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Trajectory Optimization with Implicit Hard Contacts
Jan Carius1, René Ranftl2, Vladlen Koltun2, and Marco Hutter1

Abstract—We present a contact invariant trajectory optimiza-
tion formulation to synthesize motions for legged robotic systems.
The method is capable of finding optimal trajectories subject
to whole-body dynamics with hard contacts. Contact switches
are determined automatically. We make use of concepts from
bilevel optimization to find gradients of the system dynamics
including the constraint forces and subsequently solve the optimal
control problem with the unconstrained iLQR algorithm. Our
formulation achieves fast computation times and scales well
with the number of contact points. The physical correctness
of the produced trajectories is verified through experiments in
simulation and on real hardware. We showcase our method on
a single legged hopper for which jumping and forward hopping
motions are synthesized with an arbitrary number of contact
switches. The jumping trajectories can be tracked on the robot
and allow it to safely liftoff and land.

Index Terms—Dynamics, Optimization and Optimal Control,
Legged Robots

I. INTRODUCTION

MOTION planning of hybrid systems is inherently difficult
due to the presence of both continuous dynamics and

discrete switches. Moreover, the under-actuated nature of free-
floating robots requires the dexterous use of contact forces,
which are precisely the aspect that is intricate to handle
mathematically.

Combining physically realistic dynamics and contact effects
in an optimal control (OC) problem is an active area of
research. The principal difficulty arises from complementarity
conditions – contact forces may only act repulsively and
only when bodies are in contact, furthermore bodies must
not penetrate – which render the problem hard to solve numer-
ically. Consequently, current approaches usually rely on pre-
specified contact configurations, computationally demanding
combinatorial optimization problems, or coarse approximations
of the forces arising during hard contacts [1]–[4]. Thus, most
established methods suffer from at least one of the following:
strongly nonlinear constraints leading to slow convergence,
computationally expensive combinatorial search, necessity to
predefine step sequence, unphysical contact models, or coarse
approximations of physics.

In this paper, we present a novel method for generating
optimal trajectories for legged robots that overcomes the
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above drawbacks. We are able to jointly optimize over gait
sequence, timings, and whole body motion at interactive
rates. The central idea behind our approach is to delegate
the contact constraints to the system dynamics where fast and
robust methods are available to resolve them. This hides the
problematic complementarity constraint from the OC problem
and allows us to employ an unconstrained off-the-shelf Riccati-
based iterative linear quadratic regulator (iLQR) [5] solver. As
iLQR is inapt for handling the nonlinear state constraints arising
from contacts, this would have been prohibitive previously.

Our formulation models hard unilateral contacts using set-
valued force laws [6], which leads to an expression of forces
in terms of the solution of a constrained convex optimization
problem. As a consequence, our approach can be seen as an
instance of bilevel optimization, where the higher-level OC
problem is indirectly constrained by the solution to a lower-level
problem which models the forces arising from hard contacts.
We show how the resulting dynamics model can be used as a
state propagation law in the iLQR framework by formulating
the system dynamics in terms of an unrolled optimization
algorithm [7]. Moreover, a hard contact formulation achieves
configuration-independent contact dynamics, has a controllable
restitution parameter, and handles contact forces and impulses
in a unified manner. Finally, while many methods suffer from
an exponential explosion of mode sequences with increasing
number of contact points, our method scales well in this respect
as only the matrix dimensions in the inner contact solving loop
grow.

We demonstrate the generation of physically correct motions
of a single-legged hopping robot both on real hardware and
in simulation. The motion task can be intuitively specified
through a cost function on the final or intermediate state, and
the optimizer automatically chooses how to reach that goal.
Our algorithm is capable of generating dynamic motions (e.g.,
a jump and forward steps) from a trivial initialization in a
fraction of a second and involves very few tuning parameters.

A. Related work

A widespread approach to motion generation in legged
robotics is to formulate an OC problem and subsequently obtain
trajectories that represent (at least) local optima with respect
to some performance criterion. The critical design choices
therein are the way in which the variational OC problem is
transcribed into a finite-dimensional mathematical program and
how contact constraints are handled.

Among the dominant methods are formulations that divide
the problem into distinct phases corresponding to different
contact configurations. Each phase uses contact-consistent
dynamics [8] and/or the corresponding contact constraints [1],
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[9]–[12]. While this eliminates the hybrid nature of the
problem, the sequence of contact configurations (i.e., the
gait) must be known a priori. Recently, a per-leg phase
switching parametrization was proposed [13], also allowing
the gait sequence to be optimized in a continuous optimization
framework without the use of complementarity constraints. This
appears to be a promising approach, although it remains unclear
how the formulation scales to a larger number of contacts points.
Furthermore, the single body dynamics approximation breaks
down if significant inertia resides outside the main body, e.g.,
for walking robots that have actuators in the knee joints.

On the other hand, methods that attempt to holistically
solve the problem by directly incorporating complementarity
constraints or by mixed integer programming have shown to be
computationally heavy and typically require constraint smooth-
ing for convergence [2], [3], [14]–[21]. As a consequence, these
approaches are not suitable for real-time applications. Recent
work by Werner et al. [21] extends [2] by using a collocation
scheme with complementarity constraints to generate motions
for a biped walking machine. Their approach is capable of
finding dynamic movements given a suitable initialization
without specifying the contact sequence. Our contribution
attempts to solve a similar problem, though we explore the
option of hiding the contact constraints from the optimizer by
folding them into the system dynamics. This enables us to use
two independent specialized routines for solving the contact
and OC problem separately instead of burdening a general
purpose optimizer with both problems at once. This separation
yields a significant reduction in computation time.

The main inspiration for our work is drawn from a formula-
tion by Neunert et al. [4] who introduce an explicit soft contact
model in the system dynamics. Analogous to our approach, this
allows the use of fast and unconstrained Riccati-style solvers for
the OC problem while respecting the full body dynamics with
contacts. Unfortunately, a soft contact model entails an inherent
trade-off between numerical stiffness (hindering convergence
and requiring small time steps) and unphysical behavior (e.g.,
forces acting at a distance) and therefore requires careful tuning
for a given application. We address this problem by using a
variant of Moreau’s time stepping scheme [22] to calculate
hard contact forces, which is advantageous for legged robots
in terms of computational speed and accuracy [23]. We show
how such a dynamics description can be used inside an OC
problem, and that it leads to numerically stable results and fast
evaluation.

Our formulation of hard contacts leads to a so-called bilevel
optimization problem, i.e., an optimization problem that has
another optimization problem embedded in its constraints.
While these types of problems are in general intrinsically hard
due to their non-convex nature, several approaches exist to find
approximate solutions [24]. Our approach is based on unrolling
an iterative optimization algorithm that solves the lower-level
problem together with backpropagation to derive the necessary
gradients for the higher-level problem. Similar formulations
have been successfully used in the context of image processing
and machine learning [7], [25], [26].

B. Contribution

The central contribution of this work is a contact-invariant
trajectory optimization (TO) formulation that reasons about
whole body motion, gait sequence and timing, and foot
placement while respecting hard contact constraints (incl.
friction and impacts) and being computationally competitive. To
the best of our knowledge, no other method is currently capable
of achieving this while preserving the temporal structure of
the OC problem which leads to linear complexity in the
time horizon, independent of the number of contact switches.
Our principal finding is that hard contact constraints can be
efficiently solved in the dynamics description of an OC problem.
This advancement paves the way for online motion planning
for legged systems with contacts.

The physical correctness is verified through hardware ex-
periments on a single-legged hopping robot attached to a
vertical rail. Our focus lies on the generation of jumping
motions because discovering a multi-phase motion with contact
switches is the key competence of a locomotion planner.
Furthermore, to emphasize that our method is suitable for
locomotion tasks, we additionally unlock the forward degree of
freedom in simulation and generate walking motions without
pre-specifying the duration and number of steps.

II. METHOD

Our algorithm solves a discrete-time optimal control problem
of the general form

minimize
τ [·]

J = Φ(x[nf ]) +

nf−1∑
n=0

L(x[n], τ [n], n) , (1)

s.t.
{
x[n+ 1] = f(x[n], τ [n]) ,

x[0] = x0 .
(2)

We assume the initial state x0 and the cost functions Φ and L
to be given. The system dynamics f(x, τ ) are computed by a
Moreau Time-Stepping integration scheme [22], which allows
modeling contacts as hard unilateral constraints. The unknown
inputs τ [·] at each step are found by the unconstrained iLQR
algorithm, which scales linearly in the number of steps nf .

A. Rigid body dynamics under unilateral hard contacts

The equations of motion (EoM) of a free-floating rigid body
system with mj joints can be written as

M(q)u̇− h(q,u, τ ) =

mext∑
i=0

J>i (q)f ext
i , (3)

with mass matrix M ∈ R(6+mj)×(6+mj), centrifugal, Cori-
olis, gravity, and actuation (τ ) terms h ∈ R6+mj , and
external forces f ext

i ∈ R3 with corresponding Jacobians
Ji ∈ R3×(6+mj). For clarity, we drop the dependency on
generalized coordinates q ∈ SE(3) × Rmj and velocities
u ∈ R6+mj below.

By choosing appropriate coordinates q, we can assume
without loss of generality that the external forces only arise
from active unilateral constraints1 (i.e., contact forces) and we

1other external forces that can be expressed as a function of {n, q,u, τ}
can be included in h
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denote the index set of active contacts A. The complementarity
condition between separation (gap between end-effector and
terrain) gi ∈ R3 and force of a hard unilateral contact is
conveniently expressed as a normal cone (N ) inclusion on
velocity level [22]

−ġi ∈ NFi
(f ext

i ) ∀ contacts i ∈ A , (4)

as this directly allows to incorporate friction laws which
are naturally expressed in terms of velocities. One
may split the contact forces into normal and tangen-
tial components f ext

i = [ fi,n f>i,t ]> ∈ Fi,n ×Fi,t. The
force reservoirs Fi allow nonnegative normal forces
(Fi,n = R0+) and tangential forces obeying Coulomb friction
(Fi,t = {ft ∈ R2 | ||ft|| < µ|fi,n|}) with friction coefficient
µ. The intuitive explanation of this formulation is that as long
as the force stays in the interior of its permissible reservoir,
the contact velocity must be zero. Conversely, the velocity
can only be non-zero if the forces are at the border of their
permissible set, i.e., zero normal force or maximum friction
force opposing the direction of motion.

To complete the contact dynamics, it is helpful to express
the equation of motion (3) in local contact coordinates (task
space). This is achieved by realizing that

ġ = Jcu , (5)

where g and Jc are the stacked contact separations and
Jacobians, respectively. By taking the time derivative of (5)
and substituting (3) we arrive at

g̈ = JcM
−1J>c︸ ︷︷ ︸
G

f ext + J̇cu+ JcM
−1h︸ ︷︷ ︸

c

, (6)

where G (Delassus matrix) represents the apparent inverse
inertia at the contact points and c collects all terms that are
independent of the stacked external forces f ext. The principle
of least action now states that the contact forces are given by
the solution of a constrained optimization problem:

minimize
{fi∈Fi}

1

2
f ext>Gf ext + f ext>c . (7)

In the same framework, impulse laws can be used to calculate
instantaneous velocity changes and impulsive forces. By
imposing a time discretization and equality of continuous and
impulsive measures [6], one can unify impulses and force
integrals to a quantity called percussions p. This is the core of
a time-stepping method [6], [22] which integrates the system
dynamics (3, 4, 7) over an interval ∆t by internally resolving
the contact forces.

The essential steps are summarized in Alg. 1. A single call
to this procedure propagates the given starting positions q0

and velocities u0 over the discretization period ∆t. An initial
forward-Euler half step in generalized positions determines the
configuration in the middle of the interval

qm = q0 + (∆t/2)F (q0)u0 , (8)

where F (q0) maps the generalized velocities to the derivative of
the generalized coordinates. The quantities in the middle of the
interval are then used inside the proximal point iteration whose
results are the percussions p that shall act over this interval. The

Algorithm 1 Moreau’s time-stepping algorithm
Input: State {q0,u0} at beginning and torques τ acting during this interval
Forward-Euler half step:
- qm = q0 + (∆t/2)F (q0)u0

- Mm = M(qm)
- hm = h(qm,u0, τ )
For active contacts i ∈ A, assemble Jacobians and local dynamic quantities:
- J>c =

[
· · · Ji(qm)> · · ·

]
- G = JcM

−1
m J>c

- c = (I + ε)Jcu0 + JcM
−1
m hm∆t

Iteratively solve for percussions of active contacts:
Init: pi ← steady state solution in normal direction, zero tangential percussion
for iter = 1:maxIter do

for contact i in A do
pi ← proxFi

[
pi − ri

(∑
j∈AGijpj + ci

)]
(*)

end for
end for
Velocity and position update step:
- ue = u0 +M−1

m (hm∆t + J>c p)
- qe = q0 + ∆tF (q0) (u0 + ue)/2
Output: State qe,ue at end of interval

central iteration scheme (*) combines a fixed-point iteration
with a proximal point projection. The procedure corresponds
to an overrelaxed Gauss-Seidel iteration scheme which was
shown suitable for legged robots [23]. When converged, the
percussions are contained in their respective reservoirs while
fulfilling the complementarity condition (4). The algorithm is
completed by a Euler step in the velocities using the EoM (3)
and applying the midpoint discretization on position level.

Alg. 1 gives us direct control over the restitution coefficients
ε = diag{εi} of each contact. Furthermore, the time-stepping
scheme unifies the treatment of contact states (open, stick,
slip). This means a subsequent optimization algorithm does not
require additional constraints such as no-slip conditions. Instead,
it has control over the contact state and may exploit this to find
optimal motions that may include slipping. The only tuning
parameter is the number of proximal point iterations, which is
easy to choose for a given system by inspecting convergence
plots for p. The factor ri only affects convergence speed and
the choice ri = (

∑
j |Gij |)−1 gives reliable performance in

practice.
By defining our state as x = [ q> u> ]>, this algorithm

directly represents the state-propagation law f(x, τ ) in the
OC problem (2). We use a fixed number of iterations for
solving the percussions which allows taking the derivatives
∂f(x,τ )

∂x , ∂f(x,τ )
∂τ by backpropagation. The derivative is well-

defined almost everywhere except at the kink of the contained
absolute value functions, at which we assume the derivative
to be zero (0 ∈ ∂ abs(x)|x=0). Moreover, our implementation
avoids any branching in the computational graph to make it
suitable for algorithmic differentiation.

B. iLQR optimization

The iLQR algorithm is a single-shooting method and is
explained in detail in [5]. Each iteration consists of three
parts: first, a rollout step that computes the nominal state
trajectory xref[·] given the current input sequence τ [·] with the
propagation law (2). An initial non-diverging policy is therefore
required. Second, a linear quadratic (LQ) approximation of the
OC problem is computed around the nominal state and input
trajectory, which requires quadratic approximation of the cost
function and linearization of the system dynamics, represented
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Fig. 1. Image of the Capler hardware and schematic drawing with the relevant
coordinates and modeling quantities.

by Alg. 1. Third, the resulting quadratic value function leads to
a Bellman equation that can be solved easily in the backwards
pass, resulting in the τ ref[·] and K[·] terms of a linear quadratic
regulator (LQR)-like feedback control law

τ [n] = τ ref[n] +K[n](xref[n]− x[n]) . (9)

Finally, we use line search over the update of τ ref[·] by
evaluating the trajectory cost (1) at different update step sizes
for the new τ ref. For a more detailed description on the iLQR
implementation, the reader is referred to [4], [27].

An important observation is that by formulating the dynamics
as in Sec. II-A, we can generate feasible trajectories without
introducing any additional constraints and can, therefore,
employ an off-the-shelf iLQR implementation. Thus, the special
structure of the OC problem is retained, resulting in linear
complexity in the time horizon. For different applications,
it may be desirable to incorporate additional state or input
constraints. In this setting, linearizations of the constraints
around the trajectory need to be computed in the forward pass to
construct a constrained linear quadratic optimal control (LQOC)
problem. Efficient solvers exist for the backward pass that still
maintain linear time complexity [28], [29]. The feedback law
(9) can also be recovered but does not guarantee admissible
inputs under arbitrary state deviations.

III. APPLICATION ON A SINGLE-LEGGED HOPPER

A. System

We apply our method to a single-legged hopper called
Capler [30], which has three degrees of freedom (DOFs)
(q = [zBH, ϕHFE, ϕKFE]

>) and is actuated by two direct-drive
motors at the hip and knee joints (see Fig. 1). Though
seemingly simple, this system exhibits the main difficulties
of legged robots (nonlinear dynamics, contact switching).
Encoders in the joints and a draw wire sensor for the base
height allow direct measurements of the system state. For
the purpose of demonstrating forward hopping motions in
simulation, we additionally allow sideway displacement in
the x direction and augment the generalized coordinates to
q = [zBH, xBX, ϕHFE, ϕKFE]

>.
As is typical for robotic systems, we set the restitution

coefficients to zero and assume a Coulomb friction coefficient

Fig. 2. Norm of the update to the percussion vector p at each prox iteration.
Convergence is faster in steady-state standing than with an incident velocity.

of µ = 0.7. In Fig. 2 we show how the proximal point iteration
converges rapidly and consequently choose to limit the number
of iterations in Alg. 1 to 30. Given our time discretization
of ∆t = 0.01 s, the update magnitude to p after 30 iterations
amounts to less than 0.05 % of the final magnitude, even in
the case when the hopper is landing from a 15 cm jump and
the percussion has to encounter a 1.77 m/s incident velocity. We
initialize the percussion with p = [0, 0.5]>, which is near the
steady state resting solution.

B. Software implementation

Key to solving (1) efficiently are fast evaluations of the
system dynamics and its derivatives. We use the code generator
RobCoGen [31] to compute the EoM terms in (3), including the
analytic mass matrix inverse required in Alg. 1. Subsequently,
we use the algorithmic differentiation tool CppAD [32] to cal-
culate the partial derivatives of the system dynamics including
contact effects. This tool additionally allows the generation
of code for the evaluation of f and its derivatives. This
procedure eliminates unnecessary computations and function
calls and condenses mathematical operations, which provides
a significant speedup [33].

The complete iLQR routine with parallelized line search
and the algorithmic differentiation tools are implemented in
the open-source Control Toolbox (CT) [27]. In this work, we
generalize the CT to handle continuous and discrete (e.g., as a
result of Alg. 1) system dynamics invariantly while maintaining
the same solver implementation.

C. Control

The iLQR procedure returns a sequence of nominal control
inputs τ ref[·] together with a time-varying state-feedback matrix
K[·]. When the nominal inputs are naively applied to the
real system, model mismatches result in a deviation from the
planned reference trajectory xref, which is implicitly given by
τ ref[·] and (2). To compensate these errors, we consider two
possible control laws, LQR and proportional derivative (PD),
which both use the state tracking error δx := xref − x for
feedback and the torque trajectory as feed-forward commands:

τLQR = K δx+ τ ref , (10)

τPD =

[
kp δϕHFE + kd δϕ̇HFE
kp δϕKFE + kd δϕ̇KFE

]
+ τ ref . (11)
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The time-varying linear feedback gains K yield an adaptive
controller: they adjust the stiffness depending on flight or stance
phases and prioritize the tracking of those quantities that were
important in the optimization. For example if base height was
paramount in the OC problem, it would automatically sacrifice
hip and knee joint tracking to keep the height deviation at a
minimum. However, there are no theoretical guarantees that (10)
stabilizes the system under model error and disturbances and
we experience that the gains are too aggressive for a jumping
motion on the real system. For a fair comparison, we, therefore,
use a hand-tuned PD controller (11) in all of our experiments.

To minimize delays, the host computer manages all time-
critical communication through shared memory and transmits
the motor readings and commands via EtherCAT. The PD
controller updates at 1000 Hz and linearly interpolates the
reference state and input trajectories. A low-level current
tracking loop on each actuator is closed at 20 kHz to produce
the commanded torques. When tested in simulation, the
joint references are tracked very closely, suggesting that the
computed trajectory is feasible, but a discrepancy in base height
is visible. This stresses the fact that, even in simulation, the
contact point location is not precisely matching our internal
model (which assumes a point foot) and therefore the robot
stays a few centimeters short of the expected jump height.

D. Trajectory generation

To generate motion plans with our proposed algorithm, it is
sufficient to use only quadratic cost function terms (cf. (1))

Φ(x[nf ]) = (x[nf ]− x̄)>Qf (x[nf ]− x̄) , (12)

L(x[n], τ [n], n) = (x[n]− x̄)>Q(x[n]− x̄)

+ (x[n]− x̄a)>a[n]Qa(x[n]− x̄a) (13)

+ τ [n]>Rτ [n] ,

where x̄ and x̄jump are constant reference states. The running
cost matrices Q � 0,R � 0 serve only as regularization terms,
while Qf � 0 penalizes deviation from a desired final state.
To encode behaviors such as jumping, we use a time activation
term a[n] which is zero almost everywhere and takes the value
one for a short period of time together with a cost matrix Qa

which has a strong penalty on a specific part of the state, e.g.,
the base height error.

To enforce torque limits in the optimization, we clamp the
control inputs τ to the permissible interval [−60, 60 ] Nm
inside the time-stepping dynamics. The optimizer therefore
automatically respects the torque limits even without hard
constraints because increasing the inputs beyond the maximum
only incurs a greater cost at no additional benefit. In practice,
this yields the same result as explicitly enforcing input con-
straints in the backward pass but avoids a performance penalty
in the solver. Moreover, we observe a natural convergence
behavior to no-slip contact even though slipping would be
possible.

IV. RESULTS

We conduct experiments in a simulation environment and
on real hardware to evaluate how our method compares

Fig. 3. Comparison between a hard and soft contact model in forward
simulation. In each case, the robot is dropped with its foot 16 cm above the
ground with PD controls on a fixed hip and knee position. We show both a
fall in a stretched out (top) and a crouched (bottom) configuration.

to competing approaches, its ability to discover physically
meaningful trajectories at competitive speeds, and to verify
that the motions generalize to the physical system.

A. Soft contact comparison

We evaluate our dynamics model against the soft contact
model proposed by Neunert et al. [4], which was also used
for TO and is openly accessible in [27]. An important initial
observation is that naively using soft contacts with default
settings and a discretization of 10 ms yield a highly unstable
behavior for our monopod. The stiff spring dynamics force us
to use a sampling interval of 1 ms. Additionally, appropriate
tuning of the relevant parameters (sigmoid smoothing, damping,
stiffness) proves tedious.

Our model provides a direct handle on the restitution
behavior whereas for soft contacts this cannot be controlled for
all possible interactions. This can be seen in Fig. 3, where we
plot the foot height time series for a crouched and stretched-out
landing position from a 16 cm fall. It is immediately evident
that the soft contact model has substantially different behavior
for different configurations (i.e., apparent inertia and stiffness of
the system). For the shown plot we choose parameters to almost
eliminate the distant force effect – hence no deviation in the
initial flight phase – with the drawback of ground penetration
and rebound. We were unable to find a set of parameters that
leads to a sensible tradeoff between distant force, penetration,
and restitution in both configurations. Our method, on the other
hand, is virtually invariant to the configuration and only shows
a small difference in the foot resting position on the ground.
This offset is because ground reaction forces only act once the
foot has penetrated (zFoot < 0) and we happen to ‘catch’ the
system at a slightly different instance due to time discretization.

B. Scalability with respect to the number of contact points

To demonstrate how our method behaves under an increasing
number of contact points, we construct a multi-leg version of
Capler as shown at the top of Fig. 4. Multiple instances of the
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Fig. 4. Computation times for 1000 time steps forward simulation for a
varying number of contact points (see schematic at top). The fitted second
order polynomial confirms a quadratic computational complexity.

same system are chained next to each other and all base, hip and
knee DOFs are linked to each other (like a 1:1 transmission).
Furthermore, a commanded hip or knee torque acts on all hips
or knees, respectively. This construction emulates a system of
constant size regarding state and input but with an arbitrary
number of contact points. The corresponding percussions at
each foot are then solved for by the time stepping algorithm.
Such a scenario is similar to the case of a more complicated
walking robot for which contact points are added at the knees,
feet, hands, or elbows.

We forward simulate the dynamics for 1000 steps and
measure the elapsed computation time. We expect computation
time to grow quadratically with the number of contact points
since the Delassus matrix (G) size depends quadratically on
the contact points. This conjecture is confirmed by fitting a
quadratic model to the recorded times and reproduces the result
of state-of-the-art simulators [34]. Our method is hence well
suited for tasks that require many contact interactions.

C. Motion generation with jumps

Our method is able to find jumping and walking motions by
only imposing costs on the base position without any prior hints
that the foot can or should be lifted. We initialize all motions
with a trivial standing trajectory by setting the initial policy to
a PD controller whose reference is a crouched position. The
time horizon in the following examples is chosen to be of
3 s length (300 time steps). It should be noted, however, that
also longer motions with multiple jumps can be synthesized
as shown in the accompanying video2.

The runtime for a single iteration (with line search) for
the 3 s horizon is 2.18 ms on average (std. dev. 0.25 ms) on
a standard laptop computer (Intel Core i7, 4 x 2.50 GHz),
which makes our method a promising candidate for use in a
model predictive control (MPC) setting. The speed is on par
with a direct collocation scheme [8] applied to our 3-DOF
system with fixed gait sequence. A method [17] using strongly
simplified humanoid dynamics also achieve similar speed while
optimizing over the gait sequence. Most competing approaches
for synthesizing dynamic contact invariant motions [2], [13],
[14], [21] report times that are orders of magnitude larger,
albeit using models with more DOFs in some cases which
makes comparisons difficult.

2https://youtu.be/mSpiRdPU0VE

Fig. 5. Progression of optimization at different iteration numbers. The algorithm
is initialized (iteration 0) with a standing behavior and converges to a jumping
motion after 25 iterations.

1) 1D vertical hopping: For illustration purposes and due
to our hardware setup, we first demonstrate a vertical jumping
motion with the 3 DOF system. For this task, the cost
parameters are (cf. III-D)

Q = diag[0, 0.01, 0.01, 0.1, 3, 3], R = 0.02 · diag[1, 1] ,

Qf = diag[1000, 10, 10, 10, 10, 10] ,

x̄ = [0.25,−π/4, π/2, 0, 0, 0] ,

Qa = diag[8 · 105, 0, 0, 0, 0, 0], a[n] =

{
1 if n ∈ [200, 210],
0 otherwise,

x̄a = [0.6,−π/4, π/2, 0, 0, 0] . (14)

A time-activated term acts for 0.1 s and penalizes the deviation
from a base height beyond reach, which provokes a jump.

With these settings and initialization, the algorithm requires
25 iterations to converge to a jumping motion. We plot the cost
evolution and trajectories of selected intermediate iterations in
Fig. 5. The initialization is evidently sub-optimal for the jump
objective, yet the algorithm understands within two iterations
that it can use the hip and knee torques to generate ground
reaction forces that push the base upwards. The flat cost region
between iteration 2 and 16 corresponds to stretching out the
leg as far as possible but without pushing off. At iteration 19,
the algorithm discovers that it is possible to jump by lifting
off the foot and refines this motion in the last few iterations.
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Fig. 6. Forward jumping trajectories of base and foot for goal distances of
0.5 m (red) and 1.3 m (black).

Clearly, initializing with a motion that already includes a flight
phase would have reduced the number of iterations drastically,
but it is interesting to see that our method can escape the local
minimum (corresponding to only extending the leg without
liftoff) and autonomously discover that the foot can be lifted.
Interestingly, after discovering that the lowest costs are possible
when including a flight phase at around t = 2 s, the optimized
trajectory additionally repositions the foot with a short sidestep
at the beginning to be in a more cost-effective configuration for
the subsequent large jump. This repositioning behavior can be
observed for various starting positions. Note that foot positions
below zero (seen in Fig. 5) are possible as our contact solver
acts only on velocity level.

2) 2D forward hopping: We can generate a forward hopping
motion with a variable number of steps. For that purpose, we
use the extended model with unlocked sideways DOF and
impose a cost on the base displacement in x direction. No
time-activated terms are necessary:

Q = 0.01 · diag[1, 10, 2, 2, 1, 1, 4, 4], R = 0.001 · diag[1, 1] ,

Qf = 400 · diag[5, 2, 1, 1, 5, 5, 5, 5] ,

x̄ = [0.35, xGoal,−π/4, π/2, 0, 0, 0, 0] . (15)

We plot the resulting motion plans for xGoal = 0.5 m and 1.3 m
in Fig. 6. The optimizer requires a similar number of iterations
for these motions and the base reaches the goal with centimeter
accuracy. We can also generate motions over longer distances
as can be seen in the video.

D. Transfer to the physical system

To verify that our trajectories are physically consistent, we
compute a vertical jump motion (see Sec. IV-C1) and execute it
on the physical Capler system. The tracking controller PD gains
can be chosen relatively weak because they are only needed
for small corrections while the feed-forward torques fulfill
gravity compensation and give rise to the required accelerations
under the nominal model. We use controller parameters kp =
35.0 Nm rad−1, kd = 1.0 Nms rad−1.

The reference tracking performance can be observed in Fig. 8
for the three generalized positions. The primary objective of
this motion is to reach the desired base height and one may see
from the figure that the nominal jump height of zBH = 63 cm
was achieved within a few centimeters.

It is no surprise that the hip and knee position tracking
is significantly more accurate than the base’ because the
corrective action of the PD controller acts on individual joint
level and does not compensate miscalibrated ground position
and incorrect values for the link lengths. Such behavior can,
in theory, be expected from using the iLQR state feedback
controller (10). Still, even though small angular offsets in hip
and knee propagate to an error in base height and there may be
calibration errors in the draw wire encoder, the overall motion
is followed very closely. Fig. 7 shows a sequence of images
of the real system during the jump.

We may conclude from this section that the motions are
physically feasible and generalize to a physical system without
further modifications like smoothing. Our method produces
jumping motions that allow the system to lift off and land
safely even without adjusting the trajectory online. Still, we
expect a further performance improvement when recomputing
the trajectory during execution with a measured initial state.

V. CONCLUSION AND FUTURE WORK

We have presented a method for generating motion plans
for robotic systems that are subject to hard contacts. The
method reasons about whole body motions while being invariant
to contact switches. Our key insight is that the hybrid OC
problem can be solved efficiently when contact constraints are
resolved in the system dynamics instead of exposing them to
the OC solver directly. The algorithm was shown to produce
trajectories that can be followed accurately in simulation and
also generalize to a real robot with an appropriate tracking
controller.

We plan to leverage this method to find trajectories for
legged robots for which it would be difficult to pre-specify a
gait schedule, for example on uneven terrain and for climbing
motions that require many contact points. We believe the
ability to find a multi-phase motion – as demonstrated in this
paper – is the key component for generating more sophisticated
walking behaviors. Conveniently, the generalization to rough
terrain only requires a different gap function g that accounts
for location-dependent ground height. No further constraints
are necessary. We expect to achieve superior tracking and
disturbance rejection behavior by extending to a full MPC-
style control implementation.

One may draw a parallel between our method and reinforce-
ment learning approaches to locomotion. In both cases, an
optimizer queries a simulation (‘dynamics integrator’) to find
the optimal control policy. However, the proposed method is
much more sample efficient because we can directly evaluate
the gradient of the simulation with respect to the state-input
pair and therefore infer the direction of improvement instead
of estimating the gradient from several samples.
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