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Abstract

Soon after the discovery of graphene [1], the idea was put forward that this material
could be an attractive host for spin qubits [2]. Because of the low atomic weight of
carbon, spin-orbit interactions in graphene are small. On top of that, the material
mostly consists of nuclear spin-free C12, which leads to a small hyperfine interaction.
Both of these facts should lead to a long coherence time of electron spins, which is
an important criterion for a quantum computation platform [3].

A first step towards the creation of a spin qubit in graphene is the implementation
of confinement of charge carriers on the nanoscale. Single layer graphene has a
gapless band structure, which makes it hard to realize controlled confinement [4].
The tunable band structure of bilayer graphene provides a solution. By applying
a vertical electric field to this material a band gap is opened [5]. When the Fermi
level is locally tuned into the band gap, confinement can be realized.

In this thesis we investigate the confinement of charge carriers in bilayer graphene
by electrostatic gating. We start with a literature overview of the bilayer graphene
band gap, which shows that in most bilayer graphene devices the low-temperature
resistivity in presence of an electric field saturates at values lower than those pre-
dicted by theory. This has hampered the electrostatic definition of nanostructures
in bilayer graphene so far.

We then report on the fabrication of samples consisting of exfoliated bilayer
graphene encapsulated in hexagonal boron nitride and compare the transport prop-
erties to those of a device made with bilayer graphene grown by chemical vapor
deposition. The former show signatures of ballistic transport in terms of Fabry-
Pérot oscillations, as previously reported in Ref. [6] and exhibit a Lifshitz transition
in the quantum Hall regime, as observed before in Ref. [7].

We continue to study dual-gated encapsulated bilayer graphene devices. Chap-
ter 5 and Ref. [8] report on magnetoresistance oscillations in the p-n regime in
intermediate magnetic fields.

Despite the observation of various interesting physical phenomena in dual-gated
devices, the maximal resistance in these devices usually stayed in the range of tens
of kiloohms, which is insufficient for electrostatic definition of nanostructures [9].
In Chapter 6 and Ref. [10] we demonstrate that the incorporation of a graphite
back gate into the device structure reproducibly leads to induced resistances in
the megaohm or even gigaohm regime, paving the path for electrostatically defined
nanostructures.
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In Chapter 7 and Ref. [10] we report on quantized conductance measured in a
device with a split gate geometry and an additional gate to tune the density in
the constriction. We investigate the magnetic field dependence of the conductance
through the constriction, which shows a fascinating pattern of level crossings.

By creating a p-n junction in the same device in the quantum Hall regime, as
discussed in Chapter 8 and Ref. [11], we can form a quantum dot, thus realizing
electrostatic confinement of charge carriers in bilayer graphene. Finally we suggest
future directions for the exploration of gated bilayer graphene nanostructures.
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Zusammenfassung

Kurz nach der Entdeckung von Graphen [1] wurde dieses Material als attraktiver
Kandidat für Spin Qubits vorgeschlagen [2]. Das geringe atomare Gewicht von
Kohlenstoff führt zu einer kleinen Spin-Bahn Wechselwirkung. Des Weiteren besteht
das Material hauptsächlich aus C12, welches keinen Kernspin besitzt, sodass auch
die hyperfein Wechselwirkung gering ist. Diese beiden Faktoren führen zu langen
Kohärenzzeiten des Elektronenspins, was ein wichtiges Kriterium für die Entwick-
lung von Quanten Computern ist [3].

Ein erster Schritt für die Herstellung von Spin Qubits in Graphen ist die räumliche
Einschränkung der Ladungsträger auf der Nanoskala. Die Bandstruktur einzelner
Atomlagen von Graphen zeigt keine Bandlücke, weshalb die Realisierung von elek-
trisch kontrollierbaren Quantenstrukturen in diesem Material schwierig ist [4]. In
zwei Atomlagen Kohlenstoff (bilayer graphene) ist die Bandstruktur einstellbar, so-
dass durch das Anlegen eines elektrischen Feldes eine Bandlücke [5] und somit eine
lokale Einschränkung der Ladungsträger, durch das Einstellen des Fermi Niveaus in
die Bandlücke, erzeugt werden kann.

In dieser Arbeit wird die Herstellung von Nanostrukturen in zweilagigem Graphen
durch lokale elektrostatische Kontrolle untersucht. Eine Literaturübersicht der Band-
lücke in zweilagigem Graphen zeigt, dass der Widerstand in den meisten Strukturen
bei tiefen Temperaturen im elektrischen Feld nicht den theoretisch vorhergesagten
Wert erreicht. Dies hat die Herstellung von Nanostrukturen in zwei Atomlagen
Kohlenstoff bisher erschwert.

Des Weiteren berichten wir über die Herstellung von Proben mit exfoliiertem
zweilagigem Graphen eingebettet in hexagonalem Bornitrid und vergleichen die
Transporteigenschaften mit Strukturen in denen das zweilagiges Graphen mit chemis-
cher Gasphasenabscheidung (chemical vapour deposition) hergestellt wurde. Erstere
zeigen Anzeichen von ballistischem Transport in Form von Fabry-Pérot Oszillatio-
nen, wie zuvor in Ref. [12] berichtet und weisen Liftshitz Übergänge im Quanten-
Hall-Regime auf, ähnlich wie in Ref. [13].

Außerdem untersuchen wir Strukturen aus zweilagigem Graphen, die in Bornitrid
eingebettet sind und mit zwei Gate-Kontakten (dual-gated) kontrolliert werden.
Kapitel 5 und Ref. [8] berichten über Oszillationen des Magnetowiderstands im p-n
Bereich in mittleren Magnetfeldern.

Neben der Beobachtung von verschiedenen physikalischen Phänomenen in Proben
die lokal mit zwei Gate-Kontakten gesteuert werden, konnte der Widerstand in
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diesen Strukturen nicht auf mehr als 10 Kiloohm erhöht werden, was nicht für die
elektrische Definition von Nanostrukturen ausreicht [9]. In Kapitel 6 und Ref. [10]
zeigen wird, dass die Ergänzung der Strukturen mit einem Graphit Rückkontakt re-
produzierbar zu einer Erhöhung des Widerstandes in den Megaohm oder Gigaohm
Bereich führen, wodurch der Weg für die Herstellung elektrostatisch definierter
Nanostrukturen bereitet wurde.

In Kapitel 7 und Ref. [10] wird die quantisierte Leitfähigkeit in Proben gemessen,
in denen ein Kanal mit Gates definiert wird und die Ladungsträgerdichte in diesem
Kanal über ein weiteres Gate gesteuert werden kann. Wir untersuchen die Magnet-
feldabhängigkeit der Leitfähigkeit durch diese Struktur, welche ein faszinierendes
Muster von Niveaukreuzungen zeigt.

Durch die Erzeugung eines p-n- Übergangs in derselben Struktur im Quan-
tenhallregime, wird ein Quantenpunkt geformt, wodurch die elektrostatische Ein-
schränkung von Ladungsträgeren in zwei lagigem Graphen gezeigt wird, siehe Kapi-
tel 8 und Ref. [11]. Zum Schluss geben wir eine Aussicht für zukünftige Unter-
suchungen an elektrostatisch definierten Nanostrukturen in zweilagigem Graphen.
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Chapter 1

Introduction

In this chapter we introduce graphene (Section 1.1), discuss its potential for quan-
tum computation (Section 1.2) and describe the nanostructures we study, namely
quantum point contacts (Section 1.3) and quantum dots (Section 1.4). We focus on
the basic physical phenomena occuring in these nanostructures. A more detailed
discussion can be found in Ref. [14].

1.1 Graphene

Research on graphene has skyrocketed since its experimental discovery in 2004. To
quantify this statement, we can take a look at the red data points Fig. 1.1, which
represent the number of search results on Google Scholar which include the word
graphene per year1,2. This number has surpassed 100.000 in recent years. The
graphene hype has lead to various interesting product labels such as graphene skis
(see Fig. 1.2), graphene hair dye [15] and even graphene blockchain [16].

Why is this material attracting so much attention? Graphene has many proper-
ties which make it stand out. As a single sheet of carbon atoms, it is the thinnest ma-
terial conceivable, it is extremely strong [17] and exhibits exceptional electronic [18]
and thermal conductivity [19]. The Dirac-like Hamiltonian of single layer graphene
leads to the occurrence of various exotic physical phenomena, such as Klein tun-
neling [20] and a half-integer Hall quantization [21]. Its bilayer equivalent has a
tunable band structure [5], which can make the material semiconducting. On top
of that, it has recently been shown that by introducing a twist angle between the
layers, it can become a Wigner crystal and a superconductor [22, 23]. Finally, there
are indications that twisted bilayer graphene exhibits topological states [24, 25] -

1This number is not necessarily equal to the number of scientific publications per year. Although
citations and patents have been excluded from the query, some cross references to publications from
other years are still counted and some publications are simply dated incorrectly. This number
should therefore be interpreted as a rough estimate of the number of publications.

2We thank Volker Strobel for the ‘academic-keyword-occurrence’ tool (https://github.com/
Pold87/academic-keyword-occurrence).
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Figure 1.1: Number of search results on Google Scholar as a function of year for the
search terms graphene, scotch tape method, hexagonal boron nitride and van der
Waals stacking/heterostructure

the rich phenomenology of graphene keeps surprising us.

Figure 1.2: Graphene ski

One other attractive aspect of graphene is the
ease with which the material is obtained. Repeated
peeling of a small piece of graphite using scotch tape
results in micron-sized flakes, some of which consist
of only one or two layers. These can be deposited
onto a Si substrate by sticking the tape onto the
Si substrate and removing it again. This explains
the popularity of the term ‘scotch tape method’ in
scientific literature in recent years (see Fig. 1.1, green
data points).

The aforementioned Si substrates have significant
surface roughness and contain many charged impuri-
ties, which limit electronic performance of graphene
devices. In 2010 Dean et al. [26] showed the situation can be improved by the use
of hexagonal boron nitride (hBN) as a substrate for graphene. As an atomically flat
insulating material with almost the same lattice constant as graphene, it is a great
substrate for graphene samples. This explains the rising interest of the community
in hexagonal boron nitride, as witnessed by the blue data points in Fig. 1.1.

The mobility measured in graphene devices was increased even more when it was
realized that graphene could be encapsulated between two layers of hBN [27]. This
results in a so-called ‘van der Waals stack’, because the assembly method relies on
the large van der Waals forces between graphene and hBN. The occurrence of this
term is plotted in Fig. 1.1 as well (purple data points). The devices studied in this
project all consist of graphene encapsulated in hBN.
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Figure 1.3: Number of search results on Google Scholar as a function of year for the
search terms qubit, quantum dot, quantum computation/computer/computing

1.2 Quantum computation

Another flourishing research field is the field of quantum computation (see Fig. 1.3).
Quantum computers use qubits instead of ordinary bits to store information. Since
qubits can be in a superposition state and can be entangled, quantum computers
can perform certain relevant information processing tasks significantly faster than
conventional computers [28, 29].

In 2007 Trauzettel et al. [2] proposed the use of an electron spin in graphene as
a qubit. They point out that long spin-coherence times, as desired for qubits [3],
are expected in graphene. This is due to the low atomic weight of carbon, which
leads to small spin-orbit interaction, and the fact that graphene consists mainly of
the nuclear spin-free C12 isotope, which leads to small hyperfine interaction.

In order to manipulate a single electron spin, it has to be confined to a small
region of space. This can be done in a quantum dot, which explains the parallel
evolution of the research interest in quantum computation, qubits and quantum dots
as seen in Fig. 1.3.

The aim of this project is the confinement of charge carriers in bilayer graphene.
Once this landmark is reached, spin states of graphene qubits can be investigated. To
study confinement we fabricate quantum point contacts and quantum dots. These
systems are introduced in the following sections.

1.3 Quantum point contacts

A quantum point contact is a constriction formed in a two-dimensional electron or
hole system (see inset of Fig. 1.4). When the width of the constriction is comparable
to the Fermi wavelength, discrete modes arise in the energy spectrum. The modes
have a parabolic dispersion relation, because charge carriers are free to move in the

3



Chapter 1. Introduction

Figure 1.4: Conductance of a quantum
point contact as a function of gate volt-
age, showing conductance plateaus cor-
responding to quantized modes. Inset:
Scanning electron micrograph of a QPC.
Bright areas correspond to metallic top
gates, dark color corresponds to the hBN
surface with graphene underneath.
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direction along the channel. It can be shown that each of them contributes e2/h
to the conductance through the constriction [14]. When shifting the Fermi level
through the energy spectrum by means of a changing gate voltage, a sequence of
plateaus with conductance

G = Nge2/h (1.1)

is observed, as shown in Fig. 1.4, where N is the number of occupied modes and g
is the degeneracy of these modes.

1.4 Quantum dots

In quantum dots, charge carriers are confined in all spatial directions, which leads to
discrete energy levels. Transport through a quantum dot depends on the alignment
of the Fermi level in the source and drain reservoirs with respect to the levels in the
dot. This is illustrated in Fig. 1.5a,b: whenever an energy level of the quantum dot
is within the bias window (Fig. 1.5a), induced by a voltage applied between source
and drain contacts, current can flow through the dot. If there is no level within
the bias window (Fig. 1.5b), current flow is prohibited, a phenomenon known as
Coulomb blockade. With a plunger gate (PG) the dot levels can be shifted up and
down in energy, leading to spikes in the current whenever an energy level of the
dot is within the bias window. A measurement of the conductance of a quantum
dot as a function of plunger gate voltage is shown in Fig. 1.5c. The resonances
correspond to indiviual charge carriers hopping onto the dot. A scanning electron
micrograph of a dot, with a schematic drawing of electron flow, is shown in the
inset of Fig. 1.5c. By optimizing the geometry and adjusting the gate voltages, a
quantum dot populated with a single electron can be realized. Such a system can
be extended to a double-dot configuration to study spin qubits [30, 31] and measure
the coherence time of electron spins.
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1.4. Quantum dots
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Figure 1.5: (a) Schematic of current flow through a quantum dot. Whenever an
energy level of the dot is within the bias window, current can flow. (b) When no
level is present within the bias window, current flow through the system is prohibited.
(c) Conductance as a function of plunger gate voltage, showing Coulomb blockade.
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Chapter 2

Literature overview: The bilayer
graphene band gap

The aim of this thesis is to confine charge carriers in bilayer graphene by electro-
static gating. This requires a band structure with a band gap, for which the Fermi
level can be tuned into the band gap. The band structure of bilayer graphene and
the possibility to induce a band gap is studied from a theoretical perspective in
section 2.1. Section 2.2 introduces the electrostatic model of a dual-gated bilayer
graphene device. After these theoretical sections, an overview of optical and trans-
port measurements of the bilayer graphene band gap is provided in sections 2.3
and 2.4. Transport measurements often show a resistance which is lower than the
theoretically expected resistance. Section 2.5 provides an overview of possible causes
of low resistance despite the presence of a band gap. Finally, the implications for
the formation of nanostructures are discussed in section 2.6.

2.1 Tight binding model of graphene

In monolayer graphene, three out of the four valence electrons hybridize in sp2 con-
figuration and form covalent bonds with the neighboring lattice sites, leading to the
hexagonal lattice structure. These electrons do not contribute to transport. The
remaining electron, relevant for transport, forms a p orbital perpendicular to the
plane, which is only slightly perturbed by neighboring atoms. The wave function of
this electron can therefore be approximated as a Linear Combination of Atomic Or-
bitals. Writing the Hamiltonian in this basis results in a tight-binding Hamiltonian
for graphene, which describes a system with on-site energy ε and hopping parameter
γ0 between neighboring lattice sites:

H =
∑
i

εi |ψi〉 〈ψi| −
∑
〈i,j〉

γ0(|ψi〉 〈ψj|+ |ψj〉 〈ψi|) (2.1)

where |ψi〉 is the atomic orbital on the ith site [32, 33].
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Figure 2.1: (a) Lattice of Bernal-stacked bilayer graphene with the coupling param-
eters γ (b) Bandstructure of bilayer graphene. In absence of interlayer asymmetry
the band structure is gapless (dashed green line). Interlayer asymmetry leads to a
band structure with band gap (solid blue line). (c) Schematic of a dual gate bilayer
graphene flake.

In bilayer graphene several different hopping parameters have to be taken into
account. Bernal-stacked bilayer graphene consists of two layers of hexagonally or-
dered atoms, where half of the atoms sit directly on top of each other, as shown
in Fig. 2.1a. Following the convention of the Slonczewski-Weiss-McClure model for
graphite [34, 35], neighboring lattice sites on the same layer (e.g. sites marked
in green) have a coupling γ0 in the tight binding model. Sites directly on top of
each other (marked in red) are coupled by γ1 and the remaining sites which are
not vertically aligned (marked in blue) have a coupling γ3. Infrared spectroscopy
measurements [36] have yielded γ0 = 3.16 eV, γ1 = 0.381 eV and γ3 = 0.38 eV. γ3
only plays a role at low density [5, 37] and will be neglected below. For the lowest
energy bands of pristine bilayer graphene the model leads to a gapless bandstruc-
ture, as indicated by the green dashed line in Fig. 2.1b. An interlayer asymmetry U
between on-site energies on the different layers, which can in practise be realized by
an electric field, leads to the opening of a band gap [5, 38, 39]. The resulting band
structure is shown in Fig. 2.1b (blue line) and can be described by [5]:

E(k) = ±

√
γ21
2

+
U2

4
+ (~vk)2 −

√
γ41
4

+ (γ21 + U2)(~vk)2 (2.2)

where v =
√

3γ0a0/(2~) with a0 the spacing between neighboring sites within one
layer. From equation 2.2 the band gap can be determined [5]:

Egap =
|U |γ1√
U2 + γ21
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Chapter 2. Literature overview: The bilayer graphene band gap

2.2 Electrostatics of dual-gated bilayer graphene

Dual-gated bilayer graphene can be modeled as two parallel conducting plates sep-
arated by the interlayer spacing c0 = 0.335 nm with surface charges σ1 and σ2 (see
Fig. 2.1c). The back gate (top gate) is separated from the graphene by a medium
with dielectric constant εBG (εTG) and thickness dBG (dTG). The electric fields can
be related to potential differences:

EBG ≈ VBG/dBG ETG ≈ −VTG/dTG E = (V1 − V2)/c0 = U/(ec0) (2.3)

where U is the interlayer asymmetry. Application of Gauss’s law gives the following
relations for the charge carrier density n and U [33]:

n = n1 + n2 =
ε0εBG

edBG

VBG +
ε0εTG

edTG

VTG + nBG,0 + nTG,0 (2.4)

U =
c0e

2
(
εBG

εRdBG

VBG−
εTG

εRdTG

VTG)+
c0e

2

e

εRε0
(nBG,0−nTG,0)+

c0e

2

e

εRε0
(n2−n1) (2.5)

where nBG,0 and nTG,0 account for chemical doping of the graphene in absence of
any applied voltages. The last term in equation 2.5 shows that the interlayer asym-
metry depends on the difference between the charge carrier densities of the indi-
vidual layers. These densities depend on the interlayer asymmetry, because of its
appearance in the band structure (equation 2.1) . The problem therefore requires
a self-consistent calculation, but it can be simplified in the limit where screening is
neglected. In that case, the last term of equation 2.5 vanishes. The terms involving
nBG,0 and nTG,0 can be rewritten in terms of offset voltages VBG,0 and VTG,0. This
simplifies equations 2.4 and 2.5:

n = β(VBG − VBG,0) + α(VTG − VTG,0) (2.6)

E =
βe

2ε0
(VBG − VBG,0)−

αe

2ε0
(VTG − VTG,0) (2.7)

where α = ε0εTG/(edTG) and β = ε0εBG/(edBG) and we used that εR = 1 in between
the graphene layers. As an example, the charge carrier density and electric field as
a function of VBG and VTG for a β = α = 5× 1011 V−1cm−2 is shown in Figs. 2.2a,b
respectively.
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Figure 2.2: (a) Charge carrier density as a
function of VTG and VBG as given by equa-
tion 2.6 for β = α = 5 × 1011 V−1cm−2.
(b) Electric field as a function of VTG and
VBG as given by equation 2.7.

2.3 Optical measurements of the band gap

The first experimental evidence for the bilayer graphene band gap was obtained
by Ohta et al. [40]. They perform angle-resolved photo-emission spectroscopy of
bilayer graphene grown on SiC to map out the band structure. The doping and the
electric field are changed by the deposition of potassium atoms onto the surface.
This has the same effect as a changing top gate voltage and the resulting process
is therefore equivalent to moving along a horizontal line in Fig. 2.2. The initially
n-doped sample (equivalent to a positive top gate voltage) shows a transition from
a gapped to a gapless and back to a gapped band structure when adding potassium
(equivalent to lowering the top gate voltage). With this method it is impossible to
quantify the applied electric field however. Zhang et al. [41] performed infrared ab-
sorption spectroscopy on dual-gated bilayer graphene. They use a bilayer graphene
flake exfoliated on a Si/SiO2 substrate which served as a back gate. Prior to the
deposition of the top gate, a layer of Al2O3 is deposited as a gate dielectric. With
the combination of the top and back gate the absorption spectra as a function of the
electric field in the range of 0 to 3 V/nm is measured whilst keeping the density at
zero. The experimentally obtained values for the gap as a function of electric field
(on the order of 100 meV for E = 1 V/nm) show good agreement with tight-binding
calculations in which screening effects have been taken into account [42].

2.4 Transport measurements of the band gap

In transport measurements the gap size can be determined by measuring the tem-
perature dependence of the resistivity. For an ideal band gap the resistivity follows
the Arrhenius law: ρ ∼ exp(Egap/(2kBT )). The first transport measurements [43],
performed on bilayer graphene in between SiO2 layers, show an increase of the re-
sistivity at charge neutrality with the electric field E . The green data points in
Fig. 2.3a, taken from Ref. [43], show the temperature dependence of the resistivity
at charge neutrality (n = 0) for E = 0.4 V/nm (Fig. 2.3b shows similar results for
E = 0.8−1.0 V/nm). The resistivity does not follow the Arrhenius law: rather than
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Figure 2.3: (a) Resistivity as a function of temperature in an electric field of E =
0.3 − 0.5 V/nm. Different colors denote different references: Oostinga 2008 [43],
Zou 2010 [44], Taychatanapat 2010 [45], Weitz 2010 [46], Dröscher 2012 [47], Varlet
2015 [7], Sui 2015 [48], Shimazaki 2015 [49], Li 2016 [50] and Zhu 2017 [51]. (b)
Resistivity as a function of temperature in an electric field of E = 0.8− 1.0 V/nm.
(c) Resistivity as a function of electric field at T = 2 K. Different symbols denote
different samples. (d) Mobility as a function of year of publication

showing a steep increase, it saturates at low temperature. The temperature depen-
dence is more accurately described by a power law ρ ∼ (T0/T )1/3, which is expected
for variable range hopping via mid-gap localized impurity sites. This suggests that
improvements of graphene or dielectric quality could lead to a temperature depen-
dence closer to the Arrhenius law. Figure 2.3c shows ρ as a function of E at T = 2 K
for this sample and other samples measured in literature.

Zou et al. [44] reported on the temperature dependence over a larger temperature
range. Their sample consists of a graphene flake on a Si/SiO2 substrate covered by
a dielectric layer of HfO2 and a top gate. Between T = 220 K and T = 140 K the
resistivity can be described by the Arrhenius law (see red line in Fig. 2.3a,b). In
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2.4. Transport measurements of the band gap

high electric fields, the gap size is in agreement with the theoretically predicted gap
size. At lower electric fields the measured energy scale is larger than the theoretical
prediction. The authors argue that in this regime the energy barrier which needs
to be overcome is dominated by the energy scale of the disorder potential. Below
T = 50 K the resistivity saturates at values similar to the ones found by Oostinga
et al. (see Fig. 2.3a), which the authors attribute to hopping via mid-gap states.

The regime of electric fields higher than E = 1 V/nm was studied by Taychatana-
pat et al. [45]. Their device consists of a graphene flake on a Si/SiO2 substrate
covered by an Al2O3 dielectric and a top gate. The high temperature resistivity
follows the Arrhenius law with a gap size which is two orders of magnitude smaller
than the theoretically expected gap. The authors explain this by impurity bands
in the gap arising from negatively charged donors. The low temperature resistivity
again shows a saturation, albeit at relatively high values. The authors mention that
the typical mobility of the devices before oxide growth (µ = 1500 − 2000cm2/Vs)
was 30% higher than the mobility afterwards. This indicates that the dielectric
deposition introduces additional impurities, which could lead to a spatially varying
band gap.

The reduced sample quality by the deposition of dielectrics was circumvented
in the work of Weitz et al. [46] in which the graphene was suspended. The gap
size extracted from the temperature dependence between T = 10 K and T = 0.5 K
is an order of magnitude lower than the theoretically expected band gap (higher
temperature data is not shown). The authors refer to the possible existence of
conducting edge states to explain the discrepancy (see Section 2.5). The resistivity
obtained at T = 2 K is relatively high given the small electric fields achievable in
suspended samples (see Fig. 2.3c).

Dröscher et al. [47] studied the temperature dependent resistivity of a device
consisting of a graphene flake on a Si/SiO2 substrate covered by hexagonal boron
nitride (hBN). Although the resistivity reached at T = 2 K is relatively high, the
band gap extracted from the temperature dependence measured up to T = 16.5 K
is an order of magnitude smaller than the theoretical value, which is explained by
the presence of mid-gap states.

The problem of disorder induced by the dielectric could be solved by the encap-
sulation of graphene in hBN, initiated by Dean et al. [26]. Encapsulation resulted
in higher mobility samples than the previously mentioned samples on Si/SiO2 (see
Fig. 2.3d). Surprisingly, this improved device quality did not change the saturation
of the resistivity at low temperatures. The measured resistivity at low temperatures
in most encapsulated devices is still below the MOhm range in the works of Shi-
mazaki et al. [49], Zhu et al. [51] and some of the device studied by Varlet et al. [13].
Two notable exceptions are discussed in the works of Varlet et al. [7] and Sui et
al. [48]. The temperature dependence of the resistivity of both devices nonetheless
saturates at low temperature. Sui et al. extract a gap size in agreement with theory
in the temperature range above T = 70 K.

Two samples showing particularly high resistivity where presented by Li et
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al. [50]. They consist of a graphene flake encapsulated in hBN on top of a graphite
back gate. These samples show a saturation of the temperature dependence at low
temperature as well.

In conclusion, all samples mentioned in this section showed a resistivity which
saturates below the theoretically expected value at low temperature. Hopping trans-
port via mid-gap states is a widely suggested explanation. Two other explanations
are discussed in the next section.

2.5 Explanations of conduction in the gap

2.5.1 Conduction along the edge

In 2008 Castro et al. [52] calculated that the band structure of a perfect zigzag
bilayer graphene nanoribbon has zero-energy states propagating along the edges
irrespective of the interlayer asymmetry, which leads to a minimal conductance of
G = 4 e2/h. In practice most samples have irregular edges, but the tight-binding
simulations by Li et al. [53] suggested that these conductive edge states also exist in
samples with disordered edges, yet with lower conductance. Surprisingly, they find
that the edge conductance cannot be suppressed but it saturates at a finite value
for sufficiently disordered structures.

Experimental evidence for edge conduction was found in Refs. [51, 54]. In these
works superconducting contacts are used to induce superconductivity in bilayer
graphene by the proximity effect. By taking the Fourier transform of the criti-
cal current as a function of magnetic field, the spatial current distribution can be
found. At low charge carrier densities enhanced current flow along the device edges
is found in both works. While Allen et al. [54] observe enhanced edge conduction in
pristine monolayer and bilayer graphene and argue that this is due to band bending
induced by the potential at the edges of the device, Zhu et al. [51] find the edge
conduction only in devices with an induced band gap. Because of this they exclude
the potential profile and chemical doping along the edges as possible causes. They
attribute the edge conduction to either the aforementioned conduction along zigzag
edge segments or valley currents induced by the valley Hall effect which get squeezed
towards the edge.

Zhu et al. also investigated gapped monolayer graphene. This material can be
gapped when the rotation angle with the underlying hBN substrate is small and a
superlattice arises [55]. They observe edge currents in gapped monolayer graphene
too. Scanning gate microscopy measurements on similar devices by Dou et al. [56]
show evidence for edge states in a low but not in a high mobility device. They
therefore conclude that the observed edge currents stem from chemical doping of
the edges.
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2.5.2 Conduction along domain walls

After Martin et al. [57] put forward the existence of chiral states at the boundaries
between bilayer graphene regions with opposite electric field polarity, the existence
of similar one-dimensional states along domain walls between AB and BA stacked
bilayer graphene was predicted [58, 59]. These AB-BA domain walls occur naturally
in bilayer graphene, but cannot be observed in atomic force microscopy images. Ju
et al. [60] could locate them using near-field infrared nanoscopy. In absence of
inter-valley scattering processes the channels along the domain walls should exhibit
an ideal conductance of G = 4 e2/h. The authors study several bilayer graphene
devices on a Si/SiO2 substrate covered by an Al2O3 dielectric and a top gate, with
and without domain walls. In the devices without domain walls, the resistivity at
charge neutrality at T = 4.2 K increases from R = 4 kΩ without electric field to
R = 80 kΩ for the maximal applied electric field. For devices in which a domain
wall is present, the resistivity in an electric field saturates around R = 14 kΩ. For
all devices with domain walls the minimal conductance is between G = 2 e2/h and
G = 4 e2/h, where shorter devices (L = 200 nm) show a conductance closer to the
theoretically predicted value of G = 4 e2/h. The authors conclude that the deviation
is due to inter-valley scattering and suggest that encapsulation of bilayer graphene in
hBN could result in devices with a conductance closer to the ideal value. Scanning
tunneling microscopy measurements which probe the local density of states have
confirmed the existence of states within the gap at AB-BA domain walls [61].

2.6 Implications for nanostructures

The ability to form highly resistive gapped regions is crucial for the electrostatic
definition of nanostructures. Domain walls and edge currents should be avoided
when making tunnel barriers. Although domain walls cannot be detected with the
equipment we have at hand, in practice they do not form a problem since they occur
only rarely1. Avoiding edge currents is potentially a bigger issue, since up to date
there is no agreement on the cause of the edge currents.

hBN encapsulation has resulted in high quality graphene, as witnessed by the
high mobility of the devices reported on in 2015 and later. In practice, hBN en-
capsulation sets an upper limit on the applied electric fields. The onset of leakage
currents for a pristine hBN flake of thickness t usually occurs around a voltage
V = 0.5 V/nm× t 2. This limits the electric fields which can be applied to a max-
imum of E = 1.6 V/nm. For hBN which has been exposed to reactive ion etching,
the onset of leakage possibly occurs at lower electric fields.

The resistance of tunnel barriers in high quality quantum devices should largely
exceed the resistance quantum RK = 25.8 kΩ [9]. In practice this translates to a
resistivity within the gray region in Fig. 2.3c. The vertical boundary of this region is

1We thank Professor Lin He for this information
2We thank Aroosa Ijaz and Peter Rickhaus for this information.
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set by the aforementioned onset of leakage currents in hBN. Despite the saturating
resistivity at low temperatures observed in all samples, a few samples discussed in
this chapter fall within this region. A question which will be answered in this thesis
is how to make samples which systematically end up in the regime of high resistivity.
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Chapter 3

Fabrication of gated bilayer
graphene devices

3.1 Introduction

The first graphene devices consisted of a graphene flake on a Si/SiO2 substrate [1].
Surface roughness and charged impurities induced significant disorder in these de-
vices, leading to low mobility and a short mean free path. During the fabrication
process the graphene flakes also got in contact with resist layers and other chem-
icals, which leave residues behind. These residues induce a nonuniform doping in
graphene, reducing the device quality even more. Two ways of improving the qual-
ity of graphene devices were found: suspension [62] and encapsulation by hexagonal
boron nitride [26, 27]. Since our experiments require both top gates and back gates,
we work with encapsulated graphene. Fabricating top gates and applying large
displacement fields to suspended devices is technologically much more challenging.

After encapsulation the graphene flake is contacted by etching trenches, de-
fined by an e-beam lithography mask, in the hBN and deposition of metal in these
trenches. Another e-beam lithography step is performed to add a top gate structure
to the device. In case a second layer of top gates is required, a layer of dielectric
(Al2O3) is deposited before the last e-beam step to define the additional top gate
layer. In this chapter all steps of this process are discussed in detail.

3.2 Substrate chip preparation

To exfoliate graphene we use chips made from commercial Si/SiO2 wafers. For a
good contrast of graphene flakes in the optical microscope, the thickness of the top
SiO2 layer has to be 90 nm or 285 nm. At the start of this thesis project, we worked
with chips with a marker pattern defined by optical lithography. This provides
a convenient coordinate system to locate flakes. During the optical lithography
process the wafer surface gets in contact with chemicals and solvents though. We
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tried to clean the surface with acetone and isopropanol, by UV-ozone cleaning and
by plasma ashing. Neither of these methods resulted in a cleanliness of the chip
comparable to the cleanliness of the wafer prior to our processing. We therefore
concluded that for the exfoliation, where cleanliness is critical, it is better to work
with unprocessed substrate chips without markers. Once the graphene is encapsu-
lated in hBN cleanliness is less important and the stack can be deposited on a chip
with markers. The markers make it easier to align the e-beam lithography masks
used in later fabrication steps. Details of the fabrication of the marker chips can be
found in Refs. [13, 63]. After sawing the wafer the marker chips are still covered by
a protective layer of photoresist. This layer can be dissolved by putting the chips in
an acetone bath at 50 ◦C for two hours.

3.3 Exfoliation of 2D crystals

To deposite flakes of 2D materials onto chips, a piece of blue tape1 is used. For
graphene exfoliation a shiny flake of graphite is selected and is pressed onto the
tape and removed from the tape again, leaving some pieces of graphite behind.
For hBN exfoliation some small pieces of hBN crystal are selected and put on the
tape. Afterwards the tape is folded together between 10 and 20 times to achieve a
homogeneous density of graphite/hBN on the tape. We then press about 8 Si/SiO2

chips onto the tape. Each chip is pressed for about 10 s, whilst avoiding any shearing
motion of the chip. At this stage one can choose to wait for about 5 minutes, which
presumably leads to the adhesion of larger flakes to the chips. The chips are then
peeled off from the tape in a smooth and slow movement.

3.4 Selection of graphene flakes

The chips with flakes are examined under the optical microscope to find suitable
flakes for devices. Figure 3.1a shows a picture of a chip taken with the 10 x objective.
This picture is used to find a flake back at a later stage. The dark and bright dots
are graphite flakes. A zoom into the white square is shown in Fig. 3.1b. The flake
marked with the red arrow is a bilayer graphene flake. This can be seen from the
color. By extracting the intensity of the green component of the RGB color space
Ig from the image, we can determine the green contrast2:

GC =
Ig,flake − Ig,substrate

Ig,substrate
= 0.3± 0.05 for bilayer graphene

Another method to determine the number of layers is to perform Raman spec-
troscopy and to determine the full width at half maximum of the 2D-peak, which is

1Nitto Denko Corporation ELP BT-150E-CM
2The precise numbers may vary depending on the microscope settings
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Figure 3.1: (a) Optical microscope image of a Si substrate with graphite flakes
(dark and bright spots) (b) Zoom in the rectangle indicated in (a). The red arrow
indicates a bilayer graphene flake (c) Dark field image of (b) with a 10 s exposure
time. Contaminations of the flake show up as bright dots (red arrow).

between 45 cm−1 and 56 cm−1 for bilayer graphene [64]. Using the green contrast is
the preferred method however, since it is faster and sufficiently reliable.

To determine the cleanliness of the flake we take dark field pictures with 10 s
exposure time, as shown in Fig. 3.1c. The flake in the picture is not entirely clean, as
can be seen from the white spots on the surface (see red arrow). It should be noted
that flakes with contaminants like this one can still result in clean devices: during
the stacking and annealing process the contaminants tend to assemble in bubbles
and bubble free areas can be selected for the device.

3.5 Selection of hBN flakes

Chips with hBN flakes are examined under the optical microscope as well. Suitable
flakes are between 15 and 50 nm high and have an area of at least 20 × 10 µm2

without any cracks or steps. The height can be roughly determined from the color
(see Fig. 3.2) and more precisely with atomic force microscopy (AFM).
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h = 17 nm h = 22 nm h = 27 nm

h = 35 nm h = 51 nm h = 58 nm

Figure 3.2: Optical microscope images of hBN flakes on chips with markers. The
color of the flake is determined by its thickness. The scale bar is 10 µm.

3.6 Stacking of flakes

To create a stack of graphene and hBN layers we use a micromanipulator. We
prepare a glass slide with a polymer stamp to which the flakes adhere. The process
is adapted from Refs. [27, 65]. It is illustrated in Fig. 3.3. The glass slide with
polymer stamp and exfoliated hBN is aligned and brought slowly in contact with
a chip with a graphene flake (3.3a). The chip is mounted on the stage of the
micromanipulator, which is set to a temperature of 110 ◦C. Because of the strong van
der Waals interaction between graphene and hBN the two materials stick together
when retracting the glass slide (3.3b). In the next step, the glass slide is brought
in contact with another hBN flake (3.3c). For samples where Si is used as the back
gate the stack is now finished. By increasing the temperature the polymer can be
melted and the glass slide can be retracted, leaving the stack on the chip. When
making a sample with a graphite back gate, the stack is lifted up once more (3.3d).
It is then brought in contact with a graphite flake (3.3e) and finally the polymer is
melted and the glass slide can be removed (3.3f). We used two different types of
polymer stamps for this process, which are discussed in the next paragraphs.

MAA/MMA glass slides

The first type consisted of a thin layer of commercially available PDMS, cut into
pieces of around 1×1 cm2, on which a layer of MAA/MMA is spun (see Ref. [13] for
process details). Afterwards hBN is exfoliated onto this stamp and suitable flakes
are located. For melting the MAA/MMA the temperature of the stage is increased
to 125 ◦C. After the stacking process the chip is put in an acetone bath at 50 ◦C
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Figure 3.3: Schematics of the stack-
ing process. (a) A hBN flake on a
glass slide(blue) with a polymer stamp is
brought in contact with a graphene flake
(gray) on a chip. (b) Because of the
strong van der Waals interaction between
graphene and hBN the two materials stick
together when retracting the glass slide.
(c),(d) Same process as (a),(b) where now
a hBN flake is picked up. (e) The stack
is placed on a graphite flake. (f) By melt-
ing the polymer the glass slide can be re-
tracted.

to dissolve residues of the polymer stamp. There are several disadvantages of this
stacking technique:

• When exfoliating hBN onto the stamps it sometimes happens that most of the
MAA/MMA film is ripped off and no hBN is left behind. We tried different
types of resist for the film, different baking processes and different ways of
removing the tape from the stamp, but the problem kept occurring.

• Since the MAA/MMA is not very sticky, it sometimes happens that a flake is
accidentally deposited when aiming to pick up another flake. (E.g. after the
step in 3.3a one would end up with hBN and graphene on a chip).

• It can be tough to get the right region of the stamp in contact with the chip.
When approaching the substrate, the glass slide sometimes gets stuck before
the desired flakes are in contact, because of a wrong tilt angle. Correcting for
this in the micromanipulator set-up is a laborious process.

PC glass slides

The second type of stamp consisted of a much thicker, home grown PDMS layer
to which a film of PC is attached (process details can be found in Ref. [66]). The
PC is stickier than the MAA/MAA, so the initial hBN flake can be picked up from
a substrate chip and unintended depositions of flakes do not occur. The stamp is
considerably thicker, which on the one hand makes it challenging to locate graphene
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flakes below the stamp in the micromanipulator, but on the other hand makes
adjustments of the position of the stamp much smoother. A wrong tilt angle can
simply be corrected by rolling over to the desired spot. The visibility of the flakes
below the stamps can be improved by using a Normarski prism. For melting of the
PC stamps a temperature of 160 ◦C is required. Residues of the polymer stamp on
the stack can be removed by putting the sample in chloroform for 10 minutes.

The second type of glass slides resulted in a considerably higher yield of the
stacking process. For an overview of more techniques employed in the community,
see Ref. [67].

Bubble formation

As mentioned in section 3.4 contaminants are present on the surface of flakes. As
soon as the flakes are exposed to air they adsorb water, atmospheric gasses and
hydrocarbons. During the stacking process the contaminants tend to form bubbles
between the layers, leaving behind clean areas of the flakes. This process is also
referred to as ‘self-cleaning’. Figure 3.4a shows an example of an AFM image of
a stack with bubbles. The position of the graphene is indicated by white dashed
lines. Graphene in bubbly regions is usually more disordered, which results in a
low device mobility. To make (quasi-)ballistic devices, bubble free regions should
be selected. The bubbles occur in various densities and in various sizes. Up to a
certain extent cleaner flakes lead to cleaner stacks, but the efficiency of the ’self-
cleaning’ process also plays an important role. It is generally assumed that when
the layers are brought in contact more slowly, the efficiency of the cleaning process
is bigger [67]. We observed that for contacting speeds smaller than roughly 5 µm/s
no significant improvement occurs by reducing the speed.
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3.7. Thermal annealing
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Figure 3.4: (a) AFM image of a graphene flake (delimited by the dashed white
lines) encapsulated between hBN layers (brown and orange). Bubbles are present
in the stack. (b) AFM image of the same region after thermal annealing. The
bubble marked with the black cross has moved and left behind a clean graphene
area, delimited by the dotted black line.

3.7 Thermal annealing

The bubbles in graphene stacks can gather even more contaminants during thermal
annealing. The thermal annealing step also makes sure that the bubbles will not
move around anymore during further steps of the fabrication process. It is performed
in a tube oven with an Ar flow of 2 L/min and a H2 flow of 0.2 L/min. Over the
course of two hours the temperature is ramped up to 320 ◦C. The sample remains at
this temperature for 3 hours before cool down. The result of the annealing process
can be seen in Fig. 3.4b. The big bubble marked with the black cross has moved
away from the graphene and a flat and clean graphene area (indicated by the black
dotted line) is left behind.

3.8 Contacting the graphene

Figure 3.5a shows an optical microscope image of a finished stack with a schematic
cross section of the device below. The stack consists of a graphite back gate (outlined
in pink), a bottom hBN flake (outlined in white), a graphene flake (outlined in red)
and a top hBN flake (outlined in green). The next step is to create contacts to the
graphene.

The contacts to the graphene are defined by e-beam lithography. The contacting
process is based on Ref. [27] and process details can be found in Ref. [63]. Before the
application of e-beam resist, the sample is exposed to a mild oxygen plasma for 20 s
at a power of 200 W. This increases the adhesion of the resist to the chip surface
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Figure 3.5: (a) Top: Optical microscope image of a finished stack. The graphite
back gate is outlined in pink, the bottom hBN is outlined in white, the graphene
is outlined in red and the top hBN is outlined in green. Bottom: schematic of a
cross section of the device (b) Top: optical microscope of the same device after two
contacts have been added to the graphene and one contact has been added to the
graphite gate. Bottom: cross section of the device with the added source and drain
contacts (S,D) (c) Top: Optical microscope image after deposition of a top gate
(highlighted in orange) Bottom: corresponding cross section.

in general and to the extremely flat hBN surface in particular. The e-beam mask
consists of fine markers which allow for precise alignment of following e-beam steps
and trenches for the contacts. These are etched into the structure by reactive ion
etching. For samples with a graphite back gate it is essential to control the etching
depth of the process: etching too deeply will result in contacts which connect the
graphite back gate and the graphene layer (see schematic in Fig. 3.5b). The etching
depth can be controlled by setting a desired etching time, since the etching rate for
the employed CHF3/O2 recipe is constant at 48 nm/min. After etching 10 nm of Cr
and 50 nm of Au is deposited in the trenches to form the contacts. The result can
be seen in Fig. 3.5b. Using a probe station the contacts can be checked for Ohmic
behavior by applying a DC bias within the range of ±5 mV. The probe station can
also be used to verify that the graphene layer and the graphite back gate are not
connected.

3.9 Definition of top gates

The top gate design is written with e-beam lithography as well. After the develop-
ment of the e-beam lithography pattern the sample is exposed to a short reactive
ion etching recipe with Ar and O2. This roughens the hBN surface which increases
the adhesion of the metal of the top gates. Figure 3.5c shows an optical microscope
image of a sample with a top gate. An AFM picture of a different sample with four
split gates can be seen in Fig. 3.6a. The source and drain contacts are denoted by
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3.10. Deposition of a dielectric layer
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Figure 3.6: (a) AFM image of a stack with two contacts, labeled S and D, and
four split gates. White dashed lines indicate the edges of the encapuslated graphene
flake. (b) AFM image to check the alignment of the e-beam lithography mask for
the definition of the upper gate layer. The whole structure is covered with 140 nm
of resist, except for the trenches where the upper gates will be deposited. The
trenches are well aligned with the underlying split gates. (c) Final device geometry
after deposition of metal in the trenches defined in (b)

S and D and the edges of the encapsulated graphene flake are indicated by white
dashed lines.

For fine gate patterns (features smaller than 100 nm) a thinner resist layer is
used to increase the resolution of the e-beam pattern. The resolution is furthermore
improved by developing the e-beam resist in a solution of isopropanol and water
(3:1) at 0 ◦C [68]. To make sure that the lift-off process works well for these fine
patterns only 20 nm of metal is deposited in this case.

3.10 Deposition of a dielectric layer

To isolate a next layer of top gates from the first layer of top gates, two dielectrics
were considered: hBN and Al2O3. The deposition of an additional layer of hBN
onto the processed stacks is difficult. To avoid damaging the stack, we use the less
invasive ‘PMMA carrying layer transfer method’ to deposit the hBN [13, 26, 67].
With this method it is challenging to bring the hBN to the desired location and make
it stick there. During the removal of the PMMA the additional hBN layer would
sometimes detach as well. The yield of the fabrication process could be improved by
depositing a dielectric layer of Al2O3 at 150 ◦C by atomic layer deposition. When
using fine top gate structures that are 20 nm high, an Al2O3 layer of 30 nm results in
good isolation between the top gate layers. Thicker Al2O3 layers should be avoided
as it makes the wire bonding process harder.
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Chapter 3. Fabrication of gated bilayer graphene devices

3.11 Definition of upper gate layer

The deposition of a final layer of upper gates can be done in the same way as the
deposition of the first layer of top gates. To check the alignment of the gate layers
AFM can be used prior to the metal deposition. An example is shown in Fig. 3.6b,
where the entire device is covered with 140 nm of resist except the dark trenches
which define the upper gate layer. The final device geometry is shown in Fig. 3.6c.
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Chapter 4

Comparison of exfoliated graphene
and CVD grown graphene

In this chapter we compare the quality of exfoliated bilayer graphene and bilayer
graphene grown by chemical vapor deposition (CVD). We discuss characterization
measurements of both materials. Exfoliated graphene flakes have a typical extent of
a few to tens of micrometers. CVD grown graphene on the other hand has a typical
size of hundreds of micrometers [69], but can reach lengths of 100 m [70]. Another
interesting possibility when using CVD growth is the use of a pure Carbon-12 source.
Natural graphite has a small fraction of Carbon-13 atoms, which do have a nuclear
spin. Carbon-12 is nuclear spin free and therefore electron spins in this material do
not suffer from decoherence caused by hyperfine interactions.

Up until recently however, the mobility and mean free path in CVD graphene
were lower than that measured in exfoliated crystals. Signatures of ballistic trans-
port in monolayer CVD graphene were reported by Calado et al. [71]. The method
to transfer the graphene from the Cu foil on which it is grown to a hBN substrate
involved contact between graphene and polymer layers, resulting in the formation
of bubbles containing contaminants in between the hBN and graphene layers. After
annealing at T = 600◦ C atomic force microscopy was performed to identify micron-
sized bubble-free regions. Ballistic transport was observed only in these regions. In
2015 Banszerus et al. [69] discovered that monolayer CVD graphene can be picked
up from a Cu foil using a hBN flake on a polymer stamp (similar to the method de-
scribed in section 3.6) after sufficient oxidation of the foil. This reduced the problem
of bubble formation significantly. They demonstrated a mean free path exceeding
28 µm in devices made with this technique [72].

In this chapter we compare transport measurements at T = 1.7 K of encapsulated
bilayer graphene samples made with exfoliated 1 and CVD grown bilayer graphene.
The bilayer graphene was grown by Ming Huang in the group of professor Rodney
Ruoff. A CuNi foil was used as a substrate for the growth process. With the Ni
content the ratio of bilayer graphene and monolayer graphene can be tuned. We

1The sample with exfoliated graphene is the same as sample C in Chapter 5.
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Chapter 4. Comparison of exfoliated graphene and CVD grown graphene

used the transfer process described in section 3.6 to remove the graphene from the
CuNi foil. In the next sections, we will discuss the geometry of the device, transport
measurements at B = 0 T, Fabry-Pérot oscillations and magnetotransport.

4.1 Device geometry

A schematic of the samples studied in this chapter is shown in Fig. 4.1a. The samples
consist of a bilayer graphene flake encapsulated in hBN with two contacts (labelled
S and D) to probe the transport. The charge carrier density in the graphene can
be changed by applying a voltage to the Si back gate. With the top gate (TG)
the charge carrier density in the middle region of the device can be changed. The
dimensions of the samples can be found in Table 4.1.

graphene type CVD exfoliated

sample width W (µm) 1.8 1.1

sample length L (µm) 1.3 1.0

top gate length LTG (µm) 0.5 0.5

top hBN (nm) 19 28

bottom hBN (nm) 33 39

Table 4.1: Dimensions of the CVD grown sample and the exfoliated sample
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4.2. Conductance at B = 0 T
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Figure 4.1: Sample geometry (a) Schematic drawing of the BLG samples encapsu-
lated in hBN with source and drain contacts (S,D), a top gate (TG) on top and a Si
back gate below. (b) AFM image of the sample with CVD grown graphene (edges
denoted by the white dashed lines) prior to the deposition of the top gate (marked
by the green lines). (c) AFM image of the sample with exfoliated graphene. The
brighter lines around the contacts are artificial and are caused by a blunt AFM tip.

4.2 Conductance at B = 0 T

The conductance as a function of top gate voltage and back gate voltage of the
CVD graphene and the exfoliated graphene can be seen in Fig. 4.2a,b respectively.
Both measurements show a horizontal line of low conductance. This is the charge
neutrality point in the outer region of the device, which is not affected by the top gate
voltage. Above this line the outer region is n-doped and below it is p-doped. The
corresponding shift of the Fermi level in the band structure is schematically drawn
in Fig. 4.2c. When comparing the two samples, we note that the conductance dip
of the CVD grown sample is relatively broad compared to the conductance dip of
the exfoliated sample. This is an indication that the latter is of higher quality [62].

The diagonal line of low conductance is the charge neutrality point of the middle
region of the device. The charge carrier density in this region is affected by both
the top gate voltage and the back gate voltage, as described by equation 2.6. Along
the diagonal line the electric field in the region under the top gate increases in the
direction of the arrow. This is why the band structure of the inner region at the
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Figure 4.2: (a) Conductance of the CVD graphene sample as a function of top gate
and back gate voltage. (b) Conductance of the exfoliated graphene sample as a
function of top gate voltage and back gate voltage. (c) Band structure and Fermi
level in the outer region of the device at the positions of the markers in (a). (d)
Band structure and Fermi level in the middle region of the device at the positions
of the markers in (a).

position of the red circle, the blue pentagon and the orange star has a band gap (see
Fig. 4.2d). For the CVD graphene sample the conductance along the diagonal line
stays more or less constant when the band gap opens. This is an indication that the
energy scale related to the disorder potential is larger than the band gap. For the
device made with exfoliated graphene a decrease of the conductance with increasing
electric field is observed. Because of the opening band gap, the resistance of this
sample goes up to R = 200 kΩ at the position marked by the white star in Fig. 4.2b.

For both samples the conductance in the pp′p regime is considerably lower than
the conductance in the nn′n regime. This can be explained by the presence of n-
doped regions close to the leads, which are caused by the contact with Cr atoms in
the leads [27, 73]. In the case of pp′p doping the conductance is lower because of
the formation of p-n junctions close to the contacts.
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4.3. Mobility
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charge carrier density. For both samples
we can distinguish a regime at high den-
sity where the conductance increases with
increasing charge carrier density and a
regime at low density where the conduc-
tivity is constant.

graphene type CVD exfoliated

disorder density n (×1011 cm−2) 3 0.9

disorder density p (×1011 cm−2) 3 0.6

mobility n (×104 cm2/(Vs)) 0.4 4

mobility p (×104 cm2/(Vs)) 0.4 6

Table 4.2: Disorder density and mobility of the CVD grown sample and the exfoli-
ated sample

4.3 Mobility

To determine the mobility of the samples we focus on the conductivity along the
black dashed line in Fig. 4.2a,b. Along this line the carrier density in the device
is uniform. Using a capacitance model as shown in equation 2.6, the back gate
voltage axis can be converted into a density axis. Fig. 4.3 shows the conductivity
of both samples for n and p doping as a function of charge carrier density with a
log-log scale. At low charge carrier density charged impurities in the sample define
an electrostatic potential consisting of electron and hole puddles [74]. Changing
the gate voltage in the low density regime merely leads to a redistribution of charge
carriers within these puddles. At higher density, above the disorder density (marked
by the vertical dashed lines in Fig. 4.3), the conductivity increases with increasing
charge carrier density.

The disorder density and corresponding mobilities extracted from the data in
Fig. 4.3 can be found in Table 4.2. The lower disorder density and higher mobility
of the exfoliated sample are indications that the exfoliated graphene is of higher
quality than the CVD grown graphene.

4.4 Fabry-Pérot interferences

When zooming in on the conductance of the exfoliated sample in the npn regime, an
oscillatory pattern can be discerned. To enhance the contrast, we plot the deriva-
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Figure 4.4: (a) Zoom of the transconductance as a function of top gate voltage and
back gate voltage in the region marked by the white rectangle in Fig. 4.2b. The
oscillatory pattern arises because the p-n interfaces form a Fabry-Pérot cavity (see
inset). (b) Cut along the gray line in (a), where the gate voltage axis has been
transformed into a wave vector axis. (c) Fourier transform of (b), exhibiting a sharp
peak at ω = 1.1 µm, which is twice the cavity length.

tive of the conductance with respect to top gate voltage (the transconductance) in
Fig. 4.4. The gate voltage ranges are marked by the white rectangle in Fig. 4.2.
The oscillatory pattern of the conductance in the bipolar regime has been observed
before in both single layer graphene [75, 76] and bilayer graphene [6]. The two semi-
transparent p-n interfaces create a cavity in which charge carriers bounce back and
forth (see inset of Fig. 4.4a). The waves leaving the cavity after one or more passes
through the cavity interfere with each other. For each additional round through
the cavity, a phase of ∆Φ = 2kLc is acquired, where Lc is the cavity length. De-
pending on the wave vector (which is changed by the gate voltage), this interference
can be either constructive or destructive. This explains the oscillating conductance
observed in the measurement. We plot the observed oscillations as a function of
the wave vector k =

√
πn (Fig. 4.4b) and take a Fourier transform (Fig. 4.4c) to

extract the cavity length of Lc = ω/2 = 0.55 µm, which is in good agreement with
the lithographic length of the top gate of LTG = 0.5 µm.

In the CVD graphene sample, no oscillations are observed. This can be explained
by comparing the mean free path to the cavity length. For the exfoliated sample
the mean free path is on the order of ` ≈ 400 nm, which is on the same order
of magnitude as the cavity length. The transport through the cavity is therefore
quasiballistic. The CVD graphene sample has a mean free path on the order of
` ≈ 20 nm, which is an order of magnitude smaller than the cavity length. The cavity
is therefore in the diffusive regime and does not show any Fabry-Pérot oscillations.
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4.5. Magnetotransport measurements

4.5 Magnetotransport measurements

At sufficiently high perpendicular magnetic fields and sufficiently low temperature
the quantum Hall effect occurs in two dimensional systems, which leads to a discrete
energy spectrum [14]. In bilayer layer graphene the energy of the Landau levels is
given by [77]:

EN = sgn(N)~ωc

√
N(N − 1) for N ∈ Z (4.1)

where ωc = eB/m∗. The energy separation of the levels therefore increases with
magnetic field. For a more disordered sample a higher magnetic field is needed
to observe the quantum Hall effect, because the Landau levels are broadened by
disorder. Each Landau level can be occupied by at most eB/h charge carriers and
therefore the filling factor, the total number of occupied Landau levels is given by
ν = hn/eB. In pristine bilayer graphene the spin and valley degrees of freedom [77,
78] lead to fourfold degenarate Landau levels in the regime where Zeeman splitting
and spin-orbit interactions can be neglected [79]. An exception is the lowest Landau
level, which is eightfold degenerate because E0 = E1. This results in quantization of
the Hall conductivity σxy whenever the filling factor is close to an integer multiple
of four:

σxy =
e2

h
|ν| for ν ≈ 4i, i ∈ Z6=0 (4.2)

and at the same time the longitudinal conductivity σxx drops to zero. For a square
sample the quantized conductance, which occurs when the Fermi level lies in a gap
between Landau levels, is therefore given by:

G =
√
σ2
xx + σ2

xy = σxy =
e2

h
|ν| for ν ≈ 4i, i ∈ Z 6=0 (4.3)

For a sample with a different length-to-width ratio, undershoots and overshoots
around the plateau values occur [80].

Figure 4.5a shows the conductance of the CVD graphene sample as a function
of back gate voltage and magnetic field for VTG = −0.65 V. This top gate voltage
corresponds to a uniform density throughout the device. Around B = 6 T the
conductance curve shows two plateau-like features on the electron side. The first
plateau occurs close to the expected value of G = 4 e2/h. The second plateau does
not appear at G = 8 e2/h but at G = 10 e2/h instead. With only two plateaus it is
impossible to determine the contact resistance, which needs to be subtracted from
the measured resistance, therefore we did not subtract any contact resistance from
the curves in Fig. 4.5a and this might explain the deviations of the plateau from the
expected value. Another explanation is the significant disorder in the sample, which
leads to the onset of the quantum Hall effect only occurring around B = 5− 6 T.

The conductance of the exfoliated graphene device as a function of back gate
voltage and magnetic field at VTG = 0 V is shown in Fig. 4.5b. On the electron-side
clear plateaus can be observed at G = 4, 8, 12, 16 e2/h. Figures 4.5c,d show the
derivative of the conductance with respect to the x-axis as a function of back gate
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Figure 4.5: (a) Conductance of the CVD sample as a function of back gate and
magnetic field for VTG = − 0.65 V. (b) Conductance of the exfoliated graphene
sample as a function of back gate and magnetic field for VTG = 0 V. (c) Derivative
with respect to back gate voltage of the data in (a) (d) Derivative of the data in
(b). The Landau levels are marked by their respective filling factors.

voltage and magnetic field. For the exfoliated sample the quantum Hall plateaus
are clearly visible and they are marked by their respective filling factors. It shows
a plateau at ν = 0, contrary to what is expected for pristine bilayer graphene (see
equation 4.3). This can be explained by the small but finite electric field in the
sample [81]. The higher disorder in the CVD grown sample explains why the fan-
like structure is weaker for this sample.

4.6 Magnetotransport in presence of electric fields

The degeneracy of bilayer graphene Landau levels gets lifted when the disorder
broadening is smaller than the Zeeman splitting. Additionally, the valley degeneracy
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4.6. Magnetotransport in presence of electric fields
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Figure 4.6: (a) Conductance of the exfoliated graphene sample as a function of
top gate voltage for several magnetic field strengths at VBG = −60 V. Around
B = 3 T a threefold degeneracy of the Landau levels is observed. Around B = 6 T
all degeneracies are lifted. (b) Transconductance as a function of top gate voltage
and magnetic field at VBG = −60 V. Landau levels for which the filling factor is a
multiple of four are marked by black dashed lines. The plateaus related to ν = 3, 6
are marked by red lines and show up prominently already at B = 2 T. Other integer
filing factors are clearly visible as well. The green circle marks a level crossing.

can be lifted by the application of an electric field [82]. Quantum Hall plateaus at
integer filling factors which are not a multiple of four have been observed in Refs. [7,
83–85]. Figure 4.6a shows the conductance of the exfoliated sample as a function
of top gate voltage for several magnetic field strengths. The back gate was set to
VBG = 60 V. For the top gate range of VTG = 3 − 5 V used in this measurement,
the sample is in the nn′n regime (see Fig. 4.2b). Since the charge carrier density
in the outer regions is higher than the charge carrier density in the inner region,
the filling factor of the inner region determines the conductance. Around B = 6 T
plateaus can be observed for G = 1, 2, 3, ...8 e2/h, as expected in presence of an
electric field. Around B = 3 T the conductance shows a more unconventional
sequence of conductance plateaus at G = 3, 6 e2/h. This is a consequence of the
Lifshitz transition which occurs in the B = 0 T band structure. When taking skew
interlayer hopping into account, the Fermi contour at low density is not circular,
but consists of three equivalent pockets. The anomolous quantum Hall sequence
arising from the Lifshitz transition has been studied in detail in Refs. [7, 37]. In
Fig. 4.6b the transconductance as a function of top gate voltage and magnetic field is
shown. Quantum Hall plateaus show up as white lines. The plateaus corresponding
to ν = 4i with i ∈ Z are marked by a black dashed line. The broken degeneracy
is apparent from the presence of other plateaus between the marked ones. The
prominent G = 3, 6 e2/h plateaus are marked by red dashed lines. A level crossing
resulting from the Lifshitz transition is indicated by a green circle.
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Chapter 4. Comparison of exfoliated graphene and CVD grown graphene

4.7 Conclusion

In this chapter we have compared the quality of samples made with CVD grown
bilayer graphene and exfoliated bilayer graphene. The high disorder density and the
low mobility, the absence of Fabry-Pérot interferences and the onset of the quantum
Hall effect at high magnetic fields for the CVD sample indicate that this sample is
significantly more disordered. The CVD grown graphene was inspected in a scanning
electron microscope after growth, which may have resulted in the deposition of
additional carbon atoms on the surface. We intended to make samples with a second
batch of CVD graphene, which has not been inspected with electron beams after
growth. For the second batch we did not succeed in removing the graphene from the
CuNi foil. This could be related to a possibly higher surface coverage of the graphene,
which makes the oxidation process of the foil less efficient. In the mean time Schmitz
et al. [86] have reported on the fabrication and characterization of a CVD grown
bilayer graphene sample with a mobility at T = 2 K of µ = 1.8× 105 cm2/(Vs) for
electrons and µ = 0.8 × 105 cm2/(Vs) for holes. The CVD graphene they measure
can therefore compete with state of the art exfoliated graphene samples.
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Chapter 5

Oscillatory magnetoresistance in
p-n junctions

This chapter is based on the work:

Oscillating magnetoresistance in graphene p-n junctions
at intermediate magnetic fields

Hiske Overweg, Hannah Eggimann, Ming-Hao Liu, Anastasia
Varlet, Marius Eich, Pauline Simonet, Yongjin Lee, Kenji

Watanabe, Takashi Taniguchi, Klaus Richter, Vladimir I. Fal’ko,
Klaus Ensslin, Thomas Ihn

Nano Letters 17, 2852–2857 (2017)

5.1 Introduction

In this chapter we report on the observation of magnetoresistance oscillations in
graphene p-n junctions. The oscillations have been observed for six samples, con-
sisting of single-layer and bilayer graphene, and persist up to temperatures of 30 K,
where standard Shubnikov-de Haas oscillations are no longer discernible. The os-
cillatory magnetoresistance can be reproduced by tight-binding simulations. We
attribute this phenomenon to the modulated densities of states in the n- and p-
regions.

p-n junctions are among the basic building blocks of any electronic circuit. The
ambipolar nature of graphene provides a flexible way to induce p-n junctions by
electrostatic gating. This offers the opportunity to tune the charge carrier densities
in the n- and p-doped regions independently. The potential gradient across a p-
n interface depends on the thickness of the involved insulators and can also be
modified by appropriate gate voltages. Due to the high electronic quality of present
day graphene devices a number of transport phenomena in pnp or npn junctions
have been reported, such as ballistic Fabry-Pérot oscillations [6, 75, 76] and so-
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Chapter 5. Oscillatory magnetoresistance in p-n junctions

called snake states [87, 88], both of which depend on characteristic length scales of
the sample.

Here we report on the discovery of yet another kind of oscillation, which does
not depend on any such length scale. The oscillations occur in the bipolar regime,
in the magnetic field range where Shubnikov-de Haas oscillations are observed in
the unipolar regime. These novel oscillations in the bipolar regime are governed by
the unique condition that the distance between two resistance minima (or maxima)
in gate voltage space is given by a constant filling factor difference of ∆ν = 8.
The features are remarkably robust: they occur in samples with one and two p-
n interfaces; in single and bilayer graphene; up to temperatures of 30 K (where
Shubnikov-de Haas oscillations have long disappeared); over a large density range;
for interface lengths ranging from 1 µm to 3 µm and in both pnp and npn regimes.
The oscillations have been observed in a magnetic field range of B = 0.4 T up to
B = 1.4 T. Their periodicity does not match the periodicity of the aforementioned
snake states. Here we address this phenomenon and suggest a model which can
qualitatively explain the oscillations.

5.2 Samples

Measurements were performed on six samples in total, which all consist of a graphene
flake encapsulated between two hexagonal boron nitride (h-BN) flakes on a Si/SiO2

substrate. They all show similar behavior. This paper focuses on measurements
performed on one sample (sample A), with the device geometry sketched in Fig. 5.1a.
Specifications of the other five samples are summarized in table 5.1. The bilayer
graphene (BLG) flake was encapsulated with the dry transfer technique described
in Ref. [26]. A top gate was evaporated on the middle part of the sample, which
divides the device into two outer regions, only gated by the back gate (single-gated
regions), and the dual-gated middle region. The other five samples were made with
the more recent van der Waals pick-up technique [27]. Unless stated otherwise, the
measurements were performed at 1.7 K. An AC voltage bias of 50 µV was applied
symmetrically between the Ohmic contacts (‘source’ and ‘drain’ in Fig. 5.1a, inner
contacts in Fig. 5.1b) and the current between the same contacts was measured. The

sample name A B C D E F

sample width W (µm) 1.3 1.4 1.1 0.9 3 1.2

sample length L (µm) 3.0 1.4 1.0 2.3 3 2.8

top gate length LTG (µm) 1.1 0.7 0.55 1.2 1.0 1.0

distance to top gate (nm) 23 44 28 57 35 25

number of graphene layers 2 1 2 2 2 2

junction type npn pn npn pn npn npn

Table 5.1: Characteristics of samples A-F
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transconductance dG/dVTG was measured by applying an AC modulation voltage
of 20 mV to the top gate.

5.3 Measurements

Figure 5.1c shows the conductance as a function of top gate voltage VTG and back
gate voltage VBG. Charge neutrality of the single-gated regions shows up as a hor-
izontal line of low conductance and is marked by a white line. The diagonal line
of low conductance corresponds to charge neutrality of the dual-gated region. The
slope of this line is given by the capacitance ratio of the top and back gate. Together
these lines divide the map into four regions with different combinations of carrier
types: two with the same polarities in the single- and dual-gated regions (pp’p and
nn’n) and two with different polarities (npn and pnp). The conductance in the latter
regions shows a modulation which is more clearly visible in the transconductance
(see Fig. 5.2a). The oscillatory conductance is caused by Fabry-Pérot interference
of charge carriers travelling back and forth in the region of the sample underneath
the top gate. Their periodicity yields a cavity length LTG = 1.1 µm, which is in
agreement with the lithographic length of the top gate. The Fabry-Pérot oscilla-
tions were studied in more detail in Ref. [6], which revealed the ballistic nature of
transport in the dual-gated region.

The Fabry-Pérot oscillations disappear in a magnetic field of B & 100 mT (see
Fig. 5.2b-d). Yet at magnetic fields of B = 0.4 T a new oscillatory pattern appears in
the npn and pnp regime. This can be seen in the conductance and transconductance
maps recorded at B = 0.5 T, shown in Figs. 5.3a-d. The oscillations follow neither
the horizontal slope of features taking place in the single-gated region, nor the
diagonal slope of the dual-gated region. They are therefore expected to occur at the
interface between the p- and n-doped regions. This was confirmed by measurements
on sample D, which had two contacts in the single-gated region and two contacts in
the dual-gated region. For this sample, only the conductance along paths involving
the interface shows oscillations (see Appendix D).

On top of this novel oscillatory pattern the transconductance of sample A in
Fig. 5.3b(d) shows faint diagonal lines in the nn’n(pp’p) regime, which are Shubnikov-
de Haas oscillations in the dual-gated region. The occurrence of Shubnikov-de Haas
oscillations shows that in this moderate magnetic field regime the Landau levels are
broadened by disorder on the scale of their spacing, resulting in a modulation of the
density of states.

Using a plate capacitor model described in section 2.2, the gate voltage axes can
be converted into density and filling factor axes, νX with X = SG,DG for the single-
and dual-gated regions, respectively. The result of this transformation is shown in
Fig. 5.3e. The oscillatory pattern has a slope of one, i.e. it follows lines of constant
filling factor difference ∆ν = νDG − νSG. It appears that the oscillations can be
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Figure 5.1: Characterization of the de-
vice. (a) Schematic of the device: a bi-
layer graphene flake is encapsulated be-
tween h-BN layers. It is contacted by Au
contacts and a Au top gate is patterned
on top, which defines the dual-gated re-
gion. (b) Optical microscope image of
the sample. The four contacts, of which
only the inner ones were used, appear or-
ange. The top gate is outlined by a red
curve. (c) Conductance of the sample at
B = 0 T, T = 1.7 K. Four regions of dif-
ferent polarities are indicated. A zoom of
the transconductance in the boxed region
with a solid line is shown in Fig. 5.2. The
dashed (dotted) box indicates the gate
voltage range in which Figs. 5.3a,b (c,d)
were measured.
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oscillations with increasing magnetic field.
The measurement was taken in the boxed
region with solid lines in Fig. 5.1c. At B =
0 T (a) the transconductance shows clear
Fabry-Pérot oscillations. They disappear
in a magnetic field of B & 0.1 T (b–d).
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Figure 5.3: Magnetotransport at B = 0.5 T. (a) Conductance of the sample at
0.5 T, showing an oscillatory pattern in the npn regime. The measurement was
taken in the dashed boxed region of Fig. 5.1c. (b) The oscillatory pattern in the
npn regime is more clearly visible in the transconductance. Green dashed lines
indicate the pattern expected for snake states. In the nn’n regime some faint lines
can be distinguished, following the slope of the charge neutrality line of the dual
gated region. These are Shubnikov-de Haas oscillations. (c),(d) Same as (a),(b), but
with opposite charge carrier polarities. The oscillations are essentially particle-hole
symmetric. (e) Transconductance at B = 0.5 T in the pnp regime as a function
of charge carrier density (and filling factor) in the single- and dual-gated region.
The oscillatory pattern follows the indicated line of slope one and can therefore be
described by lines of constant filling factor difference ∆ν = νDG − νSG.

phenomenologically described by:

G = 〈G〉+ A cos

(
2π

∆ν

8

)
(5.1)

where A is the amplitude of the oscillations, which is on the order of 4 % of the
background conductance 〈G〉 at T = 1.7 K. The distance between one conductance
maximum and the next can therefore be bridged by either changing the filling factor
in one region by 8, or by changing the filling factor in both regions oppositely by
4. It should be noted that Eq. (5.1) can be used to describe the oscillations in all
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Figure 5.4: Temperature dependence. (a)
Oscillatory part of the conductance as a
function of top gate voltage and tempera-
ture measured along the line cut indicated
by the black line in Fig. 5.4c. (b) Ampli-
tude A of the oscillatory conductance as a
function of temperature. The oscillations
disappear around T = 30 K. (c) Transcon-
ductance at T = 10 K, B = 0.5 T in
the pnp regime. Whereas Shubnikov-de
Haas oscillations in the pp’p regime have
faded out, the oscillatory pattern in the
pnp regime persists.
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six samples, regardless of the number of graphene layers and the sample width (see
table 5.1 and Appendix D).

The oscillations persist in magnetic fields up to B = 1 T for sample A and the
periodicity scales with ∆ν for the entire magnetic field range. In higher magnetic
fields the conductance is dominated by quantum Hall edge channels and takes on
values below e2/h in the npn and pnp regimes, in agreement with observations by
Amet et al. [89]. Other works report on the (partial) equilibration of edge channels
[89–94] and shot noise [95, 96] in p-n junctions in the quantum Hall regime.

The oscillatory conductance is quite robust against temperature changes. Fig-
ure 5.4a,b show the decay of the amplitude as a function of temperature T . The
oscillatory conductance in the pnp and npn regime disappear at a temperature
around T = 30 K. As can be seen in Fig. 5.4c, at T = 10 K the oscillations are
still clearly present, while the Shubnikov-de Haas oscillations in the pp’p regime
have already faded out. The persistence up to T = 30 K indicates that the studied
phenomenon does not require phase coherence on the scale of the device size. The
phase coherence length at T = 1.7 K is estimated to be on the order of the device
size, but it falls off with 1/T [97].
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5.4 Tight binding model

The above discussed oscillations can be reproduced by transport calculations carried
out by Ming-Hao Liu for an ideal SLG p-n junction at an intermediate magnetic
field B, based on the scalable tight-binding model [98]. The ideal junction is mod-
eled by connecting two semi-infinite graphene ribbons (oriented along armchair)
with their carrier densities given by nL in the far left and nR in the far right. A
simple hyperbolic tangent function with smoothness 50 nm bridging nL and nR is
considered; see the inset of Fig. 5.5a for an example. To cover the density range
up to ±3× 1012 cm−2 corresponding to a maximal Fermi energy of Emax ≈ 0.2 eV,
the scaling factor sf = 10 is chosen because it fulfills the scaling criterion [98]
sf � 3γ0π/Emax ≈ 141 very well; here γ0 ≈ 3 eV is the hopping energy of the
unscaled graphene lattice. Note that the following simulations consider W = 1 µm
for the width of the graphene ribbon, but simulations based on a different width
show an identical oscillation behavior (see Appendix B for details), confirming its
width-independent nature as already concluded from our measurements.

The transmission function T (nR, nL) across the ideal p-n junction at B = 0.5 T
is shown in Fig. 5.5a, where fine oscillations along symmetric bipolar axis (marked
by the blue arrows) from np to pn through the global charge neutrality point can be
seen. Two regions marked by the white dashed boxes in Fig. 5.5a are zoomed-in and
shown in Figs. 5.5b and d for a closer look and comparison with the measurements
of sample B and E (Figs. 5.5c and e, respectively). Despite certain phase shifts
(observed in Figs. 5.5b, d, and e) that are beyond the scope of the present study, good
agreement between our transport simulation and experiment showing the oscillation
period well fulfilling Eq. (5.1) can be seen.
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Figure 5.5: (a) Transmission T as a function of the carrier densities on the left,
nL, and right, nR, for an ideal SLG p-n junction at a perpendicular magnetic field
B = 0.5 T based on a tight-binding transport calculation (color range restricted
for clarity). Oscillations occur in the vicinity of the symmetric bipolar axis marked
by blue arrows. Inset: an example of the considered carrier density profile corre-
sponding to the white cross. White dashed boxes correspond to the density regions
shown in panels (b) and (d), where the carrier density values are transformed in
filling factors. (c)/(e) Transconductance G′ measured for sample B/E shown with
the same filling factor range as (b)/(d).

5.5 Physical model

Other works [87, 88] report on the formation of so called snake states along p-n
interfaces in graphene. Snake states result in a minimum in the conductance when-
ever the sample width W and the cyclotron radius Rc satisfy W/Rc = 4m− 1 with
m a positive integer. In the density range of Fig. 5.3b,d this would lead to two
resonances at most (indicated by green dashed lines in Fig. 5.3b,d), which is far less
than the observed number of resonances. On top of that, snake states are incon-
sistent with the observed absence of a dependence on sample width. Furthermore,
the tight-binding simulation also confirms that the observed effect is independent
of the sample width and cannot be suppressed by introducing strong lattice defects
in the vicinity of the p-n junction (see Appendix B). We therefore rule out snaking
trajectories as a possible cause of the observed oscillations.

Another process which could give rise to oscillations in a graphene p-n junction
in a magnetic field is the interference of charge carriers which are partly reflected
and partly transmitted at the interface. When the charge carrier densities are equal
on both sides of the interface, electrons and holes will have equal cyclotron radii
and therefore the paths of transmitted and reflected charge carriers will form closed
loops. For the case of equal density, this model predicts the right periodicity of the
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oscillations [99]. Experimentally, however, the measured oscillations are still visible
when the densities on both sides of the p-n interface are quite different: at the point
(VBG,VTG) = (12,-6) V for example (see Fig. 5.3b), the cyclotron radii on the p and
n side are respectively 0.36 µm and 0.16 µm. The path lengths hence differ by
2∆Rc = 0.40 µm, which is more than seven times the Fermi wavelength (0.02 µm
and 0.05 µm). It seems unlikely that interference between charge carriers on skipping
orbits can still occur in this density regime. One could consider a refinement of this
model by taking into account trajectories with a non-normal incidence on the p-n
interface. It can be shown however that it is impossible to form such a trajectory
when the densities are not equal. Consider the situation sketched in Fig. 5.6. Basic
geometry tells us that:

L = 2Rc,1 cos(ϑ1) = 2Rc,2 cos(ϑ2) (5.2)

and therefore √
n1 cos(ϑ1) =

√
n2 cos(ϑ2) (5.3)

where n1 and n2 are the charge carrier densities on the two sides of the interface.
Considering conservation of the transverse component of the momentum leads to
Snell’s law:

kF,1 sin(ϑ1) = kF,2 sin(ϑ2) (5.4)

which implies √
n1 sin(ϑ1) =

√
n2 sin(ϑ2) (5.5)

Combining Eqs. 5.3 and 5.5 leads to the conclusion that ϑ1 = ϑ2 and therefore
n1 = n2. This picture could be altered when taking the density gradient along the
p-n junction into account, though.

The tight-binding simulations show that the oscillatory pattern is still present
when introducing large-area lattice defects in the vicinity of the p-n junction, which
destroy the skipping trajectories (see Appendix B). The observed robustness against
temperature changes is in contradiction with this model as well. Thus, the observed
oscillations cannot be ascribed to interference of charge carriers on cyclotron orbits
at the p-n interface.

Since the oscillations occur in both single-layer and bilayer graphene, we exclude
an explanation that relies on specific details of the dispersion relation. In the mag-
netic field range where the oscillations are observed, the sample width is comparable
to the classical cyclotron diameter. This excludes explanations based on classical
electron flow following skipping orbit-like motion along edges.

A mechanism which may cause the oscillations involves the alignment of the
density of states (DOS) around the Fermi energy. Diagrams of the DOS in the
single- and dual-gated regions are sketched in Figs. 5.7a-c. Figure 5.7d shows a
zoom in the map of the oscillatory transconductance of Fig. 5.3e. At point a in
this zoom the filling factor in the dual-gated regime is νDG = 180 and νSG = -92
in the single-gated region. Because of the fourfold degeneracy of the Landau levels,
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Figure 5.6: Interference of two trajecto-
ries along a p-n interface. Because of
Snell’s law, the sketched situation, with
different charge carrier densities on both
sides of the interface, cannot be realized.

ϑ1

ϑ2

L

Rc,1

Rc,2

Landau level numbers are N = 45 and N = -23 respectively, as shown in the DOS
diagram of Fig. 5.7a. When following the oscillatory pattern from point a to point
b, the two combs of DOS remain aligned with one another and only the Fermi level
changes. This is in contrast to what happens when moving from point a to point c:
the DOSs shift with respect to one another and the transconductance oscillates. It
could therefore be the case that the alignment of the DOS affects the conductance of
the p-n interface in a way similar to the magneto-intersubband oscillations (MISO)
of a two-dimensional electron gas (2DEG) [100, 101]: the occupation of two energy
subbands of a 2DEG can lead to enhanced scattering between the subbands when
the DOSs of the subbands are aligned. Although the p- and n- regions are spatially
separated in the case of graphene p-n junctions, a similar enhancement of the cou-
pling at the interface may be observed. Numerical calculations of the overlap of the
density of states can be found in Appendix C.

In the pp’p and nn’n regime the interfaces are much more transparent (see con-
ductance in Fig. 5.4a,d and Ref. [102]), therefore the interface plays a negligible
role in the total conductance. This explains why the oscillations are only visible in
presence of a p-n interface.

As the two outer regions of the sample have the same density up to an insignifi-
cant difference in residual doping, the two p-n interfaces contribute in a similar way.
The number of interfaces can at most influence the visibility of the oscillations. In
practice we find that the visibility is however mostly influenced by sample quality.

Just as for the oscillations we report on, MISO persist up to relatively high
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Figure 5.7: (a-c) Schematics of the densi-
ties of states as a function of energy for the
single- and dual-gated regions of the sam-
ple at positions a-c of the measurement
(d) Zoom in Fig. 5.3e. The alignment of
the densities of states can lead to an oscil-
latory pattern with the right slope: along
the line from point a to point b the two
combs of densities of states stay aligned,
whereas the combs shift with respect to
one another when moving from point a to
point c.

temperatures. The spacing predicted by this model lacks a factor of two compared
to the experiment, however: it would predict the argument of the cosine of Eq. (5.1)
to be 2π∆ν/4. Further investigation is needed to explain this discrepancy between
the MISO model on the one hand and the experimental data and the tight-binding
simulations on the other hand.

5.6 Conclusion

We have observed oscillations in the conductance of six graphene p-n junctions
in the magnetic field range of B = 0.4 − 1.5 T. The oscillations are independent
of sample width and can be described by the filling factor difference between the
single- and dual-gated regions. The oscillations are quite robust against temperature
changes: they fade out only in the range of T = 20 − 40 K, whereas Shubnikov-de
Haas oscillations decay below T = 10 K. The oscillations can be well reproduced by
tight-binding transport calculations considering an ideal p-n junction at a constant
magnetic field. Up to a factor of two, the oscillatory pattern can be explained by
considering the density of states alignment of the single- and dual-gated regions.
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Chapter 6

Graphite back gates

Parts of this chapter are based on the work:

Electrostatically induced quantum point contacts in
bilayer graphene

Hiske Overweg, Hannah Eggimann, Xi Chen, Sergey Slizovskiy,
Marius Eich, Pauline Simonet, Riccardo Pisoni, Yongjin Lee,
Kenji Watanabe, Takashi Taniguchi, Vladimir I. Fal’ko, Klaus

Ensslin, Thomas Ihn
Nano Letters 18, 553-559 (2018)

6.1 Introduction

In this chapter we investigate the band gap in bilayer graphene induced by an electric
field. The samples have the same gate geometry as shown in the previous chapters
(Figs. 4.1a, 5.1a). The first eight samples we studied, consisted of bilayer graphene
encapsulated in hBN with a highly n-doped Si back gate and a Au top gate.

We found similar results to what was often found in literature (see Chapter 2):
the resistivity at low temperatures with increasing electric field stayed below the
MΩ regime, impeding the electrostatic definition of nanostructures. The resistivity
as a function of electric field at T = 2 K for five of these samples is plotted with black
symbols in Fig. 6.1a, along with the results from literature mentioned in chapter 2.
The mobility of our samples, plotted in Fig. 6.1b, is on par with state of the art
encapsulated bilayer graphene devices. The other three samples were not included
in this figure as they were measured at T = 4.2 K only. Inspired by the works of
Hunt et al. [55] and Chen et al. [103], who employed a graphite back gate for a
monolayer graphene device, and Li et al. [50], who achieved high resistivity in a
bilayer graphene sample with a graphite back gate (see Fig. 6.1a), we decided to
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Figure 6.1: (a) Resistivity as a function of electric field at T = 2 K. Different
symbols denote different samples. (b) Mobility as a function of year of publication
or measurement.

study samples with a graphite back gate as well1. The sample geometry is discussed
in section 6.2. Section 6.3 discusses transport measurements in the samples with
a graphite back gate at low temperature. The bias dependence, resulting in a first
estimate of the gap size, is shown in section 6.4. The temperature dependence of the
resistivity, which gives a more precise estimate of the gap, is discussed in section 6.5.
Finally our findings are summarized in section 6.6.

6.2 Sample geometry

The samples studied in this chapter have the same barrier geometry as studied
in chapters 4 and 5, except that the Si back gate is replaced by a graphite flake
below the device. This geometry is sketched in Fig. 6.2. The graphite back gate
is atomically flat. Because of its close vicinity to the graphene layer it potentially
results in a better screening of charged impurities in the Si substrate, in the boron
nitride and in the graphene itself. It also leads to a stray field pattern which is
different from samples with a Si back gate2. This can affect the doping profile
across the sample, which is an important factor to take into account when studying
current flow along device edges [51, 54, 56].

1We thank Yongjin Lee for this excellent suggestion.
2We thank Kostya Novoselov for this suggestion
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Chapter 6. Graphite back gates

Figure 6.2: Schematic of an encapsulated
bilayer graphene sample with a graphite
back gate below the device. Source and
drain contacts are used to probe transport
through the graphene layer. The top gate
covers the middle region of the device

hBN

hBN

graphite back gate BGgraphite back gate BG
bilayer graphene

6.3 Resistance map

The resistance as a function of top gate voltage and back gate voltage for samples
E and H, both with a graphite back gate, is shown in Fig. 6.3. The resistance
increases by orders of magnitude along the diagonal line along which the band gap
opens. This is in sharp contrast with the samples without a graphite back gate,
which only showed a moderate increase in resistance along this line (see Fig. 6.1a).
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Figure 6.3: (a) Resistance of sample E as a function of top gate voltage and back
gate voltage measured at T = 1.7 K. Along the diagonal line a band gap opens
in the direction of the arrow which results in a significant increase of the sample
resistance. (b) Resistance of sample H as a function of top gate voltage and back
gate voltage measured at T = 4.2 K. Similar behavior is observed for this sample.

6.4 IV characteristics

The resistance of sample E reaches values which are too high to measure with a
small AC bias voltage. We therefore measure the current as a function of the DC
source drain voltage at the point of highest resistance, marked with the black dot
in Fig. 6.3a. At this point the electric field is E = 0.37 V/nm. The result is shown
in Fig. 6.4. The strong reduction of the slope of the curve around VSD = 0 V is a
clear indication of the induced band gap. The resistance in the gap can be read off
from the slope close to VSD = 0 V (see inset) and is determined to be R = 23 GΩ.
This resistance is on the order of the leakage resistance between wires in our set-up,
which defines an upper limit of the resistance we can measure. The vertical offset
at VSD = 0 V is artificial and is caused by the offset of the IV-converter.

From Fig. 6.4 the band gap of sample E can be estimated to be Egap ≈ 40 meV.
This gap size is on the same order of magnitude as the gap size expected from
tight binding calculations [41] in an electric field of E = 0.37 V/nm, whereas in
earlier works the extracted gap size was two orders of magnitude smaller than the
theoretical gap size [45].

The maximal resistance measured in sample H was R = 10 MΩ, despite the
fact that a higher electric field of E = 0.85 V/nm was reached at the position of
the black dot in Fig. 6.3b. A possible explanation for the lower resistance achieved
in this sample is the fact that the region of the graphene under the top gate was
not entirely free of bubbles (see section 3.6). The lower quality of the graphene in
this region can lead to more mid-gap states. The maximal resistance in this sample
nonetheless satisfies the criterion R � RK, so it is still within the range which is
suitable for the definition of nanostructures [9].
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Chapter 6. Graphite back gates

Figure 6.4: Current through sample E
as a function of the source drain bias
voltage measured in an electric field of
E = 0.37 V/nm. The linear slope fitted
through the data points around VSD = 0 V
(inset) yields a resistance of R = 23 GΩ
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6.5 Temperature dependence

To get a more precise measurement of the band gap, we measure the resistivity at
the point marked by the black dot in Fig. 6.3a as a function of temperature. The
result is shown in Fig. 6.5. The white squares and the black line correspond to
sample E and the colored data points correspond to other samples from literature.
Down to T = 40 K the resistance follows the Arrhenius law ρ ∼ exp(Egap/(2kBT )).
The extracted band gap is Egap = 55 meV for an electric field of E = 0.37 V/nm,
which is in good agreement with the numerically determined gap size [25].

Just as reported before in literature, the resistivity deviates from the Arrhenius
law at low temperatures, indicating that hopping via mid-gap states occurs in sample
E as well.

Figure 6.5: Resistivity as a function of
temperature for sample E (white squares)
and several samples from literature (col-
ored squares) measured in an electric field
of E = 0.3 − 0.5 V/nm. The dashed line
is a fit of the Arrhenius law, which gives
a band gap of Egap = 55 meV.
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6.6 Conclusion

The effect of a graphite back gate on the resistivity of bilayer graphene samples at
low temperatures as a function of electric field is summarized in Fig. 6.6a. Open
symbols denote samples with a graphite back gate (the two samples discussed in
this chapter, two samples by Li et al. [50] and a sample which was measured by
Marius Eich [104]). The mobility of these samples is not necessarily larger than the
mobility of the samples without graphite back gate (compare the mobility of the
samples by Zhu et al. [51]). Samples with a graphite back gate systematically result
in high resistivity in presence of an electric field however. This is a strong indication
that either the aforementioned improvement in screening or the changed stray field
compared to samples with a Si back gate reduces the number of mid-gap states,
leading to a closer match with the theoretically predicted behavior.

Out of the samples with a graphite back gate, sample H shows the lowest resis-
tivity, possibly due to the presence of bubbles in the stack under the top gate. It
may therefore be important to avoid bubbly regions when aiming for high resistivity.
Nevertheless even sample H fulfils the criterion for tunnel barriers of nanostructures
R� RK [9]. Graphite back gates therefore open new perspectives for electrostatical
definition of nanostructures in bilayer graphene.
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Figure 6.6: (a) Resistivity as a function of electric field at T = 2 K. Different symbols
denote different samples. Open symbols denote samples with graphite back gate (b)
Mobility as a function of year of publication or measurement.
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Chapter 7

Electrostatically induced quantum
point contacts in bilayer graphene

Parts of this chapter are based on the work:

Electrostatically induced quantum point contacts in
bilayer graphene

Hiske Overweg, Hannah Eggimann, Xi Chen, Sergey Slizovskiy,
Marius Eich, Pauline Simonet, Riccardo Pisoni, Yongjin Lee,
Kenji Watanabe, Takashi Taniguchi, Vladimir I. Fal’ko, Klaus

Ensslin, Thomas Ihn
Nano Letters 18, 553-559 (2018)

7.1 Introduction

In the previous chapter we have shown that it is possible to induce a resistance
on the order of gigaohms in encapsulated bilayer graphene samples with a graphite
back gate and metallic top gates. In this chapter we exploit this property to define
quantum point contacts (QPCs) in bilayer graphene. Several research groups have
created electrostatically confined one-dimensional channels or quantum dots [105–
107] in bilayer graphene, where the carriers are guided via a split gate structure
with depleted graphene regions below the biased split gates. In these experiments
however, the minimal conductance achievable in such geometries is limited by leakage
currents below the split gates, presumably caused by hopping transport or a small
energy gap. We will see that the graphite back gate helps to overcome this problem.

The sample geometry, discussed in section 7.2, differs from the conventional
design of a quantum point contact: an extra gate is added on top of the channel
defined by the split gates. Section 7.3 focuses on the conductance at B = 0 T, where
we observe device-dependent conductance quantization of ∆G = 2 e2/h and ∆G =
4 e2/h. The magnetic field dependence of the QPC modes, which shows an intricate
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Chapter 7. Electrostatically induced QPCs in bilayer graphene

pattern of level crossings, is discussed in section 7.5. Section 7.6 discusses finite bias
measurements both with and without magnetic field. Section 7.7 concludes this
chapter.

7.2 Sample geometry

In this chapter we will study three samples. Samples E and H were already intro-
duced in chapter 6. Sample I will be introduced below. In an additional lithography
step, a split gate geometry was added to samples E and H, which was then covered by
another insulating layer and a gate on top of the channel. The geometry is sketched
in Fig. 7.1a. In GaAs, similar QPC gate geometries have been studied [108]. The
combination of split gates, back gate and channel gate is essential to separately tune
the gap and the position of the Fermi level in the regions underneath the split gates
as well as the carrier density in the channel.

Fig. 7.1b shows an AFM image of sample E. On top of the device two 300 nm
wide split gates (SG), separated by 100 nm, were added next to the top gate (TG).
Atomic layer deposition was performed to add a dielectric layer (Al2O3, 60 nm).
Finally, another 200 nm wide gate, referred to as channel gate (CH), was evaporated
onto the channel defined by the split gates (see Fig. 7.1c). Sample H was produced
in the same way but has a thinner Al2O3 layer (20 nm), a smaller channel width
(80 nm) and a narrower channel gate (60 nm). In sample H, two separate pairs of
contacts are used to probe either the graphene region with top gate, or the graphene
region with split gate geometry.

Sample I, also consisting of a bilayer graphene flake encapsulated in hBN on top
of a graphite back gate, was stacked inside an Ar glovebox by Peter Rickhaus. Six
pairs of split gates in series were deposited on top of the stack. An AFM image of
the sample, made prior to the deposition of the channel gates, is shown in Fig. 7.1d.
The four QPCs showing quantized conductance are labelled QPC M (80 nm wide
channel) QPC L1,L2 (180 nm wide channel) and QPC S (50 nm wide channel) 1.
The channel gates were all 200 nm wide.

More details about the sample fabrication and geometry can be found in ap-
pendix E.

To illustrate the basic idea of electrostatic confinement in bilayer graphene, we
take a look at Fig. 7.1e. It shows a schematic of the dispersion relation at three
different points across the QPC, indicated in Fig. 7.1b. When the Fermi level under
the split gates lies in the gap (I., III.) and the Fermi level in the channel lies in the
conduction band (II.), charge carriers can only flow through the narrow channel. A
finite element simulation of the electrostatic potential can be found in appendix F.

1For one of the other QPCs, a split gate is not working. The last QPC can be pinched off, but
does not show any quantized conductance (see Appendix G.2).
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Figure 7.1: Sample layout. (a) Schematic of sample E. A bilayer graphene flake is
encapsulated in hexagonal boron nitride. It is contacted by a source (S) and drain
(D) contact and has a graphite back gate (BG) below, a top gate (TG), two split
gates (SG) and a channel gate (CH) on top. The channel gate is separated from
the split gates by a dielectric layer of Al2O3. (b) Atomic force microscopy image
of sample E prior to deposition of the channel gate. The position of the graphene
flake is indicated by blue dashed lines. (c) Atomic force microscopy image of sample
E with the channel gate. (d) Atomic force microscopy image of sample I, with six
pairs of split gates in series, prior to the deposition of the channel gates. (e) Model
of the band structure along the y-direction with the electrostatic potential indicated
by the blue line. The Fermi level under the split gates lies in the band gap. The
channel gate induces a finite carrier density in the channel.

7.3 Resistance in the bulk at B = 0 T

Unless stated otherwise, the measurements in the following sections were performed
at T = 1.7 K. An AC bias voltage of 50 µV was applied and the current I was
measured using low-frequency lock-in techniques.

Figure 7.2a shows the resistance of sample E as a function of split gate voltage
(VSG) and back gate voltage (VBG), with a grounded top gate and channel gate.
Lines of enhanced resistance follow the same pattern as in Fig. 6.3a. In contrast to
Fig. 6.3a, the resistance along the electric field axis does not increase beyond about
R = 5 kΩ (note the different color scales of Figs. 7.2a and 6.3a). This is because
charge carriers can flow through the channel between the split gates.

The channel can be depleted, however, by applying a channel gate voltage of
VCH = −12 V. The blue triangles in Fig. 7.2b show the resistance as a function
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Figure 7.2: (a) Resistance of sample E as a function of split gate voltage and back
gate voltage. (b) Temperature dependence of the resistance of sample E. The blue
triangles show the resistance of the QPC for VBG = 4 V, VSG = −3.9 V (black dot
in (a)) and VCH = −12 V. For comparison the red dots show resistance under the
full top gate (TG in Fig. 7.1). (c),(d) Resistance of sample H and I respectively as
a function of split gate voltage and back gate voltage.

of inverse temperature for (VSG,VBG) = (−3.9, 4) V (black dot in Fig. 7.2a) and
VCH = −12 V, which gives the highest resistance achievable at T = 1.7 K using
the split gates and the channel gate. In the high temperature regime a gap energy
of Egap = 47 meV can be extracted. The resistance deviates from the activated
behavior below T ∼ 50 K and goes up to R = 50 MΩ at T = 1.7 K, which is three
orders of magnitude higher than the resistance quantum h/e2. In sample H the
maximal resistance achieved with the split gates and the channel gate is R = 20 MΩ
at T = 1.7 K. These results are in contrast with previous works on bilayer graphene
QPCs, which never showed a conductance below G = e2/h.[105, 106] These results
show that it is not only possible to achieve high resistances with a rather wide
uniform gate, but also with a combination of three narrower gates. The band gap
underneath the split gates is sufficient to suppress conductance when the Fermi
energy is in the gap.
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Figures 7.2c,d show the resistance of samples H and I as a function of split gate
and back gate voltage, with grounded channel gates. The resistance of sample H
goes up significantly higher than the other samples. Apparently the narrow channel
in this sample can already be depleted when VCH = 0 V. The resistance of sample I
shows an additional line of high resistance at VBG = −1.9 V. The measurement was
performed with a voltage applied to a single pair of split gates. The additional line
of high resistance corresponds to the charge neutrality point under the five grounded
pairs of split gates.

7.4 Conductance in the constriction at B = 0 T

We vary the channel gate voltage VCH in the regime where conductance under the
split gates is maximally suppressed. For sample E the back gate voltage could not be
increased above VBG = 4 V because of the onset of gate leakage, most likely due to the
thin hBN layer between the back gate and the contacts. Suppression of conductance
under the gates was only reached at (VSG,VBG) = (−3.9, 4) V (see black dot in
Fig. 7.2a). The conductance G at this operating point as a function of channel gate
voltage VCH is shown in Fig. 7.3a. A series resistance of RS = 150 Ω was subtracted,
which was determined by measuring the resistance at (VSG,VBG) = (−0.4, 4) V
(see white dot in Fig. 7.2a). This point corresponds to uniform doping throughout
the sample. The conductance shows plateaus at G = 8, 10, 12, 14, 16, 18 e2/h. No
plateaus are discernible below G = 8 e2/h. To our knowledge this is the largest
number of conductance plateaus observed in bilayer graphene to date. At VCH =
−12 V the channel is depleted, reaching a resistance of R = 50 MΩ.

Sample H has a larger back gate voltage range with gate leakage smaller than
0.1 nA. Figure 7.3b shows its conductance as a function of channel gate voltage
for a set of back gate - split gate voltage pairs. Under the split gates, increasing
voltage differences VBG − VSG correspond to an increasing electric field E along the
charge neutrality line (cf. Fig. 7.2a). For each curve, a series resistance equal to
the resistance measured at uniform doping at the corresponding back gate voltage
was subtracted. Throughout the whole range, plateaus can be observed slightly
below G = 4, 12 e2/h (see blue arrows). For VBG < 6 V a plateau occurs slightly
below 8 e2/h as well (dashed blue arrow). In the range above G = 12 e2/h small
oscillations are observed which cannot be identified to be quantized conductance
plateaus.

The conductance of the different channels in sample I is shown in Figs. 7.3c,d.
We again subtracted a series resistance equal to the resistance measured at uniform
doping at the corresponding back gate voltage for each curve. The narrowest QPC
(QPC S, Fig. 7.3c, gray line) only shows a few plateaus within the channel gate
voltage range. Likewise we see that the widest QPC (QPC L1, Fig. 7.3d) shows
population of more modes than the middle QPC (Fig. 7.3c) within a small channel
gate voltage range. This is in agreement with the expected larger energy spacing
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Figure 7.3: (a) Conductance G of the induced channel in sample E as a function
of VCH at B = 0 T for the gate voltage configuration at the black dot in Fig. 7.2a.
The conductance shows a number of steps of ∆G = 2 e2/h. (b) Conductance of
the channel in sample H as a function of channel gate voltage VCH at B = 0 T for
several combinations of back gate and split gate voltage. The conductance shows
plateaus slightly below G = 4, 8, 12 e2/h. (c) Conductance of QPC S (in gray) and
QPC M (in color) in sample I as a function of channel gate voltage. Several steps
of ∆G = 4 e2/h can be identified. (d) Conductance of QPC L1 in sample I as a
function of channel gate voltage.
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of the modes for a narrower channel. In the higher mode regime G > 20 e2/h
conductance plateaus with a step size of ∆G = 4 e2/h can be identified. The lower
modes are less pronounced, especially in QPC L1.

Samples H and I could also be depleted completely at VBG = −8 V, when the
entire sample is p-doped. The conductance as a function of channel gate voltage in
this setting shows several smaller kinks, but no quantized conductance plateaus. In
sample E it was not possible to deplete the channel in the p-doped regime, most
likely because of the limited back gate voltage range.

Our results fit well into the landscape of experiments on single- and bilayer
graphene QPCs published previously, where lifted degeneracies were observed in
some but not all samples. Theoretically, for pristine bilayer graphene, steps of
∆G = 4 e2/h are expected because of spin- and valley-degeneracy, as observed in
samples H and I. At the same time the observed step size of ∆G = 2 e2/h in sample
E, witnessing a lifted degeneracy, is in agreement with other experimental works on
bilayer graphene [105, 106]. In monolayer graphene, conductance quantization with
steps of ∆G = 2 e2/h was observed in both limits of low [109, 110] and high [111]
mode number. However, Kim et al. [112] reported conductance quantization with a
step size ∆G = 4 e2/h in an electrostatically induced channel in monolayer graphene.
Zimmermann et al. [113] studied a QPC in single layer graphene in the quantum
Hall regime where a step size of ∆G = 1 e2/h is observed.

We speculate that the difference in the observed degeneracies in sample E on the
one hand and samples H and I on the other hand is caused by the residual disorder
in the devices. In the quantum Hall regime all degeneracies in the lowest Landau
level are lifted in our samples (see below), which demonstrates good sample quality.
Yet at zero magnetic field, the lack of perfect flatness of plateaus, the deviations
from the expected plateau values, the occasionally missing plateaus, and the absence
of plateaus in a p-doped channel indicate that a further increase in device quality,
currently out of reach, would lead to improvements. Beyond that, strain effects could
modify the potential landscape. In GaAs heterostructures, it is well known that a
difference in thermal expansion coefficient between the metal gates evaporated on
top of the semiconductor wafer and the semiconductor material itself can lead to a
strain-induced change of the potential of 5-10% [114]. In our case, the hBN layer
separating the metal gate from the graphene layer is comparatively thinner, and
one can imagine that strain effects could also lead to modifications of the potential,
in addition to the electrostatic definition of the QPC. While further improvements
in device quality will lead to better reproducibility among different devices and
allow for investigation of more subtle interaction effects, such as spontaneous spin
polarization [115], at present the microscopic origin of the lifted degeneracy and the
missing plateaus at low mode numbers in device E and I remains unknown.
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7.5 Magnetotransport

7.5.1 Samples E and H

A magnetic field has the potential to provide further insights into degeneracy lift-
ing in QPCs. Figure 7.4a(b) shows the conductance of sample E(H) as a function
of VCH for selected magnetic field strengths. For these measurements, the density
in the bulk of the sample is considerably higher than the density in the channel.
The conductance is therefore governed by the filling factor of the channel (see Ap-
pendix G.1). In a magnetic field of B = 7 T we observe that the four-fold degeneracy
of the lowest Landau level is completely lifted in both samples, demonstrating the
high quality of the samples [7]. Sample E shows a step size of ∆G = 4 e2/h at
intermediate magnetic fields (see curve at B = 2.5 T). This is surprising, since the
step size at B = 0 T (Fig. 7.3a) and B = 1.6 T (see arrows in Fig. 7.4a) is only
∆G = 2 e2/h for this sample. In sample H, no clear quantization of the levels is
observed at intermediate magnetic fields.

The transconductance as a function of VCH and B, shown in Fig. 7.4c,d, provides
a more complete picture. Transitions between quantized modes are seen as dark
lines. In sample E the transitions between the plateaus are more pronounced than in
sample H. In both samples, these lines start out vertically at low magnetic fields, and
bend over between B = 1 T and B = 2 T towards more positive gate voltages, ending
up as straight lines with finite slope at high fields. This behavior is reminiscent of
the magnetoconductance of high quality QPCs, for example in GaAs, where the low
magnetic field conductance is confinement-dominated, whereas the high magnetic
field conductance is determined by edge channels formed in crossed electric and
magnetic fields. The effect is known as the magnetic depopulation of magnetoelectric
subbands [116]. Also in our samples, filling factors can be assigned to the light
regions between the lines as indicated in the figure. However, when the magnetic
field is decreased towards the confinement dominated regime, the mode structure
appears to be much more complicated than in GaAs.

Lacking a detailed theory we propose a heuristic model which describes the level
transitions of sample E as a function of magnetic field. In analogy to magnetic
depopulation in GaAs 2DEGs [117], we assume that the energy separation of the
modes in the channel is given by

EN = sgn(N)~Ω
√
N(N − 1), Ω =

√
ω2
0 + ω2

c (7.1)

where ω0 is the frequency of the electrostatic confinement potential in the absence
of a magnetic field, and ωc is the cyclotron frequency, given by ωc = eB/m∗. The
gate voltage axis can be converted into an energy scale assuming a linear conversion
from gate voltage VCH to energy E = αCHe(VCH − V ). It is impossible to fit a
mode spectrum as that described by Eq. 7.1 to all the levels observed in Fig. 7.4c
using αCH , V and ω0 as free fitting parameters. Yet by extending the model with a
second set of parameters α′CH , V

′ and ω′0 it is possible to capture the trends of the
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Figure 7.4: (a) Conductance of sample E for several magnetic field strengths. The
plateaus at 10, 14 and 18 e2/h are still present at B = 1.6 T (see arrows), but
disappear in higher magnetic fields. At B = 7 T (red line) plateaus are present at
1, 2 ,3, 4 e2/h. (b) Conductance of sample H for several magnetic field strengths.
(c) Transconductance of sample E as a function of channel gate voltage VCH and
magnetic field B. The blue and orange dashed lines both follow the model described
by Eq. 7.1. (d) Transconductance of sample H as a function of channel gate voltage
VCH and magnetic field B. The transitions between modes are less pronounced than
in sample E. Horizontal dashed lines correspond to the line cuts in (a),(b).

level crossings in the low magnetic field regime. This is demonstrated by the dashed
orange and blue lines in Fig. 7.4c. The employed parameters are ~ω0 = 7.5 meV,
αCH = 1.75 × 10−3, V = 13.5 V, ~ω′0 = 5 meV, α′CH = 1.4 × 10−3 and V ′ = 17 V.
We want to stress that the model is purely heuristic. It was designed to capture the
dominant features of the experiment. The two different frequencies could imply that
the two valley/spin split modes may have different effective masses. The difference
between V and V ′ indicates an energy offset between the two sets of levels. The
model captures the main features of the data, except for the part where VCH < −10 V
(where the conductance at B = 0 T already deviates from the expected pattern),
and the features marked by yellow crosses in Fig. 7.4c. The parameters ~ω0 and
~ω′0 are similar to the curvature of the harmonic potential calculated in a COMSOL
simulation of the electrostatic potential of the device (see appendix F).
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The data suggest that around B = 4 T, the spin and valley splittings are too
small to be resolved. The only relevant energy spacing is the Landau level spacing
ELL (see inset of Fig. 7.3a). Lowering the magnetic field, the relative influence of the
electrostatic potential compared to the magnetic confinement grows, which lifts a
degeneracy (the blue and orange dashed lines move apart). The black curly bracket
in Fig. 7.3c indicates the energy range of the lifted degeneracy at B = 0 T (E1 in
Fig. 7.3a), which seems to have grown larger than the mode spacing indicated by the
blue curly bracket (E2 in Fig. 7.3a). The remaining twofold degeneracy implies that
the energy scale E3 = 0. Although the model suggests a degeneracy lifting larger
than the mode spacing of the QPC, we currently do not know which mechanism
could be responsible for such a drastic effect.

Another aspect which may contribute to the crossing mode pattern is the fact
that the channel gate voltage changes the electric field inside the channel. Bilayer
graphene exhibits a valley splitting of the Landau levels which depends on the electric
field [82, 85, 118]. In the devices presented here, the charge carrier density and
the electric field in the channel cannot be varied independently, complicating a
systematic study of the effect of the electric field.

7.5.2 Sample I

The transconductance of the QPCs in sample I, shown in Fig. 7.5, exhibit an even
more pronounced pattern of level crossings (marked with colored dots) as a function
of channel gate voltage and magnetic field. For QPC M, the fourfold degeneracy at
B = 0 T is lifted at B > 0.2 T. The levels cross around B ≈ 1 T, which leads to
a level sequence of G = 6, 10, 14, ... e2/h in this magnetic field range (see pink
numbers in Fig. 7.5a). The levels cross once more in a higher magnetic field, after
which the conventional sequence of fourfold degenerate bilayer graphene Landau
levels is observed (i.e. G = 4, 8, 12, ... e2/h). Because of the level crossings, the
Nth Landau level consists of QPC modes N−1 and N+1. In the upper right corner
of Fig. 7.5a, no quantum Hall states are observed. In this regime the filling factor in
the channel is larger than the filling factor in the bulk. Therefore the conductance
is no longer solely determined by the conductance of the channel.

Figure 7.5b shows the transconductance of QPC M measured with a more ex-
treme setting of the back gate and split gate voltages. This leads to a higher electric
field both under the split gates and inside the channel. On a qualitative level the
pattern of level crossings is the same.

In Appendix G.3 the transconductance of QPC M is shown in the regime where
the channel is p-doped. Although no clear quantization is observed at B = 0 T
(Fig. G.3a), the higher modes show a similar pattern of mode crossings (Fig. G.3b)
in presence of a magnetic field.

QPC S also shows a similar pattern of level crossings, see Fig. 7.5c. Because
of the narrower QPC channel, the transition to the quantum Hall regime occurs in
higher fields, as expected.
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Figure 7.5: (a) Transconductance of QPC M in sample I as a function of channel
gate voltage VCH and magnetic field B measured at VBG = 2.5 V and VSG = −2.1 V.
Colored numbers correspond to conductance values of the different modes. (b)
Transconductance of QPC M for the gate voltage settings VBG = 8.0 V and VSG =
−5.1 V. (c) Transconductance of QPC L1. (d) Transconductance of QPC S.

63



Chapter 7. Electrostatically induced QPCs in bilayer graphene

-8 -6 -4 -2
V CH (V)

0.0

0.5

1.0

1.5

2.0

B
(T

)

QPC L1
V BG = 8.0 V
V SG = -5.1 V

0

15

dG
/d

V
C

H
(e

2
/h

V
−

1
)

Figure 7.6: Transconductance of QPC L1 in sample I as a function of channel gate
voltage VCH and magnetic field B measured at VBG = 8 V and VSG = −5.1 V

QPC L1 (Fig. 7.5d) and L2 (not shown) show level crossings in a low magnetic
field of B ≈ 1 T. A zoom of the low magnetic field regime for a different gate voltage
setting is shown in Fig. 7.6. A dozen of level crossings can be identified over the
extensive channel gate voltage range. We again observe a merging of a QPC mode
with its next nearest neighbor mode in the quantum Hall regime.

Using the finite bias measurements presented in section 7.6, the channel gate
voltage axis can be converted into an energy scale. From Fig. 7.5 we can therefore
extract the splitting of the QPC modes as a function of magnetic field. The re-
sult is plotted in Fig. 7.7. The different colors correspond to different modes. All
modes show a linear dependence of the energy splitting on the magnetic field. The
corresponding g-factors are g∗ = 100− 300, which makes it clear that the splitting
cannot be explained by Zeeman splitting, for which a g-factor of 2 is expected and
confirmed in Ref. [104]. For the middle QPC we observe a clear dependence of the
splitting on the mode number. At a fixed magnetic field, higher modes exhibit a
larger splitting. For the wide QPC this effect is four times weaker. Comparing
Fig. 7.7a and Fig. 7.7b we conclude that the mode splitting is independent of the
electric field within the range of the measurements. This excludes an explanation
in terms of the valley Hall effect [48, 49, 119].

The mechanism responsible for the splitting and recombination of the modes in
the QPCs is currently not known. The recombination of QPC mode N − 2 with
QPC mode N might be related to the fact that the Dirac spinor describing the Nth
Landau level wave function in bilayer graphene consists of the harmonic oscillator
states N − 2 and N [77].
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as (a) for the gate voltage setting of Fig. 7.5b. (c) Energy splitting of the modes of
QPC L1 as a function of magnetic field for the gate voltage setting of Fig. 7.5d.

7.6 Finite bias spectroscopy

Finite bias measurements were performed to extract mode spacings. Figure 7.8a
shows the conductance as a function of VCH and the transconductance dG/dVCH as
a function of source drain bias measured at B = 0 T for QPC L1. Diamond-shaped
minima in the transconductance are observed at the positions of the conductance
plateaus. From the diamond pattern an energy spacing on the order of ∆E ≈ 3 meV
can be extracted.

The pattern gets more pronounced at B = 0.5 T, as shown in Fig. 7.8b. At
this magnetic field, the unconventional plateau sequence of G = 4N + 2 e2/h with
N ∈ Z+ is observed (see red dotted lines). From the increasing diamond size with
increasing channel gate voltage we conclude that higher modes have a larger energy
spacing. This is in agreement with the Comsol simulations shown in appendix F,
which show that the confinement potential gets steeper for more positive channel
gate voltage. At B = 0.9 T the higher modes show a twofold degeneracy (see red
dotted lines in Fig. 7.8c). The corresponding bias diamonds are therefore smaller
than those observed at lower fields. When increasing the magnetic field, the fourfold
degeneracy is restored and the diamond size increases again (Fig. 7.8d). This is in
agreement with the level crossings observed in section 7.5.2.

The extracted lever arm αCH for conversion of channel gate voltage into energy
(E = αCHeVCH) can be read from the slopes of the finite bias diamonds. For
QPC L1 αCH = 20 × 10−3 and for QPC M αCH = 14 × 10−3 (diamonds shown in
appendix G.4), in agreement with the fact that for the narrower QPC the channel
gate is more screened by the split gates and therefore has a smaller influence.
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7.7 Conclusion

We have defined QPCs in hBN-encapsulated bilayer graphene samples with a graphite
back gate and we observe the following:

• In all samples, the channels can be fully depleted by gating, in contrast to
previous works [105, 106].

• All samples show quantized conductance, though with different degeneracies.

• All samples show the expected quantum Hall plateaus with fourfold degenera-
cies at high fields and complete lifting of degeneracies for the lowest Landau
levels.

• All samples show an intricate crossover regime between zero magnetic field and
the quantum Hall regime, where level crossings and avoided crossings occur.

The different step sizes of ∆G = 2 e2/h and ∆G = 4 e2/h in the samples might
be due to a different disorder potential or different strain patterns. Several factors,
such as the reduced transmission of the modes of sample H and the absence of
conductance quantization in the p-doped regime, indicate that mesoscopic details
of the samples play an important role. Realizing one-dimensional nanostructures in
bilayer graphene by electrostatic gating paves the way toward controllable quantum
dots in bilayer graphene, which will be the topic of the next chapter.
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Chapter 8

Edge channel confinement in a
bilayer graphene n-p-n quantum
dot

This chapter is based on the work:

Edge channel confinement in a bilayer graphene n-p-n
quantum dot

Hiske Overweg, Peter Rickhaus, Marius Eich, Yongjin Lee,
Riccardo Pisoni, Thomas Ihn, Klaus Ensslin
New Journal of Physics 20, 013013 (2018)

8.1 Introduction

In this chapter we study the QPC geometry of sample E, introduced in Chapter 7,
in a different regime. We combine electrostatic and magnetic confinement to define
a quantum dot in bilayer graphene. We again exploit the tunability of the band
structure to define a nanostructure: by opening a band gap under the split gates
and tuning the gate voltages such that the Fermi level lies in the band gap, flow of
charge carriers under the split gates is obstructed. By applying a magnetic field and
tuning the back gate to a positive voltage and the channel gate to a negative voltage
we couple electron-like edge channels in the bulk of the device to a hole-like region
in the channel, thus defining a p-doped quantum dot with n-doped reservoirs. This
situation is drawn schematically in Fig. 8.1a. A side view of the sample is shown in
Fig. 8.1b. We observe Coulomb blockade at B ≈ 2 T. This demonstrates that the
coupling of the copropagating modes at the p-n interface is weak enough to form a
tunnel barrier.

The coupling of copropagating edge channels in graphene is a widely studied
topic. The first graphene p-n junction experiments, in graphene on SiO2 covered by
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Figure 8.1: (a) Top view of the sample. The graphene is contacted by a source (S)
and a drain (D). It can be tuned to the regime where the bulk of the sample is in the
n-regime, the channel is in the p-regime and the region under the split gates (SG) is
depleted. When applying a perpendicular magnetic field, this leads to confined edge
channels in the constriction. (b) Side view of the sample along the dotted line in
Fig. 8.1. A bilayer graphene flake is encapsulated in hexagonal boron nitride (hBN).
It has a graphite back gate below (BG), two split gates (SG) and a channel gate
(CH) on top. The channel gate is separated from the split gates by a dielectric layer
of Al2O3.

Al2O3, showed complete mode mixing of the edge channels travelling along the p-n
interface [90]. The situation is schematically drawn in Fig. 8.2a. Cleaner devices
with hBN substrate showed a conductance below G = e2/h in the bipolar regime,
suggesting a clear separation between copropagating edge channels [89]. The con-
ductance decreases with increasing magnetic field because an insulating ν = 0 region
forms at the p-n interface. Detailed studies of the conductance in the bipolar regime
have shown that coupling of the edge channels still occurs at the (rough) device edges
[93, 120, 121]. This leads to the formation of an interferometer, as indicated by the
two paths around the p-n interface in Fig. 8.2b. Aharonov-Bohm type oscillations
have been observed in these devices. In the device we study, the p-n interface is
delimited by electrostatically defined boundaries and does not reach the physical
edge of the graphene (see Fig. 8.1a). We therefore expect even smaller coupling
between the copropagating edge channels.

The behavior of edge channels in quantum dots has been studied in GaAs as
well [122–128]. In these devices the polarity of the charge carriers in the dot and in
the bulk is the same and the tunnel barriers are defined by electrostatic gating. A
schematic of the configuration is shown in Fig. 8.3. In a small device with dot area
A ≈ 2 µm2, the Coulomb energy of the dot governs the conductance of the system.
Suppose that m Landau levels are completely filled in the confined region and they
are tunnel coupled to the leads. When the magnetic field increases by B = φ0/A,
the charge of each of the filled levels increases by one. This will expel m charges
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Figure 8.2: Sketches of graphene p-n
junctions in the quantum Hall regime. (a)
In more disordered devices, the coprop-
agating edge channels mix over the full
width of the p-n interface. (b) In cleaner
devices, coupling of the edge channels oc-
curs only at the rough device edges, which
leads to the formation of an interferome-
ter.
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Figure 8.3: Sketch of the edge channel
configuration in a quantum dot in GaAs.
The edge channels in the leads (left and
right) are tunnel coupled (dashed lines)
to the edge channels in the central region.
The dot is formed by the partially filled
Landau level in the central region.

from the partially filled Landau level in the central region which forms the quantum
dot [125], resulting in m conductance peaks. When the tunnel coupling between
the leads and the central region is weak, the full Landau levels in the central region
can act as capacitively coupled dots as well [128]. In the case of a larger device
(A ≈ 18 µm2), the charging energy is considerably reduced. The conductance shows
oscillations which are caused by Aharahov-Bohm interference of the edge channels
circling around the central region. The two phenomena can be distinguished by
the slope of the conductance oscillations plotted as a function of gate voltage and
magnetic field [125].

8.2 Results and discussions

8.2.1 Characterization measurements

All measurements described in this chapter were performed in a dilution refrigerator
at a base temperature of 130 mK. A constant ac voltage bias was applied using
conventional lock-in techniques.

To deplete the region under the split gates, we apply a positive voltage to the
back gate and a negative voltage to the split gates (or vice versa). This leads to an
asymmetry between the two graphene layers, which results in the opening of a band
gap [5]. A detailed characterization of the band gap of this device at B = 0 T
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was given in chapter 7. To find the strongest depletion of the region under the split
gates in a finite magnetic field, we measure the resistance as a function of split gate
voltage VSG and back gate voltage VBG at B = 2 T (Fig. 8.4a) and identify the
line of highest resistance (white dashed line). For this measurement the channel
gate voltage was fixed at a large negative value (VCH = −12 V). With this channel
gate voltage setting, the channel is depleted or p-doped for the entire range of the
measurement and has a small coupling to the n-doped reservoirs (see also Fig. 8.4b).
With a highly resistive channel and a highly n-doped bulk, the changes in resistance
observed in this measurement stem primarily from the region under the split gates
(see insets). If multiple regions of the device had a considerable influence on the
resistance, features with different slopes would be expected, because of different gate
capacitances in different regions. The diagonal line of high resistance corresponds to
the charge neutrality point under the split gates. Along this line the displacement
field increases in the direction of the arrow. We observe an increase of the resistance
by two orders of magnitude along this line, ensuing from the increasing band gap
under the split gates. The high resistance achieved is important for the formation
of a well defined quantum dot. In all following measurements the split gate voltage
is adjusted when the back gate voltage VBG is varied (see white dashed line in
Fig. 8.4a), so as to keep the region under the split gates depleted. We denote this
by V ′BG.

We now focus on the effect of the channel gate. The conductance at B = 2 T
as a function of V ′BG and VCH is shown in Fig. 8.4b. In the upper right corner,
both the bulk and the channel are n-doped and therefore quantized conductance is
observed, similar to Refs. [90, 91]. The observed lines with negative slope are defined
by a constant filling factor in the channel. The transitions between the Landau
levels are marked by their respective filling factors. They are used to determine
the dependence of the charge carrier density on the gate voltages. The conductance
inside the channel reaches G = 16 e2/h, which shows that the edge channels of at
least four Landau levels fit inside the channel. The extent of the wave function of
the fourth Landau level is lB

√
2N + 1 = 55 nm, where lB is the magnetic length.

This extent is indeed smaller than the lithographic width of the channel. In the
hatched area at the bottom of the figure the conductance is much lower. In this
regime, where the channel is p-doped while the bulk is n-doped, a quantum dot as
sketched in Fig. 8.1a forms.

8.2.2 Coulomb blockade measurements

Figure 8.5 shows the main result of this chapter. In Fig. 8.5a the conductance as a
function of channel gate voltage and magnetic field is shown. For this measurement
a dc bias of VSD,DC = 200 µV was applied to enhance the signal to noise ratio. Lines
of higher conductance with a negative slope are observed. To enhance the visibility,
we subtract a smoothened background (Fig. 8.5b). When moving in the direction
of increasingly negative channel gate voltage, we can interpret each resonance as
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Figure 8.4: Sample characterization. (a) Resistance as a function of split gate and
back gate voltage at B = 2 T. Along the diagonal line of high resistance, the
Fermi level underneath the split gates and in the channel is in the band gap. The
resistance in the gap is higher than 1000 h/e2. (b) Conductance at B = 2 T as
a function of channel gate voltage and back gate voltage. The split gate voltage is
adjusted so as to keep the region under the split gates depleted (white dashed line
in (a)). Conductance larger than e2/h occurs when both the bulk and the channel
are n-doped. Low conductance occurs when the bulk is n-doped and the channel is
p-doped. Within the hatched area the edge channels inside the channel can form a
quantum dot, as shown schematically in Fig. 8.1a.

the addition of an individual charge carrier to the confined area. The negative
slope implies that an increase of the magnetic field leads to the removal of charge
carriers from the dot. This trend can be understood as follows: when the magnetic
field increases, the hole-like Landau levels shift down in energy. Since the Fermi
level in the dot is pinned by the reservoirs, this leads to a decrease of the number
of occupied states in the dot. In the case of Aharonov-Bohm interferometry, which
typically requires larger dots [127], the opposite slope would be expected: an increase
in magnetic field increases the flux through the interferometer, which has the same
effect as increasing the area by applying a more negative gate voltage.

Charging lines of quantum dots in a magnetic field often show a slope related
to a certain filling factor [129, 130]. The slope of the lines in Fig. 8.5b is close to
a filling factor of four inside the channel, but the error bar on the density inside
the channel does not allow for a quantitative comparison. To calculate the density,
we extracted the capacitance between the conducting channel and the channel gate
CCH from a Landau fan measured in a previous cool down (see chapter 7) using a
plate capacitor model. We also extract the same capacitance from several maps of
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the conductance at fixed magnetic field, such as Fig. 8.4b. The numbers we find are
off by 30% and we therefore conclude that our estimates of charge carrier density
and filling factor inside the channel have an error bar of 30%. Because of the vicinity
of the split gates to the channel, it could be the case that CCH depends on the split
gate voltage. Moreover, CCH might depend on the extent of the wave function inside
the channel. These two factors are not accounted for in a simple capacitance model.

In Fig. 8.5c a line cut of Fig. 8.5a is shown. The spacing between the peaks is
given by ∆VCH = 0.2 V. For the addition of a single charge carrier, this corresponds
to a capacitance between the dot and the channel gate of CCH = e/∆V = 0.8 aF,
in rough agreement with the capacitance of CCH = 1.3 aF extracted using the gate
voltage spacing of the Landau levels in Fig. 8.4b. For the latter estimate a dot area of
A = 0.02 µm2 (the lithographic size of the dot) was assumed. The significant back-
ground signal indicates that, apart from the channel exhibiting Coulomb blockade,
there is another conductive channel through the dot. The conductive background
decreases with increasing magnetic field (see Fig. 8.5a), but above B = 3 T the tun-
nel coupling to the reservoirs also gets weaker, because the distance between edge
channels increases. Therefore we do not obtain a clearer signal at higher magnetic
fields. The line cut shows a series of alternating low and high current peaks. This
is reminiscent of the work on GaAs dots by Baer et al. [128], in which the pattern
was explained by a different tunnel coupling to the reservoirs for the inner and outer
edge channel present in the dot.

The conductance at B = 2 T as a function of density in the bulk nBG and density
in the channel nCH (extracted from Fig. 8.4b) is shown in Fig. 8.5d. In Fig. 8.5e the
same measurement is shown with a smoothened background subtracted. From the
data it is apparent that the resonances (marked by dashed lines) are independent of
the density in the bulk of the device and only depend on the density inside the dot
for the entire range of the measurement. This is in agreement with our expectation,
since the density in the bulk is much higher than the density in the dot. It also
shows that the dot is clearly located inside the channel, making a disorder induced
dot as in Ref. [94] highly unlikely.

Finite bias measurements were performed to determine the energy spacing of
the levels in the quantum dot. The differential conductance as a function of dc
bias and channel gate voltage (see Fig. 8.6) at B = 2.33 T shows pairs of Coulomb
diamonds (see dotted red lines), with a charging energy on the order of 1 meV. By
approximating the dot as a disk in an infinite medium with a self capacitance of
C = 8εε0r , we can extract a radius of r = 500 nm. This is an upper bound for the
dot radius, since the presence of closeby metal gates alters the capacitance of the
dot significantly [9].
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Figure 8.5: Magnetotransport through the device. (a) Conductance as a function
of channel gate voltage and magnetic field. Peaks corresponding to charging of
the quantum dot show up as diagonal lines. To enhance the visibility, we subtract
a smoothened background (b). (c) Conductance at B = 2.25 T as a function of
channel gate voltage (dashed line in (a),(b)), showing an alternating sequence of low
and high peaks. (d) Conductance at B = 2 T as a function of the carrier density
in the bulk and in the channel. (e) Same as (d) with a smoothened background
subtracted. The solid line in (b) corresponds to the solid line in (d) and (e).

Figure 8.6: Bias spectroscopy. The differ-
ential conductance as a function of source
drain bias and channel gate voltage mea-
sured at B = 2.33 T and VBG = 1.9 V
(dotted line in Fig. 8.5b). Pairs of Cou-
lomb diamonds are visible, as indicated by
the dotted red lines. They show an energy
scale of roughly 1 meV.
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8.3 Conclusion

We realized an edge channel quantum dot in bilayer graphene making use of p-
n interfaces. Around B = 2 T, the device shows Coulomb blockade. A scaled
up version of the device discussed in this work could be used as an Aharanov-
Bohm interferometer [127]. In the light of the recent observations of robust even
denominator fractional quantum Hall states in bilayer graphene [131, 132], it could
be an interesting geometry to study the statistics of the quasiparticles of these states
[133].
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Chapter 9

Conclusion and outlook

The goal of this thesis is the confinement of charge carriers in
bilayer graphene. In this Chapter we summarize the experi-
ments we performed to work towards this goal and provide an
outlook on future experiments in this field.

9.1 Conclusion

9.1: Graphene
likes hBN

The first part of this project was devoted to the development of
a fabrication process for high quality bilayer graphene devices.
The encapsulation of bilayer graphene in hBN, pioneered by
Dean et al. [26] and optimized by Wang et al. [27] has been
essential for this project. Boron nitride provides a flat dielec-
tric with few charged impurities and can withstand high gate
voltages before the onset of leakage currents. On top of that, it
protects graphene against contaminations during the lithogra-
phy process. In Chapter 3 we developed a fabrication process
for dual-gated bilayer graphene devices based on hBN encap-
sulation. The most important findings can be summarized as
follows:

• We tried out different polymers for the stacking process.
Best results have been obtained with freshly prepared
PDMS and PC.

• Since bubbles of contaminants between the graphene and
hBN tend to move (e.g. during spin-coating with resist),
it turned out to be crucial to anneal the samples prior to
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9.1. Conclusion

the lithography process. This reduces the mobility of the
bubbles.

• Because of the extreme flatness of hBN, we found that
roughening the surface before gate deposition is impor-
tant. Otherwise the gates tend to shift or lift off.

• When adding additional dielectric layers after several lithog-
raphy steps, Al2O3 deposited by atomic layer deposition is
a suitable choice. The deposition process is reliable and
high electric fields can be reached because of the large
relative permittivity of Al2O3.

S Dn n
p

9.2: Fabry-Pérot
cavity

In Chapter 4 we assessed the quality of CVD grown bilayer
graphene and found that, for the requirements of our project,
the CVD graphene provided by the group of Prof. Ruoff could
not yet compete with the exfoliated graphene. In the sample
made with exfoliated graphene we could reproduce the results
of Varlet et al., who reported on Fabry-Pérot oscillations [6]
and a Lifshitz transition in bilayer graphene [7].

DOS

EF

E

DOS

9.3: Modulated
density of states

We then continued to study dual-gated encapsulated bilayer
graphene devices. In Chapter 5 and Ref. [8] we found that these
devices exhibit an oscillatory conductance in the p-n regime in
intermediate magnetic fields. Ming-Hao Liu reproduced these
oscillations in tight-binding simulations. The oscillatory con-
ductance seems to be linked to the oscillatory density of states
on both sides of the p-n interface, but the proposed model re-
quires an eightfold degeneracy instead of a fourfold degeneracy
to be in agreement with the periodicity observed in the exper-
iment. Up to date it is not clear how to explain this eightfold
degeneracy.

9.4: Graphene
likes graphite
too

Although the dual-gated samples showed various interest-
ing physical effects mentioned above, the maximal resistance
usually stayed in the range of tens of kiloohms. This is not suf-
ficient for the electrostatical definition of nanostructures. The
incorporation of graphite back gates into the device geometry
systematically led to induced resistances in the megaohm or
even gigaohm regime, as discussed in Chapter 6 and Ref. [10].
Because of the vicinity to the graphene, these gates can screen
charged impurities better than the previously employed Si back
gates. The stray field pattern of these gates might also dif-
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fer, eliminating potential enhanced current flow along device
edges [51].

The high resistance achieved in samples with a graphite
back gate enabled us to define quantum point contacts in bi-
layer graphene. The observation of quantized conductance,
with a complete pinch-off when depleting the structure, was
discussed in Chapter 7. The step size of the quantized conduc-

9.5: Quantum
point contact

tance plateaus is either 2 e2/h or 4 e2/h for six different QPCs.
Several factors, such as the reduced transmission of the modes
in one of the samples and the absence of conductance quanti-
zation in the p-doped regime, indicate that mesoscopic details
play an important role. The samples showed an intricate pat-
tern of level crossings in a magnetic field, which is yet to be
understood.

S D

9.6: Edge
channel
quantum dot

The same QPC device geometry was studied in a completely
different regime in Chapter 8 and Ref. [11]. The sample was
measured in the quantum Hall regime, where a p-doped cen-
tral region was coupled to n-doped reservoirs. We observed
Coulomb blockade at magnetic field values around B = 2 T,
demonstrating that a quantum dot was formed. We thus real-
ized our goal of confining charge carriers in bilayer graphene by
electrostatic gating.

9.2 Outlook

9.2.1 Further QPC studies

S
K
K’

9.7: Valley Hall
effect

The level degeneracy of QPCs could be studied in a geometry
proposed by Peter Rickhaus, see Fig. 9.7. In case of a (par-
tially) valley polarized current exiting the QPC, the valley Hall
effect [48, 49] would bend the trajectories of the charge carri-
ers in an electric field (induced by the top gate in gray). The
bending is opposite for the two valleys and therefore a valley po-
larization would result in a current imbalance between the top
right and bottom right contact. Such a study could demon-
strate that a QPC can be used as a source of valley polarized
current.

The splitting and merging of QPC modes (see Section 7.5) in
presence of a magnetic field is an open question at the moment.
To answer this question one could make devices with QPCs
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under different angles with respect to the graphene lattice, to
study the influence of this parameter. Another option would
be to make a bilayer graphene QPC with a transition metal
dicalchogenide as a dielectric layer. These materials induce
enhanced spin-orbit interaction in graphene [134]. It would
be informative to see if and how the pattern of level crosses
changes with enhanced spin-orbit interaction. Finally, the ef-
fect of strain on QPCs could be investigated in samples with
significantly differing thicknesses of the top hBN layer.

9.2.2 Scanning gate microscopy and other lo-
cal imaging techniques

9.8: Branched
electron flow in
GaAs

The QPC geometry proposed in this work will be investigated
with scanning gate microscopy by Yongjin Lee and Carolin
Gold. With this technique, the caustics of charge carriers em-
inating from the QPC can be studied. It will be interesting to
see if patterns of branched electron (see Fig. 9.81) flow occur
and how they differ from those observed in GaAs [135, 136].

Luca Lorenzelli and Marius Palm from the Degen group aim
to map out the local current density in graphene in the regime
of viscous electron flow [137], using a scanning probe consist-
ing of a diamond nanopillar with a single nitrogen-vacancy cen-
ter [138]. The current density profile of etched QPCs [139] could
be studied in the viscous flow regime, but electrostatically in-
duced QPCs can provide tunability of the induced potential.

S Dn p

9.9: Edge
channels in a
p-n junction

Another interesting topic would be the local current distri-
bution of quantum Hall edge channels. In stacks of hBN and
graphene the conductive layer is much closer to the surface than
in most GaAs heterostructures, which is beneficial for the spa-
tial resolution of local imaging techniques. Quantum Hall edge
channels in graphene have already been studied with microwave
impedance microscopy [140], albeit with limited resolution. A
p-n junction with two back gates would be most interesting
for such an experiment, since the spatial configuration of edge
channels along abrupt edges of the graphene flakes might dif-
fer significantly from the configuration of edge channels along
smooth p-n interfaces (see Fig. 9.9).

1Image courtesy: Beat Bräm
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9.2.3 Quantum dots at B = 0 T

Recent work in our group has demonstrated that the QPC
geometry studied in Chapters 7 and 8 can also be used as a
quantum dot at B = 0 T [104]. When decreasing the channel
gate voltage beyond the depletion voltage, the region under the
channel gate is tuned into the p-doped regime, while the bulk
remains n-doped. The band structure at several positions along
the transport direction is sketched in the inset of Fig. 9.10. The
bulk of the sample and the region directly under the channel
gate are separated by regions in which the Fermi level lies in
the band gap, leading to the formation of tunnel barriers. The
peaks of conductance shown in Fig. 9.10 correspond to indi-
vidual charge carriers hopping onto the dot under the channel
gate. Figure 9.11 shows the conductance of sample H as a func-
tion of channel gate voltage and source drain bias in a similar
gate voltage regime. Coulomb diamonds are clearly visible. For
VCH > −10 V no additional diamonds appear, indicating that
the dot is depleted. We can therefore assign occupation num-
bers to the Coulomb diamonds.
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Figure 9.10: Conductance of QPC M as a function of channel gate voltage. The
inset shows the band structure at various points along transport direction. Because
of the positive back gate voltage and the negative channel gate voltage, the bulk of
sample (labeled source and drain) is n-doped and the region under the channel gate
is p-doped. Between these regions the Fermi level lies in the band gap, forming a
tunnel barriers. The conductance peaks in the main figure correspond to individual
charge carriers hopping onto the dot.
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Figure 9.12: Atomic force microscopy images of a quantum dot
structure prior to (a) and after (b) the deposition of the upper
gate layer. The outer two gates on the upper layer tune the
tunnel barriers, while the middle one is used to tune the levels
in the quantum dot.

Future experiments on similar samples could involve cou-
pling of multiple quantum dots and coupling of quantum dots
of opposite polarity. Perhaps even laterally stacked quantum
dots, bearing resemblance to the work of Bischoff et al. [141]
could be revisited.

9.2.4 Dots with tunable tunnel barriers

In the quantum dots introduced in the previous paragraph the
tunnel barriers between the dot and the reservoirs are formed
by the regions of zero density which naturally occur at p-n inter-
faces in bilayer graphene. This simplifies the device geometry
drastically, but has as a disadvantage that the tunneling rate
cannot be tuned. We tried to make a dot with gates dedicated
to the tuning of the tunnel barriers (see Fig. 9.12), but un-
fortunately one of the gates was not working. Similar device
structures could be repeated in the future.

9.2.5 Counting electrons in graphene

In GaAs the combination of quantum dots and QPCs forms a
versatile platform to study counting statistics [142], level degen-
eracies [143] and thermodynamics [144, 145] of charge carriers
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tunneling onto quantum dots. Annika Kurzmann will study
these phenomena in bilayer graphene. The presence of both
a spin and a valley degree of freedom might make the phe-
nomenology even richer than in GaAs.

Fast pulsed measurements could be implemented to deter-
mine the spin coherence time of the charge carriers in the dots,
similar to the work of Elzerman et al. [146] on GaAs quantum
dots. Such measurements could quantify the hypothesis of long
spin coherence times in graphene quantum dots [2].

9.2.6 Graphene quantum dots and microwave
resonators

If spin states in graphene quantum dots indeed turn out to be
long lived, these dots could be of use for quantum information
processing applications. Coherent coupling of spin qubits to
microwave photons has recently been demonstrated in Si [147,
148] and GaAs [149]. Graphene dots would offer the advantage
of a larger lever arm between the dot and the gate, which leads
to stronger coupling.

9.2.7 (F)QHE in nanostructures

9.13: Top: edge
channels in
QPC. Bottom:
edge channels in
tunable dot

As discussed in Chapter 8, the QPC geometry makes it possible
to study copropagating edge channels which do not meet at a
physical device edge. A similar device geometry was studied
in Ref. [150]. A more detailed study of the quantum dot from
Chapter 8 in different filling factor regimes could shed light on
the potential presence of multiple dot-like Landau levels in the
device, reminiscent of the work of Baer et al. [128]. A better
control of the tunnel coupling, as proposed in Section 9.2.4,
might be favorable for such studies.

Another regime worth investigating would be the unipolar
regime with higher density inside the dot region than in the
bulk. Here a quantum dot might form as well, but the coupling
to the bulk edge channels of the same polarity might be very dif-
ferent. In fact, the top right corner of Fig. 7.5a already exhibits
an interesting pattern of oscillations in this regime. The differ-
ences between the QPC geometry and dots with tunable tunnel
barriers could be studied in this regime as well (see Fig. 9.13).
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Finally, it could be interesting to scale up the device geom-
etry shown in Fig. 9.12. Similar structures in GaAs with a size
on the order of 5 µm are dominated by Aharonov-Bohm inter-
ferences [127] and these might also occur in bilayer graphene.
These interferometers are of particular interest to study the
statistics of the quasi-particles of the fractional quantum Hall
effect [133], which have recently been shown to exhibit large
energy gaps in high quality bilayer graphene devices [131, 132].

9.2.8 Graphene nanostructures and 2D Lego
bricks

9.14:
Everything is
awesome when
you work on
graphene

In 2013 Geim and Grigorieva wrote a perspective article [151]
on the combination of graphene with other 2D crystals into
designer heterostructures, comparing the assembly process to
building with Lego. With the electrostatic definition of nanos-
tructures in bilayer graphene, we can now think of tailoring
these structures with other 2D materials as well. As already
mentioned in Section 9.2.1, enhanced spin orbit interaction in
graphene QPCs could be studied by adding a transition metal
dichalcogenide as a substrate for the graphene. A quantum
dot with a nearby ferromagnet could be realized by incorpo-
rating CrI3 [152] in a van der Waals heterostructure. Hybrid
superconductor-quantum dot devices [153] could be studied in
graphene by combining quantum dots with a superconducting
2D material such as NbSe2 [154]. In conclusion, the atomic scale
Lego, consisting of the vast spectrum of 2D materials combined
with the powerful van der Waals stacking technique, provides
countless exciting opportunities on the nanoscale.
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Marius Eich, Frantǐsek Herman, Riccardo Pisoni, Hiske Overweg, Yongjin Lee, Peter Rick-
haus, Kenji Watanabe, Takashi Taniguchi, Manfred Sigrist, Thomas Ihn, Klaus Ensslin
Physical Review X 8, 031023 (2018)

Transport through a network of topological states in twisted bilayer graphene
Peter Rickhaus, John Wallbank, Sergey Slizovskiy, Riccardo Pisoni, Hiske Overweg, Yongjin
Lee, Marius Eich, Ming-Hao Liu, K Watanabe, T Taniguchi, Vladimir Fal’ko, Thomas
Ihn, Klaus Ensslin
ArXiv preprint 1802.07317 (2018)

Gate-tunable quantum dot in a high quality single layer MoS2 van der Waals
heterostructure
Riccardo Pisoni, Zijin Lei, Patrick Back, Marius Eich, Hiske Overweg, Yongjin Lee, Kenji
Watanabe, Takashi Taniguchi, Thomas Ihn, Klaus Ensslin
Applied Physics Letters 112, 123101 (2018)

Edge channel confinement in a bilayer graphene n-p-n quantum dot
Hiske Overweg, Peter Rickhaus, Marius Eich, Yongjin Lee, Riccardo Pisoni, Thomas Ihn,
Klaus Ensslin
New Journal of Physics 20, 013013 (2018)

Electrostatically induced quantum point contacts in bilayer graphene
Hiske Overweg, Hannah Eggimann, Xi Chen, Sergey Slizovskiy, Marius Eich, Pauline
Simonet, Riccardo Pisoni, Yongjin Lee, Kenji Watanabe, Takashi Taniguchi, Vladimir
Fal’ko, Klaus Ensslin, Thomas Ihn
Nano Letters 18, 553-559 (2018)

Gate-Defined One-Dimensional Channel and Broken Symmetry States in MoS2
van der Waals Heterostructures
Riccardo Pisoni, Yongjin Lee, Hiske Overweg, Marius Eich, Pauline Simonet, Kenji Watan-
abe, Takashi Taniguchi, Roman Gorbachev, Thomas Ihn, Klaus Ensslin
Nano Letters 17, 5008-5011 (2017)

85



Oscillating magnetoresistance in graphene p-n junctions at intermediate mag-
netic fields
Hiske Overweg, Hannah Eggimann, Ming-Hao Liu, Anastasia Varlet, Marius Eich, Pauline
Simonet, Yongjin Lee, Kenji Watanabe, Takashi Taniguchi, Klaus Richter, Vladimir
Fal’ko, Klaus Ensslin, Thomas Ihn
Nano Letters 17, 2852–2857 (2017)

Anomalous Coulomb drag between bilayer graphene and a GaAs electron gas
Pauline Simonet, Szymon Hennel, Hiske Overweg, Marius Eich, Riccardo Pisoni, Yongjin
Lee, Peter Märki, Mattias Beck, Jérôme Faist, Thomas Ihn, Klaus Ensslin
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Appendices

A Sample names

The sample names used in this thesis are different from the ones used in the fabri-
cation process and Refs. [8, 10, 11]. Table A.1 lists all the sample names.

thesis fabrication Ref. [8] Ref. [10] Ref. [11]

A Anastasia Tr23 A - -
B stack 17 B - -
C stack 15 C - -
D stack 22 D - -
E stack 21 E A sample
F stack 22 F - -
G stack 16 - - -
H stack 26 - B -
I stack P1 - - -

Table A.1: Sample names
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B Details of the tight-binding simulations on mag-

netoresistance oscillations in p-n junctions

This appendix discusses the simulations employed by Ming-Hao Liu to describe the
magnetoresistance oscillations in Chapter 5.

Input parameters for the tight-binding model

The employed tight-binding model consists of a scaled version of the hexagonal
graphene lattice [98] which takes into account the spatially varying on-site energy
V (x) induced by the gates.

H = −t
∑
<i,j>

c†icj +
∑
j

V (xj)c
†
jcj (B.1)

The on-site energy V (x) can be calculated from the charge carrier density profile
n(x). The charge carrier density induced by the gates is approximated as a simple
hyperbolic tangent function with smoothness 50 nm. For single layer graphene in
absence of a magnetic field the on-site energy is hence given by:

V (x) = −~vFkF(x) sgn(n(x)) = −~vF
√
π|n(x)| sgn(n(x)) (B.2)

In the Shubnikov - de Haas regime, we approximate the density of states by:

D(E) =
4eB

h

∞∑
N=−∞

Γ

π

1

(E − Ej)2 + Γ2
(B.3)

where

EN = sgn(N) ∗
√

2eB~v2F|N | (B.4)

is the energy of the jth Landau level in monolayer graphene with N = ν/4 the

Landau level index. Using these equations we can calculate n(E) =
∫ 0

E
D(E ′)dE ′.

This relation can than be inverted (numerically) to determine the on-site energy as
a function of the spatially varying charge carrier density.
Once the full Hamiltonian has been calculated, the transmission from source to drain
can be determined using a Green’s function formalism as described in Refs. [155,
156].

Overview

In chapter 5 we have shown a transmission map as a function of left and right carrier
density, calculated as described in the previous section. The considered graphene
ribbon of width W = 1 µm is subject to a model density function describing an ideal
p-n junction with smoothness 50 nm. The full map is repeated here in Fig. B.1(a),
with a white box marking the region plotted in Fig. B.1(b).
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Figure B.1: (a) Transmis-
sion map T (nR, nL), same
as Fig. 5(a) in the main
text (smoothness 50 nm and
graphene width W = 1 µm);
white dashed box marks the
region shown in (b), where
a black dashed line indicates
the line cut of T (nL) at fixed
nR ≈ −2× 1012 cm−2 shown in
(c).
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Figure B.2: (a) Transmission
map T (nR, nL), similar to
Fig. B.1(b) but with smooth-
ness 25 nm of the p-n junction.
The red dashed line indicates
the line cut shown as a red line
in (b), where the black line is
the reference line identical to
Fig. B.1(c) for the case with
smoothness 50 nm.

In the following, we show more numerical results in order to demonstrate that the
observed oscillation is independent of the smoothness of the p-n junction and the
width of the graphene ribbon, and is not related the current along the p-n junction.
Instead, the oscillation is shown by the last numerical test to be closely related to
the Landau levels away from the p-n junction.
For quantitative and systematic comparisons, we will focus on the density range
shown in Fig. B.1(b) and the line cut on it along the dashed line shown in Fig. B.1(c).
All calculations shown in the following consider the same density range and resolu-
tion as Figs. B.1(b) and (c), which can be regarded as the reference panels of this
appendix. In particular, the line cut of Fig. B.1(c) will be repeatedly shown in the
following results.

Smoothness dependence

Figure B.2(a) presents the transmission map with smoothness of 25 nm, showing
a similar pattern seen in Fig. B.1(b) where the junction smoothness is 50 nm. A
more quantitative comparison is shown in Fig. B.2(b) for the line cuts of the two
cases. Despite a slightly higher T obtained for the sharper junction due to the Klein
collimation [157], i.e., the sharper the p-n junction, the wider the finite transmission
probability of the angle distribution and hence the conductance, the general trend
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Figure B.3: Transmission maps
T (nR, nL) similar to Fig. B.1(b)
with the same smoothness of
50 nm but with (a) W = 0.9 µm
and (b) W = 0.8 µm. Line cuts
along the red/blue dashed line
marked in (a)/(b) are compared
in (c) together with the refer-
ence line (black) of Fig. B.1(c)
for the case of W = 1 µm.
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of the oscillation is shown to be independent of the smoothness.
In the rest of the numerical results, the smoothness will be fixed to 50 nm.

Width dependence

Figure B.3 presents the transmission map based on a graphene ribbon with W =
0.9 µm shown in its panel (a) and W = 0.8 µm shown in its panel (b). Comparing
the line cuts in Fig. B.3(c), along with the reference line of Fig. B.1(c) for the case of
W = 1 µm, the feature of the oscillation is clearly shown to be width-independent.
On the other hand, the oscillation amplitude decreasing with the reduced graphene
width implies that the oscillation may be closely related to the Landau levels in the
bulk away from the p-n junction, since the wider the graphene ribbon the better
the Landau levels can develop.
In the rest of the numerical results, the graphene width will be fixed as W = 1 µm.

Strong lattice defects

Next we show that the oscillation is not related to the current along the p-n junction.
To this end, we consider large-area lattice defects located in the vicinity of the p-n
junction. The basic idea is that if the oscillation came from any interference due to
the current along the p-n junction, such as the snake state [102], a large-area lattice
defect at the p-n interface or in the vicinity of it would act as a strong scatterer,
destroying the interference and hence suppressing the oscillation. Contrarily, if the
oscillation survives the introduced large defects, the current along the p-n junction
will then be ruled out from possible origins of the oscillation.
We first consider a 50× 400 nm2 defect in Figs. B.4(a) and (b); the defect is placed
in front of the p-n junction (at a distance 150 nm) in the former, and exactly on the
p-n junction in the latter. Despite an additional modulating pattern observed in
Fig. B.4(a), the fine oscillation patterns remain visible in both cases. By increasing
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Figure B.4: (a)–(c) Transmission maps T (nR, nL) similar to Fig. B.1(b) with the
same smoothness of 50 nm and width W = 1 µm, but with a large-area defect
represented by the black rectangle shown in the individual inset to the right of
each panel, where the color background depicts the y-independent model function
n(x, y) describing the density variation of the p-n junction. The size of the defect is
50×400 nm2 in (a,b) and 300×300 nm2 in (c). Line cuts along the red/blue/purple
dashed line marked in (a)/(b)/(c) are compared in (d) together with the reference
line (black) of Fig. B.1(c) for the case without the defect.

the defect area to 300 × 300 nm2, the transmission map shown in Fig. B.4(c) still
exhibits the same oscillation pattern. A quantitative comparison of the line cuts
summarized in Fig. B.4(d) together with the reference line from Fig. B.1(c) clearly
shows that the oscillations observed in Figs. B.4(a)–(c) belong to the same type as
all those shown previously.
The fact that the strong defect introduced in the vicinity of the p-n junction cannot
suppress the oscillation clearly indicates that any possible interference effect due
to the current along the p-n junction cannot be the origin causing the oscillation.
Instead, the oscillation seems to depend only on the Landau levels that are well
developed in the semi-infinite leads.

Fixed leads

So far, all the presented calculations are based on an infinite graphene ribbon with
a p-n junction in the middle, as described in the main text. Technically, this is
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Figure B.5: (a) Transmission
map T (nR, nL) with the same
range and parameters consid-
ered in Fig. B.1(b) but with the
two leads fixed at energy E =
0.1 eV. The red dashed line in-
dicates the line cut shown as a
red line in (b), where the black
line is the reference line identi-
cal to Fig. B.1(c) for the case
with floating leads.
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achieved in numerics by considering a scattering region of size L×W attached to two
leads from the left and right, both floating with the density profiles at the attaching
edge of the scattering region. As long as L is much longer than the smoothness of
p-n junction (L = 400 nm has been adopted in all the presented calculations), the
density values at the left and right edges of the scattering region will saturate to
a constant, and the entire open quantum system of the finite-size scattering region
attached to the two floating semi-infinite leads will resemble an ideal p-n junction
in the middle of an infinitely long graphene ribbon, exhibiting an L-independent
transmission behavior.
As a final and conclusive numerical test, we now fix the Fermi energies in the two
semi-infinite leads at 0.1 eV, and consider the same range and parameters as the ref-
erence panel of Fig. B.1(b). The calculated transmission map is shown in Fig. B.5(a),
which no longer exhibits the fine oscillation. The line cuts of fixed leads vs. floating
leads compared in Fig. B.5(b) clearly show that the oscillation completely vanishes
in the present case of fixed leads.
The vanishing oscillation is consistent with what we have speculated from the previ-
ously shown tests that the oscillation originates from the resonance between Landau
levels well developed in the far left and far right in the semi-infinite leads. The
present case shown in Fig. B.5 considers fixed Fermi energies in the leads that no
longer float with the densities nR and nL. Together with the fact that the length
L = 400 nm � W of the scattering region is too short for the Landau levels to form,
the vanishing oscillation is therefore reasonably expected. By increasing the length
of the scattering region to at least L ≈ W , revival of the oscillation is expected for
the case of fixed leads.
Note that the situation of fixed leads is actually closer to the experiment, because
the densities in graphene regions close to the contacts are rather pinned by the
contact doping. However, the samples in our experiments (summarized in Table I in
the main text) are long enough (several microns in all samples) for the Landau levels
to develop well (with level spacing not far enough compared to disorder broadening
in the magnetic field range we focus on) due to their cleanness and therefore exhibit
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the oscillation. Our numerical results based on floating leads correspond to the ideal
case of infinitely long samples and therefore exhibit optimized oscillation.
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C Details of the toy model for magnetoresistance

oscillations in p-n junctions

Definition of the toy model

The density of states in the Shubnikov - de Haas regime can be approximated by
Eq. B.3. Figure C.1 shows this density of states as a function of energy around the
50th Landau level (EF = E50) for B = 0.5 T and Γ = 0.3 meV. The derivative of
the Fermi-Dirac distribution at two different temperatures is also indicated.
We would like to find a measure for the overlap of the density of states on two sides
of a pn junction. Assuming that only the density of states close to the Fermi energy
matters, we define this overlap as:

O(Γ, B, T ) =

∫ ∞
−∞
−∂f(Γ, B, T )

∂E
D(E − EL)D(E − ER)dE (C.1)

where EL and ER are the energies of the highest occupied Landau level at the left
and the right side of the pn interface. A similar expression is derived in a more
rigorous way for weakly tunnel coupled 2DEGs in Ref. [14].
We numerically calculate this integral for different filling factors on the left and the
right side of the interface. When we plug in a temperature of T = 10 K (window
around EF can be seen in Fig. C.1), we find the pattern shown in Fig. C.2. It
resembles the experimentally observed pattern, except that the periodicity is off by
a factor of two (gray lines indicate measured periodicity). When putting in a lower
temperature (T = 2 K, probing only density of states very close to EF ), we obtain a
checkerboard pattern, shown in Fig. C.3 (as can be expected with a small integration
window around the Fermi energy).
The measured periodicity of the oscillations can be obtained by assuming that even
(odd) Landau levels couple well to even (odd) Landau levels, and even and odd
Landau levels do not couple. In the model this can be introduced by considering

Figure C.1: Density of states as a func-
tion of energy when the Fermi level is po-
sitioned at the 50th Landau level. The
derivative of the Fermi-Dirac distribution
is also indicated.
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Figure C.2: Numerically calculated over-
lap (see Eq. C.1) as a function of νL

and νR for T = 10 K, B = 0.5 T and
Γ = 0.3 meV. The pattern shows the same
slope as the experimentally observed mag-
netoresistance oscillations (gray dashed
lines), but the periodicity is off by a factor
two.
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Figure C.3: Numerically calculated over-
lap (see Eq. C.1) as a function of νL and
νR for T = 2 K, B = 0.5 T and Γ =
0.3 meV. The pattern is different from the
experimentally observed oscillations.

the following density of states:

D(E) =
4eB

h

∞∑
N=−∞

(−1)N
Γ

π

1

(E − EN)2 + Γ2
(C.2)

The resulting overlap is shown in Fig. C.4. Although this model describes the same
pattern as the measured oscillations, the following questions remain:

• What mechanism would justify the artificially introduced parity?

• Is there a reason to use the derivative of the Fermi-Dirac distribution at higher
temperature?

• Is it justified to use Eq. C.1, which describes tunneling in weakly coupled
2DEGs?

Oscillations with a different slope

A last interesting observation is that the toy model and the tight-binding simulations
both show oscillations with a different slope in the regime where one of the filling
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Figure C.4: Numerically calculated over-
lap (see Eq. C.2) as a function of νL

and νR for T = 2 K, B = 0.5 T and
Γ = 0.3 meV. The pattern shows the same
slope as the experimentally observed mag-
netoresistance oscillations (gray dashed
lines), and the periodicity is in agreement
as well.
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factors is significantly lower than the other (νR ∼ −20,νL ∼ 160). In this regime,
the peaks in the density of states as a function of energy are roughly thrice as
widely spaced for the right side of the interface, because the spacing goes with√
N−
√
N − 1. Therefore the overlap of the density of states stays unchanged when

following a line along which ∆νL = 3∆nuR. This is indeed the slope of the observed
lines in the toy model (see Fig. C.5).
For bilayer graphene the energy of the Landau levels is given by

EN = sgn(N) ∗ ~ωc

√
|N ||N − 1|) (C.3)

with ωc the cyclotron radius. The spacing in energy is therefore closer to a constant
spacing than in monolayer graphene. When employing the toy model for bilayer
graphene, we find that there are no oscillations with a different slope showing up,
as expected.
The models therefore predict that in monolayer graphene samples oscillations with a
different slope can occur, but not in bilayer graphene. An experimental verification
of this prediction would be a strong indication that the density of states modula-
tions indeed cause the observed oscillations. Unfortunately the observation of the
oscillations with a different slope is challenging, since they occur when one side of
the p-n junction is at very low density. These oscillations will only be visible in
samples with a very low disorder density. So far they have not yet been observed.
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Figure C.5: Numerically calculated over-
lap. When one filling factor is significantly
lower than the other, a set of lines with a
different slope can be observed, which is
encircled by the dashed ellipse.
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D Magnetoresistance oscillations in samples B-F

Here we present measurements of the magnetoresistance oscillations discussed in
Chapter 5 in additional samples. Figures D.1-D.5 show magnetoresistance oscilla-
tions of samples B-F, which look similar to the ones observed in sample A (see Fig.
5.3, Chapter 5). The periodicity of the oscillations is the same for all samples.

4-terminal measurements in sample D

The device layout of sample D is schematically shown in Fig. D.6. A DC voltage of
100mV was applied to the sample with a R = 10 MΩ resistor in series. This led to
a constant current of I = 10 nA flowing from contact 1 to contact 4. The voltage
drop between contact pairs (1,2), (2,3) and (3,4) where measured. To calculate the
conductance a contact resistance was subtracted where appropriate. As is shown in
Fig. D.6b-d, the oscillatory magnetoresistance is only observed when a p-n interface
is present (i.e. in between contacts (2,3)).
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Figure D.1: (a) Transconductance dG/dVTG of sample B at B = 0.5 T. (b) Transcon-
ductance as a function of filling factor in the single and double gated region.
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Figure D.2: a) Transconductance dG/dVTG of sample C at B = 0.8 T. (b) Transcon-
ductance as a function of filling factor in the single and double gated region.
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Figure D.3: (a) Transconductance dG/dVTG of sample D at B = 0.4 T. (b) Transcon-
ductance as a function of filling factor in the single and double gated region.
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Figure D.4: (a) Transconductance dG/dVTG of sample E at B = 0.5 T. (b) Transcon-
ductance as a function of filling factor in the single and double gated region.
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Figure D.5: (a) Transconductance dG/dVTG of sample F at B = 0.8 T. (b) Transcon-
ductance as a function of filling factor in the single and double gated region.
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Figure D.6: (a) Schematic drawing of
sample D. Contacts are labelled 1-4. (b)
Transconductance between contacts (1,2)
at B = 0.4 T. (c) Transconductance be-
tween contacts (2,3) showing an oscil-
latory pattern in the p-n regime. (d)
Transconductance between contacts (3,4).
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E Fabrication details of QPC samples

The geometry and mobility of the QPC samples can be found in Table E.1.
For the etching of the contacts, we use a recipe adapted from Ref. [27]. We use
a reactive ion etcher (Oxford Instruments RIE 80 Plus), with a mixture of CHF3

gas (40 sccm) and O2 (4 sccm). With an RF power of 60 W, the obtained etch
rate of hBN is 45 nm/min. We carefully choose an etching time for each individual
sample to make sure that the hBN is etched sufficiently for the contacts to reach
the graphene layer, but not too far, since this would lead to a short between the
contacts and the graphite back gate.
The deposition of Al2O3 was done in an atomic layer deposition system (Picosun
Sunale R-150B) at a temperature of 150 oC with trimethylaluminum (TMA) and
water as precursor gases.
For sample E we performed temperature dependent measurements of the resistance
maximum for (VTG,VBG) = -3.9, 4 V, corresponding to a displacement field of
0.35 V/nm, and (VTG,VBG) = -1.7, 2 V, corresponding to a displacement field
of 0.2 V/nm. The respective gap sizes were 55 meV and 16 meV. An indirect
measure of the gap size is the resistance at charge neutrality. Figure E.1a shows
the resistance of sample A along several line cuts in Fig. 2a. The resistance at the
charge neutrality point increases by orders of magnitude when a band gap is opened.
The measurement was performed with a bias voltage of V = 50 µV. The data for
the highest displacement field (VBG = 4 V) has been omitted, because the high
resistance peak cannot be reliably measured with a small bias voltage. Similar data
for sample H is shown in Fig. E.1b.

sample E sample H sample I

graphite thickness (nm) 28 15 7
bottom BN thickness (nm) 38 53 24

top BN thickness (nm) 35 25 20
Al2O3 thickness (nm) 60 30 30

SG height (nm) 60 20 20
channel width (nm) 100 80 50/80/180

channel gate width (nm) 200 60 200
mobility (cm2/Vs) 8 ×104 6 ×104 8 ×104

Table E.1: Characteristics of samples E, H and I

102



-4 -2 0 2 4V TG (V)

103

104

105

106

107

R
(Ω

)

(a) V BG

-3.0 V
-2.2 V
-1.5 V
-0.8 V
0.0 V
0.8 V
1.5 V
2.2 V
3.0 V

-4 -2 0 2 4
V TG (V)

104

105

106

107

R
(Ω

)

(b) V BG

-6.0 V
-4.5 V
-3.0 V
-1.5 V
0.0 V
1.5 V
3.0 V
4.5 V
6.0 V

Figure E.1: (a) Resistance of sample E as
a function of top gate voltage for several
back gate voltages. The resistance at the
charge neutrality point increases by orders
of magnitude when a band gap is opened.
(b) Same for sample H

F Simulation of the electrostatic potential in QPC

samples

To get more insight in the electrostatic potential of the quantum point contact,
we use a finite element simulator (COMSOL). The charge carrier sheet density
n(~r) and the potential V (~r) are calculated self-consistently using Poisson’s equation
and the Thomas-Fermi approximation. The density of states is approximated by
D(E) = m∗/(π~2)θ(E) with m∗ = 0.034me and θ the Heavyside step function, which
limits the model to transport in the conduction band. We do not take the Mexican
hat shape of the bilayer graphene band structure and the position dependent band
gap into account. The quantization of states inside the one-dimensional channel,
due to the lateral confinement, is also neglected.

Geometry

The geometry considered for the simulation is the same as for sample E (see main
text and table 5.1). From AFM images of sample E it is apparent that the channel
gate drops partially into the opening between the split gates. We therefore modelled
the channel gate with an elliptical extension above the channel region (see Fig. F.1).
The width of this extension was 150 nm and the depth 30 nm, in agreement with the
AFM images. When omitting the extension from the simulation, the channel gets
depleted around VCH = −25 V instead of the experimentally observed VCH = −12 V.
With the extension the channel gets depleted close to the experimentally observed
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Figure F.1: Cross section of the sample
used for Comsol simulation. The channel
gate has an elliptic extension above the
channel. y→

CH

SG SG

Al2O3

↑ bilayer graphene
BG

hBN

Figure F.2: Calculated electrostatic po-
tential along a line cut (black line in in-
set) under the split gate for VBG = 4 V
and various split gate voltages. The dot-
ted lines indicate the extent of the split
gates. At VSG = 0 V, the potential is
constant throughout the structure. At
VSG = −3.95 V, the region under the split
gates is depleted.
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value.

Depletion below split gates

Figure F.2 shows the calculated electrostatic potential along a line cut (black line
in inset) under the split gate for VBG = 4 V and various split gate voltages. At
VSG = 0 V, the potential is constant throughout the structure as expected. At
VSG = −3.95 V, the region under the split gates is depleted. This voltage is in
agreement with the experimentally determined depletion voltage.

Potential inside channel

In Fig. F.3a the potential inside the channel is shown, for the case in which transport
under the split gates is suppressed (VBG = 4 V, VSG = −3.95 V). For VCH = 0 V,
the potential can be approximated by a harmonic potential

V (y) =
1

2
m∗ω2

0y
2

with an energy level separation of ~ω0 = 8.4 meV. For the gate voltage range of
VCH = −10 V - 12 V the energy level separation changes according to

~ω0(VCH) = 8.4 meV + αCHeVCH

with αCH = 0.33 × 10−3. The increased mode spacing with higher channel gate
voltage can also be observed in Fig. 7.3: the conductance rises less steeply for
higher channel gate voltage.
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Figure F.3: Potential landscape for VBG = 4 V, VSG = −3.95 V and various channel
gate voltages. (a) Electrostatic potential across the channel, which can be approxi-
mated by a harmonic potential (dotted black line). The channel gets depleted close
to the experimental depletion voltage of VCH = −12 V. (b) Electrostatic potential
along the channel. For the range of VCH = −12 V - 8 V a conventional saddle point
potential is observed.

Figure F.3b shows the potential across the QPC. For the range of VCH = −12 V -
8 V the positive curvature in y-direction and the negative curvature in x-direction
lead to a conventional saddle point potential. Similar results were obtained for
simulations of sample H.
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G More QPC measurements

G.1 Role of the bulk in transport through QPC samples

The density in the bulk of the sample is higher than the density inside the con-
striction for the entire range of Fig. 7.4. Only the edge modes that exist in both
the bulk and the channel contribute to transport and the conductance is given by
G = νCH e2/h. We can see a modest influence of the bulk of the device whenever
the bulk is at a transition between integer filling factors. Figure G.1 shows the
derivative of the conductance with respect to magnetic field as a function of VCH

and B for the same gate voltage settings as Fig. 7.4. The horizontal lines, which
occur in a 1/B periodic fashion, correspond to Landau level transitions in the bulk
of the sample. The filling factors of the bulk are indicated on the y-axis. Because of
the high charge carrier density, no broken degeneracies are observed up to B = 8 T.

G.2 Disordered QPC

One of the 80 nm wide QPCs on sample I does not show any conductance quantiza-
tion, see Fig. G.2. The rather irregular curve of conductance as a function of channel
gate voltage points towards the presence of disorder inside the channel, leading to
diffusive transport.

G.3 Transconductance on hole side

Figure G.3 shows the conductance as a function of channel gate voltage in QPC M
for p-type charge carriers. Although the conductance at B = 0 T does not show any
clear quantization (Fig. G.3a), the higher modes show a pattern of level crossings
in presence of a magnetic field, similar to the pattern of level crossings discussed in
Section 7.5.2.

Figure G.1: Derivative of the conductance
with respect to magnetic field for the same
gate voltage settings as Fig. 4c. 1/B pe-
riodic horizontal lines are observed, which
correspond to Landau level transitions in
the bulk of the sample.
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Figure G.2: (a) Conductance as a function of channel gate voltage for an 80 nm wide
channel on sample I. No conductance quantization is observed. (b) Conductance as
a function of channel gate voltage and magnetic field.
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Figure G.3: (a) Conductance of QPC M as a function of channel gate voltage for
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G.4 Finite bias diamonds of QPC M

Figure G.4 shows the finite bias diamonds of QPC M for various magnetic field
strengths. The observed behavior is similar to that of QPC L1 (see Section 7.6).
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48M. Sui, G. Chen, L. Ma, W. Y. Shan, D. Tian, K. Watanabe, T. Taniguchi, X.
Jin, W. Yao, D. Xiao, and Y. Zhang, Nature Physics 11, 1027–1031 (2015).

49Y. Shimazaki, M. Yamamoto, I. V. Borzenets, K. Watanabe, T. Taniguchi, and
S. Tarucha, Nature Physics 11, 1032–1036 (2015).

50J. Li, K. Wang, K. J. McFaul, Z. Zern, Y. Ren, K. Watanabe, T. Taniguchi, Z.
Qiao, and J. Zhu, Nature Nanotechnology 11, 1060–1065 (2016).

51M. J. Zhu, A. V. Kretinin, M. D. Thompson, D. A. Bandurin, S. Hu, G. L. Yu,
J. Birkbeck, A. Mishchenko, I. J. Vera-Marun, K. Watanabe, T. Taniguchi, M.
Polini, J. R. Prance, K. S. Novoselov, A. K. Geim, and M. Ben Shalom, Nature
Communications 8, 14552 (2017).

111

http://dx.doi.org/10.1109/ISDRS.2009.5378331
http://dx.doi.org/10.1109/ISDRS.2009.5378331
http://dx.doi.org/10.1103/PhysRev.108.612
http://dx.doi.org/10.1103/PhysRev.109.272
http://dx.doi.org/10.1103/PhysRevB.80.165406
http://dx.doi.org/10.1016/j.synthmet.2015.07.006
http://dx.doi.org/10.1103/PhysRevLett.96.086805
http://dx.doi.org/10.1016/j.ssc.2007.03.054
http://dx.doi.org/10.1016/j.ssc.2007.03.054
http://dx.doi.org/10.1126/science.1130681
http://dx.doi.org/10.1126/science.1130681
http://dx.doi.org/10.1038/nature08105
http://dx.doi.org/10.1103/PhysRevB.78.235408
http://dx.doi.org/10.1038/nmat2082
http://dx.doi.org/10.1103/PhysRevB.82.081407
http://dx.doi.org/10.1103/PhysRevLett.105.166601
http://dx.doi.org/10.1103/PhysRevLett.105.166601
http://dx.doi.org/10.1126/science.1194988
http://dx.doi.org/10.1126/science.1194988
http://dx.doi.org/10.1038/nphys3485
http://dx.doi.org/10.1038/nphys3551
http://dx.doi.org/10.1038/nnano.2016.158
http://dx.doi.org/10.1038/ncomms14552
http://dx.doi.org/10.1038/ncomms14552


52E. V. Castro, N. M. R. Peres, and J. M. B. Lopes Dos Santos, Journal of Opto-
electronics and Advanced Materials 10, 1716–1721 (2008).

53J. Li, I. Martin, M. Buttiker, A. F. Morpurgo, M. Büttiker, and A. F. Morpurgo,
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107S. Dröscher, C. Barraud, K. Watanabe, T. Taniguchi, T. Ihn, and K. Ensslin,
New Journal of Physics 14, 103007 (2012).

108Y. J. Um, Y. H. Oh, M. Seo, S. Lee, Y. Chung, N. Kim, V. Umansky, and D.
Mahalu, Applied Physics Letters 100, 183502 (2012).

109N. Tombros, A. Veligura, J. Junesch, M. H. D. Guimarães, I. J. V. Marun, H. T.
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117M. Büttiker, Physical Review B 41, 7906–7909 (1990).

118B. M. Hunt, J. I. A. Li, A. A. Zibrov, L. Wang, T. Taniguchi, K. Watanabe, J.
Hone, C. R. Dean, M. Zaletel, R. C. Ashoori, and A. F. Young, Nature Commu-
nications 8, 1–7 (2017).

119D. Xiao, W. Yao, and Q. Niu, Physical Review Letters 99, 1–4 (2007).

120D. S. Wei, T. van der Sar, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi,
P. Jarillo-Herrero, B. I. Halperin, and A. Yacoby, Science Advances 3, e1700600
(2017).

121C. Handschin, Quantum Transport in Encapsulated Graphene P-N junctions (PhD
Thesis, Universität Basel, 2017).

122B. J. van Wees, L. P. Kouwenhoven, C. J. P. M. Harmans, J. G. Williamson, C. E.
Timmering, M. E. I. Broekaart, C. T. Foxon, and J. J. Harris, Physical Review
Letters 62, 2523–2526 (1989).

115

http://dx.doi.org/10.1038/ncomms1945
http://dx.doi.org/10.1021/nl301986q
http://dx.doi.org/10.1088/1367-2630/14/10/103007
http://dx.doi.org/10.1063/1.4710522
http://dx.doi.org/10.1038/nphys2009
http://dx.doi.org/10.1002/andp.201700082
http://dx.doi.org/10.1038/ncomms11528
http://dx.doi.org/10.1038/ncomms11528
http://dx.doi.org/10.1038/nphys3804
http://arxiv.org/abs/1605.08673
http://dx.doi.org/10.1088/0268-1242/10/5/026
http://dx.doi.org/10.1103/PhysRevLett.100.186803
http://dx.doi.org/10.1103/PhysRevLett.100.186803
http://www.sciencedirect.com/science/article/pii/S0081194708600910
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1038/s41467-017-00824-w
http://dx.doi.org/10.1038/s41467-017-00824-w
http://dx.doi.org/10.1103/PhysRevLett.99.236809
http://dx.doi.org/10.1126/sciadv.1700600
http://dx.doi.org/10.1126/sciadv.1700600
http://dx.doi.org/10.1103/PhysRevLett.62.2523
http://dx.doi.org/10.1103/PhysRevLett.62.2523


123R. P. Taylor, A. S. Sachrajda, P. Zawadzki, P. T. Coleridge, and J. A. Adams,
Physical Review Letters 69, 1989–1992 (1992).

124A. A. M. Staring, B. W. Alphenaar, H. van Houten, L. W. Molenkamp, O. J. A.
Buyk, M. A. A. Mabesoone, and C. T. Foxon, Physical Review B 46, 12869–12872
(1992).

125T. Heinzel, D. A. Wharam, J. P. Kotthaus, G. Böhm, W. Klein, G. Tränkle, and
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Märki, C. Reichl, W. Wegscheider, K. Ensslin, and T. Ihn, Physical Review Letters
117, 206803 (2016).
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