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Abstract

Web applications have become one of the most common ways of providing
access to online information and services. People use their desktop or
mobile browsers to surf the web and perform a wide range of functions,
as well as store and access their ever growing personal digital data. The
popularity, importance and versatility of web applications comes at a cost
though, as they naturally attract the interest of malicious actors. Web
application breaches expose sensitive data and incur significant financial
and reputation losses to the affected parties. It is, therefore, necessary to
adequately secure web applications, and shield them from malicious intent.

In this thesis we consider authentication on the web which constitutes
a vital aspect of web application security. We consider three main pillars of
authentication, namely client authentication, server authentication, and
data authenticity and integrity protection.

In the first part, we propose Sound-Proof, a two-factor authentication
scheme for web logins. Sound-Proof leverages short audio recordings to
verify the proximity of the user’s phone to the computer on which the login is
taking place. Sound-Proof is transparent to the user, as it does not require
any user-phone interaction, resembling the behavior of password-only
authentication. It is, moreover, readily deployable, requiring no additional
software or browser plugins on the user’s computer.

In the second part, we consider TLS MITM attacks where the attacker
impersonates the legitimate web server to the user, with the goal of imper-
sonating the user to the server and compromise the user’s account. We show
why the recently proposed client authentication based on TLS Channel
IDs, as well as client web authentication in general, cannot fully prevent
such attacks. We then show how combining strong client authentication
with the concept of server invariance can protect against such attacks. We
design a novel mechanism called SISCA (Server Invariance with Strong
Client Authentication) and show how it can be realized in practice.

In the third part, we propose Verena, a web application platform that
provides end-to-end integrity guarantees, under full server compromise. In
Verena web clients can verify the integrity of a webpage by verifying the
results of queries on data stored at the server. Verena provides correctness,
completeness and freshness for a common set of database queries by relying
on a small trusted computing base. Verena enables a developer to specify
an integrity policy for query results based on our notion of trust contexts
and enforces this policy efficiently.





Zusammenfassung

Webanwendungen haben sich zu einem der häufigsten Zugangswege zu
Informationen und Dienstleistungen entwickelt. Browser auf Desktops und
Mobilgeräten werden genutzt um im Internet zu surfen und zahlreiche
Aufgaben zu erfüllen. Damit sind sie das Zugangsmedium zu einer stetig
wachsende Zahl von persönlichen, digital gespeicherten Daten. Die Popula-
rität, Wichtigkeit und Vielseitigkeit von Webanwendungen kommt jedoch
mit einem hohen Preis, da sie natürlicherweise kriminelles Interesse auf sich
zieht. Schwachstellen in Webanwendungen setzen sensible Daten frei und
führen zu signifikanten Kosten und Rufschädigungen für die involvierten
Parteien. Es ist daher notwendig Webanwendungen angemessen zu sichern
und sie vor schädlichen Absichten zu schützen.

In dieser Dissertation betrachten wir Authentifizierung im Internet,
einen zentralen Bestandteil von Webanwendungssicherheit. Wir betrachten
drei zentrale Säulen der Authentifizierung: Authentifizierung für Endgeräte,
Authentifizierung für Server und Authentisierung sowie Integritätsschutz
für Daten.

Im ersten Teil entwickeln wir Sound-Proof, eine Lösung für Zwei-Faktor-
Authentifizierung beim Anmelden im Internet. Sound-Proof nutzt kurze
Audioaufnahmen, um die räumliche Nähe von Telefon und Computer des
Benutzers, an dem der Anmeldevorgang stattfindet, zu überprüfen. Sound-
Proof ist unsichtbar für den Benutzer, weil es keine Benutzerinteraktion
mit dem Telefon benötigt und sich daher ähnlich wie Passwort-gestützte
Authentifizierung verhält. Weiterhin ist es einfach einzusetzen und erfordert
keine zusätzliche Software oder Browsererweiterungen auf dem Computer
des Benutzers.

Im zweiten Teil untersuchen wir TLS MITM-Angriffe bei denen der
Angreifer aus Sicht des Benutzers die Identität des legitimen Webservers
annimmt, um gegenüber des Servers als Benutzer auftreten zu können
und so den Account des Benutzers zu übernehmen. Wir zeigen warum
die kürzlich vorgeschlagene Authentifizierung von Endgeräten mit TLS
Channel IDs, sowie die allgemeine Authentifizierung im Internet, solche
Angriffe nicht vollständig verhindern kann. Dann zeigen wir wie starke
Authentifizierung für Endgeräte mit der Invarianz des Servers kombiniert
werden kann, um gegen solche Angriffe zu schützen.

Im dritten Teil stellen wir Verena, eine Webanwendungsplattform mit
Ende-zu-Ende Integrität selbst im Falle von vollständiger Übernahme des
Servers, vor. Bei Verena können Endgeräte die Integrität einer Webseite
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verifizieren, indem sie die Ergebnisse der Anfragen für Daten, die auf
dem Server gespeichert sind, überprüfen. Basierend auf einem kleinen,
vertrauten Kern, bietet Verena Korrektheit, Vollständigkeit und Aktualität
für häufig gebrauchte Datenbankanfragen an. Verena erlaubt es Entwicklern
Integritätsregeln für die Ergebnisse zu spezifizieren, die auf dem Prinzip
von gemeinsamen Vertrauen basieren, und erlaubt es diese Regeln effizient
durchzusetzen.



Sommario

Le applicazioni web sono diventate uno dei principali modi di accedere
a informazioni e servizi online. La gente utilizza browser per computer
o cellulari per navigare in internet e per salvare e accedere una quantità
sempre crescente di dati personali digitalizzati. La popolarità, importanza
e versatilità delle applicazioni web risulta però un’arma a doppio taglio
poichè attirano l’interesse di individui malintenzionati. Le violazioni delle
applicazioni web espongono dati sensibili e incorrono in perdite finanziarie
e di immagine. Di conseguenza, è necessario rendere le applicazioni web
sicure e protette da intrusi e accessi non autorizzati.

In questa tesi analizziamo, in generale, l’autenticazione sul web che
costituisce un aspetto vitale per la sicurezza delle applicazioni web. In
particolare, consideriamo tre aspetti cardine dell’autenticazione, ovvero
autenticazione del client, del server, come anche dei dati e della protezione
della loro integrità.

Nella prima parte proponiamo Sound-Proof, uno schema di autenti-
cazione a due fattori per i login sul web. Sound-Proof sfrutta due brevi
registrazioni audio per verificare la prossimità del cellulare dell’utente con
il proprio computer, dove viene effettuato il login. Sound-Proof non richie-
de nessuna interazione dell’utente con il proprio cellulare, assomigliando,
per esperienza, al semplice login con nome utente e password. Inoltre,
Sound-Proof risulta facilmente utilizzabile poichè non richiede nessuna
installazione di componenti aggiuntivi per il browser.

Nella seconda parte consideriamo attacchi di tipo TLS MITM, ovvero
quando l’avversario impersona legittimamente il server web verso l’uten-
te, con l’obbiettivo di impersonare l’utente nei confronti del server e così
comprometterne l’account. Dimostriamo come l’autenticazione del client
basata su “TLS Channel IDs”, così come l’autenticazione del client più in
generale, non previene questo genere di attacchi. In seguito dimostriamo
come questi attacchi possono essere risolti unicamente combinando l’auten-
ticazione client “strong” con il concetto di invarianza di server. Ideiamo un
nuovo meccaniscmo, chiamato SISCA (Server Invariance with Strong Client
Authentication), e dimostriamo come può essere realizzato in practica.

Nella terza ed ultima parte, proponiamo Verena, una piattaforma per
applicazioni web che fornisce garanzie di integrità end-to-end, conside-
rando un server completamente compromesso. Con Verena, i client web
possono verificare l’integrità di una pagina web verificando i risultati di
diverse query per i dati salvati sul server. Verena garantisce la correttezza, la
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completezza e la freschezza dei dati, per un insieme di query per database,
basandosi su una piccola base di calcolo affidabile. Verena permette ad uno
sviluppatore di specificare una politica di integrità per i risultati delle query
basata sulla nostra nozione di contesti di affidamento (“trust contexts”);
questa politica di integrità viene poi applicata da Verena efficientemente.
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Srdjan Čapkun for his support and guidance throughout my studies and for
being a great mentor and, importantly, a great friend at the same time. All
these years we have had an amazing collaboration and relationship, and I
am sure it will continue to be the case for years to come.

I would also like to sincerely thank my co-advisors Prof. David Basin,
Prof. Kenny Paterson, Prof. Carmela Troncoso and Prof. Moti Yung who
accepted to be on my dissertation committee and dedicated their time to
read and evaluate this thesis, as well as provide valuable feedback.

I am grateful to my co-authors, Alexandros Filios, Dr. Claudio Marforio,
Prof. Raluca Ada Popa and Dr. Claudio Soriente, who contributed in making
this thesis a reality. It has been an immense pleasure working with them,
and I gained a lot through their experience and insights.

Many thanks go to Dr. Claudio Marforio and Ilias Rinis for their help in
improving this thesis.

A special thanks goes to all of my fellow colleagues with whom I had a
great time sharing office space throughout my studies: Prof. Arthur Gervais,
Marco Guarnieri, Dr. Claudio Marforio, Dr. Claudio Soriente and Der-Yeuan
Yu.

The System Security Group has been a great home and family all these
years, and I would therefore like to extend my gratitude to everyone who
has been part of this great family during the time I was part of it.

I am grateful to my girlfriend Kimily, for her love and support during
the last stage of my PhD, especially while writing this thesis, as well as for
her help in improving it. I am also grateful to Efstratia for supporting and
bearing with me throughout my studies at ETH Zurich.

Finally, last but by no means least, I would like to deeply thank my
parents and my brother for supporting me throughout my PhD years and
my life in general, and for helping me become the person I am today.





Contents

1 Introduction 1
1.1 Part I: Web Client Authentication . . . . . . . . . . . . . . . 3
1.2 Part II: Web Server Authentication . . . . . . . . . . . . . . . 4
1.3 Part III: Data Authenticity and Integrity in Web Applications 5
1.4 Related Publications . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background on Web Applications 9
2.1 Web Application Architecture . . . . . . . . . . . . . . . . . . 9
2.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Browser Security Model . . . . . . . . . . . . . . . . . . . . . 19
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

I Web Client Authentication 23

3 Introduction 25

4 Related Work 29
4.1 Two-Factor Authentication for the Web . . . . . . . . . . . . 29
4.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Sound-Proof: Usable 2FA Based on Ambient Sound 37
5.1 Assumptions and Goals . . . . . . . . . . . . . . . . . . . . . 39
5.2 Background on Sound Similarity . . . . . . . . . . . . . . . . 41
5.3 Sound-Proof Architecture . . . . . . . . . . . . . . . . . . . . 42
5.4 Prototype Implementation . . . . . . . . . . . . . . . . . . . . 47
5.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.9 Summary and Future Work . . . . . . . . . . . . . . . . . . . 67

II Web Server Authentication 71

6 Introduction 73



x Contents

7 Related Work 77
7.1 CA Trust Model Enhancement . . . . . . . . . . . . . . . . . 77
7.2 User Impersonation Prevention . . . . . . . . . . . . . . . . . 80

8 SISCA: Server Invariance with Strong Client Authentication 81
8.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
8.2 Channel ID-based Authentication and MITM Attacks . . . 84
8.3 Addressing TLS MITM Attacks . . . . . . . . . . . . . . . . . 92
8.4 Our Proposal: SISCA . . . . . . . . . . . . . . . . . . . . . . . 92
8.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
8.6 Summary and Future Work . . . . . . . . . . . . . . . . . . . 115

III Data Authenticity and Integrity in Web Applica-
tions 117

9 Introduction 119

10 Background 123

11 Verena: End-to-End Integrity Protection for Web Applications 127
11.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
11.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
11.3 Integrity Policy API . . . . . . . . . . . . . . . . . . . . . . . . 135
11.4 Integrity Protection Mechanism . . . . . . . . . . . . . . . . 144
11.5 Hash Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
11.6 Communication Protocol and Query Processing . . . . . . 151
11.7 Informal Security Argument . . . . . . . . . . . . . . . . . . 155
11.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
11.9 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 157
11.10 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.11 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.12 Summary and Future Work . . . . . . . . . . . . . . . . . . . 168

12 Closing Remarks 171

Appendices 175
A System Usability Scale . . . . . . . . . . . . . . . . . . . . . . 175
B Post-test Questionnaire . . . . . . . . . . . . . . . . . . . . . . 175
C User Comments . . . . . . . . . . . . . . . . . . . . . . . . . . 176
D Other Frequency Bands . . . . . . . . . . . . . . . . . . . . . 177

Bibliography 185



List of Figures

2.1 Web application architecture overview . . . . . . . . . . . . . 10
2.2 Password-based authentication using web forms . . . . . . . 14
2.3 Web server authentication . . . . . . . . . . . . . . . . . . . . . 16
2.4 Address bar HTTPS indicator examples . . . . . . . . . . . . . 18
2.5 Functionalities affected by the same-origin policy . . . . . . 20

5.1 Block diagram of the function that computes the similarity
score between two samples . . . . . . . . . . . . . . . . . . . . 43

5.2 Sound-Proof authentication overview . . . . . . . . . . . . . . 45
5.3 False Rejection Rate and False Acceptance Rate as a function

of the threshold τC for B = [50Hz− 4kHz] . . . . . . . . . . 52
5.4 Minimizing f = α · FRR+β · FAR, for α ∈ [0.1, . . . , 0.9] and

β = 1−α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 Impact of the environment on the False Rejection Rate . . . 54
5.6 Impact of user activity, phone position, phone model and

computer model on the False Rejection Rate . . . . . . . . . 55
5.7 Distribution of the answers by the participants of the user

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.8 Distribution of the answers to the post-test questionnaire . 61

8.1 PhoneAuth and FIDO U2F . . . . . . . . . . . . . . . . . . . . . 85
8.2 Binding authentication tokens to the browser’s Channel ID 86
8.3 MITM-SITB attack on Channel ID-based PhoneAuth/U2F

used for the initial login . . . . . . . . . . . . . . . . . . . . . . 88
8.4 MITM-SITB attack on Channel ID-based authentication after

the initial login . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.5 MITM-SITB attack on Channel ID-based authentication lever-

aging cross-origin communication . . . . . . . . . . . . . . . . 91
8.6 Thwarting TLS MITM attacks in web applications by com-

bining strong client authentication with server invariance . 94
8.7 An example challenge/response-based server invariance pro-

tocol requiring per-client server state . . . . . . . . . . . . . . 98
8.8 Basic SISCA protocol . . . . . . . . . . . . . . . . . . . . . . . . 99
8.9 Resilience of SISCA to MITM-SITB . . . . . . . . . . . . . . . . 100
8.10 SISCA adapted for cross-origin communication . . . . . . . . 104
8.11 Preventing downgrade attacks (same-origin case) . . . . . . 107



xii List of Figures

10.1 Example tree-based ADS supporting aggregations . . . . . . 124

11.1 Verena system overview . . . . . . . . . . . . . . . . . . . . . . 132
11.2 Forest of ADS trees . . . . . . . . . . . . . . . . . . . . . . . . . 145
11.3 Illustration of the completeness chain mechanism . . . . . . 147
11.4 Communication protocol in Verena . . . . . . . . . . . . . . . 152
11.5 End-to-end latency of various read and write operations in

Verena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
11.6 Throughput evaluation on the main server when running

with Verena enabled, as well as without Verena . . . . . . . . 160

D.1 FRR and FAR as a function of the threshold τC for bands in
the B = [50Hz− [630Hz− 4kHz]] range . . . . . . . . . . . . 178

D.2 FRR and FAR as a function of the threshold τC for bands in
the B = [63Hz− [630Hz− 4kHz]] range . . . . . . . . . . . . 180

D.3 FRR and FAR as a function of the threshold τC for bands in
the B = [80Hz− [630Hz− 4kHz]] range . . . . . . . . . . . . 182

D.4 FRR and FAR as a function of the threshold τC for bands in
the B = [100Hz− [630Hz− 4kHz]] range . . . . . . . . . . . 184



List of Tables

5.1 Overhead of the Sound-Proof prototype . . . . . . . . . . . . 49
5.2 False Acceptance Rate when the adversary and the victim

devices record the same broadcast media . . . . . . . . . . . 57
5.3 Comparison of Sound-Proof against Google 2-Step Verifica-

tion, PhoneAuth, and FBD-WF-WF, using the framework of
Bonneau et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

11.1 Database collections used in the running example of a remote
monitoring medical application . . . . . . . . . . . . . . . . . 137

11.2 Operations supported in read queries . . . . . . . . . . . . . . 140
11.3 Write operations in Verena . . . . . . . . . . . . . . . . . . . . 141
11.4 User and trust context API in Verena . . . . . . . . . . . . . . 148
11.5 Hash server throughput . . . . . . . . . . . . . . . . . . . . . . 161
11.6 Latency for loading views in our example medical application

whose data integrity is protected by Verena . . . . . . . . . . 163





Chapter 1

Introduction

The Web is one of the most popular ways of accessing online information
on the Internet. Millions of people interact with multiple websites every
day for a plethora of purposes, such as reading the news, accessing their
personal web email, interacting with their social media accounts, perform-
ing financial transactions, accessing their medical records and so forth.
Besides personal-oriented activities, such as the ones mentioned above, a
substantial number of corporate functions are implemented on top of web
applications, which company employees access daily at work. Online office
applications, web-based thin clients and HR management tools are just
some examples of business-related web applications.

Traditionally, this interaction involved using a web browser on a desktop
or laptop computer. However, in recent years mobile devices have become
the most popular way of browsing the web [210]. This trend has been
driving companies to provide mobile-friendly versions of their websites in
order to offer a smooth browsing experience on mobile platforms, as well.

Given the ubiquity and range of functionality that web applications
offer nowadays, their security is arguably a significant aspect that cannot
be overlooked. Sensitive private user or corporate information is at risk
and can be exposed if an attacker manages to gain unauthorized access in
a web application. According to a recent report [4, 219], web application
attacks have soared significantly in the last years and nowadays constitute
the largest source of attack resulting in successful data breaches.

The prevalence of web applications, as well as their nature, i.e., they
are often public facing and accessible over the Internet, makes them an
attractive target to attackers. Contributing to this fact is the complexity of
the web application software stack. Modern Web 2.0 sites offer a rich user
experience, through a variety of client- and server-side technologies, which
nevertheless significantly increase the software complexity as well as the
exposed attack surface. Given the above, it is not surprising that there is a
wide range of attack vectors (e.g., [212]) through which malicious actors
can try to compromise a web application and the online accounts and data
of its users.

One of the important aspects and fundamental building blocks in the
security of web applications is authentication. Authentication on the web
comprises three pillars. On the one hand, client authentication allows the
web server to verify the identity of a user, such that only the intended user
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can access his online account and data and thereby deny any unauthorized
and malicious access. On the other hand, server authentication ensures that
users are interacting with the intended website, for example the e-banking
application of their bank, instead of a fraudulent one. Going one step
further, data integrity protection and authentication can ensure that the
users of a web application will be able to retrieve correct and authentic
information while interacting with the web application, even if an adversary
has managed to fully compromise the server.

In this thesis we focus on web application security and authentication.
In particular, we look into the three authentication pillars, namely client
authentication, server authentication and data authenticity. In each pillar
we explore existing challenges and open problems and advance the state
of the art by proposing novel solutions that strengthen authentication and
improve the security of web applications. While security is, of course, an
important design goal, we also aim for our proposals to be feasible and
practical. For a proposed security solution to be practical, it should be as
user-friendly as possible and easy to deploy, without requiring significant
changes in the existing infrastructure. These features combined can en-
courage adoption and people can therefore benefit from the security that
the solution brings. In other words, usability and deployability are another
two essential design goals which we strive to achieve throughout our work.
In particular, we highlight the interaction between these three goals and
show how the overall security can be improved by striking the appropriate
balance.

In the first part of this thesis we investigate client authentication in web
applications. Password-based authentication is almost ubiquitous when it
comes to authenticating users on the web. While two-factor authentication
is a promising solution to the reduced security of passwords, the adoption
rates are significantly low when two-factor authentication is optional [165].
We propose a novel two-factor authentication solution which removes
interaction between the user and his mobile phone, which acts as the
second-factor device. We show how such a usable and easily deployable
solution can potentially improve the overall security by fostering wider user
adoption, such that more online accounts can benefit from the increased
security which two-factor authentication offers.

In the second part of this thesis we focus on web server authentication
and the security of the current Certificate Authority (CA) trust model.
We look into Transport Layer Security (TLS) Man-In-The-Middle (MITM)
attacks, where the attacker is able to successfully impersonate the server
to the user, with the intention of compromising the user’s online account
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and data. We show and explain why a recently proposed solution to this
problem, based on strong client authentication, fails to actually prevent
such attacks. We then come up with a novel solution that leverages the
concept of server invariance which, when combined with strong client
authentication, can resist MITM attacks.

Finally, in the third part of this thesis we look into data authenticity
and integrity protection for web applications. We discuss how integrity
of information can be crucial and more important than confidentiality
in certain types of applications. We investigate the case where a web
application server has been fully compromised by the attacker. Such an
attacker can tamper with the data and query computation results and thus
serve corrupted webpages to the user. We then present a web application
framework that provides end-to-end integrity guarantees for the legitimate
users of the web application even in the face of such a powerful adversary.

1.1 Part I: Web Client Authentication
The majority of web applications employ password-based authentication
in order to authenticate their users and grant them access to their online
accounts. Nevertheless, passwords are susceptible to a number of attacks
such as phishing and password database compromise. As a matter of fact,
billions of user passwords, in either plaintext or hashed form, are publicly
known to have leaked through website data breaches [215]. To make the
problem even worse, users are known to often choose simple, easy to guess
passwords and to reuse passwords across websites. Consequently, a breach
on one website can lead to the leakage of the user’s password, which can in
turn lead to the compromise of his online accounts on other independent
websites, assuming that the same password is reused.

Two-factor authentication protects users and their online accounts even
if passwords are leaked. Most users, however, prefer password-only au-
thentication. One reason why two-factor authentication is so unpopular is
the extra steps that the user must complete in order to log in [36, 86, 233].
Currently deployed two-factor authentication mechanisms require the user
to interact with his phone to, for example, copy a verification code to the
browser. Two-factor authentication schemes that eliminate user-phone
interaction exist but require additional software, which poses an obstacle
to deployment.

We propose Sound-Proof, a usable and deployable two-factor authenti-
cation mechanism. Sound-Proof does not require interaction between the
user and his phone. In Sound-Proof the second authentication factor is the
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proximity of the user’s phone to the device being used to log in. The proxim-
ity of the two devices is verified by comparing the ambient noise recorded
by their microphones. Audio recording and comparison are transparent
to the user, so that the user experience is similar to that of password-only
authentication. Sound-Proof can be easily deployed as it works with current
phones and major browsers without plugins. We build a prototype for both
Android and iOS. We provide empirical evidence that ambient noise is a
robust discriminant to determine the proximity of two devices both indoors
and outdoors, even if the phone is in a pocket or purse. We conduct a user
study designed to compare the perceived usability of Sound-Proof with
Google 2-Step Verification. Participants ranked Sound-Proof as more usable
and appreciated the speed and seamless experience that it offers in com-
parison to a code-based two-factor authentication solution. The majority of
the users would be willing to use Sound-Proof even for scenarios in which
two-factor authentication is optional.

1.2 Part II: Web Server Authentication
More and more websites nowadays, even those who provide a service that
is not security critical, support HTTPS (HTTP over TLS). Whereas HTTP
is insecure and does not provide any confidentiality, integrity and server
authentication guarantees, HTTPS is able to provide all of these properties
through TLS. The established way in which web servers are authenticated
to the client is the so called CA trust model. The browsers that people use
for surfing the web come preconfigured with a list of trusted CAs. Any
certificate issued by one of these CAs for a particular domain name is
automatically trusted by the browser. The websites use these certificates in
order to authenticate themselves to the browser during the TLS handshake
phase. Although this model has worked well for the most part, there
have been a number of significant attacks enabling attackers to get valid
certificates for domains they do not control and mount TLS MITM attacks.
Consequently, people have started to question the security of the CA trust
model. As we will see later on in this thesis, this has been a very active area
of research, with researchers trying to come up with new solutions and
proposals to enhance or even completely substitute the current CA trust
model.

In this thesis, we consider TLS MITM attacks in the context of web
applications, where the attacker is able to successfully impersonate the
legitimate server to the user, with the goal of impersonating the user to
the server and thus compromising the user’s online account and data. We
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describe in detail why the recently proposed client authentication protocols
based on TLS Channel IDs [56], as well as client web authentication in
general, cannot fully prevent such attacks.

Nevertheless, we show that strong client authentication, such as Chan-
nel ID-based authentication, can be combined with the concept of server
invariance, a weaker and easier to achieve property than server authenti-
cation, in order to protect against the considered attacks. We specifically
leverage Channel ID-based authentication in combination with server in-
variance to create a novel mechanism that we call SISCA: Server Invariance
with Strong Client Authentication. SISCA resists user impersonation via
TLS MITM attacks, regardless of how the attacker is able to successfully
achieve server impersonation. We analyze our proposal and show how it
can be integrated in today’s web infrastructure.

1.3 Part III: Data Authenticity and Integrity in
Web Applications

Arguably, data confidentiality of sensitive information is one of the basic
properties we want to achieve through the use of secure protocols in web
applications, such as HTTPS. Nowadays, our lives are almost completely
digitalized and accessible through a variety of web services that we use. A lot
of people are privacy sensitive and would not wish for their private financial
assets, medical information, VOIP calls, email, friends on social media, or
even their search queries to leak to unauthorized third parties. Privacy is a
fundamental human right, and by encrypting all communication between
a browser and a web server, we can thwart network-based eavesdroppers
from accessing our private online information.

Nevertheless, one should not neglect that the integrity of the informa-
tion which we access on web applications is equally as important, especially
for certain classes of applications. Web applications rely on web servers to
protect the integrity of sensitive information. However, an attacker gaining
access to web servers can tamper with the data and query computation
results, and thus serve corrupted webpages to the user. Violating the in-
tegrity of the webpage can have serious consequences, affecting application
functionality and decision-making processes. Worse yet, data integrity vio-
lation may affect physical safety, as in the case of medical web applications
which enable physicians to assign treatment to patients based on diagnostic
information stored at the web server.

In this thesis we propose Verena, a web application platform that pro-
vides end-to-end integrity guarantees against attackers that have full access
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to the web and database servers. In Verena, a client’s browser can verify
the integrity of a webpage by verifying the results of queries on data stored
at the server. Verena provides strong integrity properties such as freshness,
completeness, and correctness for a common set of database queries by
relying on a small trusted computing base. In a setting where there can
be many users with different write permissions, Verena allows a developer
to specify an integrity policy for query results based on our notion of trust
contexts, and then enforces this policy efficiently. We implemented and
evaluated Verena on top of the Meteor framework. Our results show that
Verena can support real applications with modest overhead.
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1.5 Thesis Outline
In this thesis we focus on the security of web applications and in particular in
web authentication, which we divide into three pillars; client authentication,
server authentication and data authenticity and integrity protection. In the
first part of the thesis we look into web client authentication and propose
a secure, usable and deployable two-factor authentication mechanism. In
the second part we investigate the problems of the current CA trust model
for authenticating web servers. We come up with an attack on a recently
proposed solution that attempts, but fails, to fully prevent TLS MITM
attacks. We also develop a new concept and proposal for preventing such
attacks. Finally, in the third part of the thesis we look at the importance
of data authenticity and integrity in web applications and propose a new
framework for achieving end-to-end data integrity guarantees, even under
full server compromise. A detailed outline of the thesis follows.

In Chapter 2 we briefly introduce today’s web technologies and the
typical web application architecture. We give an overview of the most
common ways in which web servers and clients are authenticated and de-
scribe the security model of modern web browsers. For further background
information relevant to each part of the thesis, we refer the reader to the
respective background sections of each part. Moreover, the related work
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sections in each respective part, provide more information about the state
of the art in each authentication pillar which we investigate in this thesis.

Part I: Web Client Authentication
Chapter 3 introduces the first part of the thesis, which focuses on web

client authentication. In Chapter 4 we give an overview of the the research
on two-factor authentication, as well as currently deployed solutions. In
Chapter 5, we present Sound-Proof, a two-factor authentication mechanism
for web applications that leverages the ambient sound to verify that the
user’s phone, which acts as the second-factor device, is in close proximity
to the computer from which the user is trying to log in. The key design
goals of Sound-Proof are usability, and deployability, without requiring any
changes on the browser.

Part II: Web Server Authentication
Chapter 6 introduces the second part of this thesis, which focuses on

web server authentication. In Chapter 7 we give an overview of the current
research as well as deployed systems that enhance the security of the server
authentication on the web. In Chapter 8 we present an attack, which
we call Man-In-The-Middle-Script-In-The-Browser (MITM-SITB), against
a recently proposed solution to prevent TLS MITM attacks based on the
concept of TLS Channel IDs. We then continue to propose SISCA, which
is based on the concept of server invariance and show how it can prevent
such attacks.

Part III: Data Authenticity and Integrity in Web Applications
Chapter 9 introduces the third part of this thesis, which focuses on

data integrity protection in web applications. Chapter 10 provides a short
introduction to Authenticated Data Structures, which we make use of in our
work. In Chapter 11 we present Verena, the first web application platform
which provides end-to-end data integrity protection for the users of a web
application, even under full server compromise.

Chapter 12 concludes this thesis by presenting the closing remarks of
the work presented.



Chapter 2

Background on Web Applications

In this chapter we briefly introduce the reader to a few basic and important
aspects of web applications and web application security. As mentioned
in Chapter 1, web applications are complex ecosystems, featuring a large
number of different standards, protocols, frameworks, software implemen-
tations, browser vendors and so forth. Consequently, we omit many details
and try to present the reader with information and concepts that are im-
portant in understanding and following the research topics and ideas that
are discussed in the rest of this thesis.

We note that this chapter serves as a brief introduction to basic web
application concepts and is intended for readers who are interested in this
thesis but lack familiarity with foundation concepts of web applications.
We encourage readers who are already familiar with these concepts to skip
this chapter.

The rest of this chapter is organized as follows. Section 2.1 contains an
overview of the architecture of web applications and presents some of the
most important components and technologies in modern web applications.
In Section 2.3 we describe the basic notions of the browser security model,
which revolves around the fact that web browsers are used to access a
multitude of websites, so it is essential that each website is isolated and
cannot access data of other websites. Finally, in Section 2.2 we describe
how common client (user) and server authentication is performed in web
applications.

2.1 Web Application Architecture
Basic Components

Web applications, as shown in Figure 2.1, consist of a server component
as well as a client component, which is typically a web browser. The user
navigates the browser to a particular website, identified by a domain name.
On a high level, the browser contacts the web server corresponding to this
domain and asks to load the particular page. Through a series of HTTP
requests issued by the browser and processed by the server, the browser
fetches all the webpage resources and renders the page. Assuming an
HTTPS-enabled web application, these HTTP requests and responses are
taking place over a TLS connection between the browser and the server.
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Figure 2.1: Web application architecture overview. A typical web appli-
cation consists of both server-side and client-side code. Persistent data is
stored on a backend database, but some application state can be stored
on the client side in the form of cookies or within the browser’s Web Stor-
age. For HTTPS-enabled websites, the HTTP communication between the
browser and the server occurs on top of TLS connections.

We emphasize the fact that in a web application two programs are run-
ning at the same time; the server-side code which processes and responds
to incoming HTTP requests, and the client-side code which responds to user
input. The client-side code is fetched by the browser from the server as part
of loading the webpage, i.e., it is considered to be part of the webpage’s
resources.

On the server side there is a great variety of languages and frameworks
used for creating web applications. Popular examples include Ruby and
the Rails framework [183], Python and the Django framework [58], PHP,
C# and Java. Nevertheless, any program, written in any programming
language, which is able to respond to HTTP requests can act as the server-
side part of a web application.

On the client side the landscape is different, with HTML, CSS and
JavaScript being the languages used and understood by web browsers
(excluding web plugins). Webpages, therefore, consist of HTML, CSS and
JavaScript code, as well as other, mainly static, resources such as text,
images and videos [144]. HTML (HyperText Markup Language) describes
the layout and content of a webpage while CSS (Cascading Style Sheets)
are used to describe the appearance of the content. JavaScript is the pro-
gramming language that is executed within the web browser. It is powerful
and can be used to create advanced, dynamic websites. The browser is
responsible for parsing the webpage code, fetching all the resources that
are required by the page, executing its JavaScript code and render the page
to the user’s screen.
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Gradually, webpages shifted from consisting of mostly static HTML
content to being fully dynamic through the use of JavaScript code. The
page’s JavaScript code communicates in the background with the server
via AJAX [228] and WebSockets [70], and dynamically updates the page
contents, by modifying the page’s Document Object Model (DOM) [140],
which is a tree-based, hierarchical representation of the entire page and its
contents. As a result, while most of the page layout rendering was tradition-
ally performed by the server-side code, a lot of modern web applications
perform the page layout creation and/or manipulation using the client-side
code, i.e., JavaScript. The extreme version of this, are so-called single-
page applications [47], which load a single HTML page and dynamically
update its contents while the user is interacting with the app. Single-
page applications avoid page reloads and rely on background-based server
communication (via AJAX and WebSocket), as well as HTML5 [97, 224]
to provide a rich user-experience, similar to native desktop and mobile
applications.

HTML5 is the latest version of HTML. The new features that it offers
(for example, the ability to play and record audio and video and draw
graphics), in conjunction with the use of JavaScript, help websites achieve
a native-application like experience, as mentioned above. What is more,
because of these capabilities, HTML5 has contributed to the decline of
the various plugins which were used previously in webpages in order
to deliver rich graphics and multimedia, such as Adobe Flash, Microsoft
Silverlight and Java applets. These plugins have been often found to contain
exploitable vulnerabilities [66, 96] that allow attackers to compromise the
security of the user’s browser, so phasing them out has been an important,
security-related benefit of HTML5. As we will see in Part I, Sound-Proof,
our proposed two-factor authentication mechanism, relies on WebRTC [85,
226], an HTML5 technology accessible via JavaScript, for recording audio
in the browser, instead of a Flash plugin, greatly improving usability and
security.

Server-side Data Storage and Access Control

The web application server typically communicates with a backend database
system on which it stores the application’s persistent data, such as user
account information. Depending on the application requirements, the
database system can be a relational database such as MariaDB [127], or a
non-relational database, also known as NoSQL, such as MongoDB [137].
This differentiation mainly affects how stored data is organized within the
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database and consequently how it is retrieved through database queries
issued by the web application server.

Among other things, this centralized way of storing data makes it easier
to control access to it. The web server is responsible for authenticating
the web application users (who access the application via their browsers)
and only authorizing eligible users to read or modify certain pieces of data,
based on the application’s access control policy.

It is important to note that access control can only be enforced on the
server side and not on the client. This is due to the fact that all client-side
code and other webpage contents are fully accessible to the user and any
client-side access control checks can be bypassed by a knowledgable user.
Thus, the server is considered to be the trusted part of the application. Nev-
ertheless, this assumption breaks once an attacker manages to compromise
the server.

HTTP Cookies and Client-side Storage
Even though the application’s state is stored on the server, some state can
be stored on the client side, as well. The two typical methods for storing
client-side information are HTTP cookies [16], Web Storage [227] and
IndexedDB [225]. Cookies are small pieces of information which the server
can set as part of its HTTP responses to the client’s requests. The browser
stores the server cookies in its cookie store and whenever it issues an HTTP
request, it automatically attaches any cookies which were previously set by
the server. Previously set cookies can be replaced by the server. Additionally,
cookies expire, and thus deleted by the browser, either when the browser is
closed (session cookies), or upon a predefined expiration date (persistent
cookies). As we describe in Section 2.2.1, cookies play an important role
in client authentication and session management, and their often incorrect
handling (for example as Sivakorn et al. [196] show) by web applications
can allow attackers to gain unauthorized access to user accounts.

Web Storage is an HTML5 mechanism that allows web applications to
store data locally in the browser. It is essentially a key-value store and can be
accessed through JavaScript. It offers the ability to store data that are either
automatically deleted when the browser terminates, or persist indefinitely,
and can be deleted explicitly via JavaScript. Similarly, IndexedDB is a
JavaScript-based object-oriented database that allows indexed storage of
structured data. IndexedDB is suitable for storing large amounts of data,
while Web Storage is mainly useful for storing smaller amounts.

Overall, client-side storage mechanisms enable the web application to
offload some of its state, or to cache it in order to access it faster, without
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incurring network communication overhead. We note that, the information
stored in the client can be viewed and modified by the user. For pieces
of information where this is undesired, web applications typically encrypt
and sign it using a key known only to the server and send the encrypted
version of it to the client for storage. This is for example often the case
with cookies which encode information about the session of the user.

2.2 Authentication
Authentication in web applications is the main topic of this thesis. In
this section we give a basic introduction to the common ways in which
authentication is achieved in today’s web applications. Each part of the
thesis contains additional information, where necessary, in order to better
describe and explain the topics and concepts of each respective part.

2.2.1 Client Authentication
Password-based Authentication Using HTML Forms
The most common way of authenticating users in web applications is
through the use of passwords. When a user creates an account on a web-
site, he chooses a username and a password. These constitute the user’s
credentials. In order to authenticate himself to the website and access his
online account, he needs to submit his username and password. This is
most commonly performed at the application level using HTML forms, also
known as web forms.

The process is illustrated in Figure 2.2. Let us assume that a user has
an online account at www.example.com and that he visits the website from
a web browser not used before. The web server initially treats the user as a
guest (unauthenticated user), and he is only able to access the public pages
and information of the website. In order to access his account, he navigates
the browser to the login area of the website. The browser renders the login
web form of the website and transmits the supplied user credentials back
to the server. The server verifies the credentials, and provided that they
are valid, grants the user access to his account and private data.

The user is now authenticated and can navigate through the private
areas and functions of the website pertaining to his own account, and
according to his privileges. Nevertheless, HTTP is stateless, so the website
needs a way to track the authenticated user across HTTP requests. This is
achieved through the use of cookies. Upon processing the incoming HTTP
request containing the user credentials, the web server creates a session
for the user and sets a cookie in its response to the browser. This cookie
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Figure 2.2: Password-based authentication using web forms. In order to
login to his account, the user submits his credentials, i.e., username and
password, using an HTML form presented by the website. Upon successful
verification of the credentials, the server creates a new session for the user
by setting a cookie in his browser. This cookie acts as the session identifier
and token, and enables the server to identify the user session in subsequent
requests.

contains a unique session identifier. Subsequent HTTP requests made by
the browser will have this cookie attached in their headers, which allows
the server to authenticate the user and track his session as he is interacting
with the website. A cookie in such a case acts as an authentication token,
and its compromise can allow an attacker to hijack the user’s session and
gain access to his account. It should be, therefore, sufficiently protected.
In particular, it should be transmitted only via HTTPS, to prevent theft by
network eavesdroppers [143] and it should be inaccessible to JavaScript,
to prevent theft via Cross-Site Scripting (XSS) attacks [156, 157].

HTTP Authentication

Even though using HTML forms is by far the most common way for imple-
menting password-based authentication, there exist alternatives. Namely,
the HTTP protocol offers an authentication framework [138], and the most
common HTTP authentication scheme is the so-called "Basic" authentica-
tion [176]. HTTP authentication lacks the flexibility which HTML forms
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offer to web applications (for example, HTML forms are customizable and
their look and feel can be arbitrarily tailored, which is not the case for the
HTTP authentication, browser-controlled credential input dialogue). Thus,
it is rarely used.

TLS Client Authentication
Another client authentication mechanism that is available to web applica-
tions is TLS client authentication [55]. Typically, and as we describe in
Section 2.2.2, only the server is authenticated during the establishment
of the TLS connection between the browser and the web server. In TLS
client authentication the browser authenticates itself (and consequently the
user) to the server by using a certificate, during the TLS handshake. The
certificate has to be signed by a CA that is trusted by the server. It contains
the public key of the client and, as part of the TLS handshake protocol, the
client proves possession of the corresponding private key to the server.

With TLS client authentication, the client is authenticated at the TLS
protocol level, similar to where server authentication is performed. This is
in contrast with password-based authentication, which takes place at the
application level. Moreover, TLS client authentication does not suffer from
the security weaknesses of password-based authentication. Nevertheless, it
is cumbersome to use (requiring the user to migrate the certificates across
machines, for example) and generally offers a bad user experience [34]
and thus is not widely deployed.

In Part I of this thesis, we focus on two-factor authentication, which tries to
solve the security weaknesses of the popular password-based authentication
method.

2.2.2 Server Authentication
Certificates and Certificate Authorities
In Section 2.2.1 we mentioned TLS client authentication as an alternative,
yet not so common way for authenticating clients in web applications.
When looking at the server side, authentication using digital certificates
is, nonetheless, the ubiquitous way for authenticating websites. A digital
certificate binds an entity, with the ownership of a public key. In web
applications, the entity is a website and it is associated with one or more
domain names, e.g., www.example.com. The format of such certificates is
specified by the X.509 standard [48].
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Figure 2.3: Web server authentication. The browser wants to connect to
www.example.com. During the TLS handshake phase the server is authen-
ticated by presenting a valid certificate for domain www.example.com. In
order to be accepted by the browser, the certificate needs to be signed by a
trusted CA.

A Certificate Authority (CA) is a trusted third party, whose task is to
verify the ownership of a website’s public key and create a certificate that
binds the specified key with the domain name(s) of the website. The CA
signs the certificate with its own private key. Let us assume a website with
domain name www.example.com. The website generates a public/private
key pair. Let pk be the public key and sk be the private key (also called
secret key). The website then contacts a CA, in order to get its public
key certified. During the verification process, the website proves to the
CA ownership of the domain www.example.com, as well as sk. The CA
then issues a certificate binding www.example.com and pk together. The
certificate has an expiration date, and can also be revoked prematurely,
for example if sk is deemed compromised, in which case the server would
have to generate a new key pair and repeat the certificate issuance process.

Authentication Flow

The server’s key pair [pk, sk] and the CA-issued certificate can be used
to authenticate the server. The authentication happens at the TLS con-
nection level. It is illustrated in Figure 2.3 and works as follows. We
consider the website www.example.com. The user navigates the browser to
https://www.example.com and the browser performs a DNS lookup and
attempts to connect using TLS with the server that answer at the IP address
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which was returned via the DNS lookup. During the TLS handshake the
server presents its certificate to the browser and a proof that it possesses
the secret key sk which corresponds to the pubic key pk which is contained
in the certificate. The browser then performs a number of checks, including
the following:

• The certificate is valid, i.e., it contains a valid signature by a CA which
is trusted by the browser. The trust can be direct or indirect via a
chain of trust. We explain this concept further below.

• The domain www.example.com is contained in the list of domains
for which this certificate was issued.

• The server has access to the secret key sk. The browser uses the
public key pk contained in the certificate and the server-supplied
proof to verify this.

• The certificate has not expired and has not been revoked.

The browser accepts the certificate, deems the server as legitimate
(provided that all checks were successful) and the TLS connection is estab-
lished. From this point onward the HTTP requests issued by the browser to
www.example.com will be performed on top of the encrypted TLS channel.

CA Trust Model
Website authentication is based on a public key infrastructure (PKI) where
the keys of the web servers are vouched by the keys of the CAs. As men-
tioned above, in order for the browser to accept a certificate, it has to be
signed by a CA that the browser trusts. The trust can be direct or indirect.
In particular, web browsers are preconfigured to trust a fairly large number
of, so-called, root CAs. Each root CA creates a self-signed certificate for
its public key, the private counterpart of which, is used to issue certifi-
cates. These self-signed certificates, called root certificates, are embedded
in the browser’s certificate store. Any certificate signed by by the keys
corresponding to the root certificates is trusted by the browser.

The root CAs are able to appoint intermediate CAs, by issuing them a
special type of certificate that grants the ability to sign certificates. This
means that intermediate CAs can use their private keys to issue certificates
for websites, and, depending on the assigned privileges, other intermediate
CAs. This creates chains of trust where, starting from a website certificate,
called leaf certificate, there can be one or more levels of intermediate CAs
that chain up to a root CA which is trusted by the browser.
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(a) Valid EV Certificate

(b) Valid Certificate

(c) Invalid Certificate

Figure 2.4: Google Chrome (version 61) address bar security indicators of
the validity of the web server’s certificate. EV stands for Extended Validation
and is a type of certification which requires stricter verification checks to
be performed by a CA, thereby offering a higher level of trust about the
legitimacy of the certified organization.

CAs are typically for-profit organizations i.e., they make profit from
issuing certificates. Nevertheless, in recent years some non-profit orga-
nizations (e.g., [120]) have been issuing certificates to websites free of
charge, a move that aims at overcoming financial obstacles and encouraging
widespread adoption of HTTPS and eventual elimination of plain HTTP.

Given the above, it becomes obvious that there is a lot of trust placed in
the current CA system. In particular, any CA trusted by browsers can issue
a valid certificate for any domain in the world. As we discuss in Part II, this
has led to a number of important attacks in recent years, and there is active
research effort aiming in enhancing or completely substituting the current
CA trust model, with a more secure alternative (e.g., [68, 111, 118, 234]).

Browser Indicators and User Involvement

When the user wishes to visit a particular website, it is the browser’s task
to authenticate the website, by validating the certificate which the latter
presents. Browsers typically use security indicators to inform the user about
the security of the connection. Figure 2.4 shows examples of the address
bar security indicator for valid as well as invalid certificates.

One might consider that, if the browser fails to validate the server
certificate, then this is an indication that there is an active attacker on
the network, trying to perform a TLS MITM attack against the user by
presenting an invalid certificate for the visited domain. Consequently the
browser should forcibly always terminate the connection, thus keeping the
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user safe. However, in reality it is often the case that the validation fails,
not due to an attack, but rather due to a benign reason, such as an expired
certificate which the website operators neglected to renew, or some other
misconfiguration on the server.

Because of this ambiguity, when the certificate verification fails, browsers
tend to display prominent warning dialogues, informing the user about
the risk of visiting the website. The user is consequently, given the option
to click through the warning and let the connection go through. Users
are known to indeed do so and click through TLS warnings, although the
way in which the warning is communicated to the users can affect their
behavior and help them make safer choices [3, 202].

In Part II of this thesis we focus on the issue of TLS MITM attacks, give
an overview of the state-of-the-art proposals to mitigate the problem as
well as discuss in detail our contributions to the topic.

2.3 Browser Security Model
The way in which web browsers operate and are used is almost unique com-
pared to any other desktop or mobile Internet-based application. Namely,
applications are normally designed to communicate with a single back-
end service, which is specifically designed to serve the purposes of that
application. In contrast, browsers are used to access an arbitrary number
of different websites. In other words, while typical applications offer an
isolated, dedicated access to a particular online service, web browsers offer
access to and interaction with a multitude of services, i.e., web applications.

The above means that code and data from unrelated, mutually untrusted
websites can co-exist and execute within the same browser. Co-existence
and execution of different websites can be taking place simultaneously
through multiple browser windows, tabs, or due to iframes (nested brows-
ing contexts [139]) within a page, which the user is interacting with. It
is therefore, essential to ensure that the code and data of each website is
properly isolated from each other, in order to prevent . Browsers achieve
this through an isolation mechanism called same-origin policy. Same-origin
policy is an important mechanism pertaining to web application security
and thus, we give an overview of how it works in the paragraphs that
follow.

Same-origin Policy
The same-origin policy [142] is a set of restrictions that are enforced by
the browser in order to prevent the code of a webpage to access the con-
tent of another webpage. As its name suggest the basic notion around
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Figure 2.5: Functionalities affected by the same-origin policy. The same-
origin policy enforces rules that limit data access, sharing and communi-
cation across different website origins with respect to all these four web
functionalities.

which the policy is based, is called web origin [17], or origin for short.
The origin, defined as the combination of the URI scheme, host name
and port, is used by web browsers to set the scope of authority of a web-
page. Webpages whose the above three URI components are the same are
considered to be from the same origin. As an example, two pages from
https://www.example.com belong to the same origin, while if one of the
pages comes from http://www.example.com (different URI scheme) then
its origin is different.

The general rule of the same-origin policy is that a webpage can access
the contents of another webpage only if the two pages belong to the same
origin. If two pages belong to the same origin, it is implied that they rep-
resent the same authority and thus accessing each other’s content is not
deemed as a security risk. However two pages coming from different ori-
gins are considered as representing different authorities and thus different
security contexts and therefore the accessing each other page’s, potentially
sensitive data, should be prohibited. Figure 2.5 shows which webpage func-
tionalities and features are governed by the same-origin policy restrictions.
In particular:
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• DOM Access. Webpages belonging to different origins cannot see or
manipulate each other’s DOM data via JavaScript or other means.

• AJAX Requests. A webpage cannot make AJAX requests to a different
origin.

• Data Storage Access. JavaScript running within one origin cannot
access data which was stored in the browser’s Web Storage and
IndexedDB stores by JavaScript belonging to a different origin.

• Cookies. A webpage can set a cookie for its own domain, or any par-
ent domain. For example, if the domain of a page is sub.example.com
then it can also set cookies for example.com. The browser will make
a cookie set for a given domain available to any sub-domains, as
well. However, any HTTP request to a given domain, regardless of
which origin initiated it, will have the domain’s cookies attached to
it automatically by the browser. This is a subtle property than can
be beneficial but can also lead to exploitable vulnerabilities, e.g.,
Cross-Site Request Forgery (CSRF) [155].

While the restrictions imposed by the same-origin policy are useful
in most cases, there are legitimate circumstances where different origins
need to communicate and interact with each other. Large websites that use
multiple subdomains is a prominent example. For this reason web browsers
support a variety of techniques [147] that allow the same-origin policy
rules to be relaxed in a controlled manner. For example, Cross-Origin Re-
source Sharing [223] enables two origins to communicate using cross-origin
AJAX requests, and cross-document messaging, using the postMessage()
method, allows JavaScript code from different origins to exchange textual
information with each other. Moreover, WebSockets are not restricted by
the same-origin policy.

Browser Hardening
Web browsers are complex pieces of software, consisting of millions of lines
of code. An attacker who manages to find an exploitable vulnerability, and
can successfully lure victim users to a website which is under the attacker’s
control, can remotely deliver a payload that triggers the exploit and com-
promises the browser application. Web browser compromise can lead to
a very powerful attack, called Man-In-The-Browser (MITB) [158]. MITB
allows the attacker to completely bypass all browser security mechanisms,
including the same-origin policy, and thus access local website code and
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data, present the user with false information, hijack the user’s sessions
to his online website accounts that he accesses through the browser, and
perform harmful actions to these accounts.

For these reasons, modern web browsers incorporate a variety of defense-
in-depth techniques [38, 175], such as sandboxing of the rendering engine
and other critical components, automatic updates and known malicious site
warnings, in order to mitigate the severity of exploitable vulnerabilities.

2.4 Summary
We have given an overview of the basic concepts around web applications
and web application authentication. We hope that this will be useful in
order to better understand the topics and ideas which are discussed in the
three main parts of the thesis that follow.



Part I

Web Client Authentication





Chapter 3

Introduction

Password-based authentication is the most popular way of authenticating
users on the web. In Chapter 2 we briefly described how password-based
authentication works. In particular we overviewed the most common
implementation which is based on customizable HTML forms and cookies.
The user submits his credentials, i.e., username and password, to the
website via an HTML form. Once he successfully authenticates, a cookie is
used in order to authenticate and keep track of the user’s session.

Given their popularity, it is implied that passwords are a convenient
way for people to log in to their online accounts, and this is indeed true
to a certain extend. For example, passwords require nothing to carry
around. All a user has to do is to remember his password and type it
in the browser, which only takes a few seconds. Nevertheless, having to
remember passwords is one of the main reasons from which the insecurity
of passwords stems.

For a password to be secure, it must be sufficiently long and high-entropy
in order to resist guessing attacks. However, people find it hard to remember
a long, random password. Moreover, people maintain many accounts across
a variety of websites so it is inconvenient and hard having to remember
so many of them. Thus, in order to make password-based authentication
convenient, people tend to choose small, easy to remember passwords,
and reuse the same passwords across many different websites [52]. This
significantly reduces the security of passwords. In recent years billions of
passwords are known to have been leaked [215] through website database
breaches(e.g., [31, 59, 101, 119]. Even in cases where the leaked passwords
are properly stored using a secure password hashing algorithm, such as
bcrypt [170] and PBKDF2 [105], attackers are still able to retrieve low-
entropy passwords via offline brute force, or dictionary-based attacks. Due
to password reuse, a user’s password leaked from a particular website can
be used to compromise the user’s accounts on other websites on which the
same password is used.

In this thesis we focus on two-factor authentication (2FA) which is a
technique that can be employed in order to augment the poor security of
password-based authentication. As its name suggests, the main idea of two-
factor authentication is that the user is required to present two different
authentication factors before been granted access to his account. The first
authentication factor is something that the user knows, which in the case of
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password-based authentication is his password. The second authentication
factor can be something that the user has, i.e., a device acting as the second-
factor token or something that the user is, i.e., a biometric trait of the
user, such as his fingerprint. Typically, in web applications the second
authentication factor is a token which the user has to prove possession
of to the server. As we discuss in Chapter 4, second-factor tokens can be
implemented as dedicated hardware devices or as applications that can be
installed on the user’s smartphone or wearable device.

In currently deployed 2FA schemes, the user has to perform an extra step
in order to prove possession of the second-factor token. In other words, they
require user interaction [10, 65, 83, 240], for example to type a verification
code, received via SMS or from an application, into the browser. Users have
to find their smartphones, unlock them, open the application or wait for
the SMS message to arrive and then copy the code in order to log in. This
constitutes a departure from the default user behavior of password-only
authentication. A recent study [165] has found that only 6.4% of users
actually use 2FA for their Gmail accounts. While the situation is different for
websites where two-factor authentication is mandatory (e.g., for banking
institutions), it looks similar to the Gmail case for other websites that offer
2FA as an optional feature. For example, less that 1% of the Dropbox users
have 2FA enabled [31]. Although 2FA solutions that do not require user
interaction have been proposed, they leverage system resources that are
not currently available to web browsers, such as bluetooth [51] or direct
access to the wireless network card of the system [191].

From the above it becomes clear that although security plays an impor-
tant role, usability and deployability are equally as important. In order for
a secure solution to be used at large scale so that the masses can benefit
from it, it has to be both usable and deployable. In our work we take into
consideration the usability and deployability aspects of 2FA.

After surveying related work on two-factor authentication in Chapter 4,
we introduce Sound-Proof in Chapter 5. To the best of our knowledge,
Sound-Proof is the first both usable and deployable two-factor authen-
tication solution, i.e., it requires no user interaction and is immediately
deployable with today’s available technologies. Sound-Proof provides 2FA
for web logins by checking the proximity of the user’s smartphone to the
computer from which he is logging in. We perform such a check by com-
paring audio which is simultaneously recorded by the microphones of the
smartphone and the computer. If the two audio samples match, the user is
successfully logged into the system. Sound-Proof is completely transparent
to the user, making the login process similar to password-only authenti-
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cation in terms of user experience. We evaluate Sound-Proof in different
scenarios, both indoors and outdoors, and show its applicability as well as
its security against an attacker that is not co-located with the victim (as for
most 2FA schemes). In a user-study, we compare Sound-Proof with Google
2-Step Verification, and show that users rank Sound-Proof considerably
higher in terms of its usability. Similarly, participants appreciate the reduced
time that Sound-Proof imposed on the overall login procedure, compared
to the code-based approach. Finally, as Sound-Proof requires access to
only the microphone on both devices it is deployable on major browsers
without requiring the installation of a plugin, as well as on Android and
iOS smartphones.





Chapter 4

Related Work

The problem with password-only authentication systems is that their secu-
rity stems from the strength of user passwords. Recent password databases
leaks [31, 59, 101, 119] confirm the fact that users tend to choose weak
passwords and also that users tend to reuse passwords across websites [52].

Researchers have analyzed the problem extensively in recent years. A
case study on Google accounts analyzed the main ways through which
attackers manage to steal user credentials and compromise their online
accounts [213]. The study found credential leakage through password
database breaches to be the most common way of credential theft, followed
by phishing.

A plethora of proposals that aim at increasing the security of passwords
have been proposed. In general, solutions focus on client-side increased
password strength [53, 88, 181, 237] and server-side password protection
through the use of cryptographic tools [42, 104].

Two-factor authentication enhances the security of passwords by com-
plementing password authentication with an additional authentication
factor. In the rest of this chapter we review related work in the area of
two-factor authentication.

4.1 Two-Factor Authentication for the Web
Hardware Tokens. Solutions based on hardware tokens come in a variety
of forms, such as the RSA SecurID [182] as well as the more recent USB
dongles, like the ones offered by Yubico [240], which conform with the
FIDO U2F [72] open authentication standard. In the case of the RSA
SecurID token a one-time code is displayed on the token, which is refreshed
periodically, e.g., every 30 seconds. The user is asked to type the currently
displayed code into the login form of the website.

The most recent hardware tokens which come in the form of USB
dongles (e.g., Yubikey [240]) are easier to use but require the token to be
physically connected to the computer used to login (i.e., through a USB
connection). The user must press a button (or simply touch the token) upon
login, in order to prove the intention of the user that is actually performing
the login attempt.

Hardware token-based solutions have the disadvantage of requiring the
user to carry and interact with the token. Cost of deployment is another con-
sideration. In the case of standardized solutions, e.g., FIDO U2F [72], one
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token can be used for authentication with any compliant service provider.
The browser and the system through which the user is performing the login
must support this new hardware and the specification. Currently, only
Google Chrome supports FIDO U2F natively, and Mozilla Firefox supports
it through the use of a plugin.

In [30] the authors propose an additional type of factor, complementary
to the existing ones which consist of something that you know, something
that you have and something that you are. According to their proposal,
the fourth authentication factor is somebody you know. In particular, they
suggest leveraging the user’s social network as the fourth factor. This
additional factor can be used to vouch for a user, for example in situations
where some of the other factors are not available.

Software Tokens. As smartphones became popular and ubiquitous, 2FA
solutions based on software tokens have emerged. These solutions come
in the form of a mobile app that the user installs on his smartphone or
wearable device.

One of the most representative examples of a software token on mobile
phones is Google 2-Step Verification (2SV) [83]. It is a 2FA solution that
uses one-time codes, similar to the RSA SecurID hardware token. Google
2SV comes in two variants, namely as an application on the mobile phone
that generates time-based one-time codes, as well as without the use of
an application, in which the code is delivered to the user’s phone via SMS.
The user has to read the verification code from the phone and type it into
the browser when logging in. The same mechanism, based on time-based
one-time codes is implemented by various application vendors such as
1Password [98] and Authy [10].

Research proposals leverage the use of smartphones as 2FA software
tokens in various different ways. For example, in [185] the authors suggest
using the smartphone for provide cues to the user while he interacts with a
graphical password on his computer. Namely, the user gets the necessary
instructions from the smartphone in order to click the correct parts of the
graphical password for the login attemt to be deemed successful. Solutions
like this radically change the traditional password-only authentication
experience.

Duo Push [61], Encap Security [65] and other similar solutions simplify
the user interaction with his phone, by sending a push notification to the
user’s smartphone and prompting him to approve the current login attempt.
The login approval dialogue prompt contains contextual information about
the particular login attempt, for example, the username, the service being
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accessed and the IP address together with geoIP location information.
The user is given the option to approve or reject the attempt. A similar
approach can also be used to confirm user online actions, such as financial
transactions. An example of this is the use of the Transakt application [67]
which prompts the user to authorize online purchases made with his credit
card.

Hardware/Software Token Comparison. Software tokens are consid-
ered more usable compared to hardware ones, as the user does not have to
carry an extra device with him. Rather, he only has to carry his smartphone
or wearable device which, arguably, he carries with him most of the time.
On the other hand, software tokens require the user to possess a smart-
phone or wearable device. Nevertheless, software tokens typically mean
decreased or even non-existing deployment costs for the service providers,
compared to hardware tokens which need to be purchased and shipped
to the customers (although sometimes the provider may choose to shift
the hardware token deployment costs to the users). As far as security is
concerned, hardware tokens are considered more secure that software ones,
since the former run on dedicated hardware while the latter run on general
purpose mobile platforms which can be more easily infected with malware,
even remotely. Depending on the type of malware, this can lead to full
compromise of the second factor.

Although software tokens are generally considered more usable, as
mentioned above, both hardware and software tokens still require the user
to interact with the token in some way in order to successfully complete
the login attempt. This interaction adds extra burden to the user and has
an impact on the usability of all these schemes, hardware and software
ones alike.

4.1.1 Reduced-Interaction 2FA
Various online service providers (e.g., Google, Facebook, Github, Microsoft,
Apple, Dropbox and many more) offer one or more of the standard 2FA solu-
tions we described above (both hardware-based as well as software-based).
In these cases, 2FA is typically offered as an optional security mechanism to
the users in order to better protect their accounts. Nevertheless, according
to recent research [36, 165], 2FA mechanisms witness very low adoption
rates when offered as an optional mechanism. At the same time, various
banking institutions are using such 2FA mechanisms in order to enhance
the security of their e-banking access and online transactions. However, in
these cases 2FA is typically a mandatory requirement.
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Arguably, one of the reasons due to which 2FA faces low adoption
rates when optional is its poor usability. Users are accustomed to the
password-only authentication experience, and thus, anything that moves
away from that experience is considered cumbersome and faces adoption
difficulties [86, 233]. Existing 2FA solutions in particular require the extra
step of user interaction with his second factor device, as described previ-
ously. Researchers have identified this issue and have proposed novel 2FA
techniques that try to minimize the interaction between the user and his
second factor device, in order to increase the usability of 2FA. We discuss
such solutions in the next paragraphs

Short-range Radio Communication. PhoneAuth [51] is a 2FA proposal
that leverages unpaired Bluetooth communication between the browser
and the phone, in order to eliminate the user to phone interaction. The
fact that the Bluetooth communication is unpaired does away with the
need to pair the user’s smartphone with every computer from which he
attempts to log in to his account. The Bluetooth channel enables the server
(through the browser) and the phone to engage in a challenge-response
protocol which provides the second authentication factor. Similarly, [163]
and [191] also leverage Bluetooth communication between the browser
and the phone.

These schemes require the browser to expose a Bluetooth API that is
currently not available on any browser. A specification to expose a Bluetooth
API in browsers has been proposed by the Web Bluetooth Community
Group [231]. It is unclear whether the proposed API will support the
unauthenticated RFCOMM or similar functionality which is required to
enable seamless connectivity between the browser and the phone. However,
if the Bluetooth connection is unauthenticated, an adversary equipped with
a powerful antenna may connect to the victim’s phone from afar [236] and
login on behalf of the user, despite 2FA. Distance-bounding protocols [172]
can prevent such range-extension attacks. Nevertheless, today’s phones
and computers are not equipped with the appropriate hardware to run such
protocols.

Authy [10], besides the code-based solution mentioned previously, is
another approach that allows for seamless 2FA using Bluetooth commu-
nication between the computer and the phone. In this case, the code is
transferred automatically from the phone to the browser via the Bluetooth
channel. In order to enable this capability, nevertheless, extra software
must be installed on the user’s computer.



4.1 Two-Factor Authentication for the Web 33

As an alternative to Bluetooth, the browser and the phone can commu-
nicate over WiFi [191]. This approach only works when both devices are
on the same network. Shirvanian et al., [191] use extra software on the
computer to virtualize the wireless interface and create a software access
point (AP) with which the phone needs to be associated. The user has to
perform this setup procedure every time he uses a new computer to log
in. Their solution also requires a phone application listening for incoming
connections in the background, which is currently not possible on iOS.

Finally, the browser and the phone can communicate over NFC. NFC
hardware is not commonly found in commodity computers, and current
browsers do not expose APIs to access NFC hardware. Moreover, similar to
Bluetooth communication, the NFC communication range can be extended
if an adversary uses an appropriate directional antenna [54, 90]. Further-
more, a solution based on NFC would not completely remove the user to
phone interaction because the user would still need to hold his phone close
to the computer.

We note that 2FA mechanisms that employ direct communication be-
tween the browser and the phone may provide additional security against
remote attacks. For example, the phone can detect if the user tries to login
on a phishing website and block the attempt [51, 163]. The scheme in [191]
further resists offline dictionary attacks against compromised hashed pass-
word databases. Nevertheless, none of such solutions can be deployed for
the reasons we discussed above.

Location Information. As an alternative approach when the user is log-
ging in, the server can check if the computer and the phone are co-located
by comparing their GPS coordinates. GPS sensors are available on all mod-
ern phones but are rare on commodity computers. If the computer from
which the user logs in has no GPS sensor, it can use the geolocation API
exposed by some browsers [146]. Nevertheless, information retrieved via
the geolocation API may not be accurate, for example when the device
is behind a VPN or it is connected to a large managed network (such as
enterprise or university networks). Furthermore, geolocation information
can be easily guessed by an adversary. For example, assume the adversary
knows the location of the victim’s workplace and uses that location as the
second authentication factor. This attack is likely to succeed during working
hours since the victim is presumably at his workplace.

Near-ultrasound. SlickLogin [207] minimizes the user-phone interac-
tion transferring the verification code from the computer to the phone
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using near-ultrasounds. The idea is to use spectrum frequencies that are
non-audible for the majority of the population but that can be reproduced
by the speakers of commodity computers (> 18kHz). Using non-audible
frequencies accommodates for scenarios where users may not want their
devices to make audible noise. Due to their size, the speakers of commodity
computers can only produce highly directional near-ultrasound frequen-
cies [184]. Near-ultrasound signals also attenuate faster, when compared
to sounds in the lower part of the spectrum (< 18kHz) [8, 91]. With Slick-
Login, the user must ensure that the speaker volume is at a sufficient level
during login. Also, login will fail if a headset is plugged into the laptop.
Finally, this approach may not work in scenarios where there is in-band
noise (e.g., when listening to music or in cafes) [91]. We also note that a
solution based on near-ultrasounds may result unpleasant for young people
and animals that are capable of hearing sounds above 18kHz [180].

Other Sensors. A 2FA mechanism can combine the readings of multiple
sensors that measure ambient characteristics, such as temperature, con-
centration of gases in the atmosphere, humidity, and altitude, as proposed
in [192]. These combined sensor modalities can be used to verify the
proximity between the computer through which the user is trying to login
and his phone. However, today’s computers and phones lack the hardware
sensors that are required for such an approach to work.

4.1.2 Biometrics
All the previously surveyed 2FA solutions make use of a token (either
hardware or software) as a second authentication factor. The user has to
prove to the server that is in possession of this token. Biometrics can be
used as an alternative authentication factor, replacing the token, or even
password-based authentication as a whole. Biometrics rely on a physical
property or trait of the user, which is presumed to be unique among the
user base.

Fingerprints are one of the most popular biometric traits to authenticate
a user [174]. In recent years the use of fingerprint authentication have seen
widespread use through the integration of fingerprint sensors in mobile
devices. On a high level fingerprint authentication works as follows. During
the one-time registration phase the user provides the fingerprint of one or
more of his fingers by placing them a few times on the reader, in order to
train the system. After this, during the login phase the user places again
one of his registered fingers on the reader and the newly captured scan is
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compared with the training fingerprint data. Fingerprint authentication
is susceptible to forgery attacks. In particular, it has been shown that it is
relatively easy to recreate a person’s fingerprint by extracting it from an
object he has previously touched [40, 41]. Advanced fingerprint sensors
employ techniques that perform additional checks for the “liveness” of
the scanned fingerprint, nevertheless similar attacks work against these
scanners, too.

A variety of other traits are used in biometric systems such as iris [69],
voice, face [151] and palm veins [75, 126]. As further, more recent exam-
ples, researchers have explored the use of a person’s unique body electrical
transmission [173] or eye movements [62] as biometric traits. The bone
conduction of sound through the user’s skull has been proposed as a way
for authenticating people using eyewear devices [187]. Similar to finger-
print authentication, all these proposals rely on a reference value of the
user’s trait that is obtained during a training phase, which is subsequently
matched against fresh scans of the trait when the user attempts to authen-
ticate himself. Depending on the use case, the reference value is stored
either on a remote server, or locally on the user’s device.

Behavioral biometrics, is another type of biometric authentication, in
which the user is authenticated based on the way he behaves and interacts
with the system. Examples of behavioral biometric traits include the user’s
keyboard typing pattern[190], mouse movements [103] and touchscreen
interaction [74]. The user’s behavior is constantly monitored by the system
which only grants him access as long as the observed behavior matches the
one that the user registered into the system during the training phase.

Overall, biometrics typically offer a convenient way of authenticating
the user. However, they can be hard to keep secret and stolen biometrics can
have lifelong security implications as they cannot be reset, like passwords
or other credentials.

4.2 Summary
Two-factor authentication is a promising technology for overcoming the
security limitations of password-based authentication on the web. A large
number of diverse solutions are currently deployed in the real world or
have been proposed by research. Nevertheless, all these solutions see little
or no adoption for the vast majority of cases in which 2FA is offered as an
optional security feature.

We argue that one of the main reasons for this is the impact of the
2FA solutions on usability, as they diverge from the typical password-only
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experience which users are used to. Consequently, as part of our research
we try to remove this limitation and propose a 2FA scheme which feature a
user experience that is similar to password-only authentication with the
hope that this will increase user adoption.



Chapter 5

Sound-Proof: Usable Two-Factor
Authentication Based on Ambient

Sound

Software tokens on modern phones are replacing dedicated hardware
tokens in two-factor authentication (2FA) mechanisms. Using a software
token, in place of a hardware one, improves deployability and usability
of 2FA. For service providers, 2FA based on software tokens results in a
substantial reduction of manufacturing and shipping costs. From the user’s
perspective, there is no extra hardware to carry around and phones can
accommodate software tokens from multiple service providers.

Despite the improvements introduced by software tokens, most users
still prefer password-only authentication for services where 2FA is not
mandatory [36, 165]. This is probably due to the extra burden that 2FA
causes to the user [86, 233], since it typically requires the user to interact
with his phone.

Recent work [51, 191] improves the usability of 2FA by eliminating the
user-phone interaction. However, those proposals are not yet deployable as
their requirements are not met by today’s phones, computers or browsers.

In this chapter, we focus on both the usability and deployability aspect
of 2FA solutions. We propose Sound-Proof, a two-factor authentication
mechanism that is transparent to the user and can be used with current
phones and with major browsers without any plugin. In Sound-Proof the
second authentication factor is the proximity of the user’s phone to the
computer being used to log in. When the user logs in, the two devices record
the ambient noise via their microphones. The phone compares the two
recordings, determines if the computer is located in the same environment,
and ultimately decides whether the login attempt is legitimate or fraudulent.

Sound-Proof does not require the user to interact with his phone. The
overall user experience is, therefore, close to password-only authentication.
Sound-Proof works even if the phone is in the user’s pocket or purse, and
both indoors and outdoors. Sound-Proof can be easily deployed since it is
compatible with current phones, computers and browsers. In particular, it
works with any HTML5-compliant browser that implements the WebRTC
API [85], which is currently being standardized by the W3C [226]. When
Sound-Proof was originally published as an academic paper, only Google
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Chrome, Mozilla Firefox and Opera were supporting WebRTC. At the time
of writing this thesis, Microsoft has adopted WebRTC with its Edge browser,
and Apple Safari supports it since version 11. We anticipate that other
browsers, including mobile browsers, will adopt it soon.

Similar to other approaches that do not require user-phone interaction
nor a secure channel between the phone and the computer (e.g., [51]),
Sound-Proof is not designed to protect against targeted attacks where the
attacker is co-located with the victim and has the victim’s login credentials.
Our design choice favors usability and deployability over security and we
argue that this can edge for larger user adoption.

We have implemented a prototype of Sound-Proof for both Android and
iOS. Sound-Proof adds, on average, less than 5 seconds to a password-only
login operation. This time is substantially shorter than the time overhead
of 2FA mechanisms based on verification codes (roughly 25 seconds [232]).
We also report on a user study we conducted which shows that users prefer
Sound-Proof over Google 2-Step Verification [83].

Contributions. We focus on two-factor authentication for web application
logins and make the following contributions.

• We propose Sound-Proof, a novel 2FA mechanism that does not re-
quire user-phone interaction and is easily deployable. The second
authentication factor is the proximity of the user’s phone to the com-
puter from which he is logging in. Proximity of the two devices is
verified by comparing the ambient audio recorded via their micro-
phones. Recording and comparison are transparent to the user.

• We implement a prototype of our solution for both Android and iOS.
We use the prototype to evaluate the effectiveness of Sound-Proof
in a number of different settings. We show that Sound-Proof works
even if the phone is in the user’s pocket or purse and that it fares
well both indoors and outdoors.

• We conducted a user study to compare the perceived usability of
Sound-Proof and Google 2-Step Verification. Participants ranked the
usability of Sound-Proof higher than the one of Google 2-Step Verifica-
tion, with a statistically significant difference. More importantly, we
found that most participants stated that they would use Sound-Proof
even if 2FA were optional.

The rest of this chapter is organized as follows. Section 5.1 details
our assumptions and goals. Section 5.2 provides an overview on audio
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similarity techniques. We present Sound-Proof in Section 5.3 and its pro-
totype implementation in Section 5.4. Section 5.5 evaluates Sound-Proof,
while Section 5.6 reports on our user study. We discuss limitations and
ways to further improve Sound-Proof in Section 5.7. Section 5.8 reviews
related work and Section 5.9 concludes Part I and discusses interesting
future research directions.

5.1 Assumptions and Goals
5.1.1 System Model
We assume the general settings of the commonly used password-based
authentication on the web, which we briefly described in Section 2.2.1.
The user has a username and a password to authenticate to a web server.
The server, in addition, implements a 2FA mechanism that uses software
tokens on phones.

The user navigates his browser to the server’s login webpage and enters
his username and password. The server verifies the validity of the password
and challenges the user to prove possession of the second authentication
factor.

5.1.2 Threat Model
We assume a remote adversary who has obtained the victim’s username and
password via phishing, leakage of a password database, or via other means.
His goal is to authenticate to the server on behalf of the user. In particular,
the adversary visits the server’s webpage and enters the username and
password of the victim. The attack is successful if the adversary convinces
the server that he also holds the second authentication factor of the victim.

We further assume that the adversary cannot compromise the victim’s
phone. If the adversary gains control of the platform where the software
token runs, then the security of any 2FA scheme reduces to the security of
password-only authentication. Also, the adversary cannot compromise the
victim’s computer. The compromise of the computer allows the adversary to
mount a Man-In-The-Browser (MITB) attack [158] and hijack the victim’s
session with the server, therefore defeating any 2FA mechanism. Moreover,
while 2FA would prevent an attacker from logging in from a different
computer, a MITB attack can enable the attacker to steal the user’s session
management cookie (which is used by the server to identify the user’s
session following successful authentication – see Section 2.2.1) and use it
on another computer to access the user’s account.
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We do not address targeted attacks where the adversary is co-located
with the victim. 2FA mechanisms that do not require the user to interact
with his phone cannot protect against targeted, co-located attacks. For
example, if 2FA uses unauthenticated short-range communication [51], a
co-located attacker can connect to the victim’s phone and prove possession
of the second authentication factor to the server. We argue that targeted,
co-located attacks are less common than non-selective, remote attacks.
Furthermore, any 2FA mechanism may not warrant protection against
powerful or sufficiently skilled attackers who can place themselves in close
proximity with the victim. For example, if 2FA uses verification codes, a
determined attacker may gain physical access to the phone or read the code
from a distance [11, 12, 171].

We do not consider TLS Man-In-The-Middle adversaries. As we show
in Part II, client authentication is not sufficient to defeat MITM attacks in
the context of web applications. We also do not address active phishing
attacks where the attacker lures the user into visiting a phishing website
and relays the stolen credentials to the legitimate website in real-time.
Such attacks can be thwarted by having the phone detect the phishing
domain [51, 163]. This requires short-range communication between the
phone and the browser. However, seamless short-range communication
between the phone and the browser is currently not possible. (At the time
of writing this thesis, this may be about to change [231]).

5.1.3 Design Goals
Our design goals for a novel two-factor authentication solution for web
applications are the following.

• Security. The 2FA mechanism should enhance the security of password-
only authentication, against the common, remote attacks. In partic-
ular, if an attacker manages to steal the user’s password, he should
still not be able to login as the user and compromise his account.
We stress, as mentioned in our threat model, this does not include
targeted, co-located attacks.

• Usability. Users should authenticate using only their username and
password as in password-only authentication. In particular, users
should not be asked to interact with their phone — not even to pick
up the phone or take it out of a pocket or purse.

• Deployability. The 2FA mechanism should work with common smart-
phones, computers and browsers. It should not require additional
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software on the computer or the installation of browser plugins. A
plugin-based solution limits the usability of the system because (i)
a different plugin may be required for each server, and (ii) the user
must install the plugin every time he logs in from a computer for
the first time. The mechanism should also work on a wide range of
smartphones. We therefore discard the use of special hardware on
the phone like NFC chips or biometric sensors.

5.2 Background on Sound Similarity
The problem of determining the similarity of two audio samples is close to
the problem of audio fingerprinting and automatic media retrieval [39]. In
media retrieval, a noisy recording is matched against a database of reference
samples. This is done by extracting a set of relevant features from the noisy
recording and comparing them against the features of the reference samples.
The extracted features must be robust to, for example, background noise and
attenuation. Bark Frequency Cepstrum Coefficients [87], wavelets [14] or
peak frequencies [230] have been proposed as robust features for automatic
media retrieval. Such techniques focus mostly on the frequency domain
representation of the samples because they deal with time-misaligned
samples. In our scenario, we compare two quasi-aligned samples (the offset
is less than 150ms) and we therefore can also extract relevant information
from their time domain representations.

In order to consider both time domain and frequency domain informa-
tion of the recordings, we use one-third octave band filtering and cross-
correlation.

One-third Octave Bands. Octave bands split the audible range of fre-
quencies (roughly from 20Hz to 20kHz) in 11 non-overlapping bands where
the ratio of the highest in-band frequency to the lowest in-band frequency
is 2 to 1. Each octave is represented by its center frequency, where the
center frequency of a particular octave is twice the center frequency of the
previous octave. One-third octave bands split the first 10 octave bands in
three and the last octave band in two, for a total of 32 bands. One-third
octave bands are widely used in acoustics and their frequency ranges have
been standardized [208]. The center frequency of the lowest band is 16Hz
(covering from 14.1Hz to 17.8Hz) while the center frequency of the highest
band is 20kHz (covering from 17780Hz to 22390Hz). In the following we
denote with B = [l b−hb] a set of contiguous one-third octave bands, from
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the band that has its central frequency at l bHz, to the band that has its
central frequency at hbHz.

Splitting a signal in one-third octave bands provides high frequency
resolution information of the original signal, while keeping its time-domain
representation.

Cross-correlation. Cross-correlation is a standard measure of similarity
between two time series. Let x , y denote two signals represented as n-
points discrete time series. As an example, 16-bit PCM audio signals have
each sample value range between -32768 to +32767. For simplicity we
assume both series to have the same length. The cross-correlation cx ,y(l)
measures their similarity as a function of the lag l ∈ [0, n− 1] applied to y:

cx ,y(l) =
n−1
∑

i=0

x(i) · y(i − l)

where y(i) = 0 if i < 0 or i > n− 1.
To accommodate for different amplitudes of the two signals, the cross

correlation can be normalized as:

c′x ,y(l) =
cx ,y(l)
Æ

cx ,x(0) · cy,y(0)

where cx ,x(l) is known as auto-correlation.
The normalization maps c′x ,y(l) in [−1,1]. A value of c′x ,y(l) = 1 in-

dicates that at lag l, the two signals have the same shape even if their
amplitudes may be different; a value of c′x ,y(l) = −1 indicates that the
two signals have the same shape but opposite signs. Finally, a value of
c′x ,y(l) = 0 shows that the two signals are uncorrelated.

If the actual lag between the two signals is unknown, we can discard
the sign information and use the absolute value of the maximum cross-
correlation ĉx ,y(l) =max

l
(|c′x ,y(l)|) as a metric of similarity (0≤ ĉx ,y(l)≤

1). The computation overhead of cx ,y(l) can be decreased by leveraging
the cross-correlation theorem and computing cx ,y(l) = F−1(F(x)∗ · F(y)),
where F() denotes the discrete Fourier transform and the asterisk denotes
the complex conjugate.

5.3 Sound-Proof Architecture
The second authentication factor of Sound-Proof is the proximity of the
user’s phone to the computer being used to log in. The proximity of the two
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devices is determined by computing a similarity score between the ambient
noise captured by their microphones. For privacy reasons we do not upload
cleartext audio samples to the server. In our design, the computer encrypts
its audio sample under the public key of the phone. The phone receives the
encrypted sample, decrypts it, and computes the similarity score between
the received sample and the one recorded locally. Finally, the phone reports
to the server whether to accept or reject the login, based on the result of the
similarity score function. Note that the phone never uploads its recorded
sample to the server. Communication between the computer and the phone
goes through the server. We avoid short-range communication between the
phone and the computer (e.g., via Bluetooth) because it requires changes
to the browser or the installation of a plugin.

Computing the similarity score on the phone offers two benefits. First,
user privacy is protected as the phone audio sample is never uploaded to the
server. This implies that a potentially curious server cannot spy on the user
by arbitrarily querying the phone pretending a Sound-Proof authentication
is taking place and retrieving the recordings of the phone. Second, the
computation of the similarity score is the most CPU-intensive operation
of the Sound-Proof protocol, so offloading it to the mobile phone can
avoid the server becoming overloaded when a large number of concurrent
Sound-Proof authentications are taking place by multiple users.

5.3.1 Similarity Score

cross-corr

cross-corr

cross-corr

average

pass-band
filters

pass-band
filters

computer sample phone sample

Figure 5.1: Block diagram of the function that computes the similarity
score between two samples. The computation takes place on the phone. If
Sx ,y > τC and the average power of the samples is greater than τdB, the
phone judges the login attempt as legitimate.
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Figure 5.1 shows a block diagram of the function that computes the
similarity score between the two recorded samples. Each audio signal is
input to a bank of pass-band filters to obtain n signal components, one per
each of the one-third octave bands that we take into account. Let x i be
the signal component for the i-th one-third octave band of signal x . The
similarity score is the average of the maximum cross-correlation over the
pairs of signal components x i , yi:

Sx ,y =
1
n

i=n
∑

i=1

ĉx i ,yi
(l)

where l is bounded between 0 and `max .

5.3.2 Enrollment and Login
Similar to other 2FA mechanisms based on software tokens, Sound-Proof
requires the user to install an application on his phone and to bind the
application to his account on the server. This one-time operation can be
carried out leveraging existing techniques to enroll software tokens, e.g.,
using a QR code image which is generated by the server and scanned using
the application on the phone. We assume that, at the end of the phone
enrollment procedure, the server receives the unique public key of the
application on the user’s phone and binds that public key to the account of
that user.

Figure 5.2 shows an overview of the login procedure. The user points
the browser to the URL of the server and enters his username and password.
The server retrieves the public key of the user’s phone and sends it to the
browser. Both the browser and the phone start recording through their local
microphones for t seconds. During recording, the two devices synchronize
their clocks with the server. When recording completes, each device adjusts
the timestamp of its sample taking into account the clock difference with the
server. The browser encrypts the audio sample under the phone’s public key
and sends it to the phone, using the server as a proxy. The phone decrypts
the browser’s sample and compares it against the one recorded locally. If
the average power of both samples is above τdB and the similarity score
is above τC , the phone concludes that it is co-located with the computer
from which the user is logging in and informs the server that the login is
legitimate.

The procedure is completely transparent to the user if the environment
is sufficiently noisy. In case the environment is quiet, Sound-Proof requires
the user to generate some noise, for example by clearing his throat.
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similarity score
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Figure 5.2: Sound-Proof authentication overview. During login, the phone
and the computer record ambient noise with their microphones. The phone
computes the similarity score between the two samples and returns the
result to the server.

5.3.3 Security Analysis
Remote Attacks. The security of Sound-Proof stems from the attacker’s
inability to guess the sound in the victim’s environment at the time of the
attack.

Let x be the sample recorded by the victim’s phone and let y be the
sample submitted by the attacker. A successful impersonation attack re-
quires the average power of both signals to be above τdB, and each of the
one-third octave band components of the two signals to be highly corre-
lated. That is, the two samples must satisfy Pwr(x)> τdB, Pwr(y)> τdB
and Sx ,y > τC with l < `max .

We bound the lag l between 0 and `max to increase the security of
the scheme against an adversary that successfully guesses the noise in
the victim’s environment at the time of the attack. Even if the adversary
correctly guesses the noise in the victim’s environment and can submit a
similar audio sample, the two samples must be synchronized with an error
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smaller than `max . We also reject audio pairs where either sample has an
average power below the threshold τdB. This is in order to prevent an
impersonation attack when the victim’s environment is quiet (e.g., while
the victim is sleeping).

Quantifying the entropy of ambient noise, and hence the likelihood
of the adversary guessing the signal recorded by the victim’s phone, is a
challenging task. Results are dependent on the environment, the language
spoken by the victim, his gender or age to cite a few. In Section 5.5 we
provide empirical evidence that Sound-Proof can discriminate between
legitimate and fraudulent logins, even if the adversary correctly guesses
the type of environment where the victim is located.

Co-located Attacks. Sound-Proof cannot withstand attackers who are
co-located with the victim. A co-located attacker can capture the ambient
sound in the victim’s environment and thus successfully authenticate to the
server, assuming that he also knows the victim’s password. Sound-Proof
shares this limitation with other 2FA mechanisms that do not require the
user to interact with his phone and do not assume a secure channel between
the phone and the computer (e.g., [51]). Resistance to co-located attackers
requires either a secure phone-to-computer channel (as in [10, 191]) or
user-phone interaction (as in [61, 83]). However, both techniques impose
a significant usability burden which would contradict our design goal of
usability.

Rogue Third-party Servers. Assume a user who has an online account
on two different websites, A and B, for which he uses the same credentials.
If an attacker manages to compromise one of the web servers, say A, and
remain resident on it, he is then able to successfully compromise the user’s
account on server B, even if it uses Sound-Proof, in the following way.
When the user tries to login on his account at website A, the compromised
server A can start the authentication procedure with the target server B
(for which it knows the user’s credentials) and relay the messages to the
user’s browser. The JavaScript code running in the user’s browser is then
fully controlled by the attacker and can be used to record an audio sample
that will be similar to the sample recorded by the user’s phone, which
should presumably be in close proximity. This attack is not strictly an active
phishing attack but it can be categorized as one. In particular, the attacker
does not have to fool the victim that he is visiting a known domain but, by
controlling a server to which the user authenticates to, effectively achieves
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a similar result. We argue that this is a powerful attack that would succeed
against other 2FA solutions as well, such as Google 2-Step Verification
or SMS-based approaches. This is due to the fact that the compromised
website can fool the user into revealing his one-time-code to the attacker.

Forcing Predictable Phone Sounds. After Sound-Proof was originally
published and by the time of writing this thesis, Shrestha et al. [193]
proposed an attack against Sound-Proof, named Sound-Danger. Sound-
Danger is based on the fact that the user’s phone can be made to produce
predictable sounds (e.g., ringer, notification, alarm or vibration sounds)
and works as follows. An attacker manages to compromise the user’s
credentials through a database breach. The breached data, besides the
credentials, is assumed to contain other user information, such as the user’s
phone number, with the help of which the attacker is able to contact the
user’s phone, e.g., by placing a regular or VoIP call or sending an SMS or
other chat application message. Thus, at the time of attack, the attacker
contacts the user’s phone, which makes it produce a predictable sound
which will be subsequently captured in the phone’s Sound-Proof audio
recording. The attacker submits a similar audio sample, in the place of the
browser recording, making audio comparison to pass and thereby allowing
the attacker to log in as the user.

We acknowledge this as a valid vulnerability that significantly increases
the attacker’s chances to correctly guess the ambient audio captured by
the phone and thus defeat Sound-Proof. Nevertheless, we note that in
practice it can be easily prevented or detected in various ways. For example,
the Sound-Proof application can detect if the phone is emitting audio or
is vibrating while the recording is taking places and reject the particular
authentication attempt, thereby foiling the attack. Alternatively, on Android
phones, it is possible to temporarily silence the phone’s ringer while Sound-
Proof is recording, although this is rather obtrusive and not preferred over
the aforementioned detection-based approach. Finally, due to the way
the iOS audio framework operates, it is not possible for the Sound-Proof
application to record at the same time when the phone is playing any audio
(such as ringing), which renders the attack infeasible on this platform.

5.4 Prototype Implementation
Our implementation works with multiple browsers. We tested it with
Google Chrome (version 38.0.2125.111), Mozilla Firefox (version 33.0.2)
and Opera (version 25.0.1614.68). We anticipate the prototype to work
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with different versions of these browsers, as long as they implement the
navigator.getUserMedia() API of WebRTC. At the time of writing this
thesis, we also tested and confirmed that our implementation works with
Microsoft Edge (version 40.15063.0.0) and Apple Safari (version 11.0.1).
We tested the phone application both on Android and on iOS. For Android,
on a Samsung Galaxy S3, a Google Nexus 4 (both running Android version
4.4.4), a Sony Xperia Z3 Compact and a Motorola Nexus 6 (running Android
version 5.0.2 and 5.1.1, respectively). We also tested different iPhone
models (iPhone 4, 5 and 6) running iOS version 7.1.2 on the iPhone 4, and
iOS version 8.1 on the newer models. The phone application should work
on different phone models and with different OS versions without major
modifications.

Web Server and Browser. The server component is implemented using
the CherryPy [209] web framework and MySQL database. We use Web-
Socket [70] to push data from the server to the client. The client-side
(browser) implementation is written entirely in HTML and JavaScript. En-
cryption of the audio recording uses AES-256 with a fresh symmetric key;
the symmetric key is encrypted under the public key of the phone using
RSA-2048. We use the HTML5 WebRTC API [85, 226]. In particular, we
use the navigator.getUserMedia() API to access the local microphone
from within the browser. Our prototype does not require browser code
modifications, extensions or plugins.

Software Token. We implement the software token as an Android appli-
cation as well as an iOS application. The mobile application stays idle in
the background and is automatically activated when a push notification
arrives. Push messages for Android and iOS use the Google GCM (Google
Cloud Messaging) APIs [84] and Apple’s APN (Apple Push Notifications)
APIs [7] (in particular the silent push notification feature), respectively.
Phone to server communication is protected with TLS.

Most of the Android code is written in Java (Android SDK), while the
component that processes the audio samples is written in C (Android NDK).
In particular, we use the ARM Ne10 library, based on the ARM NEON
engine [9] to optimize vector operations and FFT computations. The iOS
application is written in Objective-C and uses Apple’s vDSP package of the
Accelerate framework [6], in order to leverage the ARM NEON technology
for vector operations and FFT computations. On both mobile platforms
we parallelize the computation of the similarity score across the available
processor cores.
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Operations Mean (ms) Std.Dev.

Recording 3000 —
Similarity score computation 642 171

Cryptographic operations 118 15

Networking

WiFi 978 135
Cellular 1243 209

Table 5.1: Overhead of the Sound-Proof prototype. On average it takes
4677ms (± 181ms) over WiFi and 4944ms (± 233ms) over Cellular to
complete the 2FA verification.

Time Synchronization. Sound-Proof requires the recordings from the
phone and the computer to be synchronized. For this reason, the two
devices run a simple time-synchronization protocol (based on the Network
Time Protocol [148]) with the server. The protocol is implemented over
HTTP and allows each device to compute the difference between the local
clock and the one of the server. Each device runs the time-synchronization
protocol with the server while it is recording via its microphone. When
recording completes, each device adjusts the timestamp of its sample taking
into account the clock difference with the server.

Run-time Overhead. We compute the run-time overhead of Sound-Proof
when the phone is connected either through WiFi or through the cellular
network. We run 1000 login attempts with a Google Nexus 4 for each
connection type, and we measure the time from the moment the user
submits his username and password to the time the web server logs the
user in. On average it takes 4677ms (± 181ms) over WiFi and 4944ms (±
233ms) over Cellular to complete the 2FA verification. Table 5.1 shows the
average time and the standard deviation of each operation. The recording
time is set to 3 seconds. The similarity score is computed over the set of
one-third octave bands B = [50Hz− 4kHz]. (Section 5.5.1 discusses the
selection of the band set.) After running the time-synchronization protocol,
the resulting clock difference was, on average, 42.47ms (± 30.35ms).
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5.5 Evaluation
Data Collection. We used our prototype to collect a large number of
audio pairs. We set up a server that supported Sound-Proof. Two subjects
logged in using Google Chrome1 over 4 weeks. At each login, the phone and
the computer recorded audio through their microphones for 3 seconds. We
stored the two audio samples for post-processing. Login attempts differed
in the following settings.

• Environment: an office at our lab with either no ambient noise (la-
belled as Office) or with the computer playing music (Music); a
living-room with the TV on (TV); a lecture hall while a faculty mem-
ber was giving a lecture (Lecture); a train station (TrainStation); a
cafe (Cafe).

• User activity: being silent, talking, coughing, or whistling.

• Phone position: on a table or a bench next to the user, in the trouser
pocket, or in a purse.

• Phone model: Apple iPhone 5 or Google Nexus 4.

• Computer model: Mac Book Pro “Mid 2012” running OS X10.10
Yosemite or Dell E6510 running Windows 7.

At the end of the 4 weeks we had collected between 5 and 15 login
attempts per each setting, totaling 2007 login attempts (4014 audio sam-
ples).

5.5.1 Analysis
We used the collected samples to find the configuration of system parameters
(i.e., τdB, `max , B, and τC) that led to the best results in terms of False
Rejection Rate (FRR) and the False Acceptance Rate (FAR). A false rejection
occurs when a legitimate login is rejected. A false acceptance occurs when
a fraudulent login is accepted. A fraudulent login is accepted if the sample
submitted by the attacker and the sample recorded by the victim’s phone
have a similarity score greater than τC , and if both samples have an average
power greater than τdB.

1We used Google Chrome since it is currently the most popular browser [201]. We have
also tested Sound-Proof with other browsers and have experienced similar performance (see
Section 5.7).
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To compute the FAR, we used the following strategy. For each phone
sample collected by one of the subjects (acting as the victim), we use all the
computer samples collected by the other subject as the attacker’s samples.
We then switch the roles of the two subjects and repeat the procedure.
The total number of victim–adversary sample pairs we considered was
2,045,680.

System Parameters. We set the average power threshold τdB to 40dB
which, based on our measurements, is a good threshold to reject silence or
very quiet recordings like the sound of a fridge buzzing or the sound of a
clock ticking. Out of 2007 login attempts we found 5 attempts to have an
average power of either sample below 40dB and we discard them for the
rest of the evaluation.

We set `max to 150ms because this was the highest clock difference expe-
rienced while testing our time-synchronization protocol (see Section 5.4).

An important parameter of Sound-Proof is the set B of one-third oc-
tave bands to consider when computing the similarity score described in
Section 5.3.1. The goal is to select a spectral region that (i) includes most
common sounds and (ii) is robust to attenuation and directionality of audio
signals. We discarded bands below 50Hz to remove very low-frequency
noises. We also discarded bands above 8kHz, because these frequencies
are attenuated by fabric and they are not suitable for scenarios where the
phone is in a pocket or a purse. We tested all sets of one-third octave bands
B = [x− y] where x ranged from 50Hz to 100Hz and y ranged from 630Hz
to 8kHz.

We found the smallest Equal Error Rate (EER, defined as the crossing
point of FRR and FAR) when using B = [50Hz−4kHz]. Figure 5.3 shows the
FRR and FAR using this set of bands where the EER is 0.0020 at τC = 0.13.
We experienced worse results with one-third octave bands above 4kHz.
This was likely due to the high directionality of the microphones found
on commodity devices when recoding sounds at those frequencies [218].
Appendix D shows similar plots for all the band ranges B we tested starting
from 50Hz to 100Hz and going up from 630Hz to 4kHz.

We also computed the best set of one-third octave bands to use in
case usability and security are weighted differently by the service provider.
For example, a social network provider may value usability higher than
security. In particular, we computed the sets of bands that minimized
f = α · FRR+ β · FAR, for α ∈ [0.1, . . . , 0.9] and β = 1−α. Figure 5.4(b)
shows the set of bands that provided the best results for each configuration
of α and β . As before, we experienced better results with bands below
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Figure 5.3: False Rejection Rate and False Acceptance Rate as a function of
the threshold τC for B = [50Hz− 4kHz]. The Equal Error Rate is 0.0020
at τC = 0.13.

4kHz. Figure 5.4(a) plots the FRR and FAR against the possible values of
α and β . We stress that the set of bands may differ across two different
points on the x-axis.

Experiments in the remaining of this section were run with the con-
figuration of the parameters that minimized the EER to 0.0020: τdB =
40dB, `max = 150ms, B = [50Hz− 4kHz], and τC = 0.13.

5.5.2 False Rejection Rate
In the following we evaluate the impact of each setting that we consider
(environment, user activity, phone position, phone model, and computer
model) on the FRR. Figures 5.5 and 5.6 show a box and whisker plot for
each setting. The whiskers mark the 5th and the 95th percentiles of the
similarity scores. The boxes show the 25th and 75th percentiles. The line
and the solid square within each box mark the median and the average,
respectively. A gray line marks the similarity score threshold (τC = 0.13)
and each red dot in the plots denotes a login attempt where the similarity
score was below that threshold (i.e., a false rejection).
Environment. Figure 5.5 shows the similarity scores for each environment.
Sound-Proof fares equally well indoors and outdoors. We did not experience
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(a) False Rejection Rate and False Acceptance Rate when usability and
security have different weights.

B τc

α= 0.1, β = 0.9 [80Hz− 2500Hz] 0.12
α= 0.2, β = 0.8 [50Hz− 2500Hz] 0.14
α= 0.3, β = 0.7 [50Hz− 2500Hz] 0.14
α= 0.4, β = 0.6 [50Hz− 800Hz] 0.19
α= 0.5, β = 0.5 [50Hz− 800Hz] 0.19
α= 0.6, β = 0.4 [50Hz− 800Hz] 0.19
α= 0.7, β = 0.3 [50Hz− 1000Hz] 0.2
α= 0.8, β = 0.2 [50Hz− 1000Hz] 0.2
α= 0.9, β = 0.1 [50Hz− 1250Hz] 0.21

(b) One-third octave bands and similarity score
threshold.

Figure 5.4: Minimizing f = α · FRR+ β · FAR, for α ∈ [0.1, . . . , 0.9] and
β = 1−α.

rejections of legitimate logins for the Music (over 432 logins), the Lecture
(over 122 logins), and the TV (over 430 logins) environments. The FRR
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Figure 5.5: Impact of the environment on the False Rejection Rate.

was 0.003 (1 over 310 logins) for Office, 0.003 (1 over 370 logins) for
TrainStation, and 0.006 (2 over 338 logins) for Cafe.
User Activity. Figure 5.6(a) shows the similarity scores for different user
activities. In general, if the user makes any noise the similarity score
improves. We only experienced a few rejections of legitimate logins when
the user was silent (TrainStation and Cafe) or when he was coughing
(Office). In the Lecture case the user could only be silent. We also avoided
whistling in the cafe, because this may be awkward for some users. The
FRR was 0.005 (3 over 579 logins) when the user was silent, 0.002 (1 over
529 logins) when the user was coughing, 0 (0 over 541 logins) when the
user was speaking, and 0 (0 over 353 logins) when the user was whistling.
Phone Position. Figure 5.6(b) shows the similarity scores for different
phone positions. Sound-Proof performs slightly better when the phone is
on a table or on a bench. Worse performance when the phone is in a pocket
or in a purse are likely due to the attenuation caused by the fabric around
the microphone. The FRR was 0.001 (1 over 667 logins) with the phone on
a table, 0.001 (1 over 675 logins) with the phone in a pocket, and 0.003
(2 over 660 logins) with the phone in a purse.
Phone Model. Figure 5.6(c) shows the similarity scores for the two phones.
The Nexus 4 and the iPhone 5 performed equally good across all environ-
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Figure 5.6: Impact of user activity, phone position, phone model and
computer model on the False Rejection Rate.

ments. The FRR was 0.002 (2 over 884 logins) with the iPhone 5 and 0.002
(2 over 1118 logins) with the Nexus 4.
Computer. Figure 5.6(d) shows the similarity scores for the two computers
we used. We could not find significant differences between their perfor-
mance. The FRR was 0.002 (3 over 1299 logins) with the MacBook Pro
and 0.001 (1 over 703 logins) with the Dell.

Distance Between Phone and Computer. In some settings (e.g., at home),
the user’s phone may be away from his computer. For instance, the user
could leave the phone in his bedroom while watching TV or working in
another room. We evaluated this scenario by placing the computer close
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to the TV in a living-room, and testing Sound-Proof while the phone was
away from the computer. For this set of experiments we used the iPhone 5
and the MacBook Pro. The average noise level by the TV was measured
at 50dB. We tested 3 different distances: 4, 8 and 12 meters (running 20
login attempts for each distance). All login attempts were successful (i.e.,
FRR=0). We also tried to log in while the phone was in another room
behind a closed door, but logins were rejected.

Discussion. Based on the above results, we argue that the FRR of Sound-
Proof is small enough to be practical for real-world usage. To put it in
perspective, the FRR of Sound-Proof is likely to be smaller than the FRR
due to mistyped passwords (0.04, as reported in [112]).

5.5.3 Advanced Attack Scenarios
A successful attack requires the adversary to submit a sample that is very
similar to the one recoded by the victim’s phone. For example, if the victim
is in a cafe, the adversary should submit an audio sample that features
typical sounds of that environment. In the following we assume a strong
adversary that correctly guesses the victim’s environment. We also evaluate
the attack success rate in scenarios where the victim and the attacker access
the same broadcast audio source from different locations.

Similar Environment Attack. In this experiment we assume that the
victim and the adversary are located in similar environments. For each
environment, we compute the FAR between each phone sample collected by
one subject (the victim) and all the computer samples of the other subject
(the adversary). We then switch the roles of the two subjects and repeat
the procedure. The FAR for the Music and the TV environments were
0.012 (1063 over 91960 attempts) and 0.003 (311 over 90992 attempts),
respectively. The FAR for the Lecture environment was 0.001 (8 over 7242
attempts). When both the victim and the attacker were located at a train
station the FAR was 0.001 (44 over 67098 attempts). The FAR for the
Office environment was 0.025 (1194 over 47250 attempts). When both the
victim and the attacker were in a cafe the FAR was 0.001 (32 over 56994
attempts).

The above results show low FAR even when the attacker correctly
guesses the victim’s environment. This is due to the fact that ambient noise
in a given environment is influenced by random events (e.g., background
chatter, music, cups clinking, etc.) that cannot be controlled or predicted
by the adversary.
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False Acceptance Rate

SC-SP SC-DP DC-DP

TV channel 1 1 0.1 0.1
TV channel 2 1 1 0
TV channel 3 1 0 -
TV channel 4 1 0 -
Web radio 1 1 0 0.4
Web radio 2 0.1 0.8 0.8
Web TV 1 0 0 0
Web TV 2 0 0 0

Table 5.2: False Acceptance Rate when the adversary and the victim de-
vices record the same broadcast media. SC-SP stands for “same city and
same Internet/cable provider”, SC-DP stands for “same city but different
Internet/cable providers”, DC-DP stands for “different cities and different
Internet/cable providers”. A dash in the table means that the TV channel
was not available at the victim’s location.

Same Media Attack. In this experiment we assume that the victim and
the adversary access the same audio source from different locations. This
happens, for example, if the victim is watching TV and the adversary
correctly guesses the channel to which the victim’s TV is tuned. We place
the victim’s phone and the adversary’s computer in different locations, but
each of them next to a smart TV that was also capable of streaming web
media. Since the devices have access to two identical audio sources, the
adversary succeeds if the lag between the two audio signals is less than
`max . We tested 4 cable TV channels, 2 web radios and 2 web TVs. For
each scenario, we run the attack 100 times and report the FAR in Table 5.2.
When the victim and the attacker were in the same city, we experienced
differences based on the media provider. When the TVs reproduced content
broadcasted by the same provider, the signals were closely synchronized
and the similarity score was above the threshold τC . The FAR dropped
in the case of web content. When the TVs reproduced content supplied
by different providers, the lag between the signals caused the similarity
score to drop below τC in most of the cases. The similarity score sensibly
dropped when the victim and the attacker were located in different cities.



58 5 Sound-Proof: Usable 2FA Based on Ambient Sound

5.6 User Study
The goal of our user study was to evaluate the usability of Sound-Proof
and to compare it with the usability of Google 2-Step Verification (2SV),
since 2FA based on one-time codes is arguably the most popular. (We only
considered the version of Google 2SV that uses an application on the user’s
phone to generate one-time codes.) We stress that the comparison focuses
solely on the usability aspect of the two methods. In particular, we did not
make the participants aware of the difference in the security guarantees,
i.e., the fact that Google 2SV can better resist co-located attacks.

We ran repeated-measure experiments where each participant was
asked to log in to a server using both mechanisms in random order. After
using each 2FA mechanism, participants ranked its usability answering the
System Usability Scale (SUS) [33]. The SUS is a widely-used scale to assess
the usability of IT systems [15]. The SUS score ranges from 0 to 100, where
higher scores indicate better usability.

5.6.1 Procedure
Recruitment. We recruited participants using a snowball sampling method.
Most subjects were recruited outside our department and were not working
in or studying computer science. The study was advertised as a user study
to “evaluate the usability of two-factor authentication mechanisms”. We
informed participants that we would not collect any personal information
and offered a compensation of CHF 20. Among all respondents to our
email, we discarded the ones that were security experts and ended up with
32 participants.

Experiment. The experiment took place in our lab where we provided
a laptop and a phone to complete the login procedures. Both devices
were connected to the Internet through WiFi. We set up a Gmail account
with Google 2SV enabled. We also created another website that supported
Sound-Proof and mimicked the Gmail UI.

Participants saw a video where we explained the two mechanisms under
evaluation. We told participants that they would need to log in using the
account credentials and the hardware we provided. We also explained that
we would record the keystrokes and the mouse movements (this allowed
us to time the login attempts).

We then asked participants to fill in a pre-test questionnaire designed
to collect demographic information. Participants logged in to our server
using Sound-Proof and to Gmail using Google 2SV. We randomized the
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order in which each participant used the two mechanisms. After each login,
participants rated the 2FA mechanism answering the SUS.

At the end of the experiment participants filled in a post-test question-
naire that covered aspects of the 2FA mechanisms under evaluation not
covered by the SUS.

5.6.2 Results
Demographics. 58% of the participants were between 21 and 30 years
old. 25% of the participants were between 31 and 40 years old. The
remaining 17% of the participants were above 40 years old. 53% of the
participants were female. 69% of the participants had a master or doctoral
degree. 50% of the participants used 2FA for online banking and only 13%
used Google 2SV to access their email accounts.

SUS Scores. The mean SUS score for Sound-Proof was 91.09 (±5.44).
The mean SUS score for Google 2SV was 79.45 (±7.56). Figure 5.7(a) and
Figure 5.7(b) show participant answers on 5-point Likert-scales for Sound-
Proof and for Google 2SV, respectively. To analyze the statistical significance
of these results, we used the following null hypothesis: “there will be no
difference in perceived usability between Sound-Proof and Google 2SV”.
A one-way ANOVA test revealed that the difference of the SUS scores was
statistically significant (F(1,31) = 21.698, p < .001, η2

p = .412), thus
the null hypothesis can be rejected. We concluded that users perceive
Sound-Proof to be more usable than Google 2SV. Appendix A reports the
items of the SUS.

Login Time. We measured the login time from the moment when a par-
ticipant clicked on the “login” button (right after entering the password),
to the moment when that participant was logged in. We neglected the time
spent entering username and password because we wanted to focus only on
the time required by the 2FA mechanism. Login time for Sound-Proof was
4.7 seconds (±0.2 seconds); this time was required for the phone to receive
the computer’s sample and compare it with the one recorded locally. With
Google 2SV, login time increased to 24.4 seconds (±7.1 seconds); this time
was required for the participant to take the phone, start the application
and copy the verification code from the phone to the browser.

Failure Rates. We did not witness any login failure for either of the two
methods. We speculate that this may be due to the priming of the users
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Figure 5.7: Distribution of the answers by the participants of the user study.
We show the results for the System Usability Scale (SUS) of Sound-Proof
(a) and Google 2-Step Verification (b). Percentages on the left side include
participants that answered “Strongly disagree” or “Disagree”. Percentages
in the middle account for participants that answered “Neither agree, nor
disagree”. Percentages on the right side include participants that answered
“Agree” or “Strongly agree”.
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Figure 5.8: Distribution of the answers to the Post-test questionnaire. Per-
centages on the left side include participants that answered “Strongly
disagree” or “Disagree”. Percentages in the middle account for participants
that answered “Neither agree, nor disagree”. Percentages on the right side
include participants that answered “Agree” or “Strongly agree”.

right before the experiment, when we explained how the two methods
work and that Sound-Proof may require users to make some noise in quiet
environments.

Post-test Questionnaire. The post-test questionnaire was designed to
collect information on the perceived quickness of the two mechanisms (Q1–
Q2) and participants willingness to adopt any of the schemes (Q3–Q6). We
also included items to inquire if participants would feel comfortable using
the mechanisms in different environments (Q7–Q14). Figure 5.8 shows
participants answers on 5-point Likert-scales. The full text of the items can
be found in Appendix B.

All participants found Sound-Proof to be quick (Q1), while only 50% of
the participants found Google 2SV to be quick (Q2). If 2FA were mandatory,
84% of the participants stated that they would use Sound-Proof (Q3) and
47% stated that they would use Google 2SV (Q4). In case 2FA were optional
the percentage of participants willing to use the two mechanisms dropped
to 78% for Sound-Proof (Q5) and to 19% for Google 2SV (Q6). Similar
to [36, 165], our results for Google 2SV suggest that users are likely not to
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use 2FA if it is optional. With Sound-Proof, the difference in user acceptance
between a mandatory and an optional scenario is only 6%.

We asked participants if they would feel comfortable using either mech-
anism at home, at their workplace, in a cafe, and in a library. 95% of the
participants would feel comfortable using Sound-Proof at home (Q7) and
77% of the participants would use it at the workplace (Q8). 68% would use
it in a cafe (Q9) and 50% would use it in a library (Q10). Most participants
(between 91% and 82%) would feel comfortable using Google 2SV in any
of the scenario we considered (Q11–Q14).

The results of the post-test questionnaire suggest that users may be
willing to adopt Sound-Proof because it is quicker and causes less burden,
compared to Google 2SV. In some public places, however, users may feel
more comfortable using Google 2SV. In Section 5.7 we discuss how to
integrate the two approaches.

The post-test questionnaire allowed participants to comment on the 2FA
mechanisms evaluated. Most participants found Sound-Proof to be user-
friendly and appreciated the lack of interaction with the phone. Appendix C
lists some of the users’ comments.

5.7 Discussion
Software and Hardware Requirements. Similar to any other 2FA solu-
tion based on software tokens, Sound-Proof requires an application on
the user’s phone. Sound-Proof, however, does not require additional soft-
ware on the computer and seamlessly works with any HTML5-compliant
browser that implements the WebRTC API. Google Chrome, Mozilla Firefox,
Microsoft Edge and Apple Safari, already support WebRTC. Sound-Proof
needs the phone to have a data connection. Moreover, both the phone
and the computer where the browser is running must be equipped with a
microphone. Microphones are ubiquitous in phones, tablets and laptops.
If a computer such as a desktop machine does not have an embedded
microphone, Sound-Proof requires an external microphone, like the one of
a webcam.

Other Browsers. Section 5.5 evaluates Sound-Proof using Google Chrome.
We have also tested Sound-Proof with Mozilla Firefox and Opera. Each
browser may use different algorithms to process the recorded audio (e.g.,
filtering for noise reduction), before delivering it to the web application.
The WebRTC specification does not yet define how the recorded audio
should be processed, leaving the specifics of the implementation to the
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browser vendor. When we ran our tests, Opera behaved like Chrome. Fire-
fox audio processing was slightly different and it affected the performance
of our prototype. In particular, the Equal Error Rate computed over the
samples collected while using Firefox was 0.012. We speculate that a better
Equal Error Rate can be achieved with any browser if the software token
performs the same audio processing of the browser being used to log in.

Privacy. The noise in the user’s environment may leak private information
to a prying server. As described in Section 5.3, in our design the audio
recorded by the phone is never uploaded to the server. A malicious server
can also access the computer’s microphone while the user is visiting the
server’s webpage. This is already the case for a number of websites that
require access to the microphone. For example, websites for language
learning, Gmail (for video-chats or phone calls), live chat-support services,
or any site that uses speech-recognition require access to the microphone
and may record the ambient noise any time the user visits the provider’s
webpage. All browsers we tested ask the user for permission before allowing
a website to use getUserMedia. Moreover, browsers show an alert when
a website triggers recording from the microphone. Providers are likely not
to abuse the recording capability, since their reputation would be affected,
if users detect unsolicited recording.

Quiet Environments. Sound-Proof rejects a login attempt if the power
of either sample is below τdB. In case the environment is too quiet, the
website can prompt the user to make any noise (by, e.g., clearing his throat,
knocking on the table, etc.). Moreover, Sound-Proof can be augmented with
near-ultrasonic emission of a verification code, similar to SlickLogin [207].
Thus, if the environment is too silent for Sound-Proof to work, and assuming
that the volume of the user’s computer speakers is sufficient, then near-
ultrasonic emission could be used to transfer the verification code from the
computer to his phone, without user-phone interaction.

Fallback to other Types of 2FA. Sound-Proof can be combined with
interactive 2FA mechanisms based on one-time codes, like Google 2SV [83],
or login notification approvals received on the user’s phone, like Duo
Push [61]. For example, the webpage can employ Sound-Proof as the
default 2FA mechanism, but give to the user the option to authenticate
by approving the login on his phone, or entering a one-time code. This
may be useful in cases where the environment is quiet and the user feels
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uncomfortable making any noise. Login based on one-time codes is also
useful when the phone has no data connectivity (e.g., when roaming).

Failed Login Attempts and Throttling. Sound-Proof deems a login at-
tempt as fraudulent if the similarity score between the two samples is below
the threshold τC or if the power of either sample is below τdB. In this
case, the server may request the two devices to repeat the recording and
comparison phase. After a pre-defined number of failed trials, the server
can fall-back to an interactive 2FA mechanism based on one-time codes
or login approvals. The server can also throttle login attempts in order to
prevent “brute-force” attacks and to protect the user’s phone battery from
draining.

Login Evidence. Since audio recording and comparison is transparent to
the user, he has no means to detect an ongoing attack. To mitigate this, at
each login attempt the phone may vibrate, light up, or display a message
to notify the user that a login attempt is taking place. The Sound-Proof
application may also keep a log of the login attempts. Such techniques can
help to make the user aware of fraudulent login attempts. Nevertheless, we
stress that the user does not have to attend to the phone during legitimate
login attempts.

Continuous Authentication. Sound-Proof can also be used as a form of
continuous authentication. The server can periodically trigger Sound-Proof,
while the user is logged in and interacts with the website. If the recordings
of the two devices do not match, the server can forcibly log the user out.
Nevertheless, such use can have a more significant impact on the user’s
privacy, as well as affect the battery life of the user’s phone.

Alternative Devices. Our 2FA mechanism uses the phone as a software
token. Another option is to use a smartwatch and we plan to develop a
Sound-Proof application for smartwatches based on Android Wear and
Apple Watch. We speculate that smartwatches can further lower the false
rejection rate because of the proximity of the computer and the smartwatch
during logins.

Logins from the Phone. If a user tries to log in from the same device
where the Sound-Proof application is running, the browser and the applica-
tion will capture audio through the same microphone and, therefore, the
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login attempt will be accepted. This requires the mobile OS to allow access
to the microphone by the browser and, at the same time, by the Sound-
Proof application. If the mobile OS does not allow concurrent access to the
microphone, Sound-Proof can fall back to 2FA based on login approvals or
one-time codes.

Comparative Analysis. We use the framework of Bonneau et al. [28] to
compare Sound-Proof with Google 2-Step Verification (Google 2SV), with
PhoneAuth [51], and with the 2FA protocol of [191] that uses WiFi to create
a channel between the phone and the computer (referred to as FBD-WF-WF
in [191]). The framework of Bonneau et al. considers 25 “benefits” that
an authentication scheme should provide, categorized in terms of usability,
deployability, and security. Table 5.3 shows the overall comparison. The
evaluation of Google 2SV in Table 5.3 matches the one reported by [28],
besides the fact that we consider Google 2SV to be non-proprietary.

Usability: No scheme is scalable nor it is effortless for the user because
they all require a password as the first authentication factor. They are all
“Quasi-Nothing-to-Carry” because they leverage the user’s phone. Sound-
Proof and PhoneAuth are more efficient to use than Google 2SV because
they do not require the user to interact with his phone. They are also more
efficient to use than FBD-WF-WF, because the latter requires a non-negligible
setup time every time the user logs in from a new computer. All mechanisms
incur some errors if the user enters the wrong password (Infrequent-Errors).
All mechanisms also require similar recovery procedures if the user loses
his phone.

Deployability: Sound-Proof, PhoneAuth, and FBD-WF-WF score better
than Google 2SV in the category “Accessible” because the user is asked
nothing but his password. The three schemes are also better than Google
2SV in terms of cost per user, assuming users already have a phone. None
of the mechanisms is server-compatible. Sound-Proof and Google 2SV are
the only browser-compatible mechanisms as they require no changes to
current browsers or computers. Google 2SV is more mature, and all of
them are non-proprietary.

Security: The security provided by Sound-Proof, PhoneAuth, and FBD-
WF-WF is similar to the one provided by Google 2SV. However, we rate
Sound-Proof and PhoneAuth as not resilient to targeted impersonation,
since a targeted, co-located attacker can launch the attack from the victim’s
environment. FBD-WF-WF uses a paired connection between the user’s
computer and phone, and can better resist such attacks.
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5.8 Related Work

In chapter 4 we discussed alternative approaches to 2FA. In the following
we review related work that leverages audio to verify the proximity of two
devices.

Halevi et al., [89] use ambient audio to detect the proximity of two
devices to thwart relay attacks in NFC payment systems. They compute
the cross-correlation between the audio recorded by the two devices and
employ machine-learning techniques to tell whether the two samples were
recorded at the same location or not. The authors claim perfect results (0
false acceptance and false rejection rate). They, however, assume the two
devices to have the same hardware (the experiment campaign used two
Nokia N97 phones). Furthermore, their setup allows a maximum distance
of 30 centimeters between the two devices. Our application scenario
(web authentication) requires a solution that works (i) with heterogeneous
devices, (ii) indoors and outdoors, and (iii) irrespective of the phone’s
position (e.g., in the user’s pocket or purse). As such, we propose a different
function to compute the similarity of the two samples, which we empirically
found to be more robust, than what proposed in [89], in our settings.

Truong et al., [216] investigate relay attacks in zero-interaction au-
thentication systems and use techniques similar to the ones of [89]. They
propose a framework that detects co-location of two devices comparing
features from multiple sensors, including GPS, Bluetooth, WiFi and audio.
The authors conclude that an audio-only solution is not robust to detect
co-location (20% of false rejections) and advocate for the combination of
multiple sensors. Furthermore, their technique requires the two devices
to sense the environment for 10 seconds. This time budget may not be
available for web authentication.

The authors of [189] use ambient audio to derive a pair-wise crypto-
graphic key between two co-located devices. They use an audio finger-
printing scheme similar to the one of [87] and leverage fuzzy commitment
schemes to accommodate for the difference of the two recordings. Their
scheme may, in principle, be used to verify proximity of two devices in a
2FA mechanism. However, the experiments of [189] reveal that the key
derivation is hardly feasible in outdoor scenarios. Our scheme takes advan-
tage of noisy environments and, therefore, can be used in outdoor scenarios
like train stations.
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5.9 Summary and Future Work
Although there is an ongoing effort to replace insecure password-based
authentication, it is likely that it will remain the most common way of
authenticating users on the web in the near future. Two-factor authen-
tication is an effective mechanism that can complement password-based
authentication to prevent attackers from accessing users’ accounts and data.
Nevertheless, deployed solutions have seen little adoption as users find it
cumbersome to change their behavior when authenticating to a website.

We proposed Sound-Proof, a two-factor authentication mechanism for
web logins that does not require the user to interact with his phone. In
our solution the second authentication factor is the vicinity of the user’s
smartphone to the computer from which he is logging in. In particular two
simultaneous recordings of the surrounding ambient audio are performed
on the two devices and compared to test for their proximity. Sound-Proof is
deployable today and works with major browsers. The user does not have
to interact with his smartphone upon login and we have shown how our
system works even if the phone is the user’s pocket or purse as well as in a
wide variety of environments. In comparison to Google 2-Step Verification,
the participants in our user study found Sound-Proof to be more usable.
More importantly, the majority said that they would use Sound-Proof for
online services for which two-factor authentication is optional. We see the
possibility to foster large-scale adoption of two-factor authentication for
the web with a solution that is both usable and deployable today.

5.9.1 Future Work
With Sound-Proof we presented a two-factor authentication solution that is
transparent to the user as he logs into a website. We now discuss interesting
directions for future research.

Audio Comparison. Our audio comparison algorithm is based on cross-
correlation. We perform some optimizations to make it more suitable to our
needs such as filtering out lower and higher frequency bands. While this
approach has shown to give good results in the experimental evaluation
that we performed in multiple environments, we believe that there is room
for improvement. Most audio comparison frameworks have seen research
in order to perform a fast and accurate lookup of a short audio sample in a
large samples dataset (e.g., to find a short and noisy recording of a song
in a music catalog). Our use case is different and different comparison
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techniques can be further researched to improve the accuracy without
hindering usability.

An approach that would be worthwhile researching is to apply machine
learning techniques to our comparison algorithm. We envision two ways
of performing this. First, machine learning could be used to better tweak
the various parameters of the proposed comparison algorithm, such as
the frequency band selection and the threshold. This fine tuning of the
parameters would be based on the nature and the audio features of the
audio samples under comparison, thus better adapting the comparison
algorithm to each audio pair.

Second, machine learning could be used to compare the audio samples
based on their extracted features, instead of comparing them directly using
cross-correlation. This would also have the advantage that only the ex-
tracted features of the browser audio sample would have to be transferred,
instead of the sample itself, thus minimizing the network overhead.

Regardless of the chosen machine learning approach, further research
would be required into which features can be extracted and used from the
audio samples while preserving the accuracy and security of Sound-Proof.

Security Guarantees. In this work we presented an empirical evaluation
of our proposed solution. We collected a large number of samples in
various environments and showed the robustness of Sound-Proof balancing
security and usability. Future work can focus on understanding the physical
properties of the audio samples that can be recorded with current platforms,
evaluate them in terms of their entropy, and fully gauge the adversary’s
probability to successfully produce an audio sample that would match the
user’s one.

User Studies. We acknowledge the limitations of our small-scale user
study, which focused on the usability aspects of Sound-Proof. A possible
direction for future research is to perform further user studies in the field
of two-factor authentication. In particular it would be interesting to under-
stand how users actually interact with the second authentication factor and
if, or how, they perceive the security benefits of two-factor authentication.
Future user studies would enable researchers to propose solutions that
better suit the needs of end users and possibly enable faster and more
widespread adoption.
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Part II

Web Server Authentication





Chapter 6

Introduction

In Part I of the thesis we looked at client authentication on the web, and in
particular on how two-factor authentication aims at improving the poor
security of password-based authentication. With Sound-Proof, we proposed
the first two-factor authentication solution that is fully transparent to the
user and is readily deployable with today’s existing web technologies, with
the intent of fostering adoption and thereby providing the security benefits
of two-factor authentication at scale.

In this part of the thesis we shift focus from client to server authenti-
cation, yet still taking client authentication into account and investigating
how these two properties interact with each other. As we described in
Chapter 2, HTTP does not provide any server authentication per se. For
HTTPS servers (i.e., HTTP over TLS) server authentication takes place at
the TLS level, using server certificates. A server certificate binds the public
key of a server to its domain (or domains) and it is issued by a Certificate
Authority (CA) that is trusted by web browsers and other web clients.

The CA trust model, which server authentication relies upon, has been
proven to be insufficient. This is due to a number of incidents involving
the compromise of CAs (e.g., [2, 32, 46, 63, 188, 198]) that took place
in recent years and in which unauthorized entities were able get access
to valid certificates for domains that they did not own. An attacker that
has access to a mis-issued certificate for a domain he does not legally
own can mount a TLS Man-In-The-Middle (MITM) by suitably positioning
himself on the network, intercepting the client-server communication and
presenting the rogue, yet valid certificate to the user’s browser during the
TLS handshake phase. The browser, given that the certificate was issued by
a trusted CA will readily accept it as valid, thereby allowing the attacker
to impersonate the server to the user, who thinks he is connected to the
legitimate server. Obviously, the TLS connection security warnings and
indicators of the browser will not be of help in this case, since from the
browse’s perspective, this seems to be a legitimate connection.

Once the attacker has completed the first step of the attack, i.e., imper-
sonate the server to the user, he then typically opens a TLS connection to
the legitimate server and impersonates the user to the server. He achieves
this by intercepting and stealing the user’s credentials, such as username
and password, and authentication cookies. Looking back at Part I of the
thesis, most client authentication solutions, including Sound-Proof, are
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susceptible to this powerful attack, since they do not prevent the attacker
from stealing the user’s credentials off the network and using them in order
to authenticate as the user to the server. This allows the attacker to get full
access to the user’s account and use it for harmful purposes, such as spying,
money theft and so forth.

From the above, it is clear that the root cause of TLS MITM attacks is the
fact that server authentication can be compromised, so it is reasonable to
investigate and solve this issue. Indeed, the aforementioned weakness of the
CA trust model, has ignited the interest of both the industry and academic
research community in trying to find ways to enhance the robustness of the
current trust model or even designing entirely new solutions. In Chapter 7
we review a range of techniques and proposals in this area.

Nevertheless, the careful readers may have noticed that another way to
potentially prevent TLS MITM attacks would be to employ some form of
client authentication that can resist theft. In this way, the attacker would not
be able to steal the user’s credentials and use them on a direct connection
to the server in order to authenticate as the user and gain access to his
account at the server.

As a matter of fact, techniques offering this level of strong client au-
thentication do exist and are mainly based on public key cryptography. TLS
client authentication, which we reviewed in Chapter 2 is such an example.
The more recently proposed and significantly more usable compared to TLS
client authentication) TLS Channel ID-based authentication [13, 51, 71] is
another example of such strong client authentication.

After reviewing proposals that aim at preventing TLS MITM attacks by
looking at the root cause of the problem, i.e., strengthen server authen-
tication (Chapter 7), in Chapter 8 we consider proposals (such as those
mentioned above) that attempt to resist TLS MITM attackers whose goal is
user impersonation and account takeover, by using strong, theft resistant
client authentication. We show that, in the context of web applications,
such proposals and client authentication in general, no matter how strong
it is, cannot alone resist such attackers. We devise an attack, called Man-In-
The-Middle-Script-In-The-Browser (MITM-SITB), which leverages the web
server’s ability to ship and execute JavaScript in the user’s browser, and
which allows an attacker to completely bypass the security of aforemen-
tioned proposals. We then show how such strong client authentication
techniques can be combined with the concept of server invariance, a weaker
property than server authentication, in order to prevent such attacks. We
present our concept, called Server Invariance with Strong Client Authentica-
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tion (SISCA), and describe in detail how it can be implemented in practice
and integrated into today’s web infrastructure.

This part of our work highlights how web applications are unique and
different from any other client-server protocol. Namely, while strong client
authentication techniques are effective in preventing MITM attacks in other
client-server protocols (e.g., SSH), this is not the case in web applications,
with their unique ability of shipping and executing server-originating code
to the client side.





Chapter 7

Related Work

In this Chapter we review proposals that try to enhance the CA trust model.
By doing so, these solutions strive to enforce proper server authentication
and thus defeat TLS MITM attacks at its root cause. In Chapter 8, after we
present our work, we discuss more closely related work (Section 8.5).

7.1 CA Trust Model Enhancement
TLS MITM attacks are feasible mainly due to the fact that web browsers
blindly trust hundreds of CAs to sign certificates for any domain. A way to
improve the security of the CA trust model is therefore to reduce the level
of trust placed in the CAs. In recent years various proposals have emerged
that follow this idea and perform enhanced certificate verification. These
proposals are mostly based on two techniques: pinning and multipath
probing. We mention some of the existing proposals below. We refer the
interested reader to [45] for a comprehensive survey.

7.1.1 Pinning
Pinning enables a web server to instruct browsers to accept only a specific
set of certificates or public keys when establishing TLS connections to that
server. It is considered more practical and flexible to pin keys rather than
certificates. The pins can refer to leaf keys, i.e., the keys of the web server,
or CA keys, which are found in the certificate chain. Pinning a CA key for a
domain means that the browser will accept any certificate for this domain
that was issued using the particular CA key. Pinning can be implemented
in a variety of ways, which are described below.

Server-based Pins. The web server itself can instruct the browser which
certificates or keys to pin and for how long. Example solutions include the
Public Key Pinning Extension for HTTP (HPKP) [68], which as its name
suggests operates on the HTTP protocol level, and Trust Assertions for
Certificate Keys (TACK) [129], which operates at the TLS protocol level.
Specifically in HPKP, the web server uses appropriate HTTP headers which
instruct browsers to pin specific public keys. When establishing a TLS
connection to that server, the browser accepts the connection, only if at
least one of the pinned keys appears in the presented certificate chain
during the TLS handshake. Similarly, TACK is a TLS extension which allows
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browsers to pin to a server-chosen signing key. The browser, subsequently,
requires server certificates to be additionally signed by the server signing
key.

Preloaded Pins. Server-based solutions such the above accommodate for
dynamic updates of the pins. A more static approach can be followed, as
well, with pins being pre-loaded within the browser or any other app that
communicates with an HTTPS web server. Note that the pins can still be
updated, via browser or app updates.

Other Approaches. DNS-Based Authentication of Named Entities (DANE)
[94] allows domain owners to associate the public keys of their servers
with the corresponding domain names using DNS Security Extensions
(DNSSEC). These associations are placed in the DNSSEC-protected DNS
records of each domain. A browser accepts a connection to a particular
domain, only if the presented server certificate has been associated with the
domain name. Sovereign Keys (SKs) [64] are server-chosen signing keys,
which are used for cross-signing server certificates, a concept similar to
TACK. However, unlike TACK, SKs are registered in public, cryptographically
assured, append-only logs, called Timeline Servers (a concept similar to
Certificate Transparency). The difference between these approaches and
server-based ones, is that, the pins are not transmitted in-bound through
the communication with web servers. Instead, they are delivered via out-
of-band channels, namely DNS or public logs.

While pinning techniques can be effective at prevent TLS MITM attacks,
they typically require significant maintenance effort, and pinning errors can
result in rendering a website inaccessible. For this reason, Google Chrome,
which currently supports both preloaded pins, as well as HPKP, is planning
to deprecate pinning completely in a future release [159].

7.1.2 Multipath Probing
Multipath probing increases assurance about the legitimacy of the certifi-
cate by consulting (several) external sources. Like in the case of pinning,
multipath probing can be realized in a variety of different ways.

Notaries. In Perspectives [234] and Convergence [128], the browser
queries a set of trusted notaries for their view of the network (i.e, the
server certificate that the notaries witness when attempting to connect to a
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particular server) and compares it with its own. Similarly, DoubleCheck [5]
leverages nodes from the Tor network as notaries. The basic idea in these
schemes is that a MITM attacker will only be able to mount his attack on
just a part of the global network. Thus, notaries outside this part will see a
different server certificate (the legitimate one), than what is presented to
the target browser by the attacker, and the attack will be detected.

Public Logs. A promising idea of implementing multipath probing is to
increase CA accountability through the use of publicly verifiable logs, which
essentially act as trusted third parities. Certificate Transparency [118]
implements this idea, by requiring every issued certificate to be published
in cryptographically assured, append-only logs. This way, CAs and domain
owners (acting as monitors) can monitor the logs for mis-issued certificates.
At the same time, browsers (acting as auditors) can verify that a particular
certificate has been added, or check for log misbehavior. Auditors and
monitors communicate in a distributed fashion, in order compare their
views of the logs and thus detect illegal log inconsistencies. Google Chrome
plans to make Certificate Transparency a mandatory requirement for all
publicly trusted web server certificates in 2018 [197].

Accountable Key Infrastructure (AKI) [111] extends the Certificate
Transparency architecture by adding desired properties, which Certificate
Transparency lacks. For example, it allows multiple CAs to sign a server
certificate and allows the domain to specify in its certificate which CAs
and logs are allowed to attest to the certificate’s authenticity. Moreover it
includes a key revocation architecture, thereby accommodating key loss and
compromise. Attack Resilient Public-Key Infrastructure (ARPKI) [18, 19] is
a redesign of AKI. It improves various aspects of AKI and offers stronger
security guarantees which are formally verified. PoliCert [205] extends AKI
and ARPKI by enabling domains to define policies which govern the usage
of their own certificates.

7.1.3 Other Approaches
In recent years several other approaches, complimentary to pinning and
multipath probing techniques, have been proposed. Here, we mention a
few examples.

Physical Location of Server. SALVE (Server Authentication with Location
VErification) [239] uses the server’s geographic location as an additional
factor of authenticity. SALVE is deployed as a TLS extenstion and is built on
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top of DNS (or DNSSEC) and the Location Service architecture (LCS) [1],
which is a platform in the telecommunication infrastructure that dissemi-
nates location information of mobile devices. SALVE enables the browser
to accept a TLS connection only if the server is present at a legitimate
location, e.g., on the premises of a data center, thereby preventing remote
adversaries with mis-issued certificates to impersonate the legitimate server.

Improved Certificate Revocation. Whenever a key is compromised any
certificates issued for that key have to be revoked. A fast, efficient revocation
process can help mitigate the impact of a key compromise.

Revocation is traditionally implemented by the issuing CA via certificate
revocation lists (CRLs) [48], or via the online certificate status checking
protocol (OCSP) [186]. Nevertheless, the drawbacks of existing techniques
have led to the emergence of several proposals, which try to improve the
revocation process. For example, short-lived certificates [177, 214] is a
revocation concept, which requires certificates to have a very short lifetime,
e.g., one day. In this case, the web server should update its certificates from
the CA on a daily basis. Revocation Transparency [117] and PKI Safety
Net (PKISN) [204], as well as AKI [111], ARPKI [18] and PoliCert [205]
presented above, use publicly accessible logs, in the spirit of Certificate
Transparency, to store not only certificates, but also revocations. Finally,
RITM [203] leverages network middleboxes and content delivery networks
(CDNs) to disseminate certificate revocation information.

7.2 User Impersonation Prevention
Some solutions assume that the attacker can successfully impersonate the
server to the user and try to prevent TLS MITM attacks by ensuring that
the attacker cannot impersonate the user to the server and compromise his
online account. For example, this can be achieved by employing strong,
theft-resilient client authentication, such as channel-bound credentials [51,
56]. As another example, some approaches prevent user impersonation by
leveraging the characteristics of network round-trip latency as an additional
authentication factor, which is hard to be forged by the attacker [109, 217].

In the rest of this Part, we focus on these proposals and show how they
are not able to fully prevent such attacks by themselves. We therefore, refer
the reader to the next Chapter for more details.



Chapter 8

SISCA: Server Invariance with Strong
Client Authentication

Web applications increasingly employ the TLS protocol to secure HTTP
communication (i.e., HTTP over TLS, or HTTPS) between a user’s browser
and the web server. TLS enables users to securely access and interact
with their online accounts, and protects, among other things, common user
authentication credentials, such as passwords and cookies. Such credentials
are considered weak, as they are transmitted over the network and are
susceptible to theft and abuse, unless protected by TLS.

Nevertheless, during TLS connection establishment, it is essential that
the server’s authenticity is verified. If an attacker successfully impersonates
the server to the user, he is then able to steal the user’s credentials and
subsequently use them to impersonate the user to the legitimate server.
This way, the attacker gains access to the user’s account and data which can
be abused for a variety of purposes, such as spying on the user [63, 188].
This attack is known as TLS Man-In-The-Middle (MITM).

TLS server authentication is commonly achieved through the use of
X.509 server certificates. A server certificate binds a public key to the
identity of a server, designating that this server holds the corresponding
private key. The browser accepts a certificate if it bears the signature of
any trusted Certificate Authority (CA). Browsers are typically configured to
trust hundreds of CAs.

An attacker can thus successfully impersonate a legitimate server to
the browser by presenting a valid certificate for that server, as long as
he holds the corresponding private key. In previous years, quite a few
incidents involving mis-issued certificates [2, 32, 46, 188, 198] were made
public. Even in the case where the attacker simply presents an invalid (e.g.,
self-signed) certificate not accepted by the browser, he will still succeed in
his attack if the user defies the browser’s security warning.

In order to thwart such attacks, various proposals have emerged. Some
proposals focus on enhancing the certificate authentication model. Their ob-
jective is to prevent an attacker possessing a mis-issued, yet valid certificate,
from impersonating the server (e.g., [68, 111, 118, 234]).

Other proposals focus on strengthening client authentication. Strong
client authentication prevents user credential theft or renders it useless,
even if the attacker can successfully impersonate the server to the user.
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One such prominent proposal is Channel ID-based client authentication,
introduced in 2012. TLS Channel IDs [13] are experimentally supported in
Google Chrome and are planned to be used in the second factor authenti-
cation standard U2F, proposed by the FIDO alliance [71].

In this work we show that Channel ID-based approaches, as well as
web authentication solutions that focus solely on client authentication are
vulnerable to an attack that we call Man-In-The-Middle-Script-In-The-Browser
(MITM-SITB), and is similar to dynamic pharming [107] (see Section 8.5).
This attack bypasses Channel ID-based defenses by shipping malicious
JavaScript to the user’s browser within a TLS connection with the attacker,
and using this JavaScript in direct connections with the legitimate server
to attack the user’s account.

Nevertheless, we show that TLS MITM attacks where the attacker’s goal
is user impersonation can still be prevented by strong client authentication,
such as Channel ID-based authentication, provided that it is combined with
the concept of server invariance, that is, the requirement that the client
keeps communicating with the same entity (either the legitimate server,
or the attacker) across multiple connections intended for the same server.
Server invariance is a weaker requirement than server authentication, and
thus, it is easier to achieve as no initial trust is necessary. Building on
this observation, we propose a solution called SISCA: Server Invariance
with Strong Client Authentication, that combines Channel ID-based client
authentication and server invariance.

SISCA can resist TLS MITM attacks that are based on mis-issued valid
certificates, as well as invalid certificates, requiring no user involvement
in the detection of the attack (i.e., no by-passable security warnings when
server invariance violation occurs). SISCA also thwarts attackers that hold
the private key of the legitimate server.

Contributions. We analyze TLS MITM attacks whose goal is user imper-
sonation and make the following contributions.

• We show, by launching a MITM-SITB attack, that Channel ID-based
client authentication solutions do not fully prevent TLS MITM attacks.

• We further argue that effective prevention of MITM-based user im-
personation attacks requires strong user authentication and (at least)
server invariance.
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• We propose a novel solution that prevents MITM-based user imper-
sonation, based on the combination of strong client authentication
and server invariance, which we call SISCA.

• We implement and evaluate a basic prototype of our solution.

The rest of this chapter is organized as follows. In Section 8.1 we present
our system and threat model. Section 8.2 discusses TLS Channel ID-based
authentication and shows how MITM attacks are possible using MITM-
SITB. Section 8.3 mentions known solutions for addressing MITM attacks
and presents SISCA. Section 8.5 discusses related work and Section 8.6
concludes Part II and discusses interesting research directions.

8.1 Model
8.1.1 System Model
We consider a typical web application setting. The user, or victim, has an
account with a particular web server that the adversary is interested in.
This could be a webmail application, a social networking site, an e-banking
platform and so forth. We assume that the web server can be accessed
exclusively over TLS. The victim uses a modern web browser in order to
access the web server and login to his account.

8.1.2 Attacker Goal and Model
Attacker Goal. The attacker’s goal in a MITM attack is typically to imper-
sonate the user (victim) to the legitimate web server, in order to compromise
the user’s online account and data. This is indeed the case where the at-
tacker wishes for example to spy on the user [63, 188], or abuse his account
for nefarious purposes, e.g., perform fraudulent financial transactions. Al-
ternatively, the attacker could aim to only impersonate the server to the
user (and not the user to the server), such that he serves the user with fake
content (e.g., fake news). In this part of the thesis, we take into account
only the first scenario.

Attacker Model. We adopt the attacker model considered by Channel
IDs [13]. The adversary is able to position himself suitably on the network
and perform a TLS MITM attack between the user and the target web server.
In other words, the attacker is able to successfully impersonate the server
to the user. We distinguish between two types of MITM1 attackers.

1We use the terms “TLS MITM” and “MITM” interchangeably.
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The MITM+certificate attacker holds (i) a valid certificate for the domain
of the target web server, binding the identity of the server to the public key,
of which he holds the corresponding private key. The attacker, however,
has no access to the private key of the target web server. This, for example,
can happen if the attacker compromises a CA or is able to force a CA
issue such a certificate. Such attacks have been reported in the recent
years [2, 32, 46, 188]. Moreover, in this category we also consider a
weaker attacker that only holds (ii) an invalid (e.g., self-signed) certificate.
In this case, the attacker will still succeed in impersonating the server to
the user if the latter ignores the security warnings of the browser, which is
a common phenomenon [202].

The MITM+key attacker holds the private key of the legitimate server.
While we are not aware of publicized incidents involving server key compro-
mise, such attacks are feasible, as the Heartbleed vulnerability in OpenSSL
has shown [211], and can be very stealthy, remaining unnoticed. Thus,
they are well worth addressing [93, 95, 116].

From the above it follows that the attacker is able to obtain the user’s
weak credentials, namely passwords and HTTP cookies. He is not, however,
able to compromise and take control over the user’s browser or his devices
(e.g., mobile phones).

8.2 Channel ID-based Authentication and MITM
Attacks

8.2.1 TLS Channel IDs
Channel IDs is a recent proposal for strengthening client authentication. It
is a TLS extension, originally proposed in [56] as Origin-Bound Certificates
(OBCs). A refined version has been submitted as an IETF Internet-Draft [13].
Currently, Channel IDs are experimentally supported by Google’s Chrome
browser and Google servers.

In brief, when the browser visits a TLS-enabled web server for the
first time, it creates a new private/public key pair (on-the-fly and without
any user interaction) and proves possession of the private key, during the
TLS handshake. This TLS connection is subsequently identified by the
corresponding public key, which is called the Channel ID. Upon subsequent
TLS connections to the same web server, or more precisely, to the same web
origin, the browser uses the same Channel ID. This enables the web server
to identify the same browser across multiple TLS connections. We stress
that, Channel IDs are not envisioned to be directly used by the web server
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Figure 8.1: PhoneAuth and FIDO U2F. Leveraging Channel IDs to secure
the initial login against MITM attacks.

to authenticate the user or the browser. They are instead used by the web
server to identify the same browser across multiple TLS connections, as the
browser will be using the same Channel ID for these connections.

Channel ID-Based Authentication

By Channel ID-based authentication we refer to the use of Channel IDs
throughout the user authentication process, designed to thwart both types
of MITM attackers presented in Section 8.1 [13, §6], [51, §3].

Initial Login. When the user attempts to login to his online account for
the first time from a particular browser, the web server requires that the
user authenticates using a strong second factor authentication device, as in
PhoneAuth [51] and FIDO Universal 2nd Factor (U2F) [71] protocols. These
protocols leverage Channel IDs to secure the intial login process against
MITM attacks. In brief, as part of the authentication protocol, the second
factor device compares the Channel ID of the browser to the Channel ID
of the TLS connection that the server witnesses. If they are equal, then
the browser is directly connected to the web server through TLS (because
they share the same view of the connection), and thus there is no MITM
attack taking place. On the other hand, if the Channel IDs differ, then the
server is not directly connected to the user’s browser. Instead, as shown
in Figure 8.1, there is an attacker in the middle, and the device aborts the
authentication protocol, thereby stopping the attack.
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Figure 8.2: Binding authentication tokens (e.g., cookies) to the browser’s
Channel ID (green). A MITM attacker who steals such a cookie, cannot use
it to impersonate the user, since the attacker has a different Channel ID
(red).

Subsequent Logins. Upon successful initial authentication the server
sets a cookie to the user’s browser, and binds it to the Channel ID of the
browser. As proposed in [56], a server may create a channel-bound cookie as
follows: 〈v, HMAC(k, v|cid)〉, where v is the original cookie value, cid is
the browser Channel ID and k is a secret key only known to the server, used
for computing a MAC over the concatenation of v and cid. The channel-
bound cookie is considered valid only if it is presented over that particular
Channel ID. Therefore, subsequent interaction with the server from that
particular browser is protected by the channel-bound cookie. An attacker
that manages to steal a channel-bound cookie, e.g., through a MITM attack,
cannot use it to impersonate the user to the web server, since he does not
know the private key of the correct Channel ID. Figure 8.2 illustrates this
concept. Note that at this stage, the second factor device is not required
for authenticating the user [50]. Whenever the channel-bound cookie is
absent (e.g., it expired, the user deleted it, or the user tries to login from a
new browser) or it is present but invalid (i.e., presented over an incorrect
Channel ID), the server once again requires user authentication using the
second factor device (as described above for the initial login process).
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8.2.2 MITM Attack on Channel ID-Based Authentication
We show how Channel ID-based authentication still allows a MITM attacker
to successfully impersonate the user. This is due to the way web applications
are run and interact with the servers, which differs from other Internet
client-server protocols (e.g., IMAP over TLS).

In particular, web servers are allowed to send scripting code to the
browser, which the latter executes within the security context of the web
application (according to the rules defined by the same-origin policy [17]
– we refer the reader to Section 2.3 for more information). In fact, and
as discussed in the introduction of this thesis, client-side scripting and
especially JavaScript, is the foundation of dynamic, rich web applications
that vastly improve user experience, and its presence is ubiquitous.

Moreover, a browser can establish multiple TLS connections with the
same server. In addition, a typical web application loads resources, such
as images and scripts, from multiple domains (cross-origin network ac-
cess [17]). Assuming that all communication is TLS-protected, this means
that the browser needs to establish TLS connections with multiple servers
while loading a webpage.

Given the above, there is a conceptually simple attack that a MITM
adversary can perform, which bypasses the security offered by Channel
IDs (the attack can be realized by either MITM+certificate or MITM+key
attackers). We assume that the user tries to access the target web server,
say www.example.com. The attacker then proceeds as follows:

1. He intercepts a single TLS connection attempt made by the browser
to www.example.com, and by presenting a valid certificate (or in-
valid with the user ignoring the browser’s warning), he successfully
impersonates the legitimate server to the browser.

2. Through the established connection, the browser makes an HTTP
request to the server. The attacker replies with an HTTP response,
which includes a malicious piece of JavaScript code. This script will
execute within the origin of www.example.com.

3. The attacker closes the intercepted TLS connection. This forces
the browser to initiate a new TLS connection in order to transmit
subsequent requests, or use another existing one, if any (this behavior
conforms with the HTTP specification [73]). At the same time, the
attacker allows subsequent TLS connection attempts to pass through,
without interfering with them. As a result, once the attacker closes
that single intercepted connection, all other connections, existing and
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Figure 8.3: MITM-SITB attack on Channel ID-based PhoneAuth/U2F used
for the initial login. The attacker’s JavaScript code is executed within the
origin of the target server (shown by the dotted arrow).

new, are directly established between the browser and the legitimate
server.

4. The attacker gains full control over the user’s session in that particular
web application. His script has unrestricted access over the web docu-
ments belonging to www.example.com and can monitor all the client-
side activity of the web application. Moreover, he can issue arbitrary
malicious requests to the target server using the XMLHttpRequest
object [228], in order to perform a desired action or extract sensi-
tive user information. The malicious code can upload any extracted
data to an attacker-controlled server. As another example, if the
web application is AJAX-based, the attacker can perform Prototype
Hijacking [161]. This allows him to eavesdrop and modify on-the-fly
all the HTTP requests made through XMLHttpRequest.

In summary, the MITM attacker “transfers” himself (via the malicious
script) within the user’s browser, and continues his attack from there. We
call this attack Man-In-The-Middle-Script-In-The-Browser (MITM-SITB).

Figure 8.3 illustrates the MITM-SITB attack in the case when the user
is about to initially authenticate to www.example.com using PhoneAuth or
U2F. The attacker intercepts a TLS connection, pushes his JavaScript code
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Figure 8.4: MITM-SITB attack on Channel ID-based authentication after
the initial login, where requests are protected with a channel-bound cookie.

to the user’s browser, and terminates the connection. The browser then
establishes a new TLS connection for subsequent communication, only this
time with the legitimate server; the attacker will not hijack it. This ensures
that the user authentication is performed over a direct connection between
the browser and the server, but with the attacker’s code running in the
browser. The view of the TLS channel will be the same for the browser
and the server, and the Channel ID comparison made by the second factor
device will pass.

Figure 8.4 shows how the attack works in the case when the user has
already logged in on www.example.com in the past, and the server has set a
channel-bound cookie in the user’s browser. Like before, the attacker ships
malicious JavaScript code to the browser by intercepting a TLS connection
to www.example.com. He then terminates the intercepted connection.
This forces the browser to establish a new TLS connection, which is not
intercepted by the attacker. This ensures that any subsequent requests,
either legitimate or malicious (issued by the attacker’s script) are accepted
by the legitimate server, since they will carry the channel-bound cookie,
which authenticates the user, over the correct Channel ID.

From the above attack description there are various details that remain
unclear. For example, which TLS connection the attacker should intercept,
whether to “hit and run” or persist as much as possible, etc. Depending
on the scenario, there are various alternatives, which are mostly imple-
mentation decisions. The attacker can for example choose the following
strategy. He intercepts the very first TLS connection, i.e., the one that the
browser initiates once it is directed to www.example.com. Depending on
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the situation, the attacker’s HTTP response could contain the expected
HTML document of the website’s starting page, together with the appropri-
ately injected malicious script, or it could only contain the malicious script,
which will take care of loading the starting page in the browser. Then, as
described before, the attacker closes this first connection and subsequent
communication (malicious or not) takes place through a direct connection
to the legitimate server.

The Cross-Origin Communication Case. Visiting a single webpage typ-
ically involves cross-origin communication with different domains in the
background. For example a typical network optimization technique is to
have the browser load the static resources of the website, such as images,
style sheets and scripts, from so-called cookieless domains [99]. These do-
mains, as their name suggests, do not set any cookies, so as to minimize
network latency. As a matter of fact, on such domains, client authentica-
tion does not apply at all, as they are just used to serve static resources,
which anyone, including the attacker, can access. Hence in those cases,
the attacker can perform a conventional MITM attack against a cookieless
domain, and inject his malicious code at the moment when the target web
server requests a legitimate JavaScript file from that domain.

Figure 8.5 illustrates the attack. The attacker lets all communication
to www.example.com (the main web server) pass through. Initially, the
browser connects to www.example.com to load some page. The returned
HTML document imports a JavaScript file from the cookieless domain
static.example.com. Assuming that the script is not cached, the browser
initiates a TLS connection to that domain, which is intercepted by the
attacker. The attacker fetches the original script, injects his code and
forwards the script to the browser, which is executed within the origin of
www.example.com.

8.2.3 Proof of Concept Attack
We validate our attack against Channel IDs through a proof of concept
implementation. We use two Apache TLS-enabled servers (one for the
attacker, one for the legitimate server) and an interception proxy that can
selectively forward TLS connections to either server. The legitimate server
uses a patched OpenSSL version that supports Channel IDs and leverages
them for creating channel-bound cookies. We use Google Chrome as the
user’s browser, since it supports Channel IDs, and ensure that it accepts the
certificates of both servers. We are then able to inject JavaScript code to
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Figure 8.5: MITM-SITB attack on Channel ID-based authentication lever-
aging cross-origin communication. Channel IDs for static.example.com
are of no use.

the user’s browser from the attacker’s server and issue HTTP requests that
are accepted and processed by the legitimate server.

8.2.4 Scope and Implications of the Attack
The MITM-SITB attack presented in Section 8.2.2 is not specific to Channel
ID-based client authentication protocols. In fact, it applies to any web client
authentication method. This attack demonstrates that, in the context of
web applications, it does not seem possible to prevent TLS MITM attacks
via client authentication alone.

We provide the following informal reasoning for the above claim. Client
authentication does not prevent an attacker from impersonating the le-
gitimate server. This allows him to intercept a server-authenticated (i.e.,
TLS) connection and ship his JavaScript code to the user’s browser. The
browser, treating the attacker’s code as trusted (as it came through a server-
authenticated connection), executes it within the target server’s origin. The
attacker accesses the user’s account through requests initiated by his code
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and transmitted over another, direct connection between the browser and
the legitimate server.

As a result, schemes such as traditional TLS client authentication [55],
TLS Session Aware User Authentication [153, 154], Browser-based Mutual
Authentication [76], as well as solutions based on the characteristics of
network latency [109, 217] are still susceptible to TLS MITM attacks, via
MITM-SITB. The attacker succeeds in impersonating the user to the web
server and compromising his account.

8.3 Addressing TLS MITM Attacks
As shown in Section 8.2, strong client authentication alone is not sufficient
to prevent MITM attacks that lead to user impersonation in web applications.
So, how can we effectively prevent such attacks? In this section we show
that there are two orthogonal solutions; (i) the known solution of preventing
the attacker from impersonating the legitimate server at all, i.e., ensuring
correct server authentication; (ii) our novel approach of combining strong
client authentication with server invariance, called SISCA.

8.3.1 Prevent Server Impersonation
The known and straightforward solution to the problem at hand is to
prevent the attacker from impersonating the server in the first place. This
way, the attacker can neither steal weak user credentials in order to mount a
conventional MITM attack, nor ship malicious JavaScript in order to mount
a MITM-SITB attack. Note that in this case, strong client authentication
(e.g., Channel ID-based) is not necessary for preventing MITM attacks (it
is, however, still useful for preventing other attacks, such as phishing and
server password database compromise).

The solutions that try to prevent server impersonation address the issue
of forged server certificates (and thus defeating MITM+certificate attacks),
by performing enhanced certificate verification. Such solutions are based
on pinning (e.g., [64, 68, 94, 129]), multipath probing (e.g., [18, 111, 118,
128, 234]) and other approaches (e.g., [109, 239]. We refer the reader
to Chapter 7 where we review these solutions, as well as to [45] for a
thorough survey.

8.4 Our Proposal: SISCA
8.4.1 Main Concept
The fact that strong client authentication alone cannot effectively prevent
MITM attacks in web applications, raises the following question. Is there a
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way to somehow still benefit from strong client authentication with respect
to addressing MITM attacks?

To answer, we make the following observation. In the context of web
applications, a MITM attacker can perform user impersonation via two
approaches:

1. The conventional MITM attack, in which the attacker compromises the
user’s credentials and uses them for impersonation. This attack can
be effectively prevented by strong client authentication e.g., using
Channel ID-based protocols (Figures 8.1, 8.2).

2. The MITM-SITB attack, presented in Section 8.2.2 (Figures 8.3, 8.4,
8.5). As discussed in Section 8.2.4, client authentication alone cannot
prevent this attack.

For the MITM-SITB attack to be successful, the user’s browser needs to
communicate with two different entities, namely the attacker and the target
web server. Communicating with the attacker is, of course, necessary for
injecting the attacker’s script to the browser through the intercepted TLS
connection. In addition, communication with the target server is essential,
so that the attacker accesses the user’s account and data, through his script.

As a result, we can prevent MITM-SITB by making sure that the browser
communicates only with one entity, either the legitimate server, or the
attacker, but not with both, during a browsing session (a browsing session is
terminated when the user closes the browser). In other words, we need to
enforce server invariance. When combined with strong client authentication
(e.g., Channel ID-based), which stops the conventional MITM approach,
this technique manages to effectively thwart MITM attacks. Figure 8.6
illustrates the concept.

In the remaining section we present a novel solution, called Server
Invariance with Strong Client Authentication (SISCA), which stems from
the above result. SISCA is able to resist MITM+certificate attacks, offering
advantages compared to existing solutions that focus at preventing server
impersonation (see Section 8.4.9), as well as MITM+key attacks under the
assumption that the attacker does not persistently compromise the server
(see Section 8.4.2). The details of our solution follow below.

8.4.2 Design Goals and Assumptions
In SISCA we seek to satisfy the following requirements: (i) incremental
deployment, (ii) scalability, (iii) minimal overhead, (iv) account for cross-
origin communication, assuming that the involved origins belong to, and
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Figure 8.6: TLS MITM attacks in web applications can be thwarted by
combining strong client authentication with server invariance.

are administered by the same entity, (v) mitigation of MITM+key attacks
(besides MITM+certificate attacks).

We make the following assumptions. First, strong client authentica-
tion, which prevents the conventional way of implementing MITM attacks
(Figures 8.1, 8.2) is in place. Specifically, we assume that SISCA-enabled
servers implement Channel ID-based client authentication. As mentioned be-
fore, Channel IDs are already experimentally supported in Google Chrome.
Moreover, FIDO U2F leverages Channel IDs, as metiononed in Section 8.2.1,
so it is likely that Channel ID-based authentication will become available
in the foreseeable future.

Second, we assume that SISCA-enabled servers support TLS with forward
secrecy by default [93, 95, 116]. As we discuss below, this is only required
for preventing MITM+key attacks (not relevant for MITM+certificate at-
tacks). Moreover, we assume that TLS is secure and cannot be broken by
cryptographic attacks, such as those surveyed in [45].

We finally assume that the MITM+key attacker does not persistently
compromise the target web server. As we discuss later, this enables SISCA to
resist server key compromise (i.e., MITM+key attackers) through frequent
rotation of the server secrets that are used in SISCA (see Section 8.4.8). We
also note that if an attacker gained persistent control over the target server,
he would probably not need to resort to MITM attacks to compromise the
users’ accounts, but at the same time he would increase the probability of
being detected. In Part III of this thesis, we actually consider such attackers
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and try to provide data integrity guarantees, even under such powerful
attacks.

8.4.3 Server Invariance Versus Authentication
As stated above, our goal is to combine strong client authentication with
server invariance. Invariance is a weaker property than authentication,
and thus, easier to achieve, as no a priori trust is necessary. In contrast,
authentication requires some form of initial trust so that the client can
correctly authenticate the server [60].

Consequently, we stress the following very important difference. Server
authentication (and solutions that try to enforce it, like those mentioned
in Section 8.3.1) implies that every single TLS connection should be es-
tablished with the legitimate server. If the attacker attempts to intercept
such a connection, he should be detected by the browser, i.e., no server
impersonation should be possible.

In contrast, server invariance, embraces the fact that the attacker can
successfully impersonate the server. As such, we distinguish two scenarios
concerning the browser’s first connection to a particular server: (i) The
first connection is not intercepted by the attacker. Then, server invariance
implies that the attacker is allowed to intercept none of the subsequent
connections to that server. (ii) The first connection is intercepted by the
attacker. Then, server invariance implies that the attacker has to intercept
all subsequent connections to that server. In either scenario, if the attacker
violates server invariance, he will be detected.

We consider server invariance as a transient property whose scope is
one browsing session. Server invariance is reset whenever the browser
restarts, i.e., the attacker is allowed again to choose whether to intercept
or not the first connection to the server.

8.4.4 Towards Implementing Server Invariance
In order to implement server invariance, it is important to understand the
implications of the fact that the attacker is allowed to impersonate the server.
Namely, the attacker can intercept the first connection and influence the
entire HTTP response, which clearly cannot be blindly trusted. Therefore,
techniques that assume the attacker is able to influence only a part of the
HTTP response, such as Content Security Policy (CSP) [221] for mitigating
Cross-Site-Scripting (XSS) [156], as well as techniques that assume the first
connection is trusted (i.e., not intercepted by the attacker), such as pinning,
cannot be directly applied for implementing server invariance.
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Instead, a server invariance protocol should consist of two phases,
namely invariance initialization and invariance verification – initialization
and verification for brevity. In the initialization phase, which is executed in
the first connection to the server during a browsing session (and could be
intercepted by the attacker), the browser establishes a point of reference.
Then, in subsequent connections to the same server, the verification phase
is executed, where the browser verifies that the point of reference remains
unchanged, i.e., the browser keeps connecting to the same entity.

Server Public Keys. Assuming that we only consider MITM+certificate
attackers, we can leverage the servers’ public keys as the point of reference.
Even if the attacker intercepts the first connection, he will not be able
to let any subsequent connections reach the legitimate server, because
the server’s public key will be different from the attacker’s. Nevertheless,
servers of the same domain may use different public keys and also, cross-
origin interacting domains will have different keys. To solve this issue,
we need to “tie” all the involved public keys together, to reflect the fact
that they belong to the same entity and thus server invariance should hold
across all these domains and keys. We sketch the following technique for
implementing server invariance.

During initialization (first connection), the server sends a list of all
the involved domains and all their public keys to the browser, and the
latter uses the witnessed key as well as the list as the point of reference.
Then, in subsequent connections, the browser verifies (i) that the public
key which the server presents is contained in the list which was received
during initialization, and (ii) that the server agrees on the legitimacy of the
public key that was originally witnessed by the browser during initialization.
Notice how this differs from pinning, which operates under the assumption
that the initial connection is trusted, and thus does not seek to verify the
legitimacy of the initial connection, and consequently of the received pins,
upon subsequent connections.

The above technique is useful when considering MITM+certificate at-
tacks and can be used to implement the server invariance protocol in SISCA.
Nevertheless, in the following sections we present an alternative approach
that does not leverage server public keys, and aims to mitigate MITM+key
attacks, as well. We note that the security analysis as well as most of the
design patterns that are discussed in the approach that follows (e.g., how
to prevent downgrade attacks and allow for partial support and exceptions,
how to secure resource caching, etc) would similarly apply to the previously
sketched technique, as well.
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Our High-Level Approach. In SISCA we choose to implement server
invariance as a simple challenge/response protocol. In the initialization
phase (first connection) the browser sets up a fresh challenge/response
pair (which acts as the point of reference) with the server. Then, in the
verification phase (subsequent connections) the browser challenges the
server to verify server invariance, i.e., that it is the same entity with which
the browser executed the initialization.

SISCA has to be executed before any HTTP traffic influenced by the
attacker is processed by the browser or the server. We choose to implement
the protocol at the application layer, over established TLS sessions via an
HTTP header, named X-Server-Inv, and transmitted together with the
first HTTP request/response pair over a particular TLS connection. For the
protocol to be secure, on the client side this header is controlled solely by
the browser. It cannot be created or accessed programmatically via scripts
(similar to cookie-related headers [228]).

Alternatively, we could implement the server invariance protocol in
SISCA as a TLS extension, i.e., at the transport layer. We deem the applica-
tion layer more appropriate, since server invariance encompasses semantics
that are naturally offered by the application layer, such as cross-origin
interaction and content inclusion.

Figure 8.7 depicts a simple example of how a protocol based on our
approach can look like. In this example protocol, during the initialization
phase the browser and server generate random numbers rb and rs, which
they both store (the server also stores the browser’s Channel ID cidb). The
browser subsequently uses rb as a challenge during the verification phase,
expecting the response rs by the server. The latter looks up rs by using rb
and cidb. For the shake of brevity, we do not analyze this example, but we
make the following important remarks.

First, this example requires the server to store per-client state. This may
be undesirable and it also makes it harder for multiple servers belonging
to the same entity to share the common state which is needed in order
to be able to correctly execute the protocol. For this reason, SISCA uses
symmetric cryptography (MAC), in order to securely offload the state to
the clients.

Second, during the verification phase, the server should process the
incoming HTTP request, only if the lookup succeeds. If it fails, it means that
the attacker intercepted the first connection (initialization phase) and that
the incoming request may be malicious. We explain this concept further
in the analysis of the SISCA protocol. We note that due to this fact, SISCA
uses a second MAC tag in order to enable the server perform this check.
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Figure 8.7: An example challenge/response-based server invariance proto-
col requiring per-client server state.

8.4.5 Basic Protocol
We now describe the server invariance protocol of SISCA in detail. We
follow a structural approach, meaning that we start with a basic version of
our protocol, described in this section. Then, in subsequent sections, we
incrementally add features.

Figure 8.8 illustrates the protocol, assuming no attack. Prior to the
protocol execution, the server, www.example.com, generates two keys ks1
and ks2, called SISCA keys. The same SISCA keys are used for all protocol
executions (i.e., not for a specific client) and are never disclosed to other
parties. Moreover, recall that the server and client deploy Channel ID-based
authentication. Each TLS connection will therefore have a Channel ID cidb,
that is created by the user’s browser. As already mentioned, the protocol
consists of two phases.

Initialization. The initilization phase occurs once the browser establishes
a TLS connection to www.example.com, for the first time in a browsing
session (upper connection in Figure 8.8). The browser picks a random
number rb. It then sends 〈‘Ini t ’, rb〉 to the server (‘Ini t ’ is a string con-
stant), within the first HTTP request2 over that connection. Upon receiving

2Note that this is a request that browser would anyway submit, i.e., required for loading
the webpage. It is not an extra request.
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Figure 8.8: Basic SISCA protocol.

this message, the server chooses a random number rs and computes the
following message authentication tags:

t1 = MAC(ks1, ‘1’|rb|rs|cidb) (8.1)

t2 = MAC(ks2, ‘2’|rb|rs|cidb) (8.2)

where ‘1’ and ‘2’ are strings constants. Notice that the server binds the
computed tags to the browser’s Channel ID cidb. rb, rs and the MAC tags
will be used in subsequent TLS connections to verify server invariance.

Finally, the server sends 〈rs, t1, t2〉 to the browser within its first HTTP
response. The browser stores 〈rb, rs, t1, t2〉, while the server does not store
any client-specific information. At this point, the initialization phase is
complete. Subsequent HTTP requests and responses over that particular
TLS connection do not include an X-Server-Inv header.

Verification. The verification phase takes place upon every subsequent
TLS connection to www.example.com, which occurs within the same brows-
ing session (lower connection in Figure 8.8). Like in the first phase, the
protocol messages are exchanged within the first HTTP request/response
pair. The browser sends 〈‘Veri f y ’, rb, rs, t1〉 to the server, as part of the
first request. After receiving the request, and before processing it, the server
first checks if

t1
?
= MAC(ks1, ‘1’|rb|rs|cidb). (8.3)
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Figure 8.9: Resilience of SISCA to MITM-SITB (conventional MITM is
prevented by Channel-ID based authentication).
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Here, cidb corresponds to the Channel ID of the TLS session within which
the protocol is currently being executed, which, if under attack, might differ
from the Channel ID that was used in the initialization phase. If the check
passes, the server computes

t ′2 = MAC(ks2, ‘2’|rb|rs|cidb), (8.4)

processes the received request, and passes 〈t ′2〉 within the HTTP response

to the browser. Finally, the browser checks if t ′2
?
= t2 and if it succeeds, it

means that server invariance holds for this TLS connection.

Analysis When Under Attack. Figure 8.9 illustrates how the protocol
prevents MITM attacks. Recall that, due to the usage of Channel ID-based
authentication, the attacker cannot perform the conventional attack (Fig-
ures 8.1, 8.2) – the attacker’s TLS sessions will have a different Channel
ID than the client’s and will thus be rejected. Instead, he has to execute a
MITM-SITB attack.

In Figure 8.9 we illustrate two possible attack scenarios (based on the
previous discussion in this Section) and we show why the attacker fails
in both. In Figure 8.9(a) the attacker intercepts the verification phase
of SISCA. Since the attacker didn’t participate in the initialization phase
of the protocol, he does not know the correct MAC response t2 to the
client’s challenge. Moreover, since he does not have access to ks2, he cannot
calculate the correct t2 either (Eq. (8.4)). As a result, the user’s browser
rejects the attacker’s response and terminates the session, notifying the
user (no user decision is required). Even if the attacker pushes a malicious
script in his response, it will not get a chance of being executed.

In the second scenario, depicted in Figure 8.9(b), the attacker intercepts
the first TLS connection to www.example.com. He thus executes the ini-
tialization phase with the browser and injects his script, which is executed
within the web origin of www.example.com. To successfully complete his
attack, the attacker needs to let a subsequent TLS connection reach the
legitimate server, and access the user’s account via that connection.

After the browser establishes a connection with the legitimate server,
the two of them execute the verification phase, as part of the first HTTP
request/response pair. The server, before processing the HTTP request
(which might as well be malicious), checks whether Condition (8.3) is
true. Since the attacker does not have access to key ks1, he could not have
computed the correct t1 (Eq. (8.1)). Thus, during the initialization phase,
he sends a t1 value to the browser that is not the correct one. Consequently,
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Condition (8.3) will not be satisfied. In this case the server does not process
the request, and instead notifies the browser by sending an empty HTTP
response containing 〈‘Aler t ’〉 in the X-Server-Inv header. This indicates
violation of the server invariance and the browser aborts the session.

We remark that in the second scenario, it is the legitimate server that
checks server invariance, detects the ongoing MITM attack and notifies
the browser. This is important in order to prevent even a single malicious
request from being accepted and processed by the server.

We conclude our analysis, with a few remarks that are relevant for both
of the scenarios described above. First, note that the attacker cannot relay
any of the necessary MAC computations to the legitimate server. In other
words, he cannot manipulate the server to compute for him the values
needed for cheating in the protocol. This is because the server binds all its
computations to the channel ID of the client with whom it communicates
(the attacker’s channel ID will be different from the user’s).

Second, note that the protocol is secure so long as the attacker cannot
“open” already established TLS connections between the browser and the
legitimate server (i.e., connections that he chose not to intercept). If he
could do that, he would be able to extract the correct values of both t1 and
t2 and successfully cheat. Recall that, the MITM+key attacker holds the
private key of the legitimate server. Therefore, in order to prevent such an
attacker from eavesdropping on already established TLS connections, it is
essential that these connections have TLS forward secrecy enabled.

Third, when considering MITM+key attacks it is reasonable to assume
that the attacker can also extract the SISCA keys, similar to the private key
of the server. As stated in the assumptions (Section 8.4.2) and explained
in Section 8.4.8 the SISCA keys, unlike the private key, can be frequently
rotated. SISCA can thus resist MITM+key attacks, assuming no persistent
server compromise.

Finally, the attacker can choose not to reply at all, when executing
SISCA with the user. This essentially leads to a Denial of Service (DoS)
attack. However, such attacks can already be achieved even by attackers
less powerful that those considered here. That is, attackers that cannot
perform TLS MITM attacks, but can block network traffic between the
browser and the server.

Different Origins. The SISCA protocol execution is guided by the same-
origin policy [17]. In particular, SISCA is executed independently, i.e.,
different protocol instances, when loading webpages and documents that
belong to different origins. For example, assume that the browser navigates
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to www.example.com for the first time in the current browsing session.
Then, a new instance of SISCA will be created for this origin and its initial-
ization phase will be executed on the first TLS connection. If the browser
further navigates to pages belonging to www.example.com, and this trig-
gers the creation of new TLS connections by the browser, then for those
connections the browser will execute the verification phase of the previ-
ously created SISCA instance corresponding to www.example.com (same
origin). When the browser navigates to another website (different origin),
say www.another.com, then a new instance of SISCA will be created and
used for the loading of documents from that origin (assuming that this
is the first visit to www.another.com in that browsing session). Also any
HTTP redirections during navigation that lead to different origins will cause
the corresponding SISCA instances for those origins to be created and used.

8.4.6 Cross-Origin Communication
In the previous section we assumed that accessing the webpages of the
website at www.example.com involves communication only with that do-
main, i.e., web origin. However, this is not a realistic scenario in today’s
web applications. Many websites perform cross-origin requests, e.g., to
load resources. SISCA can accommodate for such scenarios so long as all
the involved domains belong to, and are administered by the same entity,
such that the required SISCA keys, ks1 and ks2, can be shared across all
relevant servers.

Therefore, for cross-origin communication the browser uses the SISCA
instance corresponding to the initiating origin. For example, assume
that a page loaded from www.example.com performs a cross-origin re-
quest to static.example.com. The browser will create a TLS connec-
tion to static.example.com and will execute the verification phase of
the SISCA instance that corresponds to www.example.com. Any potential
HTTP redirections will also use the SISCA instance of the initiating origin,
www.example.com.

Different Channel IDs. The basic protocol we described in Section 8.4.5
also works in the cross-origin communication scenario, provided that the
Channel ID used by the browser is the same. The Channel ID specification
draft already recommends using the same Channel ID for a domain and
its subdomains [13, 56] (to account for cookies that have the Domain
attribute set). For example, the browser should use the same Channel
ID for www.example.com and static.example.com. Nevertheless, for
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Figure 8.10: SISCA adapted for cross-origin communication (the origins
share the same SISCA keys), when the browser uses a different Channel ID
for each origin. Here, www.example.com performs a cross-origin request
to examplestatic.com.

privacy reasons, the specification recommends using different Channel
IDs for unrelated domains. In such cases, SISCA has to account for using
different Channel IDs across domains, when cross-origin communication
takes place.

Figure 8.10 depicts how the protocol works in such a scenario. The
browser navigates to www.example.com, and starts a new SISCA instance
for that origin. The browser uses Channel ID cidb (with public key pkb,
and private key skb). At some later point in time, the page loaded from
www.example.com performs a cross-origin request to examplestatic.com,
which is controlled by the same entity. Nevertheless, since it corresponds
to a different domain (i.e., not a subdomain), the browser uses a different
Channel ID, say cid ′b (with pk′b, sk′b being the corresponding public/private
key pair). In this case, although the initialization phase of SISCA was
executed using cidb, the verification phase will have to be executed over a
TLS connection with Channel ID cid ′b.

The browser needs to tell the server (examplestatic.com) to use cidb
instead of cid ′b, but do so in a secure way. To achieve this, the browser
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endorses cid ′b, by signing it with skb, and thus proving to the server that
it owns the private keys of both Channel IDs cidb and cid ′b. The browser
extends the ‘Veri f y ’ message by appending cidb and a signature over cid ′b
(i.e., the Channel ID of that TLS connection) and the rest of the message
parameters using skb. The server, before processing the request, verifies the
signature on cid ′b using the supplied cidb (i.e., pkb). If it passes, then the
server uses cidb for the subsequent steps of the verification phase, which
remain unchanged.

Overlapping Cross-Origin Access. Browsers typically send multiple HTTP
requests over the same network connection (persistent connections [73]).
Due to the existence of cross-origin communication, a TLS connection
to a particular domain, say static.example.com, can be used by the
browser to transmit cross-origin requests to static.example.com made
by different initiating origins. For example, the browser uses the same TLS
connection to static.example.com, to transmit, first, a request originat-
ing from a document belonging to www.example.com and then, a request
originating from a document belonging to shop.example.com (we still
assume that all three domains belong to the same entity). In this case, the
TLS connection to static.example.com has to be verified using SISCA
for both initiating domains, independently.

In the above scenario, the browser executes the verification phase
with the SISCA instance of www.example.com, upon establishing the TLS
connection to static.example.com and sending the first HTTP request,
originating from www.example.com. Subsequently, when the browser
wants to reuse the same connection to send a cross-origin request from
shop.example.com to static.example.com, it once again executes the
verification phase, only this time with the SISCA instance of the domain
shop.example.com. This takes place upon transmitting the first HTTP
request, which originates from shop.example.com.

Origin Change. A webpage is allowed to change its own origin (effective
origin) to a suffix of its domain, by programmatically setting the value of
document.domain [142]. This allows two pages belonging to different
subdomains, but presumably to the same entity, to set their origin to a
common value and enable interaction between them (we note that, both
pages have to explicitly set document.domain, even if the origin of one
page is already equal to the desired domain suffix). For example, a page
from www.example.com and a page from shop.example.com can both set
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their origin to example.com. In such a case, the attacker can attack the
user account at shop.example.com, by intercepting the first connection to
www.example.com (or any other example.com subdomain), or vice versa.

To prevent such an attack, the browser has to verify that server invari-
ance holds across each pair of origins that change their effective origin
to a common value, before allowing any interaction between them. Each
origin has its own SISCA instance established, and we must ensure that
both SISCA instances were initialized with the same remote entity. This
can be achieved by running the verification phase of both instances over
the same TLS connection (established to either origin). The browser can
reuse an already established and verified connection with one origin, and
just verify the connection with the SISCA instance of the other origin. If no
such connection exists at that time, then the browser can create a new one
to either origin and execute the verification phase of both SISCA instances.
If there is no actual HTTP request to be sent at that time, the browser can
make use of an HTTP OPTIONS request.

Partial Support and Downgrade Attacks. SISCA must be incrementally
deployable, which means that it must maintain compatibility with legacy
web servers, without compromising the security of the SISCA-enabled
servers. Moreover, websites must be able to opt for partial support. As
an example, a domain implements SISCA but still needs to perform cross-
origin requests to another domain, called incompatible, that either does not
support SISCA, or supports it but belongs to a 3rd party, i.e., it has different
SISCA keys (we discuss on the security of such design choices at the end of
this section).

The above can be achieved by allowing exceptions. If a particular domain
does not support SISCA (including legacy servers that are not aware of
SISCA at all), then it can simply ignore the X-Server-Inv header, sent
during the initialization phase, and reply without including any SISCA-
related information. This will be received by the browser as an exception
claim. Moreover, if a domain supports SISCA but performs cross-origin
communication with one or more incompatible domains, then it can append
an exception list in its response, during the initialization phase, designating
the incompatible domains.

However, we note that if the attacker intercepts the initialization phase
of the protocol, then he could perform a protocol downgrade attack, by
providing false exception claims or exception lists in his response.

To prevent downgrade attacks, the browser should verify any exception
that was received during the initialization phase, upon every subsequent
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Figure 8.11: Preventing downgrade attacks (same-origin case).

connection. If the attacker intercepted the initialization phase and replied
with fake exception claims, then if any of the subsequent connections
reaches the legitimate server, the browser, with the help of the legitimate
server, would detect the attack. This scenario is illustrated in Figure 8.11.

Regarding cross-origin communication, in order to help SISCA-enabled
legitimate servers detect fake exception lists previously received by the
browser, SISCA protocol messages should include (in the X-Server-Inv
header) the origin associated with the SISCA instance. Suppose for example,
that the browser executes the initialization phase with www.example.com
which supports SISCA (executes the protocol normally), but also includes
an exception list stating that it performs cross-origin requests to domain
shop.example.com which does not support SISCA. Whenever the browser
connects to shop.example.com to perform a cross-origin request from
www.example.com, the browser includes the origin of the SISCA instance
(www.example.com) and asks shop.example.com whether it indeed does
not support SISCA with respect to that origin. Assuming that the connection
was not intercepted, shop.example.com can leverage the supplied origin
information to decide whether the exception reported by the browser is
valid. If not, then it should abort processing the request and notify the
browser of the detected attack. Note that the above assumes that each
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SISCA-enabled server is aware of all the domains that is compatible to
execute SISCA with (i.e., domains with which it shares the same SISCA
keys), which is not difficult to implement.

Third-party Content Inclusion. As mentioned above, a domain imple-
menting SISCA, say www.example.com, can still perform cross-origin re-
quests to incompatible 3rd party domains as long as it designates those
domains as exceptions for the protocol. This of course means that TLS
connections to those domains will not be protected by SISCA, and could
be MITM-ed by the attacker to perform a user impersonation attack on
www.example.com.

This can be indeed the case if www.example.com includes active con-
tent [141] (in particular, JavaScript and CSS) from those domains. While
JavaScript from 3rd party sites is generally not recommended, and usually
there are ways of avoiding it [149], Subresource Integrity (SRI) [145] can
be used to include active content in a secure manner. SRI enables a website
to ensure that the included files have not been manipulated through the
use of cryptographic hashes that are checked by the browser. Alternatively,
depending on the use case, it may be possible to use iframes to isolate active
3rd party content, instead of directly embedding it within the target origin
(the sandbox attribute can help even further).

The embedding of passive content only, such as images, does not give
the attacker the ability to execute his code within the target origin. Hence,
with respect to preventing user impersonation, such embeddings are safe
and do not undermine the security offered by SISCA.

8.4.7 Resource Caching
Caching of static resources, such as scripts and images, helps reduce web-
page loading times as well as server resource consumption. However, the
way caching is currently implemented [73, 82] can give a MITM attacker
the opportunity to subvert SISCA.

Resource caching attacks are described in detail in [102]. For the case
of SISCA the attacks works briefly as follows. During one browsing session,
the attacker intercepts all TLS connections and ensures that a legitimate,
yet maliciously modified script that is required by the target web server
is cached by the browser. Then, during a second browsing session, the
attacker lets all connections pass through. When the legitimate webpage
asks for the inclusion of the aforementioned script, the browser will load it
from cache, essentially enabling the execution of the attacker’s malicious
code. The attacker will thus be able to access the target web server.
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To prevent the above attack, we need to change the way caching is
performed for active content that would enable this attack (JavaScript and
CSS files). We need to make sure that the browser always communicates
with the server in order to verify that the cached version is the most recent
and also the correct one (i.e., not maliciously modified). This means that
no long-term caching is allowed, rather the browser has to perform the
check every time, before using the cached version. Thus, caching of such
files should be performed only using Entity Tags (ETags) [73], but in a
more rigorous way than specified in the current HTTP specification. In
particular, if a web server wishes to instruct a browser to cache a JavaScript
or CSS file, the server should use an ETag header which always contains
a cryptographic hash of the file. The browser, before using, and caching
the file should verify that the supplied hash is correct. Subsequently, before
the browser uses the cached version of the file, it first verifies that the
local version matches the version of the server (using the If-None-Match
header, as currently done).

Note that, if the attacker intercepts the connection and lies to the
browser about the validity of the cached resource, SISCA will not allow any
other connection during the same browsing session to reach the legitimate
server, so the attacker cannot mount his attack through the maliciously
cached file.

8.4.8 Key Rotation
In SISCA, the server has a pair of secret keys, ks1 and ks2. To resist key
compromise (i.e., MITM+key attackers), these keys, unlike the server’s
private key, can be easily rotated. This is because the SISCA keys need not
undergo any certification process, and can thus be rotated frequently, e.g.,
weekly, daily, or even hourly. The more frequent the rotation the smaller
the attacker’s window of opportunity to successfully mount MITM attacks.

The key transition, of course, has to be performed such that it does
not break the execution of active browser SISCA instances that rely on the
previous keys. At a high level, one way of achieving this, is to have the
server keep previous keys for a certain period of time (i.e., allow partial
overlap of keys). This can enable browsers with active SISCA instances that
rely on the previous keys to securely transition to new protocol parameters,
i.e., t1 and t2, computed using the new server SISCA keys.

For domains served by a single machine, this is only a matter of imple-
menting the corresponding functionality in the web server software (e.g.,
Apache). For multiple domains controlled by the same entity and served
by multiple machines, located in the same data center or even in different
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data centers across the world, arguably more effort is required in order to
distribute the ever-changing keys and keep the machines in sync. Never-
theless, a similar mechanism is needed for enabling TLS forward secrecy
while supporting TLS session tickets [115]. According to Twitter’s official
blog [95], Twitter engineers have implemented such a key distribution
mechanism.

8.4.9 SISCA Benefits and Drawbacks
SISCA offers the following advantages regarding MITM+certificate attack
prevention. Compared to multipath probing solutions, SISCA does not rely
on any third party infrastructure, trusted or not. Since SISCA is built on top
of Channel ID-based authentication, it has to assume that no MITM attack
takes place during user enrollment. Nevertheless, after this step, no “blind”
trust is required when the user uses a new or clean browser, contrary to
pinning solutions (except preloaded pins), as discussed in Section 8.4.4.
Moreover, in SISCA no user decision is necessary whenever server invariance
violation is detected. This can occur either due to an attack, or due to an
internal server fault, thus the browser can abort (possibly after retrying)
the session. SISCA is scalable since it can be deployed incrementally by web
providers (assuming browser support). Finally, SISCA resists MITM+key
attacks, assuming that the attacker does not persistently compromise the
server.

The main disadvantage of SISCA is that it only protects against MITM
attackers whose goal is to impersonate the user to the server. This is ar-
guably the most common and impactful attacker goal. SISCA does not
protect against attackers whose objective is to provide fake content to the
user. In such cases the attacker can simply intercept all connections and
interact with the user by serving his own, fake content. In contrast, the
techniques that focus on ensuring the correctness of server authentica-
tion (Section 8.3.1) can protect against such attacks (MITM+certificate
attackers). As a result, a recommended strategy would be to use SISCA in
conjunction with any of these techniques. Finally, SISCA requires coordi-
nation between an entity’s different domains, in the sense they must have
access to the same SISCA keys. This is needed for securing cross-origin com-
munication and, depending on the scale of the entity, can be challenging
from an engineering perspective to set up.

8.4.10 Interaction With Other Web Technologies
SPDY. SPDY [22] multiplexes concurrent HTTP requests over the same
TLS connection to improve network performance. In order for SISCA to be
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compatible with the general SPDY functionality, the browser must ensure
that before the SISCA protocol is completed successfully (i.e., the first
request/response pair is exchanged), no further requests are sent through
the SPDY connection.

Furthermore, SPDY IP Pooling allows, under certain circumstances,
HTTP sessions from the same browser to different domains (web origins) to
be multiplexed over the same connection. Version 3 of SPDY is compatible
with Channel IDs (recall that different Channel IDs may need to be used
for different origins, but now there is only one TLS connection). SISCA is
compatible with IP Pooling, as long as the browser manages the multiplexed
HTTP sessions independently, with respect to the execution of the SISCA
protocol.

WebSocket. SISCA is compatible with the WebSocket protocol [70], when
the latter is executed over TLS. This, of course assumes that (i) Channel
IDs are used for the WebSocket TLS connections, (ii) the SISCA protocol
is executed during the WebSocket handshake (i.e., first request/response
pair), and (iii) JavaScript is not be able to manipulate the X-Server-Inv
header.

Web Storage. Web Storage [227] is an HTML5 feature that allows a
web application to store data locally in the browser. SISCA can protect
code.sessionStorage (temporary storage), but does not prevent a MITM
attacker from accessing information stored in window.localStorage (per-
manent storage), so no sensitive information should be stored there.

Offline Web Applications. HTML5 offers Offline Web Applications [222]
which allow a website to create an offline version, stored locally in the
browser. As with regular file caching (see Section 8.4.7), this feature can
be leveraged by the attacker to bypass SISCA. Making this feature secure
requires the introduction of design concepts similar to what we proposed
for regular caching.

Other Client-Side Technologies. The attacker might attempt to leverage
various active client-side technologies besides JavaScript, such as Flash,
Java and Silverlight. Such technologies allow the attacker to create direct
TLS connections to the legitimate server. Some of the APIs offered by those
technologies also allow the attacker to forge and arbitrarily manipulate
HTTP headers, including cookie-related headers or the X-Server-Inv
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header. However, provided that Channel IDs and SISCA are not integrated
with these technologies (i.e., a TLS connection created by such an API will
have to manually create and use its own Channel IDs, and that the browser
will not automatically execute SISCA over those connections), the attacker
will not be able to impersonate the user and compromise his account on
the legitimate server.

8.4.11 Prototype SISCA Implementation
We created a proof of concept implementation of the basic SISCA protocol,
with additional support for cross-origin communication, provided that
the same Channel ID is used. On the server side we use Apache 2.4.7
with OpenSSL 1.0.1f [152] , patched for Channel ID support. SISCA is
implemented as an Apache module and consists of 313 lines of C code.
On the client side we implement SISCA by modifying the source code of
Chromium 35.0.1849.0 (252194) and the WebKit (Blink) engine. We make
a total of 319 line modifications (insertions/deletions) in existing files and
we add 6 new files consisting of 418 lines of C++ code.

We use Base64 encoding for binary data transmission. When using
128-bit random values (rb and rs) and HMAC-SHA256 (i.e., 256-bit tags,
t1 and t2), the client’s lengthiest message is 114 bytes long, plus the origin
of the SISCA instance that has to be sent as well. The server’s lengthiest
message is 132 bytes long.

We finally verified that our implementation successfully blocks our proof
of concept MITM-SITB attack.

Performance Evaluation. To assess the performance overhead imposed
by SISCA (the server invariance part, not the overhead due to Channel IDs),
we measured the latency of HTTP request/response roundtrips, with SISCA
enabled and disabled. For the measurements we used a 4KB HTML page, as
well as an 84KB jQuery compressed file, retrieved over a domain that we set
up as being “cookieless”. Chromium ran on a Macbook Pro laptop (2.3GHz
CPU, 8GB RAM) and Apache ran on a typical server machine (six core Intel
Xeon 2.53GHz, 12GB RAM), connected through the campus network.

We found that the overhead of the basic SISCA protocol is negligible,
as no increase in latency was measured (averaged over 300 repetitions).
Moreover, the HTTP request to the cookieless domain was able to fit in a
single outgoing packet (a typically desired objective).

Regarding cross-origin communication over different Channel IDs (see
Section 8.4.6), approximately 180 bytes are further added to the request
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(one ECDSA public key and signature in Base64 encoding), which can still
fit in a single packet (for cookieless domain requests). Furthermore, the
server has to perform one ECDSA signature verification. This overhead
could be minimized, if the browser used the same Channel ID, not only
for subdomains of the same domain, but also for domains belonging to the
same entity. Although we do not elaborate on this idea here, this could
be heuristically determined by the browser, based on which domains are
involved in the execution of the same SISCA instance.

Finally, recall that a SISCA instance is executed only once per TLS
connection and not on every HTTP request/response.

8.5 Related Work
In chapter 7 we reviewed existing techniques that try to enforce proper
server authentication by enhancing the current CA trust model. Those
solutions focus on addressing the issue of forged server certificates (and
thus defeating MITM+certificate attackers), essentially not relying on client
authentication at all. In the following we review work more directly related
to our attack, MITM-SITB, as well as our proposed solution, SISCA.

The use of server impersonation for the compromise of the user’s account
by serving the attacker’s script to the victim’s browser was first introduced
in [107]. In this attack, called dynamic pharming, the attacker exploits DNS
rebinding vulnerabilities in browsers, by dynamically manipulating DNS
records for the target server, in order to force the user’s browser to connect
either to the attacker (to inject his script) or to the legitimate server.

MITM-SITB is therefore very similar to dynamic pharming in that it
leverages server impersonation to serve the script to the victim’s browser.
Dynamic pharming focuses on the attacker’s ability to control the client’s
network traffic via DNS attacks, while in this paper we do not make such
assumptions. Instead, MITM-SITB can leverage any form of MITM where
the attacker controls the communication to the client (e.g., an attacker
sitting on a backbone) and relies only on the behavior of the browser to
re-establish a connection (with the legitimate server) once the attacker
closes the connection within which he injected his script to the browser.
Dynamic pharming can equally be used to successfully attack Channel
ID-based solutions. Recently, the act of leveraging script injection via
server impersonation against TLS client authentication was also discussed
in [164].

We note that MITM-SITB (as well as dynamic pharming) differs from
Man-In-the-Browser (MITB) [158]. The latter implies that the attacker is
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able to take full control of the browser by exploiting some vulnerability,
or installing a malicious browser plugin. In MITM-SITB, the attacker runs
normal JavaScript code within the target web origin and only within the
boundaries established by the JavaScript execution environment. Therefore,
no browser exploitation is required. Similarly, MITM-SITB is different from
XSS [156]. In XSS the attacker is able to influence only parts of the served
document by exploiting a script injection vulnerability, while in MITM-SITB
he is able to impersonate the server and thus influence the entire HTTP
response sent to the browser. Nevertheless, the end result of arbitrary client-
side code execution within the target web origin is the same. SISCA does
not prevent MITB or XSS and addressing these attacks, e.g., as in [220], is
orthogonal to our work.

To prevent dynamic pharming, the locked same-origin policy (SOP)
was proposed [107]. Weak locked SOP considers attackers with invalid
certificates, while strong locked SOP also defends against attackers with
valid, mis-issued certificates. Strong locked SOP refines the concept of
origin by including the public key of the server and can also accommodate
for multiple server keys. It is a form of key pinning, with the particularity
that instead of rejecting TLS connections with not endorsed server public
keys, strong locked SOP isolates web objects coming from connections with
not endorsed server public keys in a separate security context (i.e., different
origin). Strong locked SOP per se does not prevent a MITM attacker from
mounting a conventional MITM attack in order to impersonate the user.
A strong client authentication solution should be used in conjunction, as
with SISCA.

Locked SOP does not resist MITM+key attacks, as SISCA does. Moreover,
locked SOP is not able to secure cross-origin active content inclusion. The
risks involved when a webpage imports active content, such as JavaScript,
that can be intercepted and modified by an attacker are discussed in [100].
SISCA can secure cross-origin inclusions as long as the involved domains
belong to the same entity and thus share the same SISCA keys.

The current Channel ID specification [13] was recently found to be
vulnerable to triple handshake attacks [24], which affect TLS client authen-
tication in general. A MITM attacker can exploit a protocol flaw during TLS
session resumption in order to trick the legitimate server into believing that
the attacker holds the private key that corresponds to the user browser’s
Channel ID. This allows the attacker to mount a conventional MITM attack
in order to impersonate the user to the server. The mitigation proposed
in [24] has already been implemented in the version of Chromium that
we used in this work. SISCA assumes that Channel IDs work as expected,
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so eliminating triple handshake attacks is essential for its security. How-
ever, we note that addressing triple handshake attacks does not prevent
MITM-SITB attacks.

Recent work has proposed leveraging Channel ID-based authentication
to strengthen federated login [57] and Cloud authorization credentials [26],
against MITM attacks and credential theft in general. However, such pro-
posals fail to address MITM attacks, as they are susceptible to MITM-SITB,
unless augmented with server invariance, as we propose in this paper with
SISCA.

The concept of server invariance is based on sender invariance which
was formally defined in [60]. SISCA is inspired by this notion, assuming
that the server’s authenticity cannot be established via server certificate
verification and instead trying to enforce the weaker property of invariance,
i.e., the browser always communicates with the same entity during the a
browsing session.

8.6 Summary and Future Work
In this Part of the thesis we discussed the requirements to effectively pre-
venting TLS MITM attacks in the context of web applications, when the
attacker’s goal is to impersonate the user to the legitimate server and gain
access to the user’s account and data. Striving to defeat this type of attack
is important, especially given the recent revelations about government
agencies (e.g., the NSA) mounting such attacks in order to perform mass
surveillance against users of major internet services [63, 188].

We showed that strong client authentication alone, such as the recently
proposed Channel ID-based authentication, cannot prevent such attacks.
Instead, strong client authentication needs to be complemented with the
concept of server invariance, which is a weaker and easier to enforce
property than server authentication. Our solution, SISCA, shows that
server invariance can be implemented with minimal additional cost on
top of the proposed Channel ID-based approaches, and can be deployed
incrementally, thus making it a scalable solution. Given its security benefits,
we believe that SISCA can act as an additional, strong protection layer
in conjunction with existing proposals that focus on amending today’s
server authentication issues, towards the effective prevention of TLS MITM
attacks.

8.6.1 Future Work
Given the incidents involving CA compromises and issuance of rogue cer-
tificates, it is clear that robust and resilient server authentication remains
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an open problem, and this is why it has been an active area of research in
the recent years and will likely continue to be so.

With SISCA, we showed how combining strong client authentication
with server invariance, can prevent TLS MITM attackers from compromising
users’ online accounts. Nevertheless, as we described earlier, server invari-
ance can be difficult to apply in some settings. In particular, in websites
that are served by multiple servers and in websites that include content
from multiple origins, especially when these origins are not owned by the
same administrative domain. We thus argue that SISCA could benefit from
further research in finding ways on how to more effectively apply the server
invariance property in the aforementioned web application deployments.
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Chapter 9

Introduction

In Part II of the thesis we have focused on web server authentication, and
in particular on how to prevent TLS Man-In-The-Middle (MITM) attacks,
where the attacker’s goal is to compromise the user’s online account. To
achieve this, the attacker first impersonates the server to the user, by
intercepting the user’s browser connection to the legitimate server and
presenting an illegally obtained, yet valid TLS certificate for the domain
of the legitimate server. After this step, the attacker is able to steal the
user’s credentials, e.g., his username and password, or the cookie that
authenticates an existing session between the user and the server, and use
them in order to impersonate the user to the server, and hijack the user’s
account.

We have shown how the above attack can be prevented by combining
strong client authentication, e.g., based on TLS channel IDs, with the
concept of server invariance in our proposal called SISCA. As we described
in Chapter 8, SISCA still allows the attacker to successfully impersonate the
server to the client, but prevents the attacker from compromising the user’s
account. Given this, it follows that SISCA does not prevent the attacker
from presenting false information to the user. The attacker can actually
attempt to precisely mimic the website’s look and feel, in order to give the
impression to the user that he is viewing the legitimate website and thus
make the presented false information appear as legitimate, coming from
the original server.

Moreover, even when the attacker is not able to mount a TLS MITM, i.e.,
server authentication is working as expected, he may still try to compromise
the server itself. As we discussed in the introduction of this thesis, web
applications typically have a large attack surface and are compromised
frequently [4, 114, 219] via a variety of attack vectors and vulnerabilities
(e.g., [212]). If a server compromise occurs then server authentication, no
matter how strong and robust it is, it is of no help, as the attacker is in
control of the server and can perform arbitrary actions. Besides being able
to access all the data and server-side state of the application, he is, like in the
case of SISCA, able to present false information to the user, by manipulating
the contents of the webpage that is displayed in the user’s browser. In such
a case, the attacker is trying to cause harm, not by compromising the user’s
account, but rather pushing fake information to the user.
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In this part of the thesis we focus on the ability of the attacker to affect
the integrity of the data of a web application, once he manages to compro-
mise the server side. We argue that the authenticity and integrity of the
web application data is of equal, and sometimes even greater importance,
than the confidentiality of it. The reason for this is, data accessed by web
applications are often used in critical decision making processes, in a variety
of sectors, such as healthcare, government, military, financial services and
large corporate environments. Maliciously manipulated data can lead to
wrong decisions being made, which in turn can lead to serious harm which,
depending on the use case, might even prove to be fatal.

As an example, let us consider a medical web application on which
physicians can access diagnostic data of their patients, who are being
monitored either physically or remotely. If a physician is presented with
manipulated information about the health status of a patient, he might
incorrectly diagnose his condition which would lead to incorrect treatment
with potentially harmful or even fatal effect on the patient. In order for this
to be avoided, it must be ensured that the data the physician is accessing is
authentic and integrity protected, even if the server is compromised.

The research community has long been aware of the importance on
ensuring the integrity of data, even under server compromise. The fairly
large body of work in the area of authenticated data structures (ADS) [49,
80, 122, 123, 130, 160, 241] is an indicator of this fact. An ADS is a
data structure that provides integrity protection guarantees for the data
that it stores. Most of this work pertains to data stored in databases or
file systems. Nevertheless, as we discuss later on in this Part and to the
best of our knowledge, none of the existing proposals for providing data
authenticity and integrity is directly applicable to one of the most popular
ways through which people access data online today, i.e., web applications.
As part of this thesis we investigate this topic and attempt to overcome the
challenges in order to provide data integrity protection for web applications.

After providing background information on Authenticated Data Struc-
tures in Chapter 10, we propose Verena in Chapter 11. To the best of our
knowledge, Verena is the first web application platform that provides data
authenticity and freshness, even when the attacker is in complete control
of the server. Verena gives the developer the necessary notions and API
in order to express the integrity policy of the web application, and then
enforces the specified policy, end-to-end. Verena thus prevents a malicious
server and potential colluding users from manipulating the data and query
computation results that honest users view in their browsers, without being
detected.
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In order to evaluate our research in a realistic setting, we contacted one
medical implant manufacturing company and obtained access to the web
interface of their remote patient monitoring system. This, together with
discussions with a cardiologist, allowed us to better understand the access
control requirements and integrity protection policy of this application.
We evaluate Verena on a basic implementation of the aforementioned web
application and show that Verena can enforce the application’s integrity
policy with modest overhead.





Chapter 10

Background

In this chapter we provide short background information on authenti-
cated data structures (ADS). Verena, our proposed web framework for
providing end-to-end integrity guarantees in web applications, leverages
authenticated data structures as its underlying integrity protection building
block. In fact, as we discuss in the next Chapter of this thesis, Verena does
not rely on a specific ADS, rather it can be easily adapted to support the
functionality offered by the chosen underlying ADS. In particular, in our
implementation of Verena we make use of one-dimension red-black binary
Merkle hash trees with the ability to support projection queries, as well
as aggregation queries based on the tree-based technique of [123]. Here
we summarize how such trees work and refer the reader to the literature
(e.g., [49, 80, 122, 123, 130, 135, 160, 206, 241, 242]) for a detailed
analysis.

Authenticated data structures are data structures, whose operations can
be offloaded by the owner of the data structure and the data its, to an
untrusted entity, called the prover. The prover produces compact proofs for
the operations it executes on behalf of the owner, which allows the owner,
as well as other verifiers, to verify the results of these operations for their
authenticity. In other words, ADSes allow their owner to outsource their
maintenance and operation to an untrusted server, with added integrity
protection guarantees. A typical example use case of ADSes is outsourcing a
database to an untrusted cloud, in which the owner executes insert, update
and delete operations, while other clients retrieve data using database
queries in an authentic way.

Depending on the nature of the authenticated data structure, different
types of read and write operations are supported, with varying performance
guarantees. Tree-based data structures, are commonly used as ADSes.
Since database indexes are based on trees, tree-based ADSes can be used
to support authenticated database queries(e.g., [123, 241].

Merkle hash trees [21, 133] constitute the most basic example of a
tree-based ADS. Briefly, in a Merkle hash tree data is stored in the leaf
node while each internal node stores the cryptographic hash of the content
(data, or hash value) stored in its children nodes. The hash at the root
node of the tree is called the root hash and, in essence, it constitutes the
cryptographically-secure fingerprint of the entire tree and its stored data.
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Figure 10.1: Example tree-based ADS supporting aggregations. Node
hashes realizing the Merkle hash tree, as well as node color, realizing the
red-black tree balancing mechanism used in our implementation, are not
shown.

Consider a database table consisting of two fields (i.e., columns), namely
a range field and an aggregation field, i.e., a field in which stored data is
used in aggregation queries. In SQL notation, a user runs queries of the
form “SELECT sum(aggr. field) FROM table WHERE x ≤ range field ≤ y”.

Figure 10.1 shows an example of such a tree, sorted (i.e., keyed) by the
range field. Note that the red-black property is only used for keeping the
tree balanced, and hence Figure 10.1 omits the color of the nodes. Also
not shown in Figure 10.1 are the hashes of each node, which constitute the
Merkle hash tree. The client, who is the owner of the data stored in the
tree, keeps the root hash of the Merkle hash tree, and the untrusted server
keeps the entire tree.

Data is stored on leaf nodes. Each node stores a key and an aggregate
value, while leaf nodes further store the data values. Given our aforemen-
tioned example, the keys are the range field values and data stored on leaf
nodes is the data of the aggregation field. For leaf nodes, the aggregate
value is equal to the data value itself. For each internal node, the aggregate
value is the aggregation over the aggregate values of its children. The tree
in Figure 10.1 features sum as the aggregation operation.

Assume that the client issues the query “SELECT sum(aggr. field) FROM
table WHERE 2 ≤ range field ≤ 5”. The server responds with the sum of
interest, 2 in this case, together with a proof that the sum is correct. We
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explain briefly what the proof consists of and refer the reader to [123] for
more details. The proof consists of two parts. The first part is, for each edge
of the interval, the server provides two nodes in the tree whose range fields
include the edge of the interval, together with their Merkle hash paths to
the root. The client checks these Merkle paths against the Merkle hash root
it stores and ensures that the edge of the interval is inside this interval.
Note that this is always possible because the keys ±∞ (containing dummy
data values) are also in the tree. The second part of the proof is a minimal
covering set for the range [2,5] together with a Merkle hash path up to
the root. In our example, this minimal covering set consists of the internal
node with key −∞ and aggregate value 2. In general, the covering set is a
logarithmic number of nodes.

The client then checks that these nodes cover the range of interest
entirely and verifies their hashes and Markle hash paths against the root
hash that the client stores. By the properties of Merkle hash trees, if the
verification is successful, the server provided the correct aggregate value.
Overall, the client performs O(log n) work per value returned where n is
the number of nodes in the tree. A similar computation happens when
inserting, updating and deleting data, with some additional details.

Note that the server does not have precomputed the aggregate value
for each range. The ADS tree has one data entry (leaf node) per range
field value and there is a quadratic number of possible ranges. Clients can
query arbitrary ranges, and these ranges could contain a large number of
nodes. The server transforms these ranges into a set of subranges, and the
client then aggregates the aggregate values for each range. The maximum
number of subranges is logarithmic in the number of nodes in the tree.
Hence, the client does little aggregation work because it aggregates only a
logarithmic number of values.





Chapter 11

Verena: End-to-End Integrity Protection
for Web Applications

Web applications store a wide range of data including sensitive personal,
medical and financial information, as well as system control and operational
data. Users and companies rely on these servers to protect the integrity of
their data and to answer queries correctly. Unfortunately, web application
servers are compromised frequently [4, 114, 219] via a variety of attack
vectors and vulnerabilities (e.g., [212]), thereby enabling an attacker to
tamper with data or computation results displayed in a webpage, and
consequently violating their integrity.

The integrity of webpage content is especially important in applications
in which displayed data affects decision making. This is well exemplified
by medical web platforms where patient diagnostic data is stored on web
servers and remotely accessed by physicians. Modification of this data
might result in miss-diagnosis, lead to incorrect treatment and even death.
A recent study estimates that millions of people are miss-diagnosed ev-
ery year in the US with a half of these cases potentially causing severe
harm [195]. Another study estimates that miss-diagnoses causes 40,000
deaths annually [235]. Some of the main reasons for miss-diagnoses were
related to failure by the patients to provide accurate medical history, and
errors made by a physician in interpreting test results [194]. If web appli-
cations with patient and test result data are corrupted, treatment decisions
will therefore be made based on incorrect data, likely resulting in substan-
tial harm. In Section 11.3.1, we discuss a concrete medical web application
used to monitor patients with implanted cardiac devices, where a web
server compromise can lead to serious patient harm.

In addition to physical safety, webpage integrity is important for basic
security properties such as confidentiality against active attackers, for ex-
ample, by providing integrity protection to data structures defining access
control.

A web server which is not compromised protects end-to-end integrity
in a few ways. Many web applications involve multiple users and therefore
enforce access control policies (e.g., a particular patient’s data may be
manipulated only by his physician). Furthermore, the web server ensures
that data requests and queries submitted by clients are executed correctly
on data that is complete and up-to-date (i.e., fresh). An attacker who
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compromises the web server could therefore violate some or all of these
properties.

In this work, we propose Verena, the first web framework that provides
end-to-end integrity for web applications, enforcing the properties above.
Using Verena, the application developer specifies an integrity policy and the
user’s browser checks that a webpage received from a web server satisfies
this policy, even when the server is fully compromised by an attacker.
Verena checks the integrity of code, data, and query computation results
within a webpage by ensuring that these results are complete, correct, and
up-to-date.

Verifying query results efficiently in the web setting is challenging.
While much progress has been made in generic tools for verifiable computa-
tion [23, 162, 229], using these tools for database queries and web server
execution remains far too slow. Instead, work on authenticated data struc-
tures (ADS) [49, 80, 122, 123, 130, 160, 241] provides better performance
by targeting a more specific, yet still wide class of functionality. These tools
enable efficient verification without downloading data on the client and
re-executing the computation. However, such tools are far from providing a
sufficient system for web applications, as work on ADS assumes that a single
client owns all the data and this client has persistent state to store some
hashes. Web applications are inherently multi-user and stateless. Different
users can change different portions of data and a query computation can
span data modified by multiple users.

The first challenge for Verena is determining an API for developers
that captures the desired query integrity properties, such as correctness,
completeness and freshness, at the same time with multi-user access control.
To address this issue, within Verena’s API, we introduce the notion of query
trust contexts (TC) coupled with integrity query prototypes (IQPs). A trust
context refers to the group of users who are allowed to affect some query
result, e.g., by inserting, modifying or deleting data used in a query. An IQP
is a declared query pattern associated with one or more trust contexts. Each
query runs within a specified trust context. Verena prevents a malicious
server or a user outside of the trust context from affecting the results of
this query. Queries may also span a set of trust contexts not known a
priori. A mechanism called the completeness chain ensures that the returned
result is complete, i.e., all the results of all the relevant trust contexts were
included. The integrity policy is hence associated with queries and not with
the data. Nevertheless, the policy implicitly carries over to data because
data is accessed through queries.
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The second challenge is verifying query results in a multi-user setting. To
address this challenge, Verena builds on ADS work [49, 80, 122, 123, 130,
160, 241], and maintains a forest of ADS trees, by automatically mapping
trust contexts to ADSes. To ensure completeness on queries spanning
multiple trust contexts, as specified by completeness chains, Verena logically
nests trees within other trees. Currently, Verena implements an ADS that
can verify range and equality queries as well as aggregations, such as sum,
count, and average. It is simply a matter of substituting the underlying
ADS, in order to extend Verena to support a wider range of queries.

The third challenge, also brought by the multi-user and web setting, is
a known impossibility result. Namely, when there are no assumptions on
the trustworthiness of the server and the connectivity of clients, one cannot
prevent fork attacks [124, 131] and hence cannot guarantee freshness. To
provide freshness, one must use some trust on the server side. Verena
manages to use a small trusted base, in particular a hash server that runs
less than 650 lines of code. The hash server may also be compromised, as
long as it does not collude with the main server. The hash server stores a
small amount of information (mostly hashes and version numbers), based
on which Verena constructs freshness for the entire database in an efficient
way. The hash server also addresses the problem of web clients being
stateless and not always online.

We implemented Verena on top of the Meteor framework [134] and
evaluated it on a remote patient monitoring application, as well as two
other existing applications. Our evaluation results show that Verena incurs
a modest overhead in terms of latency and throughput. Our measure-
ments also demonstrate the simplicity of the hash server, compared to the
main server. In particular, the hash server achieves significantly higher
throughput than the main server.

Contributions. We focus on the problem of providing end-to-end data
authenticity and integrity protection in web applications, under full server
compromise, and make the following contributions.

• We propose Verena, the first framework that provides end-to-end in-
tegrity guarantees for web applications, by enforcing the application’s
integrity policy and ensuring that data requests and queries submit-
ted by the clients are executed correctly on data that is complete and
fresh.
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• As part of Verena, we introduce an API which developers can use in
order to express the integrity policy of the web application, which
will be enforced by Verena.

• We implement a prototype of Verena and use it to provide data
integrity on an example medical web application. We then evaluate
Verena on this application and demonstrate its practicality by showing
that it incurs modest overhead.

The rest of this chapter is organized as follows. Section 11.1 details our
system and threat model. We introduce Verena and present its high-level
architecture in Section 11.2. In Section 11.3 we introduce our running
example of a medical web application and discuss Verena’s basic concepts
and API. In Section 11.4 we discuss the mechanisms that Verena uses in
order to enforce the integrity policy that the developer specified. The hash
server and the way it operates is described in Section 11.5. In Section 11.6
we describe the communication protocol and query processing steps in
Verena, while in Section 11.7 we provide an informal argument on the
security of our system. We discuss limitations and extensions in Section 11.8.
In Section 11.9 we present our prototype implementation of Verena, based
on which we evaluate our proposal in Section 11.10. Section 11.11 reviews
related work. Finally, Section 11.12 concludes Part III and sets future
research directions.

11.1 Model
11.1.1 System Model
We consider a typical web application scenario, where clients access a web
server through web browsers. The clients could be browsers, operated by
human users, or any device capable of communicating with the web server
over the network. The main server, sometimes simply referred to as server,
is a typical web server consisting of a web application front-end and a
database server.

Our setup further consists of the following parties. A hash server, an
identity provider (IDP), and the developer who creates and maintains the
web application code. The hash server and IDP can be co-located on the
same machine. They each have a public-key pair and their public key is
hardcoded in Verena applications. In Section 11.2 we describe the role of
the different parties in the Verena architecture.

Moreover, for describing Verena’s API in Section 11.3, we use a No-SQL
API, which is typical in modern web applications. For consistency, we use a
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syntax and terminology similar to MongoDB [137], which we simplify for
brevity. This is also compatible with the Meteor framework [134], which
we use to implement our Verena prototype (described in Section 11.9).
Nevertheless, Verena’s API could be easily cast in a variety of other database
syntaxes (both SQL and No-SQL).

The web application’s database consists of collections (equivalent of
tables in SQL), each having a set of documents (equivalents of rows in SQL),
and each document has a set of fields (which are similar to columns in SQL).
A developer can issue queries to this database from the web application:
“insert” (to insert documents), “update” (to update documents), “remove”
(to delete documents), “find” (to read document data) and “aggregate”
(to compute sum, average and other aggregate functions). The find and
aggregate operations can read data based on filters, also called selectors,
on certain fields using range or equality. Queries are defined using a
JavaScript-like syntax. For example, “patients.find({patientID:2})” fetches
all documents from the collection “patients” whose “patientID” field equals
2.

11.1.2 Threat Model
Verena considers a strong attacker who can corrupt the main server arbi-
trarily. This means that an attacker can modify the data in the database
and modify query or computation results returned by the server. There
are numerous ways in which an attacker could modify query results. For
example, a malicious server can return partial results to a range query,
it can return old data items, it can compute aggregates incorrectly or on
partial or old data. Furthermore, the server can create fake user accounts
or collude with certain users.

This strong threat model addresses powerful attackers in the following
use cases. A web application server runs in a cloud and a malicious cloud
employee attempts to manipulate unauthorized information. Alternatively,
an attacker hacks into the web application server through vulnerability
exploitation and even obtains root access to the web and database servers,
so he can change the server’s behavior.

An attacker can also corrupt the hash server, but importantly, we assume
that an attacker can corrupt at most one of the main and hash server. In
other words, we assume that at least one of the hash server and main
server behave correctly. For example, these two servers could be hosted on
different clouds such that the employee of one cloud does not have access
to the second cloud. Alternatively, the hash server, which we show to be
very lightweight compared to the main server, could be hosted in-house,
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Figure 11.1: Verena system overview. Grey-shaded components are mod-
ules introduced by Verena on top of a basic client-side architecture setup.

while the resource-intensive main server could be outsourced to a cloud
provider. We also stress that, given that the hash server runs a very small
code base, and answers to a very narrow interface, it will be significantly
less likely to be compromised by a remote attacker.

The same threat model applies to the IDP server. We use the IDP for the
task of certifying each pair of username and public key. Verena requires that
only one of the IDP and main server to behave correctly. Hence, the IDP
and the hash server can be co-located, as depicted in Figure 11.1, where
the mutually distrustful servers are separated by a dashed line.

Clients are also not fully trusted. They may attempt to bypass their
write permissions by modifying data which they are not allowed to change.
They might even collude with either the main server or the hash server (but
not with both of them at the same time). Nevertheless, clients are allowed
to arbitrarily manipulate the data they legitimately have access to. If the
main server colludes with a client, the server cannot affect the integrity
of data owned by other clients which was not shared with the corrupted
client.

Finally, we assume that the developer wrote the web application faith-
fully and followed Verena’s API to specify an integrity policy. In contrast,
the service provider and server operator are not trusted at all (and these
fall in the main server trust model above).

11.2 Architecture
Figure 11.1 illustrates Verena’s architecture, which we describe throughout
this section.
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11.2.1 Basic Setup
To lay out the foundations for Verena’s security mechanisms, Verena starts
with the following base setup. First, Verena is a client-side web platform,
a popular trend in recent years [27, 134]. These platforms provide ad-
vantages not only for functionality and ease of development, but also for
security.

The dynamic webpage (with personalized content) is assembled on
the client side from static code and data coming from the server. Previous
work [169] has shown how to check in a client’s browser whether the
webpage code (such as HTML, JavaScript and CSS) has not been tampered
with by an attacker at the server. Since the code is static, such a check
essentially verifies the code against a signature from the developer. This
check runs in a browser extension. Verena incorporates this mechanism
and the browser extension as well. From now on, we consider that the
webpage code passed this integrity check and we refer the reader to [169]
for more details.

Second, a standard requirement in multi-user systems providing crypto-
graphic guarantees is an identity provider (IDP), i.e., an entity that certifies
the public key of each user. For example, it can be similar to OpenID or
Keybase [108], or could be hosted at the same place as the hash server.
Without such an IDP, an attacker at the server may serve an incorrect public
key to a user. For example, if user A wants to grant access to user B, user A
requests the public key of user B from the server who replies with the at-
tacker’s public key such that the attacker obtains access. The IDP is involved
minimally, when a user creates an account. At that point, it signs a pair of
username and public key for each user creating an account. Although we
do not discuss key revocation in this work, enabling revocation in Verena
would require the involvement of the IDP as well.

11.2.2 Verena Components
Now that we laid out the basic setup, we describe the mechanisms that
Verena provides to prevent the server from corrupting data and query results.
At a high level, the application developer, using the Verena API, specifies the
integrity protection requirements (integrity policy) of the application. This
allows Verena to derive the access rights of each user for each data item or
query. Based on this API, the server accompanies any integrity-protected
query operation with a proof that it follows this policy and the client can
verify this result. Also, whenever the client sends a query to the server, the
client accompanies the query with helper data for constructing the proofs,
if needed.
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More concretely, as shown in Figure 11.1, on the client side, a webpage
consists of two parts, namely the application’s code written by the developer
on top of the Verena framework, and the Verena client. When a user logs in,
the Verena client performs authentication to derive the user’s key from his
password. If passwords are deemed unsafe, one can use other available
secret derivation mechanisms [28].

In typical client-side web frameworks, the app client issues database
queries. These queries are sent to the web server, which sends them to
the database. In Verena, all such queries pass through the Verena client.
Verena then determines if it is a query that must be integrity protected.
If so, the Verena client provides helper data (such as challenges) to the
server to be used in proofs. When the server returns the results, the server
also provides a proof of correctness for these results that the Verena client
checks before returning to the app client.

The main server consists of the Verena server and the regular app server.
The app server, also written by the developer, performs operations that
are not integrity-sensitive and do not require verification. All server-side
operations that require verification pass through the Verena server.

The Verena server carries the difficult task of constructing proofs of
correctness for query results that are efficiently verifiable by the Verena
client. Verena builds upon work on authenticated data structures (ADS) and
in particular tree-based ADSes [49, 80, 122, 123, 130, 160, 241], which
we briefly introduced in Chapter 10. ADSes enable efficient verification
without downloading data on the client and re-executing the computation.
Verena enables these ADSes to be used in a multi-user and stateless setting.
In this manner, Verena can verify a wide range of common queries, but
not any general query. Table 11.2 lists the read queries that are currently
supported by Verena. Moreover, Section 11.8 discusses how Verena can be
extended to support a broader range of query types.

Since applications have different access policies, Verena needs to trans-
late these policies into ADSes. Our new API, based on the notion of query
trust contexts (TC), integrity query prototypes (IQP) and completeness chains,
presented in Section 11.3, captures an application’s policy.

Moreover, due to the multi-user setting in Verena, different users are
allowed to modify different portions of the data stored at the server. Thus,
the Verena server has to maintain different ADSes for chunks of data that
are modifiable by different sets of users. Respectively, Verena clients must
ensure that, for each integrity-protected database operation, the server
presents proofs for all relevant ADSes that data was modified only by
legitimate users. To address this, Verena maintains a forest of ADS trees, by
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automatically mapping the developer’s Verena API calls into the appropriate
ADSes.

Since multiple users may be able to change the same data item, users
do not know what was the hash of the last change. Additionally, in web
applications, not all users are online at the same time and cannot notify
each other of their changes. To make the problem worse, since the web
setting is stateless, whenever a user logs off, any state he stored in his
browser is typically lost. Moreover, the user should be allowed to login
from a new browser where there is no state. This means that, even though
ADSes help ensure integrity of some snapshot of the data, the server can still
provide stale data. In fact, Mazières and Sasha [131] prove that, without
any trust at the server or connectivity assumptions between the users, one
cannot guarantee data freshness.

To address this problem, Verena uses a hash server. The hash server a
simple server whose main task is to serve the hash, version and last modifier
for a given entry. As long as the hash server does not collude with the main
server, Verena’s integrity guarantees hold. To check the correctness and
freshness of query results, a tempting approach is to store the entire ADS
trees at the hash server. We show in Section 11.5 that we can avoid this
approach, and maintain the task of the hash server simple, namely the hash
server stores one entry per tree, corresponding to the root of the tree. As a
result, the hash server is easier to secure, since it runs a small code base,
answers to a narrow interface, and is lightly utilized. The hash server could
be collocated with the IDP server because Verena assumes the same trust
model for these two servers.

11.3 Integrity Policy API
In this section, we describe the main concepts behind Verena’s API for
expressing an integrity policy. In Verena we are concerned only with write
access control. As discussed in Section 11.8, systems like Mylar [169] can
be used for expressing and enforcing cryptographically read access control.

In order to illustrate Verena’s concepts and API, we use consistently the
following running example of a medical web application.

11.3.1 Running Example: Remote Monitoring Medical Ap-
plication

Our running example is a remote patient monitoring system used to connect
cardiac device patients with their physicians. Such systems are deployed
by a number of medical implant manufacturers such as [25, 29, 35, 132].
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In order to evaluate Verena on such an application, we contacted one of
the implant manufacturing companies and obtained access to the web
interface of their remote monitoring system. This provided us with a
better understanding of the type of webpages that these systems expose,
access control that they implement and the type of data that they expose
to the physicians. We then discussed with a cardiologist to gain a better
understanding of the integrity policy of this application.

Modern implantable cardiac devices, such as cardioverter defibrillators
(ICDs), cardiac monitors and pacemakers, monitor the patient’s cardiac
activity and take certain actions. In particular, implants measure data such
as therapy delivered, heart rate, EKG (electrocardiogram) data, and status
of implant and leads. To facilitate access to this data, implants communicate
remotely with their clinics. This is supported by wireless telemetry devices
which, when in the proximity of the patient, query the implant and then
communicate the data further to the clinic server.

The server then exposes a web interface to physicians, through which
they can access patient profiles, status of implants and measurements.
Besides viewing this data, physicians ask the web server for certain aggregate
computation such as average heart rate, number of heart beats per day
(e.g., observed over a three-day period) and number of sinus pauses (i.e.,
skipped heart beats/asystoles). Physicians can change a patient’s therapy
by reprogramming the implant in the clinic, using short-range inductive
coil telemetry.

The information a physician receives from the web server influences
the decisions the physician makes for a patient and is thus integrity critical.
Although practices among physicians can vary and there might be other
inputs that influence the therapy decisions, we were told that incorrect
modifications of these values or aggregates will likely lead to a change
in the delivered therapy and can cause serious patient harm. Moreover,
the status of the implant and leads connecting the implant to the heart is
integrity critical. If these are thought of malfunctioning, this might trigger
their replacement which requires surgery.

The main subjects in the system that we had access to, include the
administrators of the clinic, physicians and the medical implants. Each
implant can be seen as a user with write access to the corresponding patient’s
implant status and measurement data. Main objects are patient related
information which are entered by physicians, as well as measurement
and implant status data which are entered directly into the system by the
implants.



11.3 Integrity Policy API 137

collection fields in a
document

patients (groupID,
patientID,
patient_name,
profile)

patient_groups (groupID,
group_name)

patient_measurements (recordID,
patientID,
heart_rate,
timestamp)

Table 11.1: Database collections used in the running example of a remote
monitoring medical application.

Instantiation. To illustrate Verena’s API, we give simplified examples
of this application. Table 11.1 shows the database collections that are
relevant for our example. Patients are organized into four groups based
on their cardiac disease. Each patient is present in only one such group.
These groups also represent the unit of write access control. Physicians are
granted write access to one or more of these groups, and they can modify
only patient profiles in those groups.

The collection patient_measurements contains measurement data orig-
inating from a patient’s medical device and can be modified only by the
patient’s device.

11.3.2 Trust Contexts
Trust contexts are the units of write-access control in Verena. A trust context,
identified by a unique name, consists of a set of users, called members. We
also refer to this set of users as the trust context membership list or access
control list (ACL).

Each query whose results are integrity critical runs in a particular trust
context. This means that only the members of that trust context could have
affected the result of the query.

The user who creates a trust context is the owner. The owner of a
trust context can add other members to the trust context ACL or remove
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them from it. Currently, only the owner of the trust context can manage its
members, but delegating this to other users is straightforward. We discuss
how Verena maintains and verifies the membership of trust contexts in
Section 11.4.4.

Returning to our running example and its protection requirements,
the developer should define one trust context per disease group (whose
name can be “groupID”) containing the physicians allowed to modify the
corresponding patient profiles. The contents of patient_groups can be
changed by members of an “admins” group so the developer declares a
trust context for “admins”, as well. Furthermore, the data in collection
patient_measurements as well as the query results on this data can be
modified only by the patient’s device. Hence, we also have a trust context
per patientID.

11.3.3 Integrity Query Prototypes
In Verena, the developer specifies the desired integrity policy via a set of
integrity query prototypes (IQPs) with associated trust contexts. The IQPs
are query patterns which specify that a certain set of read queries run in
a certain trust context. Only members of the trust context may affect the
result of those queries. The integrity specification is therefore associated
with read queries and not with data. Nevertheless, the policy implicitly
carries over to data, because data is accessed through queries. Moreover,
the IQPs tell Verena what computation will run on the data so that Verena
prepares data structures for verifying such computation. We now show the
syntax of an IQP and explain each element in it:

iqp = collection.IQP ({
trustContext: unique_name or tc_field,
eq-range: [r f1, r f2, . . . ],
ops: {o1: [ f1, . . . ], o2: [ f ′1 , . . . ], . . . }})

• “iqp” is an IQP handle.

• “collection” is the collection on which a query with this pattern runs.

• “trustContext” specifies the trust context. The trust context can be a
name, such as “admins” or can be the name of a field in this collection,
such as groupID in the patients collection. In the first case, there is one
fixed trust context for all documents in this collection.
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In the latter case, there can be different trust contexts for different
documents. For example, if “patients” contains documents (groupID:
“A”, patientID: “10”, ...) and (groupID: “B”, patientID: “11”, ...), and an
IQP specifies the “trustContext: groupID”, the trust context for the first
document is “A” and for the second document is “B”.

Each trust context must have a unique name. For example, if both
patientID and groupID are trust contexts for some IQPs and can both
have a value of 2, the developer should choose trust context names of
the form “patient 2” and “group 2”, in order to differentiate them. If it is
desirable for patientID to remain an integer, the developer could include
another field in the document, which will serve as the trust context field,
e.g., “group_tc”. In the rest of this chapter, we assume that the trust
contexts are the IDs and they are unique.

• “eq-range” specifies that the queries corresponding to this query pat-
tern filter documents by range on the tuple (r f1, r f2, . . . ). A set of
filter possibilities fit in this pattern. For example, if the IQP for “pa-
tient_measurements” contains “eq-range: (patientID, timestamp)”, a
query could have an equality match by patientID and a range match
on timestamp, or there can be equality on both fields. Our current im-
plementation supports only one range filter, namely the last declared
field in the tuple (r f1, r f2, . . . ), with the rest of the fields being used
as equality filters. However, Verena can be extended to support more
complex filters (e.g., multidimensional range queries and text search
queries) by simply using ADSes that support such operations [160].

• “ops” indicates the projections and aggregations performed and on what
fields. The operations supported are listed in Table 11.2.

Verena will protect the integrity of all fields specified in an IQP, namely
the fields projected, aggregated, in eq-range, or in trustContext – these
fields can be modified only by members of the corresponding trust context.
We call these fields the protected fields of an IQP.

Let us walk through an example. In the medical application, a physician
can fetch the recorded heart rates of a patient over a period of time to
visualize how the heart rate fluctuates in that time period. Additionally, a
physician can view the average heart rate over a time period.

The first read operation is a projection on the heart_rate field, and the
second is an average computation on the same field. The trust context in
both operations is designated by the patientID field, i.e., only the patient’s
implant is allowed to provide these measurements. In the medical appli-
cation, this entity is represented as a user with patientID. Moreover, the
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Operation Explanation

project: [ f1, . . . ] projects the fields f1, . . . from the docu-
ment

count returns the number of documents
sum: f returns the sum of the values in the field

f
min/max: f returns the minimum/maximum value

over the data in field f
avg: f returns the average of the values in the

field f
sum_F: [ f1, . . . ] a more generic aggregate: returns the

sum of a general function F whose inputs
are [ f1, . . . ]

Table 11.2: Operations supported in read queries.

operations use the timestamp field as a range selector. Consequently, to
integrity protect these operations we can define the following IQP:

iqp_measurements = patient_measurements.IQP ({
trustContext: patientID,
eq-range: timestamp,
ops: {project: [recordID, heart_rate], avg: [heart_rate]}})

11.3.4 Queries API

Once the developer specifies the necessary IQPs, which reflect the applica-
tion’s integrity specification, he can express and issue queries in the same
way as in a system without Verena, by invoking “find” and “aggregate”
on the corresponding IQP handlers This minimizes the amount of effort
needed by the developer to enable Verena in existing web applications.

An example query for listing the average heart rate of patientID 121
over a period of one month is:
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Write Queries Explanation

insert(d) inserts a document d
update(id, d) updates the document with identifier id

with data from the document d
remove(id) deletes the document with identifier id

Table 11.3: Write operations in Verena.

iqp_measurements.find ({
patientID: 121,
timestamp: {“$gte": new Date(“2016-03-01"),

“$lte": new Date(“2016-04-01")}})

A read query must be a subset of the queries described by the corre-
sponding IQP. Moreover, if the trustContext of this IQP is a field, the query
must specify its concrete value (for example, “patientID: 121”).

The developer does not have to specify IQPs for write queries, and
simply invokes “insert”, “remove”, or “update” operations on the desired
collection. The access control for write queries is derived from read queries.
For write queries, Verena checks against all declared IQPs whether the
current user is allowed to perform them. We elaborate on these checks in
Section 11.4.3.

Supported Functionality. The read queries supported by Verena are
those that can be expressed using an IQP. The write queries supported
are in Table 11.3: insert, delete, update. Verena currently supports update
and delete queries only by id, but extending to eq-range style filters is
straightforward.

11.3.5 Querying Across Trust Contexts
So far, each read query specifies one trust context in which it runs. We now
discuss how Verena supports queries spanning multiple trust contexts.

In the medical application example, recall that patient profiles are
categorized in groups according to their disease and physicians may only
modify profiles within certain groups. The following IQP enables fetching
the complete list of patients within a group:

iqp = patients.IQP ({trustContext: groupID,
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ops: {project:[all]}})

and the following IQP enables fetching all groupIDs from “patient_groups”
using the “admins” trust context:

iqp_groups = patient_groups.IQP ({ trustContext: “admins”,
ops: {project: [all]}})

In our running example, a physician may also view the list of all patient
profiles from all patient groups. Clearly, this query spans multiple trust
contexts. In a non-Verena system, the developer can simply run a read
query fetching all entries in “patients” collection. However, if the server is
compromised, the list of patients returned can be incomplete. To ensure
completeness using Verena, the developer would need to do more work.
He should fetch all the groups using “iqp_groups”, loop over the groups
returned, fetch all patients in each group using “iqp” and merge the results.
This results in a complete set of patients, but requires more work from the
developer.

To make the work of the developer easier, we extend slightly Verena’s
API with a mechanism called completeness chain. This mechanism essentially
does the above work automatically for the developer. The completeness
chain retrieves the involved trust contexts of a query by querying a different
IQP and trust context, called the root trust context, which endorses the
relevant trust contexts. In other words, the root trust context protects the
list of trust context names of the query we want to execute, and thus we
leverage it to establish completeness for that query. The developer simply
runs the query:

iqp.find ({ groupID: iqp_groups.find({},{groupID:1}) },
{ . . . })

The inner query projects the “groupID” fields from all documents in “pa-
tient_groups”. Section 11.4.2 and Figure 11.3 describe how Verena imple-
ments the completeness chain mechanism.

Alternative. It is worth mentioning an interesting alternative to com-
pleteness chains, which demonstrates the expressivity of Verena’s trust
contexts. The developer can specify a new trust context “all_physicians”,
which contains the set of all physicians, and an IQP “iqp_all_patients” that
fetches all patient profiles (across all patient groups) in the trust context of
“all_physicians”. Then, the developer can directly fetch all patient profiles
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by running “find” on “iqp_all_patients”. In this way, any non-physician
cannot affect the completeness or integrity of the patient list. However, a
physician who is not authorized to modify a certain group can now affect
the completeness and integrity of patient profiles in that group. As a result,
the integrity guarantee provided by the above IQPs is weaker than with
completeness chains, and not sufficient for this application.

However, for applications with different access control requirements or
different threat models, a developer might find this alternative sufficient.
In this case, verification of aggregates is faster than with the complete-
ness chain. Due to the layout of Verena’s data structures described in
Section 11.4, the Verena client checks one aggregate value overall instead
of one aggregate value per trust context with the completeness chain.

11.3.6 Deriving Trust Contexts From User Input
In some applications, the trust context for running certain queries is derived
from user input. This requires special care from the developer and the user.
Such a situation arises in applications where anyone can create units of
data and give write access to others. For example, in a chat application,
anyone can create a room and invite certain users to those rooms. Only
the invited users may modify the contents of a chat room. This situation
does not occur in the medical application because access control is rooted
in a fixed entity, namely the “admins” trust context, which endorses and
manages access to the trust contexts of patient groups.

In the chat application, a natural trust context for the messages in each
room is the room name. A user, say Alice, reads the list of room names
and clicks on the room she wants to visit. She expects the messages in
the room to come from authorized users, and makes decisions based on
them. However, an attacker can also create a room with the same name or
a syntactically similar name (“business” vs. “busines”) tricking Alice into
clicking on the attacker’s room. The contents of the attacker’s room are
certified by the attacker, so Verena does not trigger an integrity violation.

Hence, in such cases, the developer must display unambiguous names to
users. In order to do this, the developer can choose human-friendly names
for trust contexts (e.g., the name of a room, as defined by a user) and then,
display directly the trust context names in a prominent way to the user.
Our hash server prevents two trust contexts from having the same name,
and one can also expand this protection to prevent two trust contexts from
having syntactically similar names. Moreover, the developer can display
the owner of a trust context. Depending on the use case, the developer can
display both the trust context name and its owner, or either of the two, in
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order to help the user verify the authenticity of the displayed data. The user
needs to perform this check, for example in order to verify he is entering
the intended room. This requirement is similar to phishing prevention
where the user needs to check the URL he is visiting.

11.3.7 Integrity Guarantees
The guarantee Verena gives to a developer, given the assumptions in the
threat model (Section 11.1), is, informally:

If Verena does not detect a corruption, the result of a read
query (find or aggregate) that corresponds to an IQP with a
trust context tc reflects a correct computation on the com-
plete and up-to-date data (according to linearizability seman-
tics), as long as all clients running on behalf of the members
of tc (or all involved trust contexts in the case of a complete-
ness chain) follow Verena’s protocol.

In particular, the query result could not have been changed by a mali-
cious server or any user outside of the relevant trust contexts. Moreover,
a data item is “up-to-date”, or fresh, if it reflects the contents of the latest
committed write as in linearizability semantics. In particular, the server
cannot perform fork attacks [124, 131] because every client can always get
the latest committed write of any protected data.

The resulting guarantee to the user is:

The webpage consists of: (1) the authentic developer’s code,
(2) correct and “up-to-date” information (data or query com-
putation results) generated only by authorized users.

Verena does not guarantee availability of the server. In other words, an
attacker that manages to compromise a Verena-protected server can choose
to not respond to incoming client requests and thus perform a denial of
service attack.

11.4 Integrity Protection Mechanism
We now describe how Verena enforces the integrity policy that was specified
by the developer, through Verena’s API.
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Figure 11.2: Forest of ADS trees. Verena maintains a forest of ADS trees,
in order to protect the data associated with different trust contexts. The
trees are stored on the main server while the hash server stores the root
hash of each tree.

11.4.1 ADS Forest
Verena leverages authenticated data structures (ADS) [49, 80, 122, 123,
130, 160, 241] as its underlying integrity protection building block. The
ADS we use [123] consists of a search tree sorted by the eq-range field(s)
and combined with Merkle hashing. We refer the reader to Chapter 10,
where we provide needed background on ADSes.

Based on the IQPs declared by the developer and the write operations
that are issued throughout the application’s lifetime, Verena creates and
maintains a forest of ADSes, as illustrated in Figure 11.2. For each IQP,
Verena creates one ADS per trust context that is used in queries of that IQP.

For example, consider the IQP we discussed before:

iqp_measurements = patient_measurements.IQP ({
trustContext: patientID,
eq-range: timestamp,
ops: {project: [recordID, heart_rate], avg: [heart_rate]}})

Based on this IQP, every patientID constitutes a trust context, and Verena
will maintain one different ADS for every value of patientID, in order to
protect the data and aggregation operations specified by the IQP (in this
case, the projection of recordID and heart_rate, and the average calculation



146 11 Verena: End-to-End Integrity Protection for Web Applications

on heart_rate). Chapter 10 explains on a high level how the ADS organizes
and stores the protected data.

As shown in Figure 11.2, the forest of trees is stored at the main server.
The hash sever stores only the Merkle hash roots (one entry per tree,
containing the root hash and additional necessary information, as described
in Section 11.5).

11.4.2 Completeness Chain Implementation
ADS trees can be logically nested within other trees as shown in Figure 11.3.
The completeness chain mechanism, which we introduced in Section 11.3.5,
logically nests ADSes within another ADS. In this example, a trusted entity,
such as the administrator of the medical application, uses a static, i.e., pre-
defined, trust context, named “admins”, owned by the system administrator,
to manage the patient groups. One of the protected fields is used to store
the trust context name of each group. This field can be used as a refer-
ence to identify all the correct trust contexts that correspond to the patient
groups, which in turn protect the patient profile data. Thus, we can use
the “admins” trust context as a root trust context to establish completeness,
for the query that reads patient profile data from all (unspecified) groups.

11.4.3 IQP Analyzer
The IQP analyzer checks whether a user can run a certain query based on
the IQPs defined and the trust contexts to which this user belongs.

For each read query, the Verena client ensures that the query matches
the IQP handle it was invoked on. A query matches an IQP if all of the
following conditions hold:

• the query filters on the same list of fields as in eq-range of the IQP or
on a prefix of these fields,

• the query performs a subset of operations and aggregates from “ops”
of the IQP, and,

• if the trust context of this IQP is a field instead of a fixed trust context,
the query specifies the value for this field (e.g., “patientID: 121” in
the query in Section 11.3.4).

When inserting or deleting a document, the Verena client and server
check that the user who inserts this document is a member of all the trust
contexts defined by any IQP on this document. When updating a field f ,
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Figure 11.3: Illustration of the completeness chain mechanism. The root
trust context “admins” can be used to guarantee completeness for the query
that fetches patient profiles from all available patient groups.

the Verena client and server check that the user is a member of each trust
context defined by an IQP on this document that has f as a protected field.
When updating a field that is a trust context for an IQP, the user performing
the update must belong to both the old and new trust contexts.

Of course, if both the Verena client and server performing these checks
are compromised and collude, they will not perform these checks and will
allow unauthorized actions. However, as we discuss in Section 11.6, the
Verena clients running on behalf of honest users will detect and flag this
issue. The unauthorized client is still not able to sign ADS updates with an
authorized public key.

11.4.4 Trust Context Membership Operations
As described in Section 11.3.2 and Section 11.3.3, write access control is
expressed by associating trust contexts with protected data, through IQPs.
Only the members of a trust context are allowed to affect the results of a
query associated with that trust context. The owner (creator) of a trust
context is responsible for managing the membership, or in other words the
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Function Explanation

declareIDP(url, pubkey) Specifies the url and pubkey of the IDP.
createAccount(uname,
passw, [creator])

Creates an account for user uname. Must
be called by the user when his account is
created or, if a creator user is specified, by
the creator.

lookupUser(uname, [cre-
ator])

Looks up the user uname as created by cre-
ator. If the creator is not specified, Verena
considers the default which is the IDP.

login(uname, passw) Logs in user uname with the specified pass-
word.

logout() Logs out the currently logged-in user.

createTC(name) Creates a new trust context tc with name
name owned by the current user.

isMember(tc, user) Returns whether user is member of the
trust context named tc.

addMember(tc, user) Adds user to tc only if the current user is
the owner of the trust context tc.

removeMember(tc,
user)

Removes user from tc only if the current
user is the owner of the trust context tc.

Table 11.4: User and trust context API in Verena. Each function runs in the
user’s browser and current user denotes the currently logged in user who
performed this action.

access control list (ACL), list of the trust context, by adding and removing
users. We note that one can create additional groups for further levels of
nesting and have a trust context consist of a list of users and groups of
users. For simplicity, we do not describe groups beyond trust contexts in
this work. Also recall that, each trust context is identified by a unique name.
Table 11.4 shows the API for adding or removing trust context members.

The ACL of a trust context is a piece of information that needs to be
integrity protected, just like other sensitive data in the web application.
Verena internally maintains a collection for storing the trust context ACLs
and protects it by declaring an appropriate IQP. Consequently, both ACL
modification operations, as well as read operations for verifying whether
a user belongs to a trust context ACL, are integrity protected. The corre-
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sponding entries on the hash server, i.e., those that store the latest root
hashes of the ADSes protecting the ACLs of trust contexts are created in a
special way (see Section 11.5), to make sure that only the owner of a trust
context can update the root hash of its ACL, and thus manipulate the ACL.

We note that an extra step has to be performed when removing a user
from a trust context. As we describe in Section 11.5, each hash server entry
stores the public key PK of the last user that modified the entry. When the
owner removes a user u from a trust context tc, the owner must update
the entries at the hash server that correspond to ADS trees for tc (these
are the ADSes that protect data associated with tc) that were last modified
by u. In order to achieve this, the owner makes a no-op modification so
these entries now appear modified by the owner, which is valid, because he
is a member himself. This update is necessary because, without it, clients
verifying if the last modification to the ADS tree was permitted will notice
that this modification was performed by a user who is not in the trust
context anymore.

Membership Verification. As part of verifying the result of a query (de-
scribed in detail in Section 11.6), the Verena client needs to check that the
user who last modified the relevant protected data was authorized to do so.
In other words, the Verena client needs to verify that a user u with public
key PK is a member of a given trust context tc. To construct such a proof,
the server provides to the client the binding of a username u to PK along
with the signature from the IDP for this binding. Based on this signature,
the client can verify that user u is indeed the owner of PK. Subsequently,
the server has to prove that u is a member of the trust context tc. For this
goal, the server fetches the entry for tc from the hash server and produces
a proof from the ADS that protects the ACL of tc, in a process similar to
any integrity protected read query.

11.5 Hash Server
The hash server has a simple functionality, similar to a key-value store.
Its task is to store the most recent root hash for each ADS that exists in
a Verena application, together with information about which user made
the latest update. The hash server provides this information signed for
authenticity to Verena clients. The clients use it to verify that the data they
read is fresh and complete.

The hash server stores a map, in which the key is an ID and the value is
an entry E = (hash h, version v, public key PK, flag fixedPK). The version
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v helps serialize concurrent operations to each entry. Depending on the
value of fixedPK, we distinguish two types of entries, which we describe
below.

Trust Context ACL Entry. Entries of this type store the root hash h of
the ADS that protects the membership list (ACL) of a trust context. The
ID of such an entry is uniquely derived from the trust context to which it
corresponds. The version v indicates the number of modifications made
so far to this entry. The public key PK belongs to the user who created the
trust context, i.e., the owner, and fixedPK is true to indicate that only the
creator of this entry is permitted to modify the entry. This reflects the fact
that only the owner of the trust context is allowed to manipulate the trust
context ACL.

ADS Entry. Entries of this type store the root hash h of an ADS that
protects application data associated with some trust context. The ID of
such an entry is uniquely derived from the IQP and trust context to which
they correspond. The version v of an entry E indicates the number of
modifications made so far to this entry, and PK is the public key of the user
who last modified the hash of this entry. fixedPK is false indicating that
anyone is allowed to modify this entry. The hash server does not check
if the client modifying this entry was allowed to modify it. Instead, since
all hash server requests go through the main server, the main server must
check that the client is authorized. If the server misbehaves and allows
unauthorized modifications, honest Verena clients will later detect this
misbehavior by checking if the PK of the latest modification was allowed to
perform this modification.

The hash server does not need to understand how each entry is used for
integrity enforcement. It only implements the following simple interface
consisting of two functions, HS_GET and HS_PUT:

HS_GET(ID):
1: return map[ID]

HS_PUT(ID, Eold= (h, v, PK), Enew= (h’, v’, PK’, fixedPK’), sig(ID,
Eold, Enew)):

1: Verify sig on (ID, Eold, Enew) using PK’
2: if ID not in map and v’ = 1 then
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3: map[ID] = (h’, 1, PK’, fixedPK’); return true
4: end if
5: if ID not in map then return false
6: E = map[ID]
7: if E.fixedPK and PK’ 6= PK then return false
8: if E.v = Eold.v and v’ = v+1 and E.h = Eold.h and E.PK = PK then
9: map[ID] = (h’, v’, PK’, E.fixedPK); return true

10: end if
11: return false

As shown in Figure 11.4, when a Verena client makes a request to the
hash server, the client attaches a random nonce. The hash server assembles
the response as above and then signs it together with the request and the
nonce. The signature and nonce prevent an attacker from replacing the
response of the hash server with an invalid or an old response.

The hash server can receive batched requests of the same type from the
same client. The hash server signs all the responses into one signature, for
increased performance. When the client sends multiple HS_PUT requests,
the hash server executes them atomically, i.e., it executes them only if all
of them return true.

11.6 Communication Protocol and Query Process-
ing

We now describe the protocol that governs the interaction between the
client, the main server, and the hash server, as well as the operations that
are executed during the processing of read and write queries.

Figure 11.4 shows the communication protocol in Verena. The sequence
of operations in this protocol is the same no matter what the query from
the client is, i.e., regardless of whether this query is reading some data,
performing an aggregate, writing some data, or adding a member to a trust
context. Only the details of the operations differ.

When issuing a query, the Verena client adds a randomly generated
nonce to the query, to be included in the hash server’s signed response.
Based on the query, the main server derives a set of hash server requests
whose results will help in assembling a proof of correctness for the query’s
results. The server submits them together as part of one big request to the
hash server. The hash server executes the request atomically, as explained
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Figure 11.4: Communication protocol in Verena. Step 2’ consists of an
additional roundtrip that happens only for write operations.

in Section 11.5. Then, it signs its response together with the request and
the client’s nonce, and provides the signed response to the main server.
The server computes the result of the query based on the server’s state and
uses the hash server’s signed response to prove correctness of the query
result to the client. The main server often needs to add extra information
to show that some data hashes to the hashes provided by the hash server.
The nonce prevents the main server from performing replay attacks on the
hash server and serving old data to the client.

In Figure 11.4, Step 1 is explained in Section 11.4.3. Step 3 is explained
in Section 11.5. We next describe Steps 2 and 4 for both read and write
operations. For each query, if the server is honest, it still checks the regular
read and write access control of an application, as coded by the developer,
and rejects a query if the issuing client is not authorized to execute it. If the
server is malicious, the server might skip this step, but write access control
specified by IQPs will still be enforced by Verena. Clients will detect that
the server violated the integrity access control specified in the IQPs.

11.6.1 Read Query
Read queries can be projection or aggregation queries. During Step 2, the
server executes:

1. Create an empty list of requests for the hash server, called HS_requests,
and an empty list for proofs to be given to the client, called proof_list.
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2. Execute the query on the database and produce a result result.

3. Identify the relevant ADS instance for the trust context of this query
or ADS instances for a query using a completeness chain. Assemble
a proof of correctness of the query result based on these ADSes and
their roots and add the proof to proof_list. Add requests for the
hashes of the roots to HS_requests.

4. Identify the last client who modified each ADS. Assemble a proof
that this client is in the trust context for the relevant IQP (per Sec-
tion 11.4.4), add the corresponding hash requests to HS_requests
and the proof to proof_list.

In Step 4 of Figure 11.4, the client verifies the proof from the server.
For each ADS involved in the query, the client verifies (1) the ADS proof,
(2) that the root hash of this ADS corresponds to the one from hash server’s
signature, (3) the hash server’s signature, (4) the server’s proof that the
last client who changed the root hash (as specified by the public key in
hash server response) was authorized, as explained in Section 11.4.4.

11.6.2 Write Query
A write query can be an insert, update, or remove. Verena provides lin-
earizability guarantees. In particular, there is a total order between all read
and write queries, and each read will see the latest committed write. A
client considers a write query committed when the protocol in Figure 11.4
completes successfully.

To prevent the server from cheating during serialization, a natural
solution is to have the hash server serialize requests. However, this strategy
will increase the complexity at the hash server and our goal is to keep
the hash server simple. Instead, the main server will do the serialization
work in a verifiable way. The only job of the hash server is to ensure that
each HS_PUT to an entry increments the version of the entry. Based on the
version number, clients can verify that the server did not serve an old hash
or attempted a fork attack [124].

A write query (e.g. insert) can cause modification of multiple ADSes.
The server serializes the changes to these ADSes by locking access to each
ADS involved. Parallel write queries affecting different ADS structures can
still proceed concurrently.

Clients can issue a delete or update query to a certain document ID.
If the developer wants to delete or update documents selected by a filter,
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the developer should first fetch those documents using a read operation
and then update them by ID. Verena’s design can be extended to enable
such queries directly by employing verification as for read queries, but in
interest of simplicity, we do not describe these changes here.

We now describe the steps involved in an insert, while delete is similar.
Update proceeds as a delete and insert that happen at the same time (so
there is no need to run the communication protocol twice).

During an insert operation, the client must help the server update ADS
trees. For each ADS tree, the client first checks that the ADS tree at the
server is correct. Namely, its root hash matches the corresponding hash at
the hash server and was changed by an authorized client. The client does
not have to download the entire ADS tree to perform this check. Only the
relevant path in the tree is required. Then, the client inserts the new value
and recomputes the new root hash. It signs this hash and provides it to the
main server, to be included in a hash server HS_PUT request.

To avoid the need for an additional round trip between the main and
hash servers, the main server maintains a copy of the hash server map.
Thus, the client obtains the hash root hashold from the main server instead
of the hash server. Of course, the main server could provide an incorrect
value, but both the hash server and the client detect this behavior as follows.
When the client performs the update, the client provides a new hash along
with hashold in a signature sent to the hash server as part of HS_PUT. The
hash server checks that hashold matches the value at the hash server as
discussed in Section 11.5.

Due to updates, some data content may cycle back to an old hash.
The version numbers prevent a malicious server from replaying previous
updates on this repeated hash value.

During Step 2 and 2’, the server runs:

1. Check, using regular access control, if the client is allowed to write.
If not, return.

2. Identify the relevant ADSes A1 . . . An that need to be updated. Acquire
a lock for each one of these.

3. Send a message to the client containing a proof for each ADS Ai as
discussed above. Instead of contacting the hash server for the tuple
E = (hash h, v, PK), send this information from the server’s storage.
Also, send a proof that PK belongs to a user who is allowed to make
the change as in the read operation.

In Step 2’, the client runs:
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1. Verify all the proofs as in a read operation.

2. If verification passes, for each ADS involved, provide nonce and
siguser(ID, E, Enew), where ID is the id of the corresponding entry at
the hash server, Enew= (h’, v’ = v+1, PK’), where h’ is the new hash
after the change.

The server runs:

1. Check the client’s signature, h’, v’, and PK’. If everything verifies,
update the database, the ADS trees, and send Enew and siguser(ID,
E, Enew) to the hash server.

2. After receiving the response from the hash server, forward it to the
client.

3. Release the locks.

Finally, the client verifies the hash server’s response. The signature from
the hash server should verify with the nonce and this indicates that the
hash server accepted the change. If so, the write completed. Otherwise, the
main server misbehaved. The main server also has a timeout during which
it keeps locks on behalf of the client. To provide liveness, if the client takes
too long to answer in Step 2’, the server aborts this request and releases
the lock.

11.7 Informal Security Argument
In §11.3.7, we describe the guarantees provided by Verena. Here, we
present a high-level argument of why these guarantees hold. To argue that
Verena’s read queries return results satisfying the guarantees in §11.3.7,
we show the following two properties. Given a read query q, let ADS be the
ADS corresponding to q and tc be its trust context.

1. The hashes of the roots of ADS and tc at the hash server correspond
to the latest modification by a user in tc.

2. Given the root hash of ADS and tc that satisfy the property above, a
client can detect if the query’s result does not satisfy the guarantees
in §11.3.7

The second property follows from the properties of ADS trees (recall
that tc is also implemented as an ADS tree). Let us explain why the first
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property holds. Assuming a trusted hash server, the hash server will return
to a read query the latest hash from a write query. Moreover, the Verena
client checks for each read query that the latest write was created by an
authorized user. At the same time, due to the nonce used by clients when
receiving responses from the hash server, a client who committed a write
knows that the hash server persisted its update. For queries that span
multiple trust contexts, given a root trust context and the properties of ADS
trees, the completeness chain mechanism can guarantee the completeness
and correctness of the results.

11.8 Discussion
Limitations and Extensions. Verena does not support all possible query
types, although it supports a common class of queries. Section 11.3.4
describes the queries our current system supports. Nevertheless, the overall
Verena architecture is mostly agnostic to the underlying ADS. The literature
provides ADSes for other types of queries, such as multidimensional range
queries or text search queries [160]. Adding them to Verena should be
straightforward.

Moreover, Verena does not support triggers. With a trigger, a database
server notices when a certain condition on the data is satisfied and contacts
the relevant users. If a server is compromised, it can choose not to contact
the users. A mitigation to support triggers is to have the client check the
triggers after performing an update or periodically.

Hash Server Trust. The design so far assumed that the hash server is
trusted. Verena can survive compromise of the hash server as long as an
attacker does not compromise both the hash server and the main server.
This is simple to achieve, by having the main server check the answers
provided by the hash server. This requires minimal change to the design
so far because (1) the main server stores a copy of the entries at the hash
server anyways and (2) all hash server responses pass through the server.
The main server can detect misbehavior of the hash server and warn of a
potential compromise.

User Signature Verification. The signature verification during HS_PUT
(Section 11.5) of the user who performs the update can be removed from
the hash server and instead performed in the clients. However, we decided
to perform this verification on the hash server because it improves client
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latency and it is a simple operation. It avoids the need for clients to check
this signature every time they check a proof involving it.

Data Confidentiality. Verena can be combined with a web framework
such as Mylar [169], which protects data confidentiality against server
compromise. This results in a solution offering both confidentiality and
integrity protection against an active server attacker.

Using Verena Correctly. Verena provides protection only if the developer
specifies the integrity policy correctly, which is not always easy. For example,
the developer should not make write access control decisions based on data
from the server that is not integrity protected. As part of our future work,
we are interested in designing a tool that assists the developer and helps
him make less mistakes.

11.9 Implementation
We developed a prototype implementation of Verena in order to evaluate
our proposal and demonstrate its feasibility.

Web Platform. We implemented Verena on top of Meteor version 1.1.0.2.
Meteor [134] is a JavaScript web application framework that uses Node.js
[150] on the server side and MongoDB [137] as the database backend.

We chose Meteor as it offers some desirable features that make it attrac-
tive for our implementation. Meteor employs client-side webpage rendering
based on HTML templates that are populated by data retrieved from the
server. This means that there is a clear separation between application
code and data. The code, which consists of the JavaScript code, the HTML
templates and the CSS files, is signed by the developer and its integrity is
verified by a browser extension upon loading, as in [169]. The integrity
of data, which is the dynamic part of the web application, is enforced by
Verena, according to the policy specified by the developer.

Moreover, Meteor features a uniform data model between the client and
the server. In other words, clients are aware of how the data is organized
in the MongoDB backend. This uniformity is beneficial to Verena because
it allows both the client and server to understand the integrity policy and
the database queries that will be executed. Thus, the server can identify
which proofs to accompany the reply with, and the client can identify which
proofs to expect from the server.
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Meteor uses a publish/subscribe mechanism in which the web server
automatically propagates data changes to clients who have subscribed for
the results of a certain query. This mechanism is not compatible with
the freshness guarantees Verena aims for, since a malicious server might
not propagate changes to the interested clients. Hence, Verena follows
the conventional approach of explicitly requesting the data of interest
through the use of RPC requests. One can transform the publish/subscribe
mechanism into a pull-based approach, in which the client polls the server
periodically, thus providing time-bounded freshness guarantees.

Main Server and Client. We implemented the Verena server and client
as a set of Meteor packages. The main server’s implementation is 5100 lines
of code. The main component consists of approximately 3100 lines of code.
The storage and manipulation of the authenticated data structures, as well
as the production of the necessary proofs is implemented as a separate
service, which runs as a Node.js process and consists of about 2000 lines
of code. We note that in this prototype implementation, the ADSes are
stored in-memory, and not persisted on disk. For a production-quality
implementation of Verena, the system should implement the ADSes within
the database itself for better performance. The ADS manipulation logic is
also replicated to the client, so that the client can verify the proofs presented
by the server. We use 224-bit ECDSA for public-key operations, and SHA-
256 as a cryptographic hash function. We perform most cryptographic
operations in JavaScript using the SJCL library [200]. Nevertheless, to
improve client performance, we implement ECDSA signature operations as
a Google Chrome Native Client module [81].

Hash Server. The hash server is implemented as a Go HTTP server, backed
by a RocksDB [179] persistent key-value store. The cryptographic opera-
tions (ECDSA signing and verification) are delegated to a separate process,
written in C, which uses OpenSSL [152] (version 1.0.2d). The reason is
that the native Go ECDSA implementation is currently significantly slower
than the OpenSSL one. The hash server consists of 630 lines of code in total
(497 for the Go component and 133 for the C component), not counting
standard libraries such as OpenSSL. By contrast, an application server’s
total codebase consists of our Verena server’s implementation plus the
server-side code of the actual application. The actual application can easily
have thousands to tens of thousands of lines of code.
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Figure 11.5: End-to-end latency of various read and write operations in
Verena.

11.10 Evaluation
We used our prototype implementation to evaluate the performance of the
various components of Verena. The evaluation setup is as follows. Verena’s
main server ran on a Macbook Pro “Mid 2012” (iCore7 2.3 GHz), while the
hash server ran on an Intel Xeon 2.1 GHz processor with fast SSD storage,
with a recent version of Ubuntu Linux installed. To perform our end-to-end
latency measurements (Section 11.10.1, Section 11.10.3) we used a client
using the Chrome browser, version 49, on a second Macbook Pro “Mid
2012” laptop. To measure throughput (Section 11.10.2), we employed
multiple machines running many concurrent client instances using the
headless browser PhantomJS [166], in order to saturate the system under
test. All the machines that we used for the evaluation were connected to
the university network.

11.10.1 End-to-End Latency
Fig 11.5 shows the end-to-end latency of the basic operations that are
performed by Verena, i.e., write and read operations on a single ADS (or in
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Figure 11.6: Throughput evaluation on the main server when running with
Verena enabled, as well as without Verena.

other words a particular trust context). More concretely we tested insertion,
update and removal of records as well as read operations, namely, fetching
a single record (“find single”), fetching a range of 20 records (“find range”)
and computing an aggregate value (sum) on a particular field over a range
of half of the currently inserted records. Each inserted record had a size of
1 KB.

We measured and averaged the latency of these operations, over 1000
iterations, for different numbers of inserted records in the ADS. We notice
that latency slightly increases (for all operations) as the size of the ADS
becomes larger. Even for an ADS size of 106 records, all operations, take
less 30ms on average, except insert which takes slightly over 30ms for large
ADS sizes.

11.10.2 Throughput
Main Server. We measured the throughput of Verena for read and write
operations issued by multiple concurrent clients, on ADSes containing 104

records. When clients perform only read operations (in specific, fetch a
range of 20 records) the average throughput is 200 (±8) requests/sec.
When performing only write operations (specifically, inserting records to
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Operation type Requests/second Std.Dev.
GET 8420 673
PUT 2100 92
Mixed 5890 548

Table 11.5: Hash server throughput.

different trust contexts so that they can be processed in parallel), the aver-
age throughput is 156 (±10) requests/sec. Finally, when clients perform
a mix of the above read and write operations (4 reads for 1 write) the
average throughput becomes 187 (±10) requests/second.

Figure 11.6 displays the above throughput measurements and contrasts
them with the throughput of the same server, but without Verena. As
expected, the throughput is higher in all cases when Verena is not activated.
We note that performing operations to different ADS trees can be run in
parallel and independent of each other, which can increase the overall
throughput when using additional server machines.

Hash Server. We also measured the throughput of the hash server, and
the results are displayed in table 11.5. When the hash server receives only
GET requests, the average throughput is 8420 (±673) requests/seconds.
When it receives only PUT requests the average throughput is 2100 (±92)
requests/second. This result is as expected because PUT requests perform
an additional signature verification. When the hash server receives a mix of
requests (4 GET requests for 1 PUT) the average throughput is 5890 (±548)
requests/second.

It is important to note the significant difference in performance between
the main server and the hash server. The hash server, which provides a
very simple functionality, compared to the main sever, achieves an order of
magnitude higher throughput than the main server.

11.10.3 Evaluation on the Example Medical Application
As introduced in Section 11.3.1, our running example is a remote patient
monitoring system, that is used to connect cardiac implant (e.g., pacemaker)
patients with their clinics and physicians. After receiving access to the
provider (clinic/physician) web interface of a remote monitoring system
and after discussions with a cardiologist, we implemented an example
application of this system in Meteor and used Verena to secure its most
relevant functions.
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We specified three types of trust contexts as discussed in Section 11.3.2.
In our measurements, we create 1000 patients per group, totaling 4000
patients. We evaluated the average latency (over 1000 iterations) of some
representative example views that are displayed by the application to the
physicians (summarized in table 11.6). For these particular views the
integrity policy can be captured with 4 IQPs, three of which were discussed
(simplified) in Section 11.3.3 and Section 11.3.5. We describe these views
below.

Patient List. This view shows a list of patients across all groups, limited
to 20 patients per page. This is one of the most complex views. The
application has to first perform a query on the “admins” trust context in
order to retrieve all the patient groups and corresponding trust contexts.
Then, for each group it needs to perform a range query over that particular
trust context to fetch the patients of each group, and then merge the results
together. In other words, 5 read operations are required, assuming 4 patient
groups. The overall latency for loading this view is 66ms (±7ms), the
individual read operation latency being 13ms (±2ms). In other words the
total latency for loading the page is approximately the sum of the individual
read operations. We note that, through the use of a completeness chain (as
described in Section 11.3.5), the developer can express the view using a
single read query, and then Verena automatically takes care of performing
all five needed queries.

Patients for Review. This view displays all the patients that are flagged
for review. This view performs similar operations with the previous one.
Assuming there are 50 patients from each group that are flagged for review,
the overall latency for loading this view is 82ms (±7ms).

Patient Profile. This view displays the basic profile information of a single
patient. This view requires a single read operation to fetch the particular
profile. The overall latency for view is 14ms (±2ms).

EKG. This view displays a 30sec EKG recording of a particular holter
episode. The recording contains double precision values of the measured
heart electrical activity, sampled at 200 Hz, thus having a size of approxi-
mately 50 KB. This view requires a single read operation and the overall
latency is 23ms (±4ms).
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Application view Load time (ms) Std.Dev.
Patient list 66 7
Patient for review 82 7
Patient profile 14 2
Episode EKG 23 4
Avg. heart rate 13 3

Table 11.6: Latency for loading views in our example medical application
whose data integrity is protected by Verena.

Average Heart Rate. This view displays the average heart rate of a patient
as measured by his monitoring device, over a period of a few months. This
view requires a read aggregation operation on the average over a set of
samples. The latency for loading this view is 13ms (±3ms).

Summary. We summarize the end-to-end latency of the above views in
table 11.6. We can see that Verena introduces acceptable latencies even for
the most complex views that are implemented in this web application. We
argue that Verena can be used to protect the integrity of an application such
as this medical application, without disrupting the browsing experience of
its users.

11.10.4 More Applications
To further evaluate the expressivity of Verena’s integrity API, we considered
two other applications, namely a chat and a class application. Both of these
applications are written in Meteor, existed before Verena, were written by
other developers, and have a multi-user setting that benefits from Verena’s
integrity guarantees.

We investigated whether Verena’s API can express the write access
control policy of these applications and how many IQPs need to be declared
for this purpose. As we elaborate below, we found that Verena can express
these applications’ policy. In a few cases, we found that Verena provides
a time-bounded freshness property as opposed to strict freshness. This
happened for queries ran via Meteor’s publish-subscribe mechanism. As
discussed in Section 11.9, these rely on the server to notify the client of
changes to a query result. Since the server cannot be trusted, clients must
instead poll and run this query periodically. Thus, a freshness violation is
confined to the period’s duration.
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Chat Application. We examined a chat application, called kChat. In
kChat users can create rooms, the creator of a room can invite users to the
chat room, and users within the room exchange messages. Each user is
allowed to write only in a chat room to which he was invited. In terms
of queries, users fetch all messages in a room, perform range queries to
select the latest messages, count the messages in the room, fetch the list of
people who are online, and so forth.

We found that Verena’s IQPs can capture the write-access policy of this
application. This means that Verena brings freshness, completeness and
correctness for kChat.

Interestingly, there are multiple natural integrity policies for this appli-
cation providing different integrity guarantees. A common query in this
application is fetching all the messages in a room. If the developer trusts
the users in the room and wants to protect against users outside of the
room, the developer can specify the trust context to be all users in this room.
In this case, Verena won’t prevent a user in this room who colludes with the
server from changing the messages of another user in the same room. The
resulting integrity policy is short and consists of 3 IQPs. If the developer
wants stricter integrity, namely, to prevent a user in the room from changing
the message of another user in the same room, the developer declares two
IQPs for this query. The first IQP is for fetching the trust context names of
users in the room. The trust context for this IQP is owned by the creator
of each room. The second IQP is for fetching the messages of a user in
the room with a trust context of that user. The second IQP has should be
chained to the first, so that the Verena’s completeness chain mechanism
can be employed, when performing a read query to fetch messages of a
particular room. In this case, the kChat integrity policy can be captured
with 4 IQPs.

Homework Submission Application. We also examined a web applica-
tion used at MIT for managing student assignments, homework and grades
for a computer science class. Students are allowed to submit their home-
work, as well as review and grade the homework of other students. The staff
(i.e., the professor who teaches the course and the course assistants) are
responsible for managing the student accounts, the homework assignments,
the allocation of peer reviews for submitted homework of each student, as
well as the final feedback and grade for each submitted homework. Verena
can capture the integrity policy of this app with a total of 7 IQPs.
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11.10.5 Storage and Memory Overhead

Main Server. We evaluated the overhead imposed by Verena in terms
of storage and memory and found it to be modest. The memory foot-
print of adding Verena to the remote patient monitoring application (Sec-
tion 11.10.3), is roughly 1.2× that of running the application without
Verena. This overhead is mostly due to the memory required by the ADS
storage service, as well as additional data structures that are maintained
by the server for implementing the functionality of Verena.

Regarding the storage overhead, the main contributing factor is the
storage of the ADSes. The space required to store an ADS (red-black Merkle
binary tree, in our implementation) depends on the cardinality of its nodes,
which depends linearly on the number of records that are protected by the
ADS. An ADS that contains 104 records needs ~1.64 MB (~1.95 MB if
the ADS also computes one aggregate value on the record). The relative
overhead in this case depends on the size of the records under protection.
Assuming an average record size of 0.5 KB, like the user messages in a chat
application (Section 11.10.4), the overhead of storing the ADS that protects
their integrity is approximately 1.4× the storage required for simply storing
the messages themselves. For protecting larger records, as in the medical
application for example, the storage overhead of protecting the 30sec EKG
recordings (each recording amounts to 50 KB of data, as described in
Section 11.10.3) is only ~1.003× the storage needed for storing just the
EKGs. Finally, Verena requires approximately 1 KB per user for storing his
wrapped private key, public key, and IDP certificate.

Hash Server. The hash server storage requirements are minimal com-
pared to the rest of the system. The hash server stores only one entry for
each trust context and ADS that exists in the system. Our hash server pro-
totype stores the users’ ECDSA public keys and the SHA-256 digests of the
ADS roots as hexadecimal strings, and each entry needs less than 200 bytes
of storage. This can be further reduced by using base64 or binary encoding
for storing keys and digests, and by reducing the redundant storage of
copies of public keys that may be stored in multiple entries. As an example,
for the medical application (which we described and evaluated in terms of
performance in Section 11.10.3), which contains thousands of users, trust
contexts and ADSes, the storage requirements are less than 5 MB.



166 11 Verena: End-to-End Integrity Protection for Web Applications

11.11 Related Work
To the best of our knowledge, Verena is the first web framework that
provides integrity and freshness of the data and query results contained in
a webpage, in the presence of a fully compromised web server.

11.11.1 Systems Providing Integrity
File Systems and File Storage. A few file systems, such as SUNDR [124],
Sirius [78], SNAD [136], CRUST [77], Plutus [106], SAFIUS [199], Treso-
rium [113], CloudProof [167], Athos [79], and Caelus [110] aim to provide
integrity in the face of a corrupted server. However, these are constructed
for the simpler setting of a file server, so they do not verify query computa-
tion results (range queries or aggregations, as well as completeness and
freshness for these computations), and do not consider the web setting
which is stateless. Some of these systems (e.g., SUNDR) make no trust
assumption on the server, but as a result, they either support only one client
or do not provide freshness (e.g., SUNDR provides fork consistency which
allows a server to present different views to different users). Caelus [110]
provides time-bounded freshness by assuming a trusted always-online at-
testor per client.

Generic Services. Some works, such as [37], propose protocols through
which mutually trusting clients can verifiably outsource computation to a
generic untrusted service, and check the consistency of the server responses.
In Verena, not all clients are mutually trusting, thus the Verena API gives
the ability to express the desired integrity policy. Moreover, such works
do not consider the web setting, in which clients may have zero state (not
even some hashes). In Verena, the hash server solves this problem, as well
as provides the ability to offer full linearizability, instead of the weaker
consistency properties, such as fork-linearizability.

Trusted Hardware. Trusted hardware systems such as Haven [20] promise
confidentiality and integrity against a compromised server. Unlike Verena,
Haven relies on trusted hardware, and places the entire application code
in the trusted code base. The only server assumption in Verena is that the
hash and main servers are do not collude. Moreover, in Verena, the server
application code is not in the trusted code base: in fact, if the application
is buggy or exploitable, and thus corrupts integrity protected query results,
clients will be able detect it.
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11.11.2 Work Related to Verena’s Building Blocks
In recent years, there has been much progress in tools for generic verifiable
computation [23, 162, 229]. Nevertheless, for the web setting considered
here, such tools remain impractical. Instead, work on authenticated data
structures (ADS) [49, 80, 122, 123, 130, 160, 241] provides better perfor-
mance and Verena uses these as building blocks. This line of work targets a
more specific class of computation, such as aggregations on range queries,
thus being more efficient. As previously discussed, these tools alone are not
sufficient for addressing all the challenges of providing integrity protection
for web applications.

Verena’s hash server is related to the trinket component of TrInc [121].
The trinket is a piece of trusted hardware that stores and increments a
counter; it can sign the counter along with a supplied string (e.g., a hash),
and ensures that each counter is signed only once. TrInc can be used
to provide freshness in SUNDR. Our hash server additionally stores the
hash, public key and the fixedPK flag. These extra values enable useful
properties in Verena, while the hash server still has high performance and
small code base (see Section 11.10). Providing freshness in SUNDR+TrInc
requires clients to download and verify a chunk of the history of changes
to an item and to treat each “get” operation as a “put”, which results in
significantly lower performance.

11.11.3 Complementary Systems
A few systems can be used in complement to Verena, to provide a wider
range of security guarantees.

Language Approaches/Information Flow Control. A few systems aim
to help a developer not make programing mistakes that can lead to in-
tegrity or confidentiality violations. Using information flow control and/or
language-based techniques, systems such as SIF [44], [178], Urflow [43],
and Resin [238] ensure that an application obeys a security policy. How-
ever, if an attacker takes control of the server in these systems, the attacker
can run any code of his/her desire, bypassing these tools completely, and
violating integrity. In contrast, Verena protects against this situation. Nev-
ertheless, these tools can be used in conjunction with Verena to ensure that
a developer does not inadvertently leak data, as well as prevent against
various client-side attacks.

Confidentiality. Mylar [169], CryptDB [168], and ShadowCrypt [92]
aim to provide confidentiality against a corrupted web server, but do not
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address most integrity properties, such as freshness, completeness or query
computation correctness. Mylar, also implemented on top of Meteor, is easy
to integrate with Verena.

11.12 Summary and Future Work
In this part of the thesis we highlight the importance of providing integrity
protection guarantees in web applications whose functionality is part of
critical decision making processes, such as in the healthcare, government,
military and financial services sectors. While the integrity protection of data
accessed over a web application is typically guaranteed by the server itself,
this does not hold once the web server gets compromised by an attacker.

Verena is the first web application platform that provides end-to-end in-
tegrity guarantees for data and query results in a webpage against attackers
that have compromised the web server. In Verena, the user’s browser can
verify the integrity of a webpage, by verifying the results of the database
queries which are used to populate the page content. Our evaluation results
show that Verena can support real applications with modest overhead. Ver-
ena attempts to close the gap between the research efforts of protecting the
integrity of database systems, and the application of this research in web
applications, which consist one of the most popular use cases of databases.

11.12.1 Future Work
Simplify Development Effort. As we discussed in Section 11.8, Verena
relies on the developer to correctly specify the integrity policy. This requires
that the developer comprehends all the important notions of Verena, such
as trust contexts, IQPs and completeness chains, as well as is familiar
enough with the respective APIs, such that he can use them correctly in
order to be able express the integrity policy (which Verena is responsible of
enforcing). While we strived to make the Verena concepts and API intuitive,
we acknowledge that this requirement on behalf of the developer is not
always easy to satisfy, and the whole process of implementing Verena on
top of a web application adds an extra burden to developers, especially for
large and complex web applications.

Given the above limitation, an interesting research direction that comes
naturally is to focus on simplifying the development effort and making
it easier to integrate Verena in web applications. One way to achieve
this would be to design a tool that can assist the developer in expressing
the integrity policy using the Verena API by checking the developer’s code,



11.12 Summary and Future Work 169

identifying potential pitfalls and making suggestions on how to make correct
use of the API.

Another, likely better way of simplifying the development effort would
be to give the ability to express the integrity policy in an easier, more
intuitive manner. Drawing inspiration from model driven security and
modeling languages, such as SecureUML [125], a promising direction
would be to create a framework that takes as input the integrity policy
of a web application expressed in a high-level descriptive language and
automatically outputs the necessary code for enabling Verena. This code
would then need to be integrated in the application’s codebase with minimal
effort on behalf of the developer.

Formalization of Verena Protocols. In Section 11.7 we provided an
informal argument about the security of Verena. As part of future work, it
is important to formalize the protocols and algorithms used in Verena and
formally prove that they are correct and satisfy Verena’s integrity guarantees,
as presented in Section 11.3.7.





Chapter 12

Closing Remarks

Web applications are one of the most common ways of providing online
services to users, customers and employees. People around the world user
their desktop or mobile browsers daily to interact with many different
websites for a variety of services, such as news, social media, email, cloud
storage, health care, financial services and many other more. This implies
that sensitive information stored and accessed through web applications.
With more and more of user data being stored online and more and more
services being offered online, it would not be an exaggeration to say that
people’s entire lives are digitalized and accessed, one way or another, via
the web. As a result, web application security is a very important aspect of
today’s web.

In this thesis we focused on authentication and integrity protection
on the web which is arguably one of the most important aspects of web
application security. In particular, we looked into client (i.e., user) authen-
tication, server authentication, as well as data authenticity and integrity
protection, thus essentially covering all different sides of authentication
around web applications. Our research was driven by our desire propose
solutions that improve authentication security, as well as are practical and
applicable in the real world. This means that we aimed, whenever possible,
for solutions which are efficient, usable and deployable with existing web
technologies and infrastructure.

In the first Part of this thesis we looked into the issue of poor security
of authenticating users using passwords in web applications, as well as
the low adoption rates of currently available two-factor authentication
technologies. We argued that poor usability of existing proposals is one of
the main reasons for their unpopularity. We, therefore, proposed Sound-
Proof which is the first two-factor authentication approach that is both
transparent to the user, i.e., no user interaction is required, and deployable
with current browser technologies, i.e., without needing extra software to be
installed on the user’s computer. In Sound-Proof, the second authentication
factor is the proximity of the user’s phone to the computer from which the
web login is taking placing. Proximity is verified by comparing the ambient
sound which the two devices simultaneously record at the time of login.
Only if the two recordings match is the login deemed successful.

We evaluated Sound-Proof in a variety of environments from train
stations and cafeterias to office and home settings. Our evaluation showed
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that Sound-Proof works across environments, without the user having to
interact with his phone, even if his phone is in his pocket or bag. We
conducted a small user study in order to evaluate the usability of Sound-
Proof in comparison with Google 2-Step Verification. We found that users
found Sound-Proof to be more usable and appreciated the fact that is
significantly faster than the code-based approach. More importantly, most
users said that they would be willing to use Sound-Proof in scenarios where
two-factor authentication is optional. This indicates that improving the
usability of two-factor authentication can foster user adoption, such that
more and more online accounts can benefit from the increased security
that two-factor authentication offers.

In the second part of this thesis, we looked at web server authentication
and the issues which the current CA trust model is facing. In particular
we examined a recent proposal, based on TLS Channel IDs, which aims at
thwarting TLS MITM attacks where the attacker’s goal is user credential
theft in order to impersonate the user to the server and compromise the
user’s account. We demonstrated how the proposal fails to prevent such
attacks, due to the nature of web applications, which allow the server to
ship and execute JavaScript code to the user’s browser. Our attack, called
Man-In-The-Middle-Script-In-The-Browser, takes advantage of this feature,
which enables the attacker to bypass the security offered by TLS Channel
ID-based authentication against user credential theft by simply mounting
his attack via JavaScript shipped to the user’s browser. We showed that
client authentication alone, no matter how strong it is, cannot prevent such
attacks.

We then went a step further and showed how combining strong client
authentication, e.g., based on TLS Channel IDs, together with the concept
of server invariance, can indeed prevent the aforementioned TLS MITM
attacks. We described the property of server invariance and how it is easier
to achieve compared to server authentication, since no initial trust is re-
quired. In our solution, called SISCA (Server Invariance with Strong Client
Authentication), we discussed ways of implementing server invariance and
showed how it can be integrated in today’s web infrastructure.

In the third part of the thesis we focused on the authenticity of the
data itself which is of high importance in cases where it influences decision
making. We investigated the scenario where the attacker is able to fully
compromise a web server. In such cases server authentication becomes
irrelevant for the security of the data which the web application stores.
Building upon work on data structure authenticity and integrity protection,
we proposed Verena, the first framework that can provide end-to-end data
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authenticity and integrity guarantees in web applications even under full
server compromise. Verena provides an API that can be used by the web
application developer to express the application’s data integrity protection
policy. Verena enforces the expressed policy by making sure the code, data,
and query computation results contained in the webpage and displayed in
the user’s browser are authentic (manipulated only by authorized users),
complete and fresh.

We implemented a prototype of Verena on top of the Meteor framework
and evaluated its performance on a medical web application which we
builded based on a real such application, which we were given access to.
Our evaluation showed that Verena incurs overhead which is small enough
as to not hamper the user browsing experience. We further showed how
Verena’s API can support a variety of access control policies to for protecting
data integrity.

We conclude this thesis by noting two messages that were highlighted
throughout this thesis. First, when designing security solutions, usability
and deployability are equally as important goals as security itself is and
thus should not be overlooked. Even if this leads to a trade-off, where
security is slightly decreased in favor of usability, it can still be beneficial as
it may lead to higher adoption and thus increased security overall. Finally,
data authenticity and integrity protection is at least as, or in cases, more
important than data confidentiality, making it a worthwhile property to
focus security research on.
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A System Usability Scale
This section lists the items of the System Usability Scale [33] used to
evaluate Sound-Proof. All items were answered with a 5-point Likert-scale
from Strongly Disagree to Strongly Agree.

Q1 I think that I would like to use this system frequently.
Q2 I found the system unnecessarily complex.
Q3 I thought the system was easy to use.
Q4 I think that I would need the support of a technical person to be able

to use this system.
Q5 I found the various functions in this system were well integrated.
Q6 I thought there was too much inconsistency in this system.
Q7 I would imagine that most people would learn to use this system very

quickly.
Q8 I found the system very cumbersome to use.
Q9 I felt very confident using the system.

Q10 I needed to learn a lot of things before I could get going with this
system.

B Post-test Questionnaire
This section lists the items of the post-test questionnaire used to evaluate
Sound-Proof. All items were answered with a 5-point Likert-scale from
Strongly Disagree to Strongly Agree.

Q1 I thought the audio-based method was quick.
Q2 I thought the code-based method was quick.
Q3 If Two-Factor Authentication were mandatory, I would use the audio-

based method to log in.
Q4 If Two-Factor Authentication were mandatory, I would use the code-

based method to log in.
Q5 If Two-Factor Authentication were optional, I would use the audio-

based method to log in.
Q6 If Two-Factor Authentication were optional, I would use the code-

based method to log in.
Q7 I would feel comfortable using the audio-based method at home.
Q8 I would feel comfortable using the audio-based method at my work-

place.
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Q9 I would feel comfortable using the audio-based method in a cafe.
Q10 I would feel comfortable using the audio-based method in a library.
Q11 I would feel comfortable using the code-based method at home.
Q12 I would feel comfortable using the code-based method at my work-

place.
Q13 I would feel comfortable using the code-based method in a cafe.
Q14 I would feel comfortable using the code-based method in a library.

C User Comments
This section lists some of the comments that participants added to their
post-test questionnaire when evaluating Sound-Proof.

“Sound-Proof is faster and automatic. Increased security without
having to do more things”

“I would use Sound-Proof, because it is less complicated and faster. I
do not need to unlock the phone and open the application. In a public
place it would feel a bit awkward unless it becomes widespread.
Anyway, I am already logged in most websites that I use.”

“I like the audio idea, because what I hate the most about two-factor
authentication is to have to take my phone out or find it around.”

“Sound-Proof is much easier. I am security-conscious and already
use 2FA. I would be willing to switch to the audio-based method.”

“I already use Google 2SV and prefer it because I think it’s more
secure. However, Sound-Proof is seamless.”
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D Other Frequency Bands
In this section, we present all the plots for the considered band ranges we
analyzed during our experimental campaign setting the EER to be 0.0020
as discussed in Chapter 5.
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Figure D.1: False Rejection Rate and False Acceptance Rate as a function
of the threshold τC for bands in the B = [50Hz− [630Hz− 4kHz]] range
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Figure D.2: False Rejection Rate and False Acceptance Rate as a function
of the threshold τC for bands in the B = [63Hz− [630Hz− 4kHz]] range
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Figure D.3: False Rejection Rate and False Acceptance Rate as a function
of the threshold τC for bands in the B = [80Hz− [630Hz− 4kHz]] range
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