasets

https://journals.aps.org/datasets
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Table 2.4: Network summary for five journals published by the APS.

Network |Vp| |Va| |Epc| |Ea|
PR 46728 24307 253312 87386
PRA 69147 41428 416639 144806
PRC 36039 22672 253948 108844
PRE 49118 36382 182701 95796
RMP 3006 3788 5282 5044

Patents The data set on the patents granted by the United States Patent and Trade-
mark Office is provided by Li et al. [114]. The unique feature of this data set is the dis-
ambiguation of inventors, which is performed with a method called Author-ity [197].
The procedure is rather sophisticated, but in its core it uses statistical classification
techniques for deciding whether two names on two given patents refer to the same
inventor. To estimate the quality of the disambiguation, Li et al. compare its outcome
with a curated data set of 95 prolific inventors with the total of 1169 “inventorship”
relations (inventor-patent edge, similar to authorship relation). Furthermore, they
conduct interviews with some of these inventors to confirm the list of their patents.
The outcome of this validation is the following. The rate of false positives, i.e., wrongly
matching two inventors as one, is 2.34% of inventorship relations and 2 out of 95
inventors. The false negatives, i.e, wrongly representing one inventor as two, happen
in 3.26% of inventorship relations, but for 22 out of 95 inventors. Although the
algorithm is far from accurate for these 95 inventors, it must be noted that these are
especially prolific inventors with many patents, meaning that there is a higher than
average chance to split them. Thus, this rate of false negatives estimates the upper
bound of the error in the whole data set. Table 2.5 summarises the data set. A total of
4243972 patents are authored by 2703567 disambiguated inventors, with the median
of 2 inventors per patent and 1 patent per inventor. There are 33533030 citations
between patents, with the median of 4 outgoing and 3 incoming citations per patent.
The patents are also classified according to United States Patent Classification (USPC),
which is a very detailed scheme at 201231 unique classes, with themedian of 27 patents
per class. A patent can be attributed to multiple classes, leading to the median of 3
classes per patent in the data set.

Similar to scientific publications, we consider subsets of patents data defined themat-
ically. We choose three USPC classes in different industries. For following classes,
Table 2.6 provides the summary of the resulting networks:
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Table 2.5: Size summary of the patents data. The number of nodes and edges, as well as the
median in-degrees and out-degrees of the edges of each type.

Nodes Count

Patent 4243972
Inventor 2703567
Class 201231

Edges Count out-deg.
(median)

in-deg.
(median)

Citations 33533030 4 3
Inventorship 9358182 1 2
Classification 17642776 3 27

Table 2.6: Network summary for the three patent classes.

Network |Vp| |Va| |Epc| |Ea|
PAT320 8199 10323 45741 17215
PAT 424 8266 13010 14927 19680
PAT 703 10098 18548 22249 25533

 Patent Class 320 “Data processing: structural design, modeling, simulation, and
emulation” (PAT 320)

 PatentClass 424 “Drug, bio-affecting andbody treating compositions” (PAT 424)

 Patent Class 703 “Electricity: battery or capacitor charging or discharging”
(PAT 703)

2.4 Methods

Behind all of the contributions in this dissertation are statistical methods of network
theory. Namely, statistical network ensembles are utilised as null models in Part I and
generative growth models underlie Part II. Moreover, general methods from statistics
are extensively used to summarise and interpret the outcomes of network analyses and
to derive stylised facts about the collaborative knowledge networks.

2.4.1 Network ensembles

In Section 1.2 we briefly introduced the notion of a network ensemble and specifically,
the configuration model. Here we provide a formal definition of ensembles and of
generative network models.
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Let us start with some fixed aggregate network statistic X. We choose a generative
model ℳ(X) producing network realisations characterised by the aggregate statistic
X. We denote the set of all network realisations G characterised by the statistic X as
the sample space 𝒲(X). A probability Pr(G) can be assigned to each G ∈ 𝒲(X),
which is usually defined by or derived from the generative model ℳ(X). Then,
the ensemble ℰ(ℳ, X) is the set of all network realisations resulting from ℳ and
having the aggregate statistic X, together with the probability to observe each of these
realisations.

Erdös-Rényi model The aggregate statistic X can be as simple as the number of
nodes n and edges m. The ensemble defined by these two numbers is often denoted as
G(n, m). It is a variant of the Erdös-Rényi model [63], which is originally defined as a
model of simple graphs with n nodes and a fixed probability p for each of the n(n−1)/2
possible edges to be drawn, and is denoted as G(n, p). One can verify that the size of
the sample space is

|𝒲(n, m)| = ((
n
2)
m ); P(G) = 1

|𝒲(n, m)| . (2.8)

The probability P(G) to find a specific network is a constant, because every random
realization of a network is equiprobable. The correspondence between the G(n, m)
and G(n, p) models is lies in setting the expected number of edges ⟨m⟩ instead of a fixed
m as

⟨m⟩ = p (
n
2); P(G) = pm ⋅ (1 − p)(

n
2)−m. (2.9)

The probability P(G) to find a specific network with preciselym edges is now no longer
a constant, but varies with m. One can verify that P(G) is maximum if m = ⟨m⟩. Also,
the sample space 𝒲(n, p) of the respective networks has largely increased by going over
from a fixed m to a fixed expected value ⟨m⟩.

Configuration model Which other constrains can we use to define the ensemble
of networks? In the configuration model [129] introduced by Molloy and Reed, in
addition to n and m, the degree sequence K(G) of nodes are also fixed. The degrees
of the nodes resulting from such sequence are illustrated by “stubs” for half-edges, as
shown in Fig. 1.2, because a degree is defined by one of the two endpoints of edges.
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In the configuration model, these stubs are preserved. However, the second node to
which an edge connects can be randomly chosen with respect to the available stubs
of other nodes. This leads to a different sample space 𝒲(K) defined by the given
degree sequence K which is also much smaller than it is for the G(n, m) model. But
just as with G(n, m), the probability for a network realisation by the configuration
model is the same for all realizations, P(G) = 1/|𝒲(K)|. The configuration model
can be defined for both simple and multi-edge networks, as well as for both directed
and undirected networks. Similar to Erdös-Rényi model, the original Molloy-Reed
configuration model can be extended to assume only the expected degree sequence
⟨K⟩, which we discuss in Chapter 3. Note, that for both the configuration model and
the Erdös-Rényi model, the probability of a network realisation is equivalent to the
probability of the corresponding adjacency matrix,

Pr(G) = Pr(A). (2.10)

This equivalence holds for any model of static networks.

Growth models A class of generative network models is designed for studying
growing networks. In many of these models, new nodes and edges are sequentially
added to the network according to certain mechanisms. Often, nodes are added
to the network one at a time, together with a number of edges originating at the
new node. The simplest probabilistic mechanism would be to connect these edges
uniformly at random to the nodes already in the network. However, many real-
world networks exhibit evidence of proportional growth [1, 157, 180, 193]. In such
growth, the probability of a new edge to connect to a given node scales with the
number of edges the node already has. Suchmodels for networks are commonly called
preferential attachment models. The case when the probability is linear on the current
degree of a node is called Barabási-Albert model [9]. So, for a new node i added at the
time t + 1, the probability to connect to node j with degree kj(t) is

Pj(t + 1) = Pr ((i, j); G(t)) =
kj(t)

∑l∈V(t) kl(t)
. (2.11)
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The model is defined for directed networks as well, where the preference is defined
according to the in-degree of a node

Pj(t + 1) =
kin
j

∑l∈V(t) k
in
l (t)

. (2.12)

There are multiple variants of preferential attachment models that make it suitable
for a range of phenomena in network growth. The fitness model [14] introduces
heterogeneity in the nodes in terms of an intrinsic ability to compete for new edges.
This is described by a constant parameter ηi for each node i. This parameter then scales
the probability for new edges to connect to a given node as

Pj(t + 1) =
ηikj(t)

∑l∈V(t) ηlkl(t)
. (2.13)

Another variant of preferential attachment introduces ageing, or relevance decay, of
nodes [125]. The added assumption is that older nodes lose their attractiveness for
new edges over time. This relevance of the node j is introduces as a time-dependent
relevance parameter, Rj(t). The probability of the newly drawn edge from i to connect
to a j is given by

Pj(t + 1) =
kj(t)Rj(t)

∑l∈V(t) kl(t)Rl(t)
. (2.14)

We will apply this model, among others, to study the growth of collaborative knowl-
edge networks in Part II because it is a reasonable—if not a necessary—assumption
that knowledge artifacts lose their relevance over time (studied in detail in Chapter 7).

2.4.2 Statistics

Most of the generative models we use to study the networks are parametric, meaning
that they are described by one or more parameters, such as the ηi parameter in
Eq. (2.13) of the fitness model. These parameters are not known and their best values
must be inferred by comparing the model and the observed data. Moreover, often
there are multiple competing models for explaining the observed data. To select the
best one, there exist various model selection techniques.
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Maximum Likelihood Estimation (MLE) Many inference methods in statistics are
based on MLE. The principle is to find the parameters of the given model that maxi-
mize the likelihood to observe the available data according to the model. A paramet-
ric statistical model ℳ(θ) corresponds to a certain probability distribution fℳ(x; θ),
where x is a random variable and θ ∈ Θ is the (vector) parameter of the model. If
the data are independent and identically distributed, the likelihood function written in
logarithmic form is

log ℒℳ(θ; x) = ∑
i

fℳ(xi; θ). (2.15)

Then, the parameter maximizing the likelihood is taken,

θ̂ = argmax
θ

ℒℳ(θ|x) (2.16)

Maximum likelihood estimation is one of the simplest yet very powerful tools in
statistics for fitting models to data. From Bayesian statistics viewpoint, MLE is too
restrictive because it assumes uniform distribution of the parameters and is a special
case of a Bayesian estimator. Also, it is a point estimator, meaning that it gives the
single value of the parameters that maximizes the likelihood but does not give the
confidence intervals. However, if the distribution f(x; θ) satisfies certain conditions,
the estimate of the parameters is normally distributedwith a known covariancematrix,
which means confidence intervals of the parameters can be calculated.

Linear regression In order tomodel the relation between a dependent variable y and
explanatory variables x = {x1, … , xq}, in discriminative statistics the linear regression
is usually the first method to try. As the name suggests, the method models the linear
relationship between the variables,

yi = β0 + β1x1,i + ⋯ + βqxq,i + εi, i ∈ 1, … , N (2.17)

where the subscript idenotes a single observation in the data of sizeN, β0, β1, … , βq are
the parameters of the model and ε is the error term, which accounts for the stochastic
noise. Linear regression is also used to model non-linear relations between variables
by transforming the variables first. For example, exponential relation is modelled by a
linear regression between log-transformed variables.

There are different methods for fitting the linear model. A standard one is the ordinary
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Table 2.7: Significance codes of parameter estimates used throughout the dissertation.

p-value < 0.001 < 0.01 < 0.05 < 0.1
Signif. code *** ** * .

least squares, whichminimises the sumof square residuals—the difference between the
observed values of the dependent variable and the values predicted by the model. For
this methods to produce reliable outcomes, to be valid, certain conditions must be
met. First, the error term must be normally distributed, ε ∼ 𝒩 (0, σ2). Second, the
variance of the error must not depend on the explanatory variables Var(ε ∣ x) = σ2, a
condition known as “homoskedasticity”. Third, the expectation of the error term given
the explanatory variables must be zero, E(ε ∣ x) = 0.

The predictive quality of the linear regression model is commonly assessed be means
of the coefficient of determination R2. It denotes the fraction of the variance of the
dependent variable that is predictable by the exploratory variables, given the regression
model. The coefficient of determination is defined as

R2 =
∑N

1 ( ̄yi − ⟨yi⟩)2

∑N
1 (yi − ⟨yi⟩)2

, (2.18)

where ̄yi are the predicted values of the dependent variable by the regression model, yi
are the observed values and ⟨yi⟩ is their mean.

Linear regression provides p-values for the estimates of the parameters βl. In general,
for a statistical model the p-value is the probability that the magnitude of a certain
statistic under the null hypothesis is greater or equal than under the alternative hy-
pothesis. In linear regression, the p-value of each parameter is calculated according
to the null hypothesis that the parameter is zero, i.e., the corresponding explanatory
variable has no effect, and the alternative that the parameter has the value estimated
by the regression analysis. The null hypothesis is rejected for low p-values. The
opposite is not true, the null hypothesis is not accepted if the p-value is high. So, if
the regression analysis results in low p-value for a given parameter, then we say that
the parameter and the effect of the corresponding explanatory variable is significant.
The interpretation of the p-value is similar for other statistical methods of model
selection (see below) and parameter estimation. There are widely accepted heuristics
for the significance level, that sets the threshold for the p-value, below which the null
hypothesis is rejected. Throughout the dissertation, we will use the codes shown in
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Table 2.7 next to the parameter estimates and statistical test results.

Model selection MLE is used to find the best parameters for a given model to
explain the data. However, on its own it is not suitable when different models need to
be compared. In this case, a common approach is to compare the models in terms of
information criteria. The most common ones—Akaike information criterion (AIC) [4]
and Bayesian information criterion (BIC) [173]—are based on MLE and, in addition,
penalize for model complexity (the degrees of freedom of the model, which is often
equal to the number of parameters). That means, if two competing models lead to the
same maximum likelihood value, then the one that has lower model complexity, i.e.,
less degrees of freedom, is preferred. For themodel ℳ with the number of parameters
|ℳ|,

AIC(ℳ) = −2 log ℒ(θ̂) + 2|ℳ|, (2.19)

BIC(ℳ) = −2 log ℒ(θ̂) + 2|ℳ| logN. (2.20)

According to both criteria, the model with a higher likelihood and a smaller number
of parameters is preferred, meaning that the smallest AIC is the criterion for model
selection. There are certain conditions that the models must fulfil for the two criteria
to be reliable. Generally, AIC is less restrictive on themodels. In particular, BIC applies
only to models that are nested, i.e., one model can be reduced to another by removing
some of the parameters, while AIC does not require such nestedness. For this reason,
we will use AIC in Chapter 6.

Instead of only taking the model with the lowest AIC, the model selection can be done
in a more principled way that gives weights to different models. For example, consider
that in the set of models we have AIC differences in the range of thousands, but there
are two models for which the AIC are almost equal. In this case, it would be wrong to
select only one model. Instead, we choose to use a statistical heuristic called relative
likelihood of models,

w(M) = exp ((min
ℳ

(AIC) − AIC(M))/2) . (2.21)

This measure is similar to the likelihood ratio Λ(x), but for w(M) to be applicable,
the models that are compared do not have to be nested. Likelihood ratio test is a
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theoretically principled test for comparing two nested models ℳ0 and ℳ1.

Λ(ℳ0, ℳ1; x) =
ℒℳ0

(θ0 ∣ x)
ℒℳ1

(θ1 ∣ x) . (2.22)

Wilks theorem states that the test statistic −2 log(Λ) follows the χ2(|ℳ1|−|ℳ0|) [209],
meaning that the significance of the advantage of one model against the other can
be computed. We will apply the likelihood ratio test in Chapter 3 for the testing of
hypotheses about the structural properties of networks.





We cannot tell the precise moment when friendship is formed. As in filling a
vessel drop by drop, there is at last a drop whichmakes it run over, so in a series
of kindnesses there is at last one which makes the heart run over.

James Boswell

Part I

Structure
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Chapter 3

Generalized hypergeometric
network ensembles

Summary

Statistical ensembles of networks, i.e., probability spaces of all networks that are
consistent with given aggregate statistics, have become instrumental in the anal-
ysis of complex networks. We introduce generalized hypergeometric ensembles,
a new class of analytically tractable statistical ensembles of finite, directed or
undirected, and multi-edge networks. Utilising the analytical tractability of the
ensembles, we provide methods for model selection and hypothesis testing for
various topological patterns. The ensembles generalise the configuration model,
which is used to model networks with a given degree sequence or distribution.
The generalisation rests on the introduction of dyadic edge propensities, which
capture the degree-corrected tendencies of pairs of nodes to form edges between
each other. Furthermore, we demonstrate how the ensemble can be used for the
extraction of network backbone both on synthetic and empirical data.

Based on Casiraghi G., Nanumyan V., Scholtes I., and Schweitzer F., “From Relational Data to
Networks: TestingHypotheses about theOrigin of Repeated Interactions”, pending submission; Casiraghi G.,
Nanumyan V., Scholtes I., and Schweitzer F. (2017) “From Relational Data to Graphs: Inferring Significant
Links Using Generalized Hypergeometric Ensembles”, in Social Informatics. SocInfo 2017, Springer;
Samarin M. (2016) “Modelling co-locations in human mobility”, Master’s thesis. VN conceptualized the
network ensemble and had a major contribution to its formulation and applications. VN was the lead
contributor to the network reconstruction. While supervising the Master’s thesis of M. Samarin, VN
provided the code for building the ensemble and classifying edges.

45
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The need for novel statistical ensembles to model social interactions behind collabo-
rative knowledge networks was motivated in Chapter 1. We extend this motivation,
as the analysis of relational data from the perspective of networks has become a key
method not only in scientometrics and bibliometrics but in the study of complex
systems across different domains. Examples for network science techniques include
(i) algorithms to detect cluster or community structures, (ii) quantitative measures
capturing the importance, or centrality, of nodes, (iii) statistical methods to detect
significant patterns such as frequent sub-graphs or motifs, and (iv) techniques to
study the evolution (or control) of dynamical processes in complex networks. Their
application to relational data that capture interactions between elements of complex
social, biological or technical systems has become popular. However, despite this
popularity, we still lack methods to answer a crucial question: when is it justified to
use graph or network models to study relational data? Depending on the characteristics
of real-world data sets, this question has multiple facets that pose severe challenges to
contemporary network science.

First, relational data on networked systems are increasingly time-resolved or sequen-
tial, i.e., we know when or in which order relations occurred. The application of
standard (static) network modelling techniques to such data discards information on
temporal correlations and can yield wrong results, e.g., about community structures,
node centralities or dynamical processes [120, 153, 169, 172]. Secondly, different
from examples like telecommunication, transportation, or citation networks where
the interpretation of an edge is straightforward, inferring the network topology of a
system is often a non-trivial problem by itself. This is because relational data often
capture observations of repeated interactions between elements, which may or may
not be direct expressions of an explicit underlying network topology. For instance,
recall the problem of representing collaborations with coauthorship edges discussed in
Section 2.2—one of many examples of modelling multiple observations of interactions
between agents in a social system as a social network [10, 55, 56]. Similarly, data on
the co-expression of genes is used to construct biological networks, or the co-occurrence
of words or concepts is used to construct semantic networks in language studies. The
question whether or not such observed interactions justify the hypothesis of a non-
trivial underlying network topology must be answered before applying any network-
analytic methods.

To illustrate this problem, consider the toy example shown in Fig. 3.1 (a). Here, we
observe a total of 35 repeated interactions between four nodes A, B, C and D, captured
as a set of triples (i, j, nij) where nij counts the number of times i and j interacted. Let us
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A B

C D

A B

C D

A B

C D
b. c. d.

(A, B, 8)

(A, C, 6)

(A, D, 3)

(B, C, 2)

(B, D, 1)

(C, D, 15)a.

Figure 3.1: Illustrative example of data on repeated interactions and three different types of
(network)models for these interactions: the firstmodel (a) accounts for the rates at which nodes
engage in interactions while disregarding the topology of these interactions. The second model
(b) additionally accounts for a group structure that influences interaction rates. The thirdmodel
(c) fits both the weight and the direction of edges to the observed interactions. Answeringwhich
of these models should be used to study a given data set on repeated interactions is a model
selection problem that must precede the analysis of relational data from a network perspective.

further consider three different hypotheses about the mechanisms driving these inter-
actions. First, we could explain the frequency of interactions between pairs of nodes
simply by the configuration model. To recall, it only respects how often each node has
been the source or the target of an interaction with any other node. This simple mean
fieldmodel, illustrated in Fig. 3.1 (b), does not assume an underlying network topology,
i.e., nodes have no intrinsic preferences with whom they interact. Considering that
all nodes can potentially interact with each other, it rather assumes that both the
frequency and topology of observed interactions result from the activities of nodes.
We can augment this model by additional hypotheses such as, e.g., the presence of
group structures that influence the interactions between nodes. An illustration of such
a group model is shown in Fig. 3.1 (c). Here, we assume that nodes have a preference to
interact with other nodes in the same group, but not with any specific nodes. Finally,
we can consider a network model for the observed interactions, where weighted edges
of the network determine both the topology and the frequency of interactions between
particular pairs of nodes. Such a model, illustrated in Fig. 3.1 (d), corresponds to a
straightforward interpretation of observed interactions as a weighted network. That is,
we assume that the topology and frequency of interactions are direct expressions of a
network structure that captures the strength of interaction preferences between nodes.
This network model clearly offers the best explanation for the observed interactions.
However, it is also a maximally complex model, as it simply encodes the phenomenon
that it seeks to explain.

This simple example illustrates an important problem. In settings where observed
interactions do not directly correspond to an underlying network topology, deciding
how these interactions should be modelled is not trivial. This questions the naive
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modelling of data from the perspective of graphs or complex networks and highlights
that the construction of graph or network abstractions based on observational data
is a difficult inference task. The importance of this problem has recently been ac-
knowledged in data mining, bioinformatics, and network science, and it has been
addressed from the perspective of link prediction [115], network inference [5], or
graph identification [132]. However, most of these works start from the assumption
that there is an underlying graph that drives observed interactions. We still lack
principled approaches to (i) test whether a network model is justified, and (ii) contrast
this hypothesis with alternative explanations for the data. Closing this research gap
requires model selection techniques that take into account both the complexity of a
model and its explanatory power for the observed interactions. The availability of such
techniques is key to answering the crucial question of when a network abstraction
of relational data is justified, and when we can reasonably apply network science
techniques [28, 169, 182].

To address this issue, we introduce a statistical modelling framework that (i) allows for-
mulating awide range of different hypotheses about the origin of repeated interactions,
(ii) provides statistically principled techniques to test these hypotheses in empirical
data, and (iii) allows inferring the significant relations in data on noisy interactions.

3.1 Ensemble formulation

Let us consider empirical data consisting of repeated interactions (i, j) between nodes
i and j. As described in Section 2.1, such relational data can be represented as a multi-
edge network Ĝ = (V, E), with a set V of n nodes, and a multi-set E ⊆ V × V of m
(directed) edges. In the following, we use a “hat” notation to characterise the empirical
network. For instance, its integer-valued adjacency matrix writes as Â.

Configurationmodel Our construction of a statistical ensemble follows the idea of
theMolloy-Reed configurationmodel [129], which is to randomly shuffle the topology
of a network G while preserving node degrees, as already described in Section 2.4.1.
The configuration model uses a node-centric sampling approach, generating edges
between randomly sampled pairs of nodes such that the exact observed degrees of
nodes are preserved. Different from this, we utilize an edge-centric sampling ofm edges
from the set of all possible edges such that the sequence of expected degrees of nodes
is preserved.
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We first define a matrix Ξ, which sets the maximum possible number Ξij of multi-
edges that can exist between each pair of nodes i and j as Ξij = k̂out

i k̂in
j [100, 140].

We can hence define a statistical ensemble based on the following generative model.
We sample edges from the n2 sets Ξij of possible multi-edges uniformly at random.
This can be viewed as an urn problem [96] where edges to be sampled are represented
by balls in an urn. We specifically obtain an urn with M = ∑i,j Ξij balls having
n2 = |V × V| different colours, each colour representing all possible edges between a
given pair of nodes. The sampling of a network corresponds then to drawing exactly
m balls from this urn. Each adjacency matrix A with ∑i,j Aij = m corresponds to one
particular realisation drawn from this ensemble. The probability to draw exactly Aij
edges between all pair of nodes i, j ∈ V is given by the multivariate1 hypergeometric
distribution. To be precise, the multivariate variable described by the distribution is
obtained by stacking the rows of the n×n adjacency matrixA into a n2 × 1 vector. For
simplicity of notation and without loss of generality, we do not distinguish between
the matrix and its stacked vector representation. Hence,

Pr(A) = (
M
m)

−1

∏
i,j (

Ξij

Aij
), (3.1)

which provides an analytical expression for the probability of the given corresponding
network G.

For each pair of nodes i, j ∈ V, the probability to draw exactly Âij edges is given by the
marginal distribution of the multivariate hypergeometric distribution

Pr(Aij = Âij) = (
M
m)

−1

(
Ξij

Âij
)(

M − Ξij

m − Âij
). (3.2)

We can further calculate the expected number of edges between any pair of nodes i
and j as ⟨Aij⟩ = m

Ξij

M . This leads to the expected in-degrees (out-degrees) of all nodes

1of multiple variables



50 Chapter 3. Generalised hypergeometric network ensembles

by summing the rows (columns) of matrix ⟨Aij⟩:

⟨kin
j ⟩ = ∑

i∈V
⟨Aij⟩ = m

∑i∈V k̂out
i k̂in

j

M
= k̂in

j , (3.3)

⟨kout
j ⟩ = ∑

i∈V
⟨Aji⟩ = m

∑i∈V k̂out
j k̂in

i

M
= k̂out

j . (3.4)

Equation (3.4) confirms that the expected in-degree and out-degree sequences of
realisations drawn from the resulting statistical ensemble correspond to the degree se-
quences of the given network Ĝ. We thus arrive at a hypergeometric network ensemble,
which (i) provides a generalization of the configurationmodel for directed, multi-edge
networks, (ii) has a fixed sequence of expected degrees, and (iii) is analytically tractable.
The above formulation for directed networks can be adapted to undirected networks,
to networks with and without self-loops. Furthermore, we obtain a framework for
the generalization of other generative models like, e.g., the multi-edge version of the
Erdös-Rényi model [63], where only n and m are fixed, while there are no constraints
on the degree sequence. That is achieved by setting Ξij = m2/n2 = const, which
directly results from ⟨kin

i ⟩ = ⟨kout
i ⟩ = m/n.

The sampling procedure outlined above provides a parsimonious stochastic model for
multi-edge, directed networks in which (i) the expected in-degrees and out-degrees
of nodes are fixed, and (ii) edges between these nodes are generated at random. This
stochastic model can serve as a null model that considers combinatorial effects and no
additional correlations. That means, if a given network does not significantly differ
from this null model, we learn that the interactions behind that network are only
driven by the activities (degrees) of the nodes. If, however, the network cannot be
described by themodel, the question is to what extent the patterns in a given empirical
network exhibit statistically significant deviations from this null model (addressed in
Section 3.2).

Edge propensity To answer this question, we generalise the hypergeometric en-
semble as follows. We introduce a matrix Ω whose entries Ωij capture relative edge
propensities, i.e., the tendency of a node i to form an edge specifically to node j. In
particular, we assume that an entry Ωij captures the propensity that goes beyond the
tendency of a node i to connect to a node j that results from combinatorial effects,
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PAB PAC PAD

edge probability0 1

A

B C D

edge probability0 1

A

B C D

~3ΩABPAB ~2 ΩACPAC ~ΩADPAD

Figure 3.2: The probabilities for the node A to connect to nodes B, C and D according to (left)
the configuration model (or unbiased hypergeometric ensemble) and (right) the hypergeomet-
ric ensemble with different propensities ΩAB < ΩAC < ΩAD. Even though in configuration
model the edge (A, B) has three times the probability of (A, D), the latter is more likely when the
propensity is accounted for.

i.e., a degree-corrected preference of i linking to j which accounts for the in-degree of
j and the out-degree of i. The key idea of our generalised ensemble is to use the edge
propensities Ωij to bias the edge sampling process described above. Similar to the urn
model, biased sampling implies that the probability of drawing balls of a given colour
does not only depend on their number but also on the respective relative propensities.
This is illustrated in the left panel of Fig. 3.2, where the probabilities of the outgoing
stub of nodeA to connect to nodesB, C, D are shown according to configurationmodel.
The probability of each node to be selected is proportional to the respective number
of available stubs. The effect of edge propensities ΩAj is to scale the probability of each
corresponding stub of j to be selected, as shown on the right of Fig. 3.2. The probability
distribution resulting from such a biased sampling process is given by the multivariate
Wallenius’ non-central hypergeometric distribution [40, 68, 203]:

Pr(A) =
⎡⎢⎢⎣
∏
i,j (

Ξij

Aij
)

⎤⎥⎥⎦ ∫
1

0 ∏
i,j (

1 − z
Ωij
SΩ

)

Aij

dz (3.5)

with SΩ = ∑i,j Ωij(Ξij − Aij).

Similar to unbiased sampling, the probability to observe a particular number Âij of
edges between a pair of nodes i and j can again be calculated from the marginal
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distribution:

Pr(Aij = Âij) = (
Ξij

Âij
)(

M − Ξij

m − Âij
) ⋅ ∫

1

0

⎡
⎢
⎢
⎣(

1 − z
Ωij
SΩ

)

Âij

(
1 − z

Ω̄⧵(i,j)
SΩ

)

m−Âij⎤
⎥
⎥
⎦
dz

(3.6)
where Ω̄⧵(i,j) = (M − Ξij)−1 ∑(l,m)≠(i,j) ΞlmΩlm.

The entries of the expected adjacency matrix ⟨Aij⟩ can be obtained by solving the
system of equations described in [68]. Note that for the special case of a uniform edge
propensity matrix Ω ≡ const, which corresponds to an unbiased sampling of edges,

the integral in Eq. (3.5) becomes (
M
m)

−1
and we thus recover Eq. (3.1) [203].

Amajor advantage of the formalism outlined above is that, by specifying different edge
propensities matricesΩ, we obtain a broad class of generalised hypergeometric network
ensembles. This allows us to encode a wide range of dyadic patterns in networks, while
still obtaining an analytically tractable statistical ensemble corresponding to a simple
and well-defined generative model. Moreover, the ensemble allows fit the propensities
to a given network. For this, we use the property of the Wallenius’ distribution for the
expected adjacency matrix ⟨Aij⟩, according to which

(1 − ⟨A11⟩
Ξ11 )

1
Ω11 = (1 − ⟨A12⟩

Ξ12 )

1
Ω12 = … (3.7)

with the constraint ∑i,j⟨Aij⟩ = m. Assuming that the observed edges are the expected
ones, we can solve the above equation for Ωij to obtain the best fitting propensities. So,
solving the linear system

⎧⎪
⎪
⎨
⎪
⎪⎩

(1 − ⟨A11⟩
Ξ11 )

1
Ω11 = C,

(1 − ⟨A12⟩
Ξ12 )

1
Ω12 = C,

⋮,

(3.8)

we obtain the fitted propensities up to an arbitrary negative constant k ∈ ℝ− as follows

Ωij = 1
k

log (1 − Âij/Ξij) ∀i, j ∈ V. (3.9)

In the following, we show how the class of generalised hypergeometric ensembles can
be used for model selection and hypothesis testing in complex networks.
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3.2 Model selection and hypothesis testing

In this section, we present two statistical tools for model selection and hypothesis
testing in networks: (i) the likelihood-ratio test allows to compare nested hypotheses
and (ii) Mahalanobis distance shows how far an observation is from a distribution,
effectively providing a goodness-of-fit for the model.

Likelihood-ratio test LetHr be some statistical hypothesis about interactions. Here
we always assume that each hypothesis is defined by a hypergeometric model and can
be encoded by some propensity matrix Ωr. Each Ωr is characterized by a number of
free parameters that we want to fit to the data, such that the probability to observe the
data is maximized. Given a propensity matrix Ωr, we can compute the probability of
observing the data A as Pr(A ∣ Ωr), where the probability is computed as in Eq. (3.5).
The likelihood Lr(Ωr|A) of the propensity matrix Ωr is then equal to Pr(A ∣ Ωr) in
the frequentist approach, which in Bayesian approach assumes a flat prior distribution
of Ωr . We indicate the propensity matrix corresponding to the maximum likelihood
estimation of the free parameters inΩr as Ω̄r. We refer to [35] for the actual estimation
procedure.

The number of free parameters in each propensity matrix defines the number of
degrees of freedom of each statistical hypothesis. The number of degrees of freedom
of the maximally simple model Ω0 corresponding to the configuration model is zero,
since there is no parameter fitted to the data. The maximally complex network
hypothesis (Ωn) obtained using Eq. (3.9) has as many degrees of freedom as the
number of allowed pairs of nodes minus one. This is because the network hypothesis
corresponds to fitting a parameter for every pair of nodes such that the expectation
of the model defined by Ωn coincides with the observed data. Hence, in the case of
a directed network with self-loops, Ωn has n2 − 1 degrees of freedom, where n is the
number of nodes.

The degrees of freedom of intermediate models depend on the number of parameters
fitted. In the case of a group model Ωg there is only one parameter. It defines the
relative propensity for within-group interactions against across-group interactions,
thus the number of degrees of freedom is one, independently of the number of groups.
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If we denote the group of node i as g(i),

Ωg,ij =
{

1 for g(i) = g(j),
c otherwise, with c ∈ [0, 1].

(3.10)

Assume now we have two hypotheses to test against each other. Let H0 denote the
more simple hypothesis as the null-hypothesis and let Ha denote the alternative. The
corresponding propensity matrices are Ω0 and Ωa. To test the alternative hypothesis
against the null, we use the likelihood-ratio statistic Λ(0, a), defined as follows:

Λ(0, a) = ℒ0(Ω̄0 ∣ A)
sup(ℒ0(Ω̄0 ∣ A), ℒa(Ω̄a|A))

(3.11)

Thanks to Wilks’ theorem [209], if Ω0 is a special case of Ωa, i.e., the null-hypothesis
corresponds to the model with fewer parameters and can be formulated by constrain-
ing the model with more parameters (the two models are nested), the distribution of
−2 log(Λ(0, a)) can be approximated by the χ2 distribution with as many degrees of
freedom as the difference of degrees of freedoms between the two models [35]. If ν is
the difference of degrees of freedom between the null and the alternative models, the
p-value of the likelihood-ratio test between the two hypotheses can be computed as
follows:

p = Pr [χ2(ν) ≥ −2 log(Λ(0, a))] . (3.12)

We then reject the null-hypothesis in favour of the alternative if the p-value is smaller
than a threshold α.

The three hypotheses discussed above—themean-field hypothesis according to config-
urationmodel, the group structure and the network hypothesis—are all nested. In fact,
the mean field model can be seen as a special case of any model where all parameters
are constrained to be equal. Moreover, the groupmodel is a special case of the network
model, when parameters in Ωn are constrained either to between-group or within-
group parameters according to whether the corresponding pair of nodes are in the
same group or not.

Mahalanobis distance and goodness of fit For the multivariate distribution in
Eq. (3.5), we can use the Mahalanobis distance [117] to quantify how far the observed
network Ĝ is from the model defined by a given Ωr. Better models correspond to
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ensembles statistically closer to the observed data and Mahalanobis distance is the
standard choice to quantify the statistical distance between a multivariate observation
and a distribution. The (squared)Mahalanobis distanceD2

r (Â) gives hence an estimate
of how well the model defined by Ωr fits the observed data. It is the multivariate
generalization of the Z-score and captures how many standard deviations an observa-
tion is away—in the corresponding direction—from the expectation. If ⟨A⟩r denotes
the expected adjacency matrix of the ensemble corresponding to the square of the
Mahalanobis distance writes

D2
r (Â) = (Â − ⟨A⟩r)

TΣ−1
r (Â − ⟨A⟩r) . (3.13)

In Eq. (3.13) we use the vector representation of Â and ⟨A⟩r of length n2, with the
corresponding covariance matrix Σr of size n2 × n2 for the multivariate Wallenius
distribution in Eq. (3.5).

For the distribution given by Eq. (3.5), ⟨A⟩r can be calculated analytically and its
covariance matrix Σr can be approximated numerically [69]. From a set of candidate
models, the one with the smallest Mahalanobis distance is the best choice, since the
corresponding ensemble is statistically the closest to an observed empirical network.
However, such comparison of the models does not penalise directly for the model
complexity.

It is also possible to assess the goodness-of-fit of a given model Ωr in absolute terms,
instead of comparing to other models. A p-value of the goodness-of-fit can be given
in terms of the complementary cumulative distribution Pr [D2

r (A) ≥ D2
r (Â)] where A

is a random realisation drawn of the generalised hypergeometric ensemble defined by
Ωr. Under certain conditions, there are closed-form expressions for Pr [D2

0(A) ≥ x] 2.
However, in the following we resort to a sampling procedure, which is facilitated by
the simplicity of the underlying generative model.

Detectingnetwork topology In the followingwe illustrate and validate ourmethod-
ology using synthetically generated data on repeated interactions. These data contain
a variable number of repeated interactions generated by a known (ground truth)mech-
anism. We specifically analyse (i) whether likelihood-ratio based model selection
reliably identifies the correct model, and (ii) how many observations are needed for

2Pr [D2
0(A) ≥ x] converges to a χ2 distribution with n2 − 1 degrees of freedom if Ξij ≫ m and Ωij =

c ∀i, j ∈ V
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it. We generate the interaction data among n nodes as follows. First, we randomly
select l < n(n − 1) pairs of nodes i, j, i ≠ j, and later allow interaction only
between these l pairs. This effectively defines a topology underlying the interactions.
Then, we randomly generate synthetic interaction data by repeatedly drawing m edges
uniformly at random, with replacement, among the l pairs of nodes. Figure 3.3 shows
an example of n = 10 nodes with l = 11 pairs that can interact in the top left
panel, with one possible realisation of m = 60 edges in the right panel. The bottom
panel of Fig. 3.3 shows the outcome of the likelihood-ratio test between the observed
network topology and the configuration model for different values l ∈ (1, n(n − 1))
and m ∈ (34, 4126). For each combination of l and m, the test is performed 30 times—
each time regenerating both the topology and the realisation of interactions—and the
fraction of outcomes in favour of the network model is computed.
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Figure 3.3: (Top) the topology on which interactions are allowed and a corresponding multi-
edge network realisation. (Bottom) The fraction of 30 realisations of random interactions for
which the null hypothesis of a mean-field model is rejected against the alternative that encodes
the observes topology. Each realisation is generated by randomly drawing a number of m
observations (y-axis) from a set of l possible interactions (x-axis).
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We see a thresholdm = 45, belowwhich the topology is never detected. That threshold
corresponds to the l = 11, or on average ≈ 4 interactions between each allowed pair3.
At the limit l = n(n − 1), all pair-wise interactions are possible, meaning there is no
more underlying topology behind the interactions. As expected, the network model
is never selected at this limit. Similarly, the case when only one pair that can interact
is also described by the configuration model. That is because there are two nodes
with non-zero degrees and the observed network and the (one and only) realisation
of the configuration model coincide. At first, for small l the nodes are only sparsely
connected but with growing l, there are less and less nodes with degree zero. This
sparsity combined with more nodes being connected by at least one edge means the
topology becomes increasingly easy to detect. This trend is seen in Fig. 3.3 on the left
side of the dashed red line.

That red line in the figure corresponds to Molloy-Reed criterion, which provides a
threshold when a large connected component—meaning that there is a path between
most nodes—is formed in a random network. This happens when the number of
neighbours of neighbours of a random node is on average larger than the number of
its own neighbours. It can be calculated for the simple model that we used to generate
synthetic networks. With k′

i being the number of nodes with which node i can interact,
the criterion writes in terms of the moments of the degree distribution as

κ =
⟨k′2

i ⟩
⟨k′

i ⟩
> 2. (3.14)

We can approximate the distribution of k′ by writing it as an Erdös-Rényi model with
a probability pER = l/(n2 − n) to allow an arbitrary pair of nodes to interact. Then, the
distribution of k′ writes as a binomial, k′

i ∼ ℬ(n − 1, l
n(n−1) ). Plugging the first and

second moments of this distribution into the Eq. (3.14) leads to the condition for l:

l > lMR = n(n − 1)
n − 2

. (3.15)

For our example with n = 10 nodes we obtain lMR = 11.25. So, at the threshold
of Molloy-Reed criterion a large connected component forms with the least number
of edges between nodes. This creates a highly pronounced topology, which is the

3This number only refers to the studied example and cannot be taken as a general rule of thumb. It
can vary depending on the network size and other properties such as how heterogeneous is the degree
distribution.
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easiest to detect. In the region l > lMR = 11.25 in Fig. 3.3 the trend changes for
the detectability of the topology—one needs more observed edges m with growing l.
In this region, the number of neighbours grows above one for an average node, coming
closer to the configurationmodel. One can see the problem as a decrease of disallowed
pairs and the hypothesis test between network and configurationmodels as a detection
of these disallowed pairs. The fewer such pairs, themore interactionsmust be observed
between the allowed ones to have a statistically detectable difference.

Zachary’s Karate Club The above simple example allowed us to understand the
behaviour of the likelihood-ratio test when comparing the most complex model to
the simplest. Let us proceed to illustrating the procedure for the intermediate model
with group structure.

We use the empirical based on frequencies of self-reported 231 interactions between
34 members of a university Karate club collected by Zachary [215], denoted in the
following as Â, shown in the top left panel of Fig. 3.4. For this networks with a known
group structure, we can test whether this structure is sufficient to explain the observed
interactions, thus using ourmodel selection technique to testΩg against the alternative
hypothesis Ωn. However, we first need to make sure that the configuration model
Ω0 ≡ 1 is not a sufficientmodel. According to the likelihood-ratio test Λ(Ω0,Ωn) with
560 degrees of freedom [35], Ω0 is rejected in favour of Ωn at significance level 0.05
(p-value = 0.0052). Similarly, Ω0 against Ωg is rejected with p-value = 2.32 ⋅ 10−44

(likelihood ratio test with 1 degree of freedom). We then test Ωg against Ωn. In this
case we cannot reject the hypothesis Ωg (p-value = 0.9996 > 0.05, 559 degrees
of freedom.) There is therefore no evidence for the (undirected, weighted) network
hypothesis. However, a simple configuration model is not enough to describe the
dataset, and a more complex group model is required. The ratio of odds between
in-group and across-group interactions according to the fitted block matrix Ωg is
ω̂ = c−1 = 10.53. Hence, a node is approximately ten times more likely to connect to
a node of the same group than to a node of the other group.

Let us now illustrate how Mahalanobis distance can be used to assess the goodness-of-
fit of a model. Here we analyse two models, the configuration model Ω0 ≡ 1 and the
group model Ωg defined in Eq. (3.10). We test the hypothesis that Ω0 is sufficient
to describe the data by computing Pr [D2

0(A) ≥ D2
0(Â)] based on the distribution

of Mahalanobis distances for random realisations A drawn from the ensemble. As
expected, we obtain p ≈ 0, meaning we can safely reject the hypothesis of Ω0 (cf. red
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histogram in Fig. 3.4). This outcome is in accordance with the likelihood-ratio test
and can also be visually confirmed by comparing the empirical network in the top left
of Fig. 3.4 to the random realisation of the (unbiased) ensemble shown in top middle
panel of Fig. 3.4.
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Figure 3.4: Using Mahalanobis distance to detect community structure in Karate club net-
work. The top panel shows (left) the empirical Karate club network, (middle) a random
realisation drawn from the unbiased hypergeometric ensemble, cf. Eq. (3.1), and (right) a
random realisation drawn from a generalised hypergeometric ensemble with a block matrix
Ωg, cf. Eq. (3.5). The bottom panel shows the CCDF of Mahalanobis distances obtained
for 5000 random realisations of (blue) the unbiased hypergeometric ensemble and (red) of
the generalised hypergeometric ensemble with block matrix Ωg. Dashed lines indicate the
Mahalanobis distance for the empirical network in the two ensembles.

The second hypothesis states that the network topology is explained by the node de-
grees and the presence of two communities, where pairs of nodes within a community
have higher propensities than nodes in different ones. Choosing c as the observed
fraction of edges across communities—which is approximately equal the c = ω̂−1 =
0.095 identified by the likelihood ratio test—allows us to calculate the distribution
of Mahalanobis distances for random realisations of the resulting statistical ensemble
(cf. red histogram in Fig. 3.4). From this, we obtain p = 0.158367, which does not
allow us to reject hypothesis ofΩg. Again, this result is in accordance with the visually
similarity between empirical Karate club network shown in the top left of Fig. 3.4 with
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the random realisation generated from the group model shown in the top right of
Fig. 3.4. The example shows that a generativemodel only accounting for heterogeneous
node degrees and community structure is sufficient to statistically explain the observed
network. Moreover, this highlights how the known functional form of distribution,
expected values and covariance provided by our ensemble formulation provides a
novel approach to (i) statistically test hypotheses in networks, and (ii) assess the
significance of community structures.

3.3 Network reconstruction

A considerable scientific effort addresses the issue of network reconstruction [141,
190]. Specifically, one line of research aims to reconstruct the unknown edges in a
network from aggregate statistics of nodes (e.g., fromdegrees) [134, 190]. Another line
of research focuses on identifying the significant latent structure behind noisy pairwise
interactions [46, 85, 142, 177, 184]. Most of the works in the second line follow
a common approach—to identify the pairs of nodes that interact more often than
expected at random. This approach is often called inference of network backbone [78].

In this section we show how our proposed generalised hypergeometric network en-
sembles can be used to infer the network backbone. We present two ways of achieving
this goal. First, we show that the inferred edge propensities Ωn can provide a better
proxy for the ground-truth topology underlying the observed pairwise interactions
than the raw numbers of these interactions. Second, we follow the above-mentioned
common approach and use our (unbiased) ensemble to identify the pairs of nodes that
interact significantly more frequently than the model predicts.

3.3.1 Agent-basedmodel for co-locations

In order to assess the goodness of network reconstruction methods, data with ground-
truth information is needed. Obtaining such data of good quality is a challenge [148,
150]. To overcome this challenge, we use an agent-based model (ABM) [175]. These
are computational models simulating actions of many elements, agents, and the in-
teractions between them. The agents have internal properties described by a set of
parameters. Hence, they are also described by internal degrees of freedom. An agent-
based model defines a set of microscopic rules for the agents, which, together with the
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internal properties of the agents, identify how they act and interact. ABMs are com-
monly employed to understand how microscopic interactions between many agents
lead to the macroscopic properties of the studied system. They are especially useful
when such micro-macro link is not a simple superposition of individual interactions,
or cannot easily modelled analytically. In such cases the corresponding macroscopic
properties are often called emergent.

In this section we utilise the ABM developed in [164]. In our model agents move on a
two dimensional grid lattice, representing the mobility of humans [144, 168, 187, 196].
The agents also exhibit social behaviour by means of movements coordinated with
their “friends”. As a starting point for formulating out model, findings from three
recent studies are used: Schneider et al. [168], Song et al. [187], and Toole et al. [196].
These findings can be summarised as follows.

 The mobility patterns of individual agents is time-dependent, meaning, in par-
ticular, that there are times of high activity (agent is “active” if it is moving) and
low activity

 Each agent is characterised by a certain “home” location, at which itsmovements
originate and end

 Agents show preference for certain locations by visiting them more often

 Pairs of agents are characterised by friendship ties

 Agents meet with friends at certain locations

Let us now formally define the model in brief based on the above statements (we refer
to the thesis by Samarin for the full details [164]). We consider n = 100 agents on
a square lattice of L × L cells with L = 50. Each agent i is assigned a home cell
hi ∈ L × L uniformly at random. An agent is characterised by an internal boolean
state, which defines whether it is active. This state is by default zero, meaning that the
agent is inactive. An agent turns active at a given time with probability proportional to
a time-dependent global activity function α(t). This function is based on empirical
observations in the (now defunct) location-sharing online platforms Gowalla and
Brightkite4 and exhibits a periodical daily pattern. It is higher during daytime and
lower during night time.

4the data sets are available athttp://snap.stanford.edu/data/ (retrieved April 4, 2016)



62 Chapter 3. Generalised hypergeometric network ensembles

Once an agent changes its state to active, it moves to a different cell. The new cell is
chosen with a probability decreasing with the distance from the current cell according
to power-law [25]. An agent stays in the new cell for certain time Δt (measured in
seconds) drawn from a log-normal waiting time distribution Δt ∼ ln 𝒩 (μ, σ) with
μ = 9.75 and σ = 1:

Pr(Δt) = 1
√2πσΔt

e− (log(Δt)−μ)2

2σ2 . (3.16)

After waiting for Δt in the visited cell, the activity state of the agent is reassessed. With
a probability proportional toAα(t), A = 15, the agent remains active and visits another
cell5. Otherwise, the agent turns inactive and return to the home cell.

The choice of the cell that an active agent visits is driven by one of two modes, which
we call regularity and exploration. In the regularity mode the agent visits a cell that it
previously visited and in the exploration mode it visits a previously unvisited cell. The
probability of being in the exploration mode is determined by the number S of unique
cells that the agent has previously visited as

Pr(explore) = ρS−γ. (3.17)

Otherwise, the agent follows the regularity mode and chooses to visit a cell from
previously visited ones uniformly at random. According to Eq. (3.17), the probability
to explore decreases with the number of unique cells previously visited by the agent,
in accordance with the empirical findings in [187]. In the following the parameters in
Eq. (3.17) are set to ρ = 0.5, γ = 0.5.

Last but not least, we define the rule for social behaviour of the agents. Underlying
this behaviour is a friendship network Gfr = (V, Efr) between agents. This network
is generated by the configuration model with a degrees of nodes drawn according to
power-law distribution Pr(ki = k) ∼ k−2.6, which is the best fit to both the empirical
data sets Brightkite and Gowalla. The movements of agents’ are influenced by the
friendship network as follows. At the moment when an active agent moves to a cell, it
decides whether it takes a friend with a probability β. If it decides to take a friend, one
of its neighbours in the friendship network is chosen at uniformly at random and that
friend agent moves to the same cell as the “inviting” agent. The state of the friend also
changes to active, if it was not before the invitation, and it follows the rules described

5parameter A should not be confused with the adjacency matrix A with elements Aij
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Figure 3.5: Schematic representation of the co-location ABM. Once an agents activates with
probability α(t), it visits a new site with probability ρS−γ or goes to a previously visited site.
The agent moves together with a friend with probability β. Once at destination site, the agent
returns home with probability 1 − Aα(t) or continues to another position otherwise. Figure
from Samarin [164].

above. Figure 3.5 illustrates schematically the presented ABM.

Inferring friendship from co-location With the agent-based model defined, we
can investigate how well the friendship ties between agents can be inferred from their
co-locations, which is a simultaneous observation of two agents at the same location.
The co-locations between agents form amulti-edge network Ĝ = (V, E) with adjacency
matrix A. The top panel of Fig. 3.6 shows the aggregate distribution of the logarithm
of the number of co-locations between any two nodes conditional on the friendship
relation between the two. As expected, the two distributions for friends and non-
friends are better separated for the higher value of parameter β.

Given these distributions we can phrase the question of inferring the friendship rela-
tions as a statistical classification problem. For this problem we assume that friendship
relations are not known, hence the classification is unsupervised. We employ linear
discriminant analysis (LDA) [15] as the classification method to infer the two classes,
friends and non-friends. LDA works as follows. It assumes that the two conditional
probabilities Pr(logAij ∣ (i, j) ∈ Efr) and Pr(logAij ∣ (i, j) ∉ Efr) are both normal with
the same variance. With this assumption, it provides a weight for each value of logAij
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Figure 3.6: Distribution of (top) co-occurrence counts and (bottom) inferred edge propensities
for friends and non-friends in the agent-based model with parameters (left) β = 0.3 and (right)
β = 0.05.

to come from conditional distribution versus the other. Then a threshold value T on
these weights maps to a threshold for logAij, which separates the two classes.

In order to diagnose the quality of the classification, we use a standard measure—the
area under the receiver operating characteristic curve (AUROC) [26]. It measures the
area under the curve of the fraction of correctly identified friendships (true positive
rate) against the fraction of incorrectly identified friendships (false positive rate) at
various thresholds T. The closer the value of AUROC, the better is the classification.
Figure 3.7 shows in blue the outcome of LDA based on the two cases shown in the
top panel of Fig. 3.6, for β = 0.3 and β = 0.05. In addition to the co-locations
counted at the (discrete) time steps of the ABM simulation, the outcome based on
counts within time windows of different duration are shown (i.e., if time difference
for two agents to visit the same cell is smaller than the time window, a co-location is
registered). As expected, friendship relations are almost perfectly detected for stronger
social behaviour (β = 0.3), i.e., when a considerable fraction of agent movements are
accompanied by friends.
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0.05.

Let us now fit the networkmodelΩn of generalised hypergeometric network ensemble
to the multi-edge network of co-locations Ĝ and repeat the classification procedure
based on Ωn instead of raw co-location counts. The bottom panel of Fig. 3.6 shows
the distribution of logΩn,ij conditional on the friendship edge between i and j. The
red curves in Fig. 3.7 show the corresponding AUROC values. We see that for the
(almost trivial) case of β = 0.3 the raw count of co-locations slightly outperform the
fitted propensities for inferring the underlying friendship relations. However, when
the fraction of friendship-driven co-locations is lower, β = 0.05, the classification
is more difficult (smaller AUROC values) and the inferred propensities considerably
outperfom the raw co-location counts.

3.3.2 Inference of social network from interaction data

Above we presented a propensity-based network reconstruction method on the ex-
ample of data generated by an ABM. In the following, we demonstrate how our
ensemble can be employed to infer the significant connected pairs following the
common approach of backbone inference. We use the “Reality Mining” data set that
captures time-stamped proximities between students and faculty atMIT [56] recorded
via smart devices. We denote the weighted adjacency matrix capturing observed
pairwise interactions as Â. For a given significance threshold α, we then identify
significant connected pairs by filtering matrix Â by a threshold Pr(Aij ≤ Âij) > 1 − α
based on Eq. 3.6. This can be seen as assigning p-values to pairs (i, j), obtaining a
high-pass noise filter for entries in the adjacency matrix.
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To illustrate our approach, Fig. 3.8(a) shows the entries of the (original) adjacency
matrixA forRealityMining data. The high-pass noise filter resulting fromourmethod-
ology (using α = 0.01) is shown in Figure 3.8(b), where black entries correspond to
pairs of nodes that interacted at least once but which are identified as non-significant.
The application of this filter to the original matrix yields the noise-filtered matrix
shown in Fig. 3.8(c). While in the original network there are 721, 889 observed
multi-edges amounting to 2, 952 distinct connected pairs, after filtering there are 626
(21.2%) significant connected pairs left (617, 069 multi-edges, 85.5% of the original).
We validate the benefit of filtering the original interactions in Reality Mining data
by comparing the output of a standard community detection algorithm—the degree-
corrected blockmodel [151]—in (i) the original, unfiltered graph shown in Fig. 3.8(d),
and (ii) the filtered, backbone network shown in Fig 3.8(f). Using known classes of
students and affiliations of staff members as ground truth allows us to compare the
quality of the community detection. Figure 3.8(e) shows the set overlaps between the
ground truth labels (middle column) and detected partitions in the unfiltered (left
column) and filtered graph (right column). Due to the high number of non-significant
connected pairs in the unfiltered graph, the algorithm only detects three partitions,
each spanning multiple labs and classes. In contrast, applying the algorithm to the
filtered graph yields six partitions that better capture the ground truth lab and class
structure. As expected, detected partitions do not perfectly correspond to the ground
truth, since labs and classes are likely not the only driving force behind observed
proximities.

A major advantage of generalised hypergeometric network ensemble against other
backbone inference methods is that, by specifying a non-uniform matrix Ω, we can
additionally encode known factors that influence the occurrence of interactions be-
tween nodes, while still obtaining an analytically tractable ensemble. In our second
illustrative example, we use this to encode the known structure of two separate Karate
classes in the Zachary’s data set. These two classes naturally influence the frequency
of encounters between actors beyond what would be expected at random according
to the configuration model. As before, we incorporate this prior knowledge via a
block matrix Ωg that assigns higher dyadic propensities to pairs of actors in the same
class (cf. Eq. (3.10)). This establishes a statistical baseline accounting both (i) for
combinatorial effects due to heterogeneous node degrees, and (ii) the known group
structure in the data. Using a significance threshold of α = 0.01, this yields the result
that only 8 out of 78 interacting pairs are significant (∼ 90%) of 231 observed multi-
edges are filtered out, as shown in Fig. 3.9. In other words, taking into account the
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Figure 3.8: Illustration of our approach in the Reality Mining data set capturing proximity of
students and staff atMIT campus. For the observed adjacencymatrix (a) and a given significance
threshold, our framework allows to establish a high-pass noise filter matrix (b), which can be
used to obtain a filtered adjacency matrix containing only significant connected pairs (c). A
visual comparison of the output of a community detection algorithm on the unfiltered (d) and
filtered (f) graphs shows that detected partitions in the filtered one better correspond to ground
truth lab affiliations and classes (e).

partitioning of members in two classes almost all encounters between club members
can simply be explained by random effects. This is in strong agreement with the result
in Section 3.2, where we found that the groupmodel is sufficient to statistically explain
the observed network.

3.4 Conclusion

In this chapter we introduced generalised hypergeometric ensembles, a broad class
of statistical ensembles that allows to encode a wide-range of topological patterns.
Unlike similar approaches, it provides analytical expressions for important statistical
quantities for nodes and edges like expected values and covariance. Through this, the
ensembles introduced in this chapter provide broad perspectives for the analysis of
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Figure 3.9: The filtered network for the Zachary’s data set, capturing encounters between
members of a Karate club. Most of the observed encounters can be explained by random effects
resulting from the club members’ separation into two classes.

complex networks, with applications in pattern recognition, hypothesis testing and
statistical inference. This work contributes to the fundamentals of network analysis,
with applications in the interdisciplinary study of complex systems in physics, biology,
and (computational) social science. More specifically, the key contributions of this
chapter are:

1 We introduced a broad class of statistical ensembles, i.e., probability spaces of
weighted network topologies subject to a tunable set of constraints. Highlight-
ing previously unknown relations between random graph theory and the multi-
variate Wallenius’ non-central hypergeometric distribution, we established the
analytical tractability of this class of ensembles. We further showed that it can
be viewed as a natural generalisation of the frequently used configurationmodel
for directed and undirected networks with a fixed sequence of degrees.

2 Building on this theoretical foundation, we developed a method to formalise
and test hypotheses about themechanisms driving repeated interactions between
the elements in a complex system. It particularly allows to test whether a
network model is justified or not, thus contributing to the the body of research
on network inference. Apart from that, it further enables to test this network
hypothesis against simpler, alternative models that can explain the data. Validat-
ing our method in synthetically generated data where the process that generates
repeated interactions is known, we show that our framework reliably selects the
correct model even when data are scarce.

3 We then apply our method to empirical data sets on social interactions, which
are frequently used as examples for social networks. Remarkably, our anal-
ysis reveals that a network abstraction is not always justified. Instead, our
framework highlights that the (known) group structures can be sufficient to
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explain both the frequency and the topology of observed interactions. This
ability to statistically investigate group structures in networksmakes themethod
applicable in the field of community detection. Although, we did not study the
applicability, performance and the relations of our method to other methods
for community detection, we can already mention some such relations already
now. For instance, testing a group structure as we have shown is quite similar
in concept to the degree-corrected stochastic block modelling approach [100].
Other methods that implicitly or explicitly encode metadata about nodes into
propensities are interesting to compare with our method [64, 137].

4 Finally, we showed how our ensemble can be used to infer the backbone of the
network from the rawnoisy data on interactions. We explored twoways of doing
so. In one case we inferred the weighted degree-corrected network structure by
means of fitting edge propensities. We demonstrated on the example of an agent-
based model how this approach can outperform the raw counts of interactions
in recovering social ties between interacting agents. In the second case, we used
our proposed network ensemble as a statistical baseline (nullmodel) and filtered
the interactions that happen significantly more often than expected at random.
In this line of application we did not present a comparison of our method to
existing methods of backbone inference. This is an important task and is left for
future research.

Ourwork advances our ability to decide how tomodel, interpret, and analyse relational
data on repeated interactions. Highlighting challenges in the process of turning data
on interactions into network models, we argue that it has major consequences for data-
driven studies of social, biological and technical systems.





Chapter 4

Significant deviations in
network topology

Summary

Social scientists have long been interested in signed social network, as positive
human relations, such as friendship, are inevitably accompanied by negative
interactions, such as animosity. However, there is currently a lack of data on
negative interactions, and consequently, on signed social networks. We pro-
pose a procedure to infer signed relations from unsigned networks on repeated
interactions. This procedure builds on a new statistical measure of deviations,
which is valid for a broad range of distributions, including discrete, bound and
skewed ones. Such are the distributions describing the nullmodels of networks, to
which we compare the observed repeated interactions, in order to infer the signed
relations. We show how our method works on examples of both synthetically
generated networks and empirical networks. As a validation of our method, we
are able to reproduce and extend previous results for the cultural dynamics in the
Eurovision song contest.

Based on Nanumyan V. “Measuring significant deviations in network topology”, working paper.
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More than a hundred years ago sociologist Georg Simmel criticised his colleagues for
focusing too much on positive social relations, when, as he put it, society is built on
both “harmony and disharmony, association and competition, affection and resent-
ment” [179]. Today, network science seems to be in a similar state— most studies
focus exclusively on positive relations and interactions, such as friendship, follower
and collaboration relations, likes, re-tweets etc. [111]. Yet, the reason for this is more
practical than philosophical. The overwhelming majority of online platforms with a
social interaction component by design do not offer their users tools to express negative
relations. Likewise,most people in everyday life are hesitant to publicly announce their
enmity to somebody. And even in a field like international relations, where we have
some openly hostile relations (e.g., wars, sanctions), we can safely assume that there is a
much greater number of more subtle negative relations, which cannot be detected and
quantified easily. Having networks with both positive and negative relations, however,
is crucial for testing sociological theories such as structural balance theory mentioned
in Chapter 1 [34, 50]. It must be noted, though, that Jacob Moreno constructed and
visualised the first signed networks as early as 1934 in hisworkWhoShall Survive [130].
He called these sociograms, one of which we show in Fig. 4.1.

Figure 4.1: A signed sociogram by
Jacob Moreno, reprinted from page
518 of [130].

Moreno introduced his sociograms so early that he
not only pioneered the study of signed networks,
but of social networks in general. The fact that
these earliest representations of social networks
were already signed is an indication that the cur-
rent sparsity of research on signed networks is
not because of their irrelevance, but due to the
aforementioned lack of data. How can we solve
this problem of missing data on negative relations?
Previous studies have applied various methods to
ascribe a positive or negative sign to existing ob-
served relations [110, 118, 213]. However, they
assume that negative relations are explicitly present
in the network data, and it is merely unknown

which edges are positive or negative. Instead of simply labelling the unsigned edges,
we hereby propose a method to infer signed relations from the counts of repeated
interactions. Ourmethod is based on the conjecture that a large amount of interactions
between a pair of social agents is a signal of a positive relation, and, vice versa, an
unexpected lack of interactions is a signal of a negative relation.
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Of course, not every non-existing positive interaction can be translated into a neg-
ative one—in large-scale societies, individuals only interact with a small subset of
others [192]. However, this does not mean that they have a negative relation with
all other individuals. What is needed for judging whether a lack of interactions is
expected or is a signal of a negative relation, is a null model that, based on reason-
able assumptions, tells us between which nodes in the network we should expect
positive interactions, and specifically how many positive interactions. As outlined in
Section 1.2, by comparing the probability distribution generated by the null model to
the actual observed count of interactions, we can then determine whether two given
nodes interacted significantly more than expected (a positive relation), as expected
(neutral), or less than expected (the sought-after negative relation). As a result, we
receive a signed, weighted network that will allow us to see both sides of society, just as
Georg Simmel intended.

In Chapter 3, we have already introduced a flexible network ensemble that is able to
encode various topological structures. These ensembles can serve as nullmodels based
on which we can transform unsigned interaction counts into signed relations. Such a
null model provides the marginal probability distributions for the interaction counts
between any pair of nodes, cf. Eq. (3.6). What we miss is a method that outputs a
signed value from a comparison of the observed number of interactions between two
nodes to the corresponding marginal distribution in the ensemble. Effectively, this
method will measure the deviation of an observation in the distribution. Ideally, the
resulting signed value will have a statistical interpretation, e.g., the significance of the
deviation.

To the best of our knowledge and to our surprise, we find that no existing statistical
measure fits our purpose. In the following, we formulate a new statistical measure of
deviation, preceded by a discussion of related measures and the reasons why they do
not satisfy our needs.

4.1 Signedmeasure of deviation

There is a widely used statistical measure of deviation—the standard score, also known
as the Z-score, which shows how many standard deviations away the value of an
observation is from the mean of a normal distribution [188]. For a random variable x,
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the Z-score is
z = x − μ

σ
, (4.1)

where μ is the mean of the distribution and σ is the standard deviation. So, the Z-
score is positive if x is above the mean μ and is negative otherwise. This score is often
used in statistical testing when the random variable can be approximated by normal
distribution. In such cases, the value of the Z-score maps to a significance level. For
instance, z = 2.326 corresponds to 0.01 significance level.

Another statistical method related to our problem is the mean normalisation,

x′ = x − μ
xmax − xmin

, (4.2)

where xmax is the maximum and xmin is the minimum value of the random variable
x. Mean normalisation is a case of feature scaling, which is used in data processing to
standardise the range of the data. It is commonly performed as a pre-processing step
for discriminative statistics or machine learning techniques. Like the Z-score, mean
normalisation produces a signed value that measures the deviation from the mean. In
this case, however, this deviation is measured in relation to the full range of values
of the random variable. The above two measures are parametric. While the mean
normalisation has one parameter less than the Z-score and, unlike Z-score, does not
assume a specific distribution, it does not provide a statistical interpretation.

What we need—instead of a measure that relies on asymptotic theory—is an exact
measure [45], meaning that all the assumptions behind the statistical interpretation
of the measure are met. A major reason for this is that we must be able to compare
the inferred signed relations between different pairs of nodes, even if these pairs
differ strongly in their centrality in the network. For instance, in a network with a
broad degree distribution, the value of the signed relation between the two nodes
with the highest degrees must have the same statistical interpretation as for the two
nodes with the lowest degrees. In this case, a measure relying on asymptotic theory
would fail, because the two marginal distributions for the two different pairs differ
drastically (cf. Eq. (3.6))—while for the pair of high-degree nodes the distributionmay
be well approximated, e.g., by a continuous distribution, for the low-degree nodes this
distribution can take very few values. Hence, the discreteness of the distributionsmust
be accounted for in an exact manner. The same argumentation holds when we want to
compare two pairs of nodes that are described by high and low edge propensities. In
that case, the skewness of the two distributions is very different. Thus, an approximate
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measure would disregard this difference.

More generally, the following properties of the marginal distributions of the ensemble,
shown in Eq. (3.6), make the above-mentioned measures unsuitable: (i) it is bounded,
meaning there is a finite range of values that the random variable can take, (ii) it is
skewed, meaning that it is not symmetric around the mean, (iii) it is discrete as it
can take only integer values. A possible nonparametric solution that would allow
comparing pairs of nodes with strongly dissimilar properties is to define an exact
measure based on the percentiles of the underlying distribution, i.e., the exact shape
of the distribution. Before we introduce a simple measure based on the cumulative
distribution function, F(x) = Pr(X ≤ x), let us formulate the conditions that we want
such a measure to satisfy.

Conditions to fulfill For a discrete random variable X ∈ ℕ or a continuous X ∈ ℝ
distributed according to a known probability distribution, we want the measure of
deviation Φ(x) to fulfil the following conditions:

1 The measure must be unbiased, meaning the expectation of the measure is zero,
E[Φ] = 0

2 The measure must have a fixed range, such as Φ ∶ x → [−1, 1], with the bound-
ary values of Φ meaning the most extreme deviations from the distribution

3 There is a central value x̄ for which Φ(x̄ − a) < 0 and Φ(x̄ + a) > 0 for any
a > 0, a ∈ X.

4 The absolute value of Φ is symmetric if the distribution of X is symmetric, i.e.,
there is a x̃, such that for any x ∈ X

|Φ(x̃ − x)| = |Φ(x̃ + x)|,

if Pr(x̃ − x) = Pr(x̃ + x)

A measure that satisfies the above conditions is illustrated in Fig. 1.3 by means of the
colour fill under the distribution function, with the lightest yellow representing the
zero value of the measure, darker shades of green representing higher positive values
and the darker shades of red representing lower negative values.
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4.1.1 Continuous random variable

Let us start with the case of a continuous distribution. To define the measure Φ, we
need to identify two components: the measure of central tendency and the functional
form thatmaps the observation to the signed value. Asmentioned above, our objective
is to define a nonparametric measure that can be applied to sample distributions
without making strong assumptions about the underlying distribution, such as the
existence and the form of the moments. As it is shown below, the (sample) median as
the measure of central tendency and the (empirical) cumulative distribution function
serve this purpose.

We define Φ(x) as the probability to randomly obtain any value X between the me-
dian mX of the probability distribution of X and the observed value x with the sign
depending on whether x is smaller or larger than the median:

Φ(x) ∶=
⎧⎪
⎨
⎪⎩

−2 Pr(x < X ≤ mX), for x < mX,
0, for x = mX,
2 Pr(mX < X ≤ x), for x > mX,

(4.3)

which simplifies to
Φ(x) = 2 Pr(X ≤ x) − 1 (4.4)

All the aforementioned conditions are straightforwardly satisfied:

 E[Φ] = 2 E[Pr(X ≤ x)] − 1 = 0, as the the cumulative distribution function is
uniformly distributed in [0, 1] with E[Pr(X ≤ x)] = 0.5

 The values of Φ range continuously from Φ(minX) = −1 to Φ(maxX) = 1

 Φ(mX − a) < 0 and Φ(mX + a) = 0 for a > 0 and Φ(mX) = 0

 If the distribution is symmetric, the median—which coincides with the mean—
is the symmetry point and it directly follows from Eq. (4.3) Φ(x) is also symmet-
ric.

4.1.2 Discrete random variable

The signedmeasure of deviation formulated in Eq. (4.4) does not satisfy the conditions
we have set for a discrete random variable X ∈ ℕ. Let us show this with an example for
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conditions 1 and 4. To see that condition 1 does not hold, we consider the binomial
distribution B(x, p) of x = 1 trial with a low probability of success p = 0.1. Then, the
expectation of Φ according to Eq. (4.4) is

E[Φ ∣ B(1, 0.1)] =
1

∑
n=0

Φ(n)(
x
n) pn(1 − p)x−n

= 0.9Φ(0) + 0.1Φ(1)
= 0.9 ⋅ 0.8 + 0.1 ⋅ 1
= 0.82 ≠ 0

(4.5)

Next, consider the case of binomial distributionwith p = 0.5 and x = 2 trials, B(2, 0.5),
which is symmetric around x = 1: Pr(1) = 0.5 and Pr(0) = Pr(2) = 0.25. Condition
4 does not hold for this example, because according to Eq. (4.4), Φ(0) = −0.5 and
Φ(2) = 1 ≠ Φ(0).

In order to fulfil both conditions for the discrete case, we redefine Φ for the discrete
variable as follows:

Φ(x) = Pr(X < x) − Pr(X > x). (4.6)

Note that this definition is equivalent to Eq. (4.4) in the continuous case when the
random variable X has a probability density function defined, because then Pr(X <
x) = Pr(X ≤ x) and Pr(X > x) = 1 − Pr(X ≤ x). It can be proven that the measure
Φ defined in Eq. (4.6) now satisfies conditions 1 and 4 for a discrete variable (which
we will show by means of example in the following). Like in the case of continuous
variable, the median mX is the value required by condition 3 at which the measure
changes its sign.

The range of values of Φ Condition 3 is not satisfied if the random variable is not
continuous. Specifically, it does not hold if the minimum or maximum values of the
random variable have a finite probability:

Φ(xmin) = Pr(xmin) − 1 = min(Φ(X)) (4.7)

Φ(xmax) = 1 − Pr(xmax) = max(Φ(X)) (4.8)

This behaviour, however, is desirable (as we explain below) and instead of further
refining the measure Φ, we relax the condition 2 to Φ(x) ⊂ [−1, 1]. With this, the
interpretation of the value of Φ(x) is the same independent of the distribution from
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which x is drawn: the higher the absolute value of the measure, the more unlikely it
is for the random variable to be so far in the tail of the distribution. So, if a boundary
value xb of the random variable, xmin or xmax, has a finite probability, then it is not
so unlikely that it is observed, limiting the corresponding value of |Φ(xb)| < 1. At
the same time, the sign of the measure indicates in which tail of the distribution the
observation is—left for a negative value and right for a positive.

The distribution-independent interpretation of the measure allows comparing obser-
vations that originate from different distributions, which has profound value for our
goal of inferring social relations from observing interactions. For the integer-valued
marginal distributions of network ensembles that describe repeated interactions be-
tween nodes, zero is the minimum of the random variable describing the count of
interactions, and the extent to which the zero value is an under-representation will
depend on Pr(0) = p0. Coming back to the example of two pairs of nodes, we see
that according to the configuration model, the probability to observe no interaction
between the high-degree nodes is very low, p0 ≈ 0, leading to a low value of Φ(0) =
p0 − 1 ∼ −1, while the probability of no interactions between low-degree nodes will
be high, p0 > 0, leading to a moderate value of Φ(0) > −1 (cf. Eq. (3.2) and Eq. (4.7)).
Hence, not observing any interactions between high-degree nodes is a severe under-
representation, while it is less significant in the case of low-degree nodes.

The definitions provided in Eqs. (4.4) and (4.6) allow to interpret the values of the
measured deviations in terms of statistical significance. In the continuous case, we can
say that an observation x is significantly larger than the median of a given distribution
at a significance level α if Φ(x) > 1 − 2α, which directly follows from Eq. (4.4).
Similarly, the observation is significantly smaller than the median at a significance
level α if Φ(x) < −1 + 2α. The above conditions are not exactly true for the case of a
discrete variable (Eq. (4.6)), however the general interpretation of the signed measure
is the same. Hence, in our applications we will threshold the measure Φ at a given
level α as simply |Φ| > 1 − α but we will not call this threshold a “significance level”
(which has a precise meaning in statistics).

4.1.3 Examples of common distributions

Before applying the measure Φ to networks of repeated interactions, let us first inves-
tigate its behaviour in the case of continuous and discrete, symmetric and asymmetric
common distributions. Figure 4.2 shows the function Φ(x) for two different con-
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Figure 4.2: The measure Φ applied to Normal and Log-normal random variables. The vertical
line in each plot indicates the median of the distribution.
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Figure 4.3: The measure Φ applied to binomial random variable. The vertical line in each plot
indicates the median of the distribution.

tinuous distributions—symmetric Normal and positive-valued, skewed Log-normal.
As shown in Fig. 4.2(a), Φ(x) is a symmetric function for the symmetric Normal
distribution 𝒩 (0, 1). For both distributions the range of values of Φ(x) is [−1, 1] and
equals to zero at the median mX.

Figure 4.3 illustrates the discrete case by the example of binomial distribution. The
two differences from the continuous cases are the following. First, the range of Φ(x)
is not the whole [−1, 1] interval if the minimum or maximum of the random variable
has a finite probability, shown respectively in Fig. 4.3(a) and Fig. 4.3(c). Second, at the
median, the value Φ(mX) is not necessarily zero, however the two neighbouring values
have a different sign: Φ(mX − 1) < 0 and Φ(mX + 1) > 0.
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4.2 Signed network from interaction counts

InChapter 3, we introduced a novel statistical ensemble ofmulti-edge networks. There
are various other methods for fitting random network models to data on repeated
interactions. These include Stochastic Block Models [92, 100] for describing commu-
nity structures and, for more general purposes, the thoroughly studied Exponential
Random Graph Models (ERGM) [163, 186]. All these are ensemble-based methods,
meaning they are described by a multivariate distribution, based on which we can
apply the measure Φ to find how much the observed interactions between individual
pairs deviate from the model.

Depending on how the network model is fitted and selected, the signed relations
produced by the measure Φ can have different applications. For instance, they can
be used for outlier detection: a network model can be a good fit for the network as a
whole, except for some outlier pairs of nodes, which will be indicated by an extreme
value |Φ| = 1. Once the outliers are detected, the network model can be further
improved by disregarding these.

The most important application of the method, however, is to use a network ensemble
as a baseline, a null model, and to infer a signed network from it. Then, the edges in
this signed network represent deviations of the observed interactions from the null
model, highlighting the fact that there have been aspects of the network formation
behind the observed network that are not included in the nullmodel. Wewill apply the
method in this manner to citation networks between authors in Chapter 5, outlining
a procedure to study the extent to which citations between authors go beyond purely
scientific reasons.

The signed relations inferred from a combinatorial null model (e.g., configuration
model) also allows for inferring the backbone of a network. In Section 3.3, we followed
a common procedure for backbone inference based on percentiles. That procedure
can be improved using our signed measure. Assume there are Âij = 10 interactions
observed between a given pair of nodes i and j, and the corresponding marginal
distribution of the ensemble resembles the distribution shown in Fig. 4.3(c). The
percentile-based backbone inference would select this pair as part of the backbone
for any threshold, as Pr(x ≤ Âij) = 1. However, we see that the observed 10
interactions are not at all indicating an over-representation (the criterion for such
backbone inference techniques), which is quantified by a Φ(Âij) = 0.651. Hence, the
pair will not be included in the backbone at any reasonable threshold applied to our
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signed network.

4.2.1 Synthetic networks

In order to better understand the effect of applying the measure Φ defined in Eq. (4.6)
to networks of repeated interactions, let us start with simple synthetic examples of
random multi-edge networks.

Erdös-Rényi network We generate a multi-edge network according to the G(n, m)
variant of the Erdös-Rényimodel with n nodes andm total edges such that each pair of
nodes has the same probability to receive an edge, pij = 1/(n2 − 1) for any nodes i and
j. Without affecting the further discussion, we do not allow self-edges, so pii = 0. This
model is described by the multinomial distribution, i.e., the integer-valued symmetric
adjacency matrix Â that encodes the multiplicity of each link, Âij = Âji ∈ N and
Âii = 0, has the probability

Pr(Â = x) = m!
∏i∈{1,n} ∏j>i xij!(

2
n(n − 1))

m
(4.9)

Figures 4.4(a) and 4.4(b) show the adjacencymatrices for two realisations of themodel
for n = 20 nodes and, correspondingly, m = 100 and m = 1000 edges among n(n −
1)/2 = 190 pairs of nodes. We can now apply the measure Φ to obtain the signed
matrix Φij ∶= Φ(Aij) using themarginal distributions of the unbiased hypergeometric
ensemble (the configurationmodel) given by Eq. (3.2) for each pair (i, j). Doing so will
show how much the number of interactions between each pair of nodes deviates from
the configuration model. As in Chapter 3, we build the ensemble based on the degrees
of nodes, ki = ∑j Aij.

Let us now compare the resulting matrices Φ, which are shown for the two networks
in Figs. 4.4(c) and 4.4(d). Visually both matrices are random, as expected from the
construction of the networks. One can see, however, that the matrix corresponding
to the network with more edges (Fig. 4.4(d)) has generally brighter coloured elements
meaning that there are stronger deviations in this network. This observation is con-
firmed by the plotting of histograms of the values Φij for all n(n − 1) pairs of nodes,
shown in Figs. 4.4(g) and 4.4(h)1. These histograms show that for the first network

1One could think that there are as many values in the histogram as maxAij, which is not the case.
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Figure 4.4: Two random networks generated according to Eq. (4.9) with (left column) m =
100 and (right column) m = 500 edges. The first row shows the networks by means of
adjacencymatricesA, the second row shows thematrix of deviations Φij computed based on the
configurationmodel. The third row shows the histograms of values of Φij for all n(n−1) pairs of
nodes. The forth row shows the node pairs with significantly under-represented (Φij < −1 + α)
and over-represented (Φij > 1 − α) edges at level α = 0.05.
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with fewer edges, the distribution of Φij values is bimodal—meaning that there are
two pronounced peaks in the distribution—while it is much closer to a uniform
distribution for the second network with more edges. Moreover, we see that for the
first network, the part of the distribution for negative values is narrower (with a higher
peak) than the part for positive values. This observation can be explained as follows.
Withm = 100 edges among n = 20 nodes there is on average 2M/(n2−n) = 0.526 edge
per pair of nodes, meaning that the network is relatively sparse with roughly half of the
pairs not having any edge. For all these pairs (i, j), the signed relation will be negative,
Φij < 0. The absolute value of the relation is determined by the degrees of the two
nodes i and j. In our randomly generated network, the degrees of nodes are narrowly
distributed2 around the average ⟨k⟩ = m/n = 5, meaning that the negative values
of Φij for disconnected nodes will also be narrowly distributed around some average
negative value (the left peak in Fig. 4.4(g)). So, for our relatively sparse network,
the signed matrix Φ visualises as broadly distributed positive values embedded in a
mildly negative “background” corresponding to the disconnected pairs of nodes. This
highlights an important aspect of inferring signed relations from repeated interactions:
strongly negative relations inferred from a configurationmodel can be observed only if
two high-degree nodes have only few or no interactions with each other. In the context
of social interactions, this translates to the following. One can identify that two social
agents are avoiding each other, only if they both interact abundantly with others, but
not with each other. This strong dependence on total interactions is mitigated if the
underlying null model encodes heterogeneous propensities.

Returning to our example networks, with the increase of the number of total edges m
in the network, the density of the network increases, meaning that we do not observe a
topology of connected nodes embedded atop the “background” of disconnected nodes
any more. Instead, the number of parallel edges between an arbitrary pair of nodes
increases, with the highest number being seven in the second network, versus three in
the first network. This creates higher variability in the number of parallel edges and
thus, a broader distribution of the value of Φij.

Let us now identify whether there are pairs of nodes in our two networks that interact
significantly more or less than predicted by the configuration model. To achieve this,
we threshold the values ofΦ at level α = 0.05. For the first network, we find three pairs

Instead, for each pair i, j there are Ξij (cf. 3.2) discrete values of Φij.
2The degree distribution is approximately binomial. Sum of independent binomials with the same

success parameter is a binomial, however, in our case the degree is a sum of dependent binomials with the
same success parameter p = 1/(n2 − n).



84 Chapter 4. Significant deviations in network topology

of nodes that exhibit over-represented interactions. For two of these pairs, the number
of interactions equals three and is the maximum observed in the network. Note,
however, that not all pairs with the maximum number of interactions are selected. For
the second network, we find two pairs with over-represented interactions and three
pairs with under-represented interactions. The latter are pairs that do not interact at
all. As the networks are realisations of a G(n, m) model, we would expect to observe
only few pairs with under-represented or over-represented interactions which happen
by mere chance. Recalling the relation between the threshold level α and a statistical
significance level discussed in Section 4.1, we can say that α = 0.05 approximately
corresponds to 0.025 significance. Thismeans that up to 2.5% of the node pairs, which
is approximately 5 pairs, can be selected by our threshold by mere chance. In order
to refine the procedure such that the error of detecting such significant pairs, one can
apply the methods of multiple hypothesis testing [166, 178]. However, we leave this
refinement to the future research.

Network with heterogeneous degree Let us now consider a random directed
network realisation of a configurationmodel withm = 500 edges among n = 20 nodes
with heterogeneous degrees that also allows self-loops. We draw the degrees from the
log-normal distribution ln 𝒩 (μ, σ) with μ = 2.5, σ = 0.9. The network is shown in
Fig. 4.5(a) by means of its adjacency matrix, with the nodes sorted according to the
degree. As before, we apply the signed measure to all pair of nodes in this network
based on the unbiased hypergeometric ensemble and we obtain the matrix shown in
Fig. 4.5(b). Different from the previous example, there is a visible structure in the
signed matrix. Namely, we see both positive and negative relations in the upper left
corner, which corresponds to pairs of high-degree nodes that are almost all connected.
From this corner that exhibits no particular pattern in values, there is a transition to
almost uniformly neutral relations in the bottom right corner, which corresponds to
the low-degree pairs. Along this diagonal, we observe that the relations between nodes
that have edges in the original network become increasingly positive and that they
are embedded in the “background” of negative relations between disconnected nodes.
This negative background exhibits a smooth gradient from more negative values to
more neutral values, which is due to the fact that zero edges between higher degree
nodes map to amore negative value than zero edges between lower degree nodes. This
phenomenon is also reflected in the histogram of values of Φ, shown in Fig. 4.5(c),
where we see an approximately uniform distribution of positive values, a high peak
near the neutral Φ = 0 and a decreasing distribution of more negative values. At the
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Figure 4.5: A network realisation of a configuration model with m = 500 multi-edges among
n = 20 nodes with heterogeneous degree distribution. The adjacency matrix (a), (b) the
matrix Φ of the signed relations inferred based on the unbiased hypergeometric ensemble (cf.
Eq. (3.2)), (c) the histograms of values of Φij for all n2 pairs of nodes, and (d) the node pairs
with significantly under-represented (Φij < −1 + α) and over-represented (Φij > 1 − α) edges
at threshold α = 0.05.

same threshold level as before, α = 0.05, we find only four pairs with over-represented
edges, which corresponds to exactly 1% of all pairs in the network and which is below
the number that we would expect to happen by chance at the given threshold level.

Networkwithblock structure As the last synthetic example, we generate a random
network with block (community) structure, with the nodes within a block having ten
times higher probability to form an edge compared to nodes in different blocks. The
n = 20 nodes are split into three blocks of an approximately equal size (six, six and
eight) according to their degree. As in the previous example, the nodes have a hetero-
geneous degree distribution drawn from the log-normal distribution ln 𝒩 (μ, σ) with
μ = 2.5, σ = 0.9, such that there arem = 500 total edges in the network. The adjacency
matrix of one network realisation is shown in Fig. 4.6(a) and the corresponding signed
matrix Φ based on the unbiased hypergeometric ensemble in Fig. 4.6(b). Due to the
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Figure 4.6: A network realisation of a block model with m = 500 multi-edges among n =
20 nodes with heterogeneous degree distribution and likelihood for an edge between nodes
in the same block ten times higher than for an edge between nodes in different blocks. The
adjacency matrix (a), (b) the matrix Φ of the signed relations inferred based on the unbiased
hypergeometric ensemble (cf. Eq. (3.2)), (c) the histograms of values of Φij for all n2 pairs of
nodes, and (d) the node pairs with significantly under-represented (Φij < −1 + α) and over-
represented (Φij > 1 − α) edges at threshold α = 0.05.

higher concentration of edges in the block of highest degree nodes, the gradient of
negative values similar to the previous example is more pronounced. Applying the
threshold α = 0.05 to this network results in three significantly negative relations
and 30 significantly positive relations, which is 8.25% of all pairs in the network.
This considerable percentage indicates that the unbiased hypergeometric ensemble
(configuration model) is not a good fit to explain the network. However, it serves as a
good null model to highlight the block structure in the network. Figure 4.6(d) shows
that all highly positive values are within the blocks, with the two blocks of lower degree
nodes being clearly identifiable. However, the block of the highest degree nodes is not
seen in this filtered matrix because the signal of the block structure is concealed by
the expectation from the configuration model, which already predicts high number of
edges between the nodes in this block. From this example, we see that applying the
signed relations provides yet another way to infer the backbone of the network. So far
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we have only considered the unbiased hypergeometric ensemble as the model behind
the deviations. However, we are not limited to that. We will show below on empirical
examples how to use the general ensemble to account for diverse patterns in a network
and to identify the deviations on top of these patterns.

4.2.2 Empirical networks

With our understanding of how our signed measure behaves based on the synthetic
examples, we now apply it to two empirical networks.

Zachary’s karate club First, we revisit the network of Zachary’s karate club, which
we studied in Chapter 3 [215]. To recall, it records 231 interactions between 34
members of the karate club, which are divided into two communities. Applying the
measure Φ defined in Eq. (4.6) based on the unbiased hypergeometric ensemble leads
to thematrix shown in the top left of Fig. 4.7, where the nodes are ordered according to
their index in the original dataset. The index is ordered in such a manner that the first
half of indices approximately corresponds to one community and the secondhalf to the
other. Also, nodes with a higher degree in the first community have a lower index (top
left corner of thematrix) and nodes with higher degree in the second community have
a larger index (bottom right corner of the matrix). Such ordering of nodes unveils the
community structure in the signed matrix. We see two blocks of positive relations in
the opposite corners of thematrix along the diagonal, i.e., within the communities, and
blocks of negative relations in the two corners corresponding to relations across the
communities. Filtering the original network based on the significant signed relations
Φij with a threshold α = 0.01, i.e., applying the condition |Φij| > 1 − α, leads
to the network shown in the bottom left of Fig. 4.7. We obtain a backbone of the
networkwith 20 connected pairs of nodes out of 78 pairs in the original network. What
happens if we compute the signed relations based on a different null model instead
of the configuration model? From Chapter 3 we know that Zachary’s karate club
is well described by the generalised hypergeometric ensemble with block-structured
edge propensities. Applying the measure Φ to a network based on that ensemble
results in the signed matrix shown in the top right of Fig. 4.7. Compared to the
configuration null model, in this case we observe very few negative relations, which
all are insignificant with their absolute values considerably smaller than one. The
two pronounced blocks of strongly positive relations are also gone, being replaced by
blocks with alternating positive and negative relations with comparatively low absolute
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Figure 4.7: The network of Zachary’s karate club (cf. Figs. 3.4 and 3.9). The signed matrices Φ
based on (top left) the unbiased hypergeometric ensemble and (top right) the hypergeometric
ensemble with block propensities (cf. Eq. (3.6)). The filtered networks resulting from the
threshold condition Φij > 1 − α, with α = 0.01 are shown in the bottom row for both matrices.
There are no pairs with under-represented interactions at α = 0.01 in both cases.

values. Applying a filter to the original network as before (|Φij| > 0.99), we obtain the
network shown in the bottom right of Fig. 4.7. It has 12 connected pairs (compared
to 8 obtained by the percentile-based filter in Section 3.3.2) out of 78 in the original
network, all of which have low multiplicity of edges between them.

Eurovision song contest In our last example, we consider the network of votes
between countries participating in the Eurovision3 song contest between the years
1975 and 2015 [76]. The contest is an annual competition among countries that are
member of European Broadcasting Union. Each participating country is represented
by one song, which is performed at an event broadcasted live in at least each participat-
ing country. The countries then gather votes towards other countries (no self-voting)
from the population by means of televoting and from a jury. These votes are then
aggregated in each country, leading to a ranking of all other participating countries.
This ranking is then turned into points for the top ten countries: 12 points to the top,

3https://eurovision.tv/, data retrieved and provided by David Garcia

https://eurovision.tv/
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Figure 4.8: (Left) the adjacency matrix of the aggregate network of votes among countries
participating in the Eurovision song contest between 1975–2015. The value Aij is the sum
of all points country i has given to the country j in this period. (Right) the corresponding
signed relations Φij based on the unbiased hypergeometric ensemble. The countries are ordered
according to the total number of acquired points.

10 to the second ranked, and from 8 to 1 to the third to tenth ranked. Representing
the votes as weighted edges between countries means that each country participating
in a given year has ten outgoing edges with weights corresponding to the respective
points.

We build an aggregate network of votes between the countries by summing all the
points that one country gave another country in the 41 competitions between 1975
and 2015. The adjacency matrix Â is shown in the left panel of Fig. 4.8 and we apply
to it the measure Φ based on the unbiased hypergeometric ensemble. Note that by
doing so, we approximate the voting procedure by assuming that each point can be
distributed freely by a given country. For instance, our null model allows, in principle,
for a country in a given year to allocate all the 58 points to one country, without
giving any points to others. We argue, however, that this approximation is valid for
the aggregate of 41 years, in which there is a wide distribution of possible points each
country can give to another.

Let us now compare the signed relations that we obtained with the ones by García
and Tanase [76]. The authors of [76] compute the “Friend-or-Foe” (FoF) coefficient
between countries i and j for the year t according to

FoFij(t) =
Âij(t)
12

−
∑l≠i Âlj(t)
12(n − 2) , (4.10)
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Figure 4.9: The signed relations and the Hofstede’s cultural distance between countries that co-
participated in the Eurovision song contest at least 25 times. The blue line shows the result of a
linear regression with R2 = 0.146 and p-value = 5.8e − 9.

which is the normalised difference of the points from i to j and the average points
that the country j received from all other countries. To construct the aggregate signed
network between the years 1975 and 2012, the authors take the average FoF coefficient
between each pair of countries, ⟨FoFij⟩ = ∑t FoFij(t) for each year t that i and j co-
participated in the contest. The authors then compare the resulting mean FoF coeffi-
cient to the cultural distance between the countries. To define the cultural distance,
they use the quantification of cultural distances provided by Hofstede [91], which
includes four cultural dimensions: Power Distance cp, Individualism ci, Masculinity
cm, and Uncertainty Avoidance cu. The four dimensions are aggregated into one
dimensional distance by means of Manhattan distance:

dij = 1
100

(|cpi − cpj| + |cii − cij| + |cmi − cmj| + |cui − cuj|). (4.11)

Tohave a reliablemeanFoF, the authors consider only the countries that co-participated
in the contest at least 25 times. Replicating this procedure for our signed network Φ
results in 216 pairs of countries, for which we compare Φij to the cultural distance
dij, as shown in Fig. 4.9. We find a negative relation between the two variables,
with Pearson correlation of −0.383 and the linear regression slope of 0.204 ± 0.034
(R2 = 0.146 and p-value < 10−8). So, the further two countries are in terms of culture,
the lower the signed relation between them. The relation tends towards negative values
starting from cultural distance dij ≈ 0.5. Our result is in line with the result of García
and Tanase, who find a Pearson correlation of −0.441 and the linear regression slope
−0.0956 (computed on binned data). One major advantage of our method is that it is
an unbiased statistical measure, so the results must be reliable also for the countries
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Table 4.1: The most under-voting and over-voting pairs of countries in Eurovision song contest
aggregated between 1975 and 2015. Only the pairs co-participating at least 25 times in the
contest are considered.

Most under-represented Φ

Cyprus Turkey -0.635
Turkey Cyprus -0.633
Denmark Greece -0.622
Greece Sweden -0.581
Portugal Turkey -0.551
Denmark Spain -0.516
Ireland Turkey -0.507
Austria Cyprus -0.499
Turkey Denmark -0.498
Ireland Greece -0.467
France Malta -0.465
Sweden Spain -0.449
Greece Turkey -0.446
Malta France -0.445
Greece Germany -0.443
Turkey France -0.442
Greece Denmark -0.436
Greece Israel -0.422
Sweden Greece -0.422
Spain Switzerland -0.420

Most over-represented Φ

Cyprus Greece 0.978
Greece Cyprus 0.797
Denmark Sweden 0.665
Norway Sweden 0.573
Norway Iceland 0.505
Sweden Denmark 0.503
Sweden Iceland 0.482
France Portugal 0.455
Iceland Sweden 0.431
Malta United Kingdom 0.428
United Kingdom Ireland 0.426
Norway Denmark 0.415
Sweden Norway 0.411
Spain Portugal 0.407
The Netherlands Belgium 0.393
Switzerland Spain 0.382
Iceland Norway 0.362
Spain Germany 0.351
Denmark Germany 0.346
Finland Israel 0.334

that did not co-participatemany times. In Fig. A.1, we recompute the relation between
Φij and dij between all countries and we obtain a weaker but still significant result of
Pearson correlation −0.214 and linear regression slope of 0.150 ± 0.024 (R2 = 0.046
and p-value < 10−8).

Next, in Table 4.1 we show the lists of countries with the lowest 20 and the highest 20
values ofΦij among the ones that co-participated in the Eurovision song contest at least
25 times. Remarkably, both lists are topped by reciprocal relations involvingCyprus. It
has the most positive relation with Greece and the most negative relation with Turkey.
The former reflects the fact that the Republic of Cyprus is inhabited mostly by ethnic
Greeks and the latter is a clear mark of the “Cyprus dispute”—the unresolved issue of
the Turkish military occupation of a part of the island since 1974. In Table A.1, we
present a similar table that accounts for all countries.

Last but not least, let us consider the reciprocity of the relations between countries.
In order to quantify the overall reciprocity in an unsigned unweighted network, Gar-
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laschelli and Loffredo proposed to use the correlation coefficient between the symmet-
ric entries of the adjacency matrix [77]:

ρ =
∑i≠j(Âij − ⟨Â⟩)(Âji − ⟨Â⟩)

∑i≠j (Âij − ⟨Â⟩)2
, (4.12)

where ⟨Â⟩ = m/(n2 − n) is the density of the edges in the network. This measure of
reciprocity takes values in the range ρ ∈ [−1, 1], with ρ = −1 denoting the extreme
case where all pairs anti-reciprocate—if there is an edge (i, j) then there is no edge
(j, i)—and ρ = 1 denoting maximum reciprocity, i.e., for any edge (i, j) there is also an
edge (j, i).

Technically, Eq. (4.12) can be applied also to weighted or multi-edge networks. Then,
the difference Âij −⟨Â⟩ measures the deviation of the observed number of interactions
from the average in the network. Hence, we can straightforwardly substitute that
difference by our signed relations Φij, which measure the deviation of the observed
interactions from the prediction of the null model in a more sophisticated manner.
We arrive at the following definition of reciprociy in the network:

ρ =
∑i≠j Φij ⋅ Φji

∑i≠j Φij
2 , (4.13)

We can also adapt it such that only the reciprocity in the signs and not the absolute
values of the relations Φij are captured as follows:

ρsign =
∑i≠j sign (Φij ⋅ Φji)

n(n − 1) , (4.14)

with sign(x) = 1 if x > 0, sign(x) = −1 if x < 0 and sign(x) = 0 if x = 0. So, if the
values of the relations Φij and Φji are both greater or both less than zero, the pair i and
j contributes positively to the reciprocity of the network. Otherwise, they contribute
negatively. As before, the values of reciprocity defined in Eq. (4.14) fall in the range
ρsign ∈ [−1, 1].

We now apply the two definitions of reciprocity to the signed relations between coun-
tries resulting in ρ = 0.524 and ρsign = 0.681. Both numbers show that the average
voting behaviour in the contest tends to be reciprocal. We further illustrate this in
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Table 4.2: Counts of node pairs for three types of reciprocation measured at different threshold
α, i.e., a pair is counted if both |Φij| > α and |Φji| > α. The threshold in the middle column is
equal to the mean of the the signed matrix, ⟨Φ⟩ = −0.153.

α: 0 |⟨Φ⟩| 0.5

++ 183 100 40
−+ 343 115 10
−− 691 440 66

Table 4.2, where we count the reciprocating (++ and −−) and anti-reciprocating (−+)
pairs of nodes. We account only for the pairs for which the absolute values of the
relations in both directions are above a certain threshold, |Φij| > α and |Φji| > α. That
means, the larger the α, the stronger both relations must be for the pair to be counted
as reciprocating or anti-reciprocating. We find that the fraction of anti-reciprocating
pairs in the Eurovision song contest decreaseswith growingα: from28.2% forα = 0, to
17.6% for α = |⟨Φ⟩| = 0.153, to only 8.6% for α = 0.5. In other words, if two countries
both have a strong bias towards each other, then this bias tends to be in the same
direction, positive or negative, for both. Most of the ten strongest anti-reciprocating
pairs include a country with very few participations in the contest, except the pair
Armenia–Turkey (ΦA,T = −0.617, ΦT,A = 0.910), which is in agreement with the
results of García and Tanase [76].

4.3 Conclusion

Wehave developed a tool thatmeasures the deviation of a given value from themedian
of a distribution. In contrast to existing measures, ours is non-parametric and is
valid for a wide range of distributions, which can be skewed, bounded, continuous
or discrete. This allowed us to infer signed relations (network) from unsigned counts
of repeated interactions.

Because themeasure is unbiased, wewere able to compare the signed relations between
pairs of nodes with strongly varying degrees. This is different from the previous
attempts to infer signed relations from unsigned networks, where only nodes with
a certain minimum degree could be compared [76].

As mentioned earlier, there is interest in signed social relations (e.g., friendship versus
animosity), but there is a lack of data on signed social networks. We believe that our
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methodology canmitigate this problem by constructing new data sets on signed social
networks from the abundant data on unsigned networks.

We showed how filtering only highly significant signed relations provides a newway to
infer a network backbone. While we understand how the threshold used on the values
of signed relations maps to statistical significance for a continuous variable, we have
left it to the future research to understand this connection for discrete variables.



Chapter 5

Friend or Foe? Significant
deviations in citation
behaviour

Summary

We study the citation networks between most cited authors in multiple empiri-
cal data sets. Using the methodology from previous chapters, we first evaluate
different formulations of topical similarity between authors in terms of their
power to explain the empirically observed citations. Based on a generalised
hypergeometric ensemble that encodes the best fitting similarity formulation and
a temporal order preserving combinatorial component, we infer the extent of over-
citations and under-citations among the most cited scientists. We find that the
resulting signed relations are on average reciprocal between pairs of authors, with
the patent networks exhibiting stronger reciprocity than networks in science. We
also outline an approach to identify interdisciplinary pioneers and citation cartels.

This chapter has been written specifically for this dissertation. Based on unpublished discussions by
Nanumyan V., Casiraghi G., Mavrodiev P., Schweighofer S., Scholtes I., and Schweitzer F. VN performed the
analysis and interpreted the results.
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In Chapter 3, we developed a novel statistical ensemble of networks that allows mod-
elling networks with heterogeneous preferences of nodes for choosing with whom to
form edges. In Chapter 4, we formulated an unbiased statistical measure that allows
quantifying howmuch and in which direction an observed value deviates from a given
distribution. Using the new measure and the ensemble, we showed how to infer a
signed network from observations of unsigned repeated interactions between nodes.
In this chapter, we apply themethodology of signed network inference to collaborative
knowledge networks, in order to quantify how the citations between authors deviate
from the prediction based on purely scientific criteria.

In Section 1.2 we briefly discussed three social biases—homophily, reciprocity and
structural balance—that universally affect human social relations including citations
and collaborations among scientists. There are, however, other social biases, which
are specific to the academic community, namely the selection bias in recognising the
scientific work of peers, and the evaluation bias in reviewing the scientific work of
peers [171]. These biases are aggravated by competition for scarce resources within
the scientific community, namely attention and funding. In addition, the exponential
growth of the number of publications leads to the problem of information overload.
Scientists, unable to keep track of the developments in their research areas, become
selective in their recognition of peers. Even within their topical communities, they
tend to cite works that are already highly cited, works of scientists they already know
(e.g., through collaborations or conferences), or works of scientists that have previ-
ously cited them (reciprocity). All this reinforces existing structures and creates filter
bubbles that limit the diversity of information perceived by individuals. Furthermore,
competitive funding creates incentives for strategic citation behaviour of scientists,
either by not recognizing the scientific work of peers that compete for the same funds
or by negatively evaluating their manuscripts or proposals. While such behaviour is
unethical, it is very hard to detect and to avoid in a system that inherently builds on a
peer review process.

A number of works have highlighted the importance of social structures and processes,
in particular: (i) the effect of collaborations and social acquaintance on citation struc-
tures [165], (ii) the influence of a small elite of scientists on the knowledge generation
process [7], (iii) the first-mover advantages in the evolution of citation networks [135],
(iv) the effect of attention mechanisms towards scientific publications [149], and (v)
the role of elite institutions in funded research [116].

The discipline of scientometrics has dealt with collaborative knowledge networks since
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at least the middle of the twentieth century [159]. These studies mostly focused on
identifying important individuals by means of established topological measures, such
as centralities [71, 72, 136, 138, 145]. Only in a very recent study,missing citations have
been identified between closely related physics publications [42]. However, similarity
between articles was only calculated based on the overlap between their bibliographies,
which does not provide a sound null model.

Our methodology of inferring signed relations from unsigned data enables us to
go beyond such investigations. Precisely, it will allow us to quantify interpersonal
relations that are addressed in the social sciences [66], but could hardly be measured.
Detecting and measuring social biases will also permit us to shed new light on the
origin of such biases [54]. To achieve this goal, we first refine the ensemble formulation
to better represent the formation mechanisms of collaborative knowledge networks.
In the following, we define a new temporal order preserving configuration model for
citations between scientists, which accounts for the temporal sequence of publications.
We show how this new model can be used to infer the backbone of citations between
the most prominent authors in a given scientific community. Then, we discuss how
to encode the topical similarities between scientists in the null model. This is needed
because scientists are more likely to cite the works that are topically closer to their
work, due to purely scientific criteria. We compare four different formulations of the
topical similarity by means of their statistical power to explain the observed citations
between the most cited authors. We use the best model to infer the signed relations
between these authors. Finally, we analyse how these signed relations correlate with
such characteristics of the authors as the total number of their citations, or the number
of previous co-authorship relations between authors.

5.1 Modelling citations among top authors

Collaborative knowledge networks grow over time. In particular, the citation network
among knowledge artifacts Gpc = (Vp, Epc) (cf. Section 2.2) grows by adding new
artifacts which cite other artifacts that are already in the network. As a result, the
network Gpc is a directed acyclic graph (we disregard rare exceptions when an older
knowledge artifact cites a newer one). If we model this network by means of network
ensembles that we have discussed so far, the property of having no cycles—the tempo-
ral constraint—will not be preserved. Both the standard Molloy-Reed configuration
model (Section 1.2) and our hypergeometric ensembles (cf. Eqs. (3.1) and (3.5)) built
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on the same assumptions as the configuration model, do not respect the temporal
order in which the nodes enter the network. For a citation network, this means that
the models allow for edges from older nodes to newer nodes. In principle, it is not
difficult to limit the models and their probability spaces post hoc, by removing the
model realisations that break the temporal constraint. However, this approach is
computationally costly and it removes the benefits of the analytical tractability of the
hypergeometric ensembles. The problem is exacerbated if we consider the citation
network Gac between authors (the projection of Gpc into a layer Gac = (Va, Eac), cf.
Section 2.2). The edges of the networkGac are still temporally constrained, as an author
who published earlier cannot cite an author who published later. In this case, however,
the network is not acyclic and post hoc adjustments of the models are not feasible. In
the following, we showhow the formulation of a generalised hypergeometric ensemble
can be broadened to respect the temporal constraints of growing networks and their
projections.

5.1.1 Temporal order preserving configuration

The generalised hypergeometric ensembles developed in Chapter 3 build on two com-
ponents: the combinatorial one represented by the matrix Ξ and the one that encodes
the heterogeneous preferences among pairs of nodes to form an edge, represented by
the matrix of edge propensities Ω. So far, we have only encoded the configuration
model as the combinatorial component of the ensemble by setting Ξij = kout

i kin
j , where

kout/in
i is the out-degree or in-degree of node i. However, thanks to the definition of

the ensemble, we are not limited to the configuration model.

To show how we can redefine the matrix Ξ to incorporate temporal constraints in the
ensemble, let us consider a small example of a collaborative knowledge network. The
left panel of Fig. 5.1 shows a citation network between ten knowledge artifacts written
by five authors. The nodes are plotted on a timeline according to the time at which
they are added to the network. The citations drawn from newer to older nodes all
satisfy the causal constraint imposed by the temporal order of nodes. The projection
of this network into author–author citations is shown in the right panel of Fig. 5.1. This
projection has loops, e.g., between nodes A0 and A1, as well as a self-loop belonging
to node A1.

It is not clear from observing just the author-author citation network in Fig. 5.1 that
there cannot possibly be citation edges from authors A0, A1, A2 to authors A2, A3 and
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Figure 5.1: (Left) time-unfolded network of citations between publications written by five
authors and (right) the corresponding projection to author–author citations.
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Figure 5.2: All possible citation edges between time-stamped publications of two authors.

A4, given the temporal sequence of their publications. If we define an ensemble based
on configuration model, it would allow, e.g., up to ΞA1,A3 = 2 ⋅ 2 = 4 citations from
A1 to A3. How can we fix this?

Figure 5.2 shows the publication timelines of two authors, Alice and Bob, and all pos-
sible citations that one’s publications can make to the other’s. That is, each publication
of one author can cite all the preceding publications of the other. The total possible
number of those is shown in the figure next to the publication. Given the publication
timelines, Alice can cite Bob six times, while Bob can cite Alice 5 times. We can
use these numbers to define the temporal order preserving possibility matrix Ξ for the
hypergeometric ensemble of citations between authors, which formally writes as

Ξij = ∑
t

δ(T(v), t) δ(Ba
iv(t), 1) ∑

l
Ba

jl(t), for v ∈ Vp, (5.1)

where Ba(t) is the incidence matrix of the authorship relations at time t (cf. Sec-
tion 2.1.1), T(v) is the time at which publication v was added to the network, and
the Kronecker delta δ(x, y) = 1 if x = y and is zero otherwise.

Let us now compare the hypergeometric ensemble, Eq. (3.1), based on Eq. (5.1), to the
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Figure 5.3: (Top) the matrix of possible edges according to Eq. (5.1) and according to
configuration model, and (bottom) the corresponding marginal probabilities of the observed
edges according to Eq. (3.2) for the author–author citation network shown in Fig. 5.1.

one based on the configuration model, Ξij = kout
i kin

j . Figure 5.3 shows in the top panel
the two matrices Ξ for our toy example. As expected, the order preserving matrix
does not allow any edges from nodes A0, A1, A2 to nodes A2, A3 and A4. The effect of
the temporal constraint on the network ensemble can be seen in the bottom panel of
Fig. 5.3, where we show the marginal probability (Eq. (3.2)) of the observed citations
in our toy example.

5.1.2 Author similarity

Authors are not expected to cite other authors uniformly. As discussed in Chapter 1,
it is expected that authors who are more similar in their research topics cite each other
more frequently. Our generalised hypergeometric ensemble allows encoding of these
similarities by means of the matrix Ω of edge propensities, as defined in Eq. (3.5).

The topical similarities between authors can be defined based on the similarities of
their publications. This can be done, for instance, by means of keyword similarity,
where the keywords are either provided in the metadata of the publications, or ob-
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tained by applying natural language processing tools to the content of publications [3].
Another approach to quantifying the similarity of publications is based on the proper-
ties of the collaborative knowledge network of which they are a part [8, 32, 57, 58, 59,
212].

Below we describe two commonly used similarity measures for publications, biblio-
graphic coupling and co-citation similarity. Although, they are mostly used to measure
publication similarity, they are also applied to collaborative knowledge networks to
directly measure the similarity between authors, as we will show below.

Bibliographic coupling was introduced in 1963 by Kessler [101]. Two given pub-
lications are bibliographically coupled if they both cite the same publication. The
coupling strength is defined by the number of such publications. It can be defined
for authors as well, with two authors being bibliographically coupled if their publica-
tions cite the same publication [216]. For publications, bibliographic coupling is a
retrospective and static measure, meaning that it is based on information available at
the time of publication of the two compared articles and it does not change over time.
However, bibliographic coupling is not static for authors, as it changes when they write
new publications.

Co-citation similarity was introduced independently by Small and Marshakova in
1973 [119, 185]. For two publications, it measures how often they are both cited
in the same publication. This measure addresses the above-mentioned drawback of
the static and retrospective bibliographic coupling between publications, as it evolves
over time with newly published articles, possibly increasing the co-citation between
the two publications. Co-citation similarity is also defined for authors based on their
publications [207].

The two similarity measures are considered as proxies of semantic, or topical, relat-
edness based on the assumption that the more two publications cite or are cited by
the same publication, the more similar is their context or content. From the network
perspective, one can see bibliographic coupling of two nodes as an outward measure,
as it is based on the outgoing edges of the two nodes, and co-citation similarity as an
inward measure, as it is based on the incoming edges of the two nodes.

While the two similarity measures can be defined by means of absolute counts, it is
useful to normalise them with respect to the total citations that the two considered
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Figure 5.4: (Left) bibliographic coupling between two authors based on the publications they
write and (right) co-citation similarity of the two authors based on citing authors.

publications or authorsmake or receive. For this, cosine similarity [61] or Jaccard index
are commonly used [60]. Cosine similarity is defined as the cosine of the angle between
two vectors. Jaccard index is defined for twomathematical sets as the fraction between
the intersection and the union of the sets and is defined for two nodes in a simple
graph in Eq. (2.7). The bibliographic coupling (outward) and the co-citation similarity
(inward) for two publications write in terms of the Jaccard index as

σout
ij =

∑l I[AilAjl]
kout
i + kout

j − ∑l I[AilAjl]
, (5.2)

σin
ij =

∑l I[AilAjl]
kin
i + kin

j − ∑l I[AilAjl]
, (5.3)

(5.4)

where Aij are the entries of the adjacency matrix of the citation network Gpc among
publications, the function I equals one for a non-zero argument (similar to Heaviside
step function, except for I[0] = 0). Similarly, we can calculate the similarities
between authors by substituting the adjacencymatrix ofGpc by the adjacencymatrix of
the appropriate projections of the collaborative network (author–publication citation
network for bibliographic coupling and publication–author citation network for co-
citation similarity) and with the degrees that disregard the multiplicity of edges, i.e.,
kout
i = ∑j I[Aij]. Moreover, we can compute the similarities based only on author–

author relations, if we use the projection Gac of citations onto authors. In the example
shown in the left of Fig. 5.4, the bibliographic coupling between two authors based
on the publications they cite is equal to 2/7 as they both cite four publications out of
14 total. The right panel of Fig. 5.4, shows an example of co-citation similarity of two
authors based on citing authors.
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5.1.3 Edge propensity from author similarity

With the topical similarities between authors defined, we now use these in our ensem-
ble for citations among authors by setting the edge propensities based on the topical
similarities, Ωij ∼ σij. By definition, the similarity based on Jaccard index is symmetric,
σij = σji. However, the network ensemble for citations is directed, meaning that the
edge propensities must be directed too. Hence, we need to redefine the similarity as
an asymmetric measure to account for the directionality in the network.

Asymmetric similarity Let us try to understand how likely two authors A1 and A2
are to cite each other. Assume A1 is an established and prolific author, writing many
publications in a broad spectrum of topics, and A2 is a young researcher focused on
one particular topic. If the topic of A2 is among the topics of A1, then it is reasonable
to assume that A2 should cite A1 more often than vice versa. We can quantify this
by means of the fraction of citations that each of the two authors makes to the other,
relative to all citations she makes, which writes as

σout
ij =

∑l I[AilAjl]
kout
i

, (5.5)

where Ail are the entries of the adjacency matrix of the author–publication projection
of the citation network. kout

i = ∑l I[Ail] is the corresponding degree that disregards
the multiplicity of edges, i.e., it is the number of unique publications that author i cites.
The asymmetric similarity measure in Eq. (5.5) is also called Partial Jaccard coefficient
for arbitrary mathematical sets [75]. Equation (5.5) can be seen as an asymmetric
modification of the bibliographic coupling between authors. For the example shown
in the left of Fig. 5.4, σout

A1,A2 = 1/3 and σout
A2,A1 = 2/3. If we use these similarities as edge

propensities in the ensemble, this would imply that A2 is twice as much likely to cite
A1 than vice versa (everything else equal).

Similarly, we could estimate the likelihood of the two authors to cite each other based
on the citation behaviour of the scientific community towards them. If, for instance,
an arbitrary author cites author A1 every time when she cites A2 (but not vice versa),
we could conclude that the works ofA2 are closely related to, or even dependent on the
works ofA1. Hence, we would also expectA2 to citeA1 frequently (but not necessarily
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vice versa).

σin
ij =

∑l I[AliAlj]
kin
i

, (5.6)

whereAil are the entries of the adjacencymatrix of the author–author citation network
and kin

i = ∑l I[Ali] is the number of authors that cite the author i. Equation (5.6) can
be seen as an asymmetric modification of the co-citation similarity between authors.
Similar to the symmetric definitions of the two similarity measures in Eqs. (5.3)
and (5.4), the asymmetric formulations can also be defined based on both publications
and authors. In the following, we will refer to the similarity defined in Eq. (5.5) as pub-
out if it is computed based on the cited publications and as aut-out if it is computed
based on the cited authors. We will refer the to the similarity defined in Eq. (5.6) as
pub-in if it is computed based on the cited publications and as aut-in if it is computed
based on the cited authors.

Fittingpropensities All the components are ready for defining a network ensemble
that will serve as a null model for citations among authors. We defined in Eq. (5.1) the
combinatorial component Ξ that preserves the temporal constraint on the possible
citations imposed by the temporal order of publications. In Eqs. (5.5) and (5.6), we
defined asymmetric topical similarities σin/out

ij of author i to author j, which we can use
as the edge propensity Ωij, such that the closer the authors are, the more likely they are
to cite each other in the realisations of the ensemble. However, there are two problems
with simply setting Ωij = σin/out

ij . Firstly, the similarity σin/out
ij can be equal to zero (and

in practice it often is). Thus, the corresponding edge propensity would also be zero,
meaning that the ensemble would not allow any edges to be drawn from i to j. This
puts an implausible limitation on the ensemble, as in reality two authors can cite each
other, even if they are not co-cited or bibliographically coupled. Secondly, it is not clear
which similarity measure is the best fit for modelling the citations between authors,
and setting propensity equal to a similarity does not allow for robust comparison and
selection between different similarity definitions.

To overcome both problems, we use a technique for inferring propensities from (mul-
tiple) relation types by means of multiplex network regression based on the generalised
hypergeometric network ensemble [35]. The method works as follows. Given r
different types of positive-valued relations between the n nodes (an r-layer multiplex),
which we suspect can have an effect on the formation of edges in the network (layer)
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that is being modelled, we write the edge propensities as

Ωij =
r

∏
l=1

R
β(Ω)
l

l,ij , (5.7)

where Rl is the weighted adjacency matrix of the l-th layer. That is, we set the
propensity matrix entrywise product—also known as the Hadamard product—of the
r adjacency matrices with exponentiated entries. For the adjacency matrix Â of the
network being modelled, the ensemble defined by Eqs. (3.5) and (5.7) is a function f,

Pr(Â) = f(R1, … ,Rr; β(Ω)
r , … , β(Ω)

r ), (5.8)

relating the dependent variable, the probability of the network Â, to the explanatory
variables, Rl. The exponents β(Ω)

l are then fitted by maximum likelihood estimation
(Eq. (7) in [35]), and the significance of the layer l is identified by a likelihood ratio test
between the model with and without the layer (they are nested, as the model without
the layer is achieved by setting β(Ω)

l = 0).

We apply the multiplex network regression to fit the edge propensities for citations
between authors based on topical similarity of authors as follows. We build two ma-
trices R0 and R1 from the matrix σ corresponding to one of the similarity definitions
pub-out, aut-out, pub-in or aut-in as

R0,ij =
{

1 for σij ≠ 0,
ε otherwise, with ε ∈ (0, 1),

(5.9)

R1,ij =
{

σij for σij ≠ 0,
1 otherwise.

(5.10)

The matrix R0 is assigned a non-zero value ε to all its entries that correspond to the
zero entries in the similarity matrix and ones to the elements where the similarity is
non-zero. Similarly, the values in R1 are equal to values of the similarity where the
latter are non-zero, and are one where the similarity is zero. Plugging the twomatrices
into Eq. (5.7) results in a formulation for the propensities in which a constant value
εβ(Ω)

0 is fitted instead of the zero entries of the similarity. The non-zero elements of the

similarity are scaled to σ
β(Ω)
1

ij . By fitting the parameters β(Ω)
0 and β(Ω)

1 , (i) we obtain the
best representation of the citation propensities between authors based on their topical
similarities, and (ii) we learn about the significance of the similarities in explaining
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Figure 5.5: Citations among publications (blue) by the 200 most cited authors (yellow) and the
authorship relations between authors and publications in the collaborative knowledge network
of High Energy Physics in Physical Review Journals (PR-HEP).

the network of citations between the authors. This also means that we can compare
different definitions of similarities in terms of their explanatory power for the observed
citations. We cannot use the likelihood ratio test, as the models corresponding to
different similarity definitions are not nested, but we could compare the Mahalanobis
distances of the corresponding ensembles (cf. Section 3.2). Alternatively, we can
use the computationally cheaper Akaike Information Criterion (AIC), because the
parameters of the network regression are fitted by themaximum likelihood estimation.

5.2 Empirical networks of author–author citations

In the following, we apply the methodology described above to the twelve empirical
collaborative knowledge networks introduced in Section 2.3. Specifically, we build
the networks of the knowledge artifacts published within a time window of ten years:
from January 1, 1960 to January 1, 1970 for the PR (which was discontinued in 1970)
and from January 1, 2000 to January 1, 2010 for the others. Limiting the range of
publication dates means that we compare authors and inventors that were writing
publications and patents over the same time period, thus avoiding to give advantage
to old researchers with many publications. It also reduces the effects of long-term
trends in the evolution of the network on the outcomes of the analysis. Such time
range limitation is similar to taking one temporal layer in the dynamic configuration
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model proposed very recently [162]. The rate of new publications grows over time
for all studied network, so taking the latest time window in the data sets results in
the largest network for the given window length. For instance, the network of PR-
HEP contains 10664 publications in the chosen time window out of 44829 in the full
data set (cf. Table 2.2), or 23.8% of all publications. We analyse only 200 most cited
authors in each network. However, we use the whole network when computing author
similarities or aggregate properties, such as an author’s total number of citations.
Figure 5.5 shows the network visualisation of the citations between articles published
in the ten year period by these 200 authors in PR-HEP, as well as the authorship
relations between authors and publications. The figure highlights the existence of
two topical communities in the network. While we are not limited technically to
such small networks, we believe that focusing on the relations between the most
prominent authors is especially important. One reason for this is the competition for
limited resources, as mentioned in the beginning of this chapter. We believe that the
competition is stronger among more prominent the researchers. For example, when
competing for funding, these researchers are the ones who apply for the largest and
most competitive funding. The peers who evaluate their applications are also selected
from the small pool of prominent authors—who may also indirectly compete for the
same funding—in order to match the level of expertise of the applicant.

Selecting the similarity measure Above we defined four network-based ways to
measure the topical similarity between authors. Let us now fit and compare these mea-
sures for the twelve empirical networks. Table 5.1 shows the outcomes of performing
multiplex network regression for the journals in INSPIRE data set, based on Eqs. (5.7)
and (5.9) for the similarity definitions pub-out, aut-out, pub-in and aut-in. Ta-
bles B.1 and B.2 on Tables B.1 and B.2 show the same information for the patent and
APS data sets. TheAIC for eachmodel is shown alongwith the two exponents β(Ω)

0 and
β(Ω)
1 for each similarity definition. The similarity best describing the observed citations

among authors, which corresponds to the lowest AIC, is highlighted. In nine out of
twelve networks, the definition pub-in of the similarities is selected. For two patent
networks, PAT 424 and PAT 703, aut-in is selected. In the case of RMP no conclusive
outcome is reached: although aut-out has the lowest AIC (only marginally lower
than pub-out), the parameter β(Ω)

1 is not significant. Summarising these outcomes, we
find that in the overwhelming majority of cases, the asymmetric co-citation similarity
is better than the bibliographic coupling in explaining the observed citations among
authors. In most of the cases, similarity based on the citing publications is the best,
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Table 5.1: The multiplex network regression for the citations among the 200 most cited authors
on four definitions of author similarity. The networks correspond to four journals in the INPIRE
data set (cf. Section 2.3).

Similarity β(Ω)
0 β(Ω)

1 AIC

JHEP

aut-in 5.603 ± 27.529 2.176 ± 0.011 *** 181727.3
aut-out 5.620 ± 26.537 2.129 ± 0.012 *** 189049.1
pub-in 2.686 ± 0.031 *** 1.124 ± 0.004 *** 118326.0
pub-out 2.983 ± 0.042 *** 1.292 ± 0.004 *** 122362.8

PR-HEP

aut-in 9.483 ± 44.565 2.552 ± 0.016 *** 59196.46
aut-out 9.486 ± 44.658 2.362 ± 0.014 *** 64481.98
pub-in 3.499 ± 0.034 *** 1.166 ± 0.007 *** 41984.61
pub-out 3.587 ± 0.037 *** 1.135 ± 0.006 *** 48575.00

Phys. Lett.

aut-in 4.407 ± 0.307 *** 1.985 ± 0.027 *** 17793.50
aut-out 2.705 ± 0.045 *** 1.538 ± 0.021 *** 20228.22
pub-in 2.571 ± 0.031 *** 1.038 ± 0.016 *** 16283.84
pub-out 2.303 ± 0.023 *** 1.003 ± 0.015 *** 18756.84

Nuc. Phys.

aut-in 4.356 ± 0.251 *** 2.062 ± 0.017 *** 45769.73
aut-out 4.501 ± 0.307 *** 1.928 ± 0.015 *** 49974.41
pub-in 2.952 ± 0.033 *** 1.162 ± 0.010 *** 37863.43
pub-out 2.974 ± 0.034 *** 1.196 ± 0.009 *** 41902.91

while in two classes of patents, it is the one based on the citing authors. In a related
study, Boyack and Klavans compare bibliographic coupling and co-citation similarity
between publications in terms of their accuracy in clustering biomedical research, with
the ground-truth based on the textual similarity [23]. Boyack and Klavans find that
bibliographic coupling slightly outperforms co-citation similarity, which contrasts our
finding. This mismatch, however, may be the result of different performance criteria:
for us, it is explaining the observed citations, and for Boyack andKlavans, it ismapping
science by means of clustering.
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5.2.1 Friends and foes

Having selected the best formulation of the generalised hypergeometric ensemble, we
proceed to the inference of signed relations between top cited authors. To recall, we
have used a temporal order preserving definition of the combinatorial component
in the ensemble, i.e., we substituted the matrix Ξ of the configuration model by
Eq. (5.1). We have also compared four different similarity definitions and selected
the one that best describes the observed network of citations between the top cited
authors. Figures 5.6(a) and 5.6(b) show the matricesΞ andΩ used in the ensemble for
the network of PR-HEP. The rows and columns of the presented matrices are ordered
according to average linkage hierarchical clustering on theΩmatrix1, which results in
topically closer authors also being positioned closer in the matrix [97, 99]. We apply
the measure of signed deviations Φ defined in Eq. (4.6) to the marginal distributions
of the hypergeometric ensemble (cf. Eq. (3.6)) to obtain the matrix of signed relations
shown in Fig. 5.6(d). For comparison, we also compute signed relations based on the
unbiased ensemble, i.e., the ensemble that disregards the edge propensities Ω, shown
in Fig. 5.6(c). The comparison of the two signedmatrices highlights how instrumental
it is to account for the topical similarities of the authors when modelling the citations
among them. The unbiased ensemble identifies most of the author pairs as under-
citing each other, while for topically closer authors (pairs close to the diagonal of the
matrices) who do cite each other, it mostly shows strong positive relation indicating
over-citations. Instead, the ensemble that accounts for the similarities results in
neutral (Φ ≈ 0) relations among the authors who are topically further from each other.
For the authors that are topically close to each other, it results in non-trivial values of
signed relations. Similarly to Fig. 5.6(d), Fig. B.1 shows the matrices Φ for all twelve
studied empirical networks.

Reciprocity in citations Similar to the analysis in Section 4.2.2, let us now compute
the reciprocity among the top cited authors based on the inferred signed relations Φ.
First, we compute the number of author pairs in the network that reciprocate or anti-
reciprocate. A pair of authors reciprocates positively (++) if both authors over-cite
each other, they reciprocate negatively if they both under-cite each other (−−), and
they anti-reciprocate (−+) if the relations in the opposite direction have different signs.
We have seen that the fractions of these three types of reciprocation depend strongly

1Hierarchical clustering is based on distances, which must be symmetric, so we applied it to the
symmetric matrix with elements max(Ωij, Ωji).
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Figure 5.6: Matrices describing the 200 most cited authors in PR-HEP: (a) Ξ showing the
total number of temporally possible citations for each pair of authors, (b) edge propensities Ω
based on pub-in definition of author similarities, (c) signed relations Φ based on the unbiased
hypergeometric ensemble with possibility matrix Ξ, and (d) signed relations Φ based on the
generalised hypergeometric ensemble with possibility matrix Ξ and edge propensities Ω. The
order of rows and columns corresponds to the hierarchical clustering performed on Ω.

on the threshold above which the signed relations are considered. Here we choose a
threshold α = 0.5, such that only the pairs of authors for whom both |Φij| > α and
|Φji| > α are counted. The choice of the threshold approximately corresponds to the
upper and lower quartiles of the signed relations. Table 5.2 shows the outcomes for the
twelve empirical networks. The median fractions of the three types of reciprocation
are 0.25 for (++), 0.38 for (−+) and 0.37 for (−−). For the following networks, these
fractions deviate notably from themedian (not accounting for RMP, for which there is
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Table 5.2: Reciprocity in signed relations. The count and fraction of reciprocating (++ and
−−) and anti-reciprocating (−+) pairs of authors for whom both |Φij| > α and |Φji| > α with
α = 0.5 (cf. Table 4.2). Two reciprocity measures for each network are presented, ρ defined in
Eq. (4.13) and ρsign defined in Eq. (4.14)

Network ++ −+ −− ρ ρsign

PR 126 (0.20) 374 (0.59) 131 (0.21) -0.068 0.832
PRA 403 (0.25) 790 (0.48) 439 (0.27) -0.028 0.616
PRC 541 (0.13) 581 (0.14) 3040 (0.73) 0.646 0.860
PRE 222 (0.27) 355 (0.44) 231 (0.29) 0.039 0.818
RMP 5 (1.00) 0 (0.00) 0 (0.00) 0.015 0.078

JHEP 782 (0.21) 1636 (0.43) 1393 (0.37) 0.088 0.394
PR-HEP 163 (0.14) 452 (0.40) 517 (0.46) 0.150 0.835
Phys. Lett. 117 (0.37) 116 (0.37) 80 (0.26) 0.072 0.804
Nuc. Phys. 326 (0.35) 361 (0.39) 245 (0.26) 0.131 0.817

PAT 320 78 (0.16) 130 (0.27) 280 (0.57) 0.297 0.599
PAT 424 35 (0.56) 3 (0.05) 25 (0.40) 0.514 0.563
PAT 703 204 (0.57) 21 (0.06) 132 (0.37) 0.628 0.625

not enough data). In PRC, 73%of the identified pairs have amutually negative relation.
In patent networks PAT 424 and PAT 703, only 5% and 6% of the pairs anti-reciprocate.
PAT 424 and PAT 703 networks are also the only ones in which more than half of the
identified pairs exhibit positive reciprocation.

Next, we compute the aggregate reciprocity values for the networks according to the
two definitions ρ and ρsign (cf. Eqs. (4.13) and (4.14)) introduced in Section 4.2.2. The
first definition, ρ, corresponding to the definition in [77] accounts for both the absolute
value and the sign of the relations Φij between all pairs of authors i and j. The second
definition, ρsign, defined in Eq. (4.14) only accounts for the signs of the relations. For all
but two networks, the overall reciprocity among authors is positive according to both
definitions, meaning that the pairs of authors tend to reciprocate more often than they
anti-reciprocate. The exceptions are PR with ρ = −0.068 and PRA with ρ = −0.028.
We find that the magnitude of reciprocity ρ is very small for most of the networks. The
exceptions are the three patent networks and one scientific journal, PRC. In the patent
networks, the reciprocity is considerably lower for the class PAT 320, which focuses on
software solutions, as opposed to the physical R&D focused PAT 424 and PAT 703.



112 Chapter 5. Friend or Foe? Significant deviations in citation behaviour

0 10 20 30
Acollab

ij

1.0

0.5

0.0

0.5

1.0

ij

102 2 × 102 3 × 102 4 × 102

# citations

10 3

10 2

10 1

IQ
R(

)

log y (0.98 ± 0.13) log x

Figure5.7: (Left) Logistic regression for the sign ofΦij on the number of collaborations between
authors i and j (cf. Eq. (5.11)) and (right) linear regression for inter-quartile range IQRj(Φji) of
the signed relations towards author i on the total number of citations of i for the 200 most cited
authors in PR-HEP.

Signed relation and coauthorship Let us investigate the relationship between
the signed values Φij and the number of coauthorships Aaa

ij between authors i and
j. We would expect that frequent collaborators would have more positive relations,
i.e., they would over-cite each other. To find this relationship, we perform a logistic
regression [93] for the sign of Φij on the number of coauthorships Aaa

ij as follows

Pr(Φij ≥ 0) = 1
1 + exp(−β0 − β1Aaa

ij ) . (5.11)

In the left panel of Fig. 5.7, we show the result for the 200most cited authors in PR-HEP.
We see that, indeed, frequent coauthors tend to over-cite each other.

However, performing the same analysis for all twelve networks shows that PR-HEP
is rather an exception. Table 5.3 reports the outcomes of the logistic regression of all
networks, along with the R2

MF McFadden pseudo-R2, which shows the quality of the
fit [121]. Higher values of R2

MF indicate better regression models, with values 0.2–0.4
being considered a very good fit. We find that only for four networks, the dependence
of the sign of Φij on Aaa

ij (parameter β1) is significant. For one of these four, PAT 703,
the dependence is negative. And according to the values ofR2

MF, the logistic regression
is overall a good model only for PRC. In Fig. B.2, we show the plots of the logistic
regression for all twelve collaborative knowledge networks. Visual inspection of the
plots confirms that we do not find compelling evidence for collaborative knowledge
networks in general that frequent coauthors tend to over-cite each other.
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Table 5.3: Logistic regression for the sign of Φij on the number of collaborations between
authors i and j (cf. Eq. (5.11)) in twelve collaborative knowledge networks. R2

MF is theMcFadden
pseudo-R2.

Network βlog
0 βlog

1 R2
MF

JHEP 0.219 ± 0.084 ** 0.152 ± 0.031 *** 0.017
PR-HEP −0.336 ± 0.096 *** 0.131 ± 0.020 *** 0.050
Phys. Lett. 0.529 ± 0.132 *** −0.007 ± 0.029 -0.001
Nuc. Phys. 0.594 ± 0.108 *** −0.016 ± 0.025 -0.000

PR 0.240 ± 0.141 . 0.059 ± 0.035 . 0.008
PRA 0.181 ± 0.080 * 0.024 ± 0.013 . 0.004
PRC −0.683 ± 0.083 *** 0.330 ± 0.019 *** 0.222
PRE 0.556 ± 0.109 *** 0.003 ± 0.017 -0.000
RMP −2.251 ± 3.793 2.326 ± 3.790 0.012

PAT 320 0.033 ± 0.144 0.043 ± 0.030 0.024
PAT 424 0.232 ± 0.247 0.013 ± 0.089 0.003
PAT 703 1.476 ± 0.145 *** −0.075 ± 0.026 ** -0.018

Signed relation and author centrality Next, we analyse the relationship between
the values of Φ of a given author and the author’s centrality in the collaborative
knowledge network. We consider the degree centrality in the coauthorship network
Gaa and in the projection of the citation network between publications Gpc onto
a publication–author citation network. We compute the centralities based on the
whole network in the selected ten year time window, i.e., the collaborative knowledge
network of all articles published within the time window and their authors. Then, for
a given author, the two centralities show her total number of unique co-authors and
her total number of citations.

For an author i, we want to aggregate the behaviour of other authors towards her
based on the values of Φji. Specifically, we are interested in the polarisation of the
behaviours towards her. We borrow the notion of polarisation from social and political
sciences, where it measures the fragmentation and large-scale differences in opinions
and ideological stances [75, 147]. Polarisation is also defined for networks of social
interactions, under the assumption that differences in opinions and ideological stances
have a behavioural component that influences the interactions between individuals.
We follow the same assumption and measure the polarisation in interactions towards
the author i as the interquartile range (IQR) of the vector Φ⋅i = {Φ1i, … , Φni}. That
is, we take the difference between the 75th and 25th percentiles of the histogram of
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the values of Φ⋅i. From Φji ∈ [−1, 1] follows that IQRj(Φji) ∈ [0, 2]. The lowest
value IQRj(Φji) = 0 denotes that all values Φji for a given i between the 75th and
25th percentiles are equal. We consider this case as the lowest polarisation, as it
is a sign of a strong accordance among authors in their behaviour towards author i.
The other extreme IQRj(Φji) = 2 means that more than 25% of all authors j exhibit
maximally negative relation Φji = −1 towards i, and more than 25% of all authors
exhibit a maximally positive relation Φji = 1. Hence, in accordance with the accepted
definitions of polarisation, this is the highest polarisation, as there are two groups with
diametrically opposite behaviours.

We now perform a linear regression analysis (cf. Eq. (2.17) on Eq. (2.17)) for the
logarithm of IQRj(Φji) on the logarithm of the total number of citations and, sepa-
rately, on the logarithm of the number of unique coauthors of author i. In the right
panel of Fig. 5.7, we show the result of the regression on the the number of citations
for the 200 top authors in PR-HEP and in Table 5.4, we provide the outcomes for
all twelve empirical collaborative knowledge networks, along with the coefficient of
determination of the regression model (cf. Eq. (2.18) on Eq. (2.18)). We find that
for ten out of twelve networks, there is a significant positive dependence between the
polarisation towards an author and the number of citations she received (parameter
βcit
1 ). The exceptions are RMP and PAT 424. The values of R2 for the significant

models are in the range of 0.06–0.3, which indicates that the number of citations is not
enough to predict the polarisation towards an author. Still, up to 30% of the variance
in the polarisation is explained by the number of citations. For the relation between
polarisation and the number of coauthors, we find that for eight out of twelve networks
there is a significant dependence expressed by the significance of the parameter βcol

1 .
These networks coincide with the ones for which the total number of an author’s
citations was significant in explaining the polarisation, with the exception of PR and
PRC, for which the number of citations is significant, but the number of coauthors is
not. We also find that the dependence of the polarisation on the number of citations
is stronger in all significant cases, as for all studied networks, βcit

1 > βcol
1 .

How can we interpret these results? In the ideal case, we could say that the more
central, or prominent, an author is, the stronger and more diverse are the social biases
of other authors towards her, expressed bymeans of over-citations and under-citations.
For this conclusion to be valid, there is a set of conditions that must be met. First,
in order to credit the identified over-citations and under-citations to social aspects,
we need to make sure that the underlying null model accounts for all non-social,
scientifically justified aspects that may influence the formation of citations. Second,
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Table 5.4: Linear regression analysis for the interquartile range IQRj(Φji) of the signed relations
towards author i on (left) the total number of citations, and (right) on the number of unique
coauthors of author i.

Network βcit
0 βcit

1 R2

PR −3.685 0.800 ± 0.110 *** 0.214
PRA −4.417 1.361 ± 0.239 *** 0.141
PRC −4.313 1.404 ± 0.373 *** 0.067
PRE −4.140 1.068 ± 0.131 *** 0.258
RMP −1.557 0.027 ± 0.025 0.014

JHEP −1.580 0.482 ± 0.086 *** 0.139
PR-HEP −4.212 0.982 ± 0.133 *** 0.215
Phys. Lett. −3.152 0.728 ± 0.112 *** 0.188
Nuc. Phys. −3.611 0.954 ± 0.102 *** 0.310

PAT 320 −3.397 1.033 ± 0.151 *** 0.216
PAT 424 −9.321 0.130 ± 0.150 0.007
PAT 703 −2.997 0.571 ± 0.205 ** 0.041

βcol
0 βcol

1 R2

−1.966 0.174 ± 0.089 . 0.024
−1.770 0.935 ± 0.116 *** 0.255
−1.017 −0.127 ± 0.163 0.003
−2.034 0.275 ± 0.088 ** 0.051
−1.553 0.034 ± 0.024 0.027

−0.708 0.469 ± 0.062 *** 0.228
−2.259 0.276 ± 0.092 ** 0.047
−2.261 0.410 ± 0.108 *** 0.082
−2.085 0.414 ± 0.093 *** 0.096

−2.297 0.696 ± 0.130 *** 0.174
−9.324 0.164 ± 0.154 0.012
−2.613 0.531 ± 0.124 *** 0.103

we need to make sure that the dependence between polarisation towards an author
and her centrality is not a result of confounding.

One specific way in which confounding threatens the validity of our results is the
following. By construction, the signed measure of deviation Φ tends to be neutral
for pairs of nodes with lower degrees (cf. Fig. 4.5), i.e., for authors with relatively low
number of citations from and to other top cited authors. While the number of citations
from other top authors is not directly related to the total number of citations in the
whole collaborative knowledge network, the two can be correlated. We leave checking
these threats to validity to future research.

5.2.2 The backbone of author–author citations

Lastly, let us look at the backbone of the network of citations among the most cited
authors. Following the approach presented in Section 3.3, we identify as the backbone
of the network all the pairs of nodes that cite each other significantly more frequently
than predicted by an ensemble of random networks. We do not show the backbone
based on percentile filtering, as in Chapter 3. Instead, we directly apply the filtering
based on the inferred signed relations, as presented in Section 4.2. As in Chapter 4, at
first we look at the backbone based on the unbiased hypergeometric ensemble. Here
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we use the ensemble with order preserving configuration defined in Eq. (5.1). Hence,
for the network of the 200 most cited authors in PR-HEP, the filtering is performed on
the signed matrix shown in Fig. 5.6(c), to which we refer as Φ(0). That is, we include
in the backbone all pairs of nodes for which Φ(0)

ij > 1 − α. Choosing the threshold
α = 0.01, we obtain the backbone shown in Fig. 5.8(b). The whole citation network
of the 200 most cited authors is shown in Fig. 5.8(a). In all networks in Fig. 5.8, the
multiple citations between a given pair of authors (themulti-edge) are visualised as one
edge with the width proportional to the number of citation between the pair. While
we can see two pronounced communities in the whole network, the backbone exposes
more intricate sub-community structure within the two large communities. In the
backbone, there are 1560 (directed) connected pairs of authors with a total of 27122
individual citation edges, compared to 3904 connected pairs with 31402 individual
citation edges in the whole network. That is 86.4% of all citations among 40.0% of all
pairs that cite each other.

Inferring an alternative network backbone based on the biased hypergeometric en-
semble that accounts for the topical similarity between authors (co-citation similarity
based on the citing publications, cf. Table 5.1) leads to the network shown in Fig. 5.8(c).
It has 479 connected pairs that have 12737 individual citations among them, which is
12.3% of the connected pairs (significantly more than expected by chance at α = 0.01)
and 40.6% of all citations in the whole network. Compared to Fig. 5.8(b), the sub-
community structure has disappeared and even the two large communities became
less pronounced, as there are now more nodes in between them. This is an expected
outcome. The backbone based on the unbiased ensemblemainly highlights the topical
community structure, which is also evident from the topical similarities among the
authors (cf. Figs. 5.6(b) and 5.6(c)). Instead, the backbone based on the ensemble
that encodes the topical similarities exposes the pairs of authors that over-cite each
other beyond what is predicted by the topical similarities. The interpretation of this
phenomenon is not simple. As discussed earlier, we cannot safely say that all pairs
in the backbone shown in Fig. 5.8(c) over-cite each other due to non-scientific social
aspects, unless we make sure that all scientifically justifiable aspects are incorporated
in the ensemble that serves as the null model. However, given that we account for a
major factor that influences the citations—the topical similarity—we can argue that
pairs connected in the network of Fig. 5.8(c) comprise all the candidates for whom
positive social biases may be at play (similarly, the candidates for possible negative
social biases can be identified by filtering the significant under-citations according
to Φ(Ω)

ij < −1 + α). For example, we see a clique of five nodes circled in red in



5.2. Empirical networks of author–author citations 117

(a) (b)

(c)

Figure 5.8: Citations among the 200 most cited authors in PR-HEP: (a) the full network, (b)
the network filtered by the condition Φ(0)

ij > 1 − α and (c) the network filtered by the condition
Φ(Ω)

ij > 1 − α. In both (a) and (b), α = 0.01. Edge widths are proportional to the number of
citations between the corresponding pair of authors.

Fig. 5.8(c), which are disconnected from the rest of the network. We can speculate
that these authors might constitute a citation cartel [67]. On the other hand, we see a
set of authors in between the two communities (circled in green), which are not seen
in the whole network visualisation or in the backbone from the unbiased ensemble.
It is plausible to assume that these authors pioneer an interdisciplinary topic that



118 Chapter 5. Friend or Foe? Significant deviations in citation behaviour

lays between the main topics of the two large communities and that they cite each
other only due to scientifically justifiable reasons. Then, our method identifies them
as over-citing each other because their interdisciplinary research is not yet reflected
in the co-citation similarity between them. In order to turn these speculations to
sound scientific outcomes, we need to further refine the methodology presented in
this chapter in future research. For instance, to identify citation cartels, we can also
add keyword-based similarity in the null model, from which it will follow that over-
citing authors do so beyond the prediction based on the community practices (co-
citation similarity) and on the similarity of the content between their citing and cited
publications. The comparison of the outcomes between network-based and keyword-
based similarities can also help to identify the interdisciplinary “pioneers”.

5.3 Conclusion

In this chapter, we have adapted the methodology developed in Chapters 3 and 4 for
the network of citations among authors. We have done so by replacing the combi-
natorial component of the generalised hypergeometric ensemble based on the con-
figuration model by a model that respects the temporal order of citations. We have
encoded the topical similarities between authors in the ensemble by means of multi-
layer network regression. This allowed us to compare different formulations of author
similarity in terms of their power to explain the empirical citation network. With the
best similarity formulation chosen, we inferred signed relations between the top cited
authors in each studied collaborative knowledge network. That is, to interpret the
relations between individual scientists, we looked at them through the lens of their
scientific community as a connected whole. These signed relations represent over-
citations and under-citations among these authors.

The analysis of the inferred signed relations among the authors revealed the following
findings. Contrary to our prior expectation, it is only in few of the studied empirical
data sets we have found a significant difference between the signed relations among
researchers who have previously co-authored and those who have not. Our prior
expectation was based on the hypothesis that coauthors, who are acquainted, (i) are
prone to selection bias and (ii) have a positive predisposition towards each other, both
of which would be reflected in their citation behaviour. Instead, coauthors on average
cite each other “fairly”, as expected from their topical similarities.

However, we found that more prominent authors—measured by the number of cita-
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tions and the number of coauthors they have—tend to be more polarising in the sense
that there are more diverse expressions of over-citation and under-citation from other
authors towards them. At this stage, we did not exclude confounding effects that could
undermine this finding, leaving that to future research. If this finding is confirmed,
we can argue that it highlights the increasing competition among authors with the
increase of their prominence. To address the issue of confounding, we could build
a baseline model, either a random network ensemble or an agent-based model, that
replicates the empirical numbers of publications and citations of the authors, as well
as their coauthorship relations. Then, this baseline model would show how much of
the observed tendencies could be expected at random.

We also identified that the authors tend to reciprocate in all studied empirical networks,
meaning that a pair of authors tends to have similar citation behaviour towards each
other—eithermutually over-citing ormutually under-citing each other. This tendency
is very mild in most of the scientific networks, but is quite strong in the patent
networks. In patents, the reciprocity is much higher in classes that are related to
hardware and pharmaceutical inventions, compared to the network related to software
solutions. As mentioned in Chapter 1, it is well established that humans tend to
reciprocate positive and negative relations. Thus, the fact that the inferred over-
citations and under-citations tend to be reciprocal, lends credibility to the claim that
our method exposes traces of social biases.

Lastly, we illustrated how the structure of a scientific community can be visualised by
means of network backbone inference based on the order preserving null model of
citations. Moreover, we have outlined how the inspection of the backbone based on
the null model that incorporates topical similarities can help in identifying citation
cartels and interdisciplinary pioneers.

We believe that the presented approach to analysing relations between authors has
an applied value. It can facilitate the decision making in academia by, for instance,
providing additional information to journal editors or funding agencies about author
relations when selecting peers for manuscript reviews or grant proposal evaluations.
We will further discuss these implications in Chapter 8.





Life is growth. If we stop growing, technically and spiritually, we are as good as
dead.

Morihei Ueshiba
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Dynamics
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Chapter 6

Growth of collaborative
knowledge networks

Summary

We study the evolution of collaborative knowledge networks by means of gen-
erative growth models. We formulate coupled models for citation growth that
account not only for the growth history of the citation network itself (citation
component), but also for network position of the authors of the cited artifacts
(social component). By fitting growth models based on individual growth events,
instead of aggregate properties of the final networks [124], we further this ap-
proach by estimating the statistical errors of the growth model parameters, which
are commonly neglected. We show that efficient model fitting can be performed
by sampling growth events uniformly through the evolution of the network. For
twelve empirical collaborative knowledge networks, we compare additive and
multiplicative forms of coupling between various citation and social components.
We find that in most of the cases, a model with coupling describes the observed
network best. Moreover, we find that including a social component that char-
acterises all of the authors of an artifact, leads to a better model, compared to
one that only characterises the single most prominent author. While we only
investigate the coupled growth of citations, we also outline a more comprehensive
model for the simultaneous growth of both citations and authorship relations.

This chapter has been written specifically for this dissertation.
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In the second part of this dissertation, we address the dynamics of collaborative
knowledge networks. As already discussed in Chapter 1, the collaborative knowl-
edge networks grow over time. New knowledge artifacts—scientific publications,
or patents—are constantly added to the network, along with their citation edges to
existing artifacts and the authorship edges to their authors (or inventors). Some of the
authorship edges are drawn to incumbent authors who are already in the network due
to previously authored knowledge artifacts. Others are drawn to newcomer authors,
who are added to the network at the same time as the corresponding knowledge artifact.
Figure 6.1 shows the growth of a small part of a collaborative knowledge network in
High-Energy Physics (INSPIRE data set). It starts with the leftmost snapshot and from
there, each successive snapshot shows the state of the network at a later time step.

Figure 6.1: Growth of a collaborative knowledge network.

The formation of edges in the network over time is driven and affected by various
mechanisms. As discussed in Chapter 5, topical similarity plays an important role in
the formation of citations, with the tendency that more citations are drawn between
the artifacts that are topically more similar. There is also evidence of preferential
attachment in citations, according to which artifacts that already have a large number
of citations tend to attract even more citations [9, 157, 159]. Another important
mechanism is the ageing of knowledge artifacts—also referred to as relevance decay or
novelty decay—with older artifacts attracting less citations over time [81, 125, 149, 211].
For authors, new coauthorship edges tend to be formed between the authors who have
previously co-authored artifacts [30, 74]. Preferential attachment is at play also in
coauthorship formation [133, 195].

The aforementioned mechanisms take into account and affect a single (either citation-
or coauthorship-) layer in collaborative knowledge networks. So far, very limited
research has been dedicated to the analysis of inter-layer mechanisms affecting the
formation of such networks. However, as early as 1968 in his seminal work Merton
discussed various mechanisms of how characteristics of authors (prominence, aca-
demic awards) may be influencing the recognition of their publications (in terms of
citations) [126]. In particular, he raised the question of whether the publications by
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better known researchers get more and faster recognition in the community in terms
of citations. It has been recently shown that, indeed, the centrality of authors in the
coauthorship network prior to a publication affects the number of citations that the
publication will receive [165]. Similarly, it has been shown that authors with many
citations tend to attract more coauthors in the future [133]. In this part of the disser-
tation, we aim to advance the line of research that investigates the inter-dependencies
of the dynamics of the different layers in collaborative knowledge networks.

In this chapter, we investigate the growth of collaborative knowledge networks over
time. Specifically, we focus on the coupling between the growth mechanisms of
citations and coauthorship layers.

6.1 Modelling approach

In Part I, we investigated the structure of collaborative knowledge networks using
statistical models that aimed to explain the observed networks. As such, the as-
sumptions about the data generating processes were quite general and not limited
to the collaborative knowledge networks. Namely, we assumed a biased urn model
underlying the formation of the aggregate network that can be used in any setting
where repeated interactions between nodes are observed. In contrast, in this part, and
in this chapter specifically, we investigate the dynamical mechanisms underlying the
formation of collaborative knowledge networks. Here, too, we employ a generative
statistical modelling approach, but such that specific dynamical rules of the network
evolution are the focus.

The overwhelming majority of studies on growing networks have focused on fitting
models of growth to macroscopic patterns of networks, such as the degree distribution
or community structure [14, 128, 133, 143, 176, 202]. Following this approach in our
previous research, we usedmaster equations from statistical physics to study the degree
distribution of co-evolving networks that follow the preferential attachment and clique
formation mechanisms [133].

In this chapter, however, we evaluate and compare different growth mechanisms on a
microscopic level [109, 124, 127]. Specifically, we evaluate howwell amodel can explain
the sequence of individual growth events in a network, instead of how well aggregate
network measures resulting from the models fit the observed data. This way we are
able to draw conclusions about the models directly with respect to growth process,



126 Chapter 6. Growth of collaborative knowledge networks

and not indirectly from statistical properties of the resulting aggregate network.

6.1.1 Coupled growth models

In this section, we formulate coupled growth models for the citation network between
knowledge artifacts and for the corresponding coauthorship network between the
contributors to these artifacts. Citation networks and their growth are extensively
studied in isolation, i.e., without accounting for the influences from the coauthorship
network [9, 105, 149, 159, 204, 205, 206]. As a result, there is an agreement in the
research community about general mechanisms involved in the growth of citations,
such as (i) fitness of the publication that influences how attractive the publication is
for citations [204], (ii) preferential attachment [2, 9, 159, 205, 206], (iii) decay of the
relevance of knowledge artifacts over time [79, 105, 149, 206].

In Section 2.4.1, we discussed a class of generative network growthmodels (cf. Eqs. (2.12)
to (2.14)) that build on the principle of proportional growth and are designed tomodel
the above-mentioned mechanisms. Starting with these models intended for single-
layer networks, we define growth models for the coupled evolution of two layers of
collaborative knowledge networks.

We study two general forms of coupling between two network layers, additive and
multiplicative. Without loss of generality, we focus on the formation of new citations
between knowledge artifacts, dependent on (i) the existing citation network and (ii) a
projection layer of the collaborative knowledge network on authors. We refer to the
first model component that is based on the citation network as cit, and to the second
model component as soc, for “social”, as it is based on a network of authors. We write
the additive form of coupling as

Pj(t; β) = β+ Pcit
j (t) + (1 − β+)Psoc

j (t), (6.1)

which means the probability Pj(t) to connect to artifact node j at time t is the weighted
mixture of two components defined on the citation layer, Pcit

j , and on the network
layer Psoc

j which has the authors as nodes. The parameter β+ is called mixture weight.
Such mixture models are used when the statistical population is known to comprise
sub-populations that are described by different probability distributions. The mixture
weight is, then, determined by the relative size of each sub-population. In our case,
the mixture formulation can be interpreted as if the node is chosen due to either one
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process, or the other, with the respective weights.

Before formulating the second, multiplicative, form of coupling, we introduce the
notion of odds. As explained in Chapter 3, the odds of an event reflect its relative
likelihood. The odds are proportional to the probability up to a constant factor, such
that

Pcit/soc
j (t) =

Wcit/soc
j (t)

∑l W
cit/soc
l (t)

, (6.2)

where Wcit/soc
j (t) is the odds to select the node j at time t. For instance, the linear

preferential attachment (cf. Eq. (2.11)) then writes as Wj = kj, i.e., the degree of the
nodes precisely sets the odds to select that node.

Using Eq. (6.2), we can write the multiplicative coupling form as

Pj(t; β) =
Wcit

j [Wsoc
j (t)]β

∗

∑l W
cit
l [Wsoc

l (t)]β∗ . (6.3)

We can interpret this coupling form as follows: the social component of growth scales
the effect of the citation component. That is, we see the growth component defined
on the citation layer as the main, baseline effect, while the social component biases it.
The formulation is similar to the notion of propensities introduced in Chapter 3. The
meaning of the parameter β∗ also differs from β+ in Eq. (6.1) for additive coupling: it
denotes the strength of the influence that the social component has on the growth of
citations.

6.1.2 Citation component

With the two general coupling forms introduced, we proceed with the specific for-
mulations of the two constituent components Pcit

j (t) and Psoc
j (t). We consider three

candidates for the citation component Pcit
j (t). We write these using the notation

introduced in Section 2.4.1.

PA: Linear preferential attachment with constant additive term,

Wcit
j (t) = kin

j (t) + α+, (6.4)
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where kin
j denotes the in-degree of the knowledge artifact j in the citation network

Gpc(t) (cf. Section 2.2), i.e., the number of citations of j at time t. The parameter α+

can assume any positive non-zero value, α ∈ (0, ∞). It cannot be zero as, in that case,
nodes with kin

j = 0 would never acquire citation edges according to Eq. (6.4).

PA-RD: Linear preferential attachment with constant additive term scaled by rele-
vance decay,

Wcit
j (t) = (kin

j (t) + α+)e−
t−tj
τ , (6.5)

where tj denotes the time at which the node j was added to the network, thus the odds
for node j to be cited at time t now also depend on the age of the node. For simplicity,
we will measure the time in terms of the number of knowledge artifact nodes in the
network. This means then tj = j if the nodes are labelled according to the order in
which they are added to the network. The formulation in Eq. (6.4) is a special case of
Eq. (2.14). The parameter τ determines the characteristic time of relevance decay and
can assume any positive non-zero value, τ ∈ (0, ∞).

PA-NL-RD: Non-linear preferential attachment scaled by relevance decay,

Wcit
j (t) = (kin

j (t) + 1)α
∗
e−

t−tj
τ . (6.6)

Similar to the PAmodel, we need to offset the degree to allow the zero-degree nodes to
attract their first edge. We choose to fix the offset to one to keep the model complexity
of the citation component the same in all definitions. That is, we still have one
parameter, α∗, controlling the degree related preference. In this case, it amplifies or
weakens the effect of the number of previous citations.

6.1.3 Social component

Let us now proceed with the formulation of a candidate set of social components
Wsoc(t). We will investigate three conceptually different formulations.

NAUT: First, we will study the effect of the team size on the citation dynamics.
The team size is the number of authors that wrote a given knowledge artifact. We
ask whether there is preference to cite artifacts that are made by larger teams [126].
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The hypothesis behind this is the following: the larger the group of people that
contributes to a knowledge artifact, the more cumulative effort is put into it, which
ideally translates into higher scientific impact of the artifact and a higher number of
citations. The team size of a knowledge artifact j is the in-degree k(a)in

j (t) in the bipartite
network Ga(t) = (Va(t), Vp(t), Ea(t)) of the authorship edges between authors and
publications (cf. Section 2.2):

Wsoc
j (t) = k(a)in

j (t). (6.7)

NCOAUT: The second formulation for the social component accounts for the con-
tributors’ centrality in the coauthorship network. For simplicity, we will limit ourselves
to the degree centrality. However, the method does not depend on this choice and
can be expanded to other centrality measures. The centrality of an author in the
coauthorship network is a proxy of how many people are acquainted with the author.
We may assume that the direct academic acquaintances of an author have a better
knowledge of the work of this author, meaning that the more acquaintances an author
has, the higher is the visibility of her work in the community. We define two variants
of this social component.

In the first variant NCOAUT, we aggregate the coauthors of all authors of a given
knowledge artifact. We use the notion of paths (cf. Eq. (2.5)) on the bipartite network
Ga corresponding to the authorship edges, in order to find the number of unique
coauthors:

Wsoc
j (t) = |{v ∣ ∃π3,jv(t)}|, (6.8)

where we count the unique endpoints v of the paths π3,jv of length three. On the
bipartite network, these paths starting at the knowledge artifact j necessarily end at
a node corresponding to an author (artifact–author–artifact–author). Recall that in
Section 2.1.2, we defined the paths πλ,ij as self-avoiding, meaning that in Eq. (6.8), we
do not count in the authors of j. Note that the number resulting from Eq. (6.8) is
different from the sum of the numbers of co-authors of each author of j, as the latter
would count the common co-authors multiple times.

MAXCOAUT: In the second variant of the social component based on coauthorship
centrality, we only account for the most central author [165]. For authors l ∈
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Va(t), (l, j) ∈ Ea(t) of the artifact j,

Wsoc
j (t) = max

l
(|{v ∣ ∃π2,lv(t)}|), (6.9)

where we count the number of unique coauthors of each author l by traversing the
bipartite networkGa(t) (2-paths author–artifact–author) andwe take the largest count.

NPUB: The third formulation of the social component encodes the author’ academic
experience measured in terms of the number of previous publications. The hypothesis
behind this formulation is that with growing experience of an author, each of her
subsequent publications are able to attract more citations. As with the previous
formulation, we define two variants.

In the first variant NPUB, for a knowledge artifact j, we count the number of distinct
artifacts written previously by the authors of j.

Wsoc
j (t) = |{v ∣ ∃π2,jv(t)}|. (6.10)

As in Eq. (6.8), this is different from summing the number of publications of each of
the authors, as doing so would count the publications co-authored by the authors of j
multiple times.

MAXPUB: In the second variant of social component that aims to measure the
academic experience, we only take the number of knowledge artifacts by one author j,
who wrote the most of them. So, for authors l ∈ Va(t), (l, j) ∈ Ea(t) of the artifact j,

Wsoc
j (t) = max

l
(k(a)out

l (t)), (6.11)

where the degree k(a)out
l of the author l in the authorship network Ga(t) shows the

number of artifacts written by l up to the time t.

The motivation to study the model variants MAXCOAUT and MAXPUB stems from the
discussion about Matthew effect by Merton, where he conjectures that most credit for
the publication is given to the most prominent author [126]. If these variants perform
better than their counterparts that aggregate the network positions of all authors of an
artifact, we can interpret that as support for Merton’s conjecture.
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6.2 Model fitting and selection

With candidate formulations for the two components in the model of coupled growth
introduced, we want to compare them and select the model that best explains the
growth of citations in empirical collaborative knowledge networks. In the following,
we describe themodel selection procedure. WeuseMLE approach to fit the parameters
of a model to the data (cf. Section 2.4.2). The general form of the log-likelihood
function provided in Eq. (2.15) writes our growth models as

ln ℒ(θ; G) =
N

∑
i=1

∑
(i,j)∈Epc

ln Pj(i; θ), (6.12)

where G is the collaborative knowledge network at the end of the growth process,
θ is the vector of model parameters, the nodes i ∈ Vp are enumerated according
to when they are added to the network. Hence, the outer summation in Eq. (6.12)
runs through the sequence of growth events in the network. The inner summation
runs through the nodes j ∈ Vp, j < i cited by the currently added node i. Finally,
Pj(i; θ) is the probability to observe the citation (i, j) according to the consideredmodel.
Equation (6.12) is based on the assumption that edges are drawn independently.

Then, the model parameters θ̂ that maximise the likelihood of the model given the
data are found by solving

𝜕 ln ℒ
𝜕θ |θ̂

= 0. (6.13)

An important feature of MLE method is that under certain mild conditions, the
estimated parameters θ̂ are normally distributed around the means that correspond
to the true values of the parameters, with variance-covariances that can be expressed
by the Fisher information matrix ℐ(θ̂),

Var(θ̂) = [ℐ(θ̂)]−1. (6.14)

The Fisher information matrix is the expectation of the second derivatives of the log-
likelihood function,

ℐ(θ) = − E [
𝜕2ℓ(θ)
𝜕θ 𝜕θ ] . (6.15)

In practice, the observed Fisher information matrix is used just by calculating the value
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Figure 6.2: The log-likelihood function per edge for the model PA-RD-NCOAUT fitted to
the collaborative knowledge network of JHEP. Each section plane of the shown two model
parameters corresponds to the maximum likelihood value of the third parameter. The red dot
shows the location of the maximum likelihood. It is the same in all three plots.

of the matrix at the parameter estimates, without applying the expectation operator.
The variance of the parameter estimates is inversely proportional to the number of
observations based on which the estimation is performed. This is because the Fisher
informationmatrix can be expressed as ℐ(θ) = Nℐ1(θ), where ℐ1(θ) is the information
matrix per observation.

For our problem of modelling the growth, we cannot analytically calculate the log-
likelihood in Eq. (6.12) and its derivatives, due to different normalisation factors in
each summand Pj(t; θ) (cf. Eq. (6.2)). Hence, we have to resort to numerical computa-
tion. However, because the formulated models are of well-behaving polynomial and
exponential form, we know that the likelihood function is smooth and convex, at least
locally [124]. To confirm that, in Fig. 6.2 we show the surface of the log-likelihood
function for one model, which combines the citation component PA-RD and the social
component NCOAUT according to the additive coupling form given by Eq. (6.1).

Instead of naively searching for the maximum of the likelihood function on a grid
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of all possible parameters, we utilise its convex shape and apply a greedy hill-climbing
algorithm. Such algorithms work as follows. Two values of the objective function (neg-
ative log-likelihood, in our case) are computed: for arbitrary initial parameters, and
for parameters that differ slightly from the initial ones. The parameters corresponding
to the lower value of the objective function are selected. In the next iteration, the
value of the objective function of the selected parameters is compared to the value for
slightly different parameters. The process is continued until convergence up to desired
precision is achieved, at which point the resulting parameters are taken as the ones that
minimise the objective function.

Some of themore advanced hill-climbing algorithms do not randomly choose the next
parameter values in each iteration. Instead, they numerically estimate the gradient of
the objective function at each iteration, in order to achieve the convergence in fewer
iterations. To find the gradient, the algorithm computes the Hessian matrix, which
for the log-likelihood function corresponds to the Fisher information matrix. That
means that as a result of MLE, we estimate not only the parameter values but also their
variances.

In other words, with the right choice of the optimisation algorithm, we are able to
obtain the error estimates of the parameters. One suitable algorithm is Broyden–
Fletcher–Goldfarb–Shanno algorithm. More specifically, we use the variant of the
algorithm, L-BFGS-B, that allows to set boundary constraints on the parameters and
that uses limited memory, making it more scalable [29, 99].

Once we obtain the maximum likelihood estimates of the parameters for all candidate
models, we perform a model selection according to the relation likelihood of the
models (cf. Eq. (2.21)) based on the Akaike Information Criterion (cf. Eq. (2.19)).
We cannot perform a more principled likelihood ratio test, because the models we
compare are not nested. We choose the Akaike Information Criterion over Bayesian
Information Criterion for the same reason.

6.2.1 Sampling growth events

The independence between growth events, i.e., between newly created citation edges,
which we assumed in our formulation of the growth models, allows us to implement
a highly scalable computational procedure that, in principle, can be applied to very
large networks. Because of this assumption, each summand of the log-likelihood
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function in Eq. (6.12) corresponds to addition of a single edge. This means that we
can split Eq. (6.12), corresponding to the whole growth history of the network, into
log-likelihoods of arbitrary samples of growth events. Let us denote the growing
collaborative knowledge network that has N consecutively added knowledge artifacts
as G1,N. Then, we can split the full series of growth events 1, … , N corresponding
to the addition of new knowledge artifacts to the network G1,N into K consecutive
subsets, with each subset adding ν = ⌊N/K⌋ knowledge artifacts. Each subsequent
subset l ∈ {1, … , K} starts with the network G1,lν and adds the next ν knowledge
artifacts. If we denote the sub-network that comprises the nodes and edges added in
the l-th subset of events as G(l−1)ν,lν, we can rewrite Eq. (6.12) as

ln ℒ(θ; G1,N) =
K

∑
l=1

ln ℒ(θ; G(l−1)ν,lν), (6.16)

where the log-likelihood for each subset l is given by

ln ℒ(θ; G(l−1)ν,lν) =
max(lν,N)

∑
i=(l−1)ν

∑
(i,j)∈Epc

ln Pj(i; θ). (6.17)

Now, if we estimate the model likelihood for each sample ℒ(θ; G(l−1)ν,lν) individually,
we obtain K parameter estimates θ̂1, … , θ̂K. As we discussed above, these parameter
estimates are normally distributed with the mean at the true value, and their variance
grows proportionally with decreasing number of events in the sample. Thismeans that,
in principle, one can adjust the sample size according to the desired precision level of
the parameter values.

6.3 Outlook: simultaneous growth of citations and authorships

So far, we have only discussed the growth of the citation network between publications
affected by the history of the whole collaborative knowledge network. However, the
outlined procedure of model fitting and selection can be applied to a more compre-
hensive formulation that models the simultaneous evolution of both citations and
authorship relations in the collaborative knowledge network. To obtain such a model,
we need to add the component responsible for the growth of authorship relations to
the already formulated component for the growth of citations (cf. Eqs. (6.1) and (6.3)).
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The model component Pa responsible for the authorship edges can be defined in the
same manner as we defined the component for citation formation. That is, we can
write the probability Pa

j for an author j ∈ Va(t) to be connected to the node of the
knowledge artifact that is newly added to the network at time t. The exact formulation
for Pa

j can be made based on the existing literature on the formation of collaborative
teams [30, 86, 128, 133]. The probability Pa

j of the node j ∈ Va(t) to be selected as the
author at time t can depend, e.g., on the number of previous coauthors (coauthorship
networkGaa); on the number of previously written publications (the bipartite network
Ga); or on the number of previous citations of the author j [133]. That is, the model
component for authorship formation can also implement a coupling between different
layers of the growing collaborative knowledge network. The component Pa

j must also
implement the addition of new authors to the network [74, 86].

If we denote the model component for the growth of citations, previously defined in
Eqs. (6.1) and (6.3), as Ppc(t; θpc), the joint model of citation and authorship formation
becomes

Pj(t; θ) =
⎧⎪
⎨
⎪⎩

Ppc
j (t; θpc) if j ∈ Vp(t),

Pa
j (t; θa) if j ∈ Va(t).

, (6.18)

where θpc are the parameters in the component of the citation formation and the θa

are the parameters in the component of authorship formation. That is, when an edge
is formed at time t between the newly added knowledge artifact and another node j,
that edge is modelled by Ppc

j if j ∈ Vp(t) is a knowledge artifact, and by Pa
j if j ∈ Va(t)

is an author.

So, multiple edges are created at each time step t that corresponds to the addition of
a new knowledge artifact. All these edges have the newly added artifact on one end,
and other artifacts (citation edge) or authors (authorship edge) on the other end. We
do not have to explicitly model other types of edges, such as coauthorships or author–
author citations, as these are projections of the two basic edge types that we model (cf.
Sections 1.1 and 2.2). If we assume independence between these newly created edges,
we can write the log-likelihood function of the model defined in Eq. (6.18) as

ln ℒ(θ; G) =
N

∑
i=1

⎡
⎢
⎢
⎣

∑
(i,j)∈Epc

ln Ppc
j (θpc) + ∑

(i,j)∈Ea
ln Pa

j (θa)
⎤
⎥
⎥
⎦

, (6.19)

where θ = (
θpc

θa ) is the vector of all parameters of the model.
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Once our model of simultaneous growth of the citations and authorships in a collab-
orative knowledge network is formulated according to Eqs. (6.18) and (6.19), we can
straightforwardly apply the procedure described in Section 6.2 for model fitting and
model selection.

6.4 Coupled growth of citations in empirical networks

In the following, we present the results of fitting the models defined in Section 6.1 to
the twelve empirical networks introduced in Section 2.3. First, we will validate that
the model parameters can be estimated based on a subset of the growth history of a
collaborative knowledge network, as described in Section 6.2. Then, for one empirical
network, we will discuss in detail the outcomes of different formulations of the model
of citation growth. And last, we will present the best fitting model formulations for all
studied networks.

Validation: sample size and temporal trends In Section 6.2.1, we described how
the parameters of a growthmodel can be estimated based on a sample of growth events.
In particular, we explained a procedure of dividing the whole history of the growth of
a collaborative knowledge network into subsequent growth periods. Let us now apply
that procedure to fit one model formulation to the data set of Nuc. Phys.. We choose
the model with additive coupling (cf. Eq. (6.1)) between the citation component PA-
RD defined in Eq. (6.5) and the social component NCOAUT defined in Eq. (6.8). In
the following, we refer to this model as PA-RD-NCOAUT. Noting that the parameter
estimation based on a sample is not limited to consecutive growth events (newly added
artifacts), we first select, uniformly at random, 5000 knowledge artifacts in the network
in order to reduce the computation time. As a result, the publication time of these
artifacts is also uniformly distributed, measured by the number of artifacts already
added to the network.

Figure 6.3 shows the three parameters α̂+, β̂+, ̂τof themodel PA-RD-NCOAUT (cf. Eqs. (6.1)
and (6.5)) estimated according to Eq. (6.17), along with their standard errors σ(θ̂) =

√Var(θ̂) calculated according to Eq. (6.14). Each of the twenty points in each of the
plots corresponds to a parameter, estimated based on the addition of 250 knowledge
artifacts to the network according to Eq. (6.17). The knowledge artifacts are divided
into twenty batches according to their publication order. That is, each of the 250
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Figure 6.3: Parameters with the standard error estimated based on event samples in 20
consecutive periods in the evolution of the network. Each sample has the same number of
growth events, n = 250. The black line corresponds to the estimate over the full growth period,
with dashed lines showing the standard error. The model is PA-RD-NCOAUT fitted for the
Nuc. Phys..

artifacts in an earlier batch is published before every artifact in a later batch. Note
that although we consider a small sample of artifact additions, all the variables in the
model (e.g., the number of citations j(t) of cited artifact in Eq. (6.5)) are computed
based on the whole network G(t) at time t, where t corresponds to the time when the
corresponding knowledge artifact is added to the network.

We also estimate the model parameters based on the addition of all 5000 selected
knowledge artifacts. The estimate of each parameter is shown in the corresponding
plot in Fig. 6.3 as a solid black line, along with the error shown as a dashed black line.
For the parameter α+, we see that the estimate and its range of the standard error based
on 5000 artifacts is within the error range of all but one estimates based on the smaller
sub-samples. The outcome is similar for β+, for which only two out of twenty estimates
based on a sub-sample do not cover the estimate based on all 5000 artifacts. With this



138 Chapter 6. Growth of collaborative knowledge networks

outcome, we can conclude that the maximum likelihood estimates of the parameters
α+ and β+ and their errors are valid.

For the parameter τ, we see a problemwith the error estimation. Firstly, themagnitude
of the error is approximately the same for 250 observations, and for 5000 observations.
Secondly, most of the error ranges based on the sub-samples do not cover the estimate
based on all 5000 selected artifacts. This means that some assumptions that make
the parameter estimation normally distributed are not met. Fortunately, from visual
inspection of the corresponding plot in Fig. 6.3, we see that the estimate of τ based on
the 5000 selected artifacts is in between the twenty estimates based on the sub-samples.
This means that, even though we cannot use the estimation of the parameter error for
τ, we can still use the parameter estimate itself.

As the twenty parameter estimates are based on temporally ordered growth events,
we can draw conclusions about the temporal trends in the growth of the collaborative
knowledge network. Remarkably, a closer look at Fig. 6.3 reveals that there are no
trends in model parameters over time—all parameter estimates fluctuate around a
constant mean. This is not trivial, as the time period that the twenty sub-samples
represent, span the whole history of the journal from 1956 to 2017. Even though the
landscape of science has changed fundamentally in this period ofmore than sixty years
span, the model parameters are more or less the same. We believe, that the outcome
would be different, if the evolution of the network was measured in real time, instead
of in terms of newly added publications [149].

Growth of JHEP network Above, we have established that the fitting of coupled
growthmodels for citations can be efficiently done based on a sample of growth events,
instead of basing it on the full growth history of a collaborative knowledge network.
Let us now investigate the fits of different model formulations on the example of JHEP
data set. Table 6.1 shows the outcomes for eleven model formulations. As above, we
perform themaximum likelihood estimation based on 5000 artifacts chosen uniformly
at random. As a baseline, we take a naivemodel of uniform citation formation (marked
UNIF in the table). In this model, we assume that each observed citation from a newly
added artifact is drawn to an already existing artifact uniformly at random. We report
the resulting log-likelihood of the model per edge, i.e., ln ℒ

|Epc|s
, where |Epc|s = 60131

is the number of edges in the considered sample. Given that we are considering the
addition of 5000 artifacts, we see that each of these, on average, cites |Epc|s/5000 ≈ 12
artifacts when it is added to the network.
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Table 6.1: Fitting growth models to the network of JHEP based on a sample of 5000 artifacts
that create |Epc|s = 60131 citations.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

UNIF -3.86236 464495 0.00
PA -3.75232 451264 0.00 8.47 ± 0.188
PA-RD -3.60539 433595 0.00 2.08 ± 0.057 2735
PA-NL-RD -3.61012 434164 0.00 0.93 ± 0.005 2644

PA-RD-NAUT -3.60267 433270 0.00 0.77 ± 1.000 2749 0.82 ± 1.000
PA-RD-NCOAUT -3.60015 432968 1.00 1.11 ± 0.074 2828 0.85 ± 0.007
PA-RD-MAXCOAUT -3.60099 433068 0.00 1.17 ± 2.546 2786 0.86 ± 0.299
PA-RD-NPUB -3.60229 433224 0.00 1.42 ± 0.437 2764 0.90 ± 0.012
PA-RD-MAXPUB -3.60313 433325 0.00 1.57 ± 1.584 2779 0.92 ± 0.611
PA-RDxNCOAUT -3.60167 433150 0.00 2.38 ± 0.471 2794 0.14 ± 0.010
PA-RDxNPUB -3.60313 433326 0.00 2.27 ± 0.051 2740 0.10 ± 0.006

Next, we fit threemodel formulations without the coupling term, i.e., we only consider
the dependence of new citations on the previous history of the citation network.
The three models correspond to the three formulations of the citation component in
Eqs. (6.4) to (6.6). By comparing the log-likelihoods and theAICs, we find that the two
models that include relevance decay, PA-RD and PA-NL-RD, considerably outperform
the simple preferential attachment model PA. As the preferential attachment mecha-
nism favours older nodes, we see that the high value of the parameterα+ = 8.47±0.188
in PA (which adds a constant term to odds of being cited) tries to compensate for
the relevance decay. The two models PA-RD and PA-NL-RD estimate a characteristic
relevance decay time τ ≈ 2700. Recall that we measure the time in terms of newly
added artifacts, so the value of τ shows the number of artifacts it takes to add to the
network after a given publication, before its relevance is reduced by a factor e ≈ 2.72.
Note that according to the non-linear preferential attachment model PA-NL-RD, the
preference is sub-linear on the number of previous citations, as α∗ = 0.93± 0.005 < 1.
Out of the two models with relevance decay, PA-RD fits the data better.

We now consider the additive coupling form defined in Eq. (6.1) between the citation
component PA-RD and all presented formulations of the social component. We refer to
these as PA-RD-<soc>, where <soc> is one of the formulations of the social component.
All these formulations perform better than the models without coupling, as reflected
in the corresponding values of the log-likelihood and the AIC. Among these, the
model that best fits the data is PA-RD-NCOAUT, which accounts for the total number of
coauthors of the authors of the cited artifact. This model is better than the other ones
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that account for the team size (PA-RD-NAUT), the number of publications previously
written by the authors (PA-RD-NPUB), as well as the formulations that only consider
the network position of the most prominent author (PA-RD-MAXPUB and (PA-RD-
MAXCOAUT)). The mixture parameter β+ = 0.85± 0.007 in the additive coupling shows
that approximately 85% of the influence on the growth of citations is associated with
the number of previous citations and 15% of the influence is associated with the social
component, i.e., the number of previous coauthors.

Finally, we consider themultiplicative coupling form, defined in Eq. (6.3), between the
citation component PA-RD and two formulations of the social component, NCOAUT and
NPUB. Both models result in strongly sub-linear effect of the social component on the
preferential attachment growth of the citations, with β∗ = 0.14±0.010 > 0 for NCOAUT
and β∗ = 0.10 ± 0.006 > 0 for NPUB. However, the effect of the social component is
statistically significant.

Having eleven different models fitted to the data, we can perform model selection
based on the relative likelihood wm of the models defined on the basis of the AICs
in Eq. (2.21). As a result, we find that PA-RD-NCOAUT is the sole selected model with
wm = 1.

Growth of twelve empirical networks Above, we have compared different models
of the growth of citations in one data set. We have considered seven model formula-
tions with coupling between layers of a collaborative knowledge network and three
formulations without coupling, i.e., the ones that only consider the citation network.
To have a baseline for comparison, we also included amodel in which the cited articles
are selected uniformly at random.

Here, we perform the same comparison for all twelve empirical collaborative networks
introduced in Section 2.3. As before, the parameters are estimated based on a random
sample of 5000 artifacts added to the network throughout its growth. The exception is
RMP,which in total has 3006 publications, all ofwhich are considered formodel fitting.
The number of citation edges |Epc|s drawn from the considered sample of artifacts
varies among the networks from 4318 for RMP to 60131 for the previously discussed
JHEP. The outcomes for all considered models for each of the networks are presented
in Appendix C. In Table 6.2, we present only the models that have a relative likelihood
wm > 0 for each of the networks.

We find that the selected models of the citations growth in most of the studied col-
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Table 6.2: The selected growth models for twelve collaborative knowledge networks.

Model m ln ℒ
|Epc|s

wm α+/∗ τ β+/∗

PR

PA-RD-NCOAUT -4.00314 1.00 0.95 ± 0.247 5185 0.90 ± 0.020

PRA

PA-NL-RD -4.13827 1.00 1.14 ± 0.224 8411

PRC

PA-NL-RD -3.92745 1.00 1.09 ± 0.007 4860

PRE

PA-NL-RD -4.14851 1.00 1.21 ± 0.013 9706

RMP

PA-RD-NPUB -2.84885 0.71 0.47 ± 0.086 480 0.85 ± 0.124
PA-RD-MAXPUB -2.84909 0.26 0.45 ± 0.032 479 0.84 ± 0.016
PA-RDxNPUB -2.84959 0.03 0.74 ± 0.315 480 0.19 ± 0.021

JHEP

PA-RD-NCOAUT -3.60015 1.00 1.11 ± 0.074 2828 0.85 ± 0.007

PR-HEP

PA-RD-NPUB -3.99631 1.00 0.65 ± 1.403 7347 0.87 ± 0.265

Phys. Lett.

PA-RD-NPUB -3.56096 1.00 0.40 ± 0.186 2991 0.81 ± 0.075

Nuc. Phys.

PA-RD-NPUB -3.61780 1.00 0.51 ± 2.072 3278 0.85 ± 0.129

PAT320

PA-RDxNCOAUT -3.35807 0.93 0.77 ± 0.061 1964 0.05 ± 0.026
PA-RDxNPUB -3.35816 0.07 0.77 ± 1.281 1958 0.05 ± 0.028

PAT424

PA-RDxNPUB -3.44645 1.00 0.49 ± 0.630 2817 0.07 ± 0.675

PAT703

PA-RD-NAUT -3.36720 1.00 0.46 ± 0.054 2740 0.93 ± 0.024
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laborative knowledge networks are coupled models that account both for a citation
component and a social component. All three exceptions are journals of physics
published by the American Physical Society. These are the journals PRA, PRC and
PRE. For all three, the model of non-linear preferential attachment PA-NL-RD is
selected. We do not know whether coupled models would be selected for these
journals as well, if we considered the citation component PA-NL-RD in coupledmodels.
We chose not to investigate these scenarios as for many of the studied networks
the exponent of the preferential attachment α∗ is not significantly different from
one (i.e., α∗ = 1 is within the estimated error range). Even for one of the three
journals, PRA, the exponent α∗ = 1.14 ± 0.224 is not significantly different from
one, which corresponds to the linear preferential attachment PA-RD. Notably, these
findings are in contrast with the claims by Golosovsky and Solomon, who argue that
citation growth follows the super-linear preferential attachment, with the exponent
α∗ ∈ [1.25, 1.3] [80].

In most of the networks for which the selected models are coupled, the form of this
coupling is the additive one. The effect of the social component in these networks,
measured by its mixture weight 1 − β+, ranges between 7–19%.

The main exceptions, for which the multiplicative coupling form is selected, are
PAT 320 and PAT 424. In RMP, the model PA-RDxNPUB with multiplicative coupling
is selected among three models with a low likelihood weight wm = 0.03. Thus, the
multiplicative coupling is primarily selected in the patent networks, and not in the
scientific networks. However, the parameter β∗ = 0.07 ± 0.675 of the multiplicative
coupling is statistically insignificant for PAT 424, as it includes the value β∗ = 0 at
which the effect of coupling diminishes. For PAT 320, the parameter β∗ is significant,
but has a low value (β∗ = 0.05 ± 0.026 for the model PA-RDxNCOAUT with wm = 0.93).
The third patent network PAT 703 is a notable outlier. First, different from the other
patent networks, additive coupling is selected for PAT 703. Second, it is the only
studied network for which the selected social component is the team size NAUT.

Given the choice between the social component based on thewhole teamof authors, or
on the most prominent author, the model based on the whole team is selected. Only
in the case of RMP, the model PA-RD-MAXPUB that includes the highest number of
publications among authors is selected with model likelihood wm = 0.26, along with
its counterpart for the whole team PA-RD-NPUB with wm = 0.71.

To summarise, we have found that in most of the networks, the coupled growth of
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citations that accounts for a social component has a higher likelihood to explain the
observed citations than the simple growth model that only considers the previous
history of the citation network.

6.5 Conclusion

In this chapter, we have studied the growth of the citation layer of collaborative
knowledge networks. We started by reproducing the thoroughly studied models of
growth based on preferential attachment that treat the citation network in isolation.
In these models, the addition of new citations depends on the previous history of
the citation network. Building on this, we have formulated coupled growth models
for citations, such that the addition of citation edges depends on two layers of a
collaborative knowledge network. Specifically, we add a social component of growth
that encodes the effect that the authors of an artifact have on the likelihood of the
artifact to be cited.

By fitting different model formulations, we have found that in the majority of the
studied empirical networks, the best model implements the coupling with the social
component. Among these, the additive coupling form is selected in most of the cases,
with the mixture weight of the social component between 7% and 19%. From the
selected models, we learn that the aggregated network positions of all the authors of
an artifact explain the citation growth better than the network position of only the
single most prominent author. This partially contradicts Merton’s conjecture that the
scientific community tends to attribute a publication merely to the most prominent
author. A model with the data of many authors is more complex than a model that
incorporates data one author, even though the difference in complexity is not easy
to quantify. Hence, one may say that these two models cannot be compared without
adding some suitable penalty. We leave it to the future research to investigate whether
this difference in model complexity affects the presented results in any way.

Our analysis was limited exclusively to citation growth, meaning that we took the
authorship relations observed in the data as a given. We did not question how the
network layers, on which the social components were defined, are formed. We have
outlined a model for the simultaneous growth of the whole collaborative knowledge
network. Investigating this comprehensive model will allow understanding the co-
evolution of the citation and authorship edges. Based on this, we may also be able
to understand the feedback mechanisms involved in the dynamics of the networks.
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Furthermore, we might gain insights into the constituents of a successful career path
of a researcher. For example, we may be able to learn whether it is a highly cited
publication that makes a researcher more attractive as a coauthor, thus making her
more central in the coauthorship network, or whether it is the prominent coauthors
that help to propel the number of citations towards her publications.

Among the limitations of our study is the fact that our models did not account for the
topical community structure in the collaborative knowledge networks. It is known
that artifacts in larger research areas tend to have more citations [104, 200]. We do not
know how the outcomes would have changed, if we had included the effect of topical
similarity in the growth of citations [30].

To summarise, there are three important contributions made by this chapter:

1 We have formulated coupled growth models of multi-layer networks, which
allows studying the inter-dependent dynamics of the layers. In the context
of collaborative knowledge networks, different layers—such as the citations
between publications, or the coauthorship layer—have been commonly studied
in separation, ignoring the influence of one layer on the dynamics of the other.

2 Contrary to the common approach of judging the growth models based on
highly aggregated properties of static networks (e.g., the degree distribution),
we have followed a more rigorous statistical approach that assesses the growth
models based on their likelihood to observe the growth process itself. That is,
we judge the models based on their likelihood given the sequence of individual
edges being added to the evolving network. To our knowledge, only two previ-
ous studies by Leskovec et al. [109] and by Medo [124] employed a comparable
microscopic approach to growth modelling.

We advance this approach to growth modelling of networks by providing stan-
dard errors for the model parameters. While error estimation is deemed nec-
essary in most fields involving statistical inference, it has so far been largely ne-
glected in the community studying network growth. However, the estimation of
parameter errors is necessary if we want to determine the statistical significance
of the outcomes.

3 We have shown that growth models can be studied in an efficient and scalable
manner for large networks by means of sampling of growth events uniformly
throughout the growth history of the network. Medo previously showed that
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the accuracy of model estimation grows with the time window in which the
growth of a network is considered [124]. The difference is that in our approach,
probing the network growth throughout the growth history implicitly accounts
for the growth process in between the probes, as the network properties that
define the models bear the marks of this intermediate growth.





Chapter 7

Social influence on attention
decay

Summary

In this chapter, we examine howattention towards knowledge artifacts—measured
by means of the citation rate—is distributed over time. It has been shown that
the citation rate on average follows a certain pattern: in the first period after
publication, the citation rate grows up to a maximum value, after which it decays
over time [149]. We study how the citation rate dynamics varies depending on the
positions of knowledge artifacts’ authors in the collaborative knowledge network.
We find that, on average, it takes less time to achieve the highest citation rate for
authors who either published more publications, or who have more coauthors.
However, for these authors, the decay in the citation rate is also faster, meaning
that their publications are forgotten sooner.

This chapter has been written specifically for this dissertation. Contains unpublished results by
Nanumyan V., Zingg Ch., Scholtes I., and Schweitzer F. Contains results from the Master’s thesis of
Ch. Zingg performed under supervision of V. Nanumyan and F. Schweitzer. VN analysed and interpreted
the results with the exception of fitting the exponential decay, which was provided by Ch. Zingg.

147
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This chapter is motivated by two recent studies [149, 165]. In the first study by Sarigol
et al. [165], scientific publications in the field of Computer Science are considered
successful if five years after publication they are among the top 10% of the most
cited articles published in the same year. Sarigol et al. find that the authors of suc-
cessful publications are considerably more central in the coauthorhip network than
the authors of non-successful publications. This finding holds for different centrality
metrics, such as degree, k-core, betweenness. Moreover, they find that the centrality
of the authors in the coauthorship network can predict the future success of their
publications. In particular, a simple statistical classifier performs remarkably well. It
marks as “successful” the publications by authors who are among the 10%most central
authors in the coauthorship network, according to different centrality metrics (and
combinations of those). The outcome of the best classifier achieves 60% precision,
which is an increase of a factor of six compared to the random guess. These findings
are in line with our own outcomes presented in the previous chapter. We have shown
that in many citation networks, the probability for a publication to be cited grows with
the number of coauthors (degree centrality in coauthorship network).

The second study by Parolo et al. [149] addresses the dynamics of attention towards
publications. The number of citations is taken as the proxy of attention. To study how
attention towards a publication changes over time, Parolo et al. look into the dynamics
of the citation rate of the publication, i.e., the number of citations per time unit. They
identify that the average dynamics of the citation rate over time has two stages. In the
first stage, which lasts for 2–7 years, the rate of citations grows, reaching a peak. After
the peak citation rate is reached, the second phase starts in which the citation rate
decays over time. This average dynamics of the citation rate is observed in multiple
scientific fields and over a long period of time. Specifically, the two-stage dynamics
is shown in physics, chemistry, biology and medicine over the course of thirty years
between 1960 and 1990.

In their study, Parolo et al. focus on long-term trends in attention decay. They find
that the average time to reach the peak citation rate decreases for articles published in
later years. Similarly, the decay rate increases for the articles published in later years.
That is, the decay becomes faster over time, meaning that nowadays, the publications
are forgotten sooner than they were in the past. Given the exponential growth of
new publications every year, the authors attribute these trends to the finite capacity
of scientists to follow new scientific literature. In support of this claim, they show
that both the time to the peak citation rate and the characteristic decay time stay
approximately the same throughout the whole considered period, if time is measured
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in terms of newly published articles and not in years. Thus, older publications are
forgotten not after a certain amount of time has passed, but after a certain number of
new articles has been published. This is also in agreement with the outcomes of the
last chapter, where we obtained stable parameter estimated for a growth model with
time measured in terms of new publications.

The finding that the total number of citations a knowledge artifact receives is positively
influenced by the social position of its authors indicates that there is higher attention
towards publications of more central authors. If we assume that scientists have a
limited attention capacity, it is plausible to attribute the increase in attention to a
diffusion of information about the artifacts, which is a function of social commu-
nication between scientists [87]. That is, scientists learn about some of the publica-
tions that they later cite through communication with other scientists. Without this
communication, they may not have ended up finding and citing these publications.
Thus, we conjecture that at least part of the attention towards publications is due
to communication between authors. We can further assume that the authors who
are more central in the coauthorship network have communication channels to more
scientists. Hence, the information about artifacts by more central authors can reach
a higher number of scientists through social communication than the information
about artifacts by less central authors.

Furthermore, we ask whether this increase in attention happens within a particular
time frame: is it mostly in the early period after publication, is it spread uniformly
over time, or does it happen after a rather long time has passed since publication? This
question can be answered by investigating the differences in citation rate dynamics
between the publications by authors who are central in the coauthorship network and
publications by authors who are not central.

7.1 Citation trajectories

If kin
i (δ) is the in-degree of the knowledge artifact i ∈ Vp at time δ in the network of

artifact citationsGpc (cf. Section 2.2), and ti is the time of publication of the knowledge
artifact i, we can write the citation rate of the artifact t = δ − ti time units later as

ci(t) =
kin
i (δ + Δt) − kin

i (δ)
Δt

. (7.1)
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Figure 7.1: Timeline of publications with the citations to older publications and the correspond-
ing authorship and coauthorship relations.

This is illustrated in Fig. 7.1, where the citation rate of artifact i after time t since
publication is the number of citations made during the time window Δt marked by
the blue shade. The time series ci(t) is called citation history or citation trajectory of
artifact i [149].

We are interested in comparing the dynamics of the citation rates among knowledge
artifacts. The total number of citations—and by extension, the absolute values of the
citation rates—vary strongly among artifacts. Hence, we follow the example of Parolo
et al. and we normalise the citation trajectory of each knowledge artifact by its peak
value cmax

i = maxt(ci(t)),
̃ci(t) = ci(t)/cmax

i . (7.2)

The left panel in Fig. 7.2 shows five exemplary normalised citation trajectories ̃ci(t)
of publications in PRA. We see that the patterns in citation trajectories of individual
publications are quite different. The blue and gray trajectories follow a similar pattern:
they reach the peak rate quite early, followed by a decrease over time. In case of the
yellow trajectory, the peak is also reached rather early on and is followed by a period
of low citation rate, which is in turn followed by another increase to a lower peak with
subsequent decay. The red trajectory slowly grows over time, achieving a rather late
peak, 12 years after publication, followed by a rapid drop in the citation rate. Lastly, the
purple citation trajectory corresponds to a relatively steady citation rate over the span
of almost 30 years. In the following, we will discuss the average citation trajectory in a
network. With these example trajectories, we illustrate that there is high variability
in the citation trajectories of individual publications, and that the average citation
trajectory will not generally apply to individual publications.
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Figure 7.2: Normalised citation rate ̃ci(t) of publications in PRA. (Left) ̃ci(t) shown for five
publications selected at random. (Right) the mean normalised citation rate C(t) for two
categories: publications by authors with fewer than 10 coauthors in total, and publications by
authors with 10 or more coauthors prior to the considered publication.

7.1.1 Mean normalised citation trajectory

In order to get an insight about the average dynamics of the citation rates, let us
calculate the mean normalised citation trajectory over all artifacts in the network as

C(t) =
∑N

i=1 ̃ci(t)
N

, (7.3)

where N = |Vp| is the number of knowledge artifacts.

We do not consider the artifacts published within the last 5 years covered in the
data, because, the lengths of their citation trajectories are too short, so that the two
characteristic phases in the citation trajectories cannot be observed. Dropping a
longer time period could have resulted in a better representation of the mean citation
trajectory, but that would be mean losing a considerable number of artifacts published
in recent years. For instance, for those 5 discarded years, the number of considered
publications drops from 69147 to 54782 for PRA, which means that more than 20%
of articles in this journal are published during the last 5 years. Instead of choosing a
longer period to omit, we discard the older artifacts for which the citation rate was
still growing at the latest time step observed in the data. That is, we only consider
knowledge artifacts which are already in the decay phase. This approach mostly
eliminates artifacts published closer to the end of the data set. However, it also
eliminates older publications that are called “sleeping beauties”—publications that
remain unnoticed for a prolonged period of time, only to become frequently cited
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afterwards [27, 201]. However, sleeping beauties are extremely rare, so discarding
them will not affect our statistical outcomes. For instance, Van Raan identified only
0.04% of the articles published in 1988 as sleeping beauties.

In the beginning of the chapter, we have posed the question of whether the centrality
of authors in the coauthorship network affects the dynamics of the citation rate of
their publications. Having defined the mean normalised citation trajectory for a set
of artifacts in Eq. (7.3), we can now get a first insight about this question. Let us look
at the mean trajectories of the most successful publications in a journal, defined as
top 10% most cited ones, divided into two groups according to the degree centrality
(i.e., the number of coauthors) of the their authors. We calculate the centrality of the
authors at the point when the publication is made. That is, for artifact i added at the
time ti, we build the coauthorship network Gaa(ti) based on the publications made
earlier, as shown by the yellow shading in Fig. 7.1. We have found in Chapter 6 that
the aggregated number of coauthors for all authors of a publication is a better predictor
for the citations of the publications than the number of coauthors of the most central
author. Hence, we characterise a publication by the total number of distinct coauthors
of its authors at the time of publications as defined in Eq. (6.8) on Eq. (6.8).

Now, we put the artifacts that are characterised by fewer than the median number of
coauthors in one group, and the rest in the second group. For instance, the median
number of coauthors of the authors is 10 for the 10% most cited publications in PRA.
The resulting mean normalised citation trajectories C(t) for these two groups of arti-
facts in PRA is shown in the right panel of Fig. 7.2. The red trajectory, corresponding
to less central authors, is averaged over 2109 artifacts and the blue trajectory for more
central authors is based on 3786 artifacts. We see that the mean citation trajectory
differs for the two groups of publications. For more central authors, a larger share
of total citations happens in the earlier time after publication. Also, the decay phase
after the peak citation rate is steeper for more central authors. In the following, we
will quantify the difference in citation trajectories. We will study the effect of author
centrality on the shape of citation trajectories. Specifically, we will study the time tpeaki
it takes to reach the highest citation rate to represent the first phase of the citation
trajectory of artifact i and the characteristic decay time to represent the second phase
of the trajectory. For the latter, we first need to define the functional form of the decay
phase.
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Figure 7.3: (Left) the empirical relation between the change ΔC(t) in mean citation rate and the
citation rate C(t) for the top 10% most cited publications in PRA and the linear fit according to
Eq. (7.5). (Right) the same relation for the two groups of publications corresponding to (red)
fewer than the median number of coauthors and (blue) median or greater number of coauthors.

7.1.2 Functional form of decay

Parolo et al. suggest two candidates for the functional form of the decay phase of the
citation trajectories of knowledge artifacts [149]: exponential function

̃ci(t) ∝ exp(−t/τ), (7.4)

and power law function ̃ci(t) ∝ t−τ. They find that both functions provide good fits
with low p-values. However, compared to each other by means of F-scores of curve
fitting to trajectories of individual artifacts, they identify the exponential function as
the better one for the majority of the artifacts.

Let us confirm heuristically that we too can describe the citation trajectories in our
data by means of the exponential function. If the equation ̃ci(t) ∝ exp(−t/τ) holds,
then the following also holds:

Δ ̃ci(t)
Δt

∝ − ̃ci(t)
τ

. (7.5)

In other words, change in the citation rate over time is negatively proportional to the
citation rate itself in the case of exponential decay form. The left panel of Fig. 7.3 shows
the empirical relation between the changeΔC(t) in themean citation rate and themean
citation rate C(t), averaged over the top 10% most cited publications in PRA. It also
shows the result of fitting a line to the relation, along with its slope τ = 9.03. This slope
identifies the characteristic decay time in years, which is the average time it takes for
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the citation rate to drop e ≈ 2.72 times. We fitted the line only to the decay phase by
omitting the first two years of the citation trajectories (cf. Fig. 7.2). As in this chapter
we are interested in the influence of the authors’ network positions on the citation
dynamics, it is not crucial to find the best functional form for the citation trajectories.
Instead, we need a plausible parametrisation of the shape of citation trajectories, in
order to carry out a statistical analysis for these shapes. Both the visual inspection of
Fig. 7.3 and the high coefficient of determination R2 = 0.82 indicate that we can use
the exponential form of the decay in our analysis.

Based on this heuristic analysis of the decay phase, we can already measure the
difference in the decay rate between the two groups of publications described above.
The right panel of Fig. 7.3 shows the corresponding empirical relations between ΔC(t)
and C(t), along with their linear fits. We see that the characteristic decay time is
approximately 8.5 years for publications made by more central authors, compared to
eleven years for publications by less central authors. Hence, the citation rate decays
faster for publications by more central authors.

7.2 Social influence on citation rate

Above we have found an indication that the position of authors in the coauthorship
network prior to the publication of an artifact affects the citation rate dynamics of this
artifact. Let us confirm this finding by means of statistical analysis. To this end, we
perform linear regression analysis on the characteristics of the citation trajectories of
individual knowledge artifacts, using the positions of their authors in the coauthorship
network as explanatory variables. More precisely, we study (i) the relation between the
time to the peak citations and the authors’ centrality and (ii) the relation between the
characteristic decay time and the authors’ centrality.

We formulate the characteristics of the time series of the citation rate ̃c(t) as the
dependent variable. We compute these time series for each knowledge artifact based
on finite Δt = 365.25 days in Eq. (7.1). We also consider an alternative to the calendar
time that measures time in terms of the number of knowledge artifacts in the growing
collaborative knowledge network. For this case, we take Δt = ΔN nodes as the unit
of time within which the citations are aggregated in Eq. (7.1), such that the resulting
time series has approximately the same length as the corresponding time series built
with respect to calendar time.
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(a) (b)
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Figure 7.4: The relation between the time to the peak citation rate for an artifact and (top) the
number of previous coauthors of its authors, (bottom) the number of previous artifacts by its
authors. The time is measured (left) in days and (right) in terms of new publications.

In the previous chapter, we have found that in some cases, the total number of citations
to an artifact can be better described by the number of other publications written by its
authors, instead of the number of their coauthors. Hence, here we also perform linear
regression of the citation trajectory of a knowledge artifact on the number of artifacts
previously written by its authors.

7.2.1 Time to the peak citation rate

Let us first analyse the relationship between the time tpeaki from the publication of an
artifact i to the time of the highest citation rate, and the network positions of its authors.
In order to find whether there is a significant relationship, we perform a linear analysis
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for log-transformed variables:

log10 tpeaki = βpeak
0 + βpeak

1 ⋅ log10 si, (7.6)

where si is derived from the properties of authors of the publication i. As mentioned
before, we consider two variables si: the number of previous coauthors and the number
of previous publications. As in Eq. (6.10), for an artifact i, we calculate the total number
of artifacts by its authors prior to the publication time ti as sNP

i = |{v ∣ ∃π2,iv(ti)}|,
where the paths π2,iv(ti) traverse the bipartite network Ga(ti) of authorship relations
between artifacts and authors. Similarly, we calculate the number of distinct coauthors
that the authors of i had prior to ti as sNC

i = |{v ∣ ∃π3,jv(ti)}| (cf. Eq. (6.8)). We choose
to log-transform the dependent and explanatory variables in Eq. (7.6), as they range
over several orders of magnitude.

Figure 7.4(a) shows the relation between tpeak and sNC
i for the publications in PRA.

from all the publications represented in the data, we have discarded those that were
published within the last (final?) five years, as well as those for which the peak citation
rate coincided with the end of the data. We find a statistically significant effect of the
number of coauthors on the time to reach the peak citation rate. The log-transformed

linear regression translates for the original variable as tpeaki ∼ [sNC
i ]β

peak
1 . The value of

the slope βpeak
1 has a noticeable effect on the time to the peak citation rate, given that the

range of the explanatory variable sNC
i covers several orders of magnitude. Specifically,

the slope βpeak
1 = −0.061 ± 0.005 predicts that the time it takes to reach the peak

citation rate for an artifact whose authors have 100 coauthors, will be on average 34%
faster than for an artifact whose authors only have one coauthor. We find a similar
statistical significant effect also for the number of previous publications sNP

i shown in
Fig. 7.4(c), with βpeak

1 = −0.063 ± 0.005, which means that the time it takes to reach
the peak citation rate tends to be shorter if the authors of the given publication have
written more publications prior to it.

So far we have measured time in terms of calendar days. As mentioned earlier, Parolo
et al. found that there is a strong long-term trend in scientific publications, namely that
the average time to the peak citation rate tpeak gets shorter over time [149]. Similarly,
they found that the average characteristic decay time also decreases over time. This
leads to a possible problem with the regression results discussed above. Specifically,
the explanatory variables sNC and sNP that we have used in the analysis may be prone
to long-term temporal trends. As a result, the dependence between tpeak and sNC/NP

i
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Figure 7.5: Validity of the linear regression shown in Fig. 7.4(b). (Left) quantile-quantile plot
of residuals versus normal distribution, (middle) Tukey-Anscombe plot and (right) the result of
permutation test based on resampling the data 10000 times.

can be a result of confounding, which threatens the interpretation that the time to
the peak citation rate is affected by the network position of the authors. One way to
investigate whether there is such confounding effect, is to include a term for the time
of publication ti in the regression in Eq. (7.6). Another way is to substitute the calendar
time by the alternative time measured by means of knowledge artifacts added to the
collaborative knowledge network. In line with the findings of Parolo et al. that tpeak

and the characteristic decay time τ become approximately constant over time, aswell as
our own findings in Section 6.4 that the parameters of a growth model of citations are
stable over time, this solves the problem of long-term trends affecting our regression
results.

With this, we now repeat the regression analysis given by Eq. (7.6) by measuring the
citation rate over a time unit, which is a certain number of newly published artifacts.
This number is constant for each collaborative knowledge network. As mentioned
above, this number is selected such that the resulting time series has the same length
as the corresponding calendar-based time series. It depends on the (calendar) time
span over which the network has been growing and on the number of artifacts added
to the network over time.

The results of the regression analysis for tpeak measured in terms of new knowledge
artifacts on sNC

i and sNP
i are shown in Figs. 7.4(b) and 7.4(d), respectively. We see

that the effect is smaller than in the model where time is measured in days. For
instance, for the regression on the number of previous coauthors sNC

i , the slope equals
βpeak
1 = −0.018 ± 0.005. Once we transform the logarithms Eq. (7.6) back to the

original variables, we find that an artifact written by authors who collectively have 100
coauthors on average tends to reach the peak citation rate 8.7% faster than an artifact
written by authors who have previously had only one coauthor.
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Thepresented regressions have no predictive power, as determined by extremely small
coefficients of determination. For instance, R2 = 0.001 for the regression shown in
Fig. 7.4(b) (comparative values for other cases), meaning that only 0.1% of the variance
is explained by the regression model. However, this lack of predictive power does
not mean that the inferred relations are not significant. While they are not useful for
prediction, they show that the time to the peak citation rate is not independent of
the network positions of authors. If it was, then the slopes of the regression would
not be significantly different from zero. To confirm that our analysis is valid, let us
look at the diagnostics for the regression residuals. As described in Section 2.4.2, for a
linear regression to be valid, the residuals must be normally distributed, their variance
must not depend on the explanatory variables and their expectation must be zero. To
test for normality, we look at the Quantile-Quantile (QQ) plot between the observed
distribution of the residuals and the theoretical normal distribution. If the observed
distribution is the same as the theoretical one, the points in the QQ-plot will all fall
close to the identity line. The result for the regression in Fig. 7.4(b) is shown in the
left panel of Fig. 7.5. In the lower tail, i.e., for smallest negative residuals, the lowest
observed quantile stretches over almost the whole negative range of the theoretical
quantiles. This is due to the finite size of the time unit over which we have computed
the citation rates. Non-normality of the residuals means that regression is not reliable
for predictions, but it does not threaten the significance of the slope [73].

Next, we check whether the expectation of the residuals is zero and is independent
from the explanatory variable. For this, we present the Tukey-Anscombe plot for
the regression in Fig. 7.4(b) in the middle panel of Fig. 7.5. It shows the residuals
against the predicted value of the dependent variable. The black line is the mean of
the residuals for different values of the dependent variable. We see that it is close to
zero for all values of the predicted dependent variable. Based on the Tukey-Anscombe
plot, we can also check the condition of homoskedasticity, i.e., that the variance of
the residuals are constant. To this end, we show the standard error of the residuals
against the predicted value of the dependent variable. We see that it grows slightly
with the dependent variable, but much less than one would assume judging from
the visual inspection of the regression plot itself in Fig. 7.4(b). These plots provide
only qualitative evaluation of the validity of the regression. As we are interested in
the statistical significance of the dependence between the dependent and explanatory
variables, we confirm the significance of the slope bymeans of a permutation test. That
is, we reshuffle the values of the explanatory variable between different knowledge
artifacts, while keeping the original values of the dependent variable. Thenwe perform
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the regression analysis on this shuffled data. By repeating this procedure multiple
times, we obtain a distribution of values of the regression analysis based on the
randomised data. The right panel of Fig. 7.5 shows the outcome for the slope of the
regression for 10000 randomised trials. We find that the distribution of the slope βpeak

1
is centred around zero, meaning that there is no randomly expected effect merely from
how the explanatory or dependent variables are distributed. We also find that the slope
in the observed data is far outside the distribution of the randomised data, confirming
the statistical significance of the identified dependence between the time to the peak
citation rate and the network position of the authors. Hence, we can conclude that the
network position of authors has a significant influence on the time it takes an artifact
to reach highest citation rate.

7.2.2 Characteristic decay time

Let us proceed with the investigation of the characteristic decay time. As before, we
perform a linear regression analysis. Here, the logarithm of the characteristic decay
time τi of the artifact i (cf. Eq. (7.4)) is the dependent variable, and the logarithm of
network position of the authors of i is the explanatory variable:

log10 τi = βτ
0 + βτ

1 ⋅ log10 si. (7.7)

As above, we consider (i) the number sNC
i of distinct coauthors that the authors of i had

prior to the publication time ti, and (ii) the total number of artifacts sNP
i by authors of

the artifact i written prior to ti. Figure 7.6(a) shows the result of the regression on
sNC
i for PRA data, where the citation rates are calculated over time measured in days.
For the lowest value of sNC

i = 1, the predicted τ is approximately 10 years. For the
highest values sNC

i ≈ 103, the predicted characteristic decay time τ ≈ 1500 days, or
approximately four years. Note, that the predicted values are in agreement with the
heuristically estimated average values shown in Fig. 7.3.

Figure 7.6(b) shows the result of the regression on sNC
i for the same data, but with the

time measured in new publications. In both regressions, we find that there is a sta-
tistically significant dependence between the characteristic decay time of the artifacts
and the number of coauthors their authors have. The dependence is smaller when the
time is measured bymeans of new publications. Recalling that the characteristic decay
time becomes shorter over long periods of time [149], this difference in the regression
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(a) (b)

(c) (d)

Figure 7.6: The relation between the characteristic decay time for an artifact and (top) the
number of previous coauthors of its authors, (bottom) the number of previous artifacts by its
authors. The time is measured (left) in days and (right) in terms of new publications.

parameters indicates that the regression suffers from confounding effects related to
this trend. Performing the regression of the characteristic decay time τi on the number
of previous publications sNP

i results in similar outcomes. We find that the citation rate
decays faster for the artifacts written by authors who have more prior publications,
or who have more prior coauthors. Rewriting Eq. (7.7) for the original variables, we
obtain τi ∼ si

βτ
1 . From this, the inferred value βτ

1 = −0.056 ± 0.005 in Fig. 7.6(b)
means that the characteristic decay time (measured by means of new publications) is
on average 30% shorter for the artifacts whose authors collectively have 100 coauthors,
compared to the artifacts whose authors have only one coauthor.

All four regression in Fig. 7.6 have similar residual statistics. Hence, let us now
check the validity of the linear regression analysis for one example, namely the one
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Figure 7.7: Validity of the linear regression shown in Fig. 7.6(b). (Left) quantile-quantile plot
of residuals versus normal distribution, (middle) Tukey-Anscombe plot and (right) the result of
permutation test based on resampling the data 10000 times.

in Fig. 7.6(b). We present the QQ-plot for the distribution of the residuals against
the theoretical normal distribution in the left panel of Fig. 7.7. Overall, within one
standard deviation, the observed distribution is reasonably similar to the normal
distribution. Beyond that, we see that the observed positive residuals tend to be larger
than predicted by the normal distribution. In contrast, the observed negative residuals
below one standard deviation, tend to be smaller than predicted. Next, we inspect
the Tukey-Anscombe plot shown in the middle panel of Fig. 7.7. We find that the
means of the residuals are very close to zero for all values of the predicted dependent
variable, with the standard deviation being almost constant. We can conclude that
the conditions of the validity of the linear regression are reasonably met. To confirm
the statistical significance that there is a dependence between the dependent and
explanatory variables, we perform a permutation test by reshuffling the values of the
explanatory variable sNC

i between artifacts. Performing the regression on 10000 such
randomisations, we obtain the distribution of the slope βτ

1 shown in the right panel of
Fig. 7.7. We see that the slope inferred for the empirical data is far from the distribution
from the randomised data. Hence, we can conclude that the number of previous
coauthors have a significant influence on the characteristic decay time of an artifact.
The more coauthors given authors have, the shorter is the characteristic decay time.

Results for twelve empirical networks So far we have only analysed the network
of PRA. We repeat the regression analysis described in Sections 7.2.1 and 7.2.2 for
all twelve empirical collaborative knowledge networks introduced in Section 2.3. The
inferred slopes for eight regressions are presented for each network in Appendix D.
Notably, when we compute the citation trajectories based on calendar time, in all
but one networks, for both the time tpeaki to reach the peak citation rate and the
characteristic decay time τ, we find statistically significant dependence on the network
position of the artifacts’ authors (both on sNC

i and sNP
i ). In all regressions with
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statistically significant slopes, the dependence is negative, i.e., βpeak
1 < 0 and βτ

1 < 0.
The exception is PAT 703, for which the regressions for τ result in weakly significant
slopes (0.01 < p-value < 0.05).

When we compute the citation trajectories over time measured in terms of newly
added artifacts, the slopes in the corresponding regressions become smaller. In this
case, for all patent networks, the time tpeaki to peak citation rate does not depend
on the network positions of the authors. However, the characteristic decay time τ
is still significantly affected in PAT 320 and PAT 424. For networks from the APS
and INSPIRE data sets, the parameter βτ

1 is not significant only in JHEP and PR (for
bothsNC

i and sNP
i ). The parameter βpeak

1 is not significant only in PR-HEP, Nuc. Phys.
and PRC.

7.3 Conclusion

In this chapter, we have investigated the effect of authors’ network positions on the
shape of the citation trajectories of their knowledge artifacts. We have found that in
the majority of networks, there is a statistically significant effect. Specifically, with
growing centrality of an artifact’s authors, the shape of its citation trajectory tends to
skew towards the time of its publication.

In the beginning of this chapter, we have conjectured that the artifacts of more central
authors have more visibility due to a larger number of social communication channels
of these authors. We also suggested that this increase in visibility in turn affects the
citation dynamics. If this conjecture is true, then our findings indicate that this effect
of increased visibility tends to happen with a short period of time after publication.
One possible explanation for this is the following. When a new publication is made,
the authors “advertise” it to the scientific community by presenting it in conferences
and seminars, by sharing it on social media etc. This behaviour happens within a finite
time period, after which the authors stop actively promoting the given publication.

This explanation is merely speculative. The analysis we have presented only shows that
the network positions of authors significantly influence the citation trajectories, but it
does not provide insights about the mechanisms behind this influence. In future, we
may use generative modelling to learn more about these underlying mechanisms. For
instance, hypotheses about these mechanisms can be formulated and tested using the
framework of coupled growth models presented in Chapter 6.



Chapter 8

Conclusions

To conclude this dissertation, we summarise the main outcomes in the context of the
research questions posed in Chapter 1. We also discuss the original contributions to
different scientific fields and provide an outlook for future research.

In contrast with the tradition of studying citation networks and coauthorship net-
works in separation, we focused on questions about these networks that can only be
addressed if they are considered as parts of one multi-layer network. We called this
multi-layer network collaborative knowledge network, to reflect the fact that knowl-
edge artifacts—patents and scientific publications—are often written collaboratively
by multiple authors.

8.1 Summary in perspective

Part I of the dissertation was devoted to exploring the structural properties of collab-
orative knowledge networks. It is well known that these networks are characterised
by pronounced community structures. We identified that new generative models are
needed. Hence, we formulated the research question RQ 1, which was to develop
a network ensemble for collaborative knowledge networks that can account for the
heterogeneities in dyadic interactions. To this end, in Chapter 3 we developed the
generalised hypergeometric ensembles. These build upon two components. The first
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component sets the number of possible edges between each pair of nodes in the
network. A such, it incorporates combinatorial constraints on the networks. We
showed how to implement a variant of the Molloy-Reed configuration model in this
component. In Chapter 5, we also showed how to implement the constraints stem-
ming from temporal ordering of events. The second component of the generalised
hypergeometric ensembles, which we called edge propensities, encodes the different
preferences among pairs of nodes to form edges. What we achieved is a method that
can be applied far beyond collaborative knowledge networks. Any network that is
a result of repeated interactions can be modelled with our ensembles. This includes
co-occurrence and co-location data in human mobility, natural language processing,
biology and ecology; emails; messages, likes, re-tweets and mentions in online social
networks.

Having developed the generalised hypergeometric ensembles, we addressed research
question RQ 1(a), which was to identify a meaningful signal in a noisy network. We
followed two approaches. In the first approach, we inferred edge propensities from a
network of repeated interactions by fitting the generalised hypergeometric ensembles
to the observed network. The idea behind this is based on the fact that the edge
propensity shows the tendency of a pair of nodes to form an edge, which goes beyond
the combinatorial expectation. Then, the fitted propensities indicate the strengths of
the ties between pairs of nodes, corrected for the combinatorial effects. Hence, we
can regard these fitted propensities as signal, separated from the combinatorial noise.
With an example of agent based model, we showed that the propensities predicted
the friendship relations better than just the raw edge counts. In the second approach
we followed a conventional method of backbone inference. We selected the pairs of
nodes that interact more than expected from a null model. The novel contribution
in this case is that the null model is not limited to combinatorial effects, but can
encode preferences between nodes by means of edge propensities. This allowed us
to reveal previously hidden structures in author–author citations, which we suggested
may indicate special roles or anomalous behaviour among authors.

We argued that science is prone to social biases, as any other social enterprise. As
the challenging goal, in RQ 2 we set to explore and quantify traces of social biases
in the structure of collaborative knowledge networks. For this, in Chapter 4 we
developed a new statistical tool that measures how far a given observation is from
the central tendency of a distribution. In Chapter 5, we exposed significant over-
citations and under-citations between authors. We achieved this by modelling the
citation network between authors with the generalised hypergeometric ensemble that
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accounts for topical similarities between authors and respects the temporal sequence
of their publications. The inferred over-citations and under-citations do not necessar-
ily indicate social biases. However, we can safely exclude authors that cite each other as
expected from the suspicion that social biases affect their behaviour. The authors who
are subject of social biases are necessarily among the ones for whomwe identified over-
citations and under-citations. Hence, even though our procedure does not explicitly
expose social biases, it makes a large step towards that.

In Part II we addressed the dynamical aspects of collaborative knowledge networks.
We identified that coevolution of the different layers of collaborative knowledge net-
works is not studied enough, given a great amount of literature devoted to the growth
of citation networks and coauthorship networks separately. Hence, we in research
question RQ 3 we set to define and study a model for the coupled growth of the
collaborative knowledge networks. In Chapter 6, we focused on the growth of citations
among knowledge artifacts in the context of thewholemulti-layer collaborative knowl-
edge network. We confirmed our expectation that such holistic models outperform
the models based merely on the isolated citation network in explaining the citation
formation in the majority of the studied empirical networks. In order to evaluate
our coupled models, we employed the maximum likelihood estimation technique
based on the formation of individual citation edges. This microscopic approach of
evaluation of the growth process itself is in stark contrast with the bulk of existing
studies, which evaluate the goodness of a model based on the aggregate properties of
the final state of the network. We also utilised a well-known property of maximum
likelihood estimation, which allows estimating errors of model parameters. While
reporting statistical errors is considered necessary in most of scientific fields, it has
been ubiquitously neglected in the community that studies growth of network, and in
network science at large. By focusing only on citation formation, we only answered
the research question partially. A more comprehensive answer would also study the
formation of authorships in collaborative knowledge networks, for which we outlined
the corresponding models for future research.

Based on the citation dynamics of an artifact, we addressed RQ 4, which questioned
how the network position of authors influences the attention towards knowledge
artifacts. Specifically, we investigated the dynamics of the citation rate, which is
considered as a proxy for the attention towards a knowledge artifact. Based on the
existing literature, we parametrised the citation trajectory of an artifact—the time
series of the citation rate—by means of (i) the time it takes for the artifact to reach
the highest citation rate and (ii) the characteristic decay time after the highest citation
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rate. We found a statistically significant influence of authors’ network position on both
parameters of the citation trajectories. However, we did not conclusively identify the
extent of this influence and the mechanisms behind it.

To sum up the outcomes, throughout the dissertation we found indications that the
layers of collaborative knowledge networks are strongly inter-dependent. The effects
of this inter-dependence may stay unnoticed, or, in the worst case, be misinterpreted
if the layers are considered in separation. Only thanks to treating collaborative knowl-
edge networks as multi-layer networks, we were able to arrive to our conclusions.

8.2 Scientific contribution

Here we summarise the relevance of the outcomes of this dissertation in specific sci-
entific fields. Generally, they fall under two categories, methodological and problem-
oriented. The methodological outcomes mainly contribute to network science. The
outcomes in the second category are all focused at quantifying and understanding the
social aspects in science, thus contributing mainly to the field of scientometrics.

So far, there is one peer-reviewed publication that covers a part of the presented results.
This is a position paper about inference of network backbones using generalised
hypergeometric ensembles. It appeared in the proceedings of the 9th international
conference on Social Informatics [37]. The generalised hypergeometric ensembles
and the majority of the related results in Chapter 3 are digitally archived and publicly
available [36]. Most of the content of the dissertation was presented in conferences,
workshops and seminars. The generalised hypergeometric ensembles and the signed
measure of deviations were presented at NetSciX, the central winter conference on
Network Science. The full procedure for inferring signed relations from multi-layer
networks used was presented at Complex Networks satellite meeting to Statphys26
conference and at NSF-FAST Workshop on Machine Learning. Lastly, all the methods
and findings that are of relevance in scientometrics were discussed and well-received
in a seminar at CWTS Centre for Science and Technology Studies in Leiden.

ComplexNetworks Network science deals with the issues of representing relational
data as networks, as well as developing new methods for analysing these networks. In
most real systems, the interactions between the elements happen in a stochastic man-
ner. Hence, the resulting networks exhibit a mixture of regular and random patterns.
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For this reason, network ensembles are an invaluable tool for studying these networks.
The comparison of the network representations of real systems to network ensembles
allows disentangling regular and random patterns, potentially uncovering important
properties of the underlying system. The generalised hypergeometric ensembles and
the related methods of backbone extraction, multiplex network regression, inference
of signed deviations contribute precisely to this line of research.

Evolution of networks is another major topic in network science. Many networks
representing real systems grow over time, and there is ample attention devoted to
studying this growth. In Chapter 6, we contributed to multiple facets of this line of
research. Firstly, we generalised a commonly used models of single-layer network
growth to multi-layer networks. Secondly, we exposed the problem that statistical
errors are largely neglected in this line of research. We showed how to address this
issue for generative growth models by using standard methods of statistics.

Data Mining and Data Science These interdisciplinary sub-fields of Computer
Science focus onmethods and algorithms for finding patterns and insights in large data
sets. As such, they amalgamate methods from applied statistics, machine learning and
information science, as well as theories from the application domains. To deal with
large data sets, amajor emphasis is made on improving the computational efficiency of
these methods. Topics of data mining that may benefit from our contributions include
graph summarisation, collective entity resolution and anomaly detection in relational
data. For instance, the latter aims at identifying patterns in data that do not comply
with the expected behaviour. That is exactly what our signed measure of deviations
does, whenever one’s expectations are formed based on a probability distribution.

Scientometrics This field of science studies science itself by measuring scientific
impact, mapping scientific fields, and developing indicators for actionable insights in
policy and management of science. Management of science—for instance, allocating
funds and selecting peers for evaluations—becomes more and more difficult due to
increasing size and specialisation of academia.

In the recent decades, citation based indicators have been growing in popularity. They
provide an easy way to rank researchers, journals and institutions. However, a debate
about the adequateness of such indicators is growing as well. One of the arguments
against them is that such a complex endeavour as science cannot be objectively quan-
tified by means of highly aggregated numbers. Another important argument against
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these simplistic indicators is the Goodhart’s law [82]: when a measure becomes a
target, it stops being a goodmeasure. Amore specific formulation of this phenomenon
by Campbell exposes the problem further [33]. It states that “The more any quanti-
tative social indicator is used for social decision-making, the more subject it will be
to corruption pressures and the more apt it will be to distort and corrupt the social
processes it is intended to monitor”. Although there is an increasing awareness about
these problems of citation based indicators, their simplicity still provides a safe haven
for lazy and irresponsible decision-making. We believe that more formal studies are
needed to quantify and expose the deficiencies of citation-based evaluation of science.
We hope that our findings that citations are significantly influenced by social aspects
will have an impact in this direction.

On a more positive note, we believe that our methods can be used in scientometrics
research to quantify and better understand the inter-relations between normative and
social aspects of science. Also, as we discuss in the next section, we hope to contribute
to the tool-set of science managers by developing a support tool for peer selection,
based on our method of identifying over-citing and under-citing researchers.

Social and Political Sciences Analysis of social networks plays a central role in
quantitative Social andPolitical Sciences. For instance, cosponsorhsip networks formed
between politicians as a result of their joint involvement in legislative initiatives are
an invaluable resource for political scientists. Political polarisation a major topic of
interest, which can be studied based on the topological properties of these networks.
Our methodology to infer signed relations has already been used in this context in the
recent doctoral dissertation of Simon Schweighofer [174].

Social scientists are as interested in negative social relations, as in positive ones. We
have already discussed that there is a lack of data on signed social networks. One
reason for this, we argued, is the reluctance in publicising negative relations. Another
reason is that nowadays most of the data on social networks comes from online
platforms, which are designed to provide a pleasant environment for interactions.
Hence, they often technically limit the possibility to express negative attitudes. For
example, there is the phenomenon of “liking” in online social networks, but there is
often no formal way to “dislike”. Our approach to circumventing this positivity bias by
treating lack positive interactions as negative relations, creates an untapped potential.
The abundant social networks on just positive interactions become a resource for
studies on conflicts, structural balance, and other phenomena that need data on both
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positive and negative social relations. Similarly, the multiplex network regression
based on our ensembles provides a principledmethod for in-depth quantitative studies
on the topic of homophily.

Systems Biology and Ecology In the recent years, a large shift in research takes
place in biology. The reductionist approach of studying isolated components of bio-
logical systems is superseded by the holistic approach that studies the interrelations
between these components. For instance, biological processes at a cell level involve
interactions of a large number of proteins. These protein–protein interactions form
a network, analysis of which is nowadays a major research topic. Uncovering the
topological patterns of protein interactions is a key to understanding themicro-macro
link between molecular interactions and the biological functions at the organism
level. Databases of protein interactions are difficult to compile and involve complex
experiments and data processing. As a result, these databases are not always reli-
able [189]. The experiments involve measurement errors, so statistical inference plays
an important role in identifying pairs of interacting proteins. Network theoretical
methods are already heavily used in this context, and we believe that our generalised
hypergeometric ensembles can have an impact here as well. Researchersmay be able to
construct informed null models for biological network inference in a manner, similar
to how we customised the combinatorial component of the ensemble for the citations
between authors.

Ecologists study mutualistic networks between plants and animals in order to under-
stand the interactions and dependencies between species in an ecological systems [11].
For instance, they use these networks to study the resilience of ecological systems.
Many findings in this line depend on statistical analysis of the observed—usually
error-prone—networks against statistical null models. Here as well, our framework
may have an impact by providing analytically tractable models, when previously only
simulations were were used.

8.3 Outlook

It is safe to say that all presented outcomes of this dissertation can be improved or
extended further. In the following, we outline directions towards some of the major
limitations and noteworthy extensions. Most of the original contributions are yet to
be submitted to peer-reviewed scientific outlets. Hence, some of the following will be
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addressed while shaping the manuscripts for submission.

One issue with the network representation of collaborative knowledge spaces, is the
discrepancy between the coauthorship edges and the real underlying collaborations,
as discussed in Chapter 2. We suggested that this problem is especially pronounced
in the large teams, where the combinatorial exploding number of coauthorship edges
cannot, in principle, represent the real collaborations between researchers. We tackled
this problem by reducing the fraction of publications by very large teams of authors.
In future, we would like to investigate further the relation between the network repre-
sentation and the underlying real interactions in collaborative knowledge networks.

We strongly believe that the generalised hypergeometric ensembles have a largely unex-
plored potential. To understand this potential better, we need to thoroughly compare
it with other network ensemble frameworks, such as exponential random graphs. We
envision that our framework can be used in many applications where interactions
are a result of combinatorial and regular mechanisms. The ensemble can be tailored
to better represent the generative processes in these applications. For example, we
have initial results for cosponsorhsip networks between political parties, for which we
formulated the combinatorial part of the ensemble based on the bipartite structure
between politicians and the political interventions. Ideally, we would also develop
a method for combining different combinatorial processes, in a similar fashion to
the multiplex regression for the edge propensities. Another unexplored application
area is the higher order phenomena in networks. So far, only dyadic interactions are
modelled by the ensembles. We would like to investigate how to incorporate group
interactions, such as triadic closure, and causal paths into the framework.

With respect to the signed measure of deviations, we do not yet fully understand how
the extreme values of the measure correspond to statistical significance. In particular,
this must be understood for the case when the underlying distribution is discrete.
Whenever we inferred significant signed relations, we chose the filtering threshold
heuristically. The next step is to find an optimal threshold for a particular network.
We also see the need for thorough comparison between the performance of backbone
inference based on the signed measure and on a more conventional percentile-based
approach. We envision an application of inferring signed relations in dynamical
networks. For instance, in the context of cosponsorship-based studies of political
polarisation, we can quantify the contribution of a sub-network to the polarisation.
This sub-network can corresponds to individual political interventions. Hence, we
can measure which interventions have a polarising and which have a depolarising
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effect. For this, the signed relations can be inferred for the sub-network against the
baseline provided by the whole network. Finally, we would like to carry out a detailed
validation of the outcomes of inferring signed relations against sociological theories.
One particular aspect of this asks for particular attention. To our knowledge, structural
balance theory is only formulated for undirected signed networks. Instead, in our
applications we also inferred directed signed relations. In order to assess the structural
balance theory in these applications, the theory itselfmust be extended for the directed
case.

Regarding the inference of under-citations and over-citations among authors, we
constructed the ensemble based on only one measure of topical similarity. However,
the multiplex network regression allows combining different similarity measures into
the propensities to cite. For instance, we mentioned that we would need to include
also text-based similarities in the model, in order to gain more insights about citation
cartels. Hence, in future research we plan to investigate the combinations of different
similarity measures with respect to their explanatory power for observed citations
between authors. On top of that, the identification of certain patterns in the inferred
signed networks will include network-theoretical and information-theoretical con-
siderations. For the discussed example of identifying the interdisciplinary pioneers,
one could consider the betweenness centrality of authors in the inferred network.
A more sophisticated model formulation will also open the possibility for practical
applications. Below, we will discuss one such application.

Whenmodelling coupled growth, we only focused on the citation formation. In follow-
up research, we would like to investigate the full model of collaborative knowledge
network growth, which wemerely outlined so far. Thismay also allow us to investigate
feedbackmechanisms between the normative and social aspects driving the formation
of the networks.

In the last chapter, we provided the first indications that there are social influences
on the citation trajectories of knowledge artifacts. We did not discuss the extent and
origins of these influences. To this end, we reckon a combination of generative and
discriminative modelling is needed. We used simple linear regression of parameters
that characterise the shape of citation trajectories. Instead, considering the time series
of individual citations towards an artifact and applying suitable methods, e.g., Cox
regression, may lead to deeper insight about the social influences on the citation
dynamics.
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PeerSelect: a practical application Onemotivation for our study of over-citations
and under-citations stemmed from the fact that scientific output is evaluated in a peer-
review process. In order for this process to work efficiently, the recommendations
by the reviewers must be based on the scientific merit of the reviewed work, and
not on the social relations between the reviewer and the submitting authors. There
are mechanisms in place, such as double blind reviews, that try to address this issue.
However, often a reviewer is able to infer the authors of the submission, even when
the names are not provided. Social biases between scientists working in the same field
will also necessarily affect the peer review process, if such scientists are selected as
reviewers. These biases could be potentiallymitigated by a random choice of reviewers.
However, this is no longer possible in many cases. The increasing specialization of
research, the limited availability of experts overwhelmed by requests, the information
overload to keep updated, the conflict of interests renders the number of available
reviewers very small. Hence, the limited choice of reviewers makes an even larger
impact on the outcome of the peer review process, which hampers its reliability [152].
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Figure 8.1: A diagram of an information sys-
tem to support the peer review process in
manuscript and project proposal evaluation

The role of chance in the selection of
reviewers was already discussed in lit-
erature [44]. But very recently it was
shown [49] that even small biases in the
reviewers decisions can have big conse-
quences in funding rates. As a conse-
quence, such biases need to be addressed
to improve both the quality of funded ap-
plications and equality among principal
investigators.

To mitigate these problems, we propose
a support tool for peer selection. Cur-
rent systems, such as ScholarOne by
Thomson Reuters, provide journal edi-
tors and funding agencies with a list of
potential reviewers for a given submis-
sion. This list is compiled by matching
research interests of reviewers and the
submitting researchers, based on meta-

data extracted from published manuscripts. Another system is Reviewer Finder
used by Elsevier. It matches areas of expertise and provides a very basic detection of
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conflict of interests in terms of prior coauthorship. Based on text mining and keyword
matching, the existing tools for peer selection ignore the social dimension that is the
main source of conflict.

Our envisioned data-driven support system for the selection of reviewers is based on
the framework presented in this dissertation. It is not intended to replace existing
tools, but to extend them. Once a potential pool of candidate reviewers is identified
by the conventional means, our tool will analyse the signed relations between these
candidates and the reviewed authors. The decision makers will be able to tune the
parameters of the model underlying the signed relations. In particular, they will be
able to include or exclude similarity layers from the model, depending on what they
consider to have a desirable or undesirable influence on the citation behaviour of the
authors. For instance, theymay consider correcting for the homophily due to preferred
language of publications of the authors. The architecture of the proposed information
system is shown in Fig. 8.1. It will rely on large bibliographic databases and web
technologies. It will connect with other systems through APIs and will provide an
interactive interface for the end users. Multiple publishers and funding agencies have
already expressed their interest in this tool.
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Appendix A

Signed relations in Eurovision
song contest

To complement Section 4.2.2, below we show results of applying the signed measure
of deviations Φ defined in Eq. (4.6) to the network of votes between countries in the
Eurovision song contest. Figure A.1 shows the relation between the values of Φij and
the cultural distance dij between countries i and j computed according to Eq. (4.11).
While in Fig. 4.9 only the countries with at least 25 co-occurrences in the contest were
considered, here all the countries with at least one co-occurrence forwhich the cultural
dimensions are defined by Hofstede [91] are included.

0.5 1.0 1.5 2.0
cultural distance

1.0

0.5

0.0

0.5

1.0 y ( 0.15 ± 0.024) x

Figure A.1: The signed relations and the Hofstede’s cultural distance between countries that
co-participated in the Eurovision song contest at least once.
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Table A.1: Themost under-voting and over-voting pairs of countries in Eurovision song contest
aggregated between 1975 and 2015. All the pairs co-participating at least once in the contest are
considered.

Most under-represented Φ

Andorra Georgia -0.991
San Marino Bosnia & Herz. -0.980
Andorra Armenia -0.972
Andorra Bosnia & Herz. -0.961
Italy Azerbaijan -0.961
Armenia Azerbaijan -0.957
Bulgaria Italy -0.953
Turkey Serbia -0.948
Ireland Armenia -0.947
Croatia Armenia -0.943
Lithuania Armenia -0.943
Azerbaijan Armenia -0.940
Switzerland Ukraine -0.932
Serbia & Monte. Turkey -0.932
Serbia Turkey -0.927
Czech Republic Romania -0.925
Latvia Turkey -0.915
San Marino Ukraine -0.913
Andorra Serbia -0.912
Lithuania Bosnia & Herz. -0.909

Most over-represented Φ

Serbia & Monte. F.Y.R. Macedonia 1.000
Andorra Monaco 1.000
Serbia & Monte. Croatia 0.998
Serbia Bosnia & Herz. 0.993
Turkey Georgia 0.993
Moldova Romania 0.991
Croatia Serbia 0.989
Austria Serbia & Monte. 0.982
Cyprus Greece 0.978
Slovenia Serbia 0.977
Albania Italy 0.977
Lithuania Georgia 0.968
Montenegro Bosnia & Herz. 0.959
Azerbaijan Turkey 0.954
Georgia Armenia 0.953
Georgia Azerbaijan 0.933
Turkey Azerbaijan 0.926
Serbia & Monte. Bosnia & Herz. 0.923
Turkey Armenia 0.910
Romania Moldova 0.898

Similarly, TableA.1 corresponds toTable 4.1with the difference that thewhole network
is considered and not only the countries with at least 25 co-occurrences.
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Table B.1: The multiplex network regression for the citations among the 200 most cited authors
on four definitions of author similarity. The networks correspond to three classes in the patent
data set (cf. Section 2.3).

Similarity β(Ω)
0 β(Ω)

1 AIC

PAT320

aut-in 2.486 ± 0.065 *** 1.021 ± 0.028 *** 12071.26
aut-out 1.036 ± 0.014 *** 0.714 ± 0.017 *** 17607.32
pub-in 1.972 ± 0.036 *** 0.375 ± 0.023 *** 12050.51
pub-out 1.027 ± 0.014 *** 0.309 ± 0.013 *** 17636.67

PAT424

aut-in 9.318 ± 236.067 1.751 ± 0.197 *** 1627.257
aut-out 1.600 ± 0.038 *** 0.475 ± 0.102 *** 2873.178
pub-in 2.504 ± 0.094 *** 1.508 ± 0.243 *** 1854.111
pub-out 1.641 ± 0.038 *** 0.665 ± 0.092 *** 2835.283

PAT703

aut-in 2.167 ± 0.047 *** 1.073 ± 0.052 *** 10241.04
aut-out 1.490 ± 0.022 *** 0.295 ± 0.027 *** 12051.36
pub-in 1.691 ± 0.026 *** 0.554 ± 0.033 *** 10883.58
pub-out 1.466 ± 0.022 *** 0.222 ± 0.021 *** 12137.28
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(a) PR (b) PRA (c) PRC

(d) PRE (e) RMP (f) JHEP

(g) PR-HEP (h) Phys. Lett. (i) Nuc. Phys.

(j) PAT 320 (k) PAT 424 (l) PAT 703

FigureB.1: Signed relationsΦ based on the generalised hypergeometric ensemblewith causality
preserving possibility matrix Ξ and edge propensities Ω inferred from the best fittin similarity
definition. The order of rows and columns corresponds to a hierarchical clustering performed
on Ω.
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Appendix B

Signed relations among top
cited authors
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Table B.2: The multiplex network regression for the citations among the 200 most cited authors
on four definitions of author similarity. The networks correspond to five journals in the APS
data set (cf. Section 2.3).

Similarity β(Ω)
0 β(Ω)

1 AIC

PR

aut-in 9.534 ± 65.436 2.210 ± 0.019 *** 36044.65
aut-out 9.592 ± 65.107 2.170 ± 0.018 *** 37156.95
pub-in 3.013 ± 0.025 *** 1.135 ± 0.009 *** 27672.36
pub-out 3.253 ± 0.032 *** 1.197 ± 0.009 *** 30300.33

PRA

aut-in 8.922 ± 49.686 2.673 ± 0.015 *** 93994.79
aut-out 2.452 ± 0.029 *** 2.183 ± 0.013 *** 103814.7
pub-in 3.123 ± 0.022 *** 1.172 ± 0.005 *** 56759.82
pub-out 2.914 ± 0.018 *** 1.238 ± 0.005 *** 69131.14

PRC

aut-in 8.109 ± 28.018 1.789 ± 0.008 *** 134506.6
aut-out 8.462 ± 31.001 1.385 ± 0.007 *** 144462.7
pub-in 2.794 ± 0.026 *** 0.632 ± 0.004 *** 116824.6
pub-out 3.026 ± 0.036 *** 0.648 ± 0.004 *** 125867.6

PRE

aut-in 9.560 ± 63.985 2.602 ± 0.018 *** 47552.62
aut-out 5.238 ± 0.434 *** 2.233 ± 0.015 *** 51077.64
pub-in 3.145 ± 0.025 *** 1.190 ± 0.008 *** 32414.45
pub-out 3.072 ± 0.023 *** 1.219 ± 0.008 *** 38349.14

RMP

aut-in 0.610 ± 0.049 *** −0.580 ± 0.164 *** 3540.834
aut-out 0.782 ± 0.058 *** 0.137 ± 0.099 3489.553
pub-in 0.659 ± 0.049 *** −0.214 ± 0.210 3544.965
pub-out 0.759 ± 0.061 *** 0.106 ± 0.130 3490.815
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(a) PR (b) PRA (c) PRC

(d) PRE (e) RMP (f) JHEP
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Acollab
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(g) PR-HEP (h) Phys. Lett. (i) Nuc. Phys.

(j) PAT 320 (k) PAT 424 (l) PAT 703

Figure B.2: Logistic regression for the sign of Φij on the number of collaborations between
authors i and j (cf. Eq. (5.11)) for the 200 most cited authors in twelve empirical networks.
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Appendix C

MLE of coupled growth
models

In this appendix we present the results of maximum likelihood estimation of coupled
growth models that are discussed in 6. To reiterate, the growth of citation networks is
studied under the assumption that the arrival of new citations to a knowledge artifact
generally depend on the number of existing citations, on the age of the artifact and on
a measures of social position of the contributors to the artifact. Below are the tables
with the outcomes for twelve networks that are categorised according to the dataset
from which the network is build. The three datasets are the Inspire-HEP, APS and the
patents with disambiguated inventors [114].

C.1 APS journals
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Table C.1: MLE of growth in the network of PR with |Epc|s = 26291.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

PA -4.27084 224571 0.00 4.27 ± 0.140
PA-RD -4.00829 210768 0.00 1.24 ± 0.032 5133
PA-NL-RD -4.00878 210794 0.00 1.03 ± 1.000 4924
PA-RD-NAUT -4.00656 210679 0.00 0.81 ± 0.121 5145 0.88 ± 0.436
PA-RD-NCOAUT -4.00314 210499 1.00 0.95 ± 0.247 5185 0.90 ± 0.020
PA-RD-MAXCOAUT -4.00336 210511 0.00 0.95 ± 0.165 5208 0.90 ± 0.026
PA-RD-NPUB -4.00431 210561 0.00 0.95 ± 6.055 5166 0.90 ± 0.399
PA-RD-MAXPUB -4.00487 210590 0.00 0.95 ± 1.487 5171 0.91 ± 0.274
PA-RDxNCOAUT -4.00579 210638 0.00 1.31 ± 1.637 5168 0.11 ± 0.113
PA-RDxNPUB -4.00528 210611 0.00 1.36 ± 0.418 5202 0.12 ± 0.582

Table C.2: MLE of growth in the network of PRA with |Epc|s = 27335.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

PA -4.38439 239696 0.00 1.44 ± 0.052
PA-RD -4.14304 226504 0.00 0.80 ± 0.031 8879
PA-NL-RD -4.13827 226243 1.00 1.14 ± 0.224 8411
PA-RD-NAUT -4.14224 226462 0.00 0.65 ± 0.239 8659 0.95 ± 0.062
PA-RD-NCOAUT -4.14248 226476 0.00 0.69 ± 0.983 8574 0.97 ± 0.507
PA-RD-MAXCOAUT -4.14234 226467 0.00 0.75 ± 0.332 9020 0.98 ± 0.012
PA-RD-NPUB -4.14046 226365 0.00 0.62 ± 1.229 9064 0.94 ± 0.082
PA-RD-MAXPUB -4.14057 226371 0.00 0.62 ± 0.047 9044 0.93 ± 0.009
PA-RDxNCOAUT -4.14210 226454 0.00 0.84 ± 0.594 8808 0.05 ± 0.071
PA-RDxNPUB -4.14138 226415 0.00 0.87 ± 0.091 8988 0.07 ± 0.009

Table C.3: MLE of growth in the network of PRC with |Epc|s = 32358.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

PA -4.16538 269569 0.00 2.05 ± 0.072
PA-RD -3.92961 254313 0.00 1.10 ± 0.064 5030
PA-NL-RD -3.92745 254173 1.00 1.09 ± 0.007 4860
PA-RD-NAUT -3.92949 254307 0.00 1.04 ± 1.499 4998 0.99 ± 0.345
PA-RD-NCOAUT -3.92936 254298 0.00 1.04 ± 0.139 4982 0.99 ± 0.063
PA-RD-MAXCOAUT -3.92947 254305 0.00 1.05 ± 0.284 4998 0.99 ± 0.025
PA-RD-NPUB -3.92930 254295 0.00 1.02 ± 0.038 5017 0.98 ± 0.005
PA-RD-MAXPUB -3.92948 254306 0.00 1.06 ± 0.274 5011 0.99 ± 0.086
PA-RDxNCOAUT -3.92946 254305 0.00 1.11 ± 0.036 4980 0.01 ± 0.007
PA-RDxNPUB -3.92943 254303 0.00 1.10 ± 0.919 4980 0.02 ± 0.190
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Table C.4: MLE of growth in the network of PRE |Epc|s = 15355.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

PA -4.27311 131229 0.00 0.80 ± 0.036
PA-RD -4.15347 127557 0.00 0.60 ± 0.090 10465
PA-NL-RD -4.14851 127405 1.00 1.21 ± 0.013 9706
PA-RD-NAUT -4.15287 127541 0.00 0.47 ± 0.049 11047 0.94 ± 0.016
PA-RD-NCOAUT -4.39126 134862 0.00 181.22 ± 1.759 13732 0.97 ± 0.016
PA-RD-MAXCOAUT -4.38981 134817 0.00 153.98 ± 2.027 13349 0.98 ± 0.042
PA-RD-NPUB -4.15212 127518 0.00 0.52 ± 0.250 10776 0.96 ± 0.025
PA-RD-MAXPUB -4.15209 127517 0.00 0.52 ± 0.230 10820 0.96 ± 0.065
PA-RDxNCOAUT -4.15264 127533 0.00 0.63 ± 0.060 10675 0.04 ± 0.074
PA-RDxNPUB -4.37193 134268 0.00 163.60 ± 1.358 14659 0.23 ± 0.010

Table C.5: MLE of growth in the network of RMP |Epc|s = 4318.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

PA -3.09255 26709 0.00 0.75 ± 0.051
PA-RD -2.85988 24702 0.00 0.62 ± 1.000 458
PA-NL-RD -2.85675 24675 0.00 1.27 ± 0.037 446
PA-RD-NAUT -2.85799 24688 0.00 0.50 ± 1.349 463 0.91 ± 0.294
PA-RD-NCOAUT -2.85437 24656 0.00 0.53 ± 0.043 475 0.92 ± 0.015
PA-RD-MAXCOAUT -2.85466 24659 0.00 0.52 ± 0.041 475 0.92 ± 0.014
PA-RD-NPUB -2.84885 24609 0.71 0.47 ± 0.086 480 0.85 ± 0.124
PA-RD-MAXPUB -2.84909 24611 0.26 0.45 ± 0.032 479 0.84 ± 0.016
PA-RDxNCOAUT -2.85453 24658 0.00 0.68 ± 0.064 483 0.12 ± 0.020
PA-RDxNPUB -2.84959 24615 0.03 0.74 ± 0.315 480 0.19 ± 0.021
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C.2 INSPIRE journals

Table C.6: MLE of growth in the network of PR-HEP with |Epc|s = 23089.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

UNIF -4.37538 202046 0.00
PA -4.18728 193362 0.00 2.14 ± 0.069
PA-RD -4.00319 184863 0.00 0.99 ± 0.032 7041
PA-NL-RD -4.00023 184727 0.00 1.10 ± 0.009 6691
PA-RD-NAUT -4.00249 184833 0.00 0.76 ± 0.299 7105 0.92 ± 0.042
PA-RD-NCOAUT -3.99780 184616 0.00 0.69 ± 1.128 7461 0.89 ± 0.063
PA-RD-MAXCOAUT -3.99813 184631 0.00 0.68 ± 0.295 7396 0.89 ± 0.029
PA-RD-NPUB -3.99631 184548 1.00 0.65 ± 1.403 7347 0.87 ± 0.265
PA-RD-MAXPUB -3.99745 184600 0.00 0.66 ± 0.036 7277 0.88 ± 0.009
PA-RDxNCOAUT -4.00153 184789 0.00 1.04 ± 0.098 7265 0.08 ± 0.011
PA-RDxNPUB -4.00128 184777 0.00 1.07 ± 0.034 7327 0.08 ± 0.009

Table C.7: MLE of growth in the network of Phys. Lett. with |Epc|s = 11713.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

UNIF -4.04097 94664 0.00
PA -3.81230 89309 0.00 1.35 ± 0.055
PA-RD -3.57415 83732 0.00 0.69 ± 0.021 2817
PA-NL-RD -3.56929 83618 0.00 1.16 ± 0.215 2729
PA-RD-NAUT -3.57389 83728 0.00 0.61 ± 0.226 2823 0.96 ± 0.210
PA-RD-NCOAUT -3.56816 83594 0.00 0.50 ± 0.087 2904 0.88 ± 0.972
PA-RD-MAXCOAUT -3.56823 83595 0.00 0.47 ± 0.968 2916 0.87 ± 0.279
PA-RD-NPUB -3.56096 83425 1.00 0.40 ± 0.186 2991 0.81 ± 0.075
PA-RD-MAXPUB -3.56206 83451 0.00 0.39 ± 0.093 2994 0.81 ± 0.036
PA-RDxNCOAUT -3.57159 83674 0.00 0.74 ± 0.508 2895 0.10 ± 0.054
PA-RDxNPUB -3.56861 83604 0.00 0.79 ± 0.054 2968 0.15 ± 0.034
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Table C.8: MLE of growth in the network of Nuc. Phys. with |Epc|s = 25238.

Model m ln ℒ
|Epc|s

AICm wm α τ β

UNIF -4.07215 205546 0.00
PA -3.85150 194410 0.00 2.15 ± 0.066
PA-RD -3.62676 183069 0.00 0.92 ± 0.042 3110
PA-NL-RD -3.62602 183031 0.00 1.05 ± 0.006 3067
PA-RD-NAUT -3.62673 183069 0.00 0.87 ± 1.563 3106 0.99 ± 0.126
PA-RD-NCOAUT -3.62370 182916 0.00 0.67 ± 0.073 3180 0.92 ± 0.023
PA-RD-MAXCOAUT -3.62419 182941 0.00 0.68 ± 0.474 3161 0.93 ± 0.144
PA-RD-NPUB -3.61780 182618 1.00 0.51 ± 2.072 3278 0.85 ± 0.129
PA-RD-MAXPUB -3.61893 182675 0.00 0.52 ± 0.037 3262 0.86 ± 0.019
PA-RDxNCOAUT -3.62441 182952 0.00 0.97 ± 0.033 3234 0.10 ± 0.011
PA-RDxNPUB -3.62102 182781 0.00 1.05 ± 0.212 3359 0.16 ± 0.013
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C.3 Patents

Table C.9: MLE of growth in the network of PAT 320 |Epc|s = 27425.

Model m ln ℒ
|Epc|s

AICm wm α τ β

PA -3.41308 187209 0.00 2.75 ± 0.086
PA-RD -3.35871 184229 0.00 0.76 ± 0.026 1895
PA-NL-RD -3.35907 184249 0.00 1.05 ± 0.039 1931
PA-RD-NAUT -3.35847 184218 0.00 0.65 ± 0.544 1897 0.97 ± 1.579
PA-RD-NCOAUT -3.35867 184229 0.00 0.74 ± 0.900 1887 1.00 ± 0.012
PA-RD-MAXCOAUT -3.35868 184229 0.00 0.75 ± 0.372 1902 1.00 ± 0.005
PA-RD-NPUB -3.35871 184231 0.00 0.76 ± 0.392 1903 1.00 ± 0.020
PA-RD-MAXPUB -3.35871 184231 0.00 0.75 ± 0.186 1890 1.00 ± 0.015
PA-RDxNCOAUT -3.35807 184196 0.93 0.77 ± 0.061 1964 0.05 ± 0.026
PA-RDxNPUB -3.35816 184201 0.07 0.77 ± 1.281 1958 0.05 ± 0.028

Table C.10: MLE of growth in the network of PAT 424 |Epc|s = 9163.

Model m ln ℒ
|Epc|s

AICm wm α τ β

PA -3.49190 63995 0.00 1.08 ± 0.052
PA-RD -3.44782 63189 0.00 0.49 ± 0.058 2684
PA-NL-RD -3.45524 63325 0.00 1.16 ± 0.018 3128
PA-RD-NAUT -3.44782 63191 0.00 0.49 ± 1.000 2684 1.00 ± 1.000
PA-RD-NCOAUT -3.44782 63191 0.00 0.48 ± 1.253 2677 1.00 ± 1.000
PA-RD-MAXCOAUT -3.44782 63191 0.00 0.48 ± 2.727 2672 1.00 ± 1.000
PA-RD-NPUB -3.44782 63191 0.00 0.49 ± 0.657 2682 1.00 ± 1.000
PA-RD-MAXPUB -3.44782 63191 0.00 0.48 ± 1.000 2671 1.00 ± 1.000
PA-RDxNCOAUT -3.44729 63181 0.00 0.49 ± 0.024 2767 0.04 ± 0.036
PA-RDxNPUB -3.44645 63166 1.00 0.49 ± 0.630 2817 0.07 ± 0.675
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Table C.11: MLE of growth in the network of PAT 703 with |Epc|s = 11156.

Model m ln ℒ
|Epc|s

AICm wm α+/∗ τ β+/∗

PA -3.40168 75900 0.00 1.69 ± 0.076
PA-RD -3.36803 75151 0.00 0.61 ± 0.374 2824
PA-NL-RD -3.37129 75224 0.00 0.96 ± 0.013 3732
PA-RD-NAUT -3.36720 75135 1.00 0.46 ± 0.054 2740 0.93 ± 0.024
PA-RD-NCOAUT -3.36804 75154 0.00 0.59 ± 0.258 2754 1.00 ± 0.824
PA-RD-MAXCOAUT -3.36803 75154 0.00 0.60 ± 2.062 2783 1.00 ± 1.000
PA-RD-NPUB -3.36803 75154 0.00 0.60 ± 2.104 2772 1.00 ± 1.000
PA-RD-MAXPUB -3.36803 75153 0.00 0.61 ± 1.000 2807 1.00 ± 1.000
PA-RDxNCOAUT -3.36797 75152 0.00 0.60 ± 0.190 2819 0.01 ± 0.318
PA-RDxNPUB -3.36802 75153 0.00 0.61 ± 0.030 2835 0.01 ± 0.013
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Appendix D

Outcomes of regressions in
Chapter 7

In this appendix, we present the results of linear regression analysis for twelve empiri-
cal collaborative networks described in Section 2.3. We report the inferred parameters
βpeak
1 and βτ

1 of Eqs. (7.6) and (7.7). We regress the time tpeaki it takes the artifact i
to reach its peak citation rate, on the total number sNC

i of distinct coauthors that its
authors collectively had prior to artifact i and the total number sNP

i of distinct artifacts
that its authorswrote prior to i. The characteristics βpeak

1 and βτ
1 of the citation rate time

series are computed based on calendar time units (days) and based on the alternative
time measured by means of new artifacts (pubs) added to the collaborative knowledge
network.
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Table D.1: Results of regression analysis for three patent classes.

si Time βpeak
1 βτ

1

PAT320

NC days −0.115 ± 0.014 *** −0.114 ± 0.016 ***
pubs 0.006 ± 0.013 −0.051 ± 0.015 ***

NP days −0.119 ± 0.013 *** −0.121 ± 0.015 ***
pubs −0.003 ± 0.012 −0.057 ± 0.013 ***

PAT424

NC days −0.107 ± 0.020 *** −0.100 ± 0.030 ***
pubs −0.017 ± 0.019 −0.145 ± 0.031 ***

NP days −0.100 ± 0.017 *** −0.086 ± 0.026 **
pubs 0.002 ± 0.016 −0.093 ± 0.027 ***

PAT703

NC days −0.076 ± 0.017 *** −0.047 ± 0.023 *
pubs 0.024 ± 0.018 −0.005 ± 0.023

NP days −0.075 ± 0.015 *** −0.048 ± 0.020 *
pubs 0.032 ± 0.016 * 0.008 ± 0.020
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Table D.2: Results of regression analysis for four largest journals in Inspire-HEP data set.

si Time βpeak
1 βτ

1

JHEP

NC days −0.048 ± 0.012 *** −0.061 ± 0.009 ***
pubs −0.048 ± 0.011 *** −0.002 ± 0.008

NP days −0.027 ± 0.010 ** −0.026 ± 0.008 ***
pubs −0.034 ± 0.010 *** 0.011 ± 0.007

PR-HEP

NC days −0.112 ± 0.007 *** −0.159 ± 0.007 ***
pubs −0.007 ± 0.006 −0.054 ± 0.008 ***

NP days −0.103 ± 0.006 *** −0.135 ± 0.007 ***
pubs −0.013 ± 0.006 * −0.039 ± 0.007 ***

Phys. Lett.

NC days −0.065 ± 0.012 *** −0.080 ± 0.016 ***
pubs −0.084 ± 0.012 *** −0.123 ± 0.016 ***

NP days −0.069 ± 0.011 *** −0.070 ± 0.014 ***
pubs −0.083 ± 0.012 *** −0.102 ± 0.014 ***

Nuc. Phys.

NC days −0.062 ± 0.009 *** −0.117 ± 0.010 ***
pubs −0.008 ± 0.009 −0.116 ± 0.010 ***

NP days −0.069 ± 0.008 *** −0.119 ± 0.008 ***
pubs −0.000 ± 0.008 −0.111 ± 0.009 ***
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Table D.3: Results of regression analysis for five journals published by APS.

si Time βpeak
1 βτ

1

PR

NC days −0.069 ± 0.008 *** −0.082 ± 0.008 ***
pubs −0.040 ± 0.007 *** −0.013 ± 0.008

NP days −0.017 ± 0.008 * −0.032 ± 0.008 ***
pubs −0.023 ± 0.007 *** −0.020 ± 0.008 *

PRA

NC days −0.061 ± 0.005 *** −0.138 ± 0.005 ***
pubs −0.018 ± 0.005 *** −0.056 ± 0.005 ***

NP days −0.063 ± 0.005 *** −0.142 ± 0.006 ***
pubs −0.022 ± 0.005 *** −0.058 ± 0.005 ***

PRC

NC days −0.019 ± 0.006 ** −0.071 ± 0.007 ***
pubs −0.007 ± 0.006 −0.052 ± 0.007 ***

NP days −0.030 ± 0.007 *** −0.083 ± 0.009 ***
pubs −0.021 ± 0.007 ** −0.063 ± 0.009 ***

PRE

NC days −0.023 ± 0.006 *** −0.041 ± 0.007 ***
pubs −0.014 ± 0.006 * −0.049 ± 0.008 ***

NP days −0.028 ± 0.006 *** −0.036 ± 0.008 ***
pubs −0.019 ± 0.006 ** −0.038 ± 0.009 ***

RMP

NC days −0.106 ± 0.032 ** −0.272 ± 0.054 ***
pubs −0.126 ± 0.033 *** −0.337 ± 0.051 ***

NP days −0.099 ± 0.036 ** −0.247 ± 0.070 ***
pubs −0.110 ± 0.036 ** −0.281 ± 0.062 ***
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