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Abstract

Electric bicycles (e-bikes) are a new addition to bicycle-sharing and may
improve its competitiveness. E-bikes allow for higher speeds at a higher level
of comfort than conventional bicycles and compared to traditional bicycle-
sharing, e-bike-sharing is better positioned to complement or compete with
existing public transportation, or to even challenge established taxi services.
Until this point, there has been no empirical analysis of e-bike-sharing.

Eight months of transaction data from a free-floating e-bike-sharing sys-
tem in Zurich, Switzerland were used to study the market position of e-bike
sharing and drivers of demand.

The results of the analysis indicate that a large proportion of the trips
were commuting, and that the distance range of e-bike-sharing trips over-
laps with the distance ranges of traditional public transportation and taxi
services. Intensity of use was sensitive to precipitation. Spatial regression
modeling indicates that economic and social activity, public transportation
service quality and the availability of bicycle infrastructure are key drivers
of demand for free-floating e-bike-sharing.

Given the substantial structural differences in demand and supply pat-
terns, an attempt is made to define a new, fifth generation of bicycle-sharing
schemes.

Keywords: bicycle-sharing, e-bike-sharing, urban transportation, demand
analysis, spatial regression
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1. Introduction1

Since the first bicycle-sharing system was introduced in Amsterdam in2

1965, the number of systems has grown substantially all over the world.3

Moreover, the services have evolved, using technological advances to address4

problems and improve the user experience. In the literature, systems were5

classified into four generations (Shaheen et al., 2010). The first generation6

started with theft-prone free bicycles and continuous innovation led to fourth7

generation large-scale schemes like Capital Bikeshare in Washington, DC,8

which operate docking stations across large service areas. In recent years,9

free-floating services offering access to e-bikes have emerged, defining a fifth10

generation of bicycle-sharing.11

There are two innovations with this new generation that have brought12

about profound changes. While e-bikes allow for longer distances to be trav-13

elled at higher speeds and with less exertion (especially in hilly terrain),14

re-charging of the battery requires extra service effort or infrastructure. The15

free-floating service potentially translates into a better user experience (no16

more full stations at the destination), but may also result in lower reliability17

at the trip origin.18

Substantial research has already been conducted to understand user groups,19

demand patterns and the market position of existing bicycle-sharing services20

(Fishman et al., 2013; Fishman, 2016). Bicycle-sharing thrives where it of-21

fers convenient service with a dense network of stations (El-Assi et al., 2017;22

Rixey, 2013). In contrast to other shared modes of transportation, such as23

car-sharing, bicycle-sharing seems to draw a substantial share of its demand24

from traditional public transportation (Fishman et al., 2014a; Campbell and25

Brakewood, 2017). Generally, two main customer groups are served: annual26

subscribers using it for work trips and leisure travellers (tourists) only mak-27

ing a few trips per year (Fishman et al., 2015; Wergin and Buehler, 2017).28

Spatiotemperal demand patters are not symmetric, making relocations nec-29

essary (Nair et al., 2013). In particular, stations at elevated locations are30

unattractive destinations (Faghih-Imani et al., 2017b). The two innovations31

of e-bikes and a free-floating service, however, could change the above pat-32

terns. Shared bicycles can become competition for private cars and taxi33

services, as the electric motor helps to overcome gradients and free-floating34

operations make the service seamless. It has been shown for car-sharing that35

such profound changes in the service can lead to substantially different (and36

larger) customer groups and change usage patterns (Becker et al., 2017a).37
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In this paper, eight months of transaction data was analyzed from Smide,1

a high-end e-bike-sharing system in Zurich, Switzerland. The e-bike-sharing2

market is discussed and the competitive position of e-bike-sharing is com-3

pared to other modes of transportation. The analysis takes into account4

time of day, terrain elevation and weather. Furthermore, a spatial regression5

model was used to analyze the drivers of demand for e-bike-sharing. The re-6

sults showed the differences between traditional and e-bike-sharing in terms7

of market potential. The effect of e-bike-sharing on the overall transporta-8

tion system was also investigated. Based on these insights, an attempt was9

made to define the next generation of bicycle-sharing services.10

2. Background11

Bicycle-sharing has seen substantial growth in recent decades, most of12

which was due to technology-driven innovations making the services more13

attractive and operations more robust. As a result, modern bicycle-sharing14

schemes only have few things in common with early implementations like15

the White Bikes in Amsterdam in 1965. Shaheen et al. (2010) provide an16

overview of early implementations and suggested classifying schemes into17

four generations. The first generation offered free access to a fleet of bi-18

cycles, which were distributed across a city. However, because the bicycles19

did not have locks, the system was prone to theft. Second generation ser-20

vices addressed this issue by introducing a coin-deposit system, where users21

had to pick up a bicycle at a station, but needed to leave a small deposit.22

While this reduced theft, vandalism was still an issue. The third genera-23

tion brought user-identification and required substantial deposits to further24

reduce theft and vandalism. Pricing concepts were then introduced with25

annual subscriptions for frequent users or trip-based charges for leisure trav-26

elers. Imbalances in demand led to unfavorable station occupancy (full or27

empty), which deteriorated service attractiveness, as did a lack of integration28

with public transportation. Fourth generation schemes address such issues29

by performing rebalancing of bicycles and integrating payment mechanisms30

that can be used to access public transportation services (Fishman et al.,31

2013). Yet, fourth generation schemes still relied on conventional bicycles32

and fixed stations.33

Impact and drivers of demand for third and fourth generation systems34

have been studied extensively in the literature. Most research was aimed at35

identifying factors influencing demand patterns, user groups and the impact36
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on other modes (with a focus on interactions with public transport). A com-1

mon approach for identifying drivers of demand is to analyze actual trip data2

using (spatial) regression techniques or destination choice models. For New3

York City, Noland et al. (2016) and Faghih-Imani and Eluru (2016) identi-4

fied population and employment density as drivers of demand. Proximity to5

busy subway stations and denser bicycle infrastructure were also found to6

increase station utilization. Recent research suggests that the latter is more7

important than system size (Médard de Chardon et al., 2017). However, sub-8

stantial short-term variations were induced by weather effects, in particular9

precipitation (Noland et al., 2016; Faghih-Imani and Eluru, 2016). These10

results were confirmed for other cities with the extension that proximity to11

restaurants and points of interest increased demand, whereas uphill desti-12

nations were travalled to less frequently (El-Assi et al., 2017; Faghih-Imani13

et al., 2017b). Caulfield et al. (2017) showed that the patterns also hold for14

smaller cities, but with shorter trip distances.15

User characteristics associated with membership and use of bicycle-sharing16

services were explored using surveys. In Washington, DC, bicycle-sharing17

users were found to be mostly younger females with a lower household income18

(Buck et al., 2013). The results were extended by Fishman et al. (2014b)19

where users in Melbourne and Brisbane lived in smaller activity spaces with20

inferior public transportation supply. Proximity to bicycle-sharing stations21

and relatively higher incomes were found to increase the propensity for mem-22

bership in those two cities. A substantial difference in usage patterns was23

found for these locations, where holders of an annual subscription were found24

to mostly use the service for commuting, but leisure travellers took longer25

and slower trips (Wergin and Buehler, 2017).26

Bicycle-sharing has been shown to be preferred for many trips. In an27

analysis for New York City, Faghih-Imani et al. (2017a) compared travel28

times by bicycle-sharing and taxi. The results indicated that bicycle-sharing29

was on par with or faster than taxis for trips less than 3 km. Yet, bicycle-30

sharing has become a substitute for public transportation, with bus rider-31

ship decreasing by 2 % after the bicycle-sharing scheme was expanded into32

the respective neighbourhoods (Campbell and Brakewood, 2017). A similar33

effect was observed in other studies (Fishman et al., 2013). Depending on34

the city characteristics, the low substitution of private car travel may even35

translate into a net increase in vehicle miles travelled, when taking into ac-36

count relocation of bicycles (Fishman et al., 2014a). However, substitution37

of public transport trips is not necessarily disadvantageous. For free-floating38
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car-sharing, it was found that the replaced public transportation trips had1

particularly long travel times or included transfers (Becker et al., 2017b).2

In a similar vein, bicycle-sharing may also be used to complement public3

transportation, where it is inefficient. Insights from the Chinese cities of4

Hangzhou and Ningbo confirm this finding (Yang et al., 2018).5

In recent years, e-bikes have entered the mass-market and have also be-6

come part of bicycle-sharing systems. The electric motorization addresses key7

limitations of current systems. It allows for higher speeds and thus longer trip8

distances and it is substantially less strenuous to ride uphill. Free-floating9

operations provide more seamless trips and may therefore attract even higher10

ridership. In a way, electric motorization places free-floating e-bike-sharing11

between conventional bicycle-sharing and free-floating car-sharing. Riders12

are still directly exposed to the weather and cannot carry bulky items, how-13

ever, the scheme can be used for flexible trips across the city at the effective14

speed of a car (and without the need to search for parking). Given these15

substantial advances in the service, insights gained on user groups and usage16

patterns of conventional bicycle-sharing schemes may not be transferable to17

free-floating e-bike-sharing (c.f. Becker et al. (2017a)). As a result, mode18

substitution and impact on vehicle-miles travelled may be different.19

Cairns et al. (2017) observed a decrease in vehicle miles travelled (VMT)20

of 20 % in a trial in Brighton, UK, where participants were equipped with21

e-bikes over a six to eight week period. Fyhri and Fearnley (2015) reported22

the results of a trial in Norway, in which e-bikes were given to 66 randomly23

selected participants. The availability of e-bikes increased the amount of24

cycling, both in terms of distance and number of trips. The high substi-25

tution rate of private car trips in the Brighton trial suggests that e-bike-26

sharing might have a different effect on car usage than traditional bicycle-27

sharing schemes. A first stated-preference approach on e-bike-sharing in28

China further confirmed that e-bike-sharing is attractive for longer trip dis-29

tances, but suggested that e-bike-sharing was only attractive to certain socio-30

demographic segments (Campbell et al., 2016). No empirical data has been31

used to test the above hypotheses thus far. This research aims to address this32

gap by analyzing transaction data of a free-floating e-bike-sharing system.33

3. Descriptive Analysis34

This section provides an overview of the data sources and the regional35

context, presents descriptive statistics of the booking data, and shows the36
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potential market niche for e-bike-sharing with respect to trip distance.1

3.1. Data Sources and Regional Context2

The analysis in this paper is based on the booking and trip data of a free-3

floating e-bike-sharing system in Zürich, Switzerland called “Smide,” which4

began operation in October 2016. Smide is a high-end e-bike-sharing system5

of “Stromer ST2” e-bikes with an engine power of 800 Watt and a retail6

price of CHF 7000 (equal to $7000 US in May 2018). The e-bikes reach a7

maximum speed of 45 km/h, however, the speed was reduced to 35 km/h by8

the operator for safety reasons. The booking price is currently CHF 5 for9

20 minutes and usage is charged pro rata on a per-minute basis. 200 e-bikes10

are part of the system and the area of operation covers a large share of the11

municipal area of the city of Zürich (see Figure 2). The user interface consists12

of a smartphone application that displays the current positions of the e-bikes13

and the geofence. Users can prepay booking time, book and unlock e-bikes,14

and access the history of previous bookings. To assist with rebalancing, the15

system features so called “bonus zones”. Users who decide to end a booking16

in a bonus zone receive a specific amount of minutes (five or ten minutes) of17

additional booking time. The system also features one charging station and18

users who end a trip at the charging station and plug in the charging cable19

also receive a bonus of five minutes. The batteries of the bikes in the system20

are regularly changed by the operator such that the number of bikes with21

low battery levels are minimized.22

The main dataset analyzed in this paper consisted of 99,094 e-bike-sharing23

trips from April to November 2017. After data cleaning (removal of trips24

without distances and merging adjacent trips), 72,648 trips remained. To25

compare the trip data to alternative urban modes of transportation, addi-26

tional data was obtained from the Swiss national household travel survey,27

“Mikrozensus Mobilität und Verkehr 2015” (MZMV) (Swiss Federal Statis-28

tical Office (BFS), 2017a). The MZMV is a computer assisted telephone29

interview with a sample size of 57,090 subjects that is conducted every five30

years across Switzerland. For each subject, the dataset includes detailed31

information about all trips of a randomly chosen day, including distance,32

geocoded origins and destinations, and chosen mode of transportation for all33

stages of trips (the dataset included 279,173 stages, 12,215 of which began34

and ended in the city of Zurich).35

Zürich is a medium-sized city with approximately 400,000 inhabitants36

(political city boundaries) and 1.8 million inhabitants in its metropolitan37
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area. The Zürich metropolitan area is Switzerland’s economic center, where1

approximately 200,000 people commute to and more than half use pub-2

lic transportation. Zürich is located in the pre-Alps and exhibits a max-3

imum elevation difference of ca. 480 m within its municipal area. Pub-4

lic transportation service quality is considered very high, with 4.7 public5

transportation stops per square kilometre and a regulation that all residents6

should be able to reach a public transportation stop within 400 meters, the7

city’s goal is 300 meters. (For general information about the city refer to8

https://www.stadt-zuerich.ch/, last accessed: July 2018.) In 2017, three9

bicycle-sharing systems were available in Zürich: O-Bike (meanwhile discon-10

tinued), a station-based system operated by the city of Zürich (both without11

e-bikes), and Smide.12

3.2. Trip Data Overview13

Figure 1 shows an overview of the Smide trip data. A mean number of 30514

trips were made on an average day (with a median of 306). The standard15

deviation is very high with 142, mainly because the system was growing16

strongly between April and July. (The mean number of trips after July was17

364 with a standard deviation of 114.) The mean trip distance was 2.5 km18

with a mean duration of 10.3 min. Peak demand was reached between 6 pm19

and 8 pm and a morning peak was observed between 7 am and 8 am. The20

two distinct peaks and the fact that weekdays exhibited a higher demand21

than weekend days indicated that a significant share of the demand was22

commuting. The morning (7 am until 10 am) and the afternoon (2 pm until23

5 pm) accounted for 46% of the total demand (20% and 26%, respectively),24

the noon (11 am until 1 pm) accounted for 16%, and the evening (6 pm until25

9 pm) accounted for 25%. Night (10 pm until 1 am) and late night (1 am26

until 6 am) trips accounted for 12% percent of the demand (7% and 5%,27

respectively). The majority of the demand therefore arose during times of28

the day when public transportation service quality was also high. However,29

in Zürich, public transportation operation stops at 1 am on weekdays and30

there is only a limited late night service on Fridays and Saturdays. Late at31

night, public transportation would, therefore, not have been an alternative32

to Smide.33

One advantage of e-bikes is the lower sensitivity towards terrain eleva-34

tions. Figure 1 d) shows the distribution of elevation differences between35

destinations and origins. The figure indicates that trips were not primarily36

up- or downhill. Also relevant for cyclists is the sum of positive elevation37
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differences along the chosen routes, which were determined with the Google1

Elevation API. (https://developers.google.com/maps/documentation/2

elevation/, last accessed: July 2018.) For each path, 20 points were sam-3

pled. The median sum of positive elevation differences was 14.7 m with a4

mean of 31 m. Thus, e-bikes were used independent of elevation.5

FIGURE 1: Smide trip data overview: (a) % of daily traffic by hour (household travel
survey (MZMV) vs. Smide), (b) trip duration distribution, (c) trip frequencies by day of
the week, (d) elevation difference distribution (desination minus origin).

8
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Figure 2 shows the spatial distribution of rental starting points in the1

city of Zürich. A high concentration of rental starts was observed in district2

1. District 1 is the major business district of Zürich, which also includes the3

two universities and only accounts for 1.4% of the total population of the city4

(5,728 of 423,310 residents). This supports the conclusion that commuters5

were a major segment of demand. The spatial distribution changes for night6

and late night bookings. At night, a major share of bookings occurred in7

district 4, which is one of Zürich’s main nightlife areas. This indicates that8

Smide e-bike-sharing was used to substitute (or complement) traditional pub-9

lic transportation when service quality was lower.10

FIGURE 2: (a) Spatial distribution of rental start locations (all bookings), and (b) late
night bookings (10 pm until 6 am).

3.3. Market Segmentation: Analysis of Trip Distributions11

In order to analyze the market position of e-bike-sharing, the trip distance12

distribution was compared to those of alternative urban modes of transporta-13

tion. Figure 3 shows the median, the lower quartile and the upper quartile14

of the distance distributions of trips with origins and destinations in the city15

of Zürich. The figure shows, which modes of transportation served similar16

trip distances to e-bike-sharing. The trip data for the alternative modes was17

obtained from the Swiss household travel survey from the year 2015 (Swiss18

Federal Statistical Office (BFS), 2017a). All trips that started or ended in19

the city of Zurich were included in this comparison.20
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E-bikes and e-bike-sharing trips were in the same distance range as tradi-1

tional public transportation (buses and trams), cycling with a private bicycle,2

and small motorbikes. Taxi trips were longer than e-bike-sharing trips at the3

median, but the distance range of taxi trips was also not atypical for e-bike-4

sharing. The comparison of modes indicated that e-bike-sharing was able to5

substitute a wide range of trips of other modes of transportation.6

FIGURE 3: Distance ranges in the urban passenger transportation market: median, and
the upper/lower quartiles.

Although not the focus of this paper, it is interesting to note that mi-7

cromobility (skateboards, kickboards etc.) efficiently fills the gap between8

walking and cycling.9

3.4. Comparison of E-bike-sharing Trips with Alternative Modes10

Smide e-bike-sharing trip times were compared to the alternatives taxi,11

transit and walking. Trip times for the alternative modes of transporta-12

tion were estimated with the Google Directions API. (https://developers.13

google.com/maps/documentation/directions, last accessed: July 2018.)14

The comparison of trip times for the Smide data are shown in Table 1. E-15

bike-sharing was amongst the fastest transportation options, and only a taxi16
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would have been faster at the median. 18.2% of transit trips involved at1

least one transfer, and in 18.1% of the cases the trip time corresponded to2

the walking time, as public transportation was not a feasible option. For3

transit, walking time was included, while for taxi and Smide, the time cor-4

responded to the actual trip time. The total trip time of Smide would also5

include walking time to the nearest e-bike. For taxis, the total trip time6

would also include waiting time. For transit, transfers constitute a disutility7

and the time between desired departure time and actual departure time was8

not considered. Therefore, the times in Table 1 are generally rather opti-9

mistic. Furthermore, it is likely that Smide was only chosen if an e-bike was10

close to the desired origin of the trip and therefore, the data is subject to11

an unknown amount of censored demand. Thus, as a comparison, 12,21512

trips from the Swiss household travel survey (MZMV) were also analyzed13

(see Table 1 “MZMV data”). The Google Directions API was used to gen-14

erate proxy travel times for Smide. For MZMV trips in the city of Zürich,15

Smide was the fastest mode at the median, and at the first quartile. At the16

mean and at higher quantiles, a private car or taxi was faster. This can be17

explained by the fact that an average trip from the Swiss household travel18

survey is only 1.5 km (compared to the average Smide trip distance of 2.519

km) and the car plays out its strengths at higher trip distances.20

TABLE 1: Comparison of Smide trip times with potential alternative modes of transporta-
tion. Trip times for driving, transit, walking were determined with the Google Distances
API. Only trip durations over one minute were considered.

Unit: min 1st Quartile Median Mean 3rd Quartile
Smide data Smide 6.6 9.7 11 14

Taxi 4.9 7.7 8.3 11.0
Transit 8.9 13.7 14.9 19.8

Walking 13.6 24.5 29.1 40.0
MZMV data Smide* 1.6 3.7 6.2 8.3

Taxi 1.9 4.3 5.4 7.7
Transit 2.9 5.4 7.3 9.6

Walking 3.4 7.9 15.7 21.5
*Google bicycling routing as proxy for Smide.
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4. The Effect of Weather and Day of the Week on Daily Bookings1

A negative binomial regression model was estimated to analyze the effect2

of weather and day of the week on the number of daily bookings. The weather3

data was obtained from the Swiss Federal Office of Meteorology and Clima-4

tology for one representative station in the city of Zürich. (Weather data5

for Switzerland can be found here: https://www.meteoschweiz.admin.ch/,6

last accessed: July 2018.) A dummy for the weekend days was also included7

in the model. The weather data included temperature (in degrees Celsius),8

a precipitation dummy (1 if there was precipitation), and solar radiation9

(W/m2). Because the total number of bookings has greatly increased be-10

tween April and July, and only stabilized after July, the models were esti-11

mated for a subset of the booking data from July to November 2017. During12

this period a mean of 364 bookings per day (with a median 356) were made.13

Temperature, precipitation, and the weekend dummy had highly signifi-14

cant and substantive effects on the number of bookings (see Table 2). Solar15

radiation was significant, but not substantive. The theta parameter of the16

negative binomial model indicated that there was significant overdispersion17

with respect to a Poisson model and thus a negative binomial model was18

appropriate. With the other parameters at the mean, precipitation reduced19

the number of bookings by 64 (-17%). On the weekend, demand decreased20

by 149 bookings (-37%).21

12
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TABLE 2: Regression models for the number of daily bookings.

Negative
binomial model
Coef. SE

number of bookings
temperature 0.01 ** 0.01
solar radiation 0.00 * 0.00
precipitation dummy -0.18 *** 0.03
weekend dummy -0.46 *** 0.04
Constant 5.84 *** 0.04
θ 29.72 *** 3.69

N 152
AIC 1 719
LL model -853.6
LL null model -935.0
McFadden’s Pseudo R2 0.1
Significance codes: 0.1 * 0.05 ** 0.01 ***
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5. External Drivers of Demand1

5.1. Data2

To study external drivers of demand for free-floating e-bike-sharing, the3

effect of spatial attributes was analyzed using regression techniques. To this4

end, trip start points were aggregated to a 300 meter grid covering the whole5

service area (593 zones). It was assumed that this corresponded to the max-6

imum distance travellers were willing to walk to access a bike.7

In addition, spatial attributes were obtained from various open data8

sources: information on population size (popSize in thousands) and work9

places (workPlace in thousands) were obtained from the official Swiss popu-10

lation and enterprise statistics (Swiss Federal Statistical Office (BFS), 2017b,11

2016). The data were available at hectare resolution; for the raster cells, the12

corresponding averages were used. Service levels for public transportation is13

defined by the Swiss standard SN640290 (highPTlevel indicates the highest14

level “A”) and were obtained as shapefiles from the Swiss national open data15

portal (Swiss open data portal: https://opendata.swiss, last accessed:16

July 2018.) Information on the number of holders of the national season17

ticket (GA) for public transportation (GAperInh providing the percentage18

of GA holders among the population) was available from the same source,19

but was only available at the level of ZIP codes. Zurich’s 25 ZIP-code areas20

largely correspond to subdivisions of the different neighborhoods. Income21

levels (income in 1 000 CHF) were available for the 34 statistical areas of the22

city of Zurich from the city’s open data portal (Open data portal of the city23

of Zurich: https://data.stadt-zuerich.ch/, last accessed: July 2018.)24

For this analysis, the median taxable annual income of singles was used (the25

actual gross income usually is substantially higher). From the same source,26

the locations of all registered bars and restaurants were available and ag-27

gregated to the raster cells (gastronomy gives the count per zone). Further28

leisure facilities (such as sports facilities or cinemas) were available, but not29

significant in the later modelling process. A shapefile with the city’s bicycle30

infrastructure was obtained from the same source. bikeInfra denotes the total31

length (in km) of dedicated bicycle infrastructure within the zone. PTpas-32

sengers indicates the total number of people boarding or alighting a bus or33

tram in the zone during an average work day (also available from the city’s34

open data portal). The distances between the respective zone and the closest35

urban rail station or the main train station, respectively, were calculated and36

indicator variables defined, which denoted a maximum distance of 200 m to37
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an urban rail station (urbanRail200 ) and 500 m to the main train station1

(HB500 ). The variables are summarized in Table 3.2

TABLE 3: Summary of attributes used in demand model.

Variable Min
1st

Quartile
Median Mean

3rd
Quartile

Max

number of rentals 0 12 60 119.3 161 1605
popSize 0.0 0.008 0.052 0.073 0.113 0.394
workPlace 0.0 0.003 0.006 0.085 0.470 2.012
income 30.1 38.5 42.5 43.2 48.4 60.0
gastronomy 0.0 0.0 1.0 3.5 3.0 71
bikeInfra 0.0 0.8 1.3 1.3 1.7 3.5
PTpassengers 0.0 0.0 0.0 3.6 4.9 96.9
GAperInh 0.0 2.5 2.7 3.5 4.4 7.8
highPTlevel 22% of the zones
urbanRail200 18% of the zones
HB500 3% of the zones

Figure 4 shows the spatial distribution of trip start locations. It indicated3

that peak demand is in the city center and decreases towards the borders of4

the service area. Generally, the drop in demand was more substantial towards5

the North and the West. Locations without any rentals correspond to forests,6

hills/creeks or railway/motorway infrastructure.7

5.2. Methodology8

As shown in Table 3, the response variable (number of rentals) does not9

follow a normal distribution. Hence, a count-data model (e.g. negative10

binomial) must be used or the response variable needs to be transformed11

to allow application of linear regression. Since Figure 4 already indicates a12

spatial structure in the data, the latter option was chosen (spatial models for13

count data are still rare in the literature). Thus, a Box-Cox transformation14

(Box and Cox, 1964) was applied with λ estimated as 0.303.15

The linear regression model is presented in Table 4. Although the rela-
tively large R2

adj indicated a high explanatory power, the model was not valid
given a significant level of spatial autocorrelation of the residuals (Moran I
standard deviate = 2.7, p = 0.006). A Lagrange-Multiplier test (Anselin
et al., 1996) indicated significant spatial dependence for the dependent vari-
able (LMlag = 18.0, df= 1, p < 2.2 · 10−5). However, spatial autocorrelation
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FIGURE 4: Number of reservations (logarithm) per raster cell from yellow (low) to dark
red (high). Zones with no observations are given in grey.

of the disturbances was weak (LMerr = 6.9, df= 1, p = 0.01). Therefore, a
linear Cliff-and-Ord-type (Cliff and Ord, 1973) SAR model of the form

y = λWy +Xβ + ε

was estimated. Here, W denotes the row-standardized spatial weights matrix1

for eight nearest neighbors. The neighboring zones were chosen to cover a2

300 m perimeter around the respective zone, which was assumed to be an3

acceptable walking distance for a free-floating bicycle-sharing user. This4

way, the SAR model formulation accounted for local spillover effects (e.g.5

a bicycle is not available in the origin zone, but in one of the neighboring6

zones).7
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The model was estimated using Maximum Likelihood. Again, the Box-1

Cox transformed response variable was used. The results are presented in2

Table 4 along with the simple linear regression model. Comparing the AIC3

values, the spatial model fit the data substantially better than the simple4

regression model described above. Not accounting for spatial autocorrelation5

in the disturbances was justified (LMerr = 0.02, p = 0.9).6

TABLE 4: Regression models for free-floating bicycle-sharing demand.

simple linear model spatial lag model
Coef. t Coef. t

number of departures
popSize (in thousands) 21.62 *** 9.18 13.18 *** 6.55
workPlace (in thousands) 2.76 *** 3.59 1.63 ** 2.53
highPTlevel (dummy) 2.14 *** 4.45 1.14 *** 2.82
PTpassengers (count) 0.16 *** 5.18 0.16 *** 6.49
income (in 1000 CHF) 0.18 *** 7.10 0.07 *** 3.23
gastronomy (count) 0.13 *** 4.58 0.05 * 1.92
bikeInfra (km) 1.09 *** 3.55 0.89 *** 3.47
urbanRail200 (dummy) 1.54 *** 3.41 0.82 ** 2.14
HB500 (dummy) 4.43 *** 3.70 1.69 * 1.67
GAperInh (percent) 0.28 ** 2.30 -0.06 -0.61
(Intercept) -6.02 *** -5.98 -3.27 *** -3.83
λ - 0.60 *** 15.57

N 593 593
AIC 3 360 3 192
R2

adj 0.56 -

Significance codes: 0.1 * 0.05 ** 0.01 ***

5.3. Results7

The model results (Table 4) provide a range of interesting insights. First,8

it was shown that economic and social activity were key drivers of demand9

for free-floating bicycle-sharing in an area. Interestingly however, sports10

facilities, cinemas or event halls did not have a significant effect. A potential11

interpretation would be that the latter are usually visited as a couple or12

group, for which free-floating e-bikes are a sub-optimal option.13
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As in earlier research, the bicycle network density had a positive impact.1

Although the actual attractiveness of the bicycle mode mostly depended on2

the infrastructure along the route, the model showed that a denser infras-3

tructure increased bicycle trips. Neighborhoods with higher income levels4

showed a higher demand, which makes sense given that the cost of the ser-5

vice is relatively high compared to public transportation (which has zero6

marginal cost for season ticket holders).7

The model provided insight into the interdependence of free-floating bicycle-8

sharing with public transportation services. All indicators related to public9

transportation showed a positive effect, i.e. indicating that demand for free-10

floating bicycle-sharing was higher in areas well-connected by public trans-11

portation and those close to the central station and urban train stations.12

This reflects earlier insights on car-sharing (Millard-Ball et al., 2005; Stillwa-13

ter et al., 2009) indicating that shared mobility services rely on a functioning14

public transportation service, which (1) provides mobility in case the shared15

service is unavailable and (2) correlates with lower levels of car-ownership.16

In contrast to Stillwater et al. (2009), heavy rail stations showed a partic-17

ularly positive effect on bicycle-sharing demand, which may indicate that a18

substantial share of customers use the scheme as an access or egress mode for19

train journeys. The interpretation of PTpassengers was less immediate since20

the demand matrix for private cars was not available. Hence, PTpassengers21

may also be regarded as a proxy for general travel demand, such that the pa-22

rameter estimate indicates that free-floating bicycle-sharing follows a similar23

spatial distribution of demand as other modes, i.e. it does not only serve a24

specific market niche.25

It was interesting to see the high explanatory power of the model and the26

fact that there was no clustering of unobserved effects. Given that demand27

can be well explained by attributes available from open data, this model can28

be used to predict demand and help to design service areas in other cities29

too.30

18



6. Discussion1

The analysis conducted in this paper showed that e-bike-sharing effi-2

ciently complements traditional public transportation. The range of typical3

e-bike-sharing trips largely overlapped with traditional public transportation,4

which indicated that e-bike-sharing caters to the same market segment with5

respect to trip distances. During the night when traditional public trans-6

portation service is not available or has a low service quality, e-bike-sharing7

is, to some extent, used as a substitute. This is not surprising, as taxi prices8

are comparatively high in Zürich (a 10 minute trip costs approximately CHF9

30). This result may be of interest to public transportation providers that10

seek to offer a cost efficient transportation service during the night, when de-11

mand and operational costs of traditional public transportation do not justify12

(frequent) service. As traditional public transportation is heavily subsidized13

in the city of Zürich and by other cities, a case could be made to also subsi-14

dize bicycle and e-bike-sharing systems that are open to the public (as these15

systems are also a form of public transportation). Subsidizing traditional16

public transportation but not e-bike-sharing distorts the market, which may17

lead to a sub-optimal outcome.18

The descriptive spatial analysis (rental start locations in the main busi-19

ness district during the day), the times of the bookings (a distinct morning20

and afternoon peak), and the regression model of daily bookings (a 37% re-21

duction of trips on weekends) indicated that a major share of the demand22

were commuting trips. Unsurprisingly, precipitation was also a factor affect-23

ing demand of e-bike-sharing (-17% demand on days with precipitation). The24

comparison of trip times of e-bike-sharing with alternative modes of trans-25

portation showed that e-bikes were one of the fastest urban transportation26

options. This is not surprising as Smide e-bikes reach speeds of 35 km/h27

without much effort by the cyclist. This is a major advantage compared to28

traditional bicycle-sharing systems, especially in countries and cities where29

the value of travel time savings (VTTS) is high. High VTTS also justify30

higher prices of e-bike-sharing compared to traditional bicycle-sharing.31

Bicycle-sharing has seen considerable innovation since the “fourth gener-32

ation” systems described by Shaheen et al. (2010). High smartphone pene-33

tration, the capability to offer location-based services on a software level and34

sophisticated applications have made efficient free-floating systems possible.35

Bicycles can be located via smartphone and thus, docking stations and fixed36

user interfaces have become optional. Users can be identified by being reg-37
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istered online, and locking and unlocking can also be done via smartphone.1

E-bikes are changing the landscape of bicycle-sharing by allowing for greater2

distances with more comfort for the cyclist. The combination of these factors3

are likely to make bicycle-sharing much more competitive compared to earlier4

systems, becoming serious comptition for established public transportation5

and taxi services. Furthermore, dynamic pricing (e.g. via bonus zones) can6

be used to assist re-balancing, which lowers operational cost. The leap from7

“fourth generation” systems is considerable and thus, these systems are seen8

as “fifth generation” systems.9

The results of the spatial regression model show that economic and social10

activity were key drivers of demand for free-floating e-bike-sharing, which is11

consistent with the descriptive analysis. Bicycle network density and pub-12

lic transportation service quality have a positive impact on demand. This13

indicates that e-bike-sharing systems complement traditional public trans-14

portation. The results also have implications for investigations of potential15

network effects for (electric) bicycle-sharing, as bicycle infrastructure and a16

adequate public transportation service level may be necessary conditions for17

the scalability of bicycle-sharing systems.18

E-bike-sharing is a potential method for decreasing the energy consump-19

tion of the transportation sector and increasing the quality of the public20

transportation system as a whole. Regulatory agencies should strive not21

to obstruct the development of such systems. This includes approving the22

operation of e-bikes on existing bicycling facilities.23
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