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A rolling-horizon quadratic-programming

approach to the signal control problem in

large-scale congested urban road networks

K. Aboudolas ∗, M. Papageorgiou, A. Kouvelas, E. Kosmatopoulos

Dynamic Systems and Simulation Laboratory,

Technical University of Crete, GR-73100 Chania, Greece

Abstract

The paper investigates the efficiency of a recently developed signal control methodology, which

offers a computationally feasible technique for real-time network-wide signal control in large-scale

urban traffic networks and is applicable also under congested traffic conditions. In this method-

ology, the traffic flow process is modeled by use of the store-and-forward modeling paradigm,

and the problem of network-wide signal control (including all constraints) is formulated as a

quadratic-programming problem that aims at minimizing and balancing the link queues so as

to minimize the risk of queue spillback. For the application of the proposed methodology in

real time, the corresponding optimization algorithm is embedded in a rolling-horizon (model-

predictive) control scheme. The control strategy’s efficiency and real-time feasibility is demon-

strated and compared with the Linear-Quadratic approach taken by the signal control strategy

TUC (Traffic-responsive Urban Control) as well as with optimized fixed-control settings via their

simulation-based application to the road network of the city centre of Chania, Greece, under a

number of different demand scenarios. The comparative evaluation is based on various criteria

and tools including the recently proposed fundamental diagram for urban network traffic.
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1 Introduction

Urban road network congestion has been a problem of most municipalities around the

world for several decades. Several measures have been proposed and partly implemented

to reduce the traffic demand in urban areas, such as road pricing, access restrictions of

various kinds, dedicated lanes and signal priority of public transport vehicles, bicycle

lanes etc. On the supply side, there is usually hardly any possibility (or political support)

for road infrastructure extension; this calls for operational signal control strategies that

exploit the available infrastructure in the best possible way, particularly under peak period

congestion.

It is generally believed that real-time signal control systems responding automatically to

the prevailing traffic conditions, are potentially more efficient than clock-based fixed-time

control settings. On the other hand, the development of optimal network-wide real-time

signal control strategies using elaborated network models is deemed infeasible due to the

combinatorial nature of the related optimization problem (see e.g. Papageorgiou et al.,

2003); as a consequence, any real-time feasible signal control strategy design must include

some simplification, either in its modeling approach, or in its optimization algorithm, or

in its extent of network coverage.

SCOOT (Hunt et al., 1982; Bretherton et al., 2004) and SCATS (Lowrie, 1982) are two

well-known and widely used traffic-responsive strategies that function effectively when the

traffic conditions in the network are undersaturated, but their performance was reported

to deteriorate under congested conditions. Other field-operational elaborated model-based

traffic-responsive strategies such as PRODYN (Farges et al., 1983) and RHODES (Mir-

chandani and Head, 1998; Mirchandani and Wang, 2005) employ dynamic programming

while OPAC (Gartner, 1983) employs exhaustive enumeration; due to the exponential
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complexity of these solution algorithms, the basic optimization kernel is not real-time

feasible for more than one (or few) junctions and hence, interconnections between junc-

tions must be addressed separately. More recently, a number of further research approaches

have been proposed employing various computationally expensive numerical solution algo-

rithms, including genetic algorithms (Abu-Lebdeh and Benekohal, 1997; Lo et al., 2001),

multi-extended linear complementary programming (De Schutter and De Moor, 1998),

and mixed-integer linear programming (Lo, 1999; Beard and Ziliaskopoulos, 2006); in

view of the high computational requirements, the network-wide implementation of these

optimization-based approaches might face some difficulties in terms of real-time feasibility.

A different design avenue for network-wide signal control is based on the store-and-forward

modeling paradigm. Store-and-forward modeling of traffic networks was first suggested by

Gazis and Potts (1963) and has since been used in various works, notably for road traffic

control. This modeling philosophy describes the network traffic flow process so as to

circumvent the inclusion of discrete variables and hence it allows for efficient optimization

and control methods with polynomial complexity to be used for signal control of large-

scale congested urban networks. On the other hand, the introduced modeling simplification

allows only for split optimization, while cycle time and offsets must be delivered by other

control algorithms, see Diakaki et al. (2003). A recently developed strategy of this type

is the signal control strategy TUC (Diakaki et al., 2002) that has been successfully field-

implemented in large networks of 5 cities in 4 different countries, see Kosmatopoulos et al.

(2006) for recent field results.

TUC is based on a very convenient and simple linear-quadratic (LQ) multivariable regula-

tor design approach with a posteriori consideration of the cycle-time and minimum-green

constraints which is likely to reduce the achievable control performance. An extended ap-

proach that incorporates the constraints in the optimal control problem formulation was

shown to lead to an open-loop quadratic programming problem (Aboudolas et al., 2009)
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with potential benefits over the simpler LQ control. For online application, the quadratic

programming problem must be cast in a rolling-horizon framework, similarly to other

aforementioned strategies (PRODYN, OPAC, RHODES). The purpose of this paper is

to investigate the efficiency of the rolling-horizon quadratic programming control (QPC)

and to compare it with TUC and with optimized fixed-time control via simulation-based

application to the road network of the city centre of Chania, Greece, under a number of

different scenarios. The comparative evaluation is based on a number of criteria including

the recently developed notion of a fundamental diagram for urban road networks.

2 Fundamental diagram of two-dimensional networks

The notion of a fundamental diagram (e.g. in the form of a flow-density curve) for free-

ways was recently found to apply (under certain conditions) to two-dimensional urban

road networks as well; see Gartner and Wagner (2004) for simulation-based experiments;

Geroliminis and Daganzo (2008) for real-data based investigations; Daganzo and Gerolim-

inis (2008) and Farhi (2008) for analytical treatments. In fact a fundamental-diagram-like

shape of measurement points was first presented by Godfrey (1969), but also observed in a

field evaluation study by Dinopoulou et al. (2005), see Figure 6 and the related comments

therein.

Figure 1 displays the typical shape of a fundamental diagram (FD) for urban road net-

works, where the y-axis reflects the total network flow (i.e. the sum of flows exiting the

network links) or the total flow of vehicles reaching their respective destinations, while

the x-axis reflects the number of vehicles present in the network. In the case of freeways,

the FD is a result of the road infrastructure, the vehicle capabilities and the driver be-

haviour, but can also be influenced by some control actions such as variable speed limits

(Papageorgiou et al., 2008) or other measures. In the case of urban road networks, the
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Fig. 1. Fundamental diagram for urban road networks.

FD may also depend on the traffic pattern (origin-destination and routing of vehicles) as

well as on the traffic signal operations. Thus, assuming that the traffic pattern at spe-

cific time-periods is comparable from day to day, the FD of urban road networks may be

used for the comparative evaluation of different signal control strategies as attempted in

Section 6.3.

Returning to Figure 1, the traffic states on the rising line A reflect undersaturated traffic

conditions (whereby vehicles waiting at signalized junctions are served during the next

green phase), with green times being partially wasted due to lack of demand. Note that

the slope of line A is proportional to the average speed in the network. This average

speed may be changed (as indicated by the arrows in Figure 1) via different traffic signal

operations (splits, cycle, offsets). The traffic states on the horizontal line B reflect the

network flow capacity that may also be subject to change via different signal settings.

Note that capacity flow in urban road networks may be observed over a range of vehicle-

numbers (hence the horizontal line) in contrast to freeway traffic where capacity flow is

deemed to occur for a (more or less) specific density value. Traffic states along the line B

are characterized by partial saturation, i.e. most network links experience saturation flow

during the whole respective green phases, but no significant queue spillback to upstream
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junctions takes place.

When link queues start spilling back and blocking upstream junctions (leading to a waste

of green time there), we enter the oversaturated region C; increasing vehicle-numbers

within this region may lead to accordingly extended queue spillback occurrences and even

partial gridlocks, increased waste of green times and, hence, lower total network flow.

Better adapted signal control strategies may alter the region C in two possible ways:

first, by increasing the vehicle-number at which region C starts, i.e. by extending the

saturation region B towards higher vehicle-numbers; second, by increasing the (negative)

slope of region C; both impacts lead to increased network flows at high vehicle-numbers.

Finally, region D is characterized by a complete network-wide gridlock with very high

vehicle-numbers and virtually zero flows, a situation that, once occurred, can hardly be

alleviated by signal control.

A variety of real-time traffic signal control strategies for urban networks has been de-

veloped during the past decades, responding to the needs of individual cities/countries,

the existing research and development base and advances in detection, communications

and control technology. Without attempting a survey of this vast research area, see Papa-

georgiou et al. (2007) for an up-to-date account, we may distinguish two principal classes

of signal control strategies. In the first class, strategies are only applicable to (or more

efficient for) networks with undersaturated traffic conditions (regions A and partly B in

Figure 1). In the second class, we have strategies applicable to networks with saturated

or oversaturated traffic conditions, whereby queues may grow in some links with an im-

minent risk of spillback and eventually even of gridlock in network cycles (regions B and

C).

In principle, when traffic conditions are undersaturated (region A), the optimum signal

control settings are determined from a knowledge of traffic demand and the saturation
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flows, aiming at minimizing the delay time at individual junctions as well as along ar-

terials (via appropriate progression schemes). When the traffic network moves to state

B, it appears appropriate for a split control strategy to balance the link queues so as to

reduce the risk of queue spillback. Finally, when traffic conditions are entering region C,

signal control strategies may need to apply gating so as to protect downstream links from

overload. Note, however, that balancing the link queues may also be viewed as a way of

gating when reaching region C.

The control strategies investigated in this paper attempt a balancing of link queues and

are therefore most suitable for regions B and C. In fact, Farhi (2008) has recently shown

that TUC improves the traffic conditions significantly when operating in regions B and

C.

3 The investigated control strategies

3.1 Modeling

The urban road network is represented as a directed graph with links z ∈ Z and junctions

j ∈ J . For each signalized junction j, we define the sets of incoming Ij and outgoing Oj

links. It is assumed that the offset and the cycle time Cj of junction j are fixed or calculated

in real time by another algorithm. In addition, to enable network offset coordination within

the present setting, we assume that Cj = C for all junctions j ∈ J , which is a quite usual

assumption. Furthermore, the signal control plan of junction j (including the fixed lost

time Lj) is based on a fixed number of stages that belong to the set Fj, while vz denotes

the set of stages where link z has right of way (r.o.w.). Finally, the saturation flow Sz of

link z ∈ Z and the turning rates tw,z, where w ∈ Ij and z ∈ Oj, are assumed to be known

and constant for LQ control but may be time-varying for the QPC approach.
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Fig. 2. An urban road link.

By definition, the constraint

∑

i∈Fj

gj,i + Lj = (or ≤) C (1)

holds at junction j, where gj,i, is the green time of stage i at junction j. Inequality in (1)

may be useful in cases of strong network congestion to allow for all-red stages (e.g. for

strong gating). In addition, the constraint

gj,i ≥ gj,i,min, i ∈ Fj (2)

where gj,i,min is the minimum permissible green time for stage i at junction j ∈ J , is

introduced to guarantee allocation of sufficient green time to pedestrian phases.

Consider a link z connecting two junctions M and N such that z ∈ OM and z ∈ IN

(Fig. 2). The dynamics of link z are given by the conservation equation

xz(k + 1) = xz(k) + T
[

qz(k) − sz(k) + dz(k) − uz(k)
]

(3)

where xz(k) is the number of vehicles within link z (for the sake of brevity sometimes

called queue in the following) at time kT , qz(k) and uz(k) are the inflow and outflow,

respectively, of link z in the sample period [kT, (k + 1)T ]; T is the discrete-time step and

k = 0, 1, . . . the discrete-time index; dz and sz are the demand and the exit flow within
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the link, respectively. For the exit flow we set sz(k) = tz,0qz(k), where the exit rates tz,0

are assumed to be known. The inflow to the link z is given by qz(k) =
∑

w∈IM
tw,zuw(k),

where tw,z with w ∈ IM are the turning rates towards link z from the links that enter

junction M . Queues are subject to the constraints

0 ≤ xz(k) ≤ xz,max, ∀ z ∈ Z (4)

where xz,max is the maximum admissible queue length. These constraints may automati-

cally lead to a suitable upstream gating in order to protect downstream areas from over-

saturation during periods of high demand.

We now introduce a critical simplification for the outflow uz that characterizes the utilized

modeling approach. Provided that space is available in the downstream links and that xz

is sufficiently high (which is surveilled by constraints (4)), the outflow (real flow) uz of

link z is equal to the saturation flow Sz if the link has r.o.w., and equal to zero otherwise.

However, if the discrete-time step T is equal to C, an average value for each period

(modeled flow) is obtained by

uz(k) = Gz(k)Sz/C (5)

where Gz, is the green time of link z, calculated as Gz(k) =
∑

i∈vz
gj,i(k). The consequences

of this simplification for the derived signal control strategies are discussed in detail in

Aboudolas et al. (2009).
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3.2 Linear-Quadratic (LQ) optimal control (the TUC strategy)

Replacing (5) in (3) leads to a linear state-space model for road networks of arbitrary size,

topology, and characteristics which is given by the linear state equation

x(k + 1) = x(k) + B∆g(k) + T∆d(k) (6)

where x(k) is the state vector (consisting of the number of vehicles xz of each link z);

∆g(k) = g(k) − gN and ∆d(k) = d(k) − dN are the control and demand deviations,

respectively; g(k) is the control vector (consisting of all the green times gj,i); gN is a

nominal control vector (consisting of the nominal green times gN
j,i) which corresponds to

a pre-specified fixed signal plan; d(k) is the disturbance vector (consisting of the demand

flows dz of each link z); dN is a nominal disturbance vector, whereby BgN + TdN = 0

holds for the nominal (e.g. steady-state) values. Finally B results from (3), (5) as a

constant matrix of appropriate dimensions reflecting the network characteristics (topology,

saturation flows, turning movement rates).

A quadratic criterion has the general form

J =
1

2

∞
∑

k=0

(

‖x(k)‖2
Q + ‖∆g(k)‖2

R

)

(7)

where Q and R are diagonal weighting matrices. The diagonal elements of Q are set equal

to 1/xz,max in order to minimize and balance the occupancies xz/xz,max of the network

links; while R = rI (where I is the unity matrix) with a very low value (e.g. 10−4) given

to the scalar weight r.

Minimization of the cost criterion (7) subject to (6) (assuming ∆d(k) = 0) leads to a
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linear multivariable feedback regulator given by

g(k) = gN − Lx(k) (8)

where the feedback gain matrix L results as a straightforward solution of the corresponding

algebraic Riccati equation. This is the multivariable regulator approach taken by the signal

control strategy TUC (Diakaki et al., 2002) to calculate in real time the network splits,

while cycle time and offsets are calculated by other parallel algorithms (Diakaki et al.,

2003).

Note that the LQ control theory does not allow for direct consideration of the constraints

(1) and (2). For this reason, a suitable real-valued quadratic knapsack algorithm is applied

after the application of (8) to modify the calculated gj,i green times of each junction so

as to satisfy the constraints (1) and (2), see Aboudolas et al. (2009) for more details.

3.3 Quadratic-Programming Control (QPC)

In contrast to other store-and-forward based approaches (see for instance Singh and

Tamura (1974)), we will now introduce the green times Gz of each link z as additional

independent variables. The reason behind this modification is that we want to increase

the control flexibility and potential efficiency while explicitly considering the queue con-

straints (4) (Papageorgiou, 1995; Aboudolas et al., 2009). The introduced link green times

Gz are constrained as follows:

0 ≤ Gz(k) ≤
∑

i∈vz

gj,i(k), ∀ j ∈ J. (9)

In view of this modification, replacing (5) in (3) for all z and organizing all resulting
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equations in one single vector-based equation leads to a linear state-space model for road

networks of arbitrary size, topology, and characteristics which is given by

x(k + 1) = x(k) + B(k)G(k) + Td(k) (10)

where G(k) is the link control vector (consisting of the green times Gz of each link z);

B results from (3), (5) as a matrix of appropriate dimensions containing the network

characteristics (topology, saturation flows, turning rates). Note that B may be time-

variant, if the involved saturation flows or turning rates are time-variant.

A suitable control objective under congested traffic conditions is to minimize the risk of

oversaturation and spillback of link queues. To this end, one may attempt to minimize

and balance the links’ occupancies xz/xz,max via the following finite-horizon quadratic

criterion

J =
1

2

K
∑

k=0

∑

z∈Z

x2
z(k)

xz,max

(11)

which is identical to (7) for r = 0 in (7) and K → ∞ in (11). Alternatively, one may

minimize the total time spent (which corresponds to minimization of the sum of xz) but

this would lead to a linear programming problem with vertex solutions (e.g. xz = 0 for

some links and xz = xz,max for others) that would increase the risk of link queue spillback.

On the basis of the linear model (10); the linear constraints (1), (2), (4) and the additional

constraints (9); and the quadratic cost criterion (11); a (dynamic) optimal control problem

may be formulated over a finite time-horizon K, starting with the known initial state x(0)

in the state equation (10). This quadratic programming (QP) problem (with very sparse

matrices) may be readily solved by use of broadly available codes or commercial software

within few CPU-seconds even for large-scale networks and long time-horizons (Aboudolas

et al., 2009).
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4 The rolling-horizon (model-predictive) framework

For the application of the proposed QPC methodology in real time, the corresponding

algorithm is embedded in a rolling-horizon (model-predictive) scheme. More precisely, the

optimal control problem is solved on-line once per cycle using the current state (current

estimates of the number of vehicles in each link) of the traffic system as the initial state

x(0) as well as predicted demand flows over the finite horizon K. The optimization yields

an optimal control sequence for K cycles, but only the first control (signal control plan)

in this sequence is actually applied to the signalized junctions of the traffic network. More

specifically, the rolling-horizon framework is as follows:

At time step k0, the QP problem is solved, based on a measured (or estimated) initial

condition x(k0) and on available demand predictions d(k), k = k0, . . . , k0 + K − 1,

to obtain the controls g∗(k) and states x∗(k + 1), k = k0, . . . , k0 + K − 1. However,

only a part of the control trajectory is actually applied to the process, namely g∗(k),

k = k0, . . . , k0 + kR − 1, where kR ≪ K (e.g. kR = 1). Then, at time step k0 + kR, based

on the new measured initial condition x(k0 + kR) (feedback) and updated demand

predictions d(k), k = k0 + kR, . . . , k0 + kR + K − 1, the QP problem is solved again to

obtain the controls g∗(k) and states x∗(k + 1), k = k0 + kR, . . . , k0 + kR + K − 1, but

only g∗(k), k = k0 + kR, . . . , k0 + 2kR − 1, is actually applied to the process, and so

forth.

There are several important issues that are associated with the rolling-horizon framework

just described:

• The saturation flows Sz and the turning rates tw,z, may be time-variant, e.g. estimated

or predicted in real time by wellknown recursive estimation schemes (Cremer, 1991);

in addition, the predicted demand flows d(k) may be calculated by use of historical
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information or suitable extrapolation methods (e.g., time series or neural networks).

• A satisfactory optimization horizon K should be in the order of the time needed to

travel through the network. A much shorter optimization horizon may lead to “myopic”

control actions.

• The computation time needed for the numerical solution of the QP problem must be

short enough to permit the outlined repetitive on-line solution of the optimization

problem. This is guaranteed for the present optimization method.

• The state variables x (the number of vehicles in each link) must be measurable or

be estimated in real time. Occupancy measurements collected via traditional detector

loops may be utilized to estimate the numbers of vehicles within links via suitable non-

linear functions (Diakaki, 1999). The detector locations within links may be arbitrary,

although the quality of estimation is best if the detectors are located around the middle

of the link.

5 Application set-up

To demonstrate the efficiency and real-time feasibility of the proposed approach to the

problem of urban signal control, the road network of the city centre of Chania, Greece, is

considered. For this network, we compare the closed-loop behaviour of the LQ approach

with the behaviour of the proposed QPC approach when embedded in a rolling-horizon

control scheme as well as with optimized fixed signal plans. To ensure fair and comparable

results, the three methodologies are evaluated by use of the same simulation model that

is outlined in the next section.
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5.1 The simulation model

The simulation model is simple but more accurate than the linear model (10) thanks to

a nonlinear link outflow function that models the intra-cycle traffic flow process more

accurately than (5). More precisely, we assume that the model time step is T ≪ C while

the control time step Tc remains equal to C, i.e. control decisions are taken at each cycle.

Then the outflow uz(k) is given by

uz(k) =























0 if any xd,z(k) ≥ cxd,max

min
{

xz(k)
T

, Gz(κ)Sz

C

}

else

(12)

where the index d refers to a downstream link of link z with turning rate tz,d 6= 0, and

we have the parameter c that should be selected close to 1; note that k is now the model

discrete-time index (with time step T ≪ C) while κ is the control discrete-time index (with

time step Tc = C) and κ = int (kT/Tc). Typical discrete-time model steps T for the traffic

flow model (3) using (12) may be in the order of 5 s, while the control variables change

their value in discrete-time control steps Tc, e.g. at each cycle. Note that, when using (12),

the queue constraints (4) are considered indirectly and may hence be dropped; indeed the

link outflow in (12) becomes zero if there is no vehicle in the link or if a downstream

link is full. Note also that the basic simplification of store-and-forward modeling, i.e. a

continuous link outflow (rather than zero flow during red and free flow during green), is

still maintained in this approach.

Despite its relative simplicity, the simulation model reflects the essential phenomena of

urban network traffic flow and is more accurate than the design models of the control

strategies. In any case, our main interest here is in comparing different control approaches

under the same simulated conditions rather than in deriving accurate absolute values
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Fig. 3. The Chania urban road network.

of the control performance indexes for the specific network. To this end, the proposed

simulation model appears to be appropriate.

5.2 Network and scenario description

The urban network of the city centre of Chania consists of |J | = 16 signalized junctions

and |Z| = 60 links (Fig. 3). We omit the details on the (constant) turning rates tw,z,

lost times Lj, staging vz and saturation flows Sz. The (fixed) cycle time in the network

is C = 90 s, and Tc = C is taken as a control interval for all strategies. Finally, for the

simulation model we consider T = 5 s and c = 0.85 (i.e., overloaded links in (12) are

considered the links z for which xz ≥ 0.85xz,max).

Several scenarios were defined in order to investigate the behaviour of the control method-

ologies under different conditions. The simulation horizon for each scenario is 1 hour (40

cycles). Fixed-time signal control, the linear multivariable feedback regulator (LQ), and

the QPC approach embedded in a rolling-horizon scheme were applied and tested with

the simulator for five demand scenarios with the following characteristics:

(1) Very low demand in the network origins.
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(2) Low demand (25% higher than Scenario 1).

(3) Medium demand (50% higher than Scenario 2).

(4) High demand; in this scenario the network faces serious congestion for some 20 cycles

(1/2 hour) with some link queues spilling back into upstream links.

(5) High demand presenting strong time fluctuations.

In addition to the demands at the network origins, moderate demands are also generated

in some internal network links for all scenarios. In the first four scenarios, the shape of

all demand trajectories is trapezoidal, thus featuring a constant-demand peak period. In

the fifth scenario, the peak demand varies quite strongly over time in order to enable

an evaluation under more dynamically changing conditions. The scenarios include a final

phase of zero demands which is long enough for the network to be completely emptied

by all investigated signal control strategies, thus producing comparable results across the

strategies.

5.3 Assessment criteria

For each of the five scenarios and for each control approach, two evaluation criteria are

calculated for comparison via the simulation model. The total time spent

TTS = T
Ks
∑

k=0

∑

z∈Z

xz(k) (in veh · h)

and the relative queue balance

RQB =
Ks
∑

k=0

∑

z∈Z

x2
z(k)

xz,max

(in veh).

where Ks is the scenario time horizon.
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5.4 Control strategy application

We consider the following signal control cases:

• Fixed-time signal control (FT-A) with a field-applied plan gN that is not fully adapted

to the demand scenarios outlined above.

• Fixed-time signal control (FT-B) with plans gN optimized individually for each demand

scenario. These signal plans were calculated for the specific demand scenarios using the

QPC strategy as an off-line network optimization tool with Tc = KsT , i.e. to specify

optimal fixed greens over the whole scenario duration.

• Strategy LQ-A based on the linear multivariable feedback regulator (8) and the nominal

plan gN of FT-A.

• Strategy LQ-B based on the linear multivariable feedback regulator (8) and the opti-

mized nominal plan gN for each demand scenario (the FT-B optimized fixed plans).

• Rolling-horizon control scheme QPC-A without demand information; the QP problem

is solved at each cycle (every kR = 1) with investigated optimization horizons K =

1, 2, . . . , 6, i.e. 90 s, 180 s, . . ., 540 s, respectively. In this case, it is assumed that there

are no predicted demand flows d(k) available within the rolling-horizon control scheme,

hence d(k) = 0 ∀ k is set (although non-zero demands are actually present in the

simulations).

• Rolling-horizon control scheme QPC-B with perfect demand flow information; the QP

problem is solved at each cycle (every kR = 1) with investigated optimization horizons

K = 1, 2, . . . , 5, 9, 10, 20, 22, 25. In this case, it is assumed that accurate demand flow

predictions are available for the whole optimization horizon.

The real-time control strategies are applied with control interval Tc = C. All strategies

are fed with the simulated x-values (feedback) to make their decisions in real time. The
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Table 1
Assessment criteria for FT-A, FT-B, LQ-A and LQ-B strategies.

Strategy

Scenario TTS RQB TTS RQB TTS RQB TTS RQB

1 21 1679 15 1411 13 561 14 702

2 99 36403 56 13532 44 7341 41 7187

3 231 97947 201 79578 164 53993 146 48282

4 481 218565 353 142363 285 100136 250 89946

5 594 259101 412 170329 348 130891 311 120760

Average 285 122739 207 81443 171 58584 152 53375

FT-B LQ-A LQ-BFT-A

QPC strategy is run with different optimization horizons K in order to investigate the

impact of K on the control performance. It is expected that the results should tend to

be better for greater values of K (due to less myopic control actions); on the other hand,

the lack of demand predictions in QPC-A may render the calculated controls increasingly

outdated for long time-horizons K. Note also that the LQ approach does not involve any

d(k) prediction by its design.

6 Simulation results

6.1 Evaluation based on global criteria

Table 1 displays the obtained results for the FT and LQ-variants. The optimized fixed

plan control FT-B is seen to strongly outperform the FT-A signal plan for all scenarios.

Thus, FT-B may be considered as a challenging (albeit rather idealistic) basis for the

assessment of real-time control schemes. Table 1 shows that both LQ variants lead to

significant reductions of both evaluation criteria compared to FT-B, which underlines

the superiority of appropriate real-time decision-making even in case of optimized fixed

control. The use of optimized nominal plans in LQ-B leads to better performances than

LQ-A; nevertheless, the huge performance differences between FT-A and FT-B shrink to

small or moderate differences between LQ-A and LQ-B, which indicates a relatively low

sensitivity of the LQ approach to non-optimal gN plans in (8).
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Table 2
Assessment criteria for the rolling-horizon QPC-A approach.

K

Scenario TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB

1 13 568 13 578 13 576 13 578 13 580 13 579

2 36 5827 36 5844 36 5838 36 5832 36 5811 36 5792

3 145 44056 145 44286 144 44259 144 44292 144 44236 144 44262

4 284 97398 283 97391 283 97096 283 97793 284 97970 283 97753

5 317 113221 318 113325 318 113364 318 113446 317 113158 317 112835

Average 159 52214 159 52285 159 52227 159 52388 159 52351 159 52244

5 61 2 3 4

Table 2 displays the obtained results for the rolling-horizon QPC-A approach for different

optimization horizons K. It can be seen that for K ≥ 2 there are no significant deviations

of the evaluation criteria for different optimization horizons K even for the high-demand

scenario 4 and the strongly fluctuating and high-demand scenario 5; this is attributed to

the complete lack of demand information (d ≡ 0) that affects longer-term decisions. Since

the required computational effort increases with increasing K, K = 2 seems to be a good

choice. Comparing with Table 1, QPC-A is seen to be always better than FT-A, FT-B

and LQ-A. Compared to LQ-B, QPC-A is seen to be better for scenarios 1–3 but slightly

inferior in the heavy scenarios 4 and 5; this is attributed to the fact that the optimal gN

incorporated in LQ-B is calculated with full demand knowledge, which is utterly missing

in the QPC-A approach.

Table 3 displays the obtained results for the rolling-horizon QPC-B approach for different

optimization horizons K. In this case, the availability of demand flow predictions allows for

more reliable information about the evolution of the network traffic state in the future; as a

consequence both evaluation criteria are seen to slightly improve as K is increased in some

scenarios. In particular, for the high-demand and high-fluctuation scenario 5, the most

satisfactory results with respect to both evaluation criteria are obtained with K = 20 (1/2

h). Comparing with Table 2, QPC-B outperforms QPC-A for all scenarios which underlines

the utility of demand predictions compared to the zero-demand assumption. Comparing

with Table 1, QPC-B outperforms FT-A, FT-B, LQ-A and LQ-B for all scenarios, as

it incorporates all necessary information (demands and constraints) in its optimization
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Table 3
Assessment criteria for the rolling-horizon QPC-B approach.

K

Scenario TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB

1 11 281 11 280 11 280 11 280 11 280 11 279 11 279

2 30 4116 30 4087 30 4067 30 4043 30 4040 30 4030 30 4032

3 132 39447 133 39463 132 39413 132 39407 132 40079 132 40372 132 40688

4 248 83183 248 83144 249 82828 246 81182 252 84246 253 85072 253 85112

5 282 97630 281 97236 280 96292 278 94940 270 89694 266 87251 266 87795

Average 141 44931 141 44842 140 44576 139 43970 139 43668 138 43401 138 43581

20 2591 2 3 5

Table 4
Comparison of assessment criteria.

Strategy

Scenario TTS RQB TTS RQB TTS RQB TTS RQB

1 -7% -60% 0% 25% -7% 3% -15% -52%

2 -21% -46% -7% -2% -18% -20% -17% -31%

3 -18% -32% -11% -11% -12% -18% -9% -9%

4 -19% -30% -12% -10% -1% -3% -11% -13%

5 -16% -23% -11% -8% -9% -13% -15% -21%

Average -17% -28% -11% -9% -7% -11% -13% -16%

QPC-B (K=9) vs QPC-A (K=2)LQ-A vs FT-B LQ-B vs LQ-A QPC-A (K=2) vs LQ-A

problem.

Table 4 displays some percentage changes of both evaluation criteria for the six method-

ologies. LQ-A vs. FT-B demonstrates the superiority of appropriate real-time control

over optimized fixed control. LQ-B vs. LQ-A indicates possible improvements within the

LQ-approach by use of better nominal plans. QPC-A vs. LQ-A indicates the achievable

improvements if the constraints (1), (2), (4) are incorporated in the optimization problem

and link green times Gz are introduced; clearly, a more complex QP problem solution in

real-time (compared with the simpler LQ regulator) is the price to pay for this particular

improvement. Finally, QPC-B vs. QPC-A demonstrates the maximum range of achievable

improvements via the use of demand predictions within the QPC-approach.

6.2 Some detailed results

In this section we report on some more detailed illustrative results focussing on the city’s

main shopping district (junctions 2, 4, 5, 6, 12 in Fig. 3). This area of the network features
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Fig. 4. Comparison of LQ-variants, QPC-variants, and FT-B for Scenario 5: (a), (b) occupancy
of link 38 at junction 12; (c), (d) green time of stage 3 at junction 12 where link 38 has r.o.w.

serious congestion during the morning, afternoon and evening peak hours with link queues

that may spill back into upstream links.

For example, serious congestion develops in links 6 and 8 at junctions 2 and 3 in demand

scenarios 4 and 5. This congestion spills back through links 13, 15, and reaches link 38

(junction 12). Figures 4a, b display the time evolution of the occupancy xz/xz,max within

link 38 under FT-B, the LQ-variants, and the QPC-variants, for demand scenario 5.

Moreover, Figures 4c, d display the time evolution of the green time of stage 3 at junction

12 where link 38 has r.o.w., for the same strategies. These figures demonstrate that:
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• Link 38 saturates for FT-B, LQ-A, LQ-B over a considerable period of time (Fig. 4a),

that is longest for FT-B due to the rigid (constant) green time, while LQ-A and LQ-B

apply higher green times during saturation (Fig. 4c). Note that the green times for both

LQ-A and LQ-B take their respective nominal values gN according to (8) when queues

are close to zero, i.e. at the start and end periods of the simulation horizon.

• In the QPC-B strategy (for K = 9 or K = 20) the shape of the control trajectory

(Fig. 4d) is shifted (horizontally) to the left by 4-5 cycles, when compared with QPC-

A. By close examination, this is because the availability of accurate demand flow pre-

dictions in QPC-B allows for better prediction of the traffic network state in the near

future (in contrast to QPC-A where d = 0) and accordingly anticipated control actions.

For the same reason, the link occupancies are slightly lower and smoother in the case

of perfect demand flow predictions (Fig. 4b).

• The control trajectories in the LQ-variants (Fig. 4c) are smoother than in the QPC-

variants (Fig. 4d). This is a general observation that is attributed to the infinite horizon

in the LQ objective criterion (7) as opposed to the finite horizon of the QPC approach

in (11), but also the a posteriori consideration of the constraints in the LQ approach.

To enable a more general evaluation with regard to the number of overloaded links, we

define a network link as overloaded if its occupancy xz/xz,max is higher than 0.8; let m(k)

denote the number of overloaded links at the simulation cycle k for a specific control

strategy; and let

M(k) =
k

∑

κ=0

m(κ) (13)

denote the accumulated number of overloaded link-cycles up to cycle k. Clearly, M(Ks)

then denotes the total number of overloaded link-cycles at the end (Ks = 40) of the

simulation horizon. Figure 5 displays the M(k) quantities for each investigated signal

control strategy for scenario 5. As expected, the ranking of the strategies with respect to

this criterion is in agreement with the findings of Section 6.1. In particular, at the end
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Fig. 5. Accumulated number of overloaded link-cycles for each signal control strategy.

of the simulation (cycle Ks = 40), the total numbers of overloaded link-cycles are 167 for

FT-A, 147 for FT-B, 88 for LQ-A, 80 for LQ-B, 63 for QPC-A, and 51 for QPC-B.

Figure 5 underlines the clear superiority of appropriately designed real-time signal control

strategies over (even optimized) fixed-time control to handle urban network congestion.

The figure also indicates the improvement of the new QPC strategy over the previous LQ

approach and the value of demand information.

6.3 Fundamental diagrams

The fundamental diagram of the application road network under different signal control

strategies may be used in order to extract additional useful insights on the related control

impact and performance. Figure 6 displays the fundamental diagrams resulting for scenario

5 when the six different signal control strategies are applied. Each measurement point in

the diagrams corresponds to one 90s-cycle.

As a first remark, Figure 6 confirms the existence of a fundamental diagram for urban

road networks, whose exact shape is seen to depend on the utilized signal control strategy.

24



0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

veh in network

T
ot

al
 n

et
w

or
k 

flo
w

 (
ve

h/
h)

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

T
ot

al
 n

et
w

or
k 

flo
w

 (
ve

h/
h)

veh in network

(a) FT-A (b) FT-B

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

veh in network

T
ot

al
 n

et
w

or
k 

flo
w

 (
ve

h/
h)

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

T
ot

al
 n

et
w

or
k 

flo
w

 (
ve

h/
h)

veh in network

(c) LQ-A (d) LQ-B

0 200 400 600 800 1000 1200 1400 1600
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

T
ot

al
 n

et
w

or
k 

flo
w

 (
ve

h/
h)

veh in network
0 200 400 600 800 1000 1200 1400 1600

0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

veh in network

T
ot

al
 n

et
w

or
k 

flo
w

 (
ve

h/
h)

(e) QPC-A (K = 2) (f) QPC-B (K = 9)

Fig. 6. Fundamental diagrams for each signal control strategy.
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Remarkably, the diagrams indicate a hysteresis, i.e. a different path of measurement points

(black circles) when filling the network than when emptying the network (where measure-

ments are marked with stars). A hysteresis indicates that, for the same vehicle-number

in the network, we may have different total flows when the network is filled than when

it is emptied. This difference is attributed to partly different traffic patterns prevailing

during the filling and emptying of the network and the absence of a traffic assignment

module that would fill the network links more homogeneously in the simulation. Although

a similar phenomenon might be observable in real traffic data as well, it is believed that

the hysteresis is much more pronounced here due to the final phase of zero demands, the

complete emptying of the network at the end of the simulation and the mentioned absence

of traffic assignment. For the following comments, we focus on the FD shape during the

network filling phase only.

Regarding the FD region A (Figure 1), which is seen to prevail in the application network

for vehicle-numbers up to 200, the resulting slope (average speed) is highest for QPC-B;

followed by LQ-B, QPC-A and FT-B; while LQ-A and FT-A are slightly worse since their

signal plan is not fully adapted to the demand scenario.

For region B, we notice that the network flow capacity is lowest for FT-A (around 30.000

veh/h); it increases to some 32.000 veh/h for FT-B; it increases even more for LQ-A,

LQ-B and QPC-A to reach some 34.000 veh/h for QPC-B. Note that, in absence of real-

time cycle and offset control, this capacity increase is attributed mainly to less link-queue

spillback, i.e. less wasting of green times due to overloaded downstream links.

The difference in flow levels during the saturated traffic conditions of region B imply

corresponding differences of the highest vehicle-number that is reached by each signal

control strategy. Thus, FT-A is seen to reach up to 1500 veh in the network, with a fully

formed region C of oversaturated traffic conditions and accordingly low flows (less than

26



10.000 veh/h) due to blocked links and partial gridlocks. FT-B reaches up to 1000 veh

with total flows reducing to 17.000 veh/h, i.e. only a part of region C is actually visited;

under LQ-A, the maximum vehicle-number does not exceed 900; while LQ-B and QPC-A

reach 800 veh at the maximum and QPC-B even less. The total flow for all real-time

control strategies is seen to only slightly reduce to 28.000 veh/h during the filling phase.

These results are quite conform with the performance criteria of Tables 1–3, along with

providing more insights on the ways and reasons of improvements by each signal control

strategy investigated. In particular, the FD results demonstrate that real-time control

strategies designed to remain efficient under saturated traffic conditions may considerably

improve the network performance and retard or avoid the detrimental effects of link queue

spillback and gridlock.

6.4 Sensitivity investigations and the impact of feedback

There is a fundamental difference in the use and significance of network traffic flow models

in Transportation Planning (TP) as compared to traffic control (operations). In TP ex-

ercises, the typical goal is to predict (via a mathematical model) the potential behaviour

of transportation infrastructures that are not existing so as to assess different planning

alternatives etc.; for this endeavour, the predicted infrastructure behaviour (and hence

the utilized mathematical model) should be as accurate as possible. In the case of traffic

control, the infrastructure under control is there and delivers (via appropriate sensors)

valuable information on its current state; this information is used as a feedback loop (e.g.

by the LQ regulator (8) or in the rolling-horizon frame of Section 4) in order to frequently

update the control strategy decisions on the basis of the current real network traffic state.

In other words, the impact of model inaccuracies (e.g. of inaccurate model parameter

values) on the quality of the traffic control decisions is strongly reduced thanks to the
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real-time feedback. For example, a model may predict an increasingly wrong evolution

into the future of the link queues if the utilized turning rates tw,z are different than the

real ones (e.g. because turning rates may change in dependence of the control actions

due to adapted driver routing); however, any past model-prediction inaccuracies are es-

sentially nullified when new information (feedback) arrives that reflects the current real

link queues as a basis for updated control decisions. Thus, some related concerns regard-

ing the sensitivity of the control performance in case of moderate model-versus-reality

inaccuracies (in particular of inaccurate turning rates), should be viewed under this per-

spective 1 . To demonstrate the low sensitivity of real-time control thanks to feedback, a

specific investigation is proposed in this section.

The LQ-regulator (8) includes the gain matrix L whose entries depend on matrices B

from (6) and Q, R from (7). The entries of matrix B depend on the turning rates tw,z.

Since B must be constant for this method, the turning rates must be pre-selected and

may be deviate from the real turning rates. If the real turning rates are strongly different

on different times of the day (e.g. for the p.m. peak period compared to the a.m. peak

period), one may use accordingly different matrices L; but the following investigations

demonstrate that this may only be worthwhile if the differences are really very strong.

The QPC approach employs the model (10) with the matrix B also depending on the

turning rates. But, because the model is used in real-time (according to Section 4), matrix

B may be time-varying and, moreover, may be updated from time-to-time based on real-

time estimates of the turning rates. Again, the following investigations demonstrate that

real-time estimates for tw,z may only be worthwhile if the related variations are really very

strong.

1 The authors would like to thank an anonymous reviewer whose remarks triggered these addi-
tional sensitivity investigations.

28



Table 5
Assessment criteria of sensitivity investigations of the LQ approach, using different gain matrices
in (8) due to significantly different values of turning rates.

Strategy

Scenario TTS RQB TTS RQB TTS RQB TTS RQB

1 13 561 14 554 14 702 14 700

2 44 7341 45 7720 41 7187 40 6829

3 164 53993 170 56442 146 48282 152 51561

4 285 100136 295 103942 250 89946 253 90420

5 348 130891 339 122754 311 120760 315 119270

Average 171 58584 173 58282 152 53375 155 53756

* denotes that the LQ approach uses the modified gain matrix L*

LQ-A LQ-A* LQ-B LQ-B*

The investigations in this section aim to test the sensitivity of the LQ and rolling-horizon

QPC approaches to inaccuracies of the turning rates. To this end, the following cases are

investigated via simulation for the five demand scenarios:

• Application of the LQ approach using the gain matrix L obtained for the initial turning

rates (LQ-A and LQ-B as described in Section 5.4).

• Application of the LQ approach using the gain matrix L∗ obtained for significantly

different turning rates for all network junctions. These turning rates are modified ran-

domly quite significantly, namely by some 40% with respect to initial turning rates (e.g.

for a bifuration with initial turning rates 0.5, 0.5 we may now have 0.3, 0.7 or 0.7, 0.3).

• Application of the rolling-horizon QPC approach using the initial turning rates in the

linear model (10) (QPC-A and QPC-B as described in Section 5.4).

• Application of the rolling-horizon QPC∗ approach using significantly different turning

rates as above for all network junctions in the linear model (10).

In all these cases, the simulation model (3) using (12) uses the initial turning rates. The

QPC-A strategy is run with optimization horizon K = 2 as suggested in Section 6.1. The

QPC-B strategy is run with two investigated optimization horizons, namely K = 3 and

K = 9.

Table 5 summarizes the simulation results for the LQ-variants. The obtained results in-

dicate that, even if the turning rates used for the calculation of the gain matrix are not
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Table 6
Assessment criteria of sensitivity investigations of the rolling-horizon QPC approach, using sig-
nificantly different turning rates at all network junctions.

Strategy

Scenario TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB

1 13 578 13 686 11 280 12 423 11 280 12 423

2 36 5844 40 7099 30 4067 37 5767 30 4040 37 5736

3 145 44286 152 46226 132 39413 149 47158 132 40079 149 47458

4 283 97391 277 92451 249 82828 272 94498 252 84246 271 93659

5 318 113325 305 103113 280 96292 261 84659 270 89694 290 100391

Average 159 52285 157 49915 140 44576 146 46501 139 43668 152 49533

* denotes that the QPC approach uses the modified turning rates

QPB-B (K=9) QPB-B* (K=9) QPC-A (K=2) QPC-A* (K=2) QPB-B (K=3) QPB-B* (K=3) 

accurately defined, the performance of the LQ-variants is not seriously affected. Similar

results were reported based on extensive simulation investigations of the TUC strategy

to inaccuracies of the traffic parameters, such as turning rates and saturation flows (Di-

akaki, 1999). Note that, in some scenarios, the inaccurate turning rates may even happen

to lead to very slight improvements; this is explained by the fact that the LQ strategy

is suboptimal and hence its performance may even slightly improve in case of moderate

inaccuracies.

Table 6 summarizes the obtained sensitivity results for the QPC-variants; it may be seen

that the performance of the QPC-variants may be affected more strongly than the LQ-

variants by the turning rates being used which is attributed to the explicit use of the

model in the rolling-horizon scheme employed by the QPC approach. For QPC-B∗, it

can be seen that the use of smaller optimization horizon K = 3 (compared to K = 9)

leads to lower sensitivity of both evaluation criteria in terms of average values because

longer-term model predictions (K = 9) tend to be increasingly less accurate. Thus, the

optimization horizon K should be selected so as to strike a balance between performance

sensitivity with respect to inaccuracies of the traffic parameters versus myopic control

actions. Comparing with Table 5, QPC-A∗ and QPC-B∗ are seen to be still better than

LQ-A and LQ-B, respectively, and, of course, much better than fixed-time control, even

though FT-B was obtained on the basis of accurate turning rates.

Table 7 displays some percentage changes of both evaluation criteria for the four cases.
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Table 7
Comparison of assessment criteria of sensitivity investigations of the LQ and rolling-horizon
QPC approaches.

Strategy

Scenario TTS RQB TTS RQB TTS RQB TTS RQB TTS RQB

1 8% -1% 0% 0% 0% 19% 9% 51% 9% 51%

2 2% 5% -2% -5% 11% 21% 23% 42% 23% 42%

3 4% 5% 4% 7% 5% 4% 13% 20% 13% 18%

4 4% 4% 1% 1% -2% -5% 9% 14% 8% 11%

5 -3% -6% 1% -1% -4% -9% -7% -12% 7% 12%

Average 1% -1% 2% 1% -1% -5% 4% 4% 9% 13%

QPC-B* vs QPC-B (K=9)LQ-A* vs LQ-A LQ-B* vs LQ-B QPC-A* vs QPC-A (K=2) QPC-B* vs QPC-B (K=3)

LQ-A∗ vs. LQ-A and LQ-B∗ vs. LQ-B demonstrate the low sensitivity of the LQ ap-

proach with respect to inaccuracies of the turning rates. QPC-A∗ vs. QPC-A indicates

the low sensitivity of the rolling-horizon QPC-A approach for K = 2. QPC-B∗ vs. QPC-B

demonstrates the moderate sensitivity of the QPC-B approach particularly for increasing

optimization horizon K.

In general, the LQ approach seems less sensitive than the rolling-horizon QPC approach

with respect to inaccuracies of traffic parameters; this might be attributed to the analytical

feedback law derivation of (8) as opposed to the implicit feedback of the rolling-horizon

approach (Dreyfus, 1964).

7 Conclusions

The paper investigated a computationally feasible quadratic-programming control (QPC)

methodology for real-time network-wide signal control in large-scale urban networks that

is appropriate also for congested traffic conditions. This methodology combines the traffic

flow store-and-forward modeling paradigm with quadratic-programming optimization em-

bedded in a rolling-horizon control scheme. A simulation-based investigation of the signal

control problem for a realistic example aimed at demonstrating the strategy efficiency and

feasibility, as well as its comparison with optimized fixed-time (FT) settings and the LQ

approach taken by the signal control strategy TUC.
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Two evaluation criteria have been used for strategy comparison via simulation. It was

demonstrated that the LQ variants lead to significant reductions of both evaluation criteria

compared to optimized fixed-time plans, which underlines the superiority of appropriate

real-time decision-making even in case of optimized fixed control. Furthermore, it was

shown that the LQ approach has a relatively low sensitivity to non-optimal nominal plans

utilized within the strategy. The QPC approach was shown to outperform the FT and

LQ approaches, particularly under full demand provision. Furthermore the impact of all

strategies with regard to the network flow capacity and the retarding or avoiding of link

queue spillback and gridlock was investigated, besides the traditional evaluation ways, also

by use of the currently proposed fundamental diagram for urban road networks. Finally,

the real-time control strategies were demonstrated to have low (LQ) or moderate (QPC)

sensitivity with respect to model parameter (turning rate) inaccuracies thanks to their

feedback character.

Future work will deal with the comparison of the proposed QPC rolling-horizon approach

with other strategies (e.g. TUC) in more elaborated (e.g. microscopic) simulation as well

as in real-life conditions.
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