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Abstract

The lattice Boltzmann method is a promising approach to computational

physics, which is based on the solid footing of kinetic theory and has shown

success in various regimes of fluid dynamics including turbulence, multi-

phase, thermal or compressible flows, among others.

While the original single-relaxation time lattice Bhatnagar-Gross-Krook

model made the first connection to fluid dynamics, it suffers from fatal

stability issues and thus was limited to resolved low Reynolds number

flows. However, recent advances are starting to break these limits.

Various attempts to overcome this issue have been proposed. Notable is the

entropic lattice Boltzmann method (ELBM), which introduced a discrete-

time analog of Boltzmann’s H-Theorem into the LBM framework, yielding

a parameter-free and non-linearly stable scheme. Recently, this concept

has been extended to the class of so-called multi-relaxation time models

(MRT). The main idea of MRT models is to exploit the high dimensional

kinetic space in order to increase stability without effecting hydrodynamics.

However, prior to notion of a discrete H-function, the relaxation times were

problem-dependent tuning constants. On the other hand, in entropic MRT

models this ambiguity was resolved by maximizing the entropy of the post-

collision state. The benefit of entropic MRT is that in contrast to ELBM

the viscosity is not fluctuating but imposed with its nominal value. Recent

studies have shown extraordinary stability properties without sacrificing

accuracy.

While the stability problems of LBM have been resolved in the bulk flow

by entropic LB models, complex simulations of engineering relevance have

remained a challenge due to the lack of a consistent description of com-

plex geometries, grid refinement strategies and extension to multi-physics

problems such as fluid-structure interaction. In this thesis, the necessary

numerical tools for the simulation of such complex flows are developed in

a consistent and unique manner, compatible with the entropic paradigm.
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After reviewing the general lattice Boltzmann method and its entropic

version, consistent, second-order boundary conditions for complex, mov-

ing and deforming geometries are developed and validated. Subsequently,

appropriate grid refinement strategies are developed for entropic LB meth-

ods, which, despite the extraordinary efficiency of LBM, are instrumental

for realistic simulations at reasonable computational costs. First, a multi-

domain grid refinement method is developed for incompressible flows and

subsequently extended to thermal and compressible flow problems. Thor-

ough validation and analysis of the entropic stabilizer is conducted, showing

excellent results for challenging problems. In addition, an unstructured

LBM based on a semi-Lagrangian approach is developed and its perfor-

mance assessed for turbulent wall-bounded flows.

Equipped with these tools, accurate LB simulations of the complex flow

in engine-geometries became feasible for the first time, while significantly

reducing the computational costs compared to direct numerical simula-

tions. Here, particular attention is paid on studying the models behavior

in under-resolved simulations. Further investigations in the realm of tran-

sition to turbulence as well as biolocomotion show viability in terms of

stability, accuracy and efficiency of the proposed scheme.

Finally, a novel fluid-structure interaction scheme is developed on the ba-

sis of the previously introduced methodology. Robustness of the scheme is

shown by challenging simulations and extension to fluid-structure interac-

tion for multiphase flows.

These ingredients significantly extend the range of applicability on several

fronts and provide a simple, unified scheme for multi-physics simulations

ranging from turbulence and fluid-structure interaction to thermal and

multiphase flows.
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Zusammenfassung

Die lattice Boltzmann Methode (LBM) ist ein vielversprechender Ansatz

der rechnergestützten Physik, welcher auf der kinetischen Gastheorie ba-

siert und erfolgreich auf verschiedenste Gebiete der Fluiddynamik ange-

wandt wurde. Hierzu gehören unter anderem turbulenten Strömungen,

Mehrphasensysteme sowie thermische und kompressible Strömungen.

Obwohl das klassische, einfach-relaxierende lattice Bhatnagar-Gross-Krook

Modell den ersten Bezug zur Fluiddynamik herstellen konnte, war es von fa-

talen numerischen Instabilitäten geprägt und somit auf Strömungen niedri-

ger Reynolds-Zahl beschränkt. Jedoch fangen die Fortschritte der jüngsten

Zeit an diese Limits zu brechen.

Dahingehend wurden viele Versuche unternommen. Nennenswert ist die

entropische lattice Boltzmann Methode (ELBM), welche durch die Wie-

dereinführungen eines zeitdiskreten H-Theorems ein parameterfreies und

nichtlinear stabiles Modell darstellt. Kürzlich wurde das entropische Kon-

zept auf multi-relaxations Modelle (MRT) erweitert. Die Idee von MRT

Modellen ist es, den hoch-dimensionalen kinetischen Raum auszunutzen

um an numerischer Stabilität zu gewinnen, ohne die Hydrodynamik zu be-

einflussen. Jedoch wurden vor der Einführung der diskreten H-Funktion

die verschiedenen Relaxationsparameter problemabhängig eingestellt. Im

Gegensatz dazu löst der entropische Ansatz diese Mehrdeutigkeit und be-

stimmt die Relaxationsparameter durch die Maximierung der Entropie des

Postkollisionszustandes. Der Vorteile des entropischen MRT Modells zur

einparameterigen ELBM besteht darin, dass dieses Verfahren zu keiner

fluktuierende Viskosität führt, sondern die nominale Viskosität forciert.

Jüngste Studien belegen der entropischen MRT Methode außergewöhnliche

Stabilitätscharakteristiken ohne die Genauigkeit zu beeinflussen.

Während die intrinsischen Stabilitätsprobleme der LBM mit der Entwick-

lung von entropischen Modellen gelöst wurde, waren komplexe Simulatio-

nen von technischer Relevanz nicht möglich, da eine konsistente Behand-
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lung von nicht-trivialen Geometrien, Netzverfeinerungsalgorithmen sowie

die Erweiterung zu multiphysikalischen Problemen wie beispielsweise die

Fluid-Struktur-Interaktion nicht existierten. Die Lösung dieser Probleme,

welche Simulationen von komplexen Strömungen erlaubt und konsistent ist

mit entropischen Modellen, ist Gegenstand dieser Dissertation.

Nach einem Überblick der lattice Boltzmann Methode und deren entro-

pischen Erweiterungen, werden konsistente Randbedingungen für komple-

xe, bewegte und deformierbare Körper entwickelt und validiert. Nachfol-

gend werden geeignete Gitterverfeinerungsstrategien für entropische LBMs

entwickelt, welche trotz der außergewöhnlichen Effizienz unerlässlich sind

für realistische Simulationen. Zunächst wird eine neue multi-domain Git-

terverfeinerungsstrategie für inkompressible, thermische und kompressible

Strömungen entwickelt. Sorgfältige Validierung und Analyse des entropi-

schen Stabilisators werden durchgeführt und zeigen gute Ergebnisse für an-

spruchsvolle Probleme in der Fluiddynamik. Zusätzlich wurde ein LB Mo-

dell für unstrukturierte Gittern basierend auf dem Semi-Lagrangian Ansatz

entwickelt und deren Leistungsfähigkeit für turbulente Wandströmungen

unter Beweis gestellt.

Mit diesen Neuentwicklungen wurden akkurate LB Simulationen von kom-

plexen Strömungen in Motorgeometrien ermöglicht, wobei die benötigte

Rechenzeit im Vergleich zu Direkten Numerischen Simulationen (DNS)

signifikant reduziert wurde. Besonderer Augenmerk wurde auch auf das

Verhalten der Modelle im Falle von Unterauflösung gelegt. Des Weiteren

wurden die Modelle verwendet um den Übergang zu Turbulenz sowie Biolo-

komotion zu studieren. Die Resultate unterstreichen die Leistungsfähigkeit

der neuen Modelle bezüglich Stabilität, Präzision und Effizienz.

Abschließend wird eine neue Methode zur Simulation von Fluid-Struktur-

Interaktionen entwickelt. Die Robustheit der Methode wird für verschie-

dene, herausfordernde Probleme gezeigt und erweitert um Fluid-Struktur-

Interaktionen in Mehrphasenströmungen zu berechnen.

Die Resultate dieser Dissertation erweitern den Anwendungsbereich von

LB Methoden an vielen Fronten und bieten somit ein einfaches und uni-

versales Schema für die Simulation von multiphysikalischen Problemen,

welche von Turbulenz und Fluid-Struktur-Interaktionen zu thermischen

und mehrphasigen Strömungen reichen.
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Chapter 1

Introduction

1.1 Motivation

The dynamics of fluid flow is one of the most fascinating and beautiful

subjects in physics. Its complexity arises from a variety and possibly co-

existent phenomena spanning a vast range of temporal and spatial event

scales. Its implications are omnipresent in science and engineering, rang-

ing from the dynamics of stellar systems or accretion disks to industrial

applications such as the optimization of internal combustion engines or the

design of live-lasting artificial heart valves.

Despite its importance and focus of tremendous research effort, the the-

oretical understanding of the evolution of fluid flow is embarrassingly in-

complete. Fluid motion is governed by a set of nonlinear partial differ-

ential equations, the so-called Navier-Stokes equations. These equations

can only be solved analytically for the simplest cases and general solutions

to the Navier-Stokes equations (NSE) remain one the greatest unsolved

problems in physics. The problem becomes particularly challenging for

low-dissipative systems, i.e. turbulent flows, where complex and chaotic

fluid motion arises from the nonlinearity of the Navier-Stokes equations,

exhibiting a vast range of time and length scales, which eludes analytical

description. Thus, studying turbulent flows requires advanced experimen-

tal or numerical tools.

While having provided invaluable insight for various fundamental prob-
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lems, limitations in terms of accuracy, accessibility, cost and flexibility are

inherent to experimental approaches. On the other hand, the continuing

increase of computational power by developments of novel hardware and

numerical methods make computer simulations an indispensable tool to

advance the field of fluid mechanics.

However, even on the largest supercomputers available today, the level of

complexity required for realistic engineering relevant applications remains

an open challenge for state-of-the-art numerical solvers.

This is particular pronounced when various effects originating from, e.g.,

turbulence, complex geometries, thermal effects, multiple fluid phases or

combinations thereof need to be taken into account for predictive simula-

tions. Direct numerical simulations (DNS) are the most reliable approach

and are based on a direct discretization of the NSE, which resolves all

pertinent scales of the flow field. However, given the large range of scales

in turbulent flows, this approach becomes prohibitively expensive and is

thus limited to moderate Reynolds number flows. Remedy was sought

in turbulence models, which reduce the computational requirements by

coarse-graining the governing equation using either filtering or averaging

operations. The affect of the under-resolved, small scales is modeled and

projected onto the larger scales. Various models for different regimes have

been deduced and range from introducing an eddy-viscosity to modeling

an entire probability density function. However, the underlying modeling

assumptions restrict the range applicability and typically rely on problem-

dependent tuning of modeling parameters (see also chapter 5 for a discus-

sion in the context of engine-flows).

The challenges for numerical methods become even more severe for wall-

bounded turbulence, which is induced by complex, possibly moving or de-

forming geometries. Sophisticated and computationally expensive meshing

strategies are required to ensure accuracy and hence puts yet another limit

on the attainable level of complexity. Geometrically flexible methods such

as immersed-boundary methods prevent these issues but are only recently

starting to explore the turbulent flow regime. (see also chapter 3).

In contrast to traditional computational fluid dynamics (CFD), a different

approach was initiated in [133–135] and developed in what is toady known

as the lattice Boltzmann method (LBM). Since then, the LBM has ma-

tured into a promising approach to computational fluid dynamics (CFD)
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with applications in various regimes, ranging from incompressible turbu-

lence, multiphase, thermal and compressible flows up to micro-flows and

relativistic hydrodynamics [5, 54, 99, 102, 157, 229, 237, 326, 339]. In con-

trast to conventional numerical methods, the lattice Boltzmann method

has its roots in kinetic theory and describes the flow field in terms of

discretized particle distribution functions (populations) fi(x, t) associated

with discrete velocities ci, i = 1, . . . , Q, designed to recover the macro-

scopic Navier-Stokes equations in the hydrodynamic limit (see, e.g., [133–

135, 325]). By organizing the discrete velocities into a regular lattice, the

LBM reduces to a simple and highly efficient stream-and-collide algorithm

with exact propagation and local nonlinearity, which is implemented by

the collision operator.

The first realization, which made a practical connection of LBM to fluid dy-

namics was the well known lattice Bhatnagar-Gross-Krook (LBGK) model.

The LBGK model remains popular due to its simplicity and numerical ef-

ficiency. Despite these attractive properties, the LBM was not competitive

for long due to the lack of numerical stability and accurate boundary condi-

tions in the simulation of high Reynolds number flows. This promoted the

development of various models intended to resolve this issue, including ex-

plicit turbulence models in LBM formulation, crystallographic,regularized,

cumulant as well as multiple-relaxation time (MRT) lattice Boltzmann

models among others (see, e.g., [54, 67, 113, 158, 192, 252]). On the other

hand, the entropic lattice Boltzmann method (ELBM) features nonlinear

stability by introduction of a discrete entropy function H as the determin-

ing factor of the relaxation. In contrast to LBGK, the ELBM chooses the

relaxation parameter of the collision adaptively at each point in space and

time to locally ensure the discrete-time H-theorem. The macroscopic ef-

fect of choosing the relaxation parameter in this manner results in a locally

varying, effective viscosity, which can be larger or smaller than the nominal

one, leading to local enhancement or smoothing of the flow field [156]. This

originates from the fact that, in ELBM, the same relaxation is equivalently

imposed on all moments of the populations beyond the locally conserved

quantities. It is important to stress that the relaxation parameter is not

arbitrarily chosen but rather dictated by the physics of the flow, in ac-

cordance with the second law of thermodynamics. However, for resolved

simulations where the populations remain close to the equilibrium state,
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the ELBM recovers the LBGK model with its nominal viscosity [154].

An extension of the entropy concept was recently proposed in [157], where

the viscosity may be kept at its nominal value by considering multiple

relaxation times (KBC models). Recent studies in [40] have shown out-

standing numerical stability for high Reynolds number flows while accu-

racy was not sacrificed. Furthermore, the role of the entropic stabilizer

was investigated and quantified for periodic turbulence [40]. While this

thesis mainly focuses on incompressible, isothermal flows, the concept of

entropy-based LB methods is universal and has successfully been extended

to various regimes, including thermal, compressible, multiphase as well as

multi-component mixtures. Due to its advantages and universality, we only

consider entropic LBM and in particular its multi-relaxation version in the

scope of this thesis.

While stability issues in the bulk flow have been resolved by using entropy-

based LBM, the simulation of engineering relevant applications involving

wall-bounded turbulence, complex, moving and deforming geometries has

remained challenging for LBM. Hence, enabling the numerical simulation

of such complex flows is the main motivation of this thesis.

To that end, various strategies are developed. First, a novel treatment of

complex, moving geometries is proposed, which exhibits second-order ac-

curacy, is consistent with entropy-based LBM and provides reliable results

even in severely under-resolved turbulent simulations. Furthermore, the

classical LBM is bound to uniform, Cartesian meshes, which severely re-

strict the attainable level of complexity at reasonable computational costs.

Thus, novel grid refinement strategies, which are consistent with entropy-

based LBM are proposed. The combination of both enables predictive

simulations of complex flows and we study the models behavior for both

resolved and under-resolved simulations for engineering applications such

as flows in engine-like geometries and transitional flows over airfoils and

turbine blades. With these encouraging results, the scheme was further

extended towards deforming geometries and fluid-structure interaction in-

cluding nonlinear elasticity effects. Viability of the approach is demon-

strated for canonical benchmark cases as well as in the realm of biolo-

comotion and multiphase flows. Thus, the developments of this thesis are

aiming towards establishing entropic LBM as a predictive tool for complex,

multi-physics applications, relevant to science and engineering.
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1.2 Outline of the thesis

The thesis is organized as follows:

• Chapter 2 : The fundamental principles of kinetic theory and statis-

tical mechanics are reviewed. Starting from the Boltzmann equation

and its properties, the construction of the classical lattice Boltzmann

model is presented. Subsequently, based on a discrete H-function,

the entropic lattice Boltzmann method along with its extension to

multiple relaxation times is discussed in detail.

• Chapter 3 : In this chapter, we describe the implementation of com-

plex, moving and deforming geometries within the lattice Boltzmann

method. An overview of common methods such as immersed bound-

ary methods and Cartesian grid methods along with their respective

advantages or disadvantages is provided. Finally, a novel bound-

ary treatment, the so-called Grad boundary condition is introduced,

which exhibits second-order accuracy, is robust and consistent with

entropy-based lattice Boltzmann models. The scheme is validated for

the simple two-way coupled benchmark of a sedimenting sphere.

• Chapter 4 : To enable simulations of engineering relevant complexity,

grid refinement strategies are indispensable. In this chapter, we con-

sider multi-domain block refinement as well as LBM on unstructured

grids. We start by introducing a novel block-refinement strategies,

consistent with the entropy-based LBM and provide thorough val-

idation for various challenging set-ups. Finally, we review recent

advances for unstructured grids in LBM, and extent the so-called

semi-Lagrangian LBM to entropic LBM and wall-bounded flows.

• Chapter 5 : The first engineering application, mimicking the flow in

a simplified internal combustion engine, is presented. Before consid-

ering the final application in its full complexity, a thorough inves-

tigation of both resolved and under-resolved simulations of periodic

and the turbulent pipe flow is reported . After these analyses, we

consider a valve/piston arrangement, which allows us to probe the

interaction between small and large scale flow structure in various

distinct flow features. Detailed comparison to high-order DNS and
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experiments for resolved and under-resolved simulation suggests en-

couraging accuracy and robustness of the proposed scheme.

• Chapter 6 : Transition to turbulence is both fascinating and of great

relevance for the performance of many engineering applications. In

this chapter, the laminar separation bubble over the SD7003 airfoil

as well as the turbine blade T106 airfoil blade is studied in detail.

We analyze its geometrical properties, its transient behavior as well

as its sensitivity to free steam turbulence.

• Chapter 7 : In this chapter, we wander into the realm of bio-fluid-

mechanics and consider flows relevant to animal locomotion with

particular focus on flapping flight and undulatory fish locomotion.

Thorough validation for a plunging airfoil in the transitional regime

and a self-propelled anguilliform swimmer is presented. Finally, ex-

tensions and preliminary simulations of flapping flight and multiple

anguilliform swimmers are discussed.

• Chapter 8 : A novel fluid-structure interaction scheme is proposed.

Using a partitioned approach, the fluid domain is solved by the en-

tropic multi-relaxation time model and the structural part by an ap-

propriate FEM discretization. Apart from thorough validation, the

scheme is extended to multiphase flows, where robustness is shown by

the simulation of the droplet impact and elastic, superhydrophobic

surfaces.

• Chapter 9 : In the last chapter of this thesis, a brief summary, con-

cluding remarks and possible directions for future research are pro-

vided.



Chapter 2

The lattice Boltzmann method

In this chapter, we outline the construction of lattice Boltzmann models.

Starting from the fundamental principles of kinetic theory and statisti-

cal mechanics, the Boltzmann equation and its pertinent properties are

discussed. From that basis, the classical lattice Boltzmann method is in-

troduced. Finally, the entropic lattice Boltzmann method and its extension

to multiple relaxation times is discussed in detail.

2.1 The Boltzmann equation

The Boltzmann kinetic equation, first derived by the Austrian mathe-

matician Ludwig Boltzmann in 1872, describes the dynamics of moder-

ately rarefied gas by the evolution of the one-particle distribution function

f(c,x, t), where c and x denote the particle velocity and location in phys-

ical space, respectively. The distribution function f(c,x, t) defines the

probability density of finding a particle at time t within the phase-space

volume dV = d3cd3x and the number of particles dN contained in dV at

time t is given by dN = f(c,x, t)d3cd3x. The dynamics of the particle

is governed by an advection or free flight and the collision process. Based

on the assumption of rarefaction, it is justified to only consider binary

collisions. In its original version, the Boltzmann equation was derived for

hard spheres and is expected to hold in the Grad-Boltzmann limit [119]

for which N → ∞ hard spheres with diameter d → 0, occupy a volume



8 Chapter 2. The lattice Boltzmann method

Nd3 → 0 and have a total collision cross section Nd2 ∼ const.. Under

these circumstances, the evolution of f(c,x, t) can be expressed as

∂tf + cα∂α + gα∂cαf = Q(f, f), (2.1)

where gα denotes an external force per unit mass acting on the particle

and the collision integral is given by Q(f, f). The second and third term

indicate the net change of the particle in dV by advection and acceleration,

respectively.

The collision integral on the right hand side of Eq. (2.1) accounts for the

effect of collisions of the particles on the distribution function. Put dif-

ferently, the collision operator describes the change of the particle number

dN in dV through binary collisions. For a quantification it is instruc-

tive to express the collision integral as a balance equation of an in- and

outflux of the phase-space volume element dV as Q(f, f) = Qin − Qout.

The number of collisions during dt causing an in- or outflux is given by

dNin/out = Qin/outdV dt.

While the influx corresponds to a collision of two particles with initial

velocities {c′, c′1} and post-collision velocities {c, c1}, the outflux is given

by a collision of type {c, c1} → {c′, c′1}.
Assuming binary collisions with two uncorrelated particles, i.e. molecular

chaos, makes the quantification of the collision integral tractable and the

number of colliding pairs for the outflux is given by dNc,c1 = dNdN1, where

dN1 = f(c1,x, t)d
3c1dVc and dVc = |c− c1|ΘdΩ is the collision volume for

the classical scattering problem with the differential cross section Θ and the

solid angle dΩ. Note that for a central force interaction between molecules,

the differential cross section solely depends on the deflection angle, which

can be derived through classical mechanics for a given interaction potential.

In the simple case of hard elastic spheres with diameter d, geometrical con-

siderations yield a differential cross section of Θ = d2/4. The number of col-

liding pairs is given by dNc,c1 = [f(c,x, t)f(c1,x, t)|c− c1|ΘdΩ] d3cd3xdt

and the rate of loss or outflux is thus obtained by integration over c1 and

dΩ, yielding

Qout(c,x, t) =

∫ ∫
f(c,x, t)f(c1,x, t)|c− c1|ΘdΩd3c1 (2.2)

Using analog reasoning and the irreversibility of mechanical motion, a sim-

ilar expression can be obtained for the influx. This yields the collision
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integral as

Q(f, f) =

∫ ∫
[f(c′,x, t)f(c′1,x, t)− f(c,x, t)f(c1,x, t)] |c−c1|ΘdΩd3c1.

(2.3)

It is mentioned that due to the point particle approximation, the collision

integral is local in physical space and only non-local in velocity space.

A detailed discussion and derivation of the Boltzmann equation can be

found in [51, 52, 116, 118, 119] among others.

2.1.1 Properties of the Boltzmann equation

Below, a non-exhaustive list of the most important properties of the Boltz-

mann equation and the collision operator is presented.

2.1.1.1 Moments

The hydrodynamic fields such as density ρ, momentum density ρu and

the energy density ρE can be obtained by the low order moments of the

distribution function as

ρ(x, t) =

∫
f(x, c, t)dc, (2.4)

ρu(x, t) =

∫
cf(x, c, t)dc, (2.5)

ρE(x, t) = ρ(u2 +DkBT/m) =

∫
c2f(x, c, t)dc, (2.6)

where D, kB,T and m denote the dimensionality, the Boltzmann constant,

the temperature and the particle mass, respectively.

2.1.1.2 Conservation laws

The conservation of the number of particles, momentum and energy is a

consequence of the elastic collision and implies
∫
Q(f, f)(χ+ ζ · c+ λc2)dc = 0, (2.7)

where χ, ζ and λ are arbitrary constants. Hence, the local changes in time

of the hydrodynamic fields are a consequence of a spatial redistribution in

space of the probability functions.
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2.1.1.3 Vanishing collision integral

For a vanishing collision integral Q(f, f) = 0, the detailed balance

f(c,x, t)f(c1,x, t) = f(c′,x, t)f(c′1,x, t) (2.8)

holds for almost all velocities.

For the class of functions of the form

f = exp
(
χ+ ζ · c+ λc2

)
, (2.9)

the collision integral vanishes and parametrization on the locally conserved

quantities, namely, density, momentum and energy yields the well known

Maxwell distribution function

f eq(c, ρ,u, T ) = ρ

(
m

2πkBT

)D/2
exp

(
−m(c− u)2

2kBT

)
. (2.10)

2.1.1.4 Local entropy production

Assuming the integral exists, the local entropy production inequality

σ(x, t) = −kB
∫
Q(f, f) ln fdc ≥ 0, (2.11)

holds for any distribution function. Note that the entropy production

σ(x, t) vanishes at the point of Q(f, f) = 0, which includes the local

Maxwellian as given by Eq. (2.10). Thus, the collision relaxes the dis-

tribution function f towards the local Maxwellian.

2.1.1.5 H-theorem

TheH-theorem provides a quantitative measure of macroscopic irreversibil-

ity through the H-function, which is defined as

H(f) =

∫
f ln fdc. (2.12)

The local, space-independent H-theorem postulates that the rate of change

of H is proportional to the entropy production as

dH

dt
= − 1

kB
σ. (2.13)
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This implies the relaxation of the distribution functions towards the unique

global Maxwell distribution function and the monotonic decay of the H-

function. As a consequence, the local Maxwellian is the minimum of the

H-function subject to fixed, locally conserved hydrodynamic fields.

In case of space-dependence, the local entropy density is defined as

S(x, t) = −kBH(x, t), (2.14)

which obeys its balance equation

∂tS(x, t) + ∂αJα(x, t) = σ(x, t), (2.15)

where Js = −kB
∫
cf ln fdc is the entropy flux. Note that the contribution

of Js to the total entropy Stot =
∫
Sdx vanishes for suitable boundary

conditions (e.g., specular reflection), which yields the global H-Theorem

∂tS(x, t) = σtot with σtot =
∫
σdx. For generalized boundary conditions,

the entropy flux is non-zero and requires a modification of the H-theorem

(see, e.g., [50]).

2.1.2 Bhatnagar-Gross-Krook model

The Boltzmann equation is an integro-differential equation and its non-

linearity poses significant challenges. This promoted the development of

various approximative solution strategies and kinetic models for the colli-

sion integral. Arguably the most prominent and widely used model, which

obeys the properties of the Boltzmann collision integral is the Bhatnagar-

Gross-Krook (BGK) model [24]. The approximate collision integral reads

QBGK =
1

τ
(f eq(c, ρ(f),u(f), T (f))− f), (2.16)

where τ is the characteristic time for relaxation towards the local Maxwellian,

i.e. relaxation time, which is of same order of magnitude than the time

between particle collisions. Note that despite a significant simplification

compared to the Boltzmann collision integral, the BGK approximation re-

mains nonlinear as it is a nonlinear function of the lower order moments,

namely density, momentum and energy. In contrast, the Boltzmann colli-

sion integral is nonlinear in the distribution function itself. Other models

of the collision integral include generalized BGK models to incorporate

quasi-equilibrium states [117] or Fokker-Planck models [198].
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2.1.3 Kinetic algorithms

Given the tremendous complexity of the five dimensional collision integral,

the solution of the Boltzmann equation requires sophisticated numerical

procedures. In general, one can distinguish statistical and deterministic

approaches to evaluate the collision term.

While statistical methods like Direct Simulation Monte-Carlo (DSMC) [29]

are well suited for high Knudsen and Mach number flows, the large com-

putational cost and slow convergence renders their application impractical

in the continuum limit.

On the other hand, deterministic models that rely on velocity space dis-

cretization made the first connection to Navier-Stokes hydrodynamics. In

particular, it was the development of the lattice-gas (LG) model [104],

which reproduced Navier-Stokes with embarrassingly simple discrete ki-

netic equations. The LG is consistent with the H-theorem and the equi-

libria maximize the Fermi-Dirac entropy. However, the lack of Galilean

invariance and large statistical noise precluded any serious hydrodynamic

applications. By pre-averaging of the LG via a Boltzmann formulation, this

issue was resolved and subsequent improvements lead to the lattice Boltz-

mann method [55, 56, 133, 134, 174, 235, 281], which made simulations of

hydrodynamics feasible.

In the following, the lattice Boltzmann method and its entropic versions

are presented.

2.2 The lattice Boltzmann method

As previously mentioned in section 2.1, the lattice Boltzmann method be-

longs to the class of discrete velocity models. Thus, let us introduce a set

of discrete velocity vectors ci, i = 1, . . . , Q and the corresponding discrete

particle distribution function, so-called populations, fi(x, t). In the follow-

ing, unless stated otherwise, the summation over the index i is understood

to be in the range of i = 1, . . . , Q. Except for the population index i,

Einstein’ s summation convention is applied for repeated subscript indices.

To derive the lattice Boltzmann equation, let us start with the velocity-

discrete Boltzmann equation for the population fi, which reads as

∂tfi + ci,α∂αfi = Qi, (2.17)
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whereQi denotes the velocity discrete collision operator. For the discretiza-

tion in time Eq. (2.17) is integrated along its characteristics x+ ciδts and

t+ δts for s ∈ [0, 1] with the time step δt. The collision operator is evalu-

ated using the trapezoidal rule, which eventually yields the second-order,

implicit equation

fi(x+ ciδt, t+ δt)− fi(x, t) =
δt

2
[Qi(f(x, t)) +Qi(f(x+ ciδt, t+ δt))]

+O(δt3)

(2.18)

For pratical purpose, it is crucial to obtain an explicit scheme from the

implicit Eq. (2.18). This can be achieved by a variable transformation of

the form

fi → gi = fi −
δt

2
Qi(f), (2.19)

for which the locally conserved quantities are equivalent and geq
i = f eq

i .

As we will see in the following section, various proposals for different LB

models only differ in the choice of the collision operator. The classical

LBM employs a velocity discrete version of the BGK collision model of

Eq. (2.16), which we will use in the following to demonstrate the general

construction of LBM. The discrete BGK collision reads

Qi,BGK = −1

τ
(fi − f eq). (2.20)

Imposing the variable transform for the BGK collision yields

Qi,BGK(g) =

(
1 +

δt

2τ

)
Qi,BGK(f). (2.21)

Thus, Eq. (2.18) can be expressed in terms of g as

gi(x+ ciδt, t+ δt) = gi(x, t) +

(
2δt

2τ + δt

)
[geq
i (x, t)− gi(x, t)] (2.22)

or in a more conventional manner, the fully discrete lattice BGK (LBGK)

model reads

gi(x+ ciδt, t+ δt) = gi(x, t) + ω(geq
i − gi), (2.23)

where the left-hand side represents the stream operator, which advects the

populations along ci and the right hand side the collision for which ω =
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ci Wi

(0, 0, 0) 8/27

(±1, 0, 0), (0,±1, 0), (0, 0,±1) 2/27

(±1,±1, 0), (±1, 0,±1), (0,±1,±1) 1/54

(±1,±1,±1) 1/216

Table 2.1: D3Q27 lattice.

2δt
2τ+δt = αβ with α = 2. Note that despite equivalent local conservation and

equilibria of g and f , the functions g are strictly speaking not populations

as they can become negative. In the following, we will not distinguish

the two and adopt standard notation by renaming g to f . For further

discussions on the construction of LBM and its link to kinetic theory the

reader is referred to [38, 162].

For a complete LB algorithm, the velocity set and the equilibrium popula-

tion remain to be specified. In the classical LBM for incompressible flows,

the velocity set or lattice can be constructed by the quadrature points of

the third-order, D-dimensional Gauss-Hermite quadrature and their corre-

sponding weight Wi [8, 314]. Thus in one dimension, we have a velocity set

{0,±1} with the corresponding weights {2/3, 1/6}. This corresponds to

the so-called D1Q3 lattice, where D and Q indicate the number of dimen-

sions and velocity vectors, respectively. In higher dimensions, such as the

D2Q9 or D3Q27 lattice, the discrete velocity vectors can be constructed

by tensor products of the D1Q3 lattice and the weights can be obtained by

multiplying weights associated with each component direction. In partic-

ular, the three dimensional D3Q27 lattice, which, unless stated otherwise,

is used for all simulations in the remainder of this thesis, is given in table

2.1.

Finally, in classical LBM, the equilibrium distribution function can be ob-

tained by a truncated expansion of the Maxwell-Boltzmann distribution

on the nodes of the third order Gauss-Hermite quadrature. The quadratic

approximation reads

f eq
i = ρWi

(
1 +

uαci,α
T0

+
uαuβ(ci,αci,β − T0δαβ)

2T 2
0

)
, (2.24)

where the lattice specific reference temperature T0 is related to the speed

of sound cs by T0 = c2
s = 1/3 for the D3Q27. Note that alternative ways
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to construct suitable lattices and equilibria have been developed in the

context of the entropic lattice Boltzmann method, which is reviewed in

section 2.3 [6, 62].

In the hydrodynamic limit (see, e.g. [325]), the LBGK model recovers the

Navier-Stokes equations with a kinematic shear viscosity of

ν = c2
sδt

(
1

2β
− 1

2

)
. (2.25)

These ingredients complete the classical lattice Boltzmann scheme. For

the numerical evaluation of Eq. (2.23), one typically sets δt = 1 and splits

Eq. (2.23) streaming and collision steps as follows:

• Streaming:

fi(x, t)→ fi(x+ ci, t) (2.26)

• Collision of the post-advection populations f ∗i (x, t):

f ∗i (x, t)→ f ∗i (x, t) + ω (f eq
i − f ∗i (x, t)) . (2.27)

By exploiting the lattice with spacing c and assigning grid points to the

lattice nodes, it follows that if x is a grid point then x ± ciδt is a grid

point as well for δt = 1. Thus, propagation of the population is exact for

a Cartesian grid of spacing c.

Note that the collision step can be regarded as a over-relaxation of the

population. To elaborate, let us rewrite Eq. (2.23) as

fi(x+ ci, t+ 1) = f ′i = (1− β)fi(x, t) + βfmirr
i (x, t), (2.28)

where the streaming is accounted for by the left-hand side and the post-

collision state f ′i is represented on the right-hand side by a convex lin-

ear combination between the population fi(x, t) and the maximally over-

relaxed mirror state fmirr
i (x, t). Thus, for an initial state f init

i , the fully

discrete kinetic equation given by Eq. (2.28), relaxes the population vector

beyond the equilibrium state for β > 1/2. This is termed over-relaxation

and its magnitude is determined by the relaxation parameter β ∈ [0, 1],

which is related to viscosity by Eq. (2.25) and by the maximally over-

relaxed mirror state. Note that all lattice Boltzmann models differ only in

the realization of the mirror state and the LBGK model defines it as

fmirr
i (x, t) = 2f eq

i − fi. (2.29)
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The LBGK model remains a popular choice due to its simplicity and effi-

ciency. However, as stated above, severe stability problems limit its usage

to resolved, low Reynolds number flows. A remedy was found in entropic

lattice Boltzmann models, which will be reviewed in the following.

2.3 The Entropic lattice Boltzmann method

The entropic lattice Boltzmann method (ELBM) [6, 32, 153, 161, 164,

327] differs from the LBGK model by the fact that it restores the second

law of thermodynamics, i.e. the H-theorem, which was lost during the

discretization process. To that end, a discrete version of the H-function

[6, 164] was introduced and reads

H(f) =
∑

i

fi ln

(
fi
Wi

)
. (2.30)

The equilibrium can now be defined as the minimum of the discrete H-

function Eq. (2.30) subject to the constraints of local conservation laws for

mass, momentum and energy:

min

{
H(f) =

∑

i

fi ln

(
fi
Wi

)}
, s.t.

∑

i

{1, ci, c2
i}fi = {ρ, ρu, 2ρE}.

(2.31)

In the isothermal case, energy conservation is usually neglected. On the

D1Q3 lattice and its higher dimensional extensions an analytical solution

to the minimization problem exists [6] and reads

f eq
i = ρWi

D∏

α=1

(
2−

√
1 + 3u2

α

)(2uα +
√

1 + 3u2
α

1− uα

)ciα

. (2.32)

Note that the expansion of the equilibrium in Eq. (2.32) to second order

is identical to the polynomial expression Eq. (2.24) used in the standard

LBM.

Having defined the equilibrium through the notion of a discrete H-function,

we proceed with the entropic time-stepping to restore the discrete-time

analog of the H-theorem for which the total entropy Ĥ(t) =
∑

xH(f(x, t))

is not increasing in time. To that end, the mirror state is defined as

fmirr
i = fi + α(f eq

i − fi) (2.33)
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where the over-relaxation parameter α is given by the positive root of the

entropy condition

H(f + α(f eq − f)) = H(f). (2.34)

The entropy condition equates the entropy levels of the mirror and its pre-

collision value f . Due to the convexity of H(f), the entropy condition

ensures over-relaxation with α > 1 and H(f(β)) < H(f) if the non-trivial

solution α exists. Therefore, the production of entropy is only due to

the parameter β ∈ [0, 1], which is related to viscosity. For a sufficient

grid resolution, the populations stay close to the local equilibrium and the

maximal over-relaxation is automatically computed as α = 2 [161]. This

implies that for resolved simulations the ELBM results in the LBGK model,

which recovers the Navier-Stokes equation with the viscosity as defined by

Eq. (2.25). However, in under-resolved simulations, the entropic estimate

α may result values smaller and larger than two. The macroscopic effect

of choosing the over-relaxation parameter adaptively can be interpreted as

a fluctuating effective viscosity

νeff = c2
s

(
1

αβ
− 1

2

)
. (2.35)

While for α < 2 the apparent, local viscosity is greater than the nominal

one and thus tends to smoothen the flow field, lattice sites where α > 2

have a lower effective viscosity, which corresponds to an enhancement of

the local flow field.

A few comments regarding the practical realization of ELBM are in order.

The roots of the nonlinear function Eq. (2.34) are computed numerically

in every time step and at every grid point using a Newton-Raphson (NR)

scheme with a tolerance of 10−5 for convergence of α. In practice, the NR

scheme takes on average 3 to 4 iteration to converge. When the NR scheme

does not find a solution in 15 iterations, we use the LBGK over-relaxation

α = 2.

To conclude, the adherence of the ELBM to the second law of thermo-

dynamics prevents fatal instabilities and yields a parameter-free, locally

adaptive and nonlinearly stable numerical scheme.

For further discussions and applications of ELBM, the reader is referred to

[9–11, 61, 63, 159, 160, 163, 165].
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2.4 Entropic multi-relaxation time lattice Boltz-

mann method

The LB models presented so far belong to the class of single-relaxation time

models. However, one possible extension is to consider multiple relaxation

parameters. These so-called multi-relaxation time (MRT) models exploit

the fact that the dimensionality of the kinetic system is typically much

larger than required to recover the Navier-Stokes equation in the hydro-

dynamic limit. Thus, the non-hydrodynamic, higher-order moments can

be relaxed independently with the aim to increase stability. At which rate

these moments are relaxed is a priori not clear and for long was chosen by

flow dependent fine tuning [112, 187]. This ambiguity was resolved in the

work [157] by extending the concept of the entropic LBM to multiple re-

laxation times, termed entropic multi-relaxation time lattice Boltzmann or

KBC (Karlin-Bösch-Chikatamarla) method. At variance with the ELBM

as presented above, the introduction of multiple relaxation times allows

the KBC model to avoid a fluctuating viscosity and keep it at its nominal

value while retaining stability.

In the following, we will outline the construction of the KBC model. Let

us recall that the set of natural moments of the D3Q27-lattice is given by

ρMpqr =
∑

i

fic
p
ixc

q
iyc

r
iz p, q, r ∈ {0, 1, 2} , (2.36)

yielding the conservation laws as the first 1 +D moments and the pressure

tensor Π as the second-order moments. Higher-order moments lack a di-

rect physical interpretation in the athermal case. The moment system of

Eq. (2.36) can written in matrix notation as

ρM = Cf , (2.37)

where C is the coefficient matrix and M the corresponding moments ac-

cording to Eq. (2.36). By inverting the matrix C, the population can be

expressed in terms of its moments by

f = ρC−1M . (2.38)

Thus, the moment representation spans a basis in which a population can

equivalently be expressed (see Appendix A.1 for the explicit expressions on
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the D3Q27 lattice). Note that the moment basis is not unique and, e.g., a

central moment basis can be applied analogously [40]. However, in the scope

of this thesis, only the natural moment basis was employed. Thus, in the

collision step, by applying the moment transform to the lattice Boltzmann

equation allows for individual moments to be relaxed at different rates. To

complete the advection, the populations are again obtained by Eq. (2.38).

This is the main idea of most multi-relaxation time models.

For the KBC model, the moment representation is used to decompose the

population fi into three parts as

fi = ki + si + hi, (2.39)

where ki indicates the kinematic part and depends only on the conserved

quantities. The shear part is denoted by si and necessarily includes the

deviatoric stress tensor Π′ = Π − D−1Tr(Π)I. Further non-conserved

moments may however be included in si, yielding a family of KBC models.

The higher-order moments correspond to hi, which contains all remaining

moments that are not included in ki or si. Using this decomposition, the

mirror state can be expressed as

fmirr
i = ki + (2seq

i − si) + ((1− γ)hi + γheq
i ) , (2.40)

where seq
i and heq

i indicate si and hi evaluated at equilibrium and the

parameter γ is the relaxation rate of the higher-order moments. Note

that due to the fixed over-relaxation of the stresses, any specification of γ

recovers the Navier-Stokes equation with the shear viscosity as given by

Eq. (2.25) and the special case of γ = 2 results in the LBGK model.

In this thesis, we choose the shear part si to only include the mandatory

deviatoric stress Π′ and lump all other moments in hi (see, e.g., Ref. [40] for

a thorough study of various KBC-realizations), yielding the macroscopic

equations as obtained through the standard Chapman-Enskog analysis as

∂tρ =−∇ · (ρu) , (2.41)

∂tu =− u · ∇u− ρ−1∇p+
ρ−1∇ ·

[
νρ
(
∇u+∇u† − 2D−1I∇ ·u

)]
+ 2D−1ρ−1∇ [ξρ∇ ·u] ,

(2.42)

where the pressure is given by p = c2
sρ. It is important to notice that the

bulk viscosity for the present KBC model (only the deviatoric stress tensor
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is included in si) is related to the parameter γ as

ξ = c2
s

(
1

γβ
− 1

2

)
. (2.43)

This is not the case if the shear part si additionally includes Tr (Π), which

leads to ξ = ν. The main idea of KBC lies now in the specification of γ,

which is not tuned as in various other MRT models but rather computed

locally in every time step and at every grid point by minimizing the discrete

entropy function (see Eq. (2.30)) of the post-collision state f ′i . Carrying

out the optimization leads to the following condition for γ,

∑

i

∆hi ln

[
1 +

(1− βγ)∆hi − (2β − 1)∆si
f eq
i

]
= 0, (2.44)

where ∆si = si − seq
i and ∆hi = hi − heq

i denote the deviations from

equilibrium. By introducing the entropic scalar product as 〈X|Y 〉 =∑
i(XiYi/f

eq
i ) and an expansion of Eq. (2.44) to the first non-vanishing

order of ∆si/f
eq
i and ∆hi/f

eq
i , an analytic approximation for the relax-

ation parameter γ may be found as

γ =
1

β
−
(

2− 1

β

) 〈∆s|∆h〉
〈∆h|∆h〉 . (2.45)

Compared to numerically solving Eq. (2.44), the approximation as given

in Eq. (2.45) has proven to be sufficient for all tested cases. For further

discussions on the KBC model, the reader is referred to [39, 40].

2.5 Conclusion

To summarize, in this chapter we have introduced and reviewed the lattice

Boltzmann method. We started with the fundamentals of kinetic theory

and statistical mechanics, derived the Boltzmann equation and discussed

some of its properties and approximative solution strategies.

From these basic ingredients and as a stepping stone for more advanced

models, the construction of the classical LBGK model was outlined. While

the LBGK remains popular due to its simplicity and extraordinary effi-

ciency, more sophisticated models are needed for complex flows such as

turbulence. To that end, the class of entropic LBM was introduced. First
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its single-relaxation time formulation and subsequently its extension to

multiple relaxation times, which retains the local viscosity at its nominal

value.

Unless stated otherwise, we employ the KBC model as presented above in

the remainder of this thesis. Having a good model for the bulk flow, we

proceed by a discussion of how to incorporate complex, moving geometries

into the framework of KBC.





Chapter 3

Complex and moving geometries

3.1 Introduction

Flows induced by complex, moving and deforming geometries bear many

intriguing phenomena, which directly impact science and engineering rang-

ing from industrial applications for the optimization of internal combustion

engines, turbines and energy harvesting devices to investigations regarding

the propulsion mechanisms of animals and robotic devices among many

others (see, e.g., [142, 166, 199, 200, 306]).

Besides the valuable insight from experimental studies, light may be shed

on these complex mechanisms through numerical simulations. However,

for reliable and predictive simulations, accuracy, robustness and efficiency

of the underlying numerical treatment is crucial.

Generally speaking, one can distinguish between body-conforming or body-

fitted and non-conforming methods for the simulation of such flows. Most

conventional methods are based on body-fitted grids for which the com-

putational mesh conforms to the moving and deforming geometry. While

the main advantage is that the desired boundary conditions can easily be

imposed, the generation of the moving meshes for complex geometries are

computationally expensive and require sophisticated procedures to avoid

severe mesh distortion to preserve accuracy [130, 251, 338, 340]. This is-

sue is particularly relevant for flexible geometries undergoing large, unpre-

scribed deformations as discussed for fluid-interaction problems in chapter
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8. The predominant approach for body-fitted methods is the arbitrary

Lagrangian-Eulerian formulation (ALE) [1, 137] but others such as space-

time finite element methods [337, 338] have also shown success.

On the other hand, to avoid expensive (re-)meshing procedures, viable

alternatives were found in non-conforming methods. Its most prominent

representative is the immersed boundary method (IBM), which was first

introduced by Peskin [274] for the simulation of blood flow in the human

heart. An additional advantage of these methods is that they allow the use

of Cartesian meshes for which extraordinary robust and efficient numerical

solvers exist.

In the scope of this thesis, both a realization of a body-fitted approach,

as well as a non-conforming approach have been developed for the KBC

model. The topic unstructured meshes within the realm of LBM is still a

very active area of research without a clear superior approach. Notable is

the recent development of the so-called semi-Lagrangian off-lattice Boltz-

mann method (SLLBM) as proposed in [177], which was extended to the

KBC model and wall-bounded flows in the scope of this thesis (see chapter

4)). However, due to its advantages (see above and chapter 4), the main

focus of this thesis was on non-conforming methods.

In the context of LBM and non-conforming methods, one can again distin-

guish between Cartesian and immersed boundary methods, which we will

briefly review below.

Immersed boundary methods The IBM solves the governing Navier-

Stokes equations on a fixed, underlying Eulerian grid, while fluid-structure

interfaces are described by immersed Lagrangian surface structures. Their

effect on the flow field, i.e. the coupling between the fixed Eulerian and

the Lagrangian surface mesh is accounted for by introducing fictitious body

forces, which are distributed among the neighboring Eulerian grid points

using a smoothed approximation of the Dirac delta function.

Since the original IBM [274], which was developed for deformable, elastic

structures, various derivatives, adopting different methods of computing

the body forces have been developed and extended its capabilities to handle

more general cases such as stationary or moving rigid bodies (see, e.g., [140,

242, 276, 320] for recent reviews).

The treatment of the boundary force is the central issue in IBM and can
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be imposed either explicitly or implicitly. Conventional explicit methods

include penalty methods [275], direct forcing methods [89, 94] and momen-

tum exchange methods [256].

A common issue of explicit schemes is that the no-slip condition is not

satisfied to sufficient accuracy, which may lead to spurious behavior such

as streamlines penetrating the solid object.

On the other hand a remedy was sought in implicit methods, where the

boundary force is obtained by solving a linear system either directly or by

iterative procedures. Notable suggestions for implicit schemes in the realm

of LBM include the implicit velocity correction scheme as proposed and

applied in, e.g., [316, 369–372]. Further, in [330] an iterative procedure was

employed to satisfy the no-slip condition more accurately. The proposed

scheme was then extended to higher order of accuracy in [329] and has

shown promising results for the simulation of a butterfly-like wing-body

model in [331].

However, as pointed out by a number of studies [124, 185, 329], while the

velocity obtained by IBM is continuous across the boundary, its gradients

exhibit a discontinuity on the boundary, which eventually degrades the

order of accuracy of IBM. Thus, the majority of IB schemes are first- or

less than second-order accurate.

Therefore, IBM is widely perceived to loose its benefits (no re-meshing

and efficient flow solvers on a fixed grid) for high Reynolds number flows.

This promoted further developments of higher-order accurate schemes and

adaptive grid refinement techniques [121, 209, 298, 313, 329, 353]. However,

particularly in the context of LBM, the simulation of three-dimensional

turbulence remains a challenge for IBM.

Another issue to be considered within IBM is related to the fact that the

fluid domain spans the entire computational domain, i.e. also within the

solid object. Thus the fluid inside the solid is also affected by the body

forces. While the flow field outside the solid might not be affected by

the internal fluid, the computation of the force and torque are altered if

obtained by standard procedures, i.e. negative sum of the body forces.

This so-called internal mass effect was investigated by a few studies [95,

315, 330, 336, 352], suggesting that the error in the force evaluation is

already significant for relatively low Reynolds number flows and requires

suitable rigid body approximations (see, e.g., [330] for a comparative study
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Figure 3.1: The unknown populations at the boundary node xb are represented by the

dashed arrows. •: Solid nodes. ◦: Fluid nodes. �: Solid boundary nodes. �: Fluid

boundary nodes.

of various approximations).

However, due to its simple implementation and extraordinary flexibility the

IBM remains the common choice for low Reynolds number flow simulations

involving complex, moving geometries.

Cartesian grid methods In the context of Cartesian grid methods,

various boundary conditions for flat, curved and moving wall boundaries

can be found in the lattice Boltzmann literature. In contrast to IBM, it

is not by exertion of a body force that the no-slip wall boundary con-

dition is imposed. The general situation at the boundary is depicted in

figure 3.1. In order to complete the streaming step in the LB algorithm,

the set of populations D̄ advected from a solid node xs to a fluid boundary

node xb are unknown and require to be specified in accordance with the

desired boundary conditions. Thus, the problem of imposing boundary

conditions reduces to finding a good approximation for these missing pop-

ulations. The difficulty lies in the fact that while the macroscopic variables

are readily obtained from the populations the reverse procedure is less ob-

vious. While various propositions exist in the literature (see, e.g.,[193, 254]

for comparisons and reviews), only a few have shown to stable and accu-

rate and thus limited for long to resolved and moderate Reynolds number
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flows.

For its simplicity the most popular no-slip wall boundary condition in the

context of Cartesian grid methods is undoubtedly the so-called bounce-

back boundary condition. The bounce-back boundary condition replaces

the missing population with the population associated the velocity pointing

in the opposite direction, i.e. the incoming populations are reflected at the

boundary. For flat walls various other boundary conditions have been

proposed [146, 191, 319, 398] and are reviewed in [193].

For curved boundaries, most commonly interpolation or extrapolation schemes

are applied to particle distribution to incorporate the exact boundary lo-

cation and compensate the crude staircase approximation of the geome-

try by the underlying uniformly spaced grid of the LBM. (see, e.g. [43,

97, 122, 186, 236, 395] and for reviews [193, 254]). A popular represen-

tative of such kind is the interpolated bounce-back boundary condition

(IBB) as presented in the article of [186]. In this context, an extension

to moving boundaries was proposed by introducing a force expressed in

terms of the populations in order to account for the momentum exerted

from the boundary onto the fluid. However, due to the highly fluctu-

ant nature of the populations, interpolation or extrapolation schemes are

prone to numerical instabilities. Thus, despite the fact that stability issues

in the bulk flow were overcome by introduction of a discretized entropy

function, the simulation of complex engineering applications remained un-

feasible for long due to a lack of accurate kinetic boundary conditions in

resolved and under-resolved simulations. In particular, spurious discon-

tinuities or shocks, which are triggered at the boundary and propagate

into the bulk have been observed for the simulation of wall-bounded tur-

bulence [189, 322]). This issue partially solved for stationary walls by the

so-called Tamm-Mott-Smith (TMS) boundary condition as proposed by

[59]. Furthermore, an interesting realization of the bounce-back for curved

geometries can be found for a recent, so-called crystallographic LBM, in

[252]. However, a universal approach for generic, moving wall boundaries,

which is consistent with entropy-based LBM has not been developed.

To that end, a novel boundary condition capable of handling complex and

moving geometries is proposed. Similar in spirit to immersed boundary

methods, an analog of Grad’s approximation for the populations was em-
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ployed and used to prescribe the momentum transfer from the solid to the

fluid. The idea of the scheme is to impose the boundary condition not

directly on the populations itself but in terms of the inherently smoother

macroscopic quantities such as density and momentum. Due to its evalua-

tion on the Cartesian grid the common issues arising from the computation

and distribution of the body force in the context of IBM are eliminated.

Thus, the stability issues are resolved, while exhibiting second-order ac-

curacy and consistency with entropy-based LBM [76]. Universality of the

scheme was demonstrated by its extensions to multi-speed lattices and

multiphase flows (see [103] and chapter 8, respectively).

For comparison, state-of-the-art IBM according to [330] was implemented

in collaboration with Sebastien Röcken, who conducted his Bachelor thesis

under my supervision. We found that the iterative procedure to improve

the accuracy of the no-slip condition converges and works effectively. Fur-

ther, IBM is trivially implemented and for a given resolution more efficient

compared to the Grad boundary condition as there is no need to com-

pute boundary intersection points (see xw,i in figure 3.1). As also found

in [329], the order of convergence is consistently below two and for clas-

sical benchmarks such as the flow past a two-dimensional cylinder, the

resolution requirements are much more stringent, i.e. double the resolu-

tion compared to the Grad boundary condition is needed for convergent

results. This implies an increase of computational cost of a factor of 8 and

16 in two and three dimensions (including time scaling), respectively. This

is further confirmed by a comparative study of IBB as a Cartesian grid

method and IBM (albeit using the outdated, original IBM) in [272], which

highlights the superiority of Cartesian grid methods in terms of accuracy

and consequently efficiency in the LB context. Furthermore, regarding sta-

bility properties, the IBM exhibits fatal instabilities at Re ≈ 1300 for the

flow past a two-dimensional circular cylinder and the LBGK model. For

comparison, using LBGK, the IBB scheme becomes unstable at Re ≈ 200,

while the Grad boundary condition remains stable until Re ≈ 2200.

The remainder of this chapter is structured as follows. First, the Grad

boundary condition for moving and deforming objects is introduced in sec-

tion 3.2. Validation and assessment of accuracy is subsequently presented

in section 3.3.
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3.2 Grad boundary condition

We aim at extending the capabilities of KBC models to an accurate im-

plementation of moving and deforming objects. Thus, the boundary con-

ditions as detailed in [76] are briefly summarized.

As mentioned above, in order to complete the streaming step in the LB

algorithm, the set of populations D̄ advected from a solid node xs to a fluid

boundary node xb are unknown and require to be specified in accordance

with the desired boundary conditions (see also figure 3.1). Here, we propose

to approximate these missing populations by an analog of Grad’s moment

approximation for the distribution functions. Originally, Grad’s moment

approximation stems from a truncated expansion in the Hermite velocity

polynomials around the local Maxwellian. This results in a parametrization

of the distribution in terms of relevant moments, where not only locally

conserved but also other pertinent moments may be taken into account.

It is worth noting that this is consistent with the notion of maximum

entropy as used in bulk flow for the KBC model as the Grad distribution

may analogously be derived using maximum entropy or quasi-equilibrium

considerations as discussed in [116]. In the athermal case it suffices to

include the locally conserved quantities along with the pressure tensor Π.

Explicitly, the Grad distribution with those contributions reads

f ∗i (ρ,u,Π) = Wi[ρ+
ρ

c2
s

ci ·u+ (3.1)

1

2c4
s

(
Π− ρc2

sI
)

:
(
ci ⊗ ci − c2

sI
)
],

where the pressure tensor is approximated as

Π = Πeq + Πneq, (3.2)

with

Πeq = ρc2
sI + ρu⊗ u, (3.3)

Πneq = −ρc
2
s

2β

(
∇u+∇u†

)
. (3.4)

The full specification of Grad’s distribution requires the density ρ, the

velocity u and the pressure tensor to be prescribed. For this purpose, the
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concept of target values is introduced. The momentum exerted by the

object is accounted for by specifying an appropriate target velocity utgt at

xb, which may be obtained by an interpolation involving the wall velocity

uw,i = u(xw,i, t) at the intersection point xw,i with the object along the

velocity vector ci and the velocities uf,i = u(xf,i, t) at the adjacent fluid

nodes xf,i = xb+ciδt for i ∈ D̄. Using an averaged linear interpolation for

the target velocity yields

utgt =
1

nD̄

∑

i∈D̄

qiuf,i + uw,i
1 + qi

, (3.5)

where nD̄ is the number of unknown populations and qi = ‖xb−xw,i‖/‖ci‖.
The target density on the other hand has two contributions corresponding

to the static and the dynamic part as

ρtgt = ρstat + ρdyn (3.6)

with

ρstat =
∑

i∈D̄
fbb
i +

∑

i/∈D̄
fi, (3.7)

ρdyn =
∑

i∈D̄
2Wiρb

ci ·uw,i
c2
s

, (3.8)

where the static part ρstat is the implied density if one were to use the

bounce-back boundary condition to ensure no mass flux through the bound-

ary. The reflected population fbb
i is defined as fbb

i = f̃i, where f̃i is asso-

ciated with the velocity vector c̃i = −ci. The dynamic part ρdyn accounts

for the density alteration caused by the mass displacement by the moving

body and ρb = ρ(xb, t) denotes the post-collision density at the boundary

node. The dynamic density may be derived by introducing a forcing term

Fi, which is necessary for the displacement. The mass and momentum

conservation
∑Q

i=1 Fi = 0 and
∑Q

i=1 ciFi = ρbuw directly lead to

Fi = 2Wiρb
ci ·uw
c2
s

(3.9)

for the D3Q27-lattice, where the summation over all unknown populations

in D̄ yields the implied change in density for moving objects.

Finally, the pressure tensor is prescribed by computing ∇u using a finite

difference scheme and the velocity values from the previous time step and
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evaluating Eqs. (3.3)-(3.4). The boundary condition is therefore not local

anymore but accesses additional information from the neighboring cells in

order to compute the velocity gradients. As shown by [193], this additional

information is crucial in terms of accuracy. In particular, the velocity

gradient along the x-axis and similarly for the y- and z-coordinate may be

approximated as

∂u

∂x

∣∣∣
x=xb

=
u(xf)− u(xw)

xf − xw
, (3.10)

where xw, xf denote the location of the wall intersection and the next fluid

node (w.r.t. the boundary node xb) along the x-axis.

Another aspect to be considered for moving objects is the reinitialization or

refill of the lattice sites, which are uncovered as the objects passes by. For

such nodes, we again employ the Grad distribution as given in Eq. (3.1)

with the wall velocity and a local density average, which has shown to

exhibit reasonably small pressure oscillations (see also [335]). The pressure

tensor is evaluated in the same manner as for the boundary conditions.

This boundary condition constitutes the action of the object onto the fluid.

On the other hand, for two-way coupled simulations, the feedback exerted

from the fluid onto the object is accounted for by solving Newton’s equa-

tions of motion and will be detailed in the corresponding set-ups.

A few comments on the practical implementation are in order. For three

dimensional geometries, the fluid-solid interface is described by a triangular

surface mesh. The intersection locations xw,i are computed by a signed dis-

tance field using angle-weighted pseudo-normals [13] in combination with

a watertight ray-triangle intersection algorithm according to [332] and var-

ious sanity checks to ensure consistency. In addition, standard accelerator

structures and SIMD vectorization are used to improve performance. For

deforming geometries, the wall velocity uw,i at the intersection location is

non-uniform and time-dependent. The (prescribed or computed) veloci-

ties are stored at the locations of the triangle vertices and a barycentric

interpolation is used to obtain the velocity uw,i at the intersection location.

We proceed with selected validation studies of the proposed scheme.
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Figure 3.2: Scaling of L2 error for the simulation of channel flow and Couette flow at

Re = 100.

3.3 Validation

In this section, the order of accuracy of the Grad boundary condition is

assessed and a validation for the sedimenting three-dimensional sphere is

presented. Note that further validations and benchmarks in two dimensions

including flow past a stationary and oscillating cylinder, a sedimenting par-

ticle as well as a flapping wing can be found in [76]. For brevity, we avoid

presenting all validation studies and mention that unless stated otherwise,

all simulations in this thesis are computed using the Grad boundary con-

dition. This includes thorough validation of one- and two-way coupled

laminar and turbulent flow simulations for moving as well as deforming

geometries as presented in the following chapters.

3.3.1 Order of accuracy

It is important to note that the proposed boundary condition does not im-

pose the desired values of the macroscopic quantities exactly at the bound-

ary (since only the missing populations are replaced). Hence, we need to

investigate the effect of boundary condition on the macroscopic quantities

at the wall thoroughly. To this end, we simulate a channel flow to measure
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the velocity slip at the wall and the order of convergence of the boundary

condition. Figure 3.2 shows the scaling of L2 error of velocity with respect

to the grid size for the simulation of channel flow (driven by body force) for

a Reynolds number of Re = 100. As expected, second order convergence

is clearly seen in this plot. The velocity slip at the wall was measured to

be around 10−5 to 10−7 (depending of the grid resolution) in lattice units

which is small compared to the flow velocity typically of the order of 10−2

(lattice units), hence this does not affect the flow field far away and close

to the wall. To further investigate the order of convergence also for a non-

stationary case involving moving walls, we consider the time evolution of

the Couette flow for which the bottom plate moves with a constant veloc-

ity uw whereas the plate on top is at rest. Initially, the velocity is set to

zero everywhere except on the top boundary. The L2 error is computed for

the initial transient phase till steady state is reached by comparison to its

analytical solution (see, e.g., [250] ). As it is apparent from figure 3.2, the

proposed boundary condition recovers a second order of accuracy also for

non-stationary walls. Furthermore, excellent agreement was found for the

evaluation of drag and lift forces at the wall and are presented in the next

section.

3.3.2 Sedimenting sphere

We validate the proposed scheme for three-dimensional, two-way coupled

simulations and consider the classical benchmark of a settling particle un-

der gravity. For this purpose, we conduct two simulations. In the first

simulation, we keep the sphere stationary and impose a mean flow in order

to validate and compute the drag coefficient and the recirculation length

for a Reynolds number of Re = u∞Ds/ν = 100. The sphere is resolved

with Ds = 30 grid points and the characteristic velocity u∞ = 0.01 is given

Table 3.1: Flow past a sphere at Re = 100.

Contribution Cd L/Ds

[147] 1.1 0.88

[85] 1.098 0.87

present 1.1 0.86



34 Chapter 3. Complex and moving geometries

0 5 10 15 20 25

t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

u
/u

t,
n

Nominal

present

Figure 3.3: Temporal velocity evolution of a sedimenting sphere.

by the mean flow velocity. After the initial transient, the drag coefficient

Cd and the recirculation length L are measured and the results are listed in

table 3.1 along with literature values. With a good agreement to all refer-

ence data, we perform a second simulation for which there is no mean flow

velocity but instead the sphere is settling under gravity. When released

in a quiescent fluid with density ρf , the sphere with density ρs acceler-

ates towards its terminal settling velocity ut, where the gravitational force

Fg = πD3
sρsg/6 is balanced by the buoyancy force Fb = πD3

sρfg/6 and the

drag force Fd = ρfu
2πD2

sCd/8. Establishing the force balance relates the

density ratio to the terminal velocity as

ρs
ρf

= 1 +
3u2

tCd
4Dsg

. (3.11)

In this two-way coupled simulation, the feedback from the fluid onto the

sphere is prescribed by Newton’s equations for the particle motion as

ẋs = us, (3.12)

ẍs =
F

ms
+ (1− ρf

ρs
)g, (3.13)

(3.14)
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Table 3.2: Terminal settling velocity for a sedimenting sphere at Re = 100.

Contribution ut/ut,n
[166] 1.006

[202] 1.005

present 1.0003

which is solved by an Euler integration and the force F is computed via

the Galilean invariant momentum exchange method (see [361]). The evo-

lution of the settling velocity is shown in figure 3.3 for an imposed drag

coefficient from the stationary simulation and a nominal settling veloc-

ity of ut,n = 0.01. After the initial acceleration, a terminal velocity of

ut = 0.0100033 is reached at t = tlbut,n/D = 25 non-dimensional time

units, which corresponds to less than 0.033% error (see also table 3.2 for

comparison with literature values). Thus, Galilean invariance is estab-

lished between the stationary and the moving case and therefore validates

the basic two-way coupling algorithm.





Chapter 4

Grid refinement strategies

4.1 Introduction

Despite the exceptional efficiency and parallel scalability of the LBM, the

computational cost for the simulation of realistic engineering applications

on a uniform mesh with reasonable spatial resolution remains prohibitively

large. On the other hand, in many cases, the small scale flow structures

are confined in only a small region of the computational domain. This

reveals significant optimization potential by either locally embedding re-

fined blocks into the domain or by employing unstructured meshes. In this

chapter, both possibilities are explored. In section 4.2 a novel multi-domain

block refinement approach is developed and validated for various challeng-

ing set-ups. Subsequently, in section 4.3, the entropic LBM is extended to

unstructured meshes. Finally, in section 4.4, conclusions are drawn.

4.2 Multi-domain grid refinement

Conceptually, two main approaches to multi-domain grid refinement can

be found in the literature. In the first approach, a cell-centered volumet-

ric description is employed for which the populations are continuous over

the grid interface and exact conservation of mass and momentum across

the grid border may be achieved [53, 297]. However, as reported in [297],
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staggering effects on the fine level require additional filtering. The second

approach uses a node-centered description, which requires interpolation

and rescaling of the population at the grid interface (see, e.g., [82, 96, 184,

343]). Below, the discussion is restricted to the node-centered approach.

Note that the accuracy and stability of the entire simulation relies crucially

on the two-way coupling between fine and coarse level grids.

In this section, we aim to:

(i) Propose a novel coupling technique, which avoids the low-order time

interpolation commonly used in other approaches by employing the

LB space time coupling.

(ii) Extend the refinement methodology to the entropic thermal and com-

pressible models through a consistent rescaling of the populations.

(iii) Study the role the entropic stabilizers by analyzing their behavior in

multi-grid simulations within and across refinement patches.

To that end, in section 4.2.1, the refinement methodology and the result-

ing algorithm is presented in detail. Subsequently, extensions to thermal

and compressible lattice Boltzmann models are shown in section 4.2.2.

Finally, in Sec. 4.2.3, accuracy and range of applicability is studied for

various simulations. In the isothermal regime, the turbulent channel flow

at Reynolds numbers of Reτ = {180, 590} is discussed followed by the flow

past a sphere at Reynolds number Re = 3700. The thermal regime is vali-

dated using the Rayleigh-Bénard convection for Rayleigh number Ra = 107

and the flow past a heated sphere at Re = 3700. Finally, in the compress-

ible regime, we focus on the viscous supersonic flow around the NACA0012

airfoil for a free-stream Mach number Ma∞ = 1.5 and Reynolds number of

Re = 10000. While for all simulations the flow properties are compared to

available direct numerical simulations or experiments, we pay spacial at-

tention to demonstrating the adaptive features of the entropic LBM during

multi-grid computations.

4.2.1 Multi-domain coupling

In the multi-domain approach, the fine-level grid patches are inserted into

the coarse-level grid and only one level is present for each patch. Thus, the
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Figure 4.1: Schematic of the overlapping grid interface between two levels in one (bot-

tom) and two (top) dimensions.

most crucial part of the algorithm is the coupling of different grid patches,

namely the information transfer from the fine level to the coarse level and

vice versa. This two-way coupling is realized through an overlapping re-

gion, which extents the nominal domain of the two patches as indicated

by the gray shaded region in figure 4.1. In this region both fine and coarse

grids are present. The minimal interface width for the proposed coupling

mechanism is two and one grid nodes for the fine- and coarse-level grid, re-

spectively. After each time step in the corresponding grid, the information

at the boundary needs to be extracted from the available information of

the neighboring patch. It is convenient to distinguish two types of nodes,

namely twin nodes xt and reconstruction nodes xr. Twin nodes are nodes

within the interface, located in places where both coarse and fine level

nodes are overlapping. We write xt,fc and xt,cf to indicate twin nodes

in the interface of the fine and coarse level grids, respectively. The re-

construction nodes belong to the fine level interface and do not coincide

with any coarse level nodes. Thus, the information on those nodes is not

readily available and information from the neighboring grid nodes needs

to be taken into account in order to complete the information exchange

between the grids. The information extraction for the two types of nodes
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is conceptually different and will be elaborated below.

4.2.1.1 Twin node coupling and rescaling

The standard LBM is restricted to regular meshes and non-dimensional

quantities are usually evaluated with respect to the corresponding lattice

units, specific to the chosen grid. Using multiple grids with different spac-

ing yields a set of lattice units which need to be rescaled appropriately

in order to assure identical non-dimensional quantities. While the spatial

scaling of the grid spacing is straightforwardly defined as

r =
δxc
δxf

, (4.1)

more possibilities exist for the time scale. While diffusive scaling relates

the time and space scales as δt ∼ δx2, the convective scaling requires

δt ∼ δx. In this paper, we consider the convective scaling due to its

greater numerical efficiency; it follows

r =
δtc
δtf

. (4.2)

As a result, the macroscopic quantities such as pressure, velocity and tem-

perature are continuous across the grid border. However, for a continuous

Reynolds number Re = UL/ν the viscosity scales as

νf = rνc. (4.3)

On the other hand, viscosity is related to the relaxation parameter β by

Eq. (2.25) and thus scaling of the relaxation parameter is required as

βf =
1

1 + r(1/βc − 1)
. (4.4)

For the rescaling of the populations, we decompose them into fi = f eq
i (MC)+

fneq
i (MC,∇MC), where the equilibrium distribution is written as a function

of the conserved moments MC and the non-equilibrium part additionally

depends on their gradients. Since the conserved fields are continuous across

the interface, the equilibrium does not require any rescaling. However, the

non-equilibrium part is proportional to the gradients and therefore needs

rescaling.
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In the case of an external force, we use the exact difference method as pro-

posed in [182], where the post-collision populations are modified according

to

f ′i = f ′i + [f eq
i (ρ, uα + δuα)− f eq

i (ρ, uα)] , (4.5)

where δuα is the change in velocity due to the external force Fα:

δuα =
Fα
ρ
δt. (4.6)

Due to the convective time scaling employed here, the change in velocity

has to be rescaled accordingly; it follows

δuf =
δuc
r
. (4.7)

Rescaling In the isothermal case, we may approximate the non-equilibrium

part of the population as

fneq
i ≈ Wi

2c4
s

P
(1)
αβ [ciαciβ − c2

sδαβ], (4.8)

where non-equilibrium part of the pressure tensor is given as

P
(1)
αβ =

c2
sρ

2β
(∂αuβ + ∂βuα) . (4.9)

Note that strain rate tensor is given in fine and coarse lattice units re-

spectively and therefore requires rescaling to assure continuity of the non-

equilibrium fields. Straightforward substitution yields the relation between

coarse and fine level non-equilibrium as

fneq
i,f =

βc
rβf

fneq
i,c , (4.10)

which identifies the scaling factor [96]. This rescaling is applied to all twin

nodes xt (see figure 4.1), for the coarse and the fine grids. Note that

the adaptive nature of entropy-based LBM does not require additional

smoothing or filtering to project the fine-scale solution onto the coarse-

level grid (see section 4.2.3 for a more thorough discussion). This is in

contrast to, e.g.,[184], where a box-filter is required to maintain stability.
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4.2.1.2 Reconstruction nodes

The coupling from the coarse to the fine grid requires only the rescaling

procedure as outlined above in section 4.2.1.1. The fine level grid how-

ever requires an additional reconstruction of the hanging or reconstruction

nodes that do not correspond to a coarse level node as indicated in figure 4.1

by xr. As no information from the coarse level is available at this location,

the information of the neighboring nodes is required to be included through

an interpolation scheme. Analogous to [184], we use a centered four point

stencil in each spatial dimension of the Lagrange polynomial, which, for a

generic quantity λ, reads

λ(x) =
1

16
[−λ(x− 3δx) + 9λ(x− δx) + 9λ(x+ δx)) − (4.11)

λ(x+ 3δx)].

Note that in contrast to [184], biased interpolation at the corners is avoided

to prevent the anisotropy from influencing the solution. This is particu-

larly important for the thermal and compressible model, where a biased

interpolation stencil triggers spurious artifacts at the grid interface. While

we did not encounter stability issues caused by these artifacts for all en-

tropic models presented here, instabilities might be triggered for models

without a stabilization mechanism such as LBGK. Further, we confirm the

observation of [184] that a second-order interpolation is not sufficient.

This interpolation is used for the macroscopic quantities of the flow field

needed to compute the equilibrium part of the populations as well as the

non-equilibrium part of the populations using their values at the twin nodes

on the coarse level grid.

4.2.1.3 Algorithm

In this section, we present the proposed grid refinement algorithm. We aim

to avoid the commonly used low-order time interpolation (see, e.g., [184])

and instead replace it by a high-order spatial interpolation using Eq. (4.11)

in combination with LB time stepping. After initialization at time t = t0
we assume that all populations and macroscopic fields are specified and

available everywhere on all grids. Further, a refinement ratio of r = 2 is

assumed. Starting at t = t0, the simulation is evolved by the following

iterative steps:
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1. t = t0 + δt,f : Advection and collision on the fine grid. Note that

information is missing on the boundary of the fine level interface and

collision should be avoided on those nodes.

2. t = t0 + δt,c : Advection on both coarse and fine level grids. Infor-

mation is now missing on two boundary layers in the fine and one in

the coarse grid.

3. t = t0 + δt,c : Rescaling of populations and macroscopic fields on the

twin nodes xt .

4. t = t0 + δt,c : Reconstruction of the populations on xr: Interpolation

of the macroscopic quantities to compute the equilibrium part of the

populations and direct interpolation of the non-equilibrium part of

the populations. All information is now available again.

5. t = t0 + δt,c : Collision on all grids.

This procedure effectively switches time interpolation with a purely spatial

interpolation combined with entropic LB time stepping.

4.2.2 Extensions to thermal and compressible lattice

Boltzmann models

In this section, the proposed grid refinement algorithm is extended to ther-

mal and compressible lattice Boltzmann models. This work was done in

collaboration with Nicolo Frapolli. In the following, both models and their

refinement procedures are presented. Note that the refinement algorithm

as outlined above remains identical but the rescaling procedures of the

populations differ for each model.

4.2.2.1 Thermal Flows

Two-population KBC model In the two-population KBC model for

thermal flows, the kinetic equations, Eq. (2.28), for f -populations are mod-

ified in order to account for a variable Prandtl number [7, 155, 265]. The

second set of populations, g, is employed to recover the energy equation

[155, 265]. The lattice kinetic equations for the f and g populations read

fi(x+ ci, t+ 1) = (1− β)fi + βfmirr
i + 2(β − β1) [f ∗i − f eq

i ] , (4.12)
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gi (x+ ci, t+ 1) = gi (x, t) + 2β (geq
i − gi) + 2 (β − β1) [g∗i − geq

i ] , (4.13)

where fmirr
i (Eq. (2.40)) and f eq

i (Eq. (2.32)) are the same as for the isother-

mal model, geq
i is the equilibrium of g-populations, f ∗i and g∗i are the quasi-

equilibrium states for f - and g-populations, respectively and β1 is a second,

independent, relaxation parameter.

The population, geq
i , f ∗i and g∗i are constructed using the general form

Gi = Wi

(
M0 +

Mαciα
T0

+
(Mαβ −M0T0δαβ) (ciαciβ − T0δαβ)

2T 2
0

)
. (4.14)

The moments to be employed for the computation of the equilibrium of

g-populations are provided in table 4.1. The choice of moments for the

quasi-equilibrium states f ∗ and g∗ depends on the Prandtl number. In

table 4.1, the moments for the quasi-equilibrium populations are provided

for both regimes (Pr ≤ 1 and Pr > 1) [155, 265].

Table 4.1: Moments for equilibrium and quasi-equilibrium construction.

Gi M0 Mα Mαβ

geq
i 2ρE qeq

α Req
αβ

f ∗i , Pr ≤ 1 ρ ρuα P eq

f ∗i , Pr > 1 ρ ρuα Pαβ

g∗i Pr ≤ 1 2ρE qα − 2uβ

(
Pαβ − P eq

αβ

)
Req
αβ

g∗i Pr > 1 2ρE qeq
α + 2uβ

(
Pαβ − P eq

αβ

)
Req
αβ

In table 4.1, the moments are defined as follows:

P eq
αβ =

∑

i

ciαciβf
eq
i = ρT0δαβ + ρuαuβ, (4.15)

qeq
α =

∑

i

ciαg
eq
i = 2ρEuα + 2ρT0uα, (4.16)

Req
αβ =

∑

i

ciαciβg
eq
i

= 2ρE (T0δαβ + uαuβ) + 2ρT0 (T0δαβ + 2uαuβ) , (4.17)
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where the total energy E is defined as

E =
D

2
T +

1

2
u2. (4.18)

The relaxation parameters β and β1 are related to the kinematic viscosity

and thermal diffusivity depending on the Prandtl number as

ν =





(
1

2β − 1
2

)
T0, if Pr ≤ 1,(

1
2β1
− 1

2

)
T0, if Pr > 1,

αth =





(
1

2β1
− 1

2

)
T0, if Pr ≤ 1,(

1
2β − 1

2

)
T0, if Pr > 1,

so that the Prandtl number Pr reads

Pr =
ν

αth
=

{
(1−β)β1
(1−β1)β , if Pr ≤ 1,
(1−β1)β
(1−β)β1

, if Pr > 1.

Rescaling For the thermal two-population model the rescaling of the f -

and g-populations cannot be applied in the same way as for the single-

population case, Eq. (4.10), because two independent relaxation parame-

ters appear in the kinetic equations. Moreover, we must distinguish be-

tween the two cases of Pr ≤ 1 and Pr > 1.

For Pr ≤ 1 there is no contribution of the quasi-equilibrium state in the

kinetic equation for f , so that the same rescaling as Eq. (4.10) can be

applied for the f -populations. For the g-populations, however, this is no

more valid, since the non-equilibrium part depends on two independent

relaxation parameters. This can be verified by deriving an analytical ex-

pression for the non-equilibrium g-populations through Chapman-Enskog

expansion, as in [265]. The non-equilibrium part of the g-population de-

pends on the higher-order, non-conserved moments as

gneq
i = gneq

i

[
q(1)
α (β, β1), R

(1)
αβ(β1)

]
, (4.19)

where q
(1)
α and R

(1)
αβ are the first and second order non-equilibrium mo-

ments of the g-populations. The q
(1)
α moment includes a contribution of β,

different from the moment R
(1)
αβ(β1) and the higher-order moments, which



46 Chapter 4. Grid refinement strategies

need to be excluded before rescaling of the non-equilibrium part. The q
(1)
α

moment can be written analytically as

q(1)
α (β, β1) = − 1

2β1
ρDT0∂αT + 2uβP

(1)
αβ (β), (4.20)

so that the contribution in β can be separated from the rest of the contribu-

tions to the non-equilibrium part of the g-populations. This contribution

can be rescaled separately according to

P
(1)
αβ,f =

βc
rβf

P
(1)
αβ,c. (4.21)

After subtraction of the term dependent on β the rescaling is performed

as usual. The final result reads

gneq
i,f =

β1,c

rβ1,f

(
gneq
i,c −Wi

2uβP
(1)
αβ,cciα

T0

)
+Wi

2uβP
(1)
αβ,fciα

T0
. (4.22)

Note that the non-equilibrium pressure tensor P
(1)
αβ can be computed di-

rectly from f -populations by

P
(1)
αβ =

∑

i

ciαciβ(fi − f eq
i ). (4.23)

For the case Pr > 1, similar considerations can be applied and the final

results are for the f -populations

fneq
i,f =

β1,c

rβ1,f
fneq
i,c , (4.24)

while for the g-populations

gneq
i,f =

βc
rβf

(
gneq
i,c −Wi

2uβP
(1)
αβ,cciα

T0

)
+Wi

2uβP
(1)
αβ,fciα

T0
, (4.25)

where the non-equilibrium pressure tensor is rescaled as

P
(1)
αβ,f =

β1,c

rβ1,f
P

(1)
αβ,c. (4.26)
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4.2.2.2 Compressible Flows

Two-population ELBM for compressible flows Same as for the

thermal two-populations ELBM, also for the compressible model [99, 100],

we employ two populations. However, in the compressible model a multi-

speed lattice, the DdQ7d, is used and the second population is needed to

change the adiabatic exponent γad. The kinetic equations for the compress-

ible model read [99, 100]

fi(x+ ci, t+ 1)− fi(x, t) = αβ2 (f eq
i − fi) + 2 (β2 − β3) [f ∗i − f eq

i ], (4.27)

gi(x+ ci, t+ 1)− gi(x, t) = αβ2 (geq
i − gi) + 2 (β2 − β3) [g∗i − geq

i ]. (4.28)

The equilibrium f eq
i for the f -populations is found by minimizing the en-

tropy function under the constraints of conservation laws, Eq. (2.31). The

minimization problem is solved with the method of the Lagrange multipli-

ers and leads to the formal expression

f eq
i = ρWi exp

(
χ+ ζαciα + λc2

i

)
, (4.29)

where χ, ζα and λ are the Lagrange multipliers, which in turn are de-

termined by solving the system of D + 2 equations found by inserting

Eq. (4.29) into the conservation laws. The system is solved numerically at

every node in every time-step. The equilibrium for the g-populations, geq
i ,

can be computed directly from f eq
i as

geq
i = (Cv −D/2)Tf eq

i , (4.30)

where Cv is the heat capacity at constant volume. The conservation of

total energy becomes

2ρEtot = 2ρCvT + ρu2 =
∑

i

c2
ifi +

∑

i

gi, (4.31)

where Etot is the total energy.

The quasi-equilibrium state needs to be chosen depending on the Prandtl

number [103]. For Pr ≤ 1, the quasi-equilibrium state depends on the

centered heat-flux tensor Qαβγ, which can be written in a compact form as

f ∗i = f eq
i +Wi

(
Qαβγ −Qeq

αβγ

)
[ciαciβciγ − 3Tciγδαβ]

6T 3
, (4.32)
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where

Qαβγ =

Q∑

i=1

fi(ciα − uα)(ciβ − uβ)(ciγ − uγ). (4.33)

The quasi-equilibrium populations g∗i are written consistently with the f ∗i
populations and read

g∗i = geq
i +

Wi (qα − qeq
α ) ciα

T
, (4.34)

where qα is the contracted centered heat-flux tensor associated to the in-

ternal degrees of freedom of the gas

qα =

Q∑

i=1

gi(ciα − uα). (4.35)

In the above expressions Wi = Wi(T ) are the temperature-dependent

weights [99, 100].

Finally, entropic time stepping as proposed in the original ELBM is em-

ployed (see chapter 2.3). The kinematic viscosity and the thermal diffusiv-

ity are thus related to the relaxation parameters β2 and β3 by

β2 =
1

2ν
T + 1

, β3 =
1

2αth
T + 1

, (4.36)

and the heat capacity Cv is derived from the desired adiabatic exponent

γad from

Cv =
1

γad − 1
. (4.37)

The model implies a bulk viscosity ξ of

ξ =

(
1

Cv
− 2

D

)
µ. (4.38)

For further details on the model the reader is referred to [99, 100].

Rescaling As for the thermal model, also in the compressible model the

populations can not be rescaled directly, since the non-equilibrium part

depends on two relaxation parameters. For both f - and g-populations

the non-equilibrium parts can be derived analytically as a function of the

higher-order, non-conserved moments [100]. We consider here only the case
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Pr ≤ 1; for the case Pr > 1 the relaxation parameters β2 and β3 need

simply to be interchanged.

For the f -populations, the non-equilibrium part depends on the higher-

order, non-conserved moments as

f
(1)
i = f

(1)
i

[
P

(1)
αβ (β2), Q

(1)
αβγ(β2, β3), R

(1)
αβγµ(β2)

]
, (4.39)

where P
(1)
αβ is the non-equilibrium pressure tensor and Q

(1)
αβγ and R

(1)
αβγµ

are the third- and fourth-order non-equilibrium moments. In this case, the

different relaxation shows up only in the Q
(1)
αβγ tensor, which can be written

analytically as

Q
(1)
αβγ(β2, β3) = − 1

2β3
ρT [∂αTδβγ + ∂βTδαγ + ∂γTδαβ] (4.40)

+ uαP
(1)
βγ (β2) + uβP

(1)
αγ (β2) + uγP

(1)
αβ (β2).

The contribution related to β3 can be subtracted from the rest of the non-

equilibrium part and rescaled separately according to the proper relaxation.

The non-equilibrium part without the contribution related to β3 can be

written as

f
neq

i = fneq
i (4.41)

+
WiYi,αβγ

6T 3

(
uαP

(1)
βγ (β2) + uβP

(1)
αγ (β2) + uγP

(1)
αβ (β2)

−Q(1)
αβγ(β2, β3)

)
,

where

Yi,αβγ = ciαciβciγ − 3ciγTδαβ. (4.42)

At this point the reduced non-equilibrium part can be rescaled according

to

f
neq

i,f =
β2,c

rβ2,f
f

neq

i,c , (4.43)

and the final non-equilibrium populations become

fneq
i,f = f

neq

i,f (4.44)

− β3,c

rβ3,f

WiYi,αβγ
6T 3

(
uαP

(1)
βγ,c(β2) + uβP

(1)
αγ,c(β2) + uγP

(1)
αβ,c(β2)

−Q(1)
αβγ,c(β2, β3)

)
,
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where P
(1)
αβ and Q

(1)
αβγ can be computed as

P
(1)
αβ =

∑

i

ciαciβ(fi − f eq
i ), (4.45)

and

Q
(1)
αβγ =

∑

i

ciαciβciγ(fi − f eq
i ). (4.46)

For g-populations a similar procedure is applied. The non-equilibrium part

can be expressed as

g
(1)
i = g

(1)
i

[
K(1)(β2), q

(1)
α (β2, β3), R

(1)
αβ(β2)

]
, (4.47)

where K(1), q
(1)
α and R

(1)
αβ are the zeroth-, first- and second-order non-

equilibrium moments of g-populations. Similar to the f -populations, the

different relaxation, β3, shows up only in the q
(1)
α tensor; this can be ex-

pressed analytically as [100]

q(1)
α = − 1

2β3
ρT (2Cv −D) ∂αT + uαK

(1)(β2). (4.48)

Thus, the contribution related to β3 can be subtracted from the rest of

the non-equilibrium g-populations and thus can be rescaled separately ac-

cording to the proper relaxation. The non-equilibrium part without the

contribution related to β3 can be written as

gneq
i = gneq

i +Wi

(
uαK

(1)(β2)− q(1)
α (β2, β3)

)
ciα

T
. (4.49)

The reduced non-equilibrium part can be rescaled as

gneq
i,f =

β2,c

rβ2,f
gneq
i,c , (4.50)

and the final non-equilibrium populations become

gneq
i,f = gneq

i,f +
β3,c

rβ3,f
Wi

(
uαK

(1)(β2)− q(1)
α (β2, β3)

)
ciα

T
, (4.51)

where K(1) and q
(1)
α can be computed directly from populations as

K(1) =
∑

i

(gi − geq
i ), (4.52)
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Figure 4.2: Snapshot of the turbulent channel, visualized by isosurfaces of Q-criterion

colored by velocity magnitude.

and

q(1)
α =

∑

i

ciα(gi − geq
i ). (4.53)

4.2.3 Numerical validation

In this section, the proposed grid refinement technique is validated and its

range of applicability is assessed in isothermal, thermal and compressible

flow regimes.

4.2.3.1 Isothermal flows

In this section, we investigate accuracy and stability of the proposed grid

refinement algorithm for turbulent isothermal flows using the examples of

the flow past a sphere and the turbulent channel flow, where grid refinement

is crucial to obtain accurate results. The boundary conditions used for all

wall-boundary nodes is Grad’s approximation as presented in chapter 3.

Turbulent channel flow The first validation in the isothermal regime is

dedicated to the well-studied problem of the turbulent flow in a rectangular

channel for which many experimental and numerical investigations have

been conducted (see, e.g., [83, 169, 180, 248]). We compare the performance

of the proposed grid refinement technique in combination with KBC models

to the DNS data of [248] for a Reynolds number Reτ = uτδ/ν = 180 and
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Figure 4.3: Slice through the turbulent channel flow for Reτ = 180 (top) and Reτ = 590

(bottom) showing a snapshot of the streamwise velocity.

Reτ = 590. The friction Reynolds number Reτ is based on the channel

half-width δ and the friction velocity uτ =
√
τw/ρ. The flow is driven by

a constant body force, which was chosen according to g = Re2
τν

2/δ3 to

achieve the desired Reynolds number. By computing the wall-shear stress

directly from the flow field of the simulation, the friction velocity may be

evaluated and the actual Reynolds number measured. The results of our

simulations are given in table 4.2. The simulations were conducted for a

resolution of the channel half-width of δc = 50 lattice points on the coarse

level.

The computational domain was chosen as [4πδ×2δ×4/3πδ] for Reτ = 180

and [8δ × 2δ × 4δ] for Reτ = 590, where the x and z coordinates are

in streamwise and spanwise direction, respectively. An initial perturba-

tion is introduced into the flow field in order to trigger turbulence. Fig-

ure 4.2 shows an instantaneous snapshot of isosurfaces of the Q-criterion

Table 4.2: Turbulent flow in a rectangular channel. The nominal and measured Reynolds

numbers are indicated by Reτ,n and Reτ,m, respectively.

Contribution Reτ,n Reτ,m ∆y+

[248] 180 178.13 ∼ 0.054

present 180 173.06 ∼ 1.73

[248] 590 587.19 ∼ 0.044

present (refined) 590 611.87 ∼ 3.06

present (uniform) 590 613.19 ∼ 12.26
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Figure 4.4: Mean velocity profile in a turbulent channel at Reτ = 180

for the case of Reτ = 590. In addition, a slice of the instantaneous velocity

magnitude for both configurations is plotted in figure 4.3. Most conve-

niently, all data is expressed in wall-units, where the velocity is defined as

u+ = u/uτ and spatial coordinate as y+ = yuτ/ν. Using wall-units, the

spatial resolution may be quantified with the non-dimensional grid spacing

∆y+ near the channel wall. The scaling of the average velocity is well un-

derstood in a high-Reynolds number turbulent channel by the law of the

wall, where one distinguishes between the viscous sublayer (y+ < 5), the

buffer layer (5 < y+ < 30) and log-law region (y+ ≥ 30) [279]. While the

average streamwise velocity u+
x is assumed to scale linearly with the wall

coordinate y+ in the viscous sublayer, the log-law suggests a scaling with

u+
x = κ−1 ln y+ + C+ in the log-law region, where κ ≈ 0.41 denotes the

von Kármán constant and the constant C+ is given by C+ ≈ 5.5. While

in the Reτ = 180 case low Reynolds number effects may still be observed,

the channel flow at Reτ = 590 is at a sufficiently high Reynolds number to

exhibit all expected features of high Reynolds number wall-bounded flows.

Considering the case of Reτ = 180, we choose one level of refinement near

the wall with a spatial extent of 20 coarse-level points, which yields a

resolution of ∆y+
f = 1.73 near the wall. We compare the average velocity

profile in figure 4.4. It is evident that the results match the reference data

excellently. Considering the root mean square (rms) velocity profiles, a

similarly good agreement is shown in figure 4.5. The marginal overshoot of
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Figure 4.5: Rms velocity profile in a turbulent channel at Reτ = 180

ux,rms is attributed to a slightly higher Reynolds number in our simulation

compared to the reference data. Important to notice is that the transition

between the grid levels is smooth for both the mean and rms velocity

profiles and no numerical artifacts are present.

With these results, we test the limits of applicability of the proposed grid

refinement technique and choose a higher Reynolds number of Reτ = 590.

In this case, we add an additional grid level in the near-wall region to

resolve the flow field in the fine level with ∆y+
f ≈ 3.06 (see figure 4.8).

To assess the necessity of grid refinement in the near-wall region, we con-

duct another simulation for which a uniform mesh with ∆y+ ≈ 12.26 is

used. The average velocity profiles are shown in figure 4.6. One can ob-

serve that despite of the severe under-resolution in the uniform case, the

average profile agree well with the reference data. Note that this is in

contrast to various well-established LB models, which are challenged by

under-resolved simulations (see, e.g., [111, 255] for comparative studies for

the turbulent channel flow set-up). The simulation using the refined mesh

matches similarly well and one cannot observe any discontinuities at the

level interfaces. Studying this in more detail, we consider the next order

of statistics, the rms velocity profiles, for both cases in figure 4.7. In the
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Figure 4.6: Mean velocity profiles in a turbulent channel at Reτ = 590

uniform case (figure 4.7, right), it is obvious that the peak ux,rms is severely

under-predicted, yielding a rather poor agreement with the reference DNS.

This is of course expected as the small-scale structures are not well rep-

resented on such a coarse grid. Surprisingly, the periodic and streamwise

components of the rms velocities show rather small discrepancies when

compared to the DNS. This is attributed to the excellent subgrid features

of entropic lattice Boltzmann models for under-resolved simulations as also

reported in [40, 74].

The simulation using grid refinement is shown on the left side of figure 4.7,

where we zoom in the near-wall region and pay special attention to the

level interface. The agreement on the finest level is good, as expected.

However, a small but distinct jump may be observed at the interface of

level one and level two, which is particularly pronounced for uy,rms. This

owes to the fact that the severe under-resolution in the coarse level leads

to a misrepresentation of the small scale fluctuation on the coarse level. To

support this hypothesis, in figure 4.8, we show an instantaneous snapshot of

the spatial distribution of the stabilizer γ for the KBC model as computed

by Eq. (2.45). As shown in [40], the stabilizer γ tends to the LBGK value

γ = 2 in the resolved case. Thus, its deviation provides a measure of

under-resolution. It is apparent that in the refined near-wall region, the

stabilizer is indeed very close to γ = 2, whereas the distribution in the

bulk exhibits large deviations. It is interesting to notice that particularly
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Figure 4.7: Rms velocity profiles in a turbulent channel at Reτ = 590 with a two-level

refinement in the near-wall region (left) and the non-refined case (right). For the legend

please refer to figure 4.5.

large deviations arise in the immediate neighborhood of the level interface.

It seems that the level interface is detected and compensated by the KBC

model, thus rendering explicit projection of the fine level solution onto the

coarse mesh by filtering or alike unnecessary [184].

These observations when viewed together with the flow at Reτ = 180

suggest that despite of the excellent subgrid features of entropic lattice

Boltzmann models in matching the average velocity (see uniform mesh at

Reτ = 590), a minimum resolution on the coarse grid is required to rea-

sonably represent the small scale fluctuations on the coarse grid and thus

achieve a smooth grid level transition in higher-order statistics. The im-

plicit subgrid model however, alleviates the need for filtering the fine level

solution on the coarse level and assures stability in the coarse level. It fur-

ther needs to be emphasized that due to these excellent subgrid features,

the finest patch may itself be under-resolved (∆y+
f ≈ 3.06 compared to

∆y+ ≈ 0.04 for the DNS) while accurately capturing the velocity fluctu-

ations near the wall. Thus, the refinement allows to enhance the subgrid

features, so that also the higher-order statistics can be captured accurately.

Flow past a sphere After the validation of the grid refinement tech-

nique for flat walls in the previous section, we now consider curved walls

and choose the well-studied problem of the flow past a sphere. In order
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Figure 4.8: Slice through the turbulent channel flow at Reτ = 590 showing the spatial

distribution of the stabilizer γ for the KBC model and the refinement patches (only left

half shown here).

to assess the accuracy of the proposed grid refinement algorithm, we focus

on the flow within the subcritical regime, for which the boundary layer re-

mains laminar and the near wake features turbulence. A detailed analysis

is conducted for Re = 3700 and an instantaneous snapshot of isosurfaces

of the Q-criterion is shown in figure 4.9. The computational domain is

chosen as [−7D, 23D]× [−10D, 10D]× [−10D, 10D] with the sphere cen-

tered at the origin. Four refinement patches are located closely around

the sphere, where the finest patch resolves the sphere with D = 120. A

graphical representation of the refinement patches is shown in figure 4.15a,

where the finest level is avoided for D = 120. It is worth noting that a

simulation for this sphere resolution and without grid refinement would re-

quire Nf ≈ 20.7 · 109 grid points, rendering such a simulation unfeasible for

practical purposes. With the refinement, the computational grid reduces

to a total of Nr ≈ 94.6 · 106 lattice points. By taking into account the time

step scaling, the equivalent fine level points in the refined case amount

to 39.5 · 106, which is roughly 575 times less than the fully resolved case

without refinement. Such an estimate suggests a tremendous optimization

potential when employing grid refinement, while still retaining the desired

accuracy. This allows for a detailed comparison with the contributions

of [296] and their DNS simulation, the LES simulations of [388] and the
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Figure 4.9: Isosurfaces of Q-criterion colored by velocity magnitude for the flow past a

sphere at Re = 3700.

experimental results of [172, 305].

First, we compare various scalar quantities such as the mean drag coeffi-

cient Cd = Fd/(1/2ρ∞u2
∞D), the mean base pressure coefficient Cpb, the

recirculation length Lr and the separation angle ϕs. Here, the mean drag

force is denoted by Fd and u∞ is the uniform inflow velocity. As tabulated

in table 4.3, the comparison shows excellent agreement with the literature

for all quantities.

For a more thorough analysis, we compare the time-averaged profiles of the

streamwise velocity component ux in the near wake to profiles obtained by

DNS, LES and experiment, see figure 4.10. Three profiles are measured

for a streamwise location of x/D = 0.2, x/D = 1.6 and further down-

stream at x/D = 3. While for x/D = 0.2 all measurements are in almost

perfect agreement, the discrepancies increase slightly for all reference data

further downstream. Nonetheless, the measurements taken from our sim-

ulation appear to be in good agreement with all reference data. Next,

in figure 4.11, the azimuthally averaged distribution of the mean pressure

coefficient Cp = (p − p∞)/(1/2ρ∞u2
∞) around the sphere is presented in

comparison with the DNS and experimental results. It is apparent that

mean pressure distribution matches the two references well. However, it

needs to be pointed out that this agreement could only be achieved with

an additional layer of refinement, yielding a resolution of D = 240 points

for the diameter of the sphere. This is in contrast to the velocity profiles,
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Figure 4.10: Mean streamwise velocity profiles in the wake for the simulation of flow

past a sphere at Re = 3700.

which were captured already with four levels and a diameter of D = 120

points in the finest level.

These results for the turbulent channel flow and the flow past a sphere

conclude the validation of the isothermal regime. Our results indicate ro-

bustness, high accuracy and compatibility with entropy-based LBM of the

proposed grid refinement scheme for high Reynolds number turbulent flows.

Although average flow velocity is easily captured using a coarse uniform

grid in combination with the KBC model, near-wall features and higher-

order statistics do require grid refinement for an accurate representation.

Table 4.3: Turbulent flow past sphere at Re = 3700 and the comparison of the mean

drag coefficient Cd, the averaged base pressure coefficient Cpb, the recirculation length Lr
and the separation angle ϕs with literature values.

Contribution Cd Cpb Lr ϕs
[296] 0.394 −0.207 2.28 89.4

[388] 0.355 −0.194 2.622 90

[172] − −0.224 − −
[305] 0.39 − − −
present 0.383 −0.220 2.51 89.993
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4.2.3.2 Thermal flows

We proceed investigating stability and accuracy of the proposed grid re-

finement algorithm when applied to thermal flows, simulated with the two-

population model [155]. We start with the simulation of Rayleigh-Bénard

convection (RBC) in order to validate the model and the grid refinement

algorithm for flat walls. As a second step, we revisit the simulation of

the flow past a sphere but additionally include the temperature field and

compare the mean Nusselt number distribution. The boundary conditions

used for all wall-boundary nodes is Grad’s approximation as presented in

[265].

Rayleigh-Bénard convection The Rayleigh-Bénard set-up consists of

a fluid layer which is heated from below and cooled from above. When the

temperature difference ∆T between the two walls is sufficiently high, ther-

mal convection is triggered. The non-dimensional parameters governing

this problem are the Rayleigh number Ra = gλ∆TH3/νκ and the Prandtl

number Pr = ν/κ, where g represents gravitational acceleration, λ the

thermal expansion coefficient, H the height of the fluid layer, ν the kine-

matic viscosity and κ the thermal conductivity.

In this work, we present the results of the thermal two-population model

coupled with the grid refinement algorithm for thermal flows and their

comparison with the DNS simulation of [342]. The Rayleigh and Prandtl
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Figure 4.12: Volume rendering of temperature for the Rayleigh-Bénard convection at

Ra = 107.

number are Ra = 1 · 107 and Pr = 0.7. The computational domain is a

box with periodicity in the x and y directions and a fixed temperature is

imposed at the bottom (hot) and top (cold) walls. The size of the domain

is Lx × Ly × Lz = 8H × 8H × H, where H = 64 is the resolution in the

coarse grid level. On top of the coarse grid, one more refinement patch is

added at both hot and cold walls in order to increase the resolution in the

boundary layers. To trigger convection an initial random perturbation is

imposed on a linear temperature profile. The buoyancy force is computed

according to the Boussinesq assumption and implemented as reported in

[155].

An instantaneous volume rendering of the temperature in the domain is

shown in figure 4.12. One can notice the cold temperature plumes in

the upper part of the box and the hot temperature plumes developing

from the bottom of the box. Quantitatively, in figure 4.13a, we com-

pare the mean and the rms temperature profiles with the recent DNS

data [342] and the agreement is good. All statistics are collected after

the initial transient at 40tL and sampled every 2.5tL for a time period of

100tL, where tL = 2H/U denotes the large eddy turnover time with the

free fall velocity U =
√

gλ∆TH. The temperature profiles are plotted

as a function of the normalized vertical coordinate (normal to the bot-

tom wall) z∗ = z/(H/Nu), where Nu is the mean Nusselt number, defined

as Nu = dT/dn
∆T/H and dT/dn is the mean temperature gradient at top and

bottom walls. In figure 4.13b, the rms velocity profiles for the u and w

component are shown and compared to the reference data. Analogous to

the temperature profiles, a good agreement is also observed for the velocity

fluctuations. To complete the validation for the Rayleigh-Bénard convec-

tion we compare the resulting Nusselt number. While in our simulation

the Nusselt number at the wall is evaluated as NuELBM = 15.67, the DNS
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Figure 4.13: Rayleigh-Bénard convection at Ra = 107.

[342] reports NuDNS = 15.59. This amounts to a relative discrepancy of

εNu = 5.13 · 10−3.

Similar to the turbulent channel flow, it is important to notice that the

transition at the grid interface is smooth for all quantities presented here,

from the mean and rms temperature profiles to the rms x- and z-velocity

profiles. This is again attributed to the entropic stabilizer γ for which a

snapshot through the domain is shown in figure 4.14. It is evident that

larger deviations of γ from the LBGK value γ = 2 appear in the bulk

rather than near the walls where the resolution is higher. Also in this

case larger deviations in the γ arise in the immediate neighborhood of the

level interface, which seems to be detected and compensated by the KBC

model. This is analogous to the observation in the channel flow. Thus

demonstrating the self-adaptive nature of the entropic stabilizer γ for all

flow situations including grid refinement and complex wall boundary condi-

tions. This self-adaptive nature of γ makes the simulations parameter-free.

Flow past a heated sphere As in the isothermal section, after valida-

tion of the scheme for flows involving flat walls, we increase the complexity

and consider curved walls next. For this purpose, we consider a heated

sphere with the surface at constant temperature. The flow is simulated

for a Reynolds number Re = 3700 and Prandtl number Pr = 0.7. The

computational domain is identical to the isothermal case with D = 240.

A snapshot of the temperature distribution around and in the wake of the
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Figure 4.14: Slice through the Rayleigh-Bénard convection at Ra = 107 showing the

spatial distribution of the stabilizer γ for the KBC model and the refinement patch (only

left half shown here).

sphere for this simulation along with the refinement patches is shown in fig-

ure 4.15a. The figure shows hot temperature streams in the shear layer and

the back of the sphere, where the flow recirculates. Further downstream,

hot fluid mixes with cold fluid and the temperature becomes diluted. In

order to quantitatively validate the heated sphere simulation, the mean

reduced Nusselt number distribution Nu/
√

Re = dT/dn
∆T/D/

√
Re around the

sphere is shown in comparison to experimental results [355] in figure 4.15b,

where n is the normal coordinate with respect to the sphere’s surface and

∆T the temperature difference between fluid and sphere surface. The plot

shows a good comparison with the experiment.

4.2.3.3 Compressible Flows

We conclude the numerical validation by entering the compressible regime

for which we take the simulation of the two-dimensional viscous supersonic

flow around a NACA0012 airfoil as an example.

Supersonic NACA0012 airfoil The set-up consists of a two-dimensional

simulation of the viscous supersonic flow field around a NACA0012 airfoil,

at zero angle of attack A = 0◦. The free-stream Mach number is set to

Ma∞ = u∞/a∞ = 1.5, where a∞ =
√
γadT∞ is the speed of sound with

γad = 1.4 and T∞ = 0.8, while the Reynolds number, based on the chord

C of the airfoil, is Re = Cu∞/ν = 10000. The computational domain is

prescribed as [−7.5C, 17.5C] × [−7C, 7C] with the airfoil centered at the

origin. Two refinement patches are placed closely around the airfoil, where
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Figure 4.15: Flow past a heated sphere at Re = 3700.

the finest patch resolves the airfoil chord with C = 1200 grid points (see

figure 4.16a).

Due to the high Mach number in this simulation, we use a shifted lattice as

presented in [101]. In particular, we employ the D2Q49 lattice with a shift

in the freestream direction of Ux = 1. The advantage of shifted lattices is

that the errors in the higher-order moments of the equilibrium populations

are also shifted and centered around the shift velocity Ux. This allows us to

keep the number of populations of the multi-speed lattice relatively small,

while reducing the errors in the high Mach regime. For further details on

shifted lattices the reader is referred to [101].

In figure 4.16a, a snapshot of the temperature distribution along with the

two refinement patches around the airfoil, indicated by the shadowed re-

gions in the lower half of the domain, is shown. The main features of the

viscous supersonic flow field are evident from the temperature distribution:

The formation of a bow shock may be observed in front of the airfoil, yield-

ing a jump and drastic increase in temperature. An oblique shock wave

develops from the shear layer as a λ shock at the trailing edge of the airfoil

. Vortex shedding is initiated further downstream in the shear layer. It is

important to notice that the shock waves penetrate through various refine-

ment levels, where special care usually needs to be taken to avoid artificial

reflections at the interface. It is apparent that for the proposed refinement
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(a) Snapshot of temperature distribution.

Grid refinement patches are shown by the

shadowed regions around the airfoil in the

lower half of the domain.
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Figure 4.16: Flow around a NACA0012 airfoil at A = 0◦, Ma = 1.5 and Re = 10000.

algorithm, no reflections or similar artifacts are observed and thus making

it suitable also for compressible flows and the related shock dynamics.

For a quantitative comparison, the mean pressure coefficient distribution

upstream the airfoil (x/C ∈ [−1, 0]), on the airfoil surface (x/C ∈ [0, 1])

and downstream the airfoil (x/C ∈ [1, 1.5]) is plotted in figure 4.16b along

with the simulation results reported in [126]. Statistics have been collected

after 50t∗ = 50C/u∞ flow times and at every time step in the coarse level.

Evidently, an excellent comparison can be reported.

Before concluding the numerical validation, we present a snapshot of the

entropic estimate distribution around the airfoil in figure 4.17. From the

plot, two main observations can be made. First, it is apparent that the

entropic estimate adapts to the main physical features of the flow. In

particular, large deviations from the resolved limit value α = 2 may be

observed near the bow shock, through the expansion wave preceding the

oblique shock at the trailing edge and in the oblique shock itself. A second

key observation concerns the interplay of the entropic estimate with the

physical feature of the flow and the grid refinement patches. For example,

it can be seen that the entropic estimate exhibits larger deviations from the

fine to the coarse grid when a shock wave crosses the interface (see interface

position in figure 4.16a). These deviations in the entropic estimate arise

naturally from the entropy condition Eq. (2.34) and play a central role in
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Figure 4.17: Snapshot of the distribution of the entropic estimate α around the

NACA0012 airfoil.

sustaining the flow field by damping the spurious oscillations and noise near

the shocks, which would otherwise appear near the different grid interfaces.

4.3 Unstructured meshes

The following work was conducted in close collaboration with Giovanni Di

Ilio. In the previous section, a block-refinement strategy was developed,

where locally, uniformly refined Cartesian have been embedded into the

computational domain.

Another approach to reduce the computational costs for complex applica-

tions is the use of unstructured meshes. Such schemes attempt to overcome

the restrictions of the classical LBM, which is based on regular Cartesian

grids, is second-order accurate and imposes a unit Courant-Friedrichs-Lewy

(CFL) number. While these properties of the classical LBM lead to crucial

advantages such as exact propagation in space and allowing the use efficient

data structures, the level of geometrical flexibility of unstructured meshes

cannot be matched by Cartesian grids. In particular, for wall-bounded tur-

bulent flows, body-conforming, stretched or unstructured meshes can be

used to capture all pertinent small scale structures in vicinity of the body,

while keeping the resolution and thus computational cost reasonably low

in regions far away from the body, which are mainly dominated by large

scale flow structures.
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In the realm of LBM a variety of these so-called off-lattice Boltzmann

methods (OLBM) have been proposed, which mainly solve the discrete

Boltzmann equation using either finite volume (FV) [253, 266, 270, 351,

377], finite difference [90, 129] or discontinuous Galerkin schemes [240,

389]. The first extension of LBM to unstructured meshes was proposed

by [270, 271, 377], which is based on FV. The FV approach was further

advanced by [266–268, 349–351, 392], enhancing the numerical stability of

the scheme. Other notable OLBMs are the Discrete Unified Gas Kinetic

Scheme (DUGKS) [397] and the general characteristics based off-lattice

Boltzmann scheme by [16] (see, e.g., [285] for a comparative study of several

explicit OLBMs).

While geometrical flexibility can be a tremendous advantage, the compu-

tational costs of these high-order OLBMs, which explicitly discretize the

spatial and temporal derivatives of the discrete Boltzmann equation in an

Eulerian frame of reference, are significant compared to traditional LBM.

This mainly due to the costly evaluation of the spatial operators [177].

In particular, the advective part of the Boltzmann equation needs to be

computed for each discrete particle velocity, i.e. 27 times for the standard

D3Q27 lattice and the resulting spatial operators are typically evaluated

repetitively within each time step, e.g., for explicit Runge-Kutta methods.

In addition, the CFL number is restricted by the explicit integration and

proportional to the lattice velocities and not the macroscopic flow velocity,

which further decreases the allowable time step. These issues limit the

applicability of OLBMs in terms of attainable complexity and Reynolds

number.

A remedy was sought in interpolation-based lattice Boltzmann methods

[58, 317]. Most recently, these issues were addressed in work of [177],

who proposed a semi-Lagrangian off-lattice Boltzmann approach (SLLBM)

based on a finite element reconstruction of the population. The SLLBM

has shown promising results for periodic set-ups in two and three dimen-

sions, while keeping the computational costs reasonable. Starting point for

the SLLBM is the characteristic equation of the Boltzmann equation and

a solution is found by a finite element based interpolation at the departure

points of the characteristic lines. This procedure eliminates the need of

repetitive evaluation of the spatial operator, while retaining stability at

larger CFL numbers. In addition, the SLLBM only solves the streaming
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step in a semi-Lagrangian frame and keeps the collision operator local as

in the traditional LBM.

For these advantages, we employ the SLLBM, extend it to the entropic

multi-relaxation LBM and wall-bounded turbulence with appropriate bound-

ary conditions. The aim of this study is to assess the viability of this

approach for three-dimensional turbulent flow simulations.

First, in this section, the general methodology of the SLLBM (following

closely [177]) along with appropriate boundary conditions is presented.

Subsequently, after a convergence study for laminar flows, results for the

turbulent flow past a circular cylinder at Re = 3900 are presented.

4.3.1 Semi-Lagrangian LBM

Analog to the traditional LBM, the SLLBM splits algorithm into a stream-

ing and collision step. While the collision remains unchanged, the stream-

ing step is solved by a semi-Lagrangian advection, which follows the char-

acteristics of LBM, x + ciδt. As in standard LBM, the post-advection

population fi(x, t) is given by

fi(x, t) = fi(x− ciδt, t− δt), (4.54)

where x − ciδt is the departure point of the characteristic line. Hence,

solving the semi-Lagrangian advection amounts to reconstructing the pop-

ulation at the departure location x−ciδt (see also figure 4.18). It is obvious

that in the limiting case of a regular Cartesian grid with spacing cδt, the

departure point is also a grid node, which eliminates the need of reconstruc-

tion and therefore recovers the classical LBM. However, for unstructured

fi(x, t) fi(x− δtci, t− δt)

ci

Figure 4.18: Schematic of the semi-Lagrangian streaming step of population fi(x, t)

along the discrete velocity ci.
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meshes this is not necessarily the case and an accurate reconstruction is

crucial. To that end, the SLLBM represents the population as a finite

element instead of the usual point-wise approximation, which decouples

the computational grid from the time step and offers high-order accurate

reconstruction of the population. In the following, the computational do-

main is discretized into a shape-regular mesh, which is composed of Nξ

hexahedral elements. The shape functions are the Lagrange polynomials

of order p, which are defined on Np = (p + 1)D support points (see also

chapter 8.2.1 for a detailed definition of the finite element spaces). A bi-

jective trilinear transformation is used to map a physical element to their

unit element counterpart.

Thus, the population fi(x, t) can be approximated by

fi(x, t) =

Nξ∑

ξ=1

Np∑

j=1

fiξj(t)ψξj(x), (4.55)

where fiξj and ψξj denote the populations and shape function values at the

support points for each cell, respectively. Finally, upon substitution into

Eq. (4.54) and evaluation at a support point x = xξj, the semi-Lagrangian

advection is given by

fiξj(xξj, t) =

Nξ∑

ξ=1

Np∑

j=1

fiξj(t− δt)ψξj(xξj − δtci). (4.56)

In matrix form, the streaming amounts to simple, explicit matrix-vector

multiplications, which can be expressed as

fi(t) = ψifi(t− δt), (4.57)

where ψi is the sparse matrix of shape functions and fi is the population

vector.

For simplicity, we set p = 2 in the following but the extension to higher

order is straightforward. The time step is set to δt = δxmin/
√

3, where δxmin

is the minimum spacing between any two vertices of the computational

mesh. The time step size is chosen such that the departure point remains

inside the current cell or in its immediate neighborhood. While the SLLBM

remains stable even for larger time steps [177], the limiting case of δt =

2δxmin and a regular Cartesian grid results in two independent solutions.
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Figure 4.19: Schematic of the boundary condition for the population fi(xb, t).

Such unphysical decoupling is avoided effectively by this choice of the time

step size.

The SLLBM was implemented on the basis of the finite element library

deal.ii [15] and the linear algebra library Trilinos [131].

4.3.1.1 Boundary conditions

For the SLLBM, it is natural to use a similar interpolation scheme as in

the bulk. In particular, a modified version of the interpolated bounce-back

boundary condition is employed here. The general problem is depicted

in figure 4.19. Analog to chapter 3, populations for which the departure

point lies outside the domain need to be reconstructed in order to complete

the advection step. Using a bounce-back type boundary condition, which

reflects the population at the wall boundary, we define the departure point

x′b as follows

x′b = xw,i + (δt− qi)ci, (4.58)

where xw,i = xb + qici is the intersection point between the wall bound-

ary and the velocity vector ci = −ci and the wall distance is given by

qi = ||xb−xw,i||/||ci|| (see also figure 4.19). The application of the bound-

ary condition at xb then reduces to a reconstruction of the population

f i(x
′
b, t − δt) at the departure point, which is associated with the veloc-
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Figure 4.20: Scaling of the L2 error for the simulation of the flow past a circular cylinder

at Re = 40.

ity ci. Analogous to the above, the finite element reconstruction for the

population fiξj(xb, t) at the boundary support point xb in an arbitrary

boundary cell reads

fiξj(xb, t) = f i(x
′
b, t− δt) =

Nξ∑

ξ=1

Np∑

j=1

f iξj(t− δt)ψ(x′), (4.59)

where f iξj corresponds to the population associated with the velocity ci.

4.3.2 Validation and convergence study

To validate the SLLBM in combination with the KBC model and the in-

terpolated bounce-back boundary condition, a convergence study for the

flow past a circular cylinder is conducted. We start in the laminar regime

at a Reynolds number of Re = u∞D/ν = 40, where u∞ and D are the

free-stream velocity and the diameter of the cylinder, respectively. In this

regime, the wake behind the cylinder is characterized by a steady recircu-

lation region.

Four simulations with varying resolutions are conducted and accuracy is

assessed using the L2 error of the mean pressure and skin friction coefficient

compared with the reference solution by [345]. The computational domain

is chosen as [−10D, 30D]× [−10D, 10D]× [−0.5D, 0.5D] and the centroid
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Figure 4.21: Comparison of the mean pressure and skin friction coefficient distribution

around the cylinder at Re = 40 with the reference [345].

of the cylinder is located at the origin. A uniform velocity and a zero

pressure gradient is imposed at the inlet, while a fixed pressure value and

a zero velocity gradient are precribed at the outlet. In spanwise direction

periodic boundary conditions are applied.

In figure 4.20, the L2 error for the pressure coefficient is plotted as a func-

tion of the grid spacing, showing a convergence rate between second and

third order. This is in line with the results presented for periodic flows

in [177]. Therefore, we can conclude that the presented SLLBM, com-

plemented with appropriate boundary conditions and the KBC collision

model, is at least second-order accurate. In figure 4.21, the solution of the

pressure and skin friction coefficient as obtained on the finest mesh are

plotted against the reference solution of [345]. Here, the mean skin friction

coefficient is defined as Cf = τ/(1/2ρ∞u2
∞), where τ is the mean wall shear

stress. As expected from the L2 error, the agreement is excellent.

This validates the general scheme for curved geometries.

4.3.3 Flow past a circular cylinder at Re = 3900

Moving beyond the laminar flows, we increase Reynolds number to Re =

3900 and simulate the turbulent flow past a circular cylinder in the lower

subcritical regime. In this regime, the flow separation is laminar, while

transition to turbulence occurs downstream of the cylinder in the free shear

layer. Along the wake, the high instability of the flow causes a periodic

vortex shedding process, which in turn leads to a vertical oscillatory motion
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(a) Slice through computational mesh. (b) Detail of the mesh near the cylinder sur-

face.

Figure 4.22: Unstructured mesh for the simulation of the flow past a cylinder at

Re = 3900.

of the free shear layer. These features make the computation of such a

flow and the prediction of its unsteady dynamics an interesting as well as a

challenging task. Several experimental and numerical investigations exist

in literature and, for this reason, has become a canonical benchmark case

to assess performance and accuracy of numerical methods.

Among the others, the experiments of [212, 257, 262] provide an exhaustive

insight on the main features of the turbulent flow under consideration.

As far as numerical simulations are concerned, DNS is most accurate but

relatively scarce in literature due to high computational costs. Notable

DNS studies include [72, 215, 282, 367]. The majority of numerical studies

is conducted using LES and the works of [21, 178, 283, 384] are particularly

noteworthy.

The motivation behind the present analysis is to assess the capabilities of

the proposed unstructured LBM to capture the main flow features of a

turbulent flow past a circular cylinder.

4.3.3.1 Numerical set-up

The simulation is conducted on a computational domain of size [−5D, 15D]×
[−5D, 5D]×[−1.5D, 1.5D] in streamwise, pitchwise and spanwise direction,

respectively (see, e.g., [283] for an overview of the effect of different domain

sizes and mesh parameters) and the centroid of the cylinder is placed at

the origin. The hexahedral, body-fitted mesh was constructed to minimize

the computational cost, while retaining high resolution in close proximity

of the cylinder. Hence, we shall focus on the flow field in the near wake,
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Figure 4.23: Comparison of the mean pressure and skin friction coefficient distribution

around the cylinder at Re = 3900 with literature data.

while taking advantage of the favorable implicit sub-grid features of the

KBC model in the far field, where the mesh resolution is relatively coarse.

Three levels of local refinement patches are placed around the cylinder and

in the near wake region. The mesh is highly stretched with a ratio between

the largest and smallest cell size of roughly δxmax/δxmin ≈ 360. In figure

4.22, a slice through computational mesh as well as a close-up image near

the cylinder surface is shown. In the finest level around the cylinder surface,

the effective resolution in wall units (based on the maximum wall shear

stress) amounts to ∆θ+ ≈ 2.0 in circumferential direction, ∆r+ ≈ 1.20 in

radial direction and ∆z+ ≈ 9.2 in spanwise direction. This yields a total

of approximately 36 · 106 degrees of freedom. The boundary conditions are

identical to the previous convergence study in section 4.3.2 and a small

initial perturbation is introduced to trigger transition to turbulence.

Statistics were collected after an initial transient of t = 35D/u∞ until

statistically stationary conditions were reached.

4.3.3.2 Results and discussion

In figure 4.23, the mean pressure and skin friction coefficient distribution

along the cylinder surface are displayed. The distributions of the aero-

dynamic coefficients are compared with the results of [21], who employed

a 7th-order upwind-based LES and the study of [178] using a high-order

LES based on B-splines. Overall, the results are in excellent agreement.
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Figure 4.24: Mean streamwise velocity ux/u∞ profiles in the near wake of a circular

cylinder at Re = 3900.

Although a slight discrepancy with the reference [178] is noticeable in figure

4.23a, the separation point, i.e. the starting point of the pressure plateau

region, seems to be predicted accurately. This is further supported by the

skin friction coefficient distribution as shown in figure 4.23b. The separa-

tion point corresponds to the location, where the skin-friction is zero and

it is obvious that the prediction of the proposed scheme agrees well with

the reference [21].

Next, in the figures 4.24 and 4.25, the mean velocity profiles for the stream-

wise and transverse component at different cross sections in the near wake

of the cylinder are presented and compared to the experiment [212], the

LES [178] and the DNS [367].

It is apparent that all the computed profiles are in good agreement with

reference data. In particular, our simulation seems to predict the mean

velocity profile ux/u∞, in the near wake region within the experimental

accuracy. On the other hand, for the transverse velocity profiles, the over-

all comparison between numerical methods and experiments shows some

discrepancies. However, our results closely follow those of the DNS study

[367]. This is also the case for the ux/u∞ profile.

Finally, in order to provide a qualitative representation of the fully devel-

oped flow field, an instantaneous snapshot showing isosurfaces of the Q-
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Figure 4.25: Mean transverse velocity uy/u∞ profiles in the near wake of a circular

cylinder at Re = 3900. See figure 4.24 for the legend.

criterion, colored by streamwise velocity, is presented in figure 4.26. One

can observe laminar separation and subsequently transition to turbulence,

which eventually leads to the formation of small-scale structures in the

wake of the cylinder.

To conclude, the results from this analysis suggest that the unstructured

semi-Lagrangian KBC model is capable of accurately predicting the main

flow features of the turbulent flow past a circular cylinder. The current

2nd-order unstructured lattice Boltzmann formulation has been shown to

provide accurate results, which are comparable to those obtained by high-

order Navier-Stokes solvers. Despite introducing a higher level of complex-

ity in the streaming step, the unstructured semi-Lagrangian KBC model

retains a computational efficiency per time step, which is comparable to

traditional LBMs.

In addition, the geometrical flexibility of body-fitted mesh allows for an

accurate description of the geometry and extremely efficient refinement,

which can be optimized to obtain minimal run-times. It also needs to be

mentioned that common problems related to hanging nodes do not occur

and no particular treatment is needed in the framework of the SLLBM.

These aspects are crucial for the simulation of turbulent flows, where un-



Chapter 4. Grid refinement strategies 77

Figure 4.26: Isosurfaces of the Q-criterion, colored by streamwise velocity.

structured, stretched and locally refined meshes can significantly reduce

the computational costs.

On the other hand, the semi-Lagrangian approach is limited by two main

issues, which need to be addresses in future work. First, despite elements

of varying sizes, the time step is constant in the entire computational do-

main, which negatively affects the overall performance. This is in contrast

to multi-domain refinement techniques as presented in the previous section

4.2, but a peculiarity of all the unstructured/non-uniform mesh approaches

in the realm of LBM.

Second, the semi-Lagrangian approach as presented above requires an ex-

cessive amount of computational memory. In fact, in order to perform

the semi-Lagrangian streaming most efficiently, a sparse matrix need be

stored for each population. This amounts to 27 sparse matrices in three

dimensions using the standard D3Q27 lattice. This severely limits the

attainable number of degrees of freedom and thus Reynolds number for

a given amount of resources. A possible solution to both of these issues

may be to adopt a hybrid strategy such as the one proposed in [68], where

the standard Cartesian, possibly block-refined, LBM is combined with an

OLBM. This would allow using multi-domain refinement in the far-field

(based on traditional LBM), while retaining an unstructured/non-uniform

mesh only in close proximity of the solid body.
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4.4 Conclusion

In this chapter we have presented grid refinement strategies for both regu-

lar Cartesian as well as unstructured meshes. First, a novel multi-domain

refinement technique was proposed, which avoids the low-order time inter-

polation commonly used in lattice Boltzmann simulations. An extension to

thermal and compressible models is achieved by an appropriate rescaling

of the populations and thus widening the range of applicability of the pro-

posed grid refinement algorithm. Accuracy and robustness is established

through various set-ups in the incompressible, thermal and compressible

flow regimes for which local grid refinement is crucial in order to obtain

accurate results at a reasonable computational cost. The implicit subgrid

features of entropy-based lattice Boltzmann models render the solutions

stable and allow for significant under-resolution while retaining accuracy.

The entropic stabilizer adapts to the flow features and refinement patches,

which enables multi-scale simulations where the fine-to-coarse level projec-

tion and vice versa is implicit to the model. These features are particularly

important in the simulation of the supersonic airfoil, where shock waves

cross the refinement patches without being reflected and destabilizing the

flow. With these insights, an extension of entropic LBMs to adaptive grid

refinement seems natural, where the deviation of the stabilizer from its

resolved value is a measure of under-resolution and can thus serve as a

refinement criterion. This is left for future investigations. In conclusion, it

has been shown that the proposed multi-domain grid refinement technique

in combination with entropy-based lattice Boltzmann models enables ac-

curate and efficient simulations of flows ranging from low Mach number

turbulence all the way to supersonic compressible flows.

The second part of this chapter was concerned with off-lattice Boltzmann

methods. The SLLBM was combined with the entropic multi-relaxation

time model and appropriate boundary conditions, which extends its range

applicability to wall-bounded turbulent flows in three dimensions. Simu-

lation of such kind are challenging for existing methods in the realm for

OLBMs. The performance of the model was assess using the classical

benchmark of the flow past a circular cylinder in the subcritical regime. It

was demonstrated that all relevant flow features are accurately captured

by the proposed method. The obtained results are promising for direct

numerical simulations of wall-bounded turbulence with body-fitted meshes
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and LBM. In addition, the stretched and locally refined meshes can be

optimized to retain reasonable computational costs.

Some remarks on the applicability of both strategies are in order. The

SLLBM is most effective when a significant amount computational costs

can be saved by using stretched grids. This obviously cannot be achieved

by the multi-domain refinement strategy. The accuracy of the descrip-

tion of complex geometries and the corresponding boundary condition is

slightly diminished for the SLLBM due to the fact that interpolation is

still required (albeit using, possibly high-order accurate, finite element in-

terpolation). Thus it is very similar to using a refined Cartesian mesh and

interpolation-based curved boundary conditions.

The multi-domain refinement on the other hand, is generally more efficient

in terms of lattice node updates per second compared to the SLLBM as

the additional complexity of the semi-Lagrangian streaming is omitted and

only the grid level coupling adds to the compute time. Fortunately, the

costs of coupling are negligible. Furthermore, in contrast to the constant

time step in the SLLBM, the multi-domain refinement adapts the time step

size in each grid level, which further reduces run-time costs.

Regarding a possible extension to adaptive grid refinement, the multi-

domain is trivially extended using, e.g., an octree data structure. For the

SLLBM, the construction of the matrices, which are needed to perform the

stream step is prohibitively expensive. A remedy would be the develop-

ment of a matrix-free approach. Conceptually this is straightforward but

our preliminary studies could not achieve acceptable performance. As dis-

cussed in chapter 3, for moving geometries, body-fitted approaches require

sophisticated re-meshing methods. This is also true for the SLLBM and

cannot match the flexibility of a multi-domain approach in combination

with the appropriate boundary conditions.

For its universality we employ the multi-domain approach in the remainder

of this thesis.





Chapter 5

Flow in engine-like geometries

Having introduced the necessary tools in the previous chapters, we can

proceed with the first engineering application.

We study in detail the set-up of a simplified internal combustion engine

with a valve/piston arrangement. This arrangement allows us to probe the

non-trivial interactions between various flow features such as jet breakup,

jetwall interaction, and formation and breakup of large vortical structures,

among others. A detailed comparison of mean and rms velocity profiles

with high-order spectral element DNS and experimental data shows ex-

cellent agreement, while computational costs are reduced by an order of

magnitude compared to state-of-the-art DNS. Moreover, it is demonstrated

that the implicit subgrid features of the entropic lattice Boltzmann method

can be utilized to further reduce the grid sizes and computational costs,

providing an alternative to modern modeling approaches such as large-eddy

simulations for complex flows.

5.1 Introduction

The intrinsic complexity of turbulence arising from the nonlinearity of the

governing Navier-Stokes equations eludes an analytical description and re-

quires experimental or advanced numerical tools to gain insight into the

fundamental phenomena in such complex flows. Challenges for state-of-

the-art numerical and experimental methods become even more apparent
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when various distinct flow features are combined and interacting in a single

flow field. Unfortunately, this is the case for almost all realistic applica-

tions and as a representative of such we consider the turbulent flow field

in a valve/piston assembly during multiple cycles in this chapter.

The main driving force of the flow field inside the chamber is given by the

periodic motion of the piston inducing an unsteady turbulent flow with

cyclic variability. During the intake stroke the piston draws fluid into the

chamber, creating a hollow jet as the fluid is pushed through the valve. This

results in the formation of large vortex structures, where the interaction

with the cylinder walls causes a tumbling and swirling motion at larger

scales. The hollow jet has similar flow features as a planar jet for which the

turbulent flow field strongly depends on the distance to the nozzle. In first

instance, a planar jet exhibits Kelvin-Helmholtz instabilities on both sides

of the shear layers, eventually causing jet breakup and the formation of

small scale turbulent structures (see, e.g., [123, 216, 323]). Note however,

that the situation in the valve/piston arrangement is more intertwined

as the large vortical structures, formed by the jet, are deflected by the

cylinder walls and interact with the jet itself resulting in a different breakup

behaviour. Furthermore, as for the planar jet, the breakup process, the

spreading rate and the center-line velocity are strongly influenced by the

external flow field corresponding to the residual turbulence in the chamber

at the beginning of a new cycle. This, in turn, alters the formation of

the vortical structures and their influence on the jet breakup, leading to

a cyclic variability [307]. Cyclic variability is the consequence of the non-

trivial interaction between small and large scale structures, which differs

from most of the classical flows of fully developed turbulence for which

the influence of the large scale structures is more significant than vice

versa. For the understanding of such complex phenomena numerical or

experimental tools need to be applied.

Experimentally, an instantaneous, discrete velocity field may be obtained

by techniques such as Laser Doppler Velocimetry (LDV) or more com-

monly two- and three-dimensional Particle Image Velocimetry (PIV). De-

spite substantial progress in this field, limitations in terms of temporal and

spatial resolution become apparent when considering the smallest scales.

Nonetheless, valuable insight and validation data for numerical studies

may be obtained from experiment. For instance, the experimental efforts
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of [247] using LDV in motored valve/piston assemblies are commonly used

for validation of direct numerical simulations and turbulence models in

this setup. However, due to the limited access to the chamber, accurate

measurements in the near-wall region are particularly challenging. For an

overview of available experimental techniques we refer to the work of [362]

or [344].

On the numerical side, direct numerical simulations, solving the Navier-

Stokes equations directly and accounting for all pertinent scales of the

flow, provide an accurate description of the flow field as no turbulence

modelling, based on simplifying assumptions, is employed. However, for

realistic applications of high-Reynolds number flows involving complex ge-

ometries with moving boundaries such as the application considered in this

paper, the computational cost becomes prohibitively high and only very

few such simulations can be found in the literature. Most notable for this

set-up is the recent DNS of [306] employing a high-order spectral element

method and an Arbitrary-Lagrangian-Eulerian (ALE) formulation to ac-

count for the piston movement. In their work, a detailed analysis of the

flow in the chamber with various velocity and stress profiles for different

crank angles along with a quantification of cycle-to-cycle variability was

presented. This gives us an opportunity to validate our simulations and

study its behavior in the case of under-resolution.

On the other hand, turbulence models reduce the computational require-

ments by not resolving all scales of the flow but by trying to account

for the physical effects of the unresolved scales by projection onto the

resolved ones. A prominent class, the so-called eddy-viscosity models, pro-

vide a closure to the coarse-grained Navier-Stokes equations by relating

the Reynolds-stress tensor to a turbulent eddy-viscosity νt. The intrinsic

assumption behind the eddy-viscosity models is that the anisotropic part

of the Reynolds-stress tensor may be linearly related to the local mean

rate-of-strain tensor via νt, analogous to the relation of the viscous stress

in a Newtonian fluid. The analogy to the viscous stress is revealing as the

comparison to kinetic theory and a simple time scale analysis show that

there is no general basis for neither a local nor linear relationship between

the rate-of-strain and the Reynolds-stresses through a scalar quantity, see,

e.g., [279] for telling examples. However, for simple cases, whenever the ra-

tio of production to dissipation of turbulent kinetic energy is close to unity,
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the eddy-viscosity assumption holds with sufficient accuracy [279]. In that

context, various models prescribing the turbulent eddy-viscosity exist and

range from algebraic relations to more sophisticated ones, solving a set of

transport equations such as the k − ε or k − ω models and their variants.

Such models may be applied to either Reynolds-averaged Navier-Stokes

equation or to the filtered Navier-Stokes equation yielding commonly used

RANS and LES formulations, respectively. Despite the known deficien-

cies of the eddy-viscosity assumption as explained above, such models are

often applied to various flows including the flow in the valve/piston as-

sembly with its complex interaction of various base flow types, where the

eddy-viscosity assumption is known to fail. In particular, these deficien-

cies have been assessed for strongly swirling flows, as often encountered

in engine-type flows, in the work of [359]. Still, due to their relatively

low computational cost these models remain an attractive option to study

turbulence phenomena. For the valve/piston assembly, LES has become

increasingly popular as it overcomes the shortcomings of RANS, where a

time or ensemble average is computed and cycle-specific phenomena as well

as cyclic variability cannot be investigated. For an overview of RANS and

LES applied to engine flows the reader is referred to the works of [49, 87,

128, 210, 301]. In particular, in [210], various LES models were tested and

a reasonable agreement with experimental data was achieved, although it

was pointed out that no model was capable of improving the compari-

son for all relevant quantities. An intrinsic issue of using such modeling

approaches is that up to date no universality exists and the model parame-

ter specification is problem dependent, typically only reliably available for

simple, homogeneous turbulence with periodic boundaries. Furthermore,

as most turbulence is generated in the near-wall region for wall-bounded

flows, this issue needs to be addressed for turbulence models. As it was

stated in the recent review of [301], the development of wall-models has

made no significant progress in the last years. Hence, most LES need ei-

ther to increase the resolution in the near-wall region [152] or are forced to

overcome the stringent resolution requirement by employing wall functions

based on the law of the wall (see [277] for a review on this topic in the

LES-context). Thus, the range of applicability of those models is limited

and requires fine tuning of the model parameters for a specific setup.

To overcome the high computational cost of direct numerical simulations
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and to avoid the cumbersome search for the best tuning parameters in tur-

bulence models, much research was focused on the development of accurate

alternatives. To that end, the lattice Boltzmann method made significant

progress. In the field of internal combustion engines notable modeling ap-

proaches on spray formation, breakup and cavitation in the LB realm are

given in the works of [91, 92]. On the other hand, the parameter-free KBC

model appears particularly suited for this set-up. By employing the Grad

boundary conditions as introduced in chapter 3, the implementation of

complex geometries with moving boundaries comes at little additional cost

and allows us to go beyond periodic set-ups and study the subgrid features

of KBC models in the valve/piston assembly. Our results indicate that

the KBC model provides a simple and efficient alternative to conventional

CFD methods for research and engineering applications.

The outline of the chapter is as follows: Before considering the full complex-

ity of the valve/piston assembly, section 5.2 presents a thorough study of

its conceptual building blocks, i.e. periodic turbulence using the Kida vor-

tex as an example as well as the turbulent pipe flow for both resolved and

under-resolved simulations. Finally, section 5.3 discusses the valve/piston

assembly by a comparison to state-of-the-art DNS and experimental data

of [306] and [247], respectively. As in section 5.2, the KBC model’s subgrid

behavior is tested numerically for various resolutions.

5.2 Model validation for simple flows

The valve/piston assembly reveals a number of hydrodynamic features typ-

ical for complex flows. Interactions between large scale coherent structures

which are perturbed by residual turbulence characterize the flow in the

bulk of the chamber while the complex valve/cylinder geometry adds ef-

fects of wall bounded flows. Moreover, the moving piston introduces yet

another conceptual dimension to the problem. Not surprisingly, this vari-

ety of physically distinct flow patterns and complex nonlinear interactions

among them introduce numerical challenges.

In order to show that the KBC model is capable of correctly predicting the

physics of the main active flow regimes we consider a number of precursor

simulations using the identical KBC model and boundary conditions as

described in the previous chapters. By reducing the complexity of the
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(a) Kida vortex flow.

(b) Turbulent pipe flow.

Figure 5.1: (a) Vortex structures for the periodic Kida vortex flow at Re = 6000

(x, y, z ∈ [0, π]). (b) Turbulent pipe flow at R+ = 180, visualized by isosurfaces of

vorticity magnitude and colored with velocity magnitude.

flow and concentrating on a single flow regime we demonstrate that the

method is able to accurately capture the main physics at hand individually.

Thus, we conceptually decompose the problem into its building blocks while

combining them in a last step. The flow in the valve/piston assembly is

induced through the moving piston and it is expected that the treatment of

the moving boundary has a significant influence on the flow field inside the

chamber. This has already been validate in chapter 3 and will be revisited

in chapter 7. Thus, we will refrain from further validation in this part of

the thesis. In the following we will rather put emphasis on the performance

of the model in situations where the simulation cannot resolve all pertinent

scales of the flow. Therefore, one can gain insight in the built-in subgrid

features which the model exposes.

The work in this section was done in collaboration with Fabian Bösch, who

conducted the Kida vortex and pipe flow simulations.

5.2.0.3 Turbulence in a periodic box

As the main flow in the bulk of the engine-like assembly is driven by vortex-

vortex interaction and small-scale turbulence, we consider the Kida vortex

flow as a classical benchmark simulation (see figure 5.1a). This well studied
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Figure 5.2: Statistics for the Kida vortex flow at Re = 6000 and resolutions of

N = {100, 200, 400} and N = 600 for the simulations with KBC and the reference simu-

lation with LBGK, respectively. The theoretical Kolmogorov scaling is indicated by the

dotted line.

flow evolves from a deterministic and symmetric initial condition to a state

which resembles a fully developed turbulent flow featuring a corresponding

energy cascade and has been analyzed extensively using DNS [60, 165, 167,

168]. The initial conditions are given by

ux(x, y, z) = U0 sinx(cos 3y cos z − cos y cos 3z)

uy(x, y, z) = U0 sin y(cos 3z cosx− cos z cos 3x)

uz(x, y, z) = U0 sin z(cos 3x cos y − cosx cos 3y)

(5.1)

where x, y, z ∈ [0, 2π] and periodic boundary conditions are imposed in

all directions. The Reynolds number is defined as Re = U0N/ν where N

is the domain size. While the kinetic energy is decaying, the evolution

of enstrophy shows a steep increase in the early stage of the simulation

and reaches a maximum value before it starts to decay. Just after the

peak of enstrophy the flow reaches the most turbulent state producing

large gradients and small scale structures. While large gradients on the

one hand may cause numerical instabilities, it is of paramount interest

not to over-damp the dynamics on the other hand, which will lead to

a corrupted and non-physical result lacking the small scales. Without

employing explicit turbulence models one is usually restricted to increase
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the resolution such that the smallest eddies are resolved. This is typically

satisfied when the grid spacing is smaller than the Kolmogorov scale η =

(ν3/ε)1/4 with kinematic viscosity ν and rate of energy dissipation ε.

In order to study the accuracy of the KBC model, a detailed investigation

was recently conducted by [40]. The Reynolds number here is Re = 6000,

which is slightly higher than what can be expected for the valve/piston

assembly considering the cylinder diameter and the maximum piston ve-

locity as characteristic scales. A sufficiently resolved reference simulation

(η ≈ 1.2 ∆x) is conducted with a box length of N = 600 using the LBGK

collision model. Further simulations with N = {100, 200, 400} and the

same Reynolds number using the KBC model are then carried out and

compared to both the reference solution and theoretical limits (see [40]).

An important global characteristic is the evolution of the turbulent kinetic

energy k as shown in figure 5.2a. For all resolutions in this study the energy

decay seems to be captured well despite the rather severe under-resolution

in the coarsest simulation (η ≈ 0.2 ∆x). However, a more meaningful

insight is given by the energy distribution across the scales of the flow as

shown by means of the normalized energy spectrum along with the theo-

retical Kolmogorov scaling with a slope of −5/3 in the inertial subrange in

figure 5.2b. It is apparent that the energy scales with marginal difference

for all resolutions with a sharp cut-off at its smallest scale as expected for

a well-behaved subgrid model.

A thorough convergence study of various statistical quantities sampled at

time points around the peak of enstrophy demonstrates second-order ac-

curacy (see [40]) as is expected for a lattice Boltzmann method.

While convergence towards the reference solution is established, it is of

interest to quantify the recovery of the Navier-Stokes equations at small

scales. To that end, let us remind the reader that the incompressible

Navier-Stokes equation implies the following balance equations for the av-

eraged momentum, vorticity, energy and enstrophy which yield for statis-

tically homogeneous flows [19, 188],

∂t 〈u〉 = 0, (5.2)

∂t 〈ω〉 = 0, (5.3)

∂tk = −2νΩ, (5.4)

∂tΩ = 〈ω · s ·ω〉 − 2νP, (5.5)
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N 100 200 400 600

νeff,k/ν 1.5640 1.1356 1.0030 0.9976

νeff,Ω/ν 2.0950 1.4042 1.0912 1.0337

Table 5.1: Effective viscosity ratios at non-dimensional time t/(N/U0) = 0.75 for simu-

lations with different resolutions N .

where

s =
1

2

(
∇u+∇u†

)
, (5.6)

is the rate-of-strain tensor, and P is the palinstrophy,

P =
1

2
〈∇ω : ∇ω〉 . (5.7)

While the global conservation of average momentum (5.2) and vortic-

ity (5.3) are satisfied up to machine precision for all times and all reso-

lutions considered in [40], the balance of various terms in the energy (5.4)

and enstrophy (5.5) equations is directly probing the recovery of the Navier-

Stokes equation at small scales by the KBC model. To that end, we recast

the balance equations (5.4) and (5.5) in terms of the effective viscosity,

νeff,k = −∂tk
2Ω

, (5.8)

νeff,Ω =
〈ω · s ·ω〉 − ∂tΩ

2P
. (5.9)

In the simulation, the Navier-Stokes equation will be verified at small scales

if the ratio νeff/ν ≈ 1. Thus, the evaluation of effective viscosities as

in Eq. (5.8) and Eq. (5.9) is an important check of the accuracy and is

listed in table 5.1. By increasing the resolution, the values are approaching

νeff,k/ν ≈ 1. It is apparent that even for the coarsest run the additional dis-

sipation is rather small, which is consistent with the evolution of turbulence

kinetic energy k shown in figure 5.2a. The second effective viscosity νeff,Ω

is somewhat larger for simulations for the coarse grids, which is consistent

with the under-prediction of the peak in enstrophy. For larger resolutions,

however, the values are close to the nominal viscosity. Thus, we conclude

that the KBC scheme recovers well the Navier-Stokes equations (in the

absence of boundaries) while introducing only small additional dissipation

on coarse grids. Further simulations of decaying turbulence are presented
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in [40]. Note that due to the temporally and spatially varying parameter γ,

a fluctuating bulk viscosity is obtained, which in turn was found to reduce

artificial compressibility effects in comparison to LBGK and other KBC

models (see [40]).

In general, the family of KBC models has shown outstanding stability

allowing for the operating range to be extended by orders of magnitude

in terms of the Reynolds number compared to standard MRT- or LBGK-

type of models. Further, it has been shown to recover the well-established

LBGK model for fully resolved simulations [40]. In the next section, we aim

to go beyond the periodic set-up in order to test for the next conceptual

building block identified above.

5.2.1 Turbulent flow in a pipe

The chamber of the engine-like geometry is rotationally symmetric and it

may be expected that the cylinder walls effect the dynamics of the flow to a

large extent. Therefore, the turbulent flow through a round pipe is chosen

as a validation of the second building block (see figure 5.1b). This problem

has been studied extensively in the literature experimentally, analytically

and numerically. While for the flat channel there is consensus about the

scaling of the mean velocity profile, it is less clear for the turbulent flow

through a pipe and is being discussed in the literature (see, e.g., [17, 234,

246, 273, 360, 368, 374, 390, 391]). Nevertheless, there exists reliable DNS

and experimental data. Here, we choose a Reynolds number ReDp
= 5300

based on the pipe diameter Dp and the mean bulk velocity ubulk, same as

in the DNS of [374]. This number is well in the range of what is expected

in the chamber or the valve/piston assembly considered below.

As the problem is axially symmetric, it is conveniently formulated in cylin-

drical coordinates and one typically uses a corresponding computational

mesh. The classical LB method, however, is restricted to a rectilinear

Cartesian mesh (which is also employed for the engine-like geometry be-

low). Thus, this benchmark problem is probing the performance of the

boundary condition for curved walls to its full extent as the flow is wall

bounded.

Three simulations are conducted at diameter Dp = {49, 99, 199} lattice

units (runs A, B and C). The domain length in stream-wise direction is

L = 16R, where R = Dp/2 is the pipe radius. The flow is initialized
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Figure 5.3: Mean velocity component in flow direction for the turbulent pipe flow.

with a random velocity field and evolved for 200T , where the turnover

time is given by T = R/ubulk. After this initial transient, statistics are

collected for another 200T , yielding a total run-time of 400T . The pressure

gradient was adjusted during the simulation to reach the desired Reynolds

number, which was realized through a body force. The corresponding

Kàrmàn number is R+ = uτR/ν = 180 with the wall friction velocity uτ
and the kinematic viscosity ν.

The distance from the pipe wall is given by R − r with r =
√
x2 + y2,

where z denotes the spatial coordinate in stream-wise direction. The non-

dimensional wall units employed hereafter are defined as x+ = xuτ/ν and

u+ = u/uτ for space and velocity, respectively. Thus, the non-dimensional

distance to the wall is (R− r)+ = R+ − r+. A natural measure for spatial

resolution is the non-dimensional and uniform grid spacing ∆x+ here, while

for the DNS of [374] radial (∆r+), azimuthal (∆(rθ)+) and streamwise

(∆z+) directions are varying non-uniformly. The finest resolution for the

DNS is typically found at the wall in the wall-normal direction. In [374]

this amounts to ∆r+|r=R= 0.167 (with a maximum ∆r+|r=0.409R= 1.647),

while in our simulations ∆x+ = 7.3 (run A), ∆x+ = 3.6 (run B) and

∆x+ = 1.8 (run C).

Figure 5.3 shows the comparison of the mean stream-wise velocity com-

ponent of runs A-C to the reference DNS results. Despite severe under-
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Figure 5.4: Rms velocity profiles for the turbulent pipe flow. The legend is identical to

figure 5.3.

resolution, excellent agreement can be observed for runs B and C. Run A

obviously employs a mesh which is too coarse to capture the scaling of the

mean velocity correctly.

The next order statistical moments are shown in figures 5.4a-5.4d. The

rms fluctuations of the axial, radial and azimuthal velocity component

show the same trend as seen in figure 5.3; the coarsest simulation does

not reproduce the expected values while runs B and C are very close to

the DNS results. Moreover, the cross-correlations of the axial and radial

fluctuations, figure 5.4d, shows excellent agreement for simulations B and

C as well.

5.3 Valve/piston assembly

With the results of the preliminary studies in the previous section, we now

consider the flow in a valve/piston assembly. To that end, we shall compare
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Figure 5.5: Schematic of the valve/piston assembly (all measures are given in mm).

it to the recent DNS simulations of [306] and the experimental data of [247]

for different resolutions.

5.3.1 Numerical setup

The numerical setup is identical to the experimental work of [247] and the

DNS of [306] for which the schematic and all geometrical specifications are

shown in figure 5.5. The axis-symmetric assembly consists of a cylinder

with diameter Dc = 75 mm, a static centered valve and a flat piston for

which a sinusoidal motion corresponding to a speed of 200 rpm, a stroke of

S = 60 mm and a clearance at Top Dead Center (TDC) of 30 mm is im-

posed. The maximum piston speed and the viscosity were chosen to obtain

a Reynolds number of Re = up,maxDc/ν = 3070. The valve has the radius

rv = 16.8 mm and an angle of 30 degrees, which results in a uniform valve

gap of approximately 4 mm. In the experiment, the system is open and

was mimicked in our simulation by a large reservoir on top of this assembly

(not shown in the schematic) with a volume roughly three times as large as

displaced by the cylinder. Due to the open system, compressibility effects
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(a) 36CA (b) 90CA (c) 144CA

Figure 5.6: Comparison of streamlines of the averaged velocity field. From left to

right: Present results, DNS and experimental data are shown for different crank angles,

respectively.

are negligible and the flow may be regarded as incompressible. Initially, a

quiescent flow field is imposed where the piston is located at TDC. Further,

the inlet condition at the top of the reservoir is evaluated instantaneously

using the current piston velocity and the ratio of the reservoir and piston

area. For all other boundary conditions, the no-slip boundary condition as

outlined in section 3.2 is imposed.

In total, eight cycles were simulated and the first two were neglected in

the accumulation of statistics to avoid accounting for initialization effects.

Statistical quantities were computed using azimuthal and ensemble (across

cycles) averaging. To study the nature of the subgrid model, simulations

were carried out for a cylinder resolution of Dc,lb = {100, 150, 300} points,

respectively. This yields a total of approximately N = {8.5, 28, 228}Mio

nodes for each simulation and a uniform cubic mesh, respectively. The

resolutions were chosen based on our preliminary studies in section 5.2 for

which the flow regimes in terms of Reynolds number are similar to the one

exhibited here.

Using a CRAY XC40 system, the computational resources for Dc,lb = 300

amount to 8.6×103CPUh per cycle, which is roughly 20 times less than the

corresponding requirement for the DNS in [306]. The computational cost

scales as pD+1 for a refinement ratio p and the dimensionality D. Note that

since a cubic domain and a regular grid without any local mesh refinement

is used, significant optimization options remain. This is focus of subse-

quent chapters as the scope of the study herein is to validate the implicit

subgrid model of KBC for complex flows beyond classical benchmarks.
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Figure 5.7: Instantaneous velocity magnitude snapshot at 77CA.

5.3.2 Velocity field

Resolved simulation and the DNS-Limit

In this section, we report the radial velocity profiles obtained for the intake

stroke at crank angles of 36CA, 90CA and 144CA on different axial planes

and a comparison to the DNS and the experimental data. In first instance,

the profiles for the highest resolution are compared to establish the correct

convergence of KBC models. Later in this section, the influence of under-

resolution and its convergence is investigated. The main features of the

mean flow field may be identified by the averaged streamlines shown in

figure 5.6. In good agreement with both experimental and DNS data, the

first phase of the intake stroke consists of fluid drawn into the chamber

by the accelerated motion of the piston, forming a hollow cone jet. As a

consequence, small vortex rings on both side of the jet are generated, where

the inner ring develops into the main feature as the piston moves further

down and deflects the jet inwards before it is reflected by the piston. At

this stage, one may observe jet breakup processes and the transition to

turbulence caused by the interaction with the flow field. For instance,

the Kelvin-Helmholtz instabilities in the shear layer are captured in the

velocity snapshot of figure 5.7 for the first cycle. Subsequently, the jet is

deflected towards the cylinder wall and a third vortex becomes apparent

in the averaged flow field (see figure 5.6c).



96 Chapter 5. Flow in engine-like geometries

r/Rc

0.0

0.2

0.4

0.6

0.8

1.0

ū
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Figure 5.8: Comparison of the ensemble and azimuthally averaged axial mean and rms

velocities at 36CA for a resolution of Dc,lb = 300.

Note that at 90CA the flow undergoes a transition phase as the jet has

reached its highest momentum and a fully turbulent flow field, dominated

by the large vortical structure, is developed by interaction of the jet with

the flow field.

Quantitatively we compare the corresponding mean and rms velocity pro-

files of the axial velocity component uz in radial direction on different axial

planes with respect to the cylinder head in figure 5.8-5.10. Consistent with

the previous observation, the flow at 36CA is mainly dominated by the

incoming jet, which results in a peak velocity at r/Rc ≈ 0.6. The rms

velocity profiles indicate that the turbulence generation may be localized

to the jet shear layer on both sides. It is clear, that the results predicted

by the presented KBC model compare well to both DNS and experiment

in terms of mean jet velocities and location. The rms velocities near the

cylinder head at z = 10 mm are also on top of the DNS data. It is apparent

that more turbulence is generated compared to DNS and experiment close

to cylinder axis for the z = 20 mm-plane, resulting in a broadening of the

rms velocity profile towards the center. However, this does not seem to

affect the good agreement for different crank angles as shown below.

At 90CA, the deflection of the jet at the cylinder wall leads to an increase of

the jet radius, which is manifested by a shift of the average velocity profiles

towards the cylinder wall. It should be noted that, as observed in the

LES-study of [210], the flow transition at this stage of highest momentum
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Figure 5.9: Comparison of the ensemble and azimuthally averaged axial mean and rms

velocities at 90CA for a resolution of Dc,lb = 300.

is difficult to capture for various turbulence modeling approaches. In their

work, better agreement was achieved by adapting the model parameters

but led to more discrepancies for 36CA and 144CA. Despite that figure 5.9

clearly shows excellent agreement for the KBC model for both mean and

rms velocity profiles compared with the reference data. A small shift in

radial direction compared to the DNS is visible for the upper axial planes

and the mean profiles but matches the experimental data. In planes beyond

z = 20 mm, our simulation is almost indistinguishable from the DNS result.

Analogously, this holds for the rms velocity profiles.

At later crank angles, the piston is decelerating and we compare the corre-

sponding profiles for 144CA in figure 5.10. Similarly, the discrepancies are

marginal for all data.

Next, let us consider the turbulence statistics of the flow field by means

of the Reynolds stress components and the turbulent kinetic energy k as

shown in figure 5.11-5.12. As the comparison is very similar during all

phases, we choose the most interesting transition phase at 90CA as a rep-

resentative. It can clearly be seen that the turbulent kinetic energy follows
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Figure 5.10: Comparison of the ensemble and azimuthally averaged axial mean and rms

velocities at 144CA for a resolution of Dc,lb = 300.

the trend of the reference data. Its shift is analogous to the mean and rms

velocities as shown above and minor discrepancies in terms of magnitude

are visible. This, however, becomes more pronounced for lower values of

the kinetic energy, suggesting that the contribution of the smallest scales

are not fully accounted for. Similarly, the radial component u′ru′r shows

a good agreement for the region near the jet entry, but dissipates slightly

more. Analogous behavior may be found for the Reynolds stress compo-

nents u′ϕu′ϕ and u′ru′z.

Under-resolved simulations

The above comparison demonstrated an overall excellent agreement be-

tween DNS, experimental data and our simulation using the entropic multi-
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Figure 5.11: Comparison of the ensemble and azimuthally averaged turbulent kinetic

energy k and the Reynolds stress component u′ru
′
r at 90CA for a resolution of Dc,lb = 300.

relaxation time lattice Boltzmann model and the highest resolution of

Dc,lb = 300. This provides evidence for the convergence of our simula-

tions to DNS. Having established the correct limit, we can now study the

effect of under-resolution.

The discussion is similar for all crank angles and we again choose the most

critical phase at 90CA as a representative. In figure 5.13, the mean and rms

velocity profiles are shown for cylinder resolutions of Dc,lb = {100, 150, 300}
points. It may be observed that the differences in terms of the average axial

velocity profiles between Dc,lb = 150 and Dc,lb = 300 are marginal. The rms

velocity profiles are very similar as well and only a small over-prediction

at the lower resolution may be observed. At first sight, this is not intuitive

as one would expect the turbulence production to be smoothed out, which
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Figure 5.12: Comparison of the ensemble and azimuthally averaged Reynolds stress

components u′ϕu
′
ϕ and u′zu

′
r at 90CA for a resolution of Dc,lb = 300.

would lead to lower values of the rms velocities. However, in this case, it

may be traced back to very subtle inaccuracies of jet breakup processes,

which affect the formation of the large-scale structures of the flow in a

nonlinear manner and in turn affect the turbulence production leading to

slightly higher rms values. On the other hand, for the case of Dc,lb = 100,

the effect of under-resolution becomes noticeable. The incoming jet is

hardly broken up by the surrounding flow field but rather by the confining

cylinder walls, which leads to a higher penetration depth and jet radius on

average. This may also be seen when considering the corresponding rms

profiles, where the consistent under-prediction for z = 10 − 30 mm leads

to less turbulence production and therefore a delayed jet breakup with

an increased diameter. Note that this is well within expectations as the
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Figure 5.13: Comparison of the ensemble and azimuthally averaged axial mean and rms

velocities at 90CA for different resolutions.

valve gap is resolved by only three fluid points for this case. A comparison

to our previous simulations of the pipe would suggest that the resolution

is sufficient even at Dc,lb = 100. However, it needs to be kept in mind

that due to the impinging jet the Kàrmàn number varies in the range of

R+ = uτR/ν ≈ 90− 780 (measured for Dc,lb = 300) and that for the local

maximum of R+ ≈ 780 the effect of the small scale structures cannot be

captured accurately at this resolution. On the other hand, the Kida vortex

simulation reveals that the small structures in the bulk of the chamber are

not correctly represented for a resolution as coarse as Dc,lb = 100, which

further suggests that their contribution to the jet break up is not fully

accounted for. Hence, as expected, the complex flow in the cylinder as a

combination of distinct flow features requires a higher resolution than the

individual building blocks. A slight increase in resolution to Dc,lb = 150 is

necessary. Note that as indicated by the precursor simulations in section

5.2.0.3 and 5.2.1, this is still an under-resolved simulation in which the

built-in subgrid model of KBC captures almost all flow features accurately.
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Cycle 0 Cycle 1 Cycle 2 Cycle 3

Cycle 4 Cycle 5 Cycle 6 Cycle 7

Figure 5.14: Cyclic variation of the vortex ring at BDC visualized by pressure isosurfaces

for Dc,lb = 300.

5.3.3 Cyclic variability

Capturing cyclic variability in internal combustion engine simulations is

of crucial importance for its design as it may significantly influence its

efficiency and pollutant formation among various other effects. Such vari-

ability has also been observed both numerically and experimentally in the

valve/piston assembly [128, 301, 306]. Its origin was discussed in the DNS

work of [307], where it was mainly attributed to the remaining radial ve-

locity at TDC from the previous cycle, the consequential jet location as

well as the vortex ring orientation at bottom dead center (BDC).

The aim of this section is to investigate the predictive capabilities of KBC

models concerning the cyclic variability. An indicator of cyclic variability

is given by the large vortex ring formed at BDC, which is visualized for all

simulated cycles in figure 5.14 by means of the pressure isosurfaces. Vari-

ation in shape, size and orientation is observed. Particularly pronounced

is the distortion of the vortex ring for the cycles five and six.

Quantitatively, we compare the correlation plot of the normalized, aver-
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Figure 5.15: Cyclic variation for all resolutions of Dc,lb = {100, 150, 300} and the DNS

results, quantified by mean jet radius rjet/rc at 45CA and correlated to the mean radial

velocity ur,T/up,mean at TDC. Lines represent a linear fit through the corresponding data

points.

age radial velocity ur,T/up,mean at TDC versus the normalized, average jet

radius rjet/rc at 45CA in figure 5.15. Both quantities are evaluated as

in [307], where the radial velocity is averaged at TDC azimuthally and

radially in an axial window of 11.5 mm starting from the cylinder head.

The mean jet radius is defined as the average of the jet radii contained in

the isosurface of uz = −2.5m s−1. Our results show that the phenomenon

of a cyclic varying jet radius is observed for all resolutions and confirm

the result of [307] that it may be correlated to the residual turbulence at

TDC from the previous cycle, where an increased averaged radial velocity

at TDC results in a increased average jet radius and vice versa. It is no-

table that even the lowest resolution, for which the average axial velocity

profiles have shown effects of under-resolution, is exhibiting pronounced

cycle-to-cycle variation with the qualitatively correct cause and effect re-

lation. This is indicated in figure 5.15, where the linear curve fit has an

almost identical slope for all resolutions and therefore establishes the corre-

lation of the normalized, average radial velocity ur,T/up,mean at TDC versus

the normalized, average jet radius rjet/rc. In addition, figure 5.15 reflects

the dominant contributions to the subsequent jet breakup and is consistent
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with our previous observations in figure 5.13. For the lowest resolution, one

can observe the most severe increase of the mean jet radius, which again

may be attributed to the fact that the incoming jet is less influenced by

the unresolved small scale flow structures but rather is broken up by the

interaction with the chamber walls leading to a broader jet with higher

penetration depth. This was also observed for mean velocity profiles in

figure 5.13. As the resolution is increased, the contributions of the small

scale structures become more pronounced and their interaction with the

jet do not allow for as large jet radii as in the under-resolved case. On

average this yields a lower penetration depth and smaller jet radii, con-

sistent with both DNS and experimental data. As expected, the highest

resolution yields the best match in terms of the average jet radius. More

simulated cycles will presumably increase the spread on both the jet radius

variability as well as the mean radial velocity.

5.4 Concluding remarks

In this chapter, we have presented a detailed study of the entropic multi-

relaxation time lattice Boltzmann model for simple and complex flows for

both resolved and under-resolved simulations. It was shown that the KBC

model rapidly converges towards DNS simulations and experimental re-

sults in terms of average velocities, Reynolds stress components and the

turbulent kinetic energy for both simple and complex flow setups. For

under-resolved cases, the entropy-based, implicit subgrid model shows pre-

dictive capabilities already at grids eight times smaller than the resolved

case. With further coarsening, the effect of under-resolution becomes no-

ticeable but is expected as only three fluid nodes are used in the valve

opening. This can be improved with appropriate grid-refinement in the

region of interest and is left for future work. More importantly, this study

shows that kinetic methods with built-in subgrid capabilities become re-

liable without the need for identifying and refining the grid in regions

of high spacial gradients (such as near wall regions and jet break-up re-

gions). Also, excellent results were obtained on a static grid as compared

to a moving grid, which are commonly used for such valve/piston setups,

thus significantly reducing the complexity of the algorithm and realization.

The problem of using appropriate grids for each particular flow setup is a
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common place for simulation of fluid flows and requires knowledge and ex-

pertise on the flow setup at hand. This process is heavily simplified due the

built-in subgrid nature of entropic lattice Boltzmann models, which allow

the use of simple Cartesian meshes for such complex flow setups and still

retain predictive capabilities. Thus, the KBC model may be considered as

a robust, parameter-free, efficient and accurate alternative to state-of-the-

art modeling techniques such as LES. Apart from simplicity in the choice

of grid and implementation, these kinetic methods can significantly reduce

the computational costs, especially for complex flow setups with moving

walls.





Chapter 6

Transitional flows

In this chapter, we study the class of transitional flows and assess the pre-

dictive capabilities of our numerical approach for this challenging regime.

A simulation of the flow over a low Reynolds number SD7003 airfoil at

Re = 6 · 104 and an angle of attack α = 4◦ is performed and thoroughly

validated by comparison to available numerical and experimental data. In

order to include blockage and curvature effects, simulations of the flow in

a low-pressure turbine passage composed of T106 blade profiles, at a chord

Reynolds number Re = 6 · 104 and Re = 1.48 · 105 for different free-stream

turbulence intensities are presented.

Using the block-refinement strategy of section 4.2 in combination with

Grad’s boundary conditions (section 3.2) yields good agreement for all sim-

ulations. The results demonstrate that our scheme is a viable, parameter-

free alternative to modelling approaches such as large-eddy simulations

with similar resolution requirements.

6.1 Introduction

Understanding of boundary layer separation, transition to turbulence and

reattachment of the turbulent boundary layer is of great importance for

many applications ranging from diffusers, turbine blades to micro air vehi-

cles (MAV) and unmanned air vehicles (UAV). Despite of many experimen-

tal and numerical studies, improving the efficiency of engineering designs
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remains challenging due to the lack of predictive and controlling capabilities

and requires further investigations to complement our current understand-

ing.

Laminar separation typically occurs in the low Reynolds number regime,

for example in the flow over an airfoil at incidence or in the flow over a flat

plate with a prescribed suction profile as the upper boundary condition. On

the upper surface, the boundary layer remains laminar beyond the point

of minimum surface pressure and into the pressure recovery region, where

the adverse pressure gradient opposes the flow and causes its detachment.

Downstream of the separation point, the highly unstable separated shear

layer transitions to turbulence. Subsequently, at sufficiently high Reynolds

numbers or low angle of attack, the turbulent flow promotes momentum

transfer in wall-normal direction and causes reattachment of the boundary

layer, thus closing the so-called laminar separation bubble (LSB). The later

the reattachment happens, the bigger the LSB and the larger the loss of

lift and the increase of drag. In the limit of no reattachment and complete

separation, the airfoil is said to be in stall condition with poor aerody-

namic performance. Thus, optimizing performance requires understanding

and control of these mechanisms.

Recent studies were focused on the transition mechanism with special at-

tention paid to understanding the stability features of LSBs including the

role of primary and secondary instability in the transition process. While

it was shown theoretically and experimentally by [79, 108] that viscous in-

stabilities, such as Tollmien-Schlichting (T-S) waves (see, e.g., [304], [138]),

amplify upstream disturbances in the laminar part of the bubble, inviscid

instabilities, e.g. of Kelvin-Helmholtz (K-H) type, play the dominant role

in the amplification of disturbances in the free shear layer of the separation

bubble and thus in the transition to turbulence [2, 127, 190, 358, 379, 381,

383].

One of the first DNS of transition over a flat plate, induced by a prescribed

suction profile as the upper boundary condition, was performed by [3].

Before the transition, a staggered formation of Λ-vortices was observed.

Based on linear stability analysis, it was concluded that the transition

process was driven by convective instability (disturbances grow in space)

rather than by absolute instability (disturbances grow in time and spread

everywhere). In a contrast, [321] performed a DNS on the same set-up and
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observed transition of an unforced LSB with negligible T-S instabilities and

no distinct regions of primary or secondary instabilities, leading to rapid

three-dimensionality.

The authors of [222] investigated LSBs over a flat plate by means of ex-

periment and DNS using periodic two-dimensional disturbances upstream

of the separation along with a spanwise array of spacers to trigger transi-

tion. It was observed that vortices were formed due to the roll-up of the

separated shear layer, which eventually broke down to turbulence.

Subsequent investigations in [224] concluded that transition was driven by

convective amplification of a two-dimensional T-S wave, and that the dom-

inant mechanism behind transition is an absolute secondary instability as

proposed by [225, 227, 291, 292], for which the growth of two-dimensional

disturbances via viscous T-S instability upstream the separation point

undergoes a gradual transition to inviscid K-H-type amplification. The

dominant downstream traveling waves quickly saturate and form large,

downstream propagating spanwise vortices. Beside this convective spatial

growth, the existence of an additional temporal amplification has been ob-

served experimentally, theoretically and numerically by [3, 107, 109, 226],

among others.

In the work of [149] it was shown that although classical linear stability

theory of the time-averaged flow fields suggests convective instability [42]

with no evidence of absolute instability, removing the forcing still leads

to self-sustained turbulence. They concluded, based on three-dimensional

simulations resolving the linear response, that transition occurs by abso-

lute instability of two-dimensional vortex shedding within the shear layer

in the absence of convectively driven transition. Further studies on flat

plates and airfoils have shown the vortex roll-up occurring in the sepa-

rated shear layer at the frequency of dominant disturbance amplification

with downstream vortex pairing for some flow conditions [44, 127, 190, 358,

382, 393]. In the work of [44], time-resolved measurements of the velocity

field over the SD7003 airfoil revealed several types of coherent vortical

structures developing during transition. Qualitative differences in these

structures compared to the flow over flat plates, such as in [190, 358], were

observed and attributed to a dependence of the transition behavior on sur-

face curvature as well as a dependence of the development of the coherent

structures on the flow conditions. In [183] it was further demonstrated
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that the newly coalesced (due to vortex pairing) shear layer vortices, char-

acterized by an initially high spanwise coherence, undergo rapid spanwise

deformations and subsequently break down to smaller structures in the

vicinity of the reattachment point.

The flow development near the reattachment point has shown significant

variations depending on the surface geometry and the operating condi-

tions. Under certain conditions, the reattachment process appears rel-

atively steady with no shedding of large coherent spanwise vortices [14],

while in other cases it was observed to be an unsteady process accompanied

by vortex shedding. The unsteady reattachment behavior is called bubble

flapping and was observed both experimentally and numerically with a fre-

quency below the one of the primary K-H instabilities (see, e.g., [33, 44, 127,

148, 190, 223, 292, 358]). Among several propositions to explain the cause

of bubble flapping, various authors pointed at the absolute secondary in-

stability mechanisms of the shed vortices to three-dimensional disturbances

[149], at acoustic feedback mechanisms [148, 150] and at a viscous-inviscid

coupling interacting with varying levels of free-stream turbulence [223]. As

shown by, e.g., [366], performing a DNS on a flat plate with different free-

stream disturbances, a larger disturbance leads to a smaller bubble size,

while the reattachment point is moved upstream. Similarly, [149] observed

a large decrease of the bubble size when forcing was applied, leading to a

significant increase of aerodynamic performance for the NACA0012 airfoil.

Due to the lack of a comprehensive picture [41] of the instability mecha-

nisms at play during transition it is inherently difficult to model these phe-

nomena. In the work of [321], the accuracy of various Reynolds-averaged

Navier-Stokes turbulence models was assessed. Although the results ob-

tained by the Spalart-Allmaras model showed reasonable agreement with

the DNS, large discrepancies between the models and the reference case

were observed. In particular, more sensitive quantities such as the skin

friction coefficient showed significant deviations. Minor improvements of

various RANS models were reported in the works of [125, 141, 264]. In

recent years, large-eddy simulations for transitional flows became increas-

ingly popular (see, e.g., [45, 84, 294, 365, 378, 379]). While accurate results

were reported for implicit LES, relying on high-order schemes for spatial

derivatives to capture transition, combined with filtering for stabilization

(see, e.g., [106, 356, 396]), the recent work of [46] highlights the impor-
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Figure 6.1: Multi-domain block refinement for the flow past the SD7003 airfoil along

with a slice of instantaneous streamwise velocity.

tance of appropriate subgrid-scale modeling by a comparison of dynamic

Smagorinsky, truncated Navier-Stokes and no-model under-resolved DNS.

The motivation of the present study is to asses if entropy-based LBM can

capture the subtle mechanisms of transitional flows. In spite of validation

in both laminar and turbulent flow regimes, the transition to turbulence,

which not only depends on accurate prediction of the bulk flow but is also

highly sensitive to the implementation of the boundary conditions, has re-

ceived little attention so far in the realm of LBM. However, to establish

LBM as a predictive method for engineering applications, it is of great

importance to also assess the accuracy of LBM in the transitional flow

regime.

This chapter is organized as follows: In section 6.2, we consider the flow

past the SD7003 airfoil at an angle of attack α = 4◦ and a chord Reynolds

number of Re = 6 · 104. Moreover, in order to test the model’s performance

for highly curved geometries, simulations of the flow in a low-pressure tur-

bine passage for different Reynolds numbers and free-stream turbulence

intensities are performed and, where available, compared to DNS and ex-

perimental data. Results are discussed in section 6.3.
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6.2 Flow separation and transition to tur-

bulence

In this section, we investigate two cases to test the accuracy of KBC models.

In first instance, we consider the flow over the SD7003 airfoil at angle of

attack α = 4◦ and Reynolds number Re = 6 · 104 based on the chord length

c and the inflow velocity u∞. The second test case is regarding the flow

in a low-pressure turbine passage composed of T106A airfoils at Reynolds

numbers of Re = 6 · 104 and Re = 1.48 · 105 based on the axial chord and

the inflow velocity.

As stated in [46] and also confirmed by our simulations, the key to ob-

taining accurate results, in agreement with experiment, is to resolve the

reverse flow region near the wall and the shear layer which transitions to

turbulence. Despite the efficiency of LBM, this is an intractable task for a

uniform resolution. To remedy this issue we employ the multi-domain grid

refinement technique as introduced in section 4.2.

Finally, we mention that the transitional flows considered in this work are

sensitive to the wall-boundary conditions and spurious artifacts can occur

for an inappropriate choice. To that end, we employ the Grad boundary

condition. Other boundary conditions used in the simulations include in-

flow, outflow, free-stream and periodic boundary conditions. Unless stated

otherwise, we implement these boundary conditions as follows: The in-

flow is prescribed using equilibrium populations with unit density. For the

outflow boundary, we employ the no-boundary condition. The free-stream

or free-slip boundary condition reflects the population with respect to the

wall normal and is used to mimic an open space. The periodic boundaries

are directly applied within the advection step.

6.2.1 Transitional flow past SD7003 airfoil

6.2.1.1 Numerical set-up

The numerical set-up is identical to the experimental and numerical studies

of [106, 260, 396] to allow a direct comparison with the results obtained by

the KBC model.

The experimental investigations of [260] were conducted in order to assess

the suitability of three different test facilities, namely, a low-turbulence
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Figure 6.2: Isosurfaces of the Q-criterion (Q = 4) colored by normalized streamwise

velocity for the simulation of the SD7003 airfoil at an angle of attack α = 4◦ and a

Reynolds number Re = 6 · 104.

wind tunnel (Technical University of Braunschweig (TU-BS) Low-Noise

Wind Tunnel), a water tunnel (Air Force Research Laboratory (AFRL)

Free-Surface Water Tunnel) and a tow tank (Institute for Aerospace Re-

search (IAR) Tow Tank). While good agreement was found for IAR and

TU-BS, the AFRL facility showed significantly earlier separation and reat-

tachment, and was not able to resolve reverse flow in the bubble. The

numerical study of [106] was conducted to test the capabilities of implicit

large-eddy simulations (ILES) to capture the LSB mechanism accurately.

The use of high-order compact schemes for spatial derivatives and a Pade-

type low pass filter for stability has shown accurate predictions of LSB for

various operating points. In a similar fashion, [396] employed an implicit

LES using a high-order spectral difference method to capture the LSB.

In our study and in accordance with [106, 396], we use a uniform inlet ve-

locity with no inflow disturbances. A small perturbation in the beginning

of the simulation is introduced to initiate vortex shedding. All statisti-

cal quantities are recorded after an initial transient of t = 15c/u∞ and

collected for another t = 45c/u∞ until statistically stationary conditions
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Figure 6.3: Instantaneous snapshot of the spatial distribution of the stabilizer γ.

have been reached. The solutions are obtained on a computational domain

of 10c × 5c × 0.2c for the stream-, pitch- and spanwise direction, respec-

tively. Periodic boundary conditions are applied in the spanwise direction,

while free-stream boundary conditions are prescribed in the pitchwise di-

rection. The computational domain is refined with five levels, where the

coarsest level resolves the airfoil with c = 100 lattice points to ensure

enough spatial extent to represent the reverse flow region accurately. As

shown in figure 6.1, the refinement patches are located closely around the

airfoil to minimize computational cost. Based on the maximum wall shear

stress in the reattachment zone, the resolution in wall units amounts to

∆y+ ≈ 2.1 in the finest level, which is similar to the ILES study of [396]

with ∆y+ ≈ 2.5 using high-order spectral differences. As an additional

verification of sufficient resolution, a snapshot of the spatial distribution

of the stabilizer γ is shown in figure 6.3. It has been shown in previous

chapters and [39, 40, 77] that the value of γ is directly related to the de-

gree of under-resolution and that γ automatically tends towards the LBGK

value γlim = 2 in the limit of a fully resolved simulation. Therefore, the

deviation of the stabilizer from its limit value indicates under-resolution.

Figure 6.3 shows the expected small deviations from γlim = 2 in the finest

grid level, suggesting negligible numerical diffusion. This assertion will be

further investigated through comparison to reference data.

6.2.1.2 Results

In order to gain insight into the coherent flow structures in the LSB, we

present an instantaneous snapshot of isosurfaces of the Q-criterion colored

by streamwise velocity in figure 6.2. As expected, starting from the leading

edge, the flow remains laminar and further downstream separates due to

the adverse pressure gradient on the suction side of the airfoil. Instabili-
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Figure 6.4: Average pressure coefficient Cp over the upper and lower surface of the

SD7003 airfoil. Here and in the following, the symbols represent sampled values along

the chord for clarity.

ties, forming corrugated flow pattern and interaction with the small-scale

structures in the recirculation zone, can be observed at the end of the lam-

inar shear layer. Further downstream, spanwise distortion leads to fully

three-dimensional structures, indicating the transitional region, followed

by fine-scale turbulence.

Beyond the visual inspection, one can quantify separation, transition and

reattachment by computing the mean pressure coefficient Cp = (p− p∞)/

(1/2ρ∞u2
∞) and the mean skin friction coefficient Cf = τ/(1/2ρ∞u2

∞) on

the airfoil surface as shown in figure 6.4 and figure 6.5, respectively. Here,

the mean wall shear stress is denoted by τ .

The distribution of the mean pressure coefficient over the suction side of

the airfoil surface can be used to extract various characteristics of the LSB.

As seen in figure 6.4, the point of minimum pressure is followed by a pres-

sure plateau, which has been shown to occur near the separated flow region

[41, 334]. Consequently, the separation point xs and transition location xt
can be identified as the start and the end of the pressure plateau [261].

Similarly, the reattachment point xr can be estimated as the point at the

end of enhanced rate of pressure recovery downstream of the transition

point. These definitions are commonly used to experimentally obtain LSB

characteristics by linearly fitting the surface pressure data [41, 114]. A first
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Figure 6.5: Average skin friction coefficient Cf over the upper and lower surface of the

airfoil of the SD7003 airfoil.

indication that the KBC model is able to accurately predict the mean bub-

ble size characteristics is given by the excellent match of the Cp distribution

with the high-order implicit LES of [106, 396].

On the other hand, computing the skin friction on the airfoil surface allows

for another meaningful way to determine the average geometrical proper-

ties of the LSB. The separation and reattachment points can be inferred

from the location of zero skin friction. While the first root with a negative

gradient indicates separation, reattachment happens further downstream

at zero skin friction and a positive gradient. From this analysis, we report

xs and xr along with the reference data in table 6.1. It is apparent that

excellent agreement with the experimental data is obtained. As was men-

tioned above, the AFRL facility is an outlier of the experimental studies

but is still reported for completeness. Furthermore, the agreement with

both ILES simulations is reasonable. From the skin friction plot, a consid-

erably later separation is predicted by the KBC model as compared to the

ILES simulations but matches the experimental data. Nonetheless, the lo-

cation of minimum skin friction and reattachment location agree well with

the ILES simulation results from [396].

Finally, in order to identify the mean location of transition, Reynolds shear

stresses are considered. In figure 6.6a, the distribution of Reynolds shear

stress −u′xu′z/u2
∞ is shown with a threshold of 0.001. The commonly used
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Contribution Tu [%] xs/c xt/c xr/c

[260],IAR (expt.) 0 0.33 0.57 0.63

[260],TU-BS (expt.) 0.1 0.30 0.53 0.62

[260],AFRL (expt.) ∼ 0.1 0.18 0.47 0.58

[106] (ILES) 0 0.23 0.55 0.65

[396] (ILES) 0 0.23 0.52 0.69

present 0 0.30 0.55 0.68

Table 6.1: Comparison of the LSB properties for the flow over the SD7003 airfoil, where

Tu denotes the turbulence intensity of the inflow.
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Figure 6.6: Determination of the onset to transition. (a): Distribution of Reynolds

shear stress −u′xu′z/u2∞ with a threshold of 0.001. (b): Reynolds shear stress value plotted

along the line of maximum shear stress.

criterion for the transition onset is the region, which exceeds this threshold

as these stresses describe the transport of momentum into the boundary

layer [44, 260, 387]. Different criteria such as the shape factor H12 (defined

as the ratio of the displacement thickness and the momentum thickness)

or the deviation from exponential growth were identified and are in good

agreement among each other [190, 232]. In figure 6.6b, the Reynolds shear

stress value is plotted along the line of maximum shear stress, which allows

us to accurately extract the transition point as the point exceeding the

threshold of 0.001. The comparison with all reference data is excellent (see

table 6.1).

The mean velocity profiles along the chord line in wall-normal direction

are compared to the ILES by [396] in figure 6.7. The evolution from the

attached shear layer to the detachment is clearly visible and the separa-
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Figure 6.7: Mean velocity profiles at x/c = 0.1 ∼ 0.5

tion location is in line with its evaluation using the mean skin friction

coefficient Cf . In agreement with the previously observed deviations of

the skin friction distribution over the airfoil surface, the ILES predicts ear-

lier separation compared to both experiment and the present simulation.

Nonetheless, the agreement between KBC and ILES is reasonable.

Next, we investigate the spanwise flow development. The recent experi-

mental study of the flow over a NACA 0018 airfoil by [183] suggests that

newly coalesced shear layer vortices possess a relatively high spanwise co-

herence and undergo a rapid spanwise deformation, which eventually leads

to a break down into small scale structures in the reattachment zone. To

quantify this behavior with the present simulation, spanwise wave-length

statistics are extracted by computing the spectra of streamwise velocity

fluctuations u′xu
′
x along spanwise direction for various chordwise locations

within the LSB at a constant wall-normal distance of y/c = 0.00625. The

corresponding spectra are reported in figure 6.8. Starting beyond the sepa-

ration point at x/c = 0.4, one can observe that the maximum corresponds

to the spanwise extent, thereby confirming the two-dimensionality of the

main vortices. At the mean transition location at x/c = 0.55, a steep

increase at around λ/c ≈ 0.01 is followed by a plateau of dominant wave-

lengths ranging from λ/c ≈ 0.03 to λ/c ≈ 0.1. This characteristic behavior

is identical to what was observed by [183] and implies three-dimensional
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Figure 6.8: Spectra of fluctuating streamwise velocity along the span.

vortex structures and weak spatial periodicity. Beyond transition onset at

x/c = 0.615, the breakdown into small structures is witnessed by broaden-

ing of the aforementioned plateau and an increase of the spectra at lower

wave-lengths. At the average reattachment point x/c = 0.68, the spectra

practically overlap and only a minor increase at higher wave-lengths is ob-

served, suggesting a rather fast breakdown. These results agree well with

the experimental study of [183] and therefore confirm that the KBC model

is able to capture the spanwise evolution of the flow.

Finally, the time-resolved KBC simulation allows to study the LSB dynam-

ics. The power spectral density of streamwise velocity fluctuations is shown

in figure 6.9 for two observer points, one within the LSB at x/c ≈ 0.53 and

the other in the near wake. Despite the fact that more frequencies are

present in the near wake, both observer points display a dominant vortex

shedding frequency at a Strouhal number Stvs = f sin(α)c/u∞ ≈ 0.38. In

order to assess if the reattachment behavior is steady or if bubble flapping

occurs, the normalized bubble length l/c, which is computed through the

instantaneous Cf distribution, is monitored over the course of the simu-

lation (see figure 6.10a). A highly unsteady reattachment behavior with

various frequency contributions is evident and the bubble length fluctuates

as much as 0.15l/c from its mean value. By employing spectral analysis and

plotting the power spectral density of the bubble length (see figure 6.10b),

various dominant frequencies are revealed. On the one hand, the vortex
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Figure 6.9: Power spectral density for two observer points, one within the bubble and

one in the near wake.
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Figure 6.10: LSB dynamics.

shedding frequency at Stvs is observed as in the analysis above. On the

other hand, other dominant frequencies at lower Strouhal numbers, namely

St ≈ 0.09 and St ≈ 0.02 are superimposed. As mentioned in the intro-

duction, a similar behavior was observed numerically and experimentally

(see, e.g., [33, 44, 127, 148, 190, 223, 292, 358]). While the bubble flapping

effect is confirmed by the present simulation, the cause of the low frequency

contribution is discussed controversially in literature and deserves further

investigation in future work.

Summarizing, we have shown that the parameter-free KBC model supplied

with the Grad boundary condition is able to accurately predict the bound-

ary layer separation, transition to turbulence and the reattachment of the
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Figure 6.11: Computational set-up for the flow over an T106 turbine blade.

turbulent boundary layer. Thus, it provides a simple and efficient alterna-

tive to conventional modeling approaches such as LES. It also needs to be

stressed that to accurately capture the transition phenomena it is neces-

sary to resolve the recirculation region for which grid refinement is crucial

to keep the computational costs reasonable.

6.2.2 Flow in a low-pressure turbine passage

In this section, the flow in a low-pressure turbine passage is considered.

Similar to the flow past the SD7003 airfoil in the previous section, low-

pressure turbines typically operate at relatively low Reynolds and Mach

numbers. Under these conditions, depending on the geometry and the

inflow, a LSB might occur. Note that, while in general compressibility

effects may not be neglected for industrial applications, insight into LSB

dynamics can already be gained in the incompressible flow regime [26,

394]. The present set-up is distinctly different from the previous case of

the SD7003 airfoil as it allows for blockage and curvature effects, as well

as the unsteady wake of the blade, which can have a significant influence on

the LSB and the onset of transition. In particular, the flow is re-directed by

more than 100◦ and accelerated to roughly double its inflow value, leading

to a large streamwise straining, where its principal axes vary spatially, as

observed by [375].

Various experimental investigations have been conducted to study LSBs

in low-pressure turbines (LPTs) [88, 136, 139, 228, 308, 309, 318, 324].

Considering the full rotor/stator arrangement in real turbine cascades, the

incoming flow is highly unsteady, with wakes generated by the preceding

row of blades. In the work of [309], a significant effect of a periodically
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(a) (b)

Figure 6.12: Flow in a low-pressure turbine passage at Re = 1.48 · 105, visualized by

vorticity isosurfaces colored by streamwise velocity. (a): Uniform inflow. (b): Turbulent

inflow.

passing turbulent inflow wake on the LSB and thus performance was ob-

served. Combined with hot film measurements [308], it was concluded

that separation is periodically suppressed by the turbulent incoming wake

and the subsequent calmed region with their full velocity profiles (see also

[324]).

On the numerical side, the increasing compute power and the relatively

low Reynolds and Mach number in LPTs allow for DNS (see, e.g., [375,

376]). Noteworthy is the DNS study of [375], who investigated the bypass

transition due to a periodic, turbulent inflow wake, which was used to

generate large free-stream disturbances.

On the modeling side, the lack of accuracy of RANS models [286] led to

an increasing number of LES simulations to study LSBs in LPTs, focusing

again on the boundary layer-wake interference [238, 239, 241, 295]. The

results of these LES are encouraging, but uncertainties remain and high

resolution is needed to capture all features of transition. In the LES study

of [238] for example, significant discrepancies to the reference DNS are ob-

served, where the LES was not capable of fully reproducing the transition

location (delayed transition) and skin friction coefficient. These discrep-

ancies are attributed to the resolution near the boundary and also in the

bulk, which is not able to account for the fine-scale structures convected

by the wake and thus to trigger transition.
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Figure 6.13: Distribution of the mean pressure coefficient over the axial chord of the

T106 turbine blade at Re = 1.48 · 105.

In this work, analogous to [286], we focus on the flow past the turbine

blade without an inflow wake. To analyze the effect of Reynolds number

and free-stream turbulence, we conduct simulations at Reynolds numbers

of Re = 6 · 104 and Re = 1.48 · 105 with imposed free-stream turbulence

intensities in the range Tu = 0− 10%.

6.2.2.1 Numerical set-up

The simulation set-up is identical to the DNS of [375], who conducted in-

compressible flow simulations with and without a turbulent inflow wake.

For comparison with experiment, the study of [88] is considered, who car-

ried out various experiments for different inflow disturbances and Reynolds

numbers (but no turbulent wake).

The set-up consists of a single T106 low-pressure turbine blade, which

is periodically repeated to mimic the full turbine passage. The distance

between two consecutive blade profiles is given by the normalized pitch

g/Cax = 0.93, where Cax denotes the axial chord. The Reynolds number is

based on the mean inflow velocity and the axial chord. The computational

domain is chosen as [−Cax, 3Cax]× [−0.5g, 0.5g]× [−0.1Cax, 0.1Cax] for the

stream-, pitch- and spanwise direction, where the turbine blade is located
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Figure 6.14: Snapshot of isosurfaces of the Q-criterion (Q = 200) colored by normalized

streamwise velocity at Re = 1.48 · 105. Left: Tu = 0%. Right: Tu = 0.2%.

at the origin. The computational cost is reduced by using three levels of

grid refinement, where the coarsest level resolves the turbine blade with

Cax = 300 lattice points (see figure 6.11). In the case of full transition,

this yields a maximum effective grid spacing of ∆y+ ≈ 0.25 within the

separation bubble and ∆y+ ≈ 2.1 in the turbulent boundary layer at the

trailing edge.

Periodic boundary conditions are applied in pitch- and spanwise directions.

The exit flow has a designed angle of −63.2◦ with the x-axis and we em-

ploy convective boundary conditions at the outlet. Regarding the inflow,

simulations with uniform and turbulent inflow conditions at an inlet angle

of 37.7◦ are presented.

In order to generate the inflow turbulence, a methodology similar to [394]

was adopted, where a frozen homogeneous isotropic turbulence field within

a periodic box of spanwise length is superimposed onto mean flow at the

inlet angle. The box is duplicated to fill the entire inflow plane and ad-

vected with the inflow velocity to mimic time-varying fluctuations. The

initial turbulence field is computed using a synthetic kinematic simulation

[105], where the solenoidal velocity field is described as a superposition of

a finite number of random Fourier modes according to an energy spectrum

of the form E(k) = Ak4 exp(−2k2/k2
0). The constant A and the wave num-
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Figure 6.15: Distribution of the mean skin friction coefficient over the axial chord on

the suction side of the T106 turbine blade at Re = 1.48 · 105.

ber of the spectrum peak k0 are chosen in accordance with the prescribed

turbulence intensity.

6.2.2.2 Results

First, for the purpose of validation, we consider the high Reynolds number

case of Re = 1.48 · 105 with a uniform inflow and a turbulent inflow with

with Tu = 0.2%. A snapshot of the flow in the periodically completed

turbine passage is visualized in figure 6.12 using vorticity isosurfaces, col-

ored by streamwise velocity. The distribution of pressure coefficient over

both the suction and the pressure side of the turbine blade is shown in

figure 6.13 along with the reference data for the uniform and turbulent

inflow. On the suction side, a favorable pressure gradient accelerates the

flow until the adverse pressure gradient downstream of x/Cax ≈ 0.6 causes

a deceleration. On the pressure side, the pressure gradient is nearly zero

until x/Cax ≈ 0.5, where a steep pressure gradient accelerates the flow up

to the trailing edge.

The comparison of simulated pressure coefficient with the experimental and

numerical data in figure 6.13 shows a good agreement. On the pressure

side, only marginal discrepancies between all data is observed. On the

suction side, due to the different inflow conditions, the discrepancies are

larger. The influence of the wake for the DNS data becomes apparent in the
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Figure 6.16: Snapshot of isosurfaces of the Q-criterion (Q = 110) colored by normal-

ized streamwise velocity at Re = 6 · 104. Left: Tu = 0%. Middle: Tu = 5%. Right:

Tu = 10%.

aft of the blade, where the pressure is increasing at about x/Cax ≈ 0.85

compared to the uniform inlet. Similarly, minor deviations between the

different inflow disturbances can be observed for the experimental data

and the present simulation.

To further investigate the effect of the inflow disturbances, a close-up im-

age zoomed in from the top in figure 6.14 shows the isosurfaces of the

Q-criterion colored by normalized streamwise velocity. Both simulations

exhibit Λ-type vortices at the initial stage, which subsequently develop into

hairpin-type vortices. While for the simulation using an uniform inflow,

these flow structures are relatively well ordered in staggered formation, the

hairpin vortices for the case with turbulent inlet are more pronounced with

a higher degree of disorder.

However, as indicated by the distribution of pressure and skin friction

coefficient over the airfoil surfaces, the influence of free-stream turbulence

is minor regarding the aerodynamic quantities. In fact, the integral effect

as manifest by the drag and lift coefficient is insignificant with a deviation

of less than 0.25% and 0.01%, respectively. While the rapid increase of

the skin friction coefficient as shown in figure 6.15 indicates a starting

transition process, full transition, as defined by the Reynolds stress criteria
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Tu[%] xs/c xt/c xr/c

0 0.890 NA 0.992

5 0.903 0.973 0.976

10 0.914 0.967 0.968

Table 6.2: Comparison of the LSB properties for the flow over the T106 blade for

different free-stream turbulence intensities at Re = 6 · 104.

used above, is triggered by neither uniform nor turbulent inflow conditions.

Moreover, as indicated by the skin friction coefficient and in line with DNS

and LES simulations [295, 375] the mean flow does not separate. This is in

contrast to the LES by [286], who reported a fully developed LSB, albeit

at a lower nominal Reynolds number Re = 1.1 · 105 and a uniform inflow.

To investigate this discrepancy, another set of simulations was run with

the same Reynolds number Re = 1.1 · 105 as in [286]. However, the change

in Reynolds number had only a marginal effect and no transition or mean

flow separation was observed, also not under turbulent inflow conditions

with Tu = 0.2%. Thus, similar to [394], we decreased the Reynolds num-

ber to Re = 6 · 104, thereby stipulating mean flow separation on the airfoil

and studied three cases with varying free stream turbulence intensities,

Tu = {0%, 5%, 10%}. The corresponding instantaneous snapshots show-

ing isosurfaces of the Q-criterion, zoomed in from the top view onto the

trailing edge of the blade, are shown in figure 6.16. It is apparent that

for uniform inflow in figure (6.16,left), the flow separates as shown by the

two-dimensional vortex structures in the aft of the blade. However, turbu-

lent structures are only developing in the wake of the blade and no natural

transition occurs on the blade surface. The cases with a free-stream tur-

bulence of Tu = 5% and Tu = 10% are shown in figure (6.16, middle) and

figure (6.16, right), respectively. It can be seen that transition is triggered

for both cases, and is initiated by the formation of Λ-type vortices, simi-

lar to the high Reynolds number case. Further downstream these vortices

develop into hairpin-type vortices, which eventually break down into fine

scale turbulence past the blade. This is in contrast to the high Reynolds

number case for which the boundary layer remains attached without transi-

tion to turbulence. On the other hand, in the present low Reynolds number

cases with free-stream turbulence, separated-flow transition is observed.

The effect of free-stream turbulence on the geometrical properties on
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Figure 6.17: Average skin friction coefficient over suction side of the T106 blade for

varying free-stream turbulence intensities at Re = 6 · 104.

the LSB is investigated next. In figure 6.17 we present the skin friction

coefficient for all turbulence intensities. As in [394], we observe that the

separation location is affected by the level of free-stream turbulence and

moves downstream with increasing Tu. In addition, the reattachment lo-

cation moves upstream with increasing Tu, thereby reducing the extent of

the entire LSB and improving aerodynamic performance. It is worth point-

ing out that figure 6.17 also shows that the effect of LSB size reduction is

nonlinear with respect to Tu. This effect mainly stems from the nonlinear

upstream shift of the reattachment location rather than the separation lo-

cation, which appears to behave more linearly. Similar behavior is shown

by the mean pressure coefficient over the suction side of the airfoil in fig-

ure 6.18, where the pressure plateau is most pronounced for the uniform

inflow case, suggesting the largest LSB. All geometrical quantities of the

LSB are tabulated in table 6.2, where we define the onset to transition xt as

above using a threshold of −u′w′/u2
∞ ≈ 0.001. Investigating the flow field

in more detail, we report the mean and rms streamwise velocity profiles

(tangential to the blade surface on the suction side) for x/Cax = 0.88−0.99

in steps of 0.1Cax as a function of the normal distance n/Cax in figure 6.19.

The average velocity profiles in figure 6.19a confirm the visual impression

from the instantaneous snapshots of a pronounced separation for the case

without free-stream turbulence. For the cases including free-stream turbu-
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Figure 6.18: Average pressure coefficient over suction side of the T106 blade for varying

free-stream turbulence intensities at Re = 6 · 104.

lence, separation is less distinct and a smaller shear layer thickness with a

clear reattachment zone can be observed. Also for the mean velocity, the

trend of earlier reattachment with increasing Tu is obvious. The fluctua-

tions of the streamwise velocity component are presented in figure 6.19b.

In the case of uniform inflow, mild fluctuations within separated region in-

dicate the unsteady two-dimensional vortex rolls, whereas relatively sharp

peaks of rms-values are measured within the reattachment zone, which

are confined to the near wall-region until a normal distance of roughly

n/Cax ≈ 0.005. On the contrary, in the case of free-stream turbulence,

no vortex rolls are observed in the separation zone and the reattachment

region exhibits a much broader plateau due to transition, as compared to

the uniform case. This is in line with what is observed in the literature

(see, e.g., [286]).

6.3 Concluding remarks

Due to the lack of a comprehensive understanding of the mechanisms at

play during the formation of a LSB, increasing the performance of engineer-

ing devices requires simple and efficient predictive tools. In this work, we

presented a detailed investigation of entropic multi-relaxation time models

and its applications to transitional flows. The simulations show that the
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Figure 6.19: Streamwise velocity profiles (tangent to the suction side of the blade

surface) as a function of the normal distance for x/Cax = 0.88 − 0.99 in steps of 0.1Cax
at Re = 6 · 104. (a): Mean streamwise velocity. (b): Rms streamwise velocity. For the

legend see figure 6.18.

KBC model together with Grad’s boundary conditions is capable of ac-

curately capturing all features of LSB including separation, transition and

unsteady reattachment. Although the implicit subgrid features of the KBC

allow for a relatively coarse mesh resolution [74], accurate results were only

achieved by resolving the reverse flow region on the airfoil surface. To meet

these resolution requirements, an appropriate grid refinement technique is
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crucial.

Thus, we have shown that the KBC model in combination with appropriate

boundary conditions and grid refinement strategies is a robust, parameter-

free and accurate alternative to study complex flows of engineering interest,

where a simple grid refinement study is sufficient to ensure the validity of

the simulation.





Chapter 7

Biolocomotion

7.1 Introduction

In recent years, much research effort has been devoted to understanding the

propulsion mechanisms of flapping flight and undulatory fish locomotion.

The surge of interest originates not only from pure biological curiosity but

also serves as a rich source of inspiration to exploit these phenomena in

the design of novel robotic devices (see, e.g., [81, 200, 280] and references

therein).

In this chapter we extent the class of entropic lattice Boltzmann models to

moving and deforming objects in three dimensions with focus on applica-

tions relevant to biomimetic fluidmechanics and animal locomotion.

Given the general validation for one and two-way coupled simulation using

the classical benchmark of a falling sphere as well as the flow in engine-

like geometries in previous chapters, we continue to increase the level of

complexity within this chapter. We start by considering the simulation

of a plunging airfoil at Re = 40000 in the transitional regime, where a

detailed comparison with experimental and numerical studies of [233] and

[356], respectively, is reported. In addition, the performance for deform-

ing geometries is assessed on the example of a self-propelled anguilliform

swimmer.

Finally, in section 7.4 we explore possible extensions by considering exam-

ples of flapping flight and multiple anguilliform swimmers.
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7.2 Plunging Airfoil

In this section, we focus on the transitional flow past a plunging airfoil at a

Reynolds number Re = 40000. Motivated to deepen our understanding of

the complex physics relevant to small fliers, small unmanned air vehicles,

micro air vehicles and alike, this setup was recently investigated exper-

imentally and numerically in the works of [233, 263, 356]. Analogous to

small fliers, the flow is mainly characterized by the formation of dynamic-

stall vortices on the leading edge due to the large induced angle of attack.

As detailed in chapter 6, the transitional flow regime is particularly de-

manding for turbulence models as a high-Reynolds number analysis may

not be valid in the presence of both laminar and turbulent flow. This gives

us the opportunity to test the combination of the KBC model and the

implementation of moving boundaries to its full extent. Notable is the re-

cent study from [356] using an implicit Large-Eddy simulation (ILES, see,

e.g., [219, 220] for details and the rationale of ILES) with high-order com-

pact schemes for the spatial derivatives needed to capture the transitional

processes accurately and a Pade-type low-pass filter to gain stability.

In particular and as shown in figure 7.1, the flow past a plunging SD7003

airfoil with a static angle of attack α0 = 4 is considered in the follow-

ing. The airfoil is resolved by L = 400 lattice points using two levels of

block-refinement near the airfoil and a domain of [10L× 5L× 0.2c] in the

streamwise, lateral and spanwise direction, respectively. Same as in [356],

a sinusoidal plunging motion of the airfoil is prescribed with a plunging

amplitude of hD = 0.05c and a reduced frequency of k = πfc/u∞=3.93 as

α0

ϕ = 0

ϕ = 0.25

ϕ = 0.5

ϕ = 0.75

h(t)

Figure 7.1: Schematic of a plunging airfoil.
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(a) (b)

(c) (d)

Figure 7.2: Volume rendering of vorticity for various phases of the plunging airfoil. (a):

ϕ = 0. (b): ϕ = 0.25. (c): ϕ = 0.5. (d): ϕ = 0.75.

h(t) =
hD
c

sin(2kF (t)), (7.1)

where

F (t) = 1− eat, a = 4.6/2 (7.2)

is an initial delay function to achieve a smooth transition from the resting

airfoil to the plunging motion and the time tlb in lattice units is non-

dimensionalized as t = tlbu∞/c. This corresponds to an induced angle of

attack α = 21.5, which is sufficient for the formation of unsteady leading-

edge separation and dynamic-stall-like vortices.

Capturing the main flow features occurring during the periodical motion

of the airfoil, figure 7.2 shows four volume renderings of the instantaneous

vorticity for phase angles of ϕ = {0, 1
4 ,

1
2 ,

3
4}, corresponding to maximum

upward displacement, maximum downward velocity, maximum downward

displacement and maximum upward velocity, respectively (see also fig-

ure 7.1). At the beginning of a new cycle, at a position of maximum

upward displacement, the boundary layer near the leading-edge appears

laminar and attached to the surface (see figure 7.2a). At later times,

caused by the downward acceleration, an emerging flow separation can

be observed at the leading-edge (see figure 7.2b). At bottom dead cen-
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Figure 7.3: Phase-averaged velocity profiles at x/c = 1.5.

ter (BDC), the flow is fully separated at the leading-edge on the upper

surface of the airfoil, causing the formation of two coherent vortices (see

figure 7.2c). However, due to spanwise instabilities, these vortices break

down into three dimensional, fine-scale turbulence during the subsequent

upward acceleration (see figure 7.2d). While diffusing and annihilating,

these vortices propagate close to the airfoil surface during the following

cycle. Note that due to the high frequency, a new pair of vortices is formed

before the vortex pair of the previous cycle is shed from the trailing edge.

Identical but less pronounced is the flow structure on the lower surface of

the airfoil, where the large negative motion-induced angle of attack causes

the formation of two coherent vortex structures, which subsequently break

down into turbulence. Similar observations were reported by [356].

More quantitatively, in figure 7.3, we compare the phase-averaged velocity

profiles in the near wake of the airfoil at x/c = 1.5 with the study of [356].

In total 25 cycles were computed and the first ten were neglected in the
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Figure 7.4: Phase-averaged velocity profiles at x/c = 2.

accumulation of statistics to avoid accounting for the initial transient. It

is apparent that the main flow features are captured for both simulations

and the agreement is good. The location of the minimum and maximum

of the flow velocity agree well but differ slightly in terms of magnitude.

The present simulation exhibits larger velocity magnitudes in comparison

with the more smoothed ILES simulation. In addition, a comparison at a

location further downstream at x/c = 2 with an experimental investigation

using Particle Image Velocimetry (PIV), an immersed boundary method

and the NASA-CFL3D code from the study of [233] is shown in figure 7.4.

It is apparent that due to the complexity of the problem all data have

notable discrepancies but the agreement of the present study with the

experiment is reasonable.

Finally, we compare the evolution of the aerodynamic forces for three se-

lected cycles with [356] in figure 7.5. The lift coefficient is defined as
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Figure 7.5: Evolution of lift and drag coefficient over three exemplary cycles of a plunging

airfoil.

CL = FL/(1/2ρu
2
∞cLs), where FL is the total lift force acting on the airfoil

and Ls is the extent in spanwise direction. Analogously, the drag coefficient

is given by CD = FD/(1/2ρu
2
∞cLs), where the drag force is denoted by FD.

As shown in figure 7.5, the lift coefficient CL is dominated by the prescribed

motion of the airfoil and has a large amplitude. On the other hand, the

amplitude of the drag coefficient is much smaller but notably there is a

net mean thrust corresponding to a mainly negative drag coefficient. The

comparison with the ILES is excellent.

7.3 Anguilliform Swimmer

In the field of bio-fluidmechanics, the topic of aquatic animal propulsion

mechanisms is much discussed among biologists, neuro-scientist as well

as engineers trying to mimic these mechanisms to increase efficiency in

technical applications (see, e.g., [86, 145, 348]). However, due to the com-

plex interaction between the fluid and the deformable body of the animal,

fundamental questions regarding thrust generation and its relation to the

kinematics of the swimmer’s body, the efficiency and viscous effects re-

main controversial. In particular, investigations of the undulatory propul-
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sion mechanisms of anguilliform fish (e.g.: Anguilla anguilla) started with

the pioneering work of [120]. In contrast to carangiform fish, anguilliform

swimmer generate thrust by passing a transverse wave down their body

and therefore utilizing, to a varying degree, the whole body for thrust gen-

eration and not just the tail. The hydrodynamics of aquatic locomotion for

undulatory swimmers was studied for inviscid flow in the works of [57, 132,

205–208, 373]. Simple algebraic models predict a reverse von Kármán vor-

tex street for optimized swimming performance, where the wake consists

of a double row of single vortices when the ratio of the swimming speed

and the body wave speed is less than one [206]. On the experimental side,

Particle Image Velocimetry (PIV) has proven itself as a valuable tool to

quantify the flow field generated by the swimmer. The first visualization

using two-dimensional PIV for freely swimming juvenile eel was reported

by [249]. They found a linearly increasing flow velocity from head to tail,

suggesting continuous thrust generation along the body. In the wake, they

observed a double row of double vortices with little backward momentum,

which is generated by a start-stop vortex shed from the tail and a sep-

arate vortex produced along the body, so-called proto-vortcies, for each

half tail-beat. They conjectured that the wake morphology is caused by a

phase lag between the primary start-stop vortex and the body-generated

circulation. Subsequent studies using high-resolution PIV were conducted

by [348]. Their results were, in general, similar to [249] but differences were

noticed regarding the proto-vortices. Only a negligible phase lag with low

vorticity was reported, resulting in a single, combined primary start-stop

vortex per half tail-beat. The discrepancies were attributed to the lower

PIV resolution and the seemly accelerating eel in [249] compared to the

steadily swimming fish in [348]. In the work of [348], they stated the follow-

ing mechanism for the generation of the wake: A primary start-stop vortex

is shed when the tail changes direction. Due to the acceleration of the tail

from one side to the other, a low pressure region develops in the poste-

rior part of the body, drawing fluid in the lateral direction, which is shed

off the tail and stretches the primary vortex into an unstable shear layer

which rolls up into two separate, co-rotating vortices, which they termed

the secondary vortex. Thus, the primary vortex from one half tail beat

and the secondary vortex from the subsequent comprise the boundaries of

each lateral jet. Notable was the lack of any significant downstream flow
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for steady swimming as previously observed for carangiform fish and in-

terpreted as thrust generation mechanism. This was further supported by

the observation of only a slight upstream inclination of the lateral jets.

On the numerical front, only a few detailed studies may be found in liter-

ature (see , e.g., [34, 35, 47, 166]). The first two-dimensional viscous flow

simulations of self-propelled anguilliform fish were reported in the work of

[47]. In contrast to the experimentally observed wake morphology, these

simulations indicated a single, large vortex ring wrapping around the eel,

resulting in an upstream flow, where thrust is almost exclusively produced

along the body and not the tail tip. Three dimensional simulations were

recently conducted by [166] using the finite volume approach of the com-

mercial software package STAR-CD with a first-order discretization in time

and second-order in space. Apart from prescribing a reference motion of

the fish, as proposed by [47], an evolutionary algorithm was employed to

obtain the body motion as a result of optimizing for burst swimming speed

and efficiency. Their results indicate that large amplitude tail undulation

in combination with a straight anterior body produce most of the thrust at

the tail and are optimal kinematics in the burst swimming mode. On the

other hand, optimal kinematics for efficient swimming were obtained for

an undulation of the entire body, where thrust is generated with half the

body and not just the tail. For all swimming patterns, the wake morphol-

ogy did not differ qualitatively and is in agreement with the experimental

observations of [348], exhibiting a double row of single vortex rings with

lateral jets.

Despite the valuable contributions mentioned above, further quantitative

analysis is needed for conclusive results. The ease of data extraction, its

analysis and the precise control over the body’s kinematics make numerical

experiments useful for these studies. However, issues related to deforming

geometries and the complex fluid-structure interaction are challenging for

numerical solvers, thus explaining the sparsity of these simulations in lit-

erature. The KBC model on the other hand is a highly efficient approach,

which allows for a simple implementation of complex, deforming bodies

using the Grad boundary condition on Cartesian meshes and is therefore

ideally suited for this type of problem. This, combined with the enhanced

stability of KBC models compared to LBGK, the intrinsic parallelizabil-

ity and efficiency of LBM as well as a suitable block-refinement scheme
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Figure 7.6: Volume rendering of vorticity of the swimmers wake, showing the typical

double row vortex street.

make these promising tools for DNS investigations of such complex flows.

Therefore, as a first step to assess the predictive capabilities of the proposed

scheme, we conduct a simulation of a self-propelled anguilliform swimmer

analogous to [166].

Geometrically, the body of the anguilliform swimmer with length L is mod-

eled by spatially varying ellipsoidal cross sections as in [166] for which the

half axes w(s) and h(s) are defined as analytical functions of the arc-length

s as

w(s) =





√
2whs− s2 0 ≤ s < sb,

wh − (wh − wt)
(
s−sb
st−sb

)2

sb ≤ s < st,

wt
L−s
L−st st ≤ s ≤ L,

(7.3)

where wh = sb = 0.04L, st = 0.95L and wt = 0.01L. For the height h(s)

an elliptical curve is prescribed as

h(s) = b

√
1−

(
s− a
a

)2

, (7.4)

where the half axes are given as a = 0.51L and b = 0.08L. As proposed by

[47], the swimmer undergoes a prescribed time-dependent lateral deforma-
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tion of the body’s center-line as

y(s, t) = 0.125βL
s/L+ 0.03125

1.03125
sin

(
2π

(
s

L
− t

T

))
, (7.5)

where T is the undulation period and β is an initial ramping function to

assure a smooth transition from the initially resting body according to

β =

{
1−cos(πt/T )

2 0 ≤ t ≤ T,

1 t > T.
(7.6)

The feedback from the fluid onto the body is prescribed by Newton’s equa-

tions as

msẍs = F (7.7)

dIsωs
dt

= ωsİs + Isω̇s = M , (7.8)

where ms, Is, xs, ωs are the mass, the inertia tensor, the center of mass

and the angular velocity, respectively. The force and torque acting from

the fluid onto the object are denoted by F and M , respectively. As in the

work of [166], the complexity of the system is reduced by only considering

the torque corresponding to the yaw.

In the framework of the LB simulation, the geometrical model is rep-

resented as a triangulated surface composed of elliptical disks along the

center-line. The center-line was decomposed into 150 segments, which has

proven to be sufficient. This allows for a straightforward computation of all

geometrical properties including the time derivative of the inertia tensor.

The velocity at the intersection points, needed for the boundary condi-

tions, was computed based on a finite-difference scheme and a barycentric

interpolation for the given time-dependent deformation. As above, the

equations of motion are solved using an Euler integration scheme. Higher-

order integration schemes have been tested but marginal differences were

observed due to the relatively small time step used. Further, no smooth-

ing or low-pass filtering of the hydrodynamic forces were applied, unlike in

[166].

The simulations are carried out in a domain of [8L×4L×L], the swimmer

is resolved by L = 200 lattice points and the undulation period is taken
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Figure 7.7: Temporal evolution of the forward velocity U‖ and lateral velocity U⊥.

to be T = 104 lattice time steps. Same as in the reference, the Reynolds

number is taken as Re = (L2/T )/ν = 7142.

A volume rendering of vorticity shows the wake of the swimmer in fig-

ure 7.6. In agreement with [166, 347, 348], the wake consists of a double

row of single vortices. Furthermore, we confirm the measurements from

[348] and observe a primary vortex being shed from the tail when it changes

direction. The fluid drawn in lateral direction by the accelerating tail and

the development of two separate co-rotating vortices as a result of an un-

stable shear layer roll-up can also be seen in figure 7.6.

Quantitatively, we compare the evolution of the forward and the lateral

velocity of the swimmer in figure 7.7. Overall, the agreement is good. Mi-

nor discrepancies are observed during acceleration but are attributed to

different ramping functions used here, Eq. (7.6), and in [166]. The differ-

ences in the asymptotic forward and lateral velocity are within the range

of expectation due to the different evolution algorithms. While [166] re-

port an asymptotic forward velocity of Ū‖ = 0.4 with an amplitude of

0.01, the present simulation yields Ū‖ = 0.415 with an amplitude of 0.005.

The lateral velocity U⊥ has a zero mean for both the reference and the

present simulation. An amplitude of 0.046 is measured in the present sim-

ulation whereas [166] measure 0.03. All simulations were checked for grid

independence.
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7.4 Outlook and possible extensions

Robustness and accuracy of the proposed numerical scheme has been demon-

strated in previous sections and opens the door for further investigations.

In this section we provide a brief overview of possible extensions and direc-

tions of future research, which may be pursued with the proposed approach.

7.4.1 Flapping flight

While the plunging airfoil in section 7.2 does exhibits characteristics of

small fliers, namely the formation of dynamic-stall vortices on the leading

edge, extraordinary stability and maneuverability for flapping flight has

been observed for animals ranging from insects such as fruit flies to bats

and birds. These properties make flapping flight an interesting candidate

for biomimetic robotic devices (see, e.g., [200]). Thus, understanding the

aerodynamics, kinematics as well as the sensory system has been focus of

much recent research (see, e.g., [27, 70, 293, 299, 328, 385] and [328] for

a review). While in-vivo or robotic measurements [71, 201] have been key

to understand basic principles of kinematics and force generation, their

limitations in terms of controllability or accessibility make numerical sim-

ulations a valuable tool to advance this challenging field.

To test our approach in this field of application, some preliminary simula-

tions have been conducted.

First, simulations of a flapping Drosophila wing, with the kinematics as

given by [28, 115, 303], were performed. Geometrically, a planar wing with

an elliptical cross-section of thickness 0.12c and the chord length c was

Figure 7.8: Left: Wing planform. Right: Wing kinematics during the upstroke.
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Figure 7.9: Volume rendering of vorticity for a Drosophila wing during the upstroke of

the third cycle.

employed. As no data of the exact wing geometry was reported, a visually

similar planform as in [115] was reproduced (see figure 7.8). The wing

undergoes a prescribed flapping motion, which is defined by the evolution

of the stroke position φ(τ), the angle of attack α(τ) and the stroke deviation

θ(τ). While no stroke deviations are considered, i.e. θ(τ) = 0 , the angle

of attack is described by a trapezoidal wave function, leading to a constant

angle of attack. At stroke reversal, a smooth transition is achieved by

prescribing the angular velocity as

α̇(τ) = 0.5α0(1− cos(2π(τ − τ0)/∆τr)), τ0 ≤ τ0 + ∆τr, (7.9)

where τ0 = 0.26T is the flip start, ∆τr = 0.24 the flip duration and α0 = 45◦

is the mid-stroke angle of attack.

As in [28, 303], the position of the wing within the stroke plane is described

by a smoothed triangular wave form, leading to a constant translational

velocity for each half-stroke. The smoothing was realized by prescribing



146 Chapter 7. Biolocomotion

3.0 3.2 3.4 3.6 3.8 4.0

t/T

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

C
L

Birch and Dickinson (2003)

Gilmanov and Sotiropoulos (2005)

present

Figure 7.10: Evolution of the lift coefficient and comparison to experimental and nu-

merical data.

an angular velocity as

ut(τ) = uτ,0 cos(π(τ − τ1)/∆τt), τ1 ≤ τ ≤ τ1 + ∆τt, (7.10)

where τ1 = 0.42T and ∆τt = 0.16T . The total stroke angle is given by

φ = 160◦ and T is the stroke period (up- and downstroke). The Reynolds

number is taken as Re = L0U0/ν = 160, where the wing length is L0 =

0.19m and the velocity U0 = 0.166m/s, which is measured at 0.65L0 from

the wing base. Further, the distance between the wing tip and the center

of rotation is taken to be LTip = 0.25m. The simulation was evolved

for four full stroke cycles during which we measured the lift forces. A

visual representation of the wing kinematics during the upstroke and the

induced flow field during the third cycle is shown in figure 7.8 and figure 7.9,

respectively. As in the references, the lift force is defined in the direction

of gravity. For no stroke deviation the radial force is zero. The evolution

of the lift force during the third cycle is compared to the numerical and

experimental references in figure 7.10.

It is apparent that the main flow features are captured well. Discrepan-

cies compared to the experimental apparatus are observed but are of the

same order than the numerical reference. It is conjectured that these de-

viations originate from the different wing geometries and thus kinematics.

It would be interesting to further pursue this set-up in collaboration with

an experimental group using the identical wing geometry.
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Figure 7.11: Volume rendering of vorticity for a body-wing assembly during the third

stroke.

A natural extension of these simulations is to extend the set-up to a full

wing-body assembly. A preliminary simulation is shown in figure 7.11 using

identical parameters as in the previous case. Possible extensions include

modeling elasticity effects of the wings [385] as well as full two-way coupled

simulations using a controller or optimization algorithms to study stabil-

ity and maneuverability properties. As also discussed in the next section

for anguilliform swimmers, employing reinforcement learning techniques in

combination with deep neural networks might also yield valuable insight

into optimal wing kinematics.

7.4.2 Interaction of multiple swimmers

Based on the results of a single anguilliform swimmer in section 7.3, the

framework can be extended to multiple individuals in order to investigate

the interdependence of swimmers in a swarm. Feasibility of this approach

was confirmed by conducting a preliminary simulation with prescribed

kinematics for three individuals. An instantaneous snapshot of this set-

up, showing a volume rendering of vorticity, is presented in figure 7.12.

This application addresses fundamental questions of fish schooling and

its biological advantage. In literature, possible benefits such as reduced
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Figure 7.12: Volume rendering of vorticity of three anguilliform swimmers.

vulnerability to predators, enhanced feeding and reproduction possibilities

are proposed. On the other hand, a hydrodynamical benefit of swimming

in schools, where individuals can extract energy from the vortices shed by

others, has been proposed [22, 204, 221, 333]. However, the evidence is by

far not conclusive and requires further studies [269]. While schooling can

be readily observed with natural swimmers, in simulations it is essential

to equip the individuals with an appropriate behavioral model to achieve

such group dynamics. Agent-based models [287] that lead to schooling or

flocking rely on local interaction rules handcrafted a priori, based on em-

pirical arguments and experimental observations [65, 144]. These models

have been a key tool in helping us understand the influence of social traits

in the emergence of schooling patterns [12]. However, they do not explicitly

account for the flow environment [110].

Along the lines of the work [258], it would be intriguing to take advantage

of recent developments in combining deep neural networks and reinforce-

ment learning techniques [244] and incorporate it into our three dimen-

sional simulations of multiple swimmers. This would allows us to obtain

the kinematic parameters for optimal performance based on the local flow

quantities. The goal here is to determine whether these kinematics, solely

based on hydrodynamic and energetic arguments, will indeed yield highly
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ordered formations as observed in nature or if non-hydrodynamic factors

predominate. In addition, this study could have significant impact on the

design of robotic control systems and actuators in a non-steady, perturbed

environment.

Another interesting line of research is to investigate the affect of stiffness of

body and locomotor on the performance and speed, which to date are not

well understood [194, 213, 243]. In particular, recent studies [151, 194–196,

259] on passive and active flexible foils, mimicking undulatory body motion

of fish, suggest that a key characteristic of efficient propulsion systems

is the use of flexible materials or combinations of them. Notable is the

experimental study [151], where actively controlled pneumatic actuators

were attached to a flexible foil. A numerical study using the KBC in

combination with the fully coupled fluid-structure interaction solver as

presented in chapter 8, might shed light on these mechanisms.

7.5 Conclusion

In this chapter we have presented a thorough study of the entropic multi-

relaxation time model in combination with the Grad boundary condition

for moving and deforming objects in three dimensions. First, accuracy

and robustness of the proposed method were assessed in the simulation of

a plunging airfoil in the transitional regime. The comparison with litera-

ture revealed excellent agreement in all quantities including phase-averaged

velocity profiles in the near wake region as well as the evolution of aerody-

namic loads, important for realistic two-way coupled simulations. Finally,

for deforming objects, the simulation of an anguilliform swimmer was con-

sidered and validated by comparison to the numerical investigations of

[166].

These simulations, together with previous chapters, establish the predictive

capabilities of KBC models for complex, moving and deforming objects,

where a simple grid-convergence is sufficient to assert their validity. This

opens interesting directions of further research and possible extensions to

flapping flight or fish schooling have been outlined in section 7.4.

Having focused on prescribed deformations in this section, we will con-

tinue with elastically deforming objects and fully coupled fluid-structure

interaction in the following chapter.
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Fluid-structure interaction

8.1 Introduction

Fluid-structure interaction (FSI) is of significant interest in science and en-

gineering applications, where examples include aeroelasticity such as flutter

and buffeting [18, 23, 93, 357], or bio-fluidmechanics in order to enhance our

understanding of the flow through the cardiovascular system, cell aggrega-

tion as well as blood-heart interaction [66, 284]. Insight in these phenom-

ena through experimental and numerical studies has shown tremendous

success, for example, in the development of cancer diagnostic devices the

size of a chip [181, 302], optimizing wind turbines [18], or in artificial heart

valves [37]. Yet, such problems remain a challenge to existing methods due

to strong nonlinearity and their multidisciplinary nature [80].

In general, there are two main avenues to numerical FSI simulations,

namely, monolithic and partitioned approaches. The monolithic approach

describes the fluid and the structural part with the same discretization

scheme in one system of equations, which is solved simultaneously with

a single solver. This technique implies consistent fluid-structure interface

conditions. On the other hand, in most practical applications the parti-

tioned approach is employed, which uses separate solvers for the fluid and

structural parts, respectively. The advantage of this approach is its modu-

larity, which allows the use of independently optimized solution strategies

in the solid and fluid domain, respectively. Thus partitioned approaches
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are most common and therefore are the focus of this chapter. On the other

hand, consistent solid-fluid interface conditions are not satisfied implicitly

and thus pose the main challenge of partitioned fluid-structure approaches.

Most conventional FSI schemes are based on body-fitted grids, where the

interface conditions are treated as boundary conditions and the compu-

tational mesh conforms to the moving and deforming solid-fluid interface.

While the interface conditions are easily imposed, the generation of the

moving meshes for complex geometries undergoing large, unprescribed de-

formations is non-trivial and requires sophisticated procedures to avoid

severe mesh distortion to preserve accuracy [130, 251, 338, 340] (see also

chapter 3 for a discussion). Viable alternatives are found in non-conforming

methods, such as the LBM.

Armed with the encouraging results from previous chapters, the KBC

model is employed to solve the fluid part of the FSI algorithm. The struc-

tural domain on the other hand is described by a geometrically nonlinear

total Lagrangian formulation in the framework of the finite element method

(FEM).

Thus, in this chapter, we extend the KBC model, the Grad boundary con-

dition and the block-refinement scheme to fluid-structure interaction prob-

lems involving large deformations and assess its predicitive capabilities.

Apart from thorough validation by comparison to standard benchmarks,

the robustness of the scheme allows us to explore its capabilities in multi-

physics applications, where we present a novel multiphase formulation of

the entropic multi-relaxation time model and its coupling to the structural

solver.

The chapter is structured as follows: We begin by introducing the nu-

merical methodology to solve the governing equations of the solid domain.

Next, we discuss the coupling methodology between fluid and solid part

through the Grad boundary condition. Finally, in section 8.3, we report

the numerical results obtained by the proposed scheme. We start by a

thorough validation of the model in section 8.3.1 and subsequently present

the extension of the FSI scheme to multiphase flows in section 8.3.2.
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8.2 Numerical approaches

In the following we briefly describe the numerical methodology of the elastic

solid as well as the fluid-solid coupling methodology. The subscripts f and

s are used to indicate the fluid and structural quantities, respectively. The

time-dependent fluid and solid domains with their common interface are

denoted by Ωt
f , Ωt

s and ΓtI = ∂Ωt
f ∩ ∂Ωt

s, respectively. The corresponding

reference or initial domains and the interface are referred to as Ωf , Ωs

and ΓI = ∂Ωf ∩ ∂Ωs, respectively. Furthermore, Neumann and Dirichlet

boundary conditions are indicated by ΓN and ΓD, respectively.

8.2.1 Structural modeling

In the Lagrangian frame, the structural part is governed by the momentum

equation as

ρs
∂us
∂t
−∇ ·Ps = ρsbs in Ωs,

us = us on ΓD,

Psns = ts on ΓN , (8.1)

where us, ρs and bs are the solid velocity, density and body force per

unit mass. The outer normal vector of ΓI or Γs,N is denoted by ns. The

prescribed velocities and tractions on the Dirichlet and Neumann boundary

are indicated by vs and ts, respectively. The first Piola-Kirchhoff stress is

denoted by Ps and related to the second Piola-Kirchhoff stress Ss by

Ps = FSs, (8.2)

where F denotes the deformation gradient

F = I +∇ds (8.3)

and ds is the displacement field of the solid. The second Piola-Kirchhoff

stress, on the other hand, can be mapped to the Cauchy stress tensor σs
by

Ss = JF−1σsF
−T , (8.4)

where J = det(F ). Here, we consider the hyperelastic Saint Venant-

Kirchhoff constitutive equation, which extends linear elastic models to
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the geometrically nonlinear regime and defines the second Piola-Kirchhoff

stress as

Ss = λtr(E)I + 2µsE, (8.5)

where

E =
1

2
(F TF − I) =

1

2
(∇ds +∇dTs +∇dTs∇ds) (8.6)

is the Green-Lagrangian strain tensor. The first and second Lamé coeffi-

cients are indicated by λs and µs, respectively and are related to Young’s

modulus Es and Poisson’s ratio νs as

νs =
λs

2(λs + µs)
, Es =

µs(3λs + 2µs)

λs + µs
. (8.7)

In the present work, we employ a two-field formulation and solve for the

displacement field separately using the kinematic compatibility condition

∂ds
∂t
− us = 0 in Ωs,

ds = ds on ΓD, (8.8)

where ds denotes the prescribed displacement on the Dirichlet boundary.

The structural equations are solved using the finite element method (FEM),

which we implemented using the open-source library deal.ii [15]. We fol-

low standard FEM procedures, see, e.g., the textbooks [20, 170] or in the

context of monolithic FSI with deal.ii [290, 363, 364]. Using the conven-

tional notation for Lebesgue and Sobolev spaces, we define the following

functional spaces for trial and weighting functions:

L := {ws ∈ L2(Ωs)}, (8.9)

V0 := {w ∈ H1(Ωs) : w = 0 on Γs,D ⊂ Ωs}, (8.10)

VD := {w ∈ H1(Ωs) : w = ws,D on Γs,D ⊂ Ωs}, (8.11)

where L2 and H1 denote the Lebesgue space of square integrable functions

and the first Sobolev space, respectively. Furthermore, the short-hand

notations ( · , · ) and 〈 · , · 〉 indicate the scalar product on the L2-space and

its boundary, respectively. Thus, following standard procedures, we obtain

the following variational formulations for {us,ds} ∈ {L × VD}
(ρs∂tus,ψs,u)Ωs + (Ps,∇ψs,u)Ωs − (ρsb,ψs,u)Ωs

−〈t,ψs,u〉ΓI∪Γs,N = 0 ∀ψs,u ∈ V0, (8.12)

(∂tds,ψs,d)Ωs − (us,ψs,d)Ωs = 0 ∀ψs,d ∈ L, (8.13)
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where ψs,u, ψs,v, us and vs are the trial and test functions of the solid

displacement and velocity, respectively. Note that the traction t may also

be specified in terms of the Cauchy stress tensor σs as

t = JsσsF
−T
s ns. (8.14)

For simplicity, we use the one-step-θ scheme for the integration in time,

which, for a generic quantity g with ∂tg(t) = f(t, g(t)), reads

∂tg ≈
gn+1 − gn

∆t
= θfn+1 + (1− θ)fn. (8.15)

This allows us to choose implicit/explicit Euler or centered/shifted Crank-

Nicolson time integration depending on the choice of θ but can also easily

be extended to the fractional-step-θ scheme. Note that the following can be

extended in a straightforward manner to other standard time integration

schemes such as the Newmark algorithm or alike.

Using the temporal discretization of Eq. (8.15), the variational formulations

of Eq. (8.12)-(8.13) may be discretized in time as

ρs∆t
−1
(
un+1
s ,ψs,u

)
Ωs

+ θ
(
P n+1
s ,∇ψs,u

)
Ωs

= ρs∆t
−1 (uns ,ψs,u)Ωs

+ θ
[
〈tn+1,ψs,u〉ΓI∪Γs,N +

(
ρsb

n+1,ψs,u

)
Ωs

]

+ (1− θ)
[
〈tn,ψs,u〉ΓI∪Γs,N + (ρsb

n,ψs,u)Ωs
− (P n

s ,∇ψs,u)Ωs

]

∀ψs,u ∈ V0, (8.16)

∆t−1
(
dn+1
s ,ψs,d

)
Ωs
− θ

(
un+1
s ,ψs,d

)
Ωs

= ∆t−1 (dns ,ψs,d)Ωs
+ (1− θ) (uns ,ψs,d)Ωs

∀ψs,d ∈ L. (8.17)

With slight rearrangement it should be obvious that Eq. (8.16) and Eq. (8.17)

can conveniently be expressed in matrix form as

A(Un+1,Ψ) = F (Ψ), (8.18)

where Un+1 = {un+1
s ,dn+1

s } and Ψ = {ψs,u,ψs,d}.
Based on the time-discrete equations shown above, we employ a finite

element Galerkin discretization in space. We discretize the undeformed or
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reference domain Ωs in a shape-regular mesh Mh, which is composed of

hexahedral elements E . The finite element spaces are given by

Lh := {wh ∈ C(Ωh),wh|E∈ Qp(E) ∀E ∈ Mh} ⊆ L2, (8.19)

V0,h := {wh ∈ C(Ωh),wh|E∈ Qp(E) ∀E ∈ Mh,

wh = 0 on Γs,D,h} ⊆ H1, (8.20)

VD,h := {wh ∈ C(Ωh),wh|E∈ Qp(E) ∀E ∈ Mh,

wh = ws,D,h on Γs,D,h} ⊆ H1, (8.21)

where Qp(E) is the space of tensor product polynomials of degree p. In

the following, we restrict ourselves to the Q2 element for simplicity, but

it can straightforwardly be extended to higher order. Further, a trilinear

transformation is used to map the physical elements to the unit element.

Finally, the fully time- and space-discrete nonlinear system in matrix no-

tation reads as

A(Un+1
h ,Ψh) = F (Ψh), (8.22)

for Un+1
h = {un+1

s,h ,d
n+1
s,h } ∈ {Lh×VD,h} and Ψh = {ψs,u,h,ψs,d,h} ∈ {Vh,0×

Lh}.
The nonlinear equations arising from the integration procedures and the

Saint-Venant Kirchhoff constitutive relation are solved using a Newton-

Raphson method in combination with a simple line search algorithm. This

yields the incremental updating rule for the k-th iteration as

A′(Un,k
h )(δUn,k

h ,Ψh) = −A(Un,k
h )(Ψh) + F (Ψ) (8.23)

Un,k+1
h = Un,k

h + λδUn,k
h , (8.24)

where λ ∈ (0, 1] is the line search relaxation parameter. For all cases in

this chapter λ = 0.7 has proven to be a good choice. The Gâteaux deriva-

tives A′(Un,k
h )(δUn,k

h ,Ψh) are analytically computed. In particular, the

nonlinearity arises due to the Saint-Venant Kirchhoff relation, which only

depends on the displacement. Thus, for direction δU the corresponding

derivatives with respect to U may be identified as

∂UE =
1

2

(
∇δUTF + F T∇δU

)
, (8.25)
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which yields

∂US =
1

2
λtr
(
∇δUTF + F T∇δU

)
I+

µs
(
∇δUTF + F T∇δU

)
, (8.26)

and upon substitution

∂UP =∇δUS + F
(
µs(∇δUTF + F T∇δU)

+λtr(F T∇δU)I
)
. (8.27)

8.2.2 Fluid-structure coupling

A consistent coupling of the fluid and structural domain enforces the fol-

lowing interface conditions

uf = us on ΓtI , (8.28)

Psns + JσfF
−Tns = 0 on ΓI , (8.29)

where σf = −pfI + ρfνf(∇uf +∇uTf ) is the fluid stress tensor.

Within the context of partitioned approaches, one can distinguish between

weakly(loose)- and strongly-coupled FSI schemes. While weakly-coupled

methods do not enforce the fluid-solid interface constraints, strongly-coupled

methods typically utilize subiterative schemes to converge to the solution

of the monolithic system. Weakly-coupled methods are computationally

less expensive but have shown to generate artificial energy at the interface

due to the staggered nature of the evolution of the fluid and structural part

[278]. This so-called added-mass effect can cause fatal instabilities for small

solid-fluid density ratios and thus may limit their range of applicability [36,

48, 98, 197, 203].

However, the added-mass effect is proportional to the time step size for

compressible flows and converges to a non-zero value only in the fully

incompressible regime. Thus, for the weakly compressible LBM at the

incompressible limit and the corresponding small time step size this effect

has only a limited influence [176].

Hence, for simplicity, we chose a weakly-coupled partitioned approach using

the conventional serial staggered (CSS) scheme. The fluid is solved by the

LBM and the solid by an appropriate finite element discretization, which
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accounts for geometric nonlinearity. The coupling between both domains

is achieved through appropriate boundary conditions. On one hand, the

Grad boundary condition accounts for the coupling from the solid to the

fluid. On the other hand, the fluid is coupled to the solid by the traction

force as computed through a pressure tensor extrapolation scheme similar

to [176].

Thus, in the CSS algorithm, we first perform a fluid step (including bound-

ary conditions) and compute the force (traction) on the solid. Subse-

quently, the structural solver computes its deformation, where the traction

is imposed as a boundary condition. Finally, we transfer velocity and dis-

placement of the solid to the fluid solver, update the solid geometry in the

fluid solver and incorporate the boundary velocity in the fluid boundary

conditions.

In the following, we briefly summarize the implementation of the corre-

sponding boundary conditions needed to perform full coupling.

8.2.2.1 Fluid boundary conditions

In the FSI simulations, the fluid boundary condition imposes the no-slip

condition and accounts for the momentum exerted from the solid to the

fluid. We again employ the Grad boundary condition as detailed in chapter

3. However, in contrast to previous applications, we do not prescribe the

velocity directly but it is rather computed by the FEM solver.

To that end, we use the FEM mesh to construct a surface mesh, which

is passed to the fluid solver. In particular, we partition the quadrilateral

surface elements of the FEM solver into triangular elements for an efficient

detection of the intersection location and update the vertex locations us-

ing the displacements as computed by the FEM solver. Furthermore, the

corresponding velocity values are transferred to the fluid solver and used

to interpolate the velocity values at the intersection locations xw,i. The

remaining target quantities are computed as before, which completes the

fluid boundary condition.
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8.2.2.2 Solid boundary conditions

For the coupling of the fluid to the solid, we impose a traction boundary

condition as

t = JsσfF
−T
s ns. (8.30)

Thus, we need to evaluate σf at the quadrature points of the FEM mesh.

Fortunately, in LBM the fluid stress tensor can conveniently be computed

as

σf = −pI − (1− β)Π(1), (8.31)

where p = ρc2
s in the athermal case and Π(1) =

∑
i f

(1)
i ci⊗ci, which is eval-

uated using f
(1)
i ≈ fi− f eqi . As σf needs to be evaluated at all quadrature

points on the solid surface mesh, we use an extrapolation scheme, similar

to [176].

8.3 Numerical results

8.3.1 Validation

8.3.1.1 Turek Benchmark

For the validation of FSI schemes a comprehensive test suite was proposed

in [346], which consists of a rigid circular cylinder with a flexible flag at-

tached to its downstream side. The structure is placed asymmetrically

in a laminar channel flow and therefore induces an oscillatory motion of

the elastic beam as the flow evolves. The setup is schematically shown in

11D

4
.1
D

h

L

D

x

y

2D

2
.1
D

Figure 8.1: Schematic - Turek Benchmark.
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Figure 8.2: CSM3: x- and y-displacement of the beam tip.

figure 8.1. While the boundary conditions in pitchwise directions are no-

slip boundaries, the inflow at the left boundary has a prescribed parabolic

velocity profile according to

ux(0, y) = 1.5Ūx
y(H − y)

(H/2)2
, (8.32)

where the mean inflow velocity is Ūx and the channel height H. As an

initial condition for the unsteady simulation we use a smooth ramping

function for the inflow. The cylinder with diameter D is placed asymmet-

rically at (2D, 2.1D), while the beam has length L = 3.5D and thickness

h = 0.2D. Note that while in [346] all computations were carried out in

two dimensions, we perform a quasi two-dimensional simulation by using

only a few points in the spanwise direction and apply periodic and plane

strain boundary conditions for the fluid and the solid, respectively. The

constitutive law for the solid part is assumed to follow the hyperelastic

Saint Venant-Kirchhoff model.

Before attempting to solve the fully coupled FSI system, we first validate

the structural solver separately using a time-dependent large deformation

test case. Thus, we do not consider the surrounding fluid of the setup in

Contribution dx dy f

[346] −0.01431± 0.01431 −0.06361± 0.06516 1.0995

present −0.01460± 0.01460 −0.06463± 0.06492 1.10

Table 8.1: Results for CSM3.
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Figure 8.3: Snapshot of the computational domain, zoomed in on the cylinder-flag

assembly.

figure 8.1, but only account for a gravitational force g = (0, 2 · 103m/s2),

which is acting on the beam with density ρs = 103kg/m3. The Poisson

ratio and the shear modulus are taken as νs = 0.4 and µs = 0.5 · 106kg/ms2,

respectively. This corresponds to CSM3 in [346], where the authors report

the evolution of the beam tip displacement in the x and y directions. For

this setup the beam was discretized by 280 elements and evolved using a

time step of ∆t = 0.001. The comparison to [346] is shown in figure 8.2

and table 8.1 and it is obvious that apart from minor artificial damping

in the simulations of [346] both results agree well. This validates our

implementation of the structural model.

For brevity, we avoid presenting the pure CFD validation as done in [346].

The fluid solver however was thoroughly validated as witnessed by pre-

ceding chapters. Thus, having validated the structural solver, we proceed

with benchmarks of the fully coupled FSI scheme. To that end, we consider

the FSI3 benchmark of [346] for which the density ratio is ρs/ρf = 1 and

the Reynolds number Re = ŪxD/ν = 200. The aeroelastic coefficient was

taken as Ae = Es/(ρfŪ
2
x) = 1.4 · 103, where Es indicates Young’s modulus

for the structure and the Poisson ratio was set to νs = 0.4. In the fluid

domain, we use two levels of refinement as shown in figure 8.3, which effec-

tively resolves the cylinder diameter by Dlb = 40 lattice points. The elastic

beam was discretized using (140, 10, 1) elements.

On one hand, the elastic beam is periodically excited by the vortex street

in the wake of the cylinder, which yields strongly nonlinear deflections of
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Figure 8.4: FSI3: Snapshot of velocity magnitude.

Contribution dx dy fx fy
LB-FEM[176] −0.00288± 0.00271 0.00148± 0.0351 11 5.5

ALE-FEM [346] −0.00269± 0.00253 0.00148± 0.03438 10.9 5.3

present −0.00268± 0.00257 0.00145± 0.03380 11 5.5

Table 8.2: FSI3: Mean and amplitude of the flag tip deflection.

the flag. On the other hand, the momentum transferred from the solid

excites the fluid. A slice through the computational domain, showing a

snapshot of velocity magnitude is presented in figure 8.4. More quantita-

tively, we computed the mean and amplitude of the deflection at the free

end of the flag along with the corresponding oscillation frequencies. The

comparison with literature values is excellent and listed in table 8.2. Fi-

nally, the deflection evolution is reported in figure 8.5, which agrees well

with the reference data of [346].
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Figure 8.5: FSI3: Evolution of the flag tip deflection in x- and y-direction.
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Figure 8.6: Schematic of the flow past a flapping flag

8.3.1.2 Flow past a flapping flag

Having validated the proposed scheme in the quasi two-dimensional set-

ting, we next consider a fully three-dimensional flow. To that end, we in-

vestigate the nonlinear dynamics of a flag in a uniform fluid flow. Despite

being a classical model problem for FSI, the complex motion of the flag

challenges numerical methods and thus only a few cases have been reported

in the literature [143, 171, 341]. Here, we use the case as provided in [143,

341] for validation. While in [143] a diffuse-interface immersed boundary

method was employed, [341] used an immersed boundary method coupled

with a nonlinear FEM solver. As shown in figure 8.6, the leading edge of

a square flag of length L and thickness h = 0.01L is placed at the ori-

gin of the domain. In addition, zero displacement and velocity boundary

conditions are imposed at the leading edge. The rectangular fluid domain

spans from [−2L×−1L×−4L] to [8L× 1L× 4L] in streamwise, spanwise

and transverse directions, respectively. Periodic boundary conditions are

applied in spanwise direction and free-stream boundaries are imposed in

transverse direction. Using two levels of refinement, the flag was resolved

by L = 100 lattice units in the finest level. The flexible flag is discretized

with a uniform mesh of [50 × 50 × 2] elements. The Poisson ratio is set

to νs = 0.4 and the bending rigidity is Eh3/(12(1 − ν2
s )ρfu

2
∞L

3) = 10−4.

The density ratio is taken as ρs/ρf = L/h and the Reynolds number is
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(a) Displacement of the point B located at

B = (L, 0, 0) in the undeformed configura-

tion.
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(b) Evolution of the drag coefficient.

Figure 8.7: Flow past a flapping flag.

Re = u∞L/ν = 200. Initially, the flag coincides with the xy-plane and

a small perturbation is used to trigger the periodical flapping behavior.

During the evolution, we record the displacement of the Point B, which

is located at B = (L, 0, 0) in the undeformed configuration and compare

it to the reference data of [143, 341] in figure 8.7a. Note that in [341]

two flag models were considered, namely, a plate model with infinitesimal

thickness (Flag 1) and a three-dimensional model with thickness h = 0.01L

(Flag 2). Both cases demonstrate negligible discrepancies due to the low

Reynolds number in this case. After the initial transient, the flow quickly

converges to a periodic flapping as seen in figure 8.7a. The comparison

of the present simulations to the references shows good agreement. Be-

sides the displacement, we compute the evolution of the drag coefficient

Cd = Fx/(1/2ρfu
2
∞L

2) and compare it to the values reported in [341] in

figure 8.7b. Significant noise can be observed for the simulations by [341],

which, according to the authors, originates from the noisy prediction of

the thin plate. In contrast, the results from the present method appear

smooth and do not exhibit oscillations. Overall, both results agree qual-

itatively but do exhibit small discrepancies, which are most pronounced

when the flag goes through the origin. One can conjecture that these dis-

crepancies originate either from the noisy prediction of the reference or

from a more pronounced deformation (at locations different from point B)

of the present model when passing the origin, which would lead to an in-

creased drag. Unfortunately, no data regarding the drag evolution were
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Figure 8.8: Wake of a flapping flag visualized by isosurfaces of Q-criterion and colored

by streamwise velocity.

reported in [143], thus eluding a comparison. Finally, in figure 8.8, the

vortical structures in the wake of the flag are visualized by isosurfaces of

the Q-Criterion, which are colored by streamwise velocity. The vortices

shed from the trailing edge connect with the vortices shed from the side

edges to form hairpin-type vortices along with two separate co-rotating

vortices. Notably, the structure of the wake bears significant resemblance

to self-propelled anguilliform swimmers [73]. Analogous vortex structures

have been observed in the references [143, 341].

8.3.1.3 Beam in crossflow

So far we have successfully validated the proposed scheme for quasi-two-

dimensional and three-dimensional flows. As a final validation, we include

a simulation involving turbulence. To that end, we consider a flexible

beam in a cross flow. This set-up has been studied both experimentally

and numerically in [341] and [214], respectively and aims to model the

deformation of aquatic plants caused by the flow. The beam is vertically

mounted in a uniform flow and has length L, thickness h and width b. As in

the references, the Reynolds number is set to Re = u∞L/ν = 8000 and the

geometrical properties of the beam are given by L/b = 5, h/b = 0.2. The

solid material has the non-dimensional Young’s modulus Ẽs = Es/ρu
2
∞

and the Poisson’s ratio νs = 0.4. The density ratio is set to ρs/ρf =
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Contribution Cd dx/b dz/b

IMB-FEM [341] 1.03 2.12 0.54

Exp. [214] 1.15 2.14 0.59

present 1.13 2.14 0.55

Table 8.3: Flexible plate in a cross flow. Comparison of drag coefficient Cd and plate

deflection dx/b and dy/b in stream- and pitchwise directions, respectively.

0.678 and a buoyancy force fb = (ρf − ρs)gh/(ρfu2
∞) = 0.2465 is applied.

The rectangular domain ranges from [−5b,−8b,−8.5b] to [16b, 8b, 8.5b] in

which the centroid of the beam is placed at the origin of the undeformed

configuration. Using one level of refinement, the fluid domain discretizes

the beam width with b = 40 lattice points and the solid mesh employs

[2× 20× 140] elements to represent to beam.

Using these flow and structural conditions and parameters, the plate con-

verges to a steady deformation. A snapshot of the deformed state is pre-

sented in figure 8.9, where the wake behind the deformed beam is visualized

by isosurfaces of the Q-Criterion and colored by velocity magnitude. Quali-

tatively this is in line with the reference. For a more thorough comparison,

we computed the drag coefficient Cd = Fx/(1/2ρfu
2
∞bL) along with the

deflection of the beam’s free end in the deformed state. Along with the

reference values, the results of the present simulation are listed in table

8.3. It is apparent that the results are in good agreement with the refer-

ence data. While some discrepancies to the numerical study of [341] may

be observed, the present simulation matches the experimental study well

[214].

8.3.2 Extensions to fluid-structure interaction in mul-

tiphase flow

Two-phase flows are of fundamental interest in science and engineering ap-

plications [4], which exhibit various complex phenomena at multiple tem-

poral and spatial event scales [218, 380]. These include droplet breakup,

droplet reconnection as well as droplet impact on a surface, where effects

such as splash [217, 288], skating[175, 300], rebound [30, 211, 289] or the
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Figure 8.9: Flexible plate in a cross flow: Isosurfaces of Q-criterion, colored by velocity

magnitude.

trampoline effect [311] have been observed.

In recent years, much attention has been devoted to droplet impact on

so-called superhydrophobic surfaces. Superhydrophobic surfaces exhibit

strong repellence of liquid droplets, which can be exploited in for anti-

icing, self-cleaning, drag reduction and many other applications [25, 31,

179]. The most known example of a natural superhydrophobic surface is

the surface of the lotus leaf, i.e. Nelumbo nucifera. Numerous studies sug-

gested that the combination of surface chemistry and roughness on multiple

scales on the surface is responsible for its repellence. Thus, modern syn-

thetic designs of superhydrophobic surfaces combine the effects of micro-

texturing and chemistry to enhance the hydrophobic effect. To that end,

many studies have investigated the underlying physics of droplet impact on

superhydrophobic surfaces using different designs and conditions with the

ultimate goal to reduce the contact time [173, 310]. Note however that most

studies have focused on rigid surfaces and neglected the flexibility of the

substrate, which is inherent to most naturally occurring repellent surfaces

such as leaves, textiles and butterfly wings. Notable is the recent study

of [354], where the effect of elasticity on hydrophobicity was investigated
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experimentally.

In this section, we aim to go beyond classical benchmark cases and explore

the capabilities of the KBC-FSI solver in the context of multiphase flows

by considering droplet impact on flexible superhydrophobic surfaces, sim-

ilar to [354]. From the numerical point of view, simulations of such a kind

are challenging. However, the LBM offers an attractive alternative to con-

ventional schemes, due to the ease of implementing inter-molecular forces

and complex boundaries without sacrificing efficiency [230]. While various

LB models for multiphase flow exist, restrictions on density ratio, kine-

matic viscosity and interface thickness remained for long. Among others, a

viable alternative was proposed in [230], where combining the notion of a

discrete entropy function, the free-energy based formulation (see, e.g., [312]

and references herein) and an appropriately regularized equation of state

significantly increased the range of applicability of LB models for multi-

phase flow. This approach has been thoroughly validated by simulations of

droplet impact on flat and micro-textured superhydrophobic surfaces for

a variety of different bouncing regimes [231, 245]. Here, we build on these

results and extend it to the KBC model, the Grad boundary condition and

the coupling to the structural solver. The equation of state and the forcing

approach are kept the same.

On the fluid side, following [230], the phase separation and wetting prop-

erties are implemented through a body force

F = Ff + Fs. (8.33)

The mean field force

Ff,α = ∂β
(
ρc2

sδαβ − PK
αβ

)
, (8.34)

accounts for the phase separation by implementing the Korteweg stress

tensor

PK
αβ =

(
p− κρ∂γ∂γρ−

κ

2
(∂γρ)(∂γρ)

)
δαβ + κ(∂αρ)(∂βρ), (8.35)

where the pressure p is prescribed through a non-ideal equation of state

and κ controls the surface tension. This yields

Ff,α = 2ϕ∂αϕ+ κρ∂α (∂β∂βρ) , (8.36)
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with

ϕ =
√
ρc2

s − p. (8.37)

The differential operators are discretized using second-order finite differ-

ence approximations and spatially window-averaged to avoid large spurious

velocity (see, e.g., [231] for explicit expressions).

The equation of state is a polynomial regularization of Peng-Robinson

form [386] as introduced in [230] and reads

p =5.3 · 10−2ρ

− 3.818183621928911 · 10−2ρ2

+ 4.139745482116095 · 10−3ρ3

+ 3.748484095210317 · 10−4ρ4

− 1.4552652965531227 · 10−4ρ5

+ 1.2746947442749278 · 10−5ρ6,

(8.38)

which yields an effective density ratio of ρv/ρl ≈ 100 with liquid and vapour

densities ρl ≈ 7.55 and ρv ≈ 0.073, respectively.

Different wetting states can be modeled by means of the force Fs, which

reads

Fs,α(xα, t) = κwρ(xα, t)
N∑

i

wis(xα + ci,αδt)ci,α, (8.39)

where κw allows us to choose the equilibrium contact angle in accordance

with the Young-Laplace equation. The term s(x + ci,αδt) is an indicator

function that is equal to one for the solid domain nodes and is equal to

zero otherwise; wi are appropriately chosen weights [231]. To model super-

hydrophobic surfaces, the equilibrium contact angle was set to θ = 165◦,
which corresponds to κw = −0.145.

The total body force F is imposed through the exact difference method

[182] with the velocity increment

δuf,α =
Fα
ρδt

. (8.40)

Hence, the LB equation can be written as

fi(x+ ci, t+ 1) = f ′i ≡ (1− β)fi(x, t) + βfmirr
i (x, t) + Fi(x, t), (8.41)

with

Fi = f eq
i (ρ,uf + δuf)− f eq

i (ρ,uf). (8.42)
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Unlike the entropic LBM of [230], we here use the KBC realization of the

LBM, where we incorporate the force term into the KBC model through

the shifted entropic scalar product

〈X | Y 〉′ =
∑

i

XiYi
f eq(ρ,uf + δuf)

, (8.43)

which is used to compute the stabilizer γ from Eq. (2.45).

Also in the multiphase model, we use Grad’s boundary condition. Be-

fore considering the fully coupled FSI simulation, the KBC model and the

boundary condition are validated for the impact of a low viscosity liq-

uid drop on a flat superhydrophobic surface. Experimentally, this set-up

was investigated in [64], which suggests that in the low viscosity regime

the maximum spreading diameter Dmax scales with the Weber number

We = (ρlu
2
0D0)/σ as

Dmax/D0 ∼ We1/4, (8.44)

where D0 and u0 are the initial droplet diameter and the impact velocity,

respectively. Our simulations were performed on a [350× 350× 250] grid,

which resolves the droplet with D = 80 lattice points and the surface

tension is set to σ = 0.295 (κ = 0.002). In figure 8.10, the numerical

results are compared to both the scaling law and the experiment. The

excellent agreement to the reference data validates the multiphase flow

solver using KBC and the Grad boundary condition for superhydrophobic

surfaces.

For the fluid-structure coupling, we employ the same methodology as out-

lined above but include the pressure p as prescribed by the equation of

state in Eq. (8.38). Note, however, that the diffuse nature of the liquid-

vapour interface necessitates a pressure regularization. This arises from

the fact that the numerical integration of the pressure over the solid sur-

face is prone to numerical errors, due to sharp pressure gradients and large

negative values in the interface region, which are sampled only relatively

coarsely on the FEM mesh. This leads to an artificial negative pressure,

which is compensated in our simulations by a regularization procedure,

where we use a simple linear interpolation between the liquid and vapor

density to evaluate the pressure.

Motivated by the experimental study of [354], we investigate the effect of

elasticity on the droplet impact on a superhydrophobic, elastic beam for a

wide range of Weber numbers.
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Figure 8.10: Maximum droplet spreading diameter on a flat superhydrophobic surface

in the low viscosity limit.

In all simulations, the droplet is resolved by D = 80 lattice points, the

surface tension is set to σ = 0.295 (κ = 0.002) and the computational

domain of the fluid is given by [320 × 250 × 320]. The beam has the

dimensions [300× 200× 5] and the Lamé coefficients are set to λs = 1500

and µs = 1000. While one end of the beam is clamped, the other end is

only simply supported and the droplet impacts the center of the beam.

We simulated Weber numbers in the range of We ∈ [7, 72] for both rigid

and flexible beams and recorded the maximum spreading diameterDmax/D0

as shown in figure 8.11.

For the entire range of Weber numbers, it is apparent that the maximum

spreading diameter decreases when elasticity of the beam is taken into con-

sideration. Analogously, the experimental study conducted in [354] also

observed a reduction of the apparent spreading diameter. While a quan-

titative comparison is out of reach for the current preliminary simulations

due to the large dimensions of the beam used in the experiment, the pro-

posed scheme does capture the effect of elasticity qualitatively. A natural

explanation for the cause of the reduction of the spreading diameter is that

the momentum of the droplet is transferred to the beam, which decreases

the effective Weber number perceived by the droplet and thus reduces the

maximum spreading of the droplet. It is only long after the droplet has
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Figure 8.11: Maximum droplet spreading diameter on rigid and elastic superhydropho-

bic surfaces.

reached its maximum spread that the momentum is transferred back (no

damping is applied) to the liquid. A similar explanation was proposed

in [354]. A sequence of snapshots of the droplet impact on both the rigid

beam and the elastic beam is shown in figure 8.12. It is clear that initially

both the rigid beam and the elastic beam behave similar, but the elastic

case exhibits faster rebound and takeoff. The reduction of rebound time

might be explained by remembering that the rebound time is independent

of the Weber number in a wide range and by spring analogy is only influ-

enced by the droplet mass and the surface tension [289]. In the case of an

elastic surface, however, the maximum spreading diameter is reduced (due

to momentum transfer to the beam), which decreases the distances to be

traveled until the recoiling phase is completed. Note that the density ratio

between solid and fluid is roughly ρs/ρf ≈ 100, which explains the delayed

response of the fluid. Further, the observed asymmetry in the elastic case

is due to the asymmetric boundary conditions of the beam.

These results are promising and underline the robustness and viability

of multi-physics simulations based on the KBC-FSI solver. A detailed

investigation of FSI for multiphase flows is left for future work.
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Figure 8.12: Droplet spreading on rigid (left) and elastic (right) superhydrophobic

surfaces. Timings are normalized by the contact time Ts of the rigid surface.

8.4 Concluding remarks

In this chapter we have presented a partitioned fluid-structure interaction

approach. On one hand, the fluid flow is computed by the entropic multi-

relaxation time lattice Boltzmann model in combination with Grad bound-

ary conditions and multi-domain grid refinement. On the other hand,

the elastic solid was modeled by the hyperelastic Saint Venant-Kirchhoff

model, which accounts for large, geometrically nonlinear deformations and

was solved by a corresponding FEM formulation.

The proposed scheme was validated for various challenging set-ups for

quasi-two dimensional and fully three dimensional simulations of laminar

and turbulent flows. Finally, extensions to multi-physics simulations were

explored. An extension of the KBC model to multiphase flows and its

coupling to the solid solver was presented. Promising results, in qualita-

tive agreement with recent experiments, were shown for the simulation of

droplet impact on elastic superhydrophobic surfaces, which demonstrate

the viability of the proposed scheme.





Chapter 9

Conclusions and outlook

In this thesis, we have developed the necessary numerical tools and strate-

gies to enable the simulation of complex, engineering relevant applications

of low-dissipative flows using entropic lattice Boltzmann models. In the

first section of this chapter, the main results of this thesis will be sum-

marized. In the second section, we will provide a critical comment on the

limitations of the method and finally, in the last section, possible directions

of further research are outlined.

9.1 Results

In this thesis, we have provided thorough investigation of the entropic

multi-relaxation time lattice Boltzmann model and assessed viability for

complex flows in both resolved and under-resolved simulations.

To tackle arbitrarily complex geometries, a consistent treatment of fluid-

solid interaction was developed. An analog of Grad’s moment approxima-

tion was utilized to ensure stability and robustness. The Grad boundary

condition was shown to be second-order accurate and capable of describ-

ing curved, moving and deforming geometries. The scheme was thoroughly

validated for both one- and two-way coupled simulations in various set-ups

throughout this thesis.

To enable multi-scale simulations at reasonable computational costs two

grid refinement strategies were explored. On one hand, a novel multi-
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domain block refinement method using Cartesian grids was developed. By

allowing entropic time-stepping within the grid level interface, a consistent

fine-to-coarse grid level projection was achieved, where the entropic stabi-

lizer adapts to the flow features and refinement patches, rendering explicit

filtering or alike unnecessary. This feature also enabled its extension to

thermal and compressible flows. The entropic time-stepping within the

interface is crucial for compressible flows, where shocks penetrate the grid

level interface without being reflected and destabilizing the flow. Validity

was assessed for various benchmark simulations.

On the other hand, viability of unstructured meshes within the framework

of the LBM was explored. To that end, the semi-Lagrangian LBM was

implemented and extended to the KBC model with appropriate boundary

conditions. While promising, further developments are required to be com-

petitive with refinement strategies based on Cartesian Grids.

These ingredients, namely the entropic collision model, Grad boundary

condition and block-refinement enabled efficient simulations of engineer-

ing relevance. The first test case was the flow in engine-like geometries,

with focus on resolved and under-resolved simulations. A comparison to a

high-order spectral element solver demonstrated accuracy and robustness

of the approach, while significantly reducing the computational costs. Sub-

sequently, transition to turbulence was considered. As both laminar and

turbulent regions are present within transitional flows, the high Reynolds

number assumption on which most turbulence model rely, may not be

valid anymore. In addition, a DNS study of such flows might already be

too expensive. Thus it is of crucial importance to assess if our approach

is capable of accurately capturing this phenomenon. To that end, various

simulations of transitional flows over airfoils and turbine blades were con-

ducted, showing excellent agreement with literature values. Also in this

case, the resolution requirements were much less stringent than for DNS

and rather in the regime of pertinent implicit LES schemes.

In chapter 7, the level of complexity was further increased and three-

dimensional simulations in the realm of biolocomotion were presented.

Starting with the simulation of a plunging airfoil in the transitional regime

and self-propelled anguilliform swimmers, further extensions to flapping

flight and fish schools were presented.

In the final chapter, the scheme was extended to incorporate structural



Chapter 9. Conclusions and outlook 177

mechanics in order to compute the nonlinear elastic deformation, yield-

ing a fully coupled fluid-structure interaction solver. A CSS algorithm

was employed to couple the fluid and the structural domain. After thor-

ough validation for laminar and turbulent cases, the scheme was extended

to multiphase flows. Here, viability towards multi-physics simulation was

shown by the simulation of droplet impact on elastic, superhydrophobic

surfaces for a wide range of Weber numbers.

All schemes presented in this thesis (except the SLLBM) were implemented

in a generic, modern C++ framework, which was developed in the scope

of this thesis together with Fabian Bösch. The code is dimension agnostic,

parallelized using MPI, fully vectorized using SIMD and allows for paral-

lel IO. Furthermore, it is capable of handling arbitrarily complex, moving

geometries, mesh refinement and fluid-structure interaction problems. Its

generic, modular structure enables the user the choose arbitrary (multi-

speed) lattices, models and boundary conditions. For example, extensions

to compressible models have been implemented by Nicolò Frapolli. The

code has shown excellent scalability up to thousands of cores on the ma-

chines of the Swiss National Supercomputing Center (CSCS).

9.2 Limitations

The results presented in this thesis are promising. However, some critical

remarks on its limitations are in order.

While the KBC model has shown excellent stability properties for a large

range of flows, this does not necessarily imply accuracy. In fact, for severe

under-resolution or very large Reynolds numbers, the effective viscosity as

measured from the flow field deviates significantly from the nominal vis-

cosity, leading to a misrepresentation of the small scales. The KBC model

formally does not alter the viscosity but the effect of higher-order error

terms manifest themselves in a measurable macroscopic viscosity for very

coarse-grained simulations. While it was shown that accurate results can

be obtained despite under-resolutions, a thorough grid convergence study

is necessary to ensure its validity. To further advance our understanding

of the KBC’s subgrid scale behavior, it would be insightful to derive and

analyze the error terms beyond second order in the Chapman-Enskog multi-

scale expansion. One can conjecture that on the basis of such an analysis
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it might be helpful to introduce additional relaxation times to counteract

these error terms and thereby enhance the implicit subgrid scale behavior.

Another limiting factor is the time step size. The weakly compressible

LBM on standard lattices requires a small Mach number and thus time

step size to converge to the incompressible solution. The requirements on

the time step size become even more stringent when moving geometries are

involved. To avoid spurious oscillations in the flow field a reduction of a

factor two in the time step is required to ensure accurate results.

Lastly, as also shown in this thesis, the LBM is most powerful on Cartesian

grids. While block-refinement strategies are tremendously helpful to reduce

the computational cost, the attainable level of flexibility using unstructured

grid can reduce computational costs significantly. However, unstructured

grids and adaptive time-stepping are not inherent to LBM and require

sophisticated techniques such as high-order interpolation schemes as shown

in chapter 4. In turn, this results in higher computational cost and loss of

some of the key advantages of LBM such as exact propagation in space.

9.3 Future research

The LBM is still an active area of research. Here we list some suggestions

of future research, which, based on the results presented in this thesis,

could further advance the field.

As mentioned above, the subgrid scale behavior of the KBC model requires

further analysis using, e.g, higher-order Chapman-Enskog expansion. Such

analysis could also be a possibility to incorporate explicit turbulence mod-

els into the KBC model in a consistent manner. This would further increase

the range of applicability of the KBC to very large Reynolds numbers.

Regarding grid refinement strategies, further reduction of computational

cost could be achieved by using adaptive block-refinement, where the de-

viation of the entropic stabilizer from its limiting value could serve as a

refinement criterion. This has the additional advantage that the criterion

is computed locally with no computational overhead.

For unstructured meshes and in particular the SLLBM further work is re-

quired to be competitive. As discussed in chapter 4, the memory require-

ments of SLLBM are excessive and computational cost significant com-

pared to standard LBM. A remedy would be to combine the advantage of
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standard LBM on Cartesian grid and the SLLBM using a hybrid formu-

lation. This has already been explored for a finite volume LBM on un-

structured grids in [68] and could also be beneficial in the case of SLLBM.

Another possible extension could consist of developing an efficient matrix-

free version of the SLLBM. This would alleviate the memory issue and also

make adaptive refinement possible.

Regarding the FSI solver in chapter 8, it would instructive to explore itera-

tive, strongly-coupled fluid-structure schemes to minimize the added mass

effect. This might further increase its range of applicability.

Finally, various directions of research have been opened up for further

applications. For example, in the realm of biolocomotion, it would be in-

triguing to study the formation of fish schools or bird flocks. Employing

recent developments in deep neural networks and reinforcement learning

might yield novel insight. Here, the limiting factor of existing approaches

is the efficiency of the underlying fully-coupled FSI simulations, as multi-

ple simulations are needed to properly train the network. This renders the

proposed scheme an ideal candidate.

Furthermore, extending the investigation of the effect of elasticity for mul-

tiphase flow might be key to develop innovative liquid repellent surfaces.

This would significantly impact on a vast range of applications in science

and engineering .





Appendix

A.1 Moment representation of the popula-

tions

For ease of notation, let us introduce the trace of the stress tensor

T = M200 +M020 +M002, (A.1)

the normal stress differences

Nxz = M200 −M002

Nyz = M020 −M002

(A.2)

and the off-diagonal components of the stress tensor at unit density

Πxy = M110

Πxz = M101

Πyz = M011,

(A.3)

which yields the natural moment representation of the population as
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(ρ, u) Π′

(0, 0, 0) 1 0

(σ, 0, 0) σux/2 (2Nxz −Nyz)/6

(0, λ, 0) λuy/2 (−Nxz + 2Nyz)/6

(0, 0, δ) δuz/2 (−Nxz −Nyz)/6

(σ, λ, 0) 0 σλΠxy/4

(σ, 0, δ) 0 σδΠxz/4

(0, λ, δ) 0 λδΠyz/4

(σ, λ, δ) 0 0

Table A.1: Contribution of the locally conserved fields and the deviatoric stress tensor

to the populations at unit density

f(0,0,0) =ρ (1− T +M022 +M202 +M220 −M222)

f(σ,0,0) =
1

6
ρ (3σux + 2Nxz −Nyz + T − 3σM120 − 3σM102 + 3σM122 − 3M202−

3M220 + 3M222)

f(0,λ,0) =
1

6
ρ (3λuy −Nxz + 2Nyz + T − 3λM210 − 3λM012 + 3λM212 − 3M022−

3M220 + 3M222)

f(0,0,δ) =
1

6
ρ (3δuz −Nxz −Nyz + T − 3δM201 − 3δM021 + 3δM221 − 3M022−

3M202 + 3M222)

f(σ,λ,0) =
1

4
ρ (σλΠxy + λM210 + σM120 +M220 − σM122 − λM212 − σλM112 −M222)

f(σ,0,δ) =
1

4
ρ (σδΠxz + δM201 + σM102 +M202 − σM122 − δM221 − σδM121 −M222)

f(0,λ,δ) =
1

4
ρ (λδΠyz + δM021 + λM012 +M022 − λM212 − δM221 − λδM211 −M222)

f(σ,λ,δ) =
1

8
ρ (σλδM111 + σM122 + λM212 + δM221 + σλM112 + σδM121+

λδM211 +M222) .

(A.4)

where the subscript triple, defined by the indices σ, λ, γ ∈ {−1, 1}, denotes

the associated discrete velocity vector of the population. The KBC model

in the main text utilizes this representation and partitions it into three
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parts according to Eq. (2.39), where the shear part only includes the devi-

atoric stress tensor. The contribution of the locally conserved field (ρ,u)

and the deviatoric stress tensor Π′ to the populations at unit density is

summarized in Table (A.1). Using this partition allows for the kinematic,

the shear and the remaining higher order moments to be relaxed according

to Eq. (2.40).





List of Tables

2.1 D3Q27 lattice. . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Flow past a sphere at Re = 100. . . . . . . . . . . . . . . . 33

3.2 Terminal settling velocity for a sedimenting sphere at Re =

100. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Moments for equilibrium and quasi-equilibrium construction. 44

4.2 Turbulent flow in a rectangular channel. The nominal and

measured Reynolds numbers are indicated byReτ,n andReτ,m,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Turbulent flow past sphere at Re = 3700 and the comparison

of the mean drag coefficient Cd, the averaged base pressure

coefficient Cpb, the recirculation length Lr and the separa-

tion angle ϕs with literature values. . . . . . . . . . . . . . 59

5.1 Effective viscosity ratios at non-dimensional time t/(N/U0) =

0.75 for simulations with different resolutions N . . . . . . . 89

6.1 Comparison of the LSB properties for the flow over the

SD7003 airfoil, where Tu denotes the turbulence intensity

of the inflow. . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Comparison of the LSB properties for the flow over the T106

blade for different free-stream turbulence intensities at Re =

6 · 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 Results for CSM3. . . . . . . . . . . . . . . . . . . . . . . . 160

8.2 FSI3: Mean and amplitude of the flag tip deflection. . . . . 162

8.3 Flexible plate in a cross flow. Comparison of drag coeffi-

cient Cd and plate deflection dx/b and dy/b in stream- and

pitchwise directions, respectively. . . . . . . . . . . . . . . 166



186 List of Figures

A.1 Contribution of the locally conserved fields and the devia-

toric stress tensor to the populations at unit density . . . . 182

List of Figures

3.1 The unknown populations at the boundary node xb are rep-

resented by the dashed arrows. •: Solid nodes. ◦: Fluid

nodes. �: Solid boundary nodes. �: Fluid boundary nodes. 26

3.2 Scaling of L2 error for the simulation of channel flow and

Couette flow at Re = 100. . . . . . . . . . . . . . . . . . . 32

3.3 Temporal velocity evolution of a sedimenting sphere. . . . 34

4.1 Schematic of the overlapping grid interface between two lev-

els in one (bottom) and two (top) dimensions. . . . . . . . 39

4.2 Snapshot of the turbulent channel, visualized by isosurfaces

of Q-criterion colored by velocity magnitude. . . . . . . . 51

4.3 Slice through the turbulent channel flow for Reτ = 180 (top)

and Reτ = 590 (bottom) showing a snapshot of the stream-

wise velocity. . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 Mean velocity profile in a turbulent channel at Reτ = 180 . 53

4.5 Rms velocity profile in a turbulent channel at Reτ = 180 . 54

4.6 Mean velocity profiles in a turbulent channel at Reτ = 590 55

4.7 Rms velocity profiles in a turbulent channel at Reτ = 590

with a two-level refinement in the near-wall region (left) and

the non-refined case (right). For the legend please refer to

figure 4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.8 Slice through the turbulent channel flow at Reτ = 590 show-

ing the spatial distribution of the stabilizer γ for the KBC

model and the refinement patches (only left half shown here). 57

4.9 Isosurfaces of Q-criterion colored by velocity magnitude for

the flow past a sphere at Re = 3700. . . . . . . . . . . . . 58

4.10 Mean streamwise velocity profiles in the wake for the simu-

lation of flow past a sphere at Re = 3700. . . . . . . . . . 59



List of Figures 187

4.11 Pressure coefficient distribution around the sphere at Re =

3700. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.12 Volume rendering of temperature for the Rayleigh-Bénard

convection at Ra = 107. . . . . . . . . . . . . . . . . . . . . 61

4.13 Rayleigh-Bénard convection at Ra = 107. . . . . . . . . . . 62

4.14 Slice through the Rayleigh-Bénard convection at Ra = 107

showing the spatial distribution of the stabilizer γ for the

KBC model and the refinement patch (only left half shown

here). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.15 Flow past a heated sphere at Re = 3700. . . . . . . . . . . 64

4.16 Flow around a NACA0012 airfoil at A = 0◦, Ma = 1.5 and

Re = 10000. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.17 Snapshot of the distribution of the entropic estimate α around

the NACA0012 airfoil. . . . . . . . . . . . . . . . . . . . . 66

4.18 Schematic of the semi-Lagrangian streaming step of popu-

lation fi(x, t) along the discrete velocity ci. . . . . . . . . 68

4.19 Schematic of the boundary condition for the population fi(xb, t).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.20 Scaling of the L2 error for the simulation of the flow past a

circular cylinder at Re = 40. . . . . . . . . . . . . . . . . . 71

4.21 Comparison of the mean pressure and skin friction coeffi-

cient distribution around the cylinder at Re = 40 with the

reference [345]. . . . . . . . . . . . . . . . . . . . . . . . . 72

4.22 Unstructured mesh for the simulation of the flow past a

cylinder at Re = 3900. . . . . . . . . . . . . . . . . . . . . 73

4.23 Comparison of the mean pressure and skin friction coeffi-

cient distribution around the cylinder at Re = 3900 with

literature data. . . . . . . . . . . . . . . . . . . . . . . . . 74

4.24 Mean streamwise velocity ux/u∞ profiles in the near wake

of a circular cylinder at Re = 3900. . . . . . . . . . . . . . 75

4.25 Mean transverse velocity uy/u∞ profiles in the near wake of

a circular cylinder at Re = 3900. See figure 4.24 for the

legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.26 Isosurfaces of the Q-criterion, colored by streamwise velocity. 77



188 List of Figures

5.1 (a) Vortex structures for the periodic Kida vortex flow at

Re = 6000 (x, y, z ∈ [0, π]). (b) Turbulent pipe flow at

R+ = 180, visualized by isosurfaces of vorticity magnitude

and colored with velocity magnitude. . . . . . . . . . . . . 86

5.2 Statistics for the Kida vortex flow at Re = 6000 and reso-

lutions of N = {100, 200, 400} and N = 600 for the simula-

tions with KBC and the reference simulation with LBGK,

respectively. The theoretical Kolmogorov scaling is indi-

cated by the dotted line. . . . . . . . . . . . . . . . . . . 87

5.3 Mean velocity component in flow direction for the turbulent

pipe flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 Rms velocity profiles for the turbulent pipe flow. The legend

is identical to figure 5.3. . . . . . . . . . . . . . . . . . . . 92

5.5 Schematic of the valve/piston assembly (all measures are

given in mm). . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Comparison of streamlines of the averaged velocity field.

From left to right: Present results, DNS and experimental

data are shown for different crank angles, respectively. . . . 94

5.7 Instantaneous velocity magnitude snapshot at 77CA. . . . 95

5.8 Comparison of the ensemble and azimuthally averaged axial

mean and rms velocities at 36CA for a resolution of Dc,lb =

300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Comparison of the ensemble and azimuthally averaged axial

mean and rms velocities at 90CA for a resolution of Dc,lb =

300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.10 Comparison of the ensemble and azimuthally averaged axial

mean and rms velocities at 144CA for a resolution of Dc,lb =

300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.11 Comparison of the ensemble and azimuthally averaged tur-

bulent kinetic energy k and the Reynolds stress component

u′ru′r at 90CA for a resolution of Dc,lb = 300. . . . . . . . . 99

5.12 Comparison of the ensemble and azimuthally averaged Reynolds

stress components u′ϕu′ϕ and u′zu′r at 90CA for a resolution

of Dc,lb = 300. . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.13 Comparison of the ensemble and azimuthally averaged axial

mean and rms velocities at 90CA for different resolutions. . 101



List of Figures 189

5.14 Cyclic variation of the vortex ring at BDC visualized by

pressure isosurfaces for Dc,lb = 300. . . . . . . . . . . . . . 102

5.15 Cyclic variation for all resolutions of Dc,lb = {100, 150, 300}
and the DNS results, quantified by mean jet radius rjet/rc at

45CA and correlated to the mean radial velocity ur,T/up,mean
at TDC. Lines represent a linear fit through the correspond-

ing data points. . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Multi-domain block refinement for the flow past the SD7003

airfoil along with a slice of instantaneous streamwise velocity.111

6.2 Isosurfaces of the Q-criterion (Q = 4) colored by normalized

streamwise velocity for the simulation of the SD7003 airfoil

at an angle of attack α = 4◦ and a Reynolds number Re =

6 · 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.3 Instantaneous snapshot of the spatial distribution of the sta-

bilizer γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4 Average pressure coefficient Cp over the upper and lower

surface of the SD7003 airfoil. Here and in the following, the

symbols represent sampled values along the chord for clarity. 115

6.5 Average skin friction coefficient Cf over the upper and lower

surface of the airfoil of the SD7003 airfoil. . . . . . . . . . 116

6.6 Determination of the onset to transition. (a): Distribution

of Reynolds shear stress−u′xu′z/u2
∞ with a threshold of 0.001.

(b): Reynolds shear stress value plotted along the line of

maximum shear stress. . . . . . . . . . . . . . . . . . . . . 117

6.7 Mean velocity profiles at x/c = 0.1 ∼ 0.5 . . . . . . . . . . 118

6.8 Spectra of fluctuating streamwise velocity along the span. . 119

6.9 Power spectral density for two observer points, one within

the bubble and one in the near wake. . . . . . . . . . . . . 120

6.10 LSB dynamics. . . . . . . . . . . . . . . . . . . . . . . . . 120

6.11 Computational set-up for the flow over an T106 turbine blade.121

6.12 Flow in a low-pressure turbine passage at Re = 1.48 · 105,

visualized by vorticity isosurfaces colored by streamwise ve-

locity. (a): Uniform inflow. (b): Turbulent inflow. . . . . . 122

6.13 Distribution of the mean pressure coefficient over the axial

chord of the T106 turbine blade at Re = 1.48 · 105. . . . . . 123



190 List of Figures

6.14 Snapshot of isosurfaces of the Q-criterion (Q = 200) colored

by normalized streamwise velocity at Re = 1.48 · 105. Left:

Tu = 0%. Right: Tu = 0.2%. . . . . . . . . . . . . . . . . 124

6.15 Distribution of the mean skin friction coefficient over the

axial chord on the suction side of the T106 turbine blade at

Re = 1.48 · 105. . . . . . . . . . . . . . . . . . . . . . . . . 125

6.16 Snapshot of isosurfaces of the Q-criterion (Q = 110) colored

by normalized streamwise velocity at Re = 6 · 104. Left:

Tu = 0%. Middle: Tu = 5%. Right: Tu = 10%. . . . . . . 126

6.17 Average skin friction coefficient over suction side of the T106

blade for varying free-stream turbulence intensities at Re =

6 · 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.18 Average pressure coefficient over suction side of the T106

blade for varying free-stream turbulence intensities at Re =

6 · 104. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.19 Streamwise velocity profiles (tangent to the suction side of

the blade surface) as a function of the normal distance for

x/Cax = 0.88 − 0.99 in steps of 0.1Cax at Re = 6 · 104. (a):

Mean streamwise velocity. (b): Rms streamwise velocity.

For the legend see figure 6.18. . . . . . . . . . . . . . . . . 130

7.1 Schematic of a plunging airfoil. . . . . . . . . . . . . . . . 134

7.2 Volume rendering of vorticity for various phases of the plung-

ing airfoil. (a): ϕ = 0. (b): ϕ = 0.25. (c): ϕ = 0.5. (d):

ϕ = 0.75. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.3 Phase-averaged velocity profiles at x/c = 1.5. . . . . . . . . 136

7.4 Phase-averaged velocity profiles at x/c = 2. . . . . . . . . . 137

7.5 Evolution of lift and drag coefficient over three exemplary

cycles of a plunging airfoil. . . . . . . . . . . . . . . . . . . 138

7.6 Volume rendering of vorticity of the swimmers wake, show-

ing the typical double row vortex street. . . . . . . . . . . 141

7.7 Temporal evolution of the forward velocity U‖ and lateral

velocity U⊥. . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.8 Left: Wing planform. Right: Wing kinematics during the

upstroke. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.9 Volume rendering of vorticity for a Drosophila wing during

the upstroke of the third cycle. . . . . . . . . . . . . . . . 145



List of Figures 191

7.10 Evolution of the lift coefficient and comparison to experi-

mental and numerical data. . . . . . . . . . . . . . . . . . 146

7.11 Volume rendering of vorticity for a body-wing assembly dur-

ing the third stroke. . . . . . . . . . . . . . . . . . . . . . . 147

7.12 Volume rendering of vorticity of three anguilliform swimmers.148

8.1 Schematic - Turek Benchmark. . . . . . . . . . . . . . . . . 159

8.2 CSM3: x- and y-displacement of the beam tip. . . . . . . . 160

8.3 Snapshot of the computational domain, zoomed in on the

cylinder-flag assembly. . . . . . . . . . . . . . . . . . . . . 161

8.4 FSI3: Snapshot of velocity magnitude. . . . . . . . . . . . 162

8.5 FSI3: Evolution of the flag tip deflection in x- and y-direction.162

8.6 Schematic of the flow past a flapping flag . . . . . . . . . . 163

8.7 Flow past a flapping flag. . . . . . . . . . . . . . . . . . . . 164

8.8 Wake of a flapping flag visualized by isosurfaces of Q-criterion

and colored by streamwise velocity. . . . . . . . . . . . . . 165

8.9 Flexible plate in a cross flow: Isosurfaces of Q-criterion, col-

ored by velocity magnitude. . . . . . . . . . . . . . . . . . 167

8.10 Maximum droplet spreading diameter on a flat superhy-

drophobic surface in the low viscosity limit. . . . . . . . . 171

8.11 Maximum droplet spreading diameter on rigid and elastic

superhydrophobic surfaces. . . . . . . . . . . . . . . . . . . 172

8.12 Droplet spreading on rigid (left) and elastic (right) superhy-

drophobic surfaces. Timings are normalized by the contact

time Ts of the rigid surface. . . . . . . . . . . . . . . . . . 173





Bibliography

[1] H. T. Ahn and Y. Kallinderis. “Strongly coupled flow/structure in-

teractions with a geometrically conservative ALE scheme on general

hybrid meshes”. In: Journal of Computational Physics 219.2 (2006),

pp. 671–696.

[2] K Ahuja and R Burrin. “Control of flow separation by sound”. In:

9th Aeroacoustics Conference. 1984, p. 2298.

[3] M Alam and N. D. Sandham. “Direct numerical simulation of ’short’

laminar separation bubbles with turbulent reattachment”. In: Jour-

nal of Fluid Mechanics 410 (2000), pp. 1–28.

[4] N. Amini and Y. a. Hassan. Fundamentals of Multiphase Flow Fun-

damentals of Multiphase Flow. Cambridge university press, 2005,

pp. 4–5.

[5] S. Ansumali, I. V. Karlin, C. E. Frouzakis, and K. B. Boulouchos.

“Entropic lattice Boltzmann method for microflows”. In: Physica A:

Statistical Mechanics and its Applications 359.1-4 (2006), pp. 289–

305.

[6] S. Ansumali, I. V. Karlin, and H. C. Öttinger. “Minimal entropic
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drop”. In: Nature 417.6891 (2002), p. 811.

[290] T. Richter. “Goal-oriented error estimation for fluid-structure inter-

action problems”. In: Computer Methods in Applied Mechanics and

Engineering 223-224 (2012), pp. 28–42.

[291] U. Rist, U. Maucher, and S. Wagner. “Direct Numerical Simulation

of some Fundamental Problems Related to Transition in Laminar

Separation Bubbles”. In: Proceedings of the ECCOMAS Computa-

tional Fluid Dynamics Conference (1996), pp. 319–325.

[292] U. Rist and U. Maucher. “Investigations of time-growing instabil-

ities in laminar separation bubbles”. In: European Journal of Me-

chanics, B/Fluids 21.5 (2002), pp. 495–509.



BIBLIOGRAPHY 221

[293] L. Ristroph, A. J. Bergou, G. Ristroph, K. Coumes, G. J. Berman,

J. Guckenheimer, Z. J. Wang, and I. Cohen. “Discovering the flight

autostabilizer of fruit flies by inducing aerial stumbles”. In: Proceed-

ings of the National Academy of Sciences 107.11 (2010), pp. 4820–

4824.

[294] S. K. Roberts and M. I. Yaras. “Large-Eddy Simulation of Tran-

sition in a Separation Bubble”. In: Journal of Fluids Engineering

128.2 (2006), p. 232.

[295] W. Rodi. “DNS and LES of some engineering flows”. In: Fluid Dy-

namics Research 38.2-3 (2006), pp. 145–173.

[296] I. Rodriguez, R. Borell, O. Lehmkuhl, C. D. Perez Segarra, and A.

Oliva. “Direct numerical simulation of the flow over a sphere at Re

= 3700”. In: Journal of Fluid Mechanics 679 (2011), pp. 263–287.

[297] M. Rohde, D. Kandhai, J. J. Derksen, and H. E. A. van den Akker.

“A generic, mass conservative local grid refinement technique for

lattice-Boltzmann schemes”. In: International Journal for Numeri-

cal Methods in Fluids 51.4 (2006), pp. 439–468.

[298] a.M. Roma, C. S. Peskin, and M. J. Berger. “An Adaptive Version

of the Immersed Boundary Method”. In: Journal of Computational

Physics 153.2 (1999), pp. 509–534.

[299] “Rotational accelerations stabilize leading edge vortices on revolving

fly wings.” In: The Journal of experimental biology 212.Pt 16 (2009),

pp. 2705–2719.

[300] J. D. Ruiter, R. Lagraauw, D. V. D. Ende, and F. Mugele. “Wettability-

independent bouncing on flat surfaces mediated by thin air films”.

In: Nature Physics 11.November (2014), pp. 48–53.

[301] C. J. Rutland. “Large-eddy simulations for internal combustion en-

gines - A review”. In: International Journal of Engine Research 12.5

(2011), pp. 421–451.

[302] E. K. Sackmann, A. L. Fulton, and D. J. Beebe. “The present

and future role of microfluidics in biomedical research”. In: Nature

507.7491 (2014), pp. 181–189.



222 BIBLIOGRAPHY

[303] S. P. Sane and M. H. Dickinson. “The control of flight force by a

flapping wing: lift and drag production”. In: The Journal of exper-

imental biology 204.15 (2001), pp. 2607–2626.

[304] H. Schlichting, K. Gersten, E. Krause, H. Oertel, and K. Mayes.

Boundary-Layer Theory. Vol. 7. Springer, 1960.

[305] H. Schlichting and K. Gersten. Boundary-layer theory. Springer Sci-

ence & Business Media, 2003.

[306] M. Schmitt, C. E. Frouzakis, A. G. Tomboulides, Y. M. Wright, and

K. Boulouchos. “Direct numerical simulation of multiple cycles in a

valve/piston assembly”. In: Physics of Fluids 26.3 (2014), p. 035105.

[307] M. Schmitt, C. E. Frouzakis, Y. M. Wright, A. G. Tomboulides,

and K. Boulouchos. “Investigation of cycle-to-cycle variations in an

engine-like geometry”. In: Physics of Fluids 26.12 (2014), p. 125104.

[308] V. Schulte and H. P. Hodson. “Unsteady Wake-Induced Boundary

Layer Transition in High Lift LP Turbines”. In: Journal of Turbo-

machinery 120.1 (1998), p. 28.

[309] V. Schulte and H. Hodson. “Wake-separation bubble interaction in

low pressure turbines”. In: 30th Joint Propulsion Conference and

Exhibit. Joint Propulsion Conferences. American Institute of Aero-

nautics and Astronautics, 1994.

[310] T. M. Schutzius, S. Jung, T. Maitra, P. Eberle, C. Antonini, C.

Stamatopoulos, and D. Poulikakos. “Physics of icing and rational

design of surfaces with extraordinary icephobicity”. In: Langmuir

31.17 (2015), pp. 4807–4821.

[311] T. M. Schutzius, S. Jung, T. Maitra, G. Graeber, M. Köhme, and
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