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Abstract
In this paper we present a stochastic model for predicting the propagation of train delays
based on Bayesian networks. This method can efficiently represent and compute the com-
plex stochastic inference between random variables. Moreover, it allows updating the prob-
ability distributions and reducing the uncertainty of future train delays in real time under
the assumption that more information continuously becomes available from the monitoring
system. The dynamics of a train delay over time and space is presented as a stochastic
process that describes the evolution of the time-dependent random variable. This approach
is further extended by modelling the interdependence between trains that share the same
infrastructure or have a scheduled passenger transfer. The model is applied on a set of his-
torical traffic realisation data from the part of a busy corridor in Sweden. We present the
results and analyse the accuracy of predictions as well as the evolution of probability dis-
tributions of event delays over time. The presented method is important for making better
predictions for train traffic, that are not only based on static, offline collected data, but are
able to positively include the dynamic characteristics of the continuously changing delays.
Keywords
Bayesian networks, Prediction, Railway traffic, Stochastic processes, Train delays
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1 Introduction

Accurate prediction of train delays (deviations from timetable) is an important requirement
for proactive and anticipative real-time control of railway traffic. Traffic controllers need to
predict the arrival times of the trains within (or heading towards) their area in order to control
the feasibility of timetable realisation. Similarly, the transport controllers on behalf of train
operating companies may use the predictions to estimate the feasibility of planned passenger
transfers, as well as rolling-stock and crew circulation plans. Valid estimates of arrival and
departure times are therefore important for preventing or reducing delay propagation, man-
aging connections, and providing reliable passenger information. The difficulty for predict-
ing the train event times comes from the uncertainty and unpredictability of process times
in railway traffic. The models for real-time traffic control have so far mostly focused on
overcoming the great combinatorial complexity of train rescheduling (Corman et al, 2014b;
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Meng and Zhou, 2014; Törnquist and Persson, 2007), delay management (Dollevoet et al,
2014) and rolling-stock and crew rescheduling (Nielsen et al, 2012; Potthoff et al, 2010).
The developed approaches are able to solve complex instances in real-time, however they
typically assume perfect deterministic knowledge of the input traffic state and subsequent
traffic evolution.

In recent years, the uncertainty of train event times has been recognised as one of the
major obstacles for computing feasible and implementable solutions for rescheduling prob-
lems in railway traffic (Corman and Meng, 2014; Quaglietta et al, 2013). The uncertainty
of an event is usually represented by the probability distribution of its realisation. However,
most of the existing approaches assume fixed probability distributions for train delays and
do not consider the effect that real-time information on train positions and delays may have
on (the parameters of) the corresponding distributions. In order to create realistic online
tools for real-time traffic management, the dynamics of uncertainty of delays needs to be
considered. When new information about train positions and delays becomes available, the
uncertainty for predicting subsequent events is typically reduced. The main objective of this
paper is to examine the effect that the prediction horizon and incoming information about a
running train may have on the predictability of subsequent arrival and departure times of all
trains. In other words, we try to give an answer to the question: how does the probability
distribution of delay of an event change over time?

In this paper we first describe a method for modelling uncertainty of train delays based
on Bayesian networks. Railway traffic is modelled by means of a probabilistic graphical
model which exploits conditional independences between events to allow the efficient com-
putation of their joint distribution (Koller and Friedman, 2009). An important advantage of
this method in the context of real-time prediction of train traffic is that it allows the infor-
mation or evidence about a certain event to be propagated. In other words, evidence about
realisation of one event affects (reduces) the uncertainty of other events. Therefore, proba-
bility distribution of e.g. an arrival delay in a station changes over time in discrete steps as
more information becomes available. This can be used by traffic controllers to estimate the
probability of a route conflict in their area, probability of arrival delay of a feeder train for a
passenger transfer, etc. Moreover, having a better estimate of train delays could be greatly
beneficial for validation and evaluation purposes of the state-of-the-art online traffic mod-
els. In particular, this approach enables the estimation of delay dynamics for the closed-loop
(Corman and Quaglietta, 2015; Caimi et al, 2012), online rescheduling (Gatto et al, 2007;
Bauer and Schöbel, 2014) and simulation (Nash and Huerlimann, 2004; Quaglietta, 2014)
tools. Finally, even though we focus on the real-time prediction of railway traffic, the mod-
elling framework and methodology presented in this paper could be extended to handle
predictions in other scheduled and constrained systems, such as public transport, logistic
networks, and supply chains.

The next section gives the description of the problem and a comprehensive literature re-
view. The methodological framework is presented in Section 3, followed by the description
of the case study (§4) and analysis of results (§5). Section 6 summarises the main findings
and gives the recommendations for future research.

2 Problem description and literature review

The real-time prediction of railway traffic is one of the main tasks on the operational traffic
control level. Trains are operated according to a timetable and a daily process plan. Due to
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inevitable disturbances and deviations from the planned schedule, train runs need to be con-
tinuously monitored. By monitoring we assume keeping track of all performance indicators
such as the actual train positions, delays, realised running and dwell times of all trains, etc.
Monitoring therefore provides the actual traffic state that can be used to predict the future
evolution of traffic on the network. A predictive traffic model needs to continuously provide
the controller level with the information about the expected traffic conditions. Moreover, it
should enable the controller to evaluate the impact of potential dispatching actions.

Railway prediction models can be classified to static (offline) and dynamic (online), and
deterministic and stochastic, depending on the time span between the time they are run, and
the operations they aim to predict; and on how they tackle uncertainty, respectively. De-
terministic prediction models assume full knowledge of the future traffic evolution (Dolder
et al, 2009). Some approaches (see for instance (Burdett and Kozan, 2014; Wei et al, 2015)
focus on simulating the traffic based on current state, and determine most likely conflicts,
with limited usage of data on past operations. Even though the more advanced data-driven
deterministic models are able to explain a large percentage of process time variability us-
ing the values of explanatory variables, a certain degree of uncertainty, especially for dwell
times, still remains unresolved (Kecman and Goverde, 2015).

Stochastic models attribute each event with a probability distribution in order to model
the uncertainty of its realisation. They can be classified based on how they use the real-time
information to update their predictions, into static and dynamic. Whereas static prediction
models are based on the offline computed probability distributions and their parameters,
dynamic models are updated in real-time as new information becomes available. Most of
the stochastic delay propagation models (Büker and Seybold, 2012; Medeossi et al, 2011;
Meester and Muns, 2007) were used for offline analyses of timetables. A-Posteriori analysis
(Yaghini et al, 2013; Lee et al, 2016) focuses instead on understanding factors and root
causes of realised delays, and incorporate those into strategic planning and changes to the
timetable. A recent contribution that focuses on predicting delays in the process of appraisal
of infrastructure investments was presented by Marković et al (2015). For all those offline
approaches, their goal is to determine factors describing the influence of design parameters
to a railway system, in a planning phase, i.e. many months or years before operations. The
mentioned approaches are inherently static and do not consider the effect that the real-time
information obtained from the monitoring system may have on reducing the uncertainty of
the future events.

The concept of delay dynamics refers to the degree of information one has available
about future events, when online real time information is considered, within the prediction
horizon. The idea of delay dynamics is illustrated in Figure 1. With every update of train
delay (arrivals to station A and B) probability distributions of arrival times to subsequent
stations (C and D) are updated.

We summarize in Table 1 the most related works of the literature, which are discussed
in what follows. In column 2, the works are categorized according to their approach, i.e.
basic algorithm used to determine the conditional probability of future events based on past
data and current events. Column 3 describes the consideration of dynamic nature of the
problem, i.e. whether the different online predictions over time are linked somehow by
parametric relation inherent in the model. For the works mentioned, often dynamics is not
mentioned (Böhmová et al, 2015) or is defined a priori based on rules (Bauer and Schöbel,
2014); in general, dynamics within the prediction horizon is not mentioned, but over a
long period of time, the distributions can be repeatedly recomputed, if an enlarged data
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Station A Station B Station C Station D

Expected arrival time Expected arrival time Expected arrival time

Station A Station B Station C Station D

Realised arrival time Expected arrival time Expected arrival timeRealised arrival time

Realised arrival time

Figure 1: Dynamic evolution of probability density of delay of a single train in time

set would be available, or timetables and exogenous conditions might change (Berger et al,
2011; Keyhani et al, 2012; Lemnian et al, 2014; Oneto et al, 2017, 2018; Lessan et al, 2018);
a learning process can update incrementally the model with some new values of parameters,
as suggested in (Oneto et al, 2017, 2018); the dynamics can be inherent in a stochastic
process model (Kecman et al, 2015), where only the process evolution towards a steady
state is investigated (Sahin, 2017). The last column classifies whether the probabilistic
relations between events are inferred from data only, or from some domain knowledge,
either at the single event, single route of a train, aggregating together trains of the same
type, or considering the entire network operating plan and interactions between trains over
the network.

Work Approach Dynamics Relations
(Berger et al, 2011) Probability update repeated single train route
(Keyhani et al, 2012) Probability update repeated single train route
(Böhmová et al, 2015) Nearest Neighbor none data driven
(Bauer and Schöbel, 2014) Rule based delay increases single event
(Lemnian et al, 2014) Fuzzy a.o. repeated train types
(Kecman et al, 2015) Markov Chain non-stationariety single train route
(Sahin, 2017) Markov Chain steady state single train route
(Oneto et al, 2017) Neural networks repeated, learning data driven
(Oneto et al, 2018) Neural networks repeated, learning data driven
(Lessan et al, 2018) Bayesian network repeated data driven, hybrid
this work Bayesian network update over time operating plan

Table 1: Summary of the literature on dynamic data driven delay prediction approaches for
railway networks.

The prediction of operations in public transport networks has been studied by (Böhmová
et al, 2015) resorting on probability distributions from past operations, and using proxies to
map a current state to the past operations, based e.g. on factors such as day of the week,
time of the day, etc. In this stream of research, the approach is online (dynamic), i.e. it
processes data as they arrive, but tackles the problem to determine the future (What do I
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know of a future event now?) once and for all, and are not studying the problem of studying
the evolution of my understanding of the future, as time goes by (What do I know of a future
event, at any time before it happens? How certain I am?).

An approach that considers the dynamics of uncertainty of train delays was presented
by Bauer and Schöbel (2014). The authors developed a ‘delay generator’ for the purpose of
integrating uncertainty in online traffic management. A uniformly distributed delay value
is assigned in real-time to a set of randomly chosen events. However, their approach repre-
sents a rather theoretical concept that mimics the evolution of train delays in time in order
to create realistic instances for validation of an online delay management tool. This idea
has been implemented recently with the purpose of developing a proactive passenger infor-
mation system by estimating the probability of future delay of a single train based on the
currently known delay (Lemnian et al, 2014). Those works are the first to report or describe
that ”delays fluctuate over time”, and systems which are robust to such a deviation results in
better transport performance. However, that work, as well as its predecessors (Berger et al,
2011; Keyhani et al, 2012), assumes that the delays of trains which do not have a sched-
uled passenger transfer are independent. In other words, delay propagation due to capacity
constraints is not considered.

Regarding the determination of uncertainty and dynamics of delays over time, the usage
of past data has been shown in (Sahin, 2017) enough to determine a Markov model of
the operations as stochastic processes. Ultimately, running time supplements that would
absorb the evolution of the delays in a steady state, as measured in the recorded data, can be
computed. In a preliminary work on this topic, the dynamics of uncertainty was included
by modelling train delay evolution over time as a stochastic process (Kecman et al, 2015).
A train run is represented as a Markov chain with state transitions in discrete moments
that represent arrival and departure events from a scheduled stop. After every registered
departure or arrival event, the conditional probability distributions of the downstream events
are updated with respect to the essential assumption for Markov processes that, given the
present, future events do not depend on the past. A train delay evolution is modelled as a
non-stationary Markov chain, meaning that the probability of a state change depends on the
moment of transition.

Online approaches predict the short-term future, based on data about the present status
of the network. Recently a number of very sophisticated approaches have been published
(see for a very recent overview, (Ghofrani et al, 2018)). A recent interesting contribu-
tion is (Oneto et al, 2017), using Machine Learning approaches to train Extreme Learning
Machines, i.e. special cases of neural networks, tackling a large scale network, using a
fully data driven approach, and including exogenous dynamics such as weather informa-
tion. Compared to this parallel research direction, we tackle more directly the dynamics
of uncertainty, and confidence bounds on the forecasted events, rather than just the perfor-
mance of prediction accuracy. We also refer to the time distance between the time now and
the future, instead of the amount of stations ahead; and we tackle intense traffic on capacity
bottlenecks, where train-train interactions and delay propagation are the norm. To this end,
we include domain dependent knowledge, to help statistical learning methods. In a follow
up work (Oneto et al, 2018), the authors evaluate the system on real life data, where good
emphasis is put onto the computational performances and the dynamics across time hori-
zons, i.e. the ease by which the entire system can be repeatedly trained again, once new data
would be available, or regularly every day or so. The computational benefits of a distributed
implementation towards running time are also proven. To predict the delay distribution of
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an event, they consider all events along the path of the single train under investigation, as
well as information on the rest of the network, and exogenous conditions such as type of the
day, as additional variables to be included in a neural network.

Another data-driven approach uses Support Vector Regression to predict arrival times
of freight trains (Barbour et al, 2018). The estimated time of arrival, and associated delay
of individual freight trains, is estimated, based on the properties of the train, network, and
some knowledge about the traffic. The testcase of freight traffic in US has a lot of irregular
operations, very variable traffic, and large delays, which limit the applicability of strong
domain-based modelling constraints influencing the delay.

In this paper we develop the complementary idea to explicitly include the causal and
temporal dependencies of events of other trains in the computation by explicitly modelling
the (domain-specific) interdependence between trains that share the same infrastructure,
or have a scheduled passenger transfer, by means of Bayesian networks. Therefore, an ob-
served delay of a train will not only be used to update the probabilities of further events
along the route of that train. That is, probability distributions of delay for all events of other
trains that may be affected are updated. An illustrative example of the system setup is given
in Figure 2. The departure of the first train from Station A and its arrival to Station B ini-
tiate the procedure to update the probability distributions of all other estimated event times
(EET) that may be affected by the observed delays. A Bayesian network with a structure
that corresponds to a macroscopic traffic model can therefore be used to compute stochastic
delay propagation with respect to the capacity constraints as well as the constraints due to
passenger, rolling-stock or crew connections (Goverde, 2010). While the structure of the
Bayseian network is fixed by the operating plan (e.g. a timetable), we use historical traffic
data to calibrate the resulting Bayesian network with conditional probability distributions
and regression coefficients for every two dependent events. Therefore, the incoming infor-
mation from the monitoring system is used to reduce the uncertainty of the future events.

Similar approaches based on Bayesian networks have been also used in a recently pub-
lished paper (Lessan et al, 2018). There, the focus was in studying algorithmic performances
of different network training methods (hill climbing, primitive linear), as well as the possi-
bility of using hybrid learning methods to combine pure data-driven approaches with some
domain knowledge. The authors found that hybrid structures can satisfactorily model com-
plex relations arising in operations. Their main interest was in proving low prediction error
of the models for future events. In comparison, we also base our study on a mix of do-
main knowledge, exploiting in particular the acyclity arising in graph theoretical models
for railway operations, combined with large volumes of data. Our biggest contribution and
theoretical focus is not per se in prediction accuracy, but in the interesting study of delay
dynamics, i.e. how the prediction of a single delay event changes over time as the same
event approaches the time now.

3 Methodological framework

3.1 General description and network structure

The ultimate goal of this paper is to compute the estimate of (i.e., predict) the probability
distribution P of the random variables describing an event e in the future. To do so, we
have to combine the realised value of some random variables, which are somehow con-
nected to the event, with past observations of the random variables which allow us to de-
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Figure 2: Dynamic evolution of probability density of all dependent events in time

scribe this relation. In general P (ei) = P (e0, e1, ..., eN ), i.e. event i might depend on all
N events, and maybe also on other exogenous ones. For prediction purposes, only those
events 0, 1, ..., i− 1 in the past are actually usable. In this general framework of stochastic
prediction of railway operations, the most important choices are which structure to give to
the connections, the form of correlation structures; and and the procedure of update of the
conditional probabilities as new information is available.

As for the structure, in principle all events might be dependent on all other events, but
in practice, models would assume that only some of the connections are more relevant than
others. In such case, only some connections are explicitly modelled, the others can be kept
only implictly, or completely neglected in the mathematical relations. Then, P (ei) can be
reported as function of P (eA, eB , ..., eZ), i.e., for a subset A,B,Z ∈ N of the events only.

As for the correlation structures, this refers to the functional for P (). A simple case is a
linear relation, for instance P (ei) = (aA · eA + aB · eB + ...+ aZ · eZ), with coefficients
ai, for a (sub)set A,B,Z ∈ N of events. Other approaches have more complex relations,
and some have even not always an explicit relation (for instance if they are based on black
box models, such as neural networks).

The final item, i.e. how to determine effectively P (ei)∀i, once P (ex),∀x are known
with certainty, refers to the efficient computation of the probability, and especially in the
case that probabilities depend on each other. In such case, a procedure should be deter-
mined that can effectively explore all relations and solve the set of equations P (ei) =
P (eA, eB , ..., eZ) given only some events are known with certainty, and all other interde-
pendent P (ei) are actually unknown.

Bayesian networks are graphical models for reasoning under uncertainty, where the vari-
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ables and conditional dependencies between them are represented with a directed acyclic
graph G = (N,A) (Korb and Nicholson, 2010). Nodes i, j ∈ N represent random vari-
ables. In our model, each random i variable is associated to a node, and models directly
an event ei, which can be a particular train arriving at a particular station. Each event ei
and associated node i have associated some attributes: train number, station name and event
type (arrival, departure or through). A directed arc (i, j) ∈ A connects two nodes i and j,
and models the dependencies between the events, with the direction of an arc indicating the
causality relationship between the variables. Bayesian networks rely on the fact that a ran-
dom variable typically interacts directly with but a few other random variables to construct
a concise representation of reality where only the direct dependencies are encoded in the
network (Koller and Friedman, 2009). The structure of the network, i.e., the directed arcs
between the nodes that represent the considered events, can either be learned from the data
or determined by expert knowledge. The recent trend of implementing sensor technologies
and advanced data management systems in many railway networks in Europe allows using
the massive databases of historical traffic data for the structure and parameter learning of
Bayesian networks.

In our approach, we resort to a Bayesian network as we can exploit a large body of
knowledge on graph theoretical models of railway operations (Hansen and Pachl, 2014).
Namely, we know that feasible railway operations plans can be represented as a Direct
Acyclic Graph, and use this to efficiently determine a network structure, which has rela-
tively few explicit connections (i.e. the degree of connectivity of the network is relatively
low), while reaching satisfactory prediction performance. We consider all connections be-
tween events as linear. An important property of Bayesian networks is that they explicitly
model the quantitative strength of the connections between variables, thus allowing the
probabilistic beliefs about them to be updated automatically as new information becomes
available. This property enables modelling the dynamic inference between random vari-
ables in discrete moments in time (Murphy, 2002).

Learning the dependencies from a pure data driven approach (see (Oneto et al, 2017,
2018) for instance) or an hybrid approach (see (Lessan et al, 2018)) would in principle
be able to represent all observed correlations and stochastic dependencies between events.
In this case, P (ei) = P (eA, eB , ..., eZ) where only those events A,B,Z are considered,
which have a link (causal, empirical or temporal correlation) with ei which is considered
strong enough. The limitations of such an approach are in the difficulty to determine causal-
ity or a temporal relationship within correlated events, in this way. Moreover, in theory there
can be sensible correlations between all possible N Nodes (i.e. order of N2 probabilistic
relations), and moreover with external exogenous variables (for instance, weather). Thus a
lot of effort or even ad-hoc filtering (Lemnian et al, 2014) might help keeping only those
relations which are physically and causally meaningful, and remain quick enough when
building topology and updating the conditional probabilities.

We instead resort to domain-dependent knowledge, namely we use as structure of our
probabilistic connections the plan of operation, which would the implicitly model all pos-
sible relations between events. In fact, a delay of a train may be a direct predictor of delay
of the next event of that train which in turn can be used to estimate the delay its imme-
diate successor and so on. The same principle can be applied to trains that use the same
infrastructure and therefore need to be separated by minimum headway times. If two trains
use the same part of the infrastructure (block section or a station track) within short time,
which is often the case on busy corridors, a delay of the first event can be used to predict the
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delay of the second. Finally, for trains with a scheduled passenger connection in a station,
an arrival delay of a feeder train could cause a departure delay of the connecting train. We
remark here that those domain-dependent constraints are not considered in the approaches
mentioned in Table 1 and in fact are needed to ensure acyclicty of the graph. Experimen-
tally, we find that the number of arcs considered in those approaches is relatively small, in
the same order of magnitude as the amount of nodes.

All those structured systematic relations between events can be schematized into some
template structures, reflecting the constraint from railway operations, to the relationship
between events. The basic structures that are used to model causal dependencies in most
typical situations for one-directional traffic are given in Figure 3.

The described principles of causal relationship between delays of different events cor-
respond to deterministic macroscopic traffic models where only train events at stations
(departures, arrivals, through runs) are represented as nodes in the graph. This is similar
to event activity networks where events ei are of two types, arrival events, or departure
events, and activities are describing a particular relation between two events. This model
can be easily adapted to a graph, where events are associated to nodes i, j, and activi-
ties to arcs (i, j). In practice each of those constraints can be represented as T (ej) =
max{e1 + d(1, j), ...eN + d(N, j)}, where T (ei) would represent the time at which event
ei occurs, d(i, j) represent the duration between events i and j, i.e. represented by the arc
(i, j). The max operators describes the fact that events can only occur when a set of events
ei and durations d(i, j) have respectively occurred and elapsed. In the different cases of
running, dwell, headways, connections, planned departures, a suitable choice of the d(i, j)
is possible.

This way to model railway traffic on single- and double-track corridors and networks
is rather general and has been used earlier to model delay management (Schöbel, 2007),
delay propagation (Goverde, 2007) and more recently for analysis of timetable robustness
(Jovanović et al, 2017). We are interested in only the structure of this graph, which we
translate into the Bayesian network. Running and dwell arcs are used to model precedence
relations between events, which in a Bayesian network correspond to the causality relation-
ship between events of a single train run. The headway arcs between events of different
trains model the train separation principles. The macroscopic character of the model im-
plies that the detailed infrastructure constraints are neglected. However, they are implicitly
represented in precedence constraints between station events. For example, two conflicting
inbound train routes in a station are represented, in a deterministic macroscopic model, by
an arc that indicates that the second train cannot arrive before the first train has arrived.
In a probabilistic graph used in this paper, the corresponding arc models the probability of
delay of arrival event of the second train given the arrival delay of the first train (Figure 3
situations (a) and (b)).

In this paper we assume that the train orders are known. In general, the default plan of
operations is the timetable, but every new plan of operations which can be implemented as
a reaction to delays (changing order of trains, for instance) should have no two operations
depending mutually on each other, to be feasible.

This is in accordance with the intended purpose of the model which is: (i) to provide
traffic controllers with the estimated traffic evolution given the current traffic state and (ii)
to allow them to evaluate the effects of their decisions. The envisaged real-time deployment
of the model requires a procedure to modify the network structure depending on the dis-
patching actions such as reordering and rerouteing of trains. Every change of orders refers
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Figure 3: Building blocks for creating the structure of a Bayesian network
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to a dispatching action, which is a purpose-made update of the plan. Every such change of
order changes the structure of the network, and its parameters, and need to be “propagated”
to all downstream events between the two trains. The computational complexity of this case
is discussed later.

In any case, all those possible operating plans would result into an acyclic graph. An
acyclic graph guarantees that a delay of an event cannot be propagated to itself. Efficient
procedures to tackle this problem, that could be implemented to update the network struc-
ture, have been implemented in graph-based rescheduling algorithms (Mascis and Paccia-
relli, 2002; D’Ariano et al, 2007; Corman et al, 2014b).

3.2 Parameters learning and inference

Once the structure of the network has been determined, probability distributions of delays of
considered events need to be computed. This would mean, computing the joint probabilities
P (ei, ej , ..., ek) of all events ei, ej , ..., ek that are considered in the structure of the delay
relations; i.e. that are associated to an arc in an equivalent DAG representing the oprating
plan of railway movements. The cumbersome computation of a joint distribution for a large
number of random variables is avoided by relying on the network structure that encodes
only the direct dependencies between events, according to the Bayesian networks. In this
sense, the structures reported in Figure 3, are instrumental in identifying templates of linear
relations between events, which are described as joint probability distributions. Joint
distribution can thus be represented by a number of local distribution which have only a
small number parameters to estimate (Nagarajan et al, 2013), given a network structure,
encoding the sensible relations between events.

Koller and Friedman (2009) show that a local distribution can in fact be represented as
a linear model in which the parent nodes of the incoming arcs are the explanatory variables.
This is in accordance with the earlier research results that demonstrate the accuracy of lin-
ear regression for modelling train delay dependencies and justify the selection of normal
distribution to model train delays in the Bayesian network model (Bayissa, 2013; Kecman
and Goverde, 2015). Distribution parameters for delay of node j associated to event ej are
computed with respect to the network structure. In particular, referring to the probability
P (ej = x), representing the probability that an event ej would have value (i.e., occur at de-
lay) xminutes, we compute the expectation µj of the event ej as µj = a0+

∑|in(j)|
i=1 ai ·d(i)

where in(j) represents the set of direct predecessors (parents) of the node j associated to
event ej . The coefficients a0, ai,∀i|i ∈ in(j) are obtained by a process of fitting the linear
model, while d(i) are observed or estimated delays of parent events. The standard deviation
σ is computed as a standard deviation of the residuals from the linear model.

A local distribution (of an event) is considered to be a univariate normal random vari-
able. This assumption of the Gaussian property of random variables may be seen as a
limitation for application in modelling train delays, having in mind the earlier results of
statistical analyses of train delays, which typically use Weibull or Gamma distribution to
model the delays (Yuan and Hansen, 2007). However, a local distribution in our model
describes the delay of an event conditioned on the known delay of its direct predecessors.
The additional information about the realisation time of the previous event can be used to
significantly reduce uncertainty and modify the probability distribution of the event time.
For example an arrival delay can be predicted more easily if the departure delay from the
previous station (and/or arrival delay of the previous train to the same station) is known. The
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entrance delays (delays that do not have any predecessors) can in turn be estimated using
arbitrary fitted distribution (not necessarily normal Gaussian) and given as crisp values as
an input to the model.

Rather than simply describing the dependencies between random variables, Bayesian
networks represent a powerful tool for inferential statistics and probabilistic reasoning.
When new information about a random variable (evidence) becomes available, it is prop-
agated through the network by updating the posterior probabilities (beliefs) of the rele-
vant nodes. A number of exact (recursive application of Bayes’ theorem) and approximate
(Monte Carlo sampling) algorithms exists that can perform this computationally demanding
task (Korb and Nicholson, 2010).

When an evidence about the observed event delay, becomes available, a conditional
probability query determines the posterior distribution for each reachable event.

For every two nodes i, j ∈ N and respective events ei and ej , where j is reachable
from i, i.e. there is a sequence of directed arcs allowing a path from i to j, a conditional
probability query may be used to answer the questions such as: what is the probability that a
delay of event ej (i.e. the realization of node j), is larger than x minutes, given (assuming)
that the delay of event ei (i.e. the realization of i) is y minutes? Moreover, given that
the network is calibrated with continuous data and parametrised with linear coefficients,
repeated application of linear models gives the most probable outcome of delays for all
reachable subsequent events (maximum a posteriori query).

The size and complexity of the network have a significant impact on the computation
times of predictions and posterior probabilities. Having in mind the online character of
the proposed model, a quick processing of the information received from the monitoring
system is essential. Exploting once more the acyclicity of the graph representing the
plan of operations network and the associated Bayesian network, we can efficiently per-
form the determination of the posterior probabilities of any subsequent event by a visit to
all descendants of the event which has just become realised. The problem here is, that if
P (ei) = P (eA, eB , ..., eZ) if is possible that P (eA) is actually dependent on P (eB), and
multiple interrelations between those vehicles are possible. Due to the acyclicity of the net-
work, we can efficiently associate a topological order to the Bayesian network, and then
just perform the visit of all nodes after the event, i.e. compute P (eA),P (eB), only when
the probabilities of the predecessors of A,B are known or have been already computed.
Formally, a topological sorting is a linear ordering of N nodes of a graph, such that for any
directed arc between nodes u and v, node u appears before node v in the ordering. The com-
putational complexity of a topological sorting of an acyclic graph is linear in the amount of
nodes and arcs. The greatest advantage of the topological sorting is that computation of the
conditional probabilities for any descendants of a node can be done by an efficient linear
visit to the ordering (linear in the amount of nodes). This would require at most N linear
sums, each of which having up to N terms, where N is the amount of nodes.

In our implementation, the time required to sort topologically the graph (in the order of
thusands of nodes and arcs) is about 0.1 second, and the time required to visit all descendants
(events) happening within the next hour is about 0.7 seconds, with about 200 nodes to be
visited. As a comparison, visiting only the next 15 minutes would require about 80 nodes
and 0.6 seconds; visiting up to 2 hours would result in visiting about 300 nodes and 0.8
seconds; visiting the entire network, corresponding to a day of events, would take up to
3.5 seconds. Due to the further stochastic combination and fading phenomena, there is
not much point in computing conditional probabilities for events very far away in time, as
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delays typically fades away due to buffer times which are inherently considered in the plan
(Andersson et al, 2014), and the variability of the outcomes, and its low accuracy would
make the prediction of very little use. Therefore, the received information typically does
not affect the probability distribution of all events within the prediction horizon (Kecman,
2014).

Figure 4 gives a network structure of the illustrative example shown in Figure 2. The
delay of an event is a random variable where each event is represented by a 3-tuple: train
number (t1, t2), station name (A,B,C), event type (arr, dep, pass for arrival, departure
and through run, respectively). The parameters of distribution for node d(t1, B, dep) are
computed by fitting the linear model in which the node is the response variable and nodes
d(t1, A, arr) and d(t2, B, pass) are explanatory variables.

d(t1,C,arr)

d(t2,C,arr)

d(t1,A,dep)

d(t2,A,dep)

d(t1,B,dep)d(t1,B,arr)

d(t2,B,pass)

Figure 4: Illustrative example of a Bayesian network

We discuss here briefly the computation complexity required when the topology of the
network changes, for instance as a consequence of a dispatching action, and the network
must be updated. From a practical perspective, change of orders require some explicit action
from dispatchers, and for this reason, the updates to the plan are typically few and very well
traceable. Updating the Bayesian network is then matter of updating only the marginal
amount of nodes which have changed the incoming/outgoing arcs, i.e. the vast majority of
the topology remains the same, while one or two orders of trains would be changed at any
time of implementing a dispatching action. The update has thus a local step, i.e. updating
the models at the level of the nodes; and a global step, i.e. checking the properties of the
entire network.

For each node, the update of topology can practically be inverting the direction of an
arc; or removing one arc; or inserting an additional arc between two nodes. In the worst
case, the amount of nodes affected equals all the nodes of the two trains involved (the order
changes in a single point, so at least 2 nodes are directly affected; and in the worst case this
order has to be propagated to all events of the two trains, for instance if they follow each
other along a corridor). For each of those nodes, a linear model has to be estimated, which
would be very fast, due to the small amount of nodes involved. Moreover, the most likely
delays (for instance inspired by the recorded data) and associated dispatching actions can
be precomputed beforehand, and kept in a library of models to be plugged in, anytime the
order of trains would changed, similarly to (Van Thielen et al, 2018).
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The most computationally challenging part of such a procedure is the check that the
entire network remains acyclic at global level, otherwise the entire Bayesian network loses
meaning. In this case, we remark that the very nature of dispatching actions is to avoid any
occurrence of deadlocks. Those deadlocks are in fact cyclic dependences of train orders,
which are equal to a cyclic dependence of events in graph models, which have been used
extensively in railway optimization (Borndörfer et al, 2018). Such a graph thoretical model
can be further deterministic (such as the alternative graph model used widely for dispatching
in (Mascis and Pacciarelli, 2002; D’Ariano et al, 2007; Corman et al, 2014b) among others)
or stochastic (such as the Bayesian network presented here). In this sense, we are certain
that, based on a feasible and conflict free dispatching action, the updated topology and
resulting Bayesian network of events would never be able to determine cycles; and we can
safely reduce the computational effort required to estimate the new linear networks for the
updated nodes, if precomputation would not be possible (in which case, it would be even
faster), avoiding a full check of the acyclity of the network. Under those assumptions, the
need to adjust the structure of the network as response to an action of the dispatcher also
does not seem a critical issue from a computational time point, as the time required to fit a
linear model to a node is in the order of the milliseconds, in our case.

4 Case study

4.1 Description of the data set

The methodology described in the previous section was applied on a realistic case study
from a busy corridor between Stockholm and Norrköping in Sweden. The corridor com-
prises the 180 km long northern part of the Swedish southern mainline between Stockholm
and Malmö. It is a double-track line with mixed traffic. Passenger traffic is dominant with
90% share that comprises both local and intercity trains. Table 2 gives the names of the sta-
tions on the line, their distance from the terminal and the average scheduled running times
between them. The considered corridor has in total 27 stations and junctions, 10 of which
accommodate scheduled stops of passenger and freight trains. Approximately 300 trains
per day traverse the corridor (fully or partially).

For the purpose of this study, a database containing two months (1 January to 28 Febru-
ary 2015) of historical traffic realisation data from system Lupp has been made available
by the Swedish infrastructure manager Trafikverket. This dataset is representative of the
average operations, in the sense that punctuality performance of the training+testing dataset
(91.6 % at the threshold of 5 minutes) is very close to the average performance of the en-
tire 2015 (91.2 % at the threshold of 5 minutes) and also the multi-year average 2001-2016
(91.1 % at the threshold of 5 minutes). Moreover, no strong seasonality effect is present in
the performance of the Swedish network studied. The database contains the scheduled and
realised times for departures, arrivals and through runs for all trains and stations. All event
times are rounded to full minutes. Table 2 shows that, on average, an information about a
deviation of a train from its scheduled route is given with a frequency of 2 minutes (average
running time between two stations). No information about the train movements is available
between the checkpoints. Such low precision granularity of measurements prevents devel-
oping a detailed deterministic model such as the one presented by Kecman and Goverde
(2014) and justifies the approach that takes into account uncertainty of train delays.

We exclude one randomly selected weekday from the analysis and use it as a test day to
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Name Distance from Av. sched. run. time
terminus [km] from previous [min]

1 Stockholm Central 0 0
2 Stockholm South 2 3
3 Årstaberg 5 1
4 Älvsjö 8 2
5 Stuvsta 10 2
6 Huddinge 12 1
7 Flemingsberg 14 2
8 Björnkulla 16 2
9 Malmsjö 28 4

10 Södertälje 35 2
11 Järna 45 3
12 Mölnbo 56 4
13 Gnesta 63 2
14 Kolke 68 2
15 Björnlunda 72 1
16 Stjärnhov 81 3
17 Nyckelsjön 90 3
18 Sparreholm 93 1
19 Skebokvarn 99 2
20 Flen 107 3
21 Sköldinge 115 3
22 Stolpstugan 122 2
23 Katrineholms C 130 3
24 Strångsjö 141 4
25 Simonstorp 155 5
26 Åby 170 5
27 Norrköpings C 178 5

Table 2: Checkpoints where train events are recorded by the Lupp system

evaluate the performance of the Bayesian network model in a simulated real time environ-
ment. The remaining data is used as a training set for model calibration. The structure of
the network is determined assuming that the train routes and orders are known (§3.1). The
scheduled event times and orders, determined by the timetable, are used to build the basic
structure of the Bayesian network. However, the structure of the network can be modified
dynamically by reversing, removing or adding arcs. This is used to model the reordering
actions, train cancellations or adding ad-hoc train paths by the traffic control. Note that any
dynamic change of the network structure requires recalibration of the affected nodes. In this
work we assume the train orders to be fixed and available for one hour.

The calibration of the network assumes the computation of parameters for probability
distribution of delay for each considered event represented by a node. The training set for
computing the parameters of local distributions depends to a great extent on the network
structure. For example, an arc representing a delay propagation during a train run between
two stations is calibrated based on historical data for the same train, as identified by the
train number, which repeats daily. Similarly, the relevant training set for an arc representing
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a headway arc from an event of another train, comprises only the days when the two trains
ran in the same relative order. This means that the recurring phenomena for a particular
event that may happen due to: (i) variations in travel demand (peak/off-peak hours), (ii)
distribution of time reserves in the timetable, are implicitly represented in the model.

4.2 Experimental setup

The training and test datasets described in the previous section are used to create and validate
the Bayesian network model. In order to test the performance of the described model, an
experimental environment was set up that includes a static and a dynamic component. The
static component consists of the database of historical traffic data used for dynamic assign-
ment of distribution parameters. The dynamic component of the experimental environment
comprises the actual process plans for all trains within the prediction horizon and actual
train event times. The actual route for each train is given on the level of station events, i.e.,
ordered list of stations and event types. This is crucial for building the probabilistic graph
model. As the prediction horizon moves, new trains are added to the model. The graph size
does not increase linearly in time as only the nodes representing the last events of all trains
are kept in the model due to the inherent Markov property of Bayesian networks (Koller and
Friedman, 2009).

As explained in Section 4.1, the Lupp system log files contain the chronologically or-
dered train event messages. A real-time environment for model validation was created by
sweeping through the test set Lupp log file for one day of traffic. Every train event message
represents the new information that is propagated through the graph using statistical infer-
ence algorithms that predict the events in the topological order of the graph as in Kecman
and Goverde (2014). The actually realized train event times are used to test the accuracy
of predictions. No events have been excluded from the test data set. This means that even
events with a large delay which are typically associated to serious disruptions and are symp-
toms of very different operations (see for instance Corman et al (2014a)), are kept in the data
used to evaluate the performance of the presented model. Figure 5 shows the delay distribu-
tion of events included in the test set. Most events occur with a small delay, however delays
may extend up to 50 minutes off schedule.

Delay [min]

F
re

qu
en

cy

−100 −50 0 50 100

0
20

00
50

00

Figure 5: Delay distibution for events included in the test set
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4.3 Modelling of passenger and freight train delays

The passenger trains operate strictly according to a timetable. Their deviation from the
scheduled paths is relatively small and therefore they frequently follow the scheduled orders,
thus providing sufficient amount of data in the training set to build the robust estimates of
the distribution parameters. On the other hand, freight trains often significantly deviate
from their schedule and they are often running on the ad hoc created paths that do not
recur frequently. Figure 6 illustrates the distribution of delays of passenger and freight
trains from the training set. The standard deviation of freight train delays is significantly
higher compared to the delays of passenger trains (64.19 to 11.20 minutes, respectively).
Consequently, the delay dependencies between freight trains, operating along ad hoc paths,
and other trains are difficult to capture from historical data due to their low frequency of
occurrence. More details about the practice of ad hoc scheduling of freight trains in Sweden
could be found in Törnquist Krasemann (2015).
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Figure 6: Delay distributions for passenger (left) and freight (right) trains

The interaction between ad hoc freight train paths and successive and preceding trains
could be modelled using the dependence between the planned headway time between two
events and the resulting delay increase for the second train. A delay increase is computed as
a difference in delay between two successive events of a single train. Delay increase for all
trains which may be delayed due to a hindrance from a freight train were extracted from the
data and compared with the observed headway time between the two trains. The results are
presented in Figure 7. As anticipated there is a general trend that delay increase is higher
and more likely to happen for short headway time after a freight train. However, regression
analysis showed no significant impact of headway time on delay increase with the value of
R2 indicating that only 8% of variation of a delay increase can be explained by the short
headway time after the preceding train. In fact the analysis showed that mean and median of
headway times after an inserted freight train path are 15.85 and 12.43 minutes, respectively.
This could be explained by the fact that traffic controllers carefully choose the path for ad
hoc freight trains so that the scheduled traffic is affected as little as possible. For that reason
we exclude the headway arcs between the events of out-of-schedule freight trains and the
preceding and succeeding passenger trains from the model. Similar analysis is required for
model applications on mixed-traffic corridors with a higher share of ad-hoc freight trains.
Such trains should be explicitly included in the network with the corresponding headway
arcs constructed between them and other trains.
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Figure 7: Delay increase depending on headway time after the conflicting event

5 Results

We now evaluate the approach proposed on the test case identified. We specifically analyse
the performance along 4 dimensions, as follows. Subsection 5.1 describes the computa-
tional characteristics of the models itself, in terms of nodes and arcs, and fitting accuracy.
Subsection 5.2 reports on the absolute performance in prediction power of events in the
future, for varying time horizons Subsection 5.3 compares different prediction algorithms
in the state of the art, to predict the same event under the same conditions. Subsection 5.4
concludes by showcasing one of the key feature of Bayesian networks, namely the result of
a dynamic update of the prediction: how the predicted distribution of probability changes
over time as the event gets closer to the moment ”now”.

5.1 Model structure, size and parameters

The Bayesian network in the experimental setup contains the nodes that represent the train
events planned to occur within one hour. An update about a realised event time is therefore
propagated one hour in the future which is the longest prediction horizon we consider. The
average network size is 137.12 nodes and 262.43 arcs. The average number of children
per node is therefore 1.92 which indicates that approximately two explanatory variables are
needed to compute the distribution parameters for each node.

Table 3 shows the predictive power of local linear models averaged over the 2194 events
considered in the test set. The importance of each explanatory variable is considered sepa-
rately in order to analyse the correlation of delay increase during different processes. The
table shows correlation coefficients, residual standard error (RSE), p value as an indicator of
variable importance (*** means p < 0, 01 which indicates very strong importance) and R2

which presents the percentage of variance explained by the predictor. The strongest corre-
lation is captured between the delays of events associated with a running process of a train.
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Arrival delay of a train is also a good predictor of its departure delay from the same station
(dwell process). However, lower delay correlation between an arrival and the subsequent
departure event reflects the fact that dwell times are more difficult to predict and may act
as a source of delay as well as a delay buffer (Kecman and Goverde, 2015). A delay of the
preceding conflicting event (headway process) is also an important predictor although with
a weaker predictive power (lower value of R2). The average multiple R2 with complete
local models explains 92% of delay variation.

Arc type Coefficient RSE p value R2

Headway 0.42 0.33 *** 0.52
Running 0.95 0.06 *** 0.90

Dwell 0.81 0.09 *** 0.79

Table 3: Average values of predictive power of local models

5.2 Prediction model performance

This section reports the prediction accuracy of the model when applied on the peak hours
(6:30-9:00 and 16:30-19:00) of the test day. After the observation of each train event in
the specified period, the algorithm predicts the future traffic evolution in the next hour.
In total the prediction algorithm is executed 563 times, each time performing on average
137.12 predictions. The predicted values are compared against the realised event times and
the distribution of prediction error for all predictions is given in Figure 8. The box-plot
indicates the median (line in the middle of the box), the 1st and the 3rd quartiles (upper
and lower bound of the box) and data maximum and minimum (ends of the upper and lower
whisker). Despite the outliers in prediction errors, which are not excluded from the analysis,
the plot shows a high prediction accuracy of the Bayesian network model.
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Figure 8: Distribution of prediction error for all horizons

The impact of the prediction horizon on the prediction accuracy can be observed by
separately analysing the prediction error for each prediction horizon. The prediction hori-
zon of 60 minutes is divided into 1 minute wide intervals. The absolute prediction error is
computed as the absolute value of the difference between the actually realised event time
and the predicted event time. Mean absolute error (MAE) is obtained in each interval by
computing the mean value of all corresponding absolute prediction errors. Figures 9 and 10
respectively show the MAE (as average, median, and first and third quartile), and standard

19



deviation, for each considered prediction horizon. As expected, both MAE and standard
deviation decrease as the smaller prediction horizon is considered. The accuracy of predic-
tions that are within a 30 minutes prediction horizon is significantly increased since more
accurate information is available on events that have a direct impact on the realization time
of an event. While average and mean increase for longer time horizons, also the gap (i.e. the
area of the band in Figure 9) between the first and the third quartile increases, (and similarly
the standard deviation ins Figure 10) reporting the lower degree of confidence on the values
predicted, and not only a higher error, but also a higher variability of the error. Interestingly,
the median error increases very slowly, compared to the average, showing that the bulk of
the predictions keep remaining correct, while the large deviations have more difficulty to
be predicted. Anyway, for longer prediction horizons, both MAE and standard deviation of
error increase, indicating that the prediction accuracy is lower and that a significant amount
of uncertainty remains about the event times of events more than 40 minutes ahead.
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Figure 9: MAE for all considered prediction horizons. The band represent 1st and 3rd
quartile, median (dotted) and average (solid) are reported as lines.

5.3 Comparison of different prediction approaches

We also compare different algorithms from the state of the art of dynamic prediction, in
Figure 11. Namely, we compare the approach proposed using the Bayesian network to
encode the structure of the dependencies (named Bayesian in Figure), with a variety of other
approaches. One is to consider only dependencies between the events of the same train, but
deterministically. In other terms, this approach (named Propagation in Figure) assumes a
train in the future would keep the current delay. We also report two different approaches,
which perform a nearest neighbor search in the space of the recorded data, to deliver the
prediction (based on the same ideas as (Böhmová et al, 2015), to find events happened
in the past, which showed similar characteristics of the current moment). This works as
follows. We assume a future event ei described by a train number t, at a station, and event
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Figure 10: Standard deviation of error for all considered prediction horizons

type, is to be predicted, given a current event ej . The predicted delay of ei is computed as
the average of the delay of all events ek recorded in the past, which have either 1) the same
train number at the same station (named NN-Train in Figure); or 2) the same train number
at the same station, while the delay associated to ek is the same (or the most similar) as the
delay associated to event ej , this latter corresponding to the most recent observation of the
run of the train of both events ei and ej . This latter Nearest Neighbor structure is named
NN-Train-delay in Figure. We also tried other Nearest Neighbor structures based on time
intervals, which did not perform better than those presented.

Figure 11 reports the kernel estimate of the probability distributions of the error, for all
events, such that the time horizon of prediction between events ei and ej is between 35 and
40 minutes. A curve more on the left side of the Figure represents smaller errors, in prob-
abilistic terms. From this point of view, the advantage of the Bayesian network against the
other approaches is evident, delivering a higher probability of smaller errors. It is interesting
to see how the actual information on the delay (in deterministic terms, the propagation ap-
proach); in statistic terms, the difference between NN-train and NN-train-delay is actually
very important. This underlines the strength and potential of dynamic approaches which
are able to combine past information on delays, with current (online) information on delay,
such as the Bayesian approach, which outperforms all other approaches presented here.

5.4 Dynamic updates of probability distributions

Finally, we analyse the dynamics of probability distribution of an event over time as more
information about the event becomes available. Bayesian inference is used to compute the
posterior distributions (Korb and Nicholson, 2010). Figure 12 shows an example of how
the distribution of arrival time of a train to the final station evolves over time in six discrete
steps. As the event becomes closer (horizon H decreases), the tendency is that the standard
deviation becomes smaller thus achieving sharp distributions that converge toward a 1-point
distribution at the moment when the event is realised. On the other hand, the expected
value of the distribution fluctuates a bit over its final value.

Taking a slice for this same event, we plot the evolution of the probability that the train
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Figure 11: Comparison of different prediction approaches

will arrive with more than 16 minutes delay is depicted in Figure 13. In this particular
example the probability is decreasing in time as the event becomes closer. The actually
observed delay of the event is 15 minutes.

In Figure 14 and Figure 15 we report a larger computational study, which we performed
on a random sample of 1000 events in the network. For each event, we computed the
posterior distribution, conditional to the assumption that the final delay would be 5 minutes.
We report the averages over all various probability densities. Both Figures report on the x-
axis the amount of time difference before the event takes place, in seconds. In other terms,
at the left extreme of the x -axis, the event is one hour ahead in the future, while at the right
end of the x-axis the event has just happened, and the probability has no variance and a fixed
value equal to 5 minutes. In Figure 14 we report the standard deviation of each probability
density, averaged over all events, by their time difference. One can see how quantitatively
the variance decreases over time, with a particular shape. In our case, the standard deviation
of the probability of occurrence of an event, as predicted half an hour ahead of time, is
for instance 2 minutes, which is within the range of values useful for decision making,
comparing to a similar discussion in (Oneto et al, 2018). It would be an interesting question
for future research to characterize stochastic processes by their variability of variance over
time and possibly derive some theoretical results on quasi stationarity.

In Figure 15 we report instead the average of each probability density, as blue dots, and
their smoothed average as a continuous line. One can see how the average can sometimes
be relatively worse off, but converges to the realised delay of 5 minutes. One can also see
how, apart from minor variations, the estimator is unbiased, i.e. the average (solid line) of
all averages of predictions (each one, a blue point) is actually very close to the 5 minutes
which is the assumed event delay.
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Figure 12: Distribution of an arrival time in discrete steps between 72 and 5 minutes ahead
of the event
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Figure 13: Dynamic updates of probability that the train will arrive with more than 16
minutes delay
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Figure 14: Standard deviation along time, of the probability that 1000 random events will
be happening with more than 5 minutes delay.
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Figure 15: Averages along time, of the probability that 100 0 random events will be hap-
pening with more than 5 minutes delay (dots), plus smoothed average (solid line).
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6 Conclusions

This paper presented an analysis of train delays and their evolution in real time with respect
to the dynamic stochastic phenomena. The basic idea was to characterize the effect that
the prediction horizon and incoming information about running trains may have on the
probability of the future train delays. Bayesian networks are proved to be an appropriate
method to concisely represent the complex interdependencies between train events. The
major contribution of this paper is that train delays due to interactions with other trains are
adequately represented in the stochastic model.

The presented method provides a way to incorporate the value of information from a
live data stream into prediction of future events. A key feature for such an online learning
approach is the possibility to perform good predictions under non-recurrent disruptions.
That is an improvement compared to conventional prediction approaches based solely on
the fixed values obtained offline from the historical data. The disruption of operation of
one train causes an update of predictions for all possibly affected trains. The model was
evaluated in a simulated real time environment and the computational results indicate that
the predictions are reliable for horizons of up to 30 minutes.

The practical application of this method could increase the amount of information deliv-
ered to passengers, in the form of up-to-date probability for on-time arrival. It is shown by
many policy studies that an informed passenger is more likely to accept this delay, and giv-
ing the probability margins could be an additional feature of projected travel time planners.
Being able to characterize, analyse and predict the unavoidable dynamic uncertainty of pro-
cess times can also result in better railway traffic planning and control and the corresponding
tools.

A strong assumption of the model is that there is a perfect knowledge of train orders
and routes within the prediction horizon. Event though the graph structure is convenient
for representing the changes of routes and orders, the applicability of the model still to a
great extent depends on the incoming information from traffic controllers. This makes it
somewhat difficult to develop an independent application based on the presented model that
would function outside of the traffic control loop. The future work in this direction will be
dedicated to overcoming this drawback and to develop a tool that would effectively predict
the traffic control actions and therefore be able to independently estimate the future traffic
evolution.

Finally, the presented methodology is validated on a busy corridor. Extending the model
to handle networks, that may contain multiple intersecting corridors, seems straightforward
having in mind the earlier applications of macroscopic modelling that are able to represent
complete national networks. However, such expansion of the model may lead to an in-
crease in computation times of the inference algorithms. A challenge for the future work
thus remains to examine the upper bound on model size that can still be used in a real-time
environment. In fact, this opens up various directions of future research: studying alter-
native prediction or statistical inference algorithms, which could also be domain-unaware,
and learn the dynamics of the system based on recorded or simulated operations, similarly
to (Oneto et al, 2017), considering simpler, more approximated and scalable models of
operations; studying how performance might be affected by different timetable structures,
different levels of heterogeneity, speed and traffic density; study parametric online setups
which adapt the Bayesian networks along time with a minimum computational effort; and/or
considering strategies for model decomposition and coordination.

25



Acknowledgments
This study is supported by FP7 European project Capacity4Rail and State Key Laboratory of
Rail Traffic Control and Safety, Beijing Jiaotong University (RCS2015K002, RCS2015K003).
The authors are grateful to Swedish transport administration Trafikverket for providing the
data sets necessary to perform this research, and to Alessio Daniele Marra for his valuable
help.

References

Andersson EV, Peterson A, Törnquist-Krasemann J (2014) Quantifying railway timetable
robustness in critical points. Journal of Rail Transport Planning & Management 3(3):95–
110

Barbour W, Mori JM, Kuppa S, Workac D (2018) Prediction of arrival times of freight
traffic on us railroads using support vector regression. Transportation Research Part C
93:211–227
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