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Abstract Elasto-plastic tunnel analysis may produce a

paradox in the calculation of ground pressure whereby

ground pressures appear to increase in relation to higher

ground quality. More specifically, for an overstressed

ground in combination with a stiff support, analysis may

indicate greater loading of the support with a ground of

high strength than with a ground of low strength (all of the

other parameters being equal). This counter-intuitive out-

come appears in all of the common calculation models

(analytical plane strain analysis, numerical plane strain

analysis and numerical axisymmetric analysis), although it

does not correspond either to the ground behaviour that is

intuitively expected or to ground behaviour observed in the

field, thus raising doubts over the predictive power of

common tunnel design calculations. The present paper

discusses the assumptions made in the models that are

responsible for the paradox: the assumption that ground

behaviour is time-independent (whereas in reality over-

stressed ground generally creeps) and the assumption that

the support operates with full stiffness close to the face

(which is not feasible in reality due to the nature of con-

struction procedures). When proper account is taken of

either or both of these assumptions in more advanced

models, the paradox disappears. As the models which

generate the paradox are very commonly used in engi-

neering and scientific practice, the investigations of the

present paper may be of value, helping the engineer to

understand the uncertainties inherent in the models and to

arrive at a better interpretation of the results they produce.

Keywords Tunnel analysis � Ground response �
Squeezing ground � Elasto-plastic behaviour � Stress relief

List of symbols

a Tunnel radius

d Lining thickness

dS Thickness of the TBM shield

E Young’s modulus of the ground

EL Young’s modulus of the lining

EL,28 Young’s modulus of the lining after 28 days (=EL)

ES Young’s modulus of the TBM shield

EL(t) Time-dependent Young’s modulus of the lining

e Unsupported span

f Yield function

fc Uniaxial compressive strength of the ground

g Plastic potential

i Point/interval (defined in Fig. 22)

j Point/interval (defined in Fig. 22)

k Lining stiffness

kI Support stiffness before the deformation phase of

the yielding support

kj Average stiffness over the integration interval j

k(i) Stiffness of the fictitious lining layer i

kS Stiffness of the TBM Shield

m Point/interval (defined in Fig. 22)

M Bending moment

N Hoop force

p Rock pressure acting upon the lining

pF Face support pressure

pI Fictitious internal pressure in the plane strain

analysis

pj Rock pressure at the point j

p
ðiÞ
j

Pressure exerted by layer i at point j

py Yielding support pressure
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p? Final rock pressure acting upon the lining far

behind the face

p(y) Rock pressure acting upon the lining at the axial

coordinate y

r Radial co-ordinate (distance from tunnel axis)

s Round length in the step-by-step calculations

t Time

t95% Time needed in order to reach 95% of the time-

dependent deformations

u Radial displacement of the ground

uC Radial convergence of the opening

ue
C Elastic part of the radial convergence of the

opening

up
C

Plastic part of the radial convergence of the

opening

uj Radial displacement of the ground at point j

uoe Amount of over-excavation in case of a yielding

support

uy Axial displacement

u? Final radial displacement of the ground occurring

far behind the face

u(y) Radial displacement of the ground at the axial

coordinate y

�u Radial displacement (unsupported opening)

v Advance rate of the excavation

y Axial co-ordinate (distance behind the tunnel face)

yj Axial co-ordinate of point j

Greek symbols

DR Overcut between excavation and shield

Dpj Increase of pressure over the integration interval j
_eij Strain rate tensor

_ee
ij Elastic part of the strain rate tensor _eij

_ep
ij Inelastic part of the strain rate tensor _eij

g Viscosity

k Stress relief factor

m Poisson’s ratio of the ground

ro Initial stress

rij Stress tensor

rrr Radial stress

/ Angle of internal friction of the ground

w Dilatancy angle of the ground

1 Introduction

Under certain conditions which are frequently encountered

in tunnel design, the computational models in common use

predict that a poor-quality ground will be more favourable

for tunnel construction than a high-quality ground. More

specifically, the models suggest that a ground of higher

strength develops a greater load upon the lining than the

load developed by a low-strength ground (all of the other

parameters being equal). This is clearly contrary to the

behaviour that might be expected both intuitively and on

the basis of tunnelling experience, which is that overs-

tressing of the lining or severe convergences are associated

with ground of poor quality (e.g. Kovári and Staus 1996).

The model behaviour deserves to be called a paradox, i.e.

‘‘a seemingly absurd or contradictory statement or propo-

sition which when investigated may prove to be well

founded or true’’ (Oxford Dictionary).

The paradox has been mentioned in passing in a number

of older works dealing with the elasto-plastic analysis of

tunnels (Nguyen-Minh and Corbetta 1992, p. 86; Nguyen-

Minh and Guo 1993, p. 176; Guo (1995), p. 90). More

recently, it has been noted by Boldini et al. (2000) and

Graziani et al. (2005), who obtained ‘‘unforeseen results’’

from axisymmetric elasto-plastic numerical analyses of

advancing tunnels, and explained them by means of the

convergence–confinement method (‘‘The decrease in the

loading in the plastic case is caused by the increased

convergence u0 before the installation of the lining, which

overshadows the negative effect of the flattening of the

convergence curve in the plastic range’’). Also, Mair

(2008) drew basically the same conclusion when discussing

the results of plane strain analyses (‘‘This is because the

weaker ground leads to higher deformations occurring

ahead of the face prior to installation of the lining; the

consequence of more ground deformation before installa-

tion is a smaller pressure induced on the lining’’). Fur-

thermore, Ramoni and Anagnostou (2010b) and Lavdas

(2010) observed the counter-intuitive behaviour of the

models with respect to the loading of TBM shields and of

segmental linings, respectively.

Although the paradox has been noted by a number of

authors, it is, interestingly, neither widely appreciated nor

well understood in the broader engineering and scientific

community. It may therefore perplex the tunnel engineer

and raise doubts as to the predictive power of standard

tunnel design calculations, which makes it deserving closer

investigation. This shall be attempted in the present paper.

Section 2 illustrates the paradox by means of results

obtained from the application of commonly used compu-

tational methods, investigating the conditions under which

the paradox occurs and explaining why the paradox occurs.

The computational methods in question are the conver-

gence–confinement method (CCM) for the classic, rota-

tionally symmetric, plane-strain tunnelling problem; the

plane strain numerical analysis for tunnels with an arbitrary

cross-section; and the axisymmetric analysis for deep

cylindrical tunnels. All of these methods exhibit the para-

dox with respect to the rock loading developing upon a stiff

lining that is installed close to the face (the higher the rock

strength, the higher the load), but predict the expected
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behaviour with respect to convergences (the higher the

rock strength, the smaller the convergence).

Even if the reason for the low load predicted in the case

of low-strength ground is understood (as mentioned above,

it is the stress relief associated with the yielding of the core

ahead of the tunnel face), a question remains as to why

such behaviour is not exhibited in nature or, in other words:

what are the specific modelling assumptions that lead to the

paradoxical model behaviour. The main part of the paper

deals with these issues. Section 3 outlines possible reasons

for the discrepancy between model behaviour and actual

behaviour on the basis of qualitative factors, while Sects.

4–8 investigate some of these possible reasons quantita-

tively and in depth. Putting it in a nutshell, the paradoxical

behaviour seen in the model is associated with the com-

monly made simplifying design assumptions that ground

behaviour is time-independent (while in reality the ground

generally creeps, particularly in the case of squeezing) and

that the support operates with full stiffness close to the face

(while in reality the sequence of excavation and support

installation is such that deformations inevitably occur).

2 Unexpected Model Behaviour

2.1 Convergence–Confinement Method

The convergence–confinement method (CCM) allows the

ground pressure to be assessed by means of closed-form

solutions, and is widely used in engineering practice for

preliminary dimensioning of the lining (Panet 1995). The

method applies to the rotationally symmetric problem of a

deep, uniformly supported, circular tunnel crossing a

homogeneous and isotropic ground which is subject to

uniform and hydrostatic initial stress. Under the additional

simplifying assumption of plane strain conditions, the

problem becomes one-dimensional (i.e. all field variables

depend solely on the distance r from the tunnel axis) and

can be solved analytically. The solution can be presented in

the form of a so-called ‘‘ground response curve’’, which

shows the relationship between the support pressure and

the radial displacement of the tunnel boundary. The

equations for the case of linearly elastic and perfectly

plastic ground behaviour according to the Mohr–Coulomb

yield criterion with a non-associated flow rule (which is the

material model assumed throughout the present Paper) can

be found, inter alia, in Anagnostou and Kovári (1993).

Figure 1a shows the ground response curves for an exam-

ple with the parameters of Table 1 and an uniaxial com-

pressive strength fc of 1 or 3 MPa.

The CCM investigates the interaction between ground

and tunnel support graphically by plotting the ground

response curve and the characteristic line of the lining in

one and the same diagram. The latter shows the depen-

dency of the radial displacement of the lining on the ground

pressure acting upon the lining. The inclination of the

characteristic line of the support depends on its stiffness k,

while the origin of the characteristic line on the displace-

ment axis (e.g., Point A in Fig. 1a) accounts for the pre-

deformation of the ground, i.e. for the radial displacement

that takes place before lining installation at a distance

e behind the face. The pre-deformation occurs partially

ahead of the tunnel face and partially over the unsupported

span. In the computational example of Fig. 1a, the sim-

plifying assumption was made that the pre-deformation

u(e) follows the longitudinal displacement profile proposed

by Chern et al. (1998):

uðeÞ ¼ �u 1þ exp �0:91
e

a

� �� ��1:7

; ð1Þ

where �u and a denote the final unsupported convergence

(i.e. the convergence that would occur in an unsupported

tunnel far behind the face) and the tunnel radius, respec-

tively. Figure 1a shows the characteristic lines of the lining

for support installed directly at the tunnel face (e = 0,

u eð Þ=�u = 30%, dashed lines) or at a distance of e = 3 m

behind the face (u eð Þ=�u = 50%, solid lines).

The intersection point of the ground response curve and

of the characteristic line (e.g. Point B in Fig. 1a) satisfies

the conditions of equilibrium and compatibility and shows

the ground pressure and deformation. It can be seen

immediately from Fig. 1a that, as a consequence of the

smaller pre-deformations, the predicted ground pressure is

higher in the case of a higher strength ground. This is

clearly contrary to what one might expect intuitively.

Figure 1b provides a more complete picture of the effect of

ground strength fc on final lining pressure.

In view of the paramount effect of pre-deformation on

the final lining pressure, the question arises as to whether

this unexpected model behaviour might be due to the

simplifying assumption of Eq. 1, according to which the

pre-deformation amounts to a constant fraction of the final

unsupported convergences (i.e. a fraction which is the same

for an elastic and for a highly stressed ground). A similar

behaviour can be observed when applying the improved

longitudinal displacement profiles proposed Vlachopoulos

and Diederichs (2009), which in contrast to Chern et al.

(1998) consider the maximum plastic radius. The paradox

persists even when applying the most advanced method of

pre-deformation estimation, which is the so-called implicit

method introduced by Nguyen-Minh and Guo (1996) and

proposed, inter alia, by AFTES (2002). This method takes

into account the lining stiffness and installation point in

addition to the properties of the ground and to the extent of

the plastic zone. A synopsis of the equations can be found

in Cantieni and Anagnostou (2009a). As can be seen from
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the ground–support interaction diagram of Fig. 1c, even

this more sophisticated analysis method predicts that the

load developing in the case of a ground having an uniaxial

compressive strength of fc = 1 MPa is lower than in the

case of fc = 3 MPa.

Figure 1d shows the results of a parametric study (per-

formed with the CCM in combination with the implicit

method) on the effect of ground strength fc on final loading

at different values of the unsupported span e and of the

lining stiffness k. It is interesting to note that the softer the

lining and the bigger the unsupported span, the less pro-

nounced is the paradox. In conclusion, the reasons for this

will be discussed later in Sect. 2.3.

2.2 Numerical Plane Strain Analysis

One might argue that the paradox described above may be

interesting from a theoretical point of view, but is of minor

importance in practical terms because the CCM is anyway

an oversimplified analytical tool. The purpose of this sec-

tion is to emphasize that the fundamental principles of the

CCM and the conclusions of the last Section apply also to

the numerical plane strain analyses that are widely used for

design purposes in engineering practice.

For the sake of simplicity and without loss of generality,

let us consider again a deep-seated tunnel excavated full

face under the same conditions as in the previous section

(including Table 1, with the lining characteristics

(a) (c)

(d)(b)

Fig. 1 Determination of the final lining pressure by the CCM for

different values of the uniaxial compressive strength of the ground fc,
of the unsupported span e and of the radial stiffness of the lining

k. a Ground-support interaction (pre-deformations according to Chern

et al. 1998); b Final lining pressure as a function of the uniaxial

compressive strength (pre-deformations according to Chern et al.

1998); c Ground-support interaction (pre-deformations according to

the implicit method); d Final lining pressure as a function of the

uniaxial compressive strength (pre-deformations according to the

implicit method)

Table 1 Model parameters

Parameter Value

Initial stress, r0 10 MPa

Tunnel radius, a 4 m

Unsupported span, e Variable

Ground

Young’s modulus, E 1 GPa

Poisson’s ratio, m 0.3

Angle of internal friction, u 25�
Dilatancy angle, w 5�
Uniaxial compressive strength, fc Variable

Lining

Radial stiffness, k 1 GPa/m 0.1 GPa/m

Young’s modulus, EL 30 GPa 10 GPa

Thickness, d 0.53 m 0.16 m
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according to the last column). The only difference is that

the tunnel cross-section is no longer circular, with the

consequence that rotational symmetry is lost and the

problem has to be solved numerically by the finite element

method. In order to explain why the paradox persists, let us

consider how a numerical plane strain analysis proceeds in

such a case. In a plane strain analysis, the three-dimen-

sional tunnel problem is simulated by considering a series

of sections normal to the tunnel axis (e.g. Panet 1995). In

the case of full face excavation, the computation consists of

three steps.

The first step concerns the initial state (‘‘State 0’’),

which prevails far ahead of the face. Depending on the

available computer code, the initial stress field may be

either defined or calculated.

The second step simulates the development of pre-

deformations during the transition from the initial state to

the state prevailing immediately before lining installation

(‘‘State 1’’) by reducing the radial stresses (as well as the

shear stresses in the case of a non-hydrostatic initial stress

field) acting on the tunnel boundary from their initial value

r0 to the fictitious internal pressure pI which simulates the

supporting effect of the core. The amount of stress relief is

usually expressed by the stress relief factor k (0 B k B 1):

pI ¼ 1� kð Þr0: ð2Þ

A value of k = 1 (complete stress relief) applies to the

case of an unsupported tunnel, while k = 0 (no stress

relief) applies to the theoretical case where support is

installed before excavation. The stress relief factor governs

the amount of pre-deformation, accounts for the stiffness

and for the installation point of the support and is estimated

by one of the methods mentioned in the previous section.

Figure 2 shows the stress relief factor k (calculated

according to the implicit method for the parameter values

of Table 1) as a function of the uniaxial compressive

strength fc. The lower the ground strength, the more

pronounced will be the yield of the core ahead of the face,

the higher will be the stress relief factor k and,

consequently (cf. Eq. 2), the lower will be the fictitious

internal pressure pI.

The third step simulates the transition from State 1 to the

final state prevailing far behind the face (‘‘State 2’’) by

activating the finite elements that simulate the support and

by setting the tractions at the tunnel boundary equal to

zero. The resulting values include the final displacement

and rock load as well as the lining forces (bending

moments and hoop forces). A stiff lining that is installed

close to the face prevents the development of further

convergences and thus further stress relief. As a conse-

quence, the final lining loading practically corresponds to

the radial stress prevailing at the tunnel boundary at State

1, i.e. to the internal pressure pI, which, as mentioned

above, decreases with the strength of the ground. The

consequence is that a weak ground develops a lower

loading.

Figure 3 shows, as an example, the numerical results

obtained by the FEM code PLAXIS (Brinkgreve 2002) for

a non-circular tunnel with the model parameters of Table 1

(lining data according to the last column). The stress relief

factors were taken from Fig. 2 with a stiffness k = 1 GPa/m.

The calculated bending moments and axial forces

(although not manageable structurally) also illustrate the

existence of the paradox. The paradox thus applies not only

to analytical solutions that incorporate many simplifica-

tions, but also to the widely used numerical plane strain

computational method.

2.3 Numerical Axially Symmetric Analysis

On account of the uncertainties introduced by the simpli-

fying assumptions of plane strain analyses with respect to

pre-deformation (which, as discussed above, is a very

important parameter), it is reasonable to ask whether the

paradox is a problem specifically of the plane strain model

or if it also occurs in spatial (i.e., three-dimensional or

axisymmetric) analyses which do not involve assumptions

about convergences ahead of the face. An additional reason

for raising this question is that plane strain analyses, in

contrast to spatial calculations, do not correctly reproduce

the actual stress history of the ground, and this may

influence the results not only quantitatively, but also

qualitatively (Cantieni and Anagnostou 2009a, b).

Let us therefore investigate the behaviour of the axially

symmetric model of a deep cylindrical tunnel. The problem

setup is exactly the same as in Sect. 2.1, the only difference

being that we no longer make the plane strain assumption.

The problem is solved numerically by the so-called ‘‘steady

state method’’, a method introduced by Nguyen-Minh and

Corbetta (1991) for efficiently solving problems with con-

stant conditions in the tunnelling direction by considering a

Fig. 2 Stress relief factor k as a function of the normalized uniaxial

compressive strength fC/r0 for the radial stiffness of the lining k of 0.1

and 1 GPa/m (other parameters according to Table 1)
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reference frame, which is fixed to the advancing tunnel face.

A comparison of the steady state method with the more

widely used ‘‘step-by-step method’’, which handles the

advancing face by deactivating and activating the ground

and support elements, respectively, was presented recently

in this Journal by Cantieni and Anagnostou (2009a). As

discussed by the Authors, the steady state method applies to

the borderline case of continuous tunnel advance (round

length s = 0).

Figure 4a shows the model. The lining is modelled as an

elastic radial support with stiffness k = dp/du, where p and

u denote its radial loading and radial displacement,

respectively. The radial stiffness k of a ring-shaped lining

is equal to ELd/a2, where a, d, and EL denote its radius,

thickness, and Young’s modulus, respectively. The longi-

tudinal bending stiffness of the lining will not be taken into

account. The lining is installed at a distance e behind the

tunnel face.

Figure 4d shows the development of radial stress at

r = a (which for y [ e is identical with the lining loading)

along the tunnel for two values of the uniaxial compressive

strength of the ground fc. It can be easily seen that—

analogously to the results of the CCM—both the radial

stress ahead of the face and the pressure developing upon

the lining are lower in the case of the lower strength

ground, while the deformations (particularly the ones

occurring ahead of the face) and the extent of the plastic

zone are larger (Fig. 4b, c respectively).

In order to gain more information about the behaviour of

the model, a parametric study was performed on the effects

of ground strength fc, unsupported length e and lining

stiffness k. Figure 5a and b shows the final lining pressure

p? as a function of the uniaxial compressive strength

fc (both normalized by the initial stress r0) for a stiff and a

soft lining (k = 1 and 0.1 GPa/m, respectively). Both

diagrams clearly show the counter-intuitive behaviour (the

load increasing with the ground quality) at unsupported

lengths e up to 2 m. Similarly to the CCM (Sect. 2.1), the

stiffer the lining and the shorter the unsupported span, the

more pronounced is the paradox.

The lower the strength of the ground, the more will the

radial stress in the core ahead of the face decrease and, as

the lining actually undertakes the role of the core after

excavation, the lower will be the lining load. If the strength

of the ground is high, however, the core ahead of the face

will be able to sustain a high radial stress and, as a stiff

lining that is installed close to the face does not allow for

additional deformations and stress relief, a high load will

develop upon the lining. On the other hand, a low stiffness

lining or a long unsupported span allow deformations and

stress relief to develop behind the face (whatever the

strength of the ground) with the consequence that the

paradox becomes less pronounced.

As the convergence of the excavated profile is a directly

observable phenomenon in tunnelling, unlike rock pressure

(and in fact large convergences are what tunnel engineers

associate with poor quality ground), it is interesting to

check the model behaviour also with respect to deforma-

tions. Figure 5c and d shows the convergence uc of the

excavated section (uc = u? – u(0)) as a function of the

ground strength fc and of the unsupported span e. It can be

seen that the model predictions correspond to expectations:

Fig. 3 Numerically determined distribution of the a hoop force N,

b bending moment M, c deformation of the tunnel boundary u and

d extent of the plastic zone for two values of the uniaxial compressive

strength fc
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the lower the strength, the larger the convergence. This is

true also concerning the convergence of an unsupported

tunnel (Fig. 6). The model behaviour is counter-intuitive

only with respect to the load developing upon the lining.

3 Reasons for the Discrepancy Between Model

and Reality

Although the reason for the unexpected model behaviour is

understood, it is still puzzling, why such behaviour is not

observed in reality. Obviously there must be one or more

modelling assumptions which contradict what happens in

reality and which are responsible for the observed differ-

ence between model behaviour and actual behaviour. The

results of the previous section provide useful indications as

to the relevant modelling assumptions.

The finding that the paradox is due to deformations and

to the stress relief associated with the plastic yield of the

ground ahead of the face indicates that the modelling

assumptions which provide for this stress relief may be

responsible for the paradox. As explained below under

points (i) and (ii) there are at least two reasons why the

actual deformations of the ground and the stress relief

ahead of the face may be smaller than in the computa-

tional models of Sect. 2 which show the paradoxical

behaviour.

The finding that the paradox occurs particularly under

the modelling assumption that a stiff lining is installed near

the face (and becomes less and less pronounced or disap-

pears when the ground is allowed to converge behind the

face) indicates that this modelling assumption may be an

oversimplification. In fact, there are several sources of

deviation between the model and reality which are asso-

ciated with the development of deformations behind the

face. These deviations may also explain the difference

between the behaviour of the model and actual behaviour,

i.e. the absence of the paradox in reality. The deformations

behind the face may occur intentionally (as in the case of

yielding supports, see point (iii) below) or unintentionally,

for example due to support destruction (iv), due to the

excavation and support installation sequence (v–vii) or due

to the early stiffness of the support components (viii).

Deformations even occur in cases with a presumably stiff

support as in the case of a segmental lining in shield tun-

nelling (ix).

(i) Time-dependency of the ground behaviour The first

reason is of a fundamental nature, as it is associated with

the rheological properties of the ground. Creep is particu-

larly important in the case of overstressed ground (i.e.,

when the stresses reach its bearing capacity) and is there-

fore also important for the question under consideration. In

general, plastic yielding develops with a certain delay

which is dependent on its rheological properties. The latter,

together with the advance rate, are decisive in terms of the

extent of plastic yield and the amount of stress relief ahead

of the advancing face. The higher the viscosity of the

ground and the higher the advance rate, the smaller will be

the plastic deformations and the stress relief and the less

pronounced will be the paradox (the effect of the ground

strength appears with a delay—behind the face). Section 4

confirms this hypothesis by means of numerical

computations.

(a)

(b)

(c)

(d)

Fig. 4 a Axially symmetric model and boundary conditions; b extent

of the plastic zone; c radial displacement u of the ground at the tunnel

boundary; d radial stress at the tunnel boundary (for y [ e = 1 m, the

radial stress corresponds to the ground pressure on the lining)
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(ii) Face support or reinforcement The second effect is

associated with specific measures that are often applied

in weak ground in order to stabilize the face or to limit

its extrusion. Face bolting increases the bearing capacity

of the core ahead of the face and, as the reinforced core

is able to sustain a higher radial stress, limits stress

relief. Consequently, the paradox should become less

pronounced. Section 5 investigates this hypothesis and

shows that the paradox disappears only at very high face

support pressures that are barely feasible from a tech-

nical perspective.

(iii) Yielding support Yielding supports are installed

close to the face and allow the ground to converge under

an approximately constant pressure. Figure 7 shows the

support measures applied in the case of the yielding

support developed for the Sedrun Lot of the Gotthard

Base Tunnel. As the paradox becomes less pronounced

or disappears when the ground is allowed to converge

behind the face, it is reasonable to expect that it will not

occur in the case of yielding supports. Section 6 con-

firms this hypothesis quantitatively. The model exhibits

the expected behaviour: the higher the strength of the

ground, the lower the rock pressure and the smaller the

convergence.

(iv) Damage to the support Decreasing ground quality in

tunnelling is recognized through increasing convergences.

In the case of a stiff support, large deformations can only

occur if the ground pressure overstresses and damages the

lining (Fig. 8). Damaged support offers only a low or zero

resistance to deformations. As already discussed (Fig. 6),

the model of an unsupported tunnel exhibits the expected

behaviour: the convergences increase with decreasing

ground strength.

(v) Partial face excavation In the case of partial face

excavation (e.g. the top heading, bench- and invert-exca-

vation method), the stiffness of the support system is low

(a)

(c) (d)

(b)

Fig. 5 Effect of the normalized uniaxial compressive strength fc/r0

on the a normalized final lining pressure p?/r0 for a radial lining

stiffness k of 1 GPa/m; b normalized final lining pressure p?/r0 for a

radial lining stiffness k of 0.1 GPa/m; c normalized convergence uC/a
for a radial lining stiffness k of 1 GPa/m; and d normalized

convergence uC/a for a radial lining stiffness k of 0.1 GPa/m

Fig. 6 Normalized radial convergence of an unsupported tunnel uC/a
as a function of the normalized uniaxial compressive strength fc/r0

and of the angle of internal friction u
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before completing the excavation of the cross-section and

closing the lining at the invert (A in Fig. 9). The initially

low stiffness allows for convergences behind the face,

which should reduce or even eliminate the paradoxical

behaviour (according to the findings of Sect. 2).

(vi) Staggered support application The construction

process is usually such that the application of support

measures (steel sets, shotcrete, bolts) is staggered along the

tunnel alignment (Fig. 7, B in Fig. 9). The stiffness of the

support system is initially low and increases with the dis-

tance from the face. The ground can thus converge in the

regions close to the face, thereby reducing or eliminating

the paradoxical behaviour.

(vii) Unsupported span According to Fig. 5, the cases

with an unsupported span of e = 0 yield the most pro-

nounced paradox. In conventional tunnelling, an unsup-

ported span of e = 0 is not feasible. Even if all support

components are installed immediately after each excava-

tion round right at the face, the next excavation step (s [ 0)

would temporarily create an unsupported span (C in

Fig. 9). Therefore, the modelling assumption of e = s = 0

(underlying the curves denoted by e = 0 of Fig. 5), which

almost entirely prevents the development of convergence

behind the face, represents only a theoretical limiting case.

(viii) Stiffness of green shotcrete Another possible source

of deformations behind the face is the low stiffness of

green shotcrete. The final Young’s modulus of shotcrete is

normally reached only after several days. For high advance

rates, the stiffness of the lining is therefore low near the

face (D in Fig. 9). Section 7 investigates by means of

numerical computations whether the paradox persists when

taking this effect into account, and shows that it is a rather

minor effect. The counter-intuitive model behaviour dis-

appears only at very high advance rates ([20 m/day).

Fig. 7 Scheme of the yielding

support system realized in the

Sedrun Lot of the Gotthard Base

Tunnel (after Ehrbar and

Pfenninger 1999)

Fig. 8 a Historical picture of a

tunnel with damaged wooden

support; b reshaped cross-

section (in the front of the

picture) after the support was

damaged (in the background of

the picture) in the Faido Lot of

the Gotthard Base Tunnel

(courtesy of AlpTransit

Gotthard AG, Switzerland)
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(ix) TBM tunnelling With respect to TBM tunnelling, the

assumptions of e = 0 (no unsupported span) and s = 0

(zero round length), which lead to the most paradoxical

model behaviour (Fig. 5), seem at a first glance to be

realistic because of the continuous advance of the shield.

However, the design of the machines always provides a

certain ‘‘overcut’’ DR between excavation diameter and

shield extrados, which is needed for steering the machine

(and sometimes also for avoiding jamming of the shield).

The overcut allows the ground to converge behind the

face (E in Fig. 9). Additional deformations may occur

behind the shield even in the presence of a stiff seg-

mental lining, depending on the type and on the point of

application of the backfill (F in Fig. 9). Section 8

investigates the effects of the overcut in more detail and

shows that the overcut reduces or even eliminates the

paradoxical behaviour.

4 Effect of Creep

4.1 Computational Model

Time-dependency is taken into account by applying the

elasto-viscoplastic creep model after Madejski (1960). The

inset in Fig. 10 shows the micro-mechanical model, which

consists of an elastic spring in series with a Bingham

model. The strain rate _eij is resolved into an elastic and an

inelastic part:

_eij ¼ _ee
ij þ _ep

ij: ð3Þ

The elastic part depends linearly on the stress rate

(Hooke’s law), while the inelastic part _ep
ij; which

represents combined viscous and plastic effects, reads

according to the classic formulation of Perzyna (1966) as

follows:

(a)

(b)

Fig. 9 Sources of unavoidable deformations during a conventional

tunnelling and b TBM tunnelling

Fig. 10 Problem layout and boundary conditions of the step-by-step

numerical model including the sequence of the calculation steps and

the micro-mechanical material model
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dep
ij

dt
¼ f

g
og

orij
; ð4Þ

where f, g, and g denote the yield function, the plastic

potential and the viscosity, respectively. According to this

equation, both the deviatoric and the volumetric strains are

time-dependent. In contrast to more sophisticated time-

dependent constitutive models (e.g. the SHELVIP model,

Debernardi and Barla 2009, and the CVISC model, Itasca

2006), the instantaneous response of the assumed material

model is purely elastic.

As the development of plastic deformations takes time,

the extent of the plastic zone ahead of the tunnel face and

the magnitude of the pre-deformations also depend on the

advance rate. It is easy to show (by means of a dimensional

analysis) that the response of the model depends on the

product of the advance rate v and the viscosity g (c.f.

Bernaud 1991). The effect of a high advance rate is

equivalent to that of a high viscosity. In the borderline case

of an ‘‘infinitely’’ rapid excavation, only elastic deforma-

tions will occur around the advancing face. In general, the

lower the advance rate, the larger will be the plastic

deformations.

The ground pressure developing upon the lining is

determined by means of a transient stress analysis based on

an axially symmetric model (Fig. 10). The tunnel advance

is simulated with 60 excavation steps, each containing an

instantaneous advance of s = 1 m, followed by a transient

calculation covering a period of 1 day (overall advance rate

v = 1 m/day). Figure 10 shows the sequence of excavation

and support installation. After 60 steps, tunnel advance is

halted and a transient analysis is performed in order to

study the development of deformations and rock pressures

during the standstill. The analysis stops when a steady state

is reached, i.e. when the extrusion rate of the face becomes

very small.

For the purpose of comparison, we also carried out time-

independent elasto-plastic computations (g = 0). In con-

trast to Sect. 2.3, the time-independent problem of the

present section was also solved by the step-by-step method,

in order to eliminate the effect of the round length s, which

is equal to zero in the steady state method.

The calculations have been carried out with the

parameters of Table 1, an unsupported span of e = 1 m

and various viscosity values. Table 2 gives a sense of the

numerical values of viscosity g (a less familiar material

constant) by making reference to the response of the rela-

tively simple model of a circular unsupported tunnel under

plane strain conditions. The time t95% denotes the period

that must elapse in order that the time-dependent conver-

gence reaches 95% of its final value. Details can be found

in the Appendix A.

4.2 Model Behaviour

Figure 11a and b shows the pressure distribution upon

the lining for elasto-plastic (g = 0) and elasto-visco-

plastic (g = 106 kPa day) ground behaviour, respectively,

and for two values of the uniaxial compressive strength

fc. In contrast to elasto-plastic ground, elasto-viscoplastic

ground responds as expected (the load increases with

decreasing ground strength). The reason for the model

behaviour becomes evident if we consider the radial

deformations in the ground ahead of the face (Fig. 11c,

d). In contrast to elasto-plastic ground, the radial defor-

mations ahead of the face and thus also the stress relief

in elasto-viscoplastic ground depend only slightly on the

ground strength fc, because the short-term response is

mainly elastic for the assumed advance rate and

viscosity.

Figure 12 shows the results of a parametric study into

the effects of viscosity g and ground strength fc on the

lining pressure developing at a distance of five tunnel

diameters behind the face. It can be seen that the para-

dox ceases to exist at viscosities g C 105 kPa day, i.e.

when the response of the ground to tunnelling takes at

least a few weeks (Table 2). Such a slow response is

nothing unusual. For example, Fig. 13a–c shows the

time-development of the face extrusion measured during

excavation standstills at some cross-sections in the

northern stretch of the Sedrun Lot, which is part of the

new Gotthard Base Tunnel. The deformations develop

within a period of 1 week to 1 month. The convergences

recorded in the Saint Martin La Porte tunnel show that

the transient process may even continue for several

months (Fig. 13d).

In conclusion, as a consequence of the time-dependency

of the ground response, the stress relief ahead of the face

may be much less pronounced than predicted by the sim-

plified time-independent computational models. This is

sufficient to make the paradox disappear.

Table 2 Response times of a circular unsupported tunnel under plane

strain conditions

Viscosity g (kPa day) t95%

103 A few hours to a few days

104 A few days to a few weeks

105 A few weeks to a few months

106 A few months to a few years

107 Several years

On a Paradox of Elasto-Plastic Tunnel Analysis 139

123



5 Effect of Face Reinforcement

5.1 Computational Model

The effect of face reinforcement on the extrusion of the

core has been studied intensively for shallow (e.g. Wong

et al. 2004; Peila 1994) and also for deep tunnels (e.g.

Oreste et al. 2004). The reinforcement provides an addi-

tional confinement for the ground in an axial direction,

which increases the bearing capacity of the core, i.e. its

ability to sustain a radial pressure, and therefore reduces

the stress relief, which, as discussed in Sect. 2, is the main

cause of the counter-intuitive behaviour.

The quantitative investigation of these effects is based

upon the axially symmetric model of Fig. 4a. The face

reinforcement is taken into account in a simplified manner

by prescribing a uniform pressure pF to the face (cf. inset of

Fig. 14).

5.2 Model Behaviour

Figure 14 shows the ground pressure developing upon the

lining in the final state far behind the tunnel face as a

function of the normalized ground strength fc and of the

normalized face support pressure pF. The higher the face

support pressure, the higher will be the final load. The

model behaviour agrees with the results of Boldini et al.

(2000) and Kasper and Meschke (2006), but does not seem

to support the hypothesis formulated by Lunardi (2000),

which postulates that the stresses on the lining are lower

when the advance core is reinforced.

As expected on the basis of qualitative factors, the

paradox becomes less and less pronounced with increasing

face pressure and disappears at pressures pF higher than

0.1–0.2 r0. This threshold value is not feasible in the case

(a) (b)

(c) (d)

Fig. 11 Development of ground pressure along the tunnel a for

elasto-plastic ground with time-independent response, b for an elasto-

viscoplastic ground. Radial convergences along the tunnel c for

elasto-plastic ground with time-independent response, d for an elasto-

viscoplastic ground (c.f. Gioda and Cividini 1996)

Fig. 12 Normalized final pressure on the lining p?/r0 as a function

of the normalized uniaxial compressive strength fc/r0 and of the

viscosity g
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of deep tunnelling under a high initial stress r0. Consider,

for example, a heavy face support consisting of one 300 kN

bolt per sqm, thus providing a face pressure pF of 0.3 MPa.

In order that the normalized face support pressure pF/r0 is

higher than the threshold value of 0.1–0.2, the depth of

cover should be smaller than about 100 m. Face rein-

forcement is of secondary importance as far as the topic of

the present paper is concerned.

6 Effect of Yielding Support

6.1 Computational Model

The present section investigates whether the deformations

behind the face, which occur intentionally by means of a

yielding support, eliminate the paradox. For the purpose

of the present investigation, the mixed boundary condi-

tion presented in the recent paper of Cantieni and

Anagnostou (2009b) will be applied in order to map the

complete behaviour of the yielding support system.

The response of the yielding support to loading can be

approximated by a tri-linear characteristic line (Fig. 15a).

The first part of the characteristic line is governed by the

stiffness kI of the system up to the onset of yielding. The

second part of the line corresponds to the phase, where

the support system deforms under a constant pressure py.

When the amount of over-excavation uoe is used up, the

third phase is initialized. The system is made practically

rigid (stiffness k), e.g. by applying shotcrete, with the

consequence that an additional pressure accumulates upon

the lining. A yielding support which consists of sliding

steel sets placed every 0.5 m, each offering a sliding hoop

resistance of 800 kN (four friction loops offering a sliding

resistance of 200 kN each), will provide a yielding sup-

port pressure py equal to 400 kPa. After the over-exca-

vation gap is used up, a shotcrete lining is placed, which

offers a stiffness k of 1 GPa/m. The stiffness kI is of

subordinate importance for the final ground pressure and

is taken as 1 GPa/m. With the exception of this boundary

condition, the numerical model is the same as previously

(Fig. 4a).

(a)

(b)

(c)

(d)

Fig. 13 Time-development, a–c of the face extrusion uy in the

Sedrun Lot of the Gotthard Base Tunnel (courtesy of AlpTransit

Gotthard AG, Switzerland) and, d of the convergence uc in the Saint

Martin La Porte tunnel (Barla et al. 2008)

Fig. 14 Final lining load p? as a function of the uniaxial compres-

sive strength fc and of the face support pressure pF (all values

normalized by the initial stress r0)
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6.2 Model Behaviour

Figure 15b shows the ground pressure developing upon the

lining in the final state far behind the tunnel face as a function

of the normalized ground strength fc and of the amount of

over-excavation uoe. The upper line (uoe = 0) denotes a rigid

support installed 1 m behind the face (c.f. line e = 1 m in

Fig. 5a) and shows the paradox. If a very small theoretical

over-excavation uoe of 0.05 m is applied, the paradox dis-

appears. In the present example, the over-excavation will not

be used up completely in the case of high amounts of over-

excavation. Consider, for instance, an over-excavation of

0.4 m. The final rock pressure acting upon the lining is equal

to the yielding support pressure py for all ground strengths,

because the over-excavation is not used completely and thus

the third phase of the system is not reached. (For a detailed

analysis of the interaction between yielding supports and

ground see Cantieni and Anagnostou 2009b). Figure 15c

shows the convergences of the opening uC (sum of the

convergences of the support and the convergences over the

unsupported span) as a function of the normalized ground

strength fc. The deformations also show an intuitive behav-

iour: lower convergences for increasing ground quality, par-

ticularly for cases where the over-excavation is not used up.

In summary, the model of a tunnel with yielding support

shows an intuitive behaviour for both the rock pressure on

the lining and the ground convergences.

7 Effect of the Low Stiffness of Green Shotcrete

7.1 Computational Model

In general, a shotcrete lining develops its stiffness over time

and reaches its long-term stiffness a certain distance behind

the face. The assumption of a stiff shotcrete lining right from

the start is valid only for low advance rates. The higher the

advance rate, the newer will be the shotcrete and the lower its

resistance to ground deformations in the vicinity of the face.

The time-dependent interaction between shotcrete and the

ground has been investigated, e.g. by Graziani et al. (2005),

Oreste (2003), Boldini et al. (2005) and Pöttler (1990). In the

present section we focus on the question of whether the

paradox (which, as stated in Sect. 2, is particularly pro-

nounced in the case of stiff linings) persists when taking into

account the initially low stiffness of green shotcrete.

In our computations, the time-dependency of the

Young’s modulus of shotcrete EL(t) is taken into account

by adopting the empirical relationship of Chang (1994):

ELðtÞ=EL;28 ¼ 1:062 exp �0:446

t0:6

� �
; ð5Þ

where EL,28 denotes the Young’s modulus of shotcrete at

28 days (taken to 30 GPa in the present case) and t is the

shotcrete age in days. Figure 16a shows the evolution of

the normalized Young’s modulus of the shotcrete over the

time, while Fig. 16b, which is nothing more than a simple

transformation of Fig. 16a, shows the distribution of the

Young’s modulus along the tunnel for advance rates of 1,

8, and 20 m/day.

Again, the axially symmetric numerical model of

Fig. 4a is used and the problem is solved by the steady

state method. The time-dependency of the shotcrete stiff-

ness (Fig. 16a) or the spatial variation of the stiffness along

the tunnel (Fig. 16b) is taken into account numerically by

considering a series of superimposed lining layers (see

Appendix B for details).

7.2 Model Behaviour

Figure 17 illustrates the effect of the advance rate v on the

distribution of ground pressure along the tunnel for a lower

(a)

(b)

(c)

Fig. 15 Normalized convergence uc/a as a function of the normalized

uniaxial compressive strength fc/r0 and of the normalized yield

pressure py/r0 of the support
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and for a higher uniaxial compressive strength fc of the

ground, while Fig. 18 provides a more complete picture of

these effects on the final lining load. The results agree with

those of Graziani et al. (2005) concerning the effect of the

advance rate on the final lining pressure. As a consequence

of the reduced stiffness of the shotcrete near the face, the

counter-intuitive behaviour becomes less and less

pronounced as the advance rate increase, but nevertheless

does not disappear even at very high advance rates (20 m/

day). Advance rates such as this cannot be realized in

combination with shotcrete.

In conclusion, the counter-intuitive model behaviour

persists even when taking into account the changes to the

shotcrete over time.

8 Effect of the Overcut in Shield Tunnelling

8.1 Computational Model

We shall next investigate whether the deformations that

inevitably occur in shield tunnelling are such that the

paradox disappears. The computations concern the same

axially symmetric computational model as in Fig. 4a. The

only difference is the boundary condition at the tunnel

wall, which in the present case accounts, (i), for the gap

existing around the shield due to the overcut DR (Fig. 9b)

and, (ii), for the complete radial unloading of the excava-

tion boundary at the installation point of the segmental

(a) (b)

Fig. 16 a Time-development of the Young’s modulus of the shotcrete after Chang (1994); b Normalized Young’s modulus of the shotcrete as a

function of the distance from the face and of the advance rate v

(a) (b) (c) (d)

Fig. 17 Development of the ground pressure acting upon the lining for advance rates v of 0–20 m/day

Fig. 18 Normalized final lining load p?/r0 as a function of the

normalized uniaxial compressive strength fc/r0 and of the advance

rate v

On a Paradox of Elasto-Plastic Tunnel Analysis 143

123



lining immediately behind the shield tail (at y = 8 m).

Details concerning the modelling of the ground-support

interface can be found in Ramoni and Anagnostou (2010a).

Taking into account the modulus of elasticity of the steel

(ES = 210 GPa) and assuming a shield thickness of

dS = 8 cm, the radial stiffness of the shield is taken as

kS = 1 GPa/m.

8.2 Model Behaviour

Figures 19a, b and c show the distribution of the ground

pressure along the tunnel (shield up to y = 8 m, segmental

lining for y [ 8 m) for an overcut DR of 0, 0.15 and

0.30 m, respectively, and for two values of the uniaxial

compressive strength fc. Let us consider first the case of

zero overcut. (As an overcut is always foreseen for the

purpose of steering the machine, this case is rather theo-

retical but may occur also in practice in exceptional cases,

e.g. due to packing of the gap around the shield with fines.)

The model behaviour is counter-intuitive in this case

(Fig. 19a), in that the higher strength ground develops a

higher load than the lower strength ground. The paradox is

particularly pronounced in relation to the shield loading

and also applies to the lining.

In the case of an overcut DR of 0.15 m or higher,

however, the system allows for deformations to occur

behind the face and thus the paradox disappears. According

to Fig. 19b, the ground closes the gap and starts to exert a

load upon the shield only in the case of the lower strength

value (fc = 1 MPa). In the case of an even larger overcut

(DR = 0.30 m, Fig. 19c), the gap around the shield

remains open even for the lower strength value.

9 Conclusions

The computational models commonly used for tunnel

design predict under certain conditions (i.e. support from a

stiff lining near to the tunnel face, weak ground, high initial

stress) that the load developing upon the lining increases

with the strength of the ground. Such behaviour deserves to

be called a paradox because it is clearly contrary to what

one would expect on the basis of intuition and tunnelling

experience. The reason for this counter-intuitive behaviour

is the stress relief which takes place in the ground ahead of

the face and which is more pronounced in the case of a low

strength ground. The decisive simplifying modelling

assumptions, i.e. the assumptions which cause the differ-

ence between model behaviour and actual behaviour, are

related: (i), to the rheological behaviour of the ground

(which is usually neglected in design computations, but is

particularly important in the case of overstressed ground,

limiting the extent of stress relief ahead of the face); and,

(ii), to the stiffness of the support system, which may—due

to the nature of construction procedures—be considerably

lower than it is assumed to be in the design calculations.

The effects of face reinforcement or of the time-depen-

dency of the shotcrete stiffness are of secondary impor-

tance with respect to the investigated aspect of the model

behaviour.

The findings of the present paper illustrate the uncer-

tainties (both quantitative and qualitative) that exist in all

computational models—even in the very familiar and well-

established ones—and emphasize the importance of a

careful interpretation of the computational results and of a

critical review of the underlying modelling assumptions.

Taking into account the two main effects mentioned above

in the design computations eliminates the paradoxical

model behaviour.

Appendix A: Demonstration of the Meaning

of the Viscosity g

In order to demonstrate the meaning of the viscosity values

we examine the classic rotationally symmetric tunnel

Fig. 19 Development of the ground pressure p along the tunnel (shield and lining) for two values of the uniaxial compressive strength fc and for

an overcut DR of 0–0.30 m
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problem under plane strain conditions. The constitutive

model was presented in Sect. 4, while the model parame-

ters are given in Table 1.

Starting from the initial state, we first simulate tunnel

excavation on the assumption that it occurs instanta-

neously. We then carry out a transient analysis until a

steady state is reached. Figure 20 shows the typical time-

development of the convergence. One can see the instan-

taneous, excavation-induced convergence, which, as

explained in Sect. 4, is purely elastic. As a measure of how

rapidly the ground responds to tunnel excavation, an

arbitrary characteristic time period may be adopted—for

example, the time t95% that must elapse in order that the

time-dependent convergence reaches 95% of its final value.

In the example of Fig. 20 (viscosity g = 105 kPa day), this

time period will be about 15 days long. For dimensional

reasons, the characteristic time is proportional to the vis-

cosity g (a viscosity 10 times higher will mean that the time

taken to reach a given deformation will increase by a factor

of 10).

Table 2 is based upon the results of a parametric study

into the effects of the uniaxial compressive strength fc and

the viscosity g on the characteristic time t95% (Fig. 21).

Appendix B: Numerical Modelling of Time-Dependent

Support Stiffness

Boundary Condition for a Lining of Constant Stiffness

The resistance of a lining with constant stiffness k is taken into

account in the steady state numerical solution method by

imposing (as a boundary condition) a radial pressure

p(y) which is proportional to the deformation of the lining at

location y and depends therefore not only on the convergence

u(y) of the ground but also on its deformation u(e) at the

installation point (y = e) of the lining (Anagnostou 2007):

pðyÞ ¼ k ðuðyÞ � uðeÞÞ: ð6Þ

Boundary Condition for a Lining of Time-Dependent

Stiffness

In the case of a lining with time-dependent properties,

however, the calculation of the pressure along the lining

has to be carried out by numerical integration in the

opposite direction to that of the tunnel advance (Anag-

nostou 2007). Figure 22a shows schematically the inte-

gration points and intervals. The pressure pj?1 at point

j ? 1 can be expressed by following equation:

pjþ1 ¼ pj þ Dpjþ1; ð7Þ

where Dpj?1 denotes the increase in pressure over the

integration interval j ? 1, which extends from point j to

point j ? 1:

Dpjþ1 ¼ kjþ1 ðujþ1 � ujÞ; ð8Þ

where uj?1-uj is the increase in ground deformation from

point j to point j ? 1, while kj?1 denotes the average

stiffness over the integration interval j ? 1:

Fig. 20 Time-development of the convergence of an unsupported

circular tunnel under plane strain conditions

Fig. 21 Characteristic time t95% as a function of the normalized

uniaxial compressive strength fc/r0 and of the viscosity g (the time

axis labels y, m, w, d and h denote year, month, week, day and hour,

respectively)

(a)

(b)

Fig. 22 a Definition of the lining segments and nodes, b Definition of

the lining layers
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kjþ1 ¼
ELðtÞ d

a2
; ð9Þ

where d is the thickness of the lining, a is the tunnel radius,

EL(t) is the Young’s modulus of the lining (according to

Eq. 5) and t is the age of the shotcrete. The latter depends

on the distance from the face and on the advance rate:

t ¼ ðyj þ yjþ1Þ=2

v
: ð10Þ

Implementation of the Boundary Condition

in the Numerical Model

The boundary condition described by the Eqs. 6–10 is

implemented in the numerical model by a series of super-

imposed fictitious lining layers, each having a different

stiffness k(i) and starting at a different distance behind the

face (Fig. 22b): The fictitious lining layer i starts at inte-

gration point i - 1 (and, therefore, the radial displacement

ui - 1 represents the pre-deformation to be considered for

this layer), contains all integration intervals Ci and has a

stiffness which is equal to the increase in stiffness from the

integration interval i - 1 (i.e. the integration interval just

before the starting point of the fictitious layer i) to inte-

gration interval i (i.e. the first integration interval belonging

to fictitious layer i):

kðiÞ ¼ ki � ki�1 ðwith k0 ¼ 0Þ: ð11Þ

It will subsequently be demonstrated that the

superimposed fictitious lining layers defined in this way

are equivalent to a lining with a time-dependent stiffness,

i.e. they provide a total support pressure which is equal to

that of Eqs. 6 and 7.

Proof

First of all, one can readily verify that Eq. 11 ensures that

the total stiffness offered by the superimposed fictitious

lining layers in an arbitrary interval m is equal to the

stiffness km of the shotcrete lining over this interval. The

total stiffness offered by the superimposed fictitious layers

is equal to the sum of the stiffnesses of the layers con-

taining the interval m, i.e. of the layers 1 to m. Conse-

quently, the total stiffness is equal to

Xm

i¼1

kðiÞ ¼
Xm

i¼1

ki � ki�1ð Þ ¼ km: ð12Þ

As each fictitious lining layer has a constant stiffness, its

resistance to deformation can be calculated on the basis of

Eq. 6. Taking into account the layer stiffness according to

Eq. 11, as well as the relevant pre-deformation of each

layer (which as said above is equal to ui-1 for layer i), the

pressure exerted by an arbitrary layer i at an arbitrary point

j reads as follows:

p
ðiÞ
j ¼ kðiÞ uj � ui�1

� �
¼ ki � ki�1ð Þ uj � ui�1

� �
: ð13Þ

The total pressure at point m is obtained by a summation

of the pressures of the layers that contain point m, i.e. of the

layers 1 to m:

pm ¼
Xm

i¼1

pðiÞm ¼
Xm

i¼1

ki � ki�1ð Þ ðum � ui�1Þ: ð14Þ

Analogously, for point m ? 1,

pmþ1 ¼
Xmþ1

i¼1

ki � ki�1ð Þ umþ1 � ui�1ð Þ

¼
Xm

i¼1

ki � ki�1ð Þ um � ui�1ð Þ

þ
Xm

i¼1

ki � ki�1ð Þ umþ1 � umð Þ

þ kmþ1 � kmð Þ umþ1 � umð Þ

¼ pm þ
Xmþ1

i¼1

ki � ki�1ð Þ umþ1 � umð Þ

¼ pm þ kmþ1ðumþ1 � umÞ ; ð15Þ

which agrees with Eqs. 7 and 8.
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