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Summary of the thesis

The aim of this thesis is to gain new insights on business cycles, and particularly on

the role of sectoral dynamics. Chapter 2 examines the time-varying characteristics

of interindustry comovement and its determinants. Chapter 3 studies the meaning

of common information for sectoral comovement. Chapter 4 analyses the e�ects

of unusual weather on consumer spending and on the aggregate volatility of retail

trade sector. Chapter 5 deals with an issue relating to the measurement of business

cycles; more speci�cally, with the problem of identi�cation of outliers in case of small

samples and varying distributional characteristics.

Chapter 2 employs a novel, multivariate dynamic conditional correlation (DCC)

general autoregressive conditional heteroskedasticity (GARCH) framework to study

the dynamics of comovement across manufacturing sectors both in the United States

and in Germany. This approach allows us to account not only for non-constant vari-

ances, but also for possible asymmetries in conditional volatilities and correlations.

We �nd that comovement across sectors is not stable, but shows irregular move-

ments. In particular, contractions tend to be more synchronized than expansions in

the manufacturing sector. Furthermore, we examine the role of various aggregate

factors in the �uctuations in conditional correlations. Our �ndings reveal that both

the non-constant variability of common factors, as well as the changes in the e�ects

of these factors, play a role in the �uctuations in sectoral comovement.
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In Chapter 3 we address the meaning of common information for sectoral co-

movement by applying new quanti�cation of �rms' expectations about productiv-

ity developments. We employ micro data from business tendency surveys in order

to construct novel sector- and aggregate-level measures of anticipated productivity

changes. We �nd that �rms in di�erent sectors do, in fact, base their expectations on

similar information. Particularly, the common information component is found to

explain a considerable share of the sectoral correlations. Additionally, our �ndings

reveal that there is a great deal of heterogeneity in the reactions of disaggregated

manufacturing sectors to changes in expectations. Especially, expectation shocks

are found to propagate mainly through the sectors producing capital goods and

consumer durables.

Chapter 4 analyses how weather anomalies cause �uctuations in consumer spend-

ing by means of a comprehensive periodic analysis at monthly frequency. We account

for both contemporaneous as well as lagged e�ects and use precise weather measures.

Moreover, we test for long-run restrictions and quantify the weather e�ects borrow-

ing the approaches of Boldin and Wright (2015). In addition, we develop a stylized

model, based on consumer choice, to illustrate how abnormal weather a�ects the

utility derived from consumption and therefore, leading into intertemporal shifts

in consumption. Using retail data for Switzerland, the empirical �ndings support

our theoretical considerations suggesting that weather anomalies, especially unusual

temperatures, cause sizable intertemporal shifts in consumer spending as the long-

run restrictions cannot be rejected. In particular, our �ndings indicate that weather

e�ects manifest primarily through the seasons change channel: weather conditions

in line with the coming season boost the purchases early in the season.

Outliers and in�uential observations are a frequent concern in various types of

statistics, data analysis and survey data. Even though a large number of techniques

to identify outlying observations have already been proposed, methods to deal with

outliers in skewed or heavy-tailed data are still scarce. Hubert and Vandervieren

(2008) propose an adjusted boxplot for skewed data. However, their method is

x



not adjusted for heavy-tailness and it does not perform well for small samples.

Nevertheless, in practice we often need to deal with small to moderate sample sizes

and varying distributional characteristics. In Chapter 5, we propose a modi�cation

of the adjusted boxplot of Hubert and Vandervieren (2008) that is less sensitive to

both heavy tails and for small samples sizes. We conduct a simulation study to

illustrate the superior performance of the modi�ed procedure under various models

and we provide real data examples.

xi





Zusammenfassung der Dissertation

Das Ziel dieser Dissertation ist es, neue Erkenntnisse über Konjunkturzyklen und ins-

besondere über die Rolle der sektoralen Dynamik zu gewinnen. In Kapitel 2 werden

zeitvariable Charakteristika der sektoralen Gleichbewegung und ihre Determinanten

untersucht. Kapitel 3 erforscht die Bedeutung der gemeinsamen Information für die

Gleichbewegung der Branchen. Kapitel 4 analysiert die Auswirkungen ungewöhn-

licher Witterungsbedingungen auf Konsumausgaben und auf die Gesamtvolatilität

des Detailhandels. Kapitel 5 beschäftigt sich mit einem Thema, das sich auf die Mes-

sung von Konjunkturzyklen bezieht, und zwar mit der Identi�zierung von Ausreis-

sern in kleinen Stichproben und in Datensätzen mit variierenden Verteilungsmerk-

malen.

Kapitel 2 verwendet eine neuartige DCC-GARCH-Methode, um die Dynamik

der Verbindungen zwischen den Sektoren des Verarbeitenden Gewerbes, sowohl in

den Vereinigten Staaten als auch in Deutschland, zu untersuchen. Dieser Ansatz

ermöglicht es uns, nicht nur die zeitvarianten Volatilitäten, sondern auch mögliche

Asymmetrien in den bedingten Volatilitäten und Korrelationen zu berücksichtigen.

Wir stellen fest, dass die Gleichbewegung der Sektoren nicht stabil ist, sondern un-

regelmässige Fluktuationen aufweist. Diese Analyse zeigt insbesondere auf, dass die

Kontraktionen in der Regel synchronisierter sind als die Expansionen im Verarbei-

tenden Gewerbe. Darüber hinaus untersuchen wir die Rolle verschiedener Faktoren

für die Fluktuationen in den bedingten Korrelationen. Unsere Ergebnisse zeigen,

dass sowohl die nicht-konstante Variabilität der gemeinsamen Faktoren als auch die

Veränderungen in den Auswirkungen dieser Faktoren für die Schwankungen in den

sektoralen Gleichbewegungen von Bedeutung sind.
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In Kapitel 3 befassen wir uns mit der Bedeutung der gemeinsamen Information

für die sektoralen Gleichbewegungen mit Hilfe einer neuen Quanti�zierungsmethode

der Erwartungen der Unternehmen über die Entwicklung der Produktivität. Wir

benutzen Mikrodaten der Konjunkturumfragen, um neuartige Masse für einzelne

Subbranchen als auch für die aggregierte Branche zu konstruieren. Wir �nden

heraus, dass Firmen aus verschiedenen Sektoren ihre Erwartungen tatsächlich auf

ähnliche Informationen stützen. Zudem kann die gemeinsame Komponente der Er-

wartungen einen beträchtlichen Teil der sektoralen Korrelationen erklären. Un-

sere weiteren Erkenntnisse zeigen, dass die Reaktionen auf veränderte Erwartungen

zwischen Subbranchen des Verarbeitenden Gewerbes di�erenzieren. Insbesondere

werden Erwartungs-schocks vor allem durch den Investitionsgütersektor und den

Gebrauchsgütersektor weiterverbreitet.

In Kapitel 4 wird mittels einer umfassende periodische Analyse mit Monatsdaten

untersucht, ob Wetteranomalien Schwankungen im Konsumverhalten verursachen.

Wir berücksichtigen sowohl zeitgleiche als auch verzögerte E�ekte und benutzen

präzise Masse für das ungewöhnliche Wetter. Darüber hinaus benutzen wir die An-

sätze von Boldin and Wright (2015), um Restriktionen, die die langfristen E�ekte

beschränken, zu testen und um die Wettere�ekte quanti�zieren zu können. Zudem

entwickeln wir ein theoretisches Modell, welches veranschaulicht, wie abnormale

Witterungsbedingungen den Konsumnutzen beein�ussen und somit zu intertempo-

ralen Verschiebungen führen können. Unsere empirischen Erkenntnisse mit den

Schweizer Detailhandelsdaten unterstützen die theoretischen Überlegungen, dass

Wetteranomalien, insbesondere ungewöhnliche Temperaturen, intertemporale Ver-

schiebungen der Konsumausgaben verursachen. Insbesondere deuten unsere Ergeb-

nisse darauf hin, dass sich Wettere�ekte vor allem durch den Kanal des Saisonwech-

sels o�enbaren: Wetterbedingungen, die im Einklang mit der kommenden Saison

sind, kurbeln die Einkäufe früh in der Saison an.

Ausreisser und ein�ussreiche Beobachtungen sind ein häu�ges Problem bei ver-

schiedenen Arten von Statistiken, Datenanalysen und Befragungsdaten. Auch wenn

bereits eine grosse Anzahl von Techniken vorgeschlagen worden ist, um au�ällige

Beobachtungen zu identi�zieren, sind Methoden zur Erkennung von Ausreissern in
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asymmetrisch verteilten Daten oder in Datensätzen mit starken Ränder nach wie vor

rar. Hubert und Vandervieren (2008) schlagen einen angepassten Boxplot für schiefe

Datensätze vor. Ihre Methode ist jedoch nicht optimal für Stichproben mit breiten

Rändern oder für kleine Datensets. In der Praxis müssen wir jedoch oft mit kleinen

bis mittleren Stichprobengrössen und variierenden Verteilungscharakteristika umge-

hen. In Kapitel 5 schlagen wir eine Modi�kation des angepassten Boxplots von

Hubert und Vandervieren (2008), welche weniger emp�ndlich auf breite Ränder und

kleine Stichproben reagiert. Wir führen eine Simulationsstudie durch, um die über-

legene Leistungsfähigkeit des modi�zierten Verfahrens bei verschiedenen Modellen

zu veranschaulichen und präsentieren zudem reale Datenbeispiele.
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Chapter 1

Introduction

Understanding and explaining business cycles is one of the most challenging topics

in macroeconomics. Research on these �uctuations began on a large scale during

the middle of the previous century at the National Bureau of Economic Research

(NBER) by Burns and Mitchell in 1964. Since then, analysing business cycles has

become a crucial topic in macroeconomics. Throughout the years, numerous hy-

potheses and explanations for these �uctuations have been introduced. Nevertheless,

there are still many open issues relating to how business cycles evolve.

The term business cycle refers to, on one hand, joint movement of aggregate

variables such as output, investment and consumption and on the other hand, to

synchronized movements of disaggregated sectoral variables. Therefore not only

aggregate comovement, but also sectoral comovement is a main feature of business

cycles. However, literature on economic �uctuations has so far chie�y concentrated

on examining comovement between aggregate variables. This is likely the case as

standard business cycle models assume only one economic sector. Obviously, within

such a framework, industrial comovement cannot be addressed. Additionally, within

two-sector models (with investment and consumption good sectors), generating sec-

toral comovement has turned out to be di�cult, even in the case of aggregate tech-

nology shocks as discussed by Christiano and Fitzgerald (1998), for instance. This

thesis aims to reveal new insights about business cycles by elaborating the role of

sectoral dynamics.
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Sectoral comovement is also a crucial determinant of aggregate volatility: the

variability of aggregate output depends not only on the volatility of individual sec-

tors but also, to a great extent, on correlations between them. As Foerster et al.

(2011) point out, high volatility of the aggregate industrial production index is quite

surprising, as it is constructed as a weighted average of numerous sectors, and the

variability of sectors do not seem to be averaged out. This is owed to the fact that

sectoral movements tend to be positively correlated and this matters a great deal.

Shea (2002) demonstrates that comovement of sectors accounts for more than 85 per-

cent of the variance of aggregated US manufacturing gross output. Foerster et al.

(2011) also �nd the covariance terms to account for 55% to 70 % of the variation of

aggregate US industrial production growth by applying quarterly data. Therefore,

interindustry correlations are the key to explain aggregate volatility.

Furthermore, sectoral comovement helps to reveal the origins of economic �uc-

tuations, and especially the relative importance of aggregate versus sectoral shocks.

The joint behaviour of sectors is commonly interpreted as evidence for aggregate

shocks causing the business cycle (e.g., Lucas (1977)), such as monetary policy or

technology shocks a�ecting all industries in a similar manner. Yet the synchronized

movement across sectors does not necessarily need to be a result of common shocks.

Sector-speci�c shocks could also be propagated through sectors causing industries

to move together. Long and Plosser (1983) showed that in a multisector frame-

work with intersectoral linkages (input-output dependencies), independent sectoral

shocks alone may induce correlation between sectors. However, as they assume a

one-period delivery lag, the lagged correlations turn out to be higher than the con-

temporaneous ones. Moreover, they assume full depreciation of capital and when

this assumption is relaxed, many properties no longer generalize as noted by Rebelo

(2005). Similarly Horvath (1998, 2000), Dupor (1999), Shea (2002), Carvalho (2008)

and Foerster et al. (2011) examine the role of intersectoral dependencies transmitting

sector-speci�c (uncorrelated) shocks within structural multisector models. Nonethe-

less, even if the rather unrealistic assumption1 of contemporaneous sectoral linkages

1Unrealistic because it assumes hat goods are produced in period t in one sector and being used
as input or capital at the same period in a another sector.
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is placed, they tend not to be strong enough, especially at the more detailed level

of disaggregation, in order to account for a realistic level of interindustry comove-

ment (see, Foerster et al. (2011)). Further mechanisms such as inventories (Cooper

and Haltiwanger (1990)) and trade credit (Raddatz (2010)) have been proposed.

They play though at best only a moderate role in explaining synchronized sectoral

movements.

To understand the synchronized behaviour across industries, the �rst issues to be

elucidated include the level of sectoral comovement and, in particular, the manner

in which it evolves over time. Although the level of interindustry comovement

has already been documented quite comprehensively (see, for example, Long and

Plosser (1987), Christiano and Fitzgerald (1998), Hornstein (2000), Cassou and

Vázquez (2014)), little is known about its dynamic aspects as these papers do not

address the level of comovement over time. Nevertheless, there is no reason to

expect that these correlations across sectors could not change over time. Though

only a few empirical works have addressed this issue so far simply by di�erent

subsamples (see, Romer (1991), Foerster et al. (2011)). This method o�ers, quite

obviously, only a limited picture about the changes in correlations over time and it

depends, to a great extent, on the de�nitions of the subsamples. More sophisticated

approaches have hardly been applied. This is likely to be the case as measuring time-

varying correlations is not clear-cut. It is of particular importance to account for

the non-constant volatility when modelling conditional correlations, as the estimated

correlations tend to be higher in times of increased volatility. Only by accounting

for time-variant volatility can one distinguish whether higher correlations are due

to higher variance or stronger covariance.

In Chapter 2 we explore the measurement and dynamics of sectoral business

cycle comovement in more detail. To study the time-varying aspects accurately,

we employ a novel, state-of-the-art dynamic conditional correlation (DCC) general

autoregressive conditional heteroskedasticity (GARCH) framework. This approach

allows us not only to account for non-constant variances, but also to account for

possible asymmetries in conditional volatilities and correlations. We �nd that co-

movement across sectors is not stable, but shows irregular movements. Speci�cally,

3



contractions tend to be more synchronized than expansions in manufacturing sector.

Moreover, we examine the role of various aggregate factors for the �uctuations in

conditional correlations. Our �ndings reveal that both the non-constant variability

of common factors, as well as the changes in the e�ects of these factors play a role

in the �uctuations in sectoral comovement.

A further proposition how the joint behaviour of industries might evolve is based

on information complementarities or common information. Christiano and Fitzger-

ald (1998) discussed information externalities as a potential source for industrial

correlations. However, Veldkamp and Wolfers (2007) were the �rst to o�er a the-

oretical model for the role of common expectations, or aggregate information, for

sectoral comovement. They argue that complementarity in information acquisition

could also explain the so-called excess comovement puzzle �rst documented by Horn-

stein (2000) - an important, but often ignored, empirical �nding - that production

is stronger correlated across sectors than productivity. This stylized fact is clearly

not in line with an aggregate technology shock being the main source of economic

�uctuations. The explanation of Veldkamp and Wolfers (2007) is based on the idea

that �rms collect mostly aggregate information about productivity developments,

as it is cheaper to acquire than sector-speci�c information. Based on similar antici-

pations, �rms tend to make similar input and output decisions even though actual

sectoral productivity developments di�er. Nevertheless, there is hardly any empiri-

cal support for their hypothesis. This is most likely because data on expectations,

especially at the sector level, is scarce in general.

In Chapter 3 we aim to �ll this gap applying new quanti�cation of �rms' expec-

tations about productivity changes. We employ micro data from business tendency

surveys to construct novel sector- and aggregate-level measures of anticipated pro-

ductivity changes. We �nd that �rms in di�erent sectors do, in fact, base their

expectations on similar information. Particularly, the common information com-

ponent is found to explain a considerable share of the sectoral output correlations.

Our additional �ndings reveal that there is a great deal of heterogeneity in the reac-

tions of disaggregated manufacturing sectors to changes in expectations. Especially,
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expectation shocks are found to propagate mainly through the sectors producing

capital goods and consumer durables.

Sectoral variability also reveals information about the drivers behind the indus-

try movements. The di�erences in volatility may be due to greater sectoral shocks,

or stronger responses of these sectors to common shocks, or both. Lucas (1977)

states that the production of durable goods, that is, consumer durables and cap-

ital goods, has more amplitude than the non-durable goods (intermediate goods

and consumer non-durables). Furthermore, Mankiw (1985) assesses the role of the

higher variability of consumer expenditures on durable goods for business cycles,

and their sensitivity to real interest rates. Consumer spending on some non-durable

consumption goods is also known to be quite volatile such as apparel, minor sports

equipment and other fashion or seasonal products. In general, the higher volatil-

ity of durable consumer goods and fashion products is because household demand

for nonessential goods �uctuates considerably whereas a sizeable share of household

consumption is related to necessities such as food, housing, health, transportation

and education services. These necessities are documented to have a rather constant

growth over time. Thus retail sales, and especially non-food categories, exhibit much

higher volatility than total consumption expenditures. One factor for this higher

variability, which is also regularly discussed in retail business and business press, is

unusual weather. Exceptional weather conditions are argued to have an impact on

consumer decisions and business activity, being thus one of the main causes for the

transitory shifts.

Understanding how unusual weather a�ects consumer spending is of importance

for several reasons. On one hand, it reveals how consumer decisions are a�ected

by abnormal weather conditions through various channels. Linden (1962) already

noted that unusual weather conditions cause shifts in the timing of purchases, they

generate purchases that might otherwise not occur, or they cause a permanent loss

of demand. However, these e�ects could be (partly) caught up in the following

month(s). On the other hand, it is a well-known fact that consumer expenditure

has a substantial transitory component which cannot be explained by changes in

fundamental economic factors, such as income or interest rates. Unusual weather
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is assumed to be one of the main reasons for it. The transitory component can be

problematic, as it can distort the measurement of the e�ects of fundamental factors

on spending. For instance, the estimation of elasticity of intertemporal substitu-

tion (EIS), one of the central parameters of macroeconomic and �nance models, is

a�ected by this issue. Furthermore, as retail sales is one of the main economic indi-

cators, its movements are followed closely by central banks and economic analysts.

It is crucial to discern whether or not the observed changes are rather transitory

(and possibly followed by a rebounce in following month) or if they re�ect genuine

changes in underlying factors. Therefore, impacts caused by exceptional weather

are relevant for business cycle analysis and monitoring current economic conditions,

as well as for making projections in the future.

In Chapter 4 we explore the e�ects of unusual weather on consumer spending. We

contribute to the limited literature by a comprehensive periodic analysis at monthly

frequency, accounting for both contemporaneous and lagged e�ects and by using

precise weather measures. Moreover, the application of long-run restrictions and

the quanti�cation of these e�ects, borrowing the approaches of Boldin and Wright

(2015) who examine the weather-adjustment of employment data, is new in weather-

related consumer spending literature. In addition, we develop a stylized model based

on consumer choice in order to illustrate how abnormal weather a�ects the utility

which, therefore, results in intertemporal shifts in consumption. Using retail data

for Switzerland, the empirical �ndings support our theoretical considerations which

suggest that weather anomalies (especially unusual temperatures) cause sizeable

shifts in consumer spending and account for a considerable share of the variability of

retail sales. Our �ndings also indicate that weather e�ects manifest mainly through

the seasons change channel: exceptionally warm temperatures in early spring as

well as unusually cold conditions in late summer and early autumn are generally

associated with higher sales than usual.

Moreover, the measurement of business cycles is a nontrivial issue. Outliers and

in�uential observations are a frequent concern in several types of statistics, data

analysis and survey data. Owing to the fact that most of the outlier detection

methods assume that the underlying population is normally distributed, in the case
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of non-normal distribution too many or the wrong observations are potentially de-

clared as outlying. Thus, if the base distribution itself is assumed to be asymmetric

or heavy-tailed, this needs to be taken into account in outlier analysis. For example,

resistant rules, also known as boxplot, which was �rst proposed by Tukey (1977),

are very popular in outlier labelling. The problem with skewed data is, however,

that one tends to identify (too) many outliers in the long tail but hardly any in the

short tail. Yet in the case of a symmetric, but heavy-tailed sample, numerous ob-

servations tend to be outside the fences on both sides. The same issues also concern

other outlier detection techniques such as relative distance based methods.

Even though large number of techniques to identify outlying observations have

already been proposed, methods to deal with outliers in skewed or heavy-tailed

data are still scarce. Hubert and Vandervieren (2008) propose an adjusted boxplot

for skewed data. However, their method is not adjusted for heavy-tailness and it

does not perform well for small samples. Nevertheless, in practice we often need to

deal with small to moderate sample sizes and varying distributional characteristics.

Chapter 5 addresses outlier detection in case of small samples from skewed and

heavy-tailed distributions. We propose a modi�cation of the adjusted boxplot of

Hubert and Vandervieren (2008) that is less sensitive to heavy tails and to small

samples sizes. With our modi�cation, we widen the practical application of the

adjusted boxplot method. We conduct a simulation study to illustrate the superior

performance of the modi�ed procedure under various models and present real data

examples.
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Chapter 2

Dynamics of sectoral business cycle

comovement
1

1This chapter is based on Sandqvist (2017)
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2.1 Introduction

Sectoral or interindustry comovement is a key feature of business cycles. A high

level of sectoral comovement is commonly interpreted as evidence for strong direct

impacts of aggregate shocks to all sectors as well as pass-through of common and sec-

toral shocks to whole economy due to sectoral linkages. Furthermore, the volatility

of aggregate output depends not only on the volatility of individual sectors but also

to a great extent of correlations between them. Shea (2002) shows that comovement

between sectors accounts for more than 85 percent of the variance of aggregated US

manufacturing gross output. Also Foerster et al. (2011) �nd the covariance terms

to be crucial for the variation of aggregate US industrial production growth.

Although interindustry comovement has already been documented quite com-

prehensively (see, for example, Long and Plosser (1987), Christiano and Fitzgerald

(1998), Hornstein (2000), Cassou and Vázquez (2014)), little is known about its dy-

namic aspects as these papers do not study patterns of comovement over the years

nor depending on the state of the business cycle. Yet, there are reasons to expect

that properties and dynamics of comovement might change over time in general as

well as di�er across the business cycle. First, there could be positive time trend as

sectors could become more correlated over time due to stronger interindustry link-

ages in the course of years. On the other hand, there could be also a negative time

trend as a result of lower magnitude of common factors. Foerster et al. (2011) doc-

ument a decline in average pairwise correlations of sectoral growth rates in the US

in the 1984-2007 period compared to the pre-1984 years. They �nd that the lower

comovement is due to lower variance of common shocks what, in turn, has lead to

decreased variance of the growth of industrial production in the same period. Sec-

ond, the level of comovement might �uctuate. This could be because of asymmetric

reactions to unfavourable and favourable shocks or di�ering reactions regarding the

magnitude of a shock. Third, if the sensibility of industries to common shocks varies

over time, this would also cause movements in sectoral correlations. For instance,

if common factors become more important compared to sectoral shocks, this would

results in higher comovement.
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Yet, measuring time-varying correlations is not clear-cut as they cannot be ob-

served but need to be estimated. Furthermore, it is necessary to account for the

possibly non-constant volatility when modelling conditional correlations as the es-

timated correlations tend to be higher in times of increased volatility. Only by ac-

counting for time-variant volatility one can distinguish whether higher correlations

are due to higher volatility or stronger comovement of variables.

In this study we employ a multivariate dynamic conditional correlation (DCC)

general autoregressive conditional heteroskedasticity (GARCH) framework, intro-

duced by Engle and Sheppard (2001) and Engle (2002), to study the time-varying

correlations of industrial production growth rates between manufacturing sectors

in the US and Germany. The advantage of DCC-GARCH is that we can examine

possible changes in conditional correlations depending on state or circumstances of

the economy as well as generally over time. Furthermore, we can account for asym-

metries in the conditional volatilities as well as also in the conditional correlations

i.e. allow negative and positive shocks to have di�erent e�ects. This is important

because if an asymmetric process is modelled by the standard symmetric model, the

estimated conditional variance respectively correlation after an unfavourable shock

would be underestimated whereas the conditional volatility respectively correlation

would be too high after a favourable shock.

Our results reveal that variance of industrial production growth in manufacturing

sectors in the US tend to be asymmetric i.e. most industries react stronger to

unfavourable than favourable shocks. However, we �nd only limited evidence for

asymmetries in correlations what implies that most sector pairs react similarly to

common shocks, irrespective of the sign of shocks. Furthermore, we show that the

sectoral comovement in the US and German manufacturing is not constant but

shows irregular movements. Interestingly, the correlations seem to have increased

considerably during some economic downturns, especially during the recession in

2007-09, but there are also recessionary periods in which the comovement hardly

changes.
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Given that sectors comove because of the direct e�ects of common factors and

pass-through of (aggregate and sectoral) shocks, the changes over time in interindus-

try comovement indicate altering magnitude of common shocks, changing sensitivity

of sectors to common factors and/or varying strength of propagation of shocks. Yet,

since the intensity of the pass-through depends mainly on sectoral linkages which

are assumed to be rather constant or changing slowly, the �rst two reasons should

be the main drivers of the �uctuations in interindustry correlations.

We examine �rst which aggregate factors are relevant for sectoral comovement

in a regression analysis. Our �ndings for the US indicate that stock market in-

dex as well as business con�dence are related to sectoral comovement. Especially,

in times of pessimism the sectoral production decisions are more similar than in

periods of high expectations. Also stock market volatility is found to play a role

implying higher correlations in times of high volatility. Yet, for Germany, only the

stock market volatility is found to have a signi�cant impact on sectoral correlations.

Furthermore, our �ndings suggest that time-varying variance of common factors as

well as the altering impact of these factors is relevant for the �uctuations in sectoral

comovement.

The remainder of the paper is organized as follows. First, in section 2 a literature

overview is given. Section 3 presents the DCC-GARCH framework. In section 4 the

research methodology and data are described and in section 5 the results of DCC-

GARCH approach are presented. In section 6 we address the factors explaining the

irregular movements in conditional correlations. Finally, section 7 o�ers conclusions.

2.2 Literature Overview

One of the pioneer works on sectoral comovement is the paper of Long and Plosser

(1987). They study cross-industry comovement in the monthly US industrial pro-

duction and apply factor analysis to examine the importance of aggregate versus

sectoral shocks. They document the level of comovement by calculating average

pairwise correlations and �nd the level of comovement to range between 0.07 and

0.28 for seasonally adjusted growth rates. Furthermore, they consider one- and
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two-factor models and �nd the explanatory power of the common shocks for each

sector to be signi�cant but rather weak. Foerster et al. (2011) study also the role of

sectoral and aggregate shocks for industrial production in the US. They �nd the av-

erage pairwise correlation of sectoral monthly growth rates to be 0.19 for the whole

sample period of 1972 to 2007. Moreover, they point out that the covariance terms

are mainly responsible for the variation in the growth rate of aggregate industrial

production index, whereas the variance terms of each sector play only minor role.

Christiano and Fitzgerald (1998) study the comovement in quarterly hours worked

in the US two-digit industries. They estimate the level of correlation to be on av-

erage 0.55 among all industries. Furthermore, they show that the comovement of

hours worked with total hours worked is higher across the durable goods manufac-

turing sectors (0.82) than across the nondurable manufacturing sectors (0.46)1. Also

service sectors are comoving less with the general business cycle than the durable

manufacturing but more than the nondurable goods manufacturing. However, they

apply the reference series methodology, i.e. they calculate the correlation between

a sectoral variable and its aggregate counterpart (which equals the sum of the sec-

toral series). Yet, the problem when using a reference series is that as the sectoral

variable is a subaggregate of the reference series, they are per de�nition through

the aggregation to some extent correlated with each other and therefore, one cannot

distinguish to which extent to comovement is due to 'real' comovement and due

to aggregation issue i.e. the measures of comovement based on reference series are

more or less biased. Furthermore, Christiano and Fitzgerald (1998) analyse also

some possible explanations for comovement without any de�nite �ndings. Horn-

stein (2000) documents also sectoral comovement in the US in the yearly data using

both reference series as well as direct cross-industry measures with basic correlation

measures. He considers besides the contemporaneous correlations also once-lagged

respectively once-lead correlations. In most cases, however, the contemporaneous

correlations tend to be the highest, what is not surprising as they use yearly data.

1Usually, following sectors are considered to be durable goods sectors: Wood, Metal, Machinery,
Electronics, GlassStone, Electricals, Vehicles, Transportation, Furniture, Other. On the other
hand, non-durable goods sectors include FoodTobacco, Textile, Apparel, Leather, Paper, Print,
Petroleum, Chemicals, Rubber
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To investigate changes in correlations over time various methodologies have been

applied. A rather simple approach is the rolling window methodology, see for ex-

ample Inklaar et al. (2008) and Papageorgiou et al. (2010). However, this approach

is sensitive to the choice of the window length and cannot be applied to pinpoint

(exact) time points when correlations change.

Yet, the most approaches to model time-varying variances, covariances and cor-

relations originate from the �nance literature. The generalized autoregressive con-

ditional heteroskedasticity (GARCH) models were developed to model and estimate

processes with non-constant variance and their multivariate extensions can also be

applied to study conditional covariances and correlations. One of the �rst multi-

variate GARCH models was proposed by Bollerslev et al. (1988) as a direct gener-

alizations of univariate GARCH model, the VEC model. As this model is heavily

parameterized and demanding to estimate, further parametrizations for the time-

varying covariance matrix have been introduced, such as the BEKK model of Engle

and Kroner (1995). Like the VEC model also the BEKK model aims to directly

estimate the conditional covariance matrix. However, as the number of parameters

to be estimated in the BEKK speci�cation is still high and the interpretation of pa-

rameters is not straightforward, empirical applications are rather rare and restricted

to small dimensional systems.

Another class of multivariate GARCH models is based on nonlinear combina-

tions of univariate GARCH models: constant conditional correlation (CCC) model

of Bollerslev (1990) and the dynamic conditional correlation (DCC) model of Engle

and Sheppard (2001) and Engle (2002). A very similar model was also introduced by

Tse and Tsui (2002). These models overcome the problem of high parametrization

and estimation issues at the cost of simpler model structure i.e. interdependencies

between variances and among correlations are left out. Yet, they are very �exible

considering the univariate variance modelling and o�er intuitive interpretation of

parameters. The assumption of standard scalar DCC-GARCH model tend to be,

however, too restrictive for systems with a large set of variables. This is because

the dynamics in the correlation process are forced to be the same for all variable

pairs. Therefore, various generalizations of DCC has been proposed, for instance by
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Billio et al. (2006) (Flexible DCC) as well as Cappiello et al. (2006) (Asymmetric

Generalized DCC) where the scalar parameters are replaced by parameter matrices.

But also with these models the number of parameters increase quickly with the size

of the system and hence, various more restrictive speci�cations has been proposed

(diagonal and symmetric, for example). All together, the problem with estimating

conditional covariances respectively correlations for a large system is that the di-

rect models (VEC or BEKK) are too complicated to be estimated while the scalar

DCC is too restrictive, i.e. the assumption about the common dynamics is usually

unrealistic.

The �exible DCC relaxes this assumption by restricting groups of variables to

follow common dynamics. However, these groups needs to be de�ned beforehand.

The diagonal version of the generalized DCC also allows for richer dynamics as for

each variable a separate parameters are estimated and the correlation process of

a pair of variables depends on the product of their parameters. However, one of

the computational advantages of the DCC models, namely the possibility to apply

correlation targeting which implies replacing the intercept matrix with a consistent

estimate, is lost here.

The MacGyver method to deal with the high-dimensionality problem was pro-

posed by Engle (2009). This appoarch is based on the estimates of the bivariate

models which are aggregated through simple procedures, like mean or median. An-

other way to deal with large dimensions is the method of composite likelihood in-

troduced for this context by Engle et al. (2007). This approach is very �exible but

ine�cient as it based on partial likelihood. A further alternative to a large system

is to apply the Dynamic Equicorrelation (DECO) model of Engle and Kelly (2012).

Yet, the assumption that all variable pairs have the same correlation on a given

time point, as the correlation process is modelled between average correlation of the

variable pairs, is quite restrictive.

Jondeau and Rockinger (2006) follow somewhat di�erent approach and propose

copula-based GARCH models to model conditional dependencies. Compared to the

other multivariate GARCH models which usually assume data to follow multivariate

normal or Student t-distribution, this copula-based approach can also take into
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account the possible skewness of data series. Furthermore, tail dependency could

also be incorporated through the copula.

A related approach to these multivariate GARCH models is the panel data model

with conditional heteroskedasticity and cross-sectional dependence of Cermeno and

Grier (2008). Unlike in DCC-GARCH, the conditional mean (as well as conditional

variance) model has to be the same for each series. Furthermore, the dynamics in

conditional variance as well as in conditional covariance are forced to be the same

(this keeps the number of parameters to be estimated small).

The empirical applications of multivariate GARCH models to comovement anal-

ysis are still scarce. Ho et al. (2009b) apply multivariate GARCH to study the

asymmetric volatility and time-varying correlations between sectors of US indus-

trial production. They �nd that negative shocks have greater impact on future

volatilities. Furthermore, they �nd that evidence for time-varying conditional cor-

relations. In Ho et al. (2009a) also a multivariate asymmetric GARCH approach is

used to analyse volatility dynamics in the UK business cycle. They �nd evidence

that conditional volatilities as well as correlations tend to be higher during UK

recession periods.

2.3 Econometric methodology

During the last decade the DCC-GARCH framework, which was introduced by Engle

and Sheppard (2001) and Engle (2002), based on the earlier works of Engle (1982),

Bollerslev (1986) and Bollerslev (1990), has become more popular. The advantage

of DCC-GARCH framework is that it has the �exibility of univariate GARCH but

is not as complex as conventional multivariate GARCH models. The DCC-GARCH

framework accounts for the time-varying volatility of the series and the conditional

correlation matrix is time-dependent and therefore, it can be applied to study the

dynamics in correlations. It has been applied to investigate, besides the vast �nance

related literature, dynamic comovement between stock market returns and policy

uncertainty (Antonakakis et al., 2013) as well as output and prices (Lee, 2006). The

advantage of DCC-GARCH is that we can examine possible changes in conditional
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correlations over time as well as depending on state or circumstances of the economy.

Furthermore, with this approach we are also able study the asymmetric reactions of

correlations to negative respectively positive shocks.

Let ut be a data series with mean zero or residuals from a �ltered time series

ut ∼ N(0, Ht).

For easier interpretation of the DCC-GARCH framework, Ht can be rewritten as:

Ht = DtRtDt (2.1)

where Dt = diag
{√

hi,t
}
is a diagonal matrix of time-varying standard devia-

tions and Rt is a correlation matrix comprising conditional correlation coe�cients.

The standard deviations in matrix Dt are typically modelled to follow a univariate

GARCH(1,1) (Bollerslev, 1986) of:

hi,t = ωi + αiu
2
i,t−1 + βihi,t−1 (2.2)

However, the model does not necessarily need to be the symmetric GARCH

model but also other GARCHmodels can be incorporated. In this paper, we consider

also the following models: exponential GARCH (Nelson, 1991), Asymmetric power

ARCH (Ding et al., 1993) and The Glosten-Jagannathan-Runkle GARCH (Glosten

et al., 1993). Furthermore, each series can have their own individual GARCH model

as it is not necessary to model all with the same process. The standardized residuals

are de�ned as εt = ut/
√
ht.

The correlation process in standard DCC model of Engle (2002) is given by

Qt = (1− a− b)S + aεt−1ε
′
t−1 + bQt−1 (2.3)

Rt = Q∗−1t QtQ
∗−1
t (2.4)

where S = E[εtε
′
t] is the unconditional covariance matrix of the standardized residu-

als, Q∗t is a diagonal matrix with the square root of the diagonal elements of Qt and
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a and b are scalars. The parameter a of the equation (3) captures the e�ect of news

on the correlation process whereas b is the smoothing parameter. The closer the sum

of a and b is to unity, the stronger the persistence of the time-varying correlations.

This is the mean-reverting DCC(1,1) model as long as a+ b < 1.

In the estimation of the mean-reverting DCC model, correlation targeting is

being applied i.e. the intercept matrix Ω is replaced by (1 − a − b)S. However,

as Engle (2009) and Aielli (2013) note, this is only an approximation as S is not

exactly Q̄.

The estimation procedure of this system has three stages. First, univariate

GARCH processes are estimated for each series. Second, the sample correlation

matrix of the standardized residuals is calculated and third, the parameters of the

correlation process are estimated.

An interesting extension of this model is the asymmetric DCC (aDCC) of Cap-

piello et al. (2006). In this model reactions of correlations to negative shocks can be

greater than to positive shocks. Here the correlation process can be written as

Qt = (1− a− b)S + aεt−1ε
′
t−1 + bQt−1 + γηt−1η

′
t−1 (2.5)

where ηt = min[εt, 0]. The γ parameter measures the asymmetric e�ect. A positive

value of γ indicates that the correlations increase more in response to negative than

positive shocks.

2.4 Data and research methodology

In this paper, we use seasonally adjusted monthly industrial production index (IPI)

data for US manufacturing on NAICS 3-digit level from Federal Reserve Economic

Data base. The sample period runs from January 1972 to April 2015. The indus-

trial production data for German manufacturing sectors (NACE 2-digit level) from

Eurostat covers the period from January 1991 to April 2015. Even though manu-

facturing sector accounts for about 25 % of the total value added, it is responsible

for most cyclical movements. Therefore, it is well suited for sectoral comovement

analysis. The data contains 21 subsectors for each country (for exact de�nitions,

18



see Tables A.1 and A.2 in the A Appendix). As most of these series are trending,

we use transformation to �rst order log di�erences.

As we expect that the growth rates of industrial production index in the manu-

facturing subsectors are driven by di�erent processes, we model each series by au-

toregressive moving average (ARMA) process chosen by the Bayesian Information

Criterion (BIC)2. The diagnostic tests for the ARMA(l,k)-residuals are shown in

Tables A.3 and A.4 in the A Appendix. The �rst two columns display the weighted

Ljung-Box test (for a lag order of 20) for serial correlation of the residuals and mean-

adjusted squared residuals. In most cases, serial correlation is still present in the

squares of the residuals, i.e. in the variance, which indicates presence of conditional

heteroskedasticity. The third column reports the results of a Lagrange multiplier

(LM) test for ARCH with 10 lags and they also support the evidence of conditional

heteroskedasticity for most of the residual series. Columns 4 to 6 show the results

of normality tests. The null hypothesis of the Jarque-Bera test can be rejected at

5% signi�cance level for all but one series indicating that most of the series are

non-normal.

Given that the residual series seem to be heteroscedastic, a framework account-

ing for non-constant volatility is necessary for the analysis. As it is possible that

the volatility dynamics are nonlinear, i.e. volatility reacts di�erently to negative

and positive shocks, also asymmetric GARCH-models are considered: exponen-

tial GARCH (eGARCH), Asymmetric power ARCH (apARCH) and The Glosten-

Jagannathan-Runkle GARCH (GJR-GARCH). If an asymmetric process is modelled

by the standard symmetric model, the estimated conditional variance after a neg-

ative shock would be underestimated whereas the conditional volatility would be

too high after a positive shock. The optimal GARCH(p,q)-order, model and dis-

tribution is chosen by BIC, however adjusted manually in some cases if the chosen

model did not �t properly. Considered residual distribution assumptions include

normal, skewed normal, t-student and skewed t-student distribution. The estimated

coe�cients for ARMA-GARCH models are presented in Tables A.5 and A.6 in the

2In some cases manual changes were taken if the chosen order did not seem to �t well, i.e. the
coe�cient of the highest order was estimated to be insigni�cant
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A Appendix. For the US data, the asymmetric models are chosen more than half of

the series. This indicates that variance of industrial production growth in manufac-

turing sectors in the US tend to be asymmetric i.e. most industries react stronger to

unfavourable than favourable shocks (as the estimate for the asymmetry parameter

is in all cases positive). In German data, however, there does not seem to be much

asymmetry in the volatilities, as the symmetric GARCH is in most cases the most

appropriate choice.

2.5 Empirical results

Since the correlation process is modelled as a scalar process in the basic DCC frame-

work, only a single news impact parameter a and a single smoothing parameter b

are being estimated. Hence, estimating one big model with many series would mean

that the dynamics in correlations would be the same for all series. As we have 21

sectors for each country, we think this is too restrictive assumption. To overcome

the problems with high-dimension models and stay �exible in modelling, we follow

the MacGyver approach of Engle (2009) and estimate bivariate DCC(1,1)-(G)ARCH

models with t-student distributed errors for all combinations of the series. Further-

more, we also account for the possible asymmetries in the conditional correlation

and choose the asymmetric DCC(1,1) if the log likelihood is signi�cantly higher

than the one of the symmetric model. With 21 sectors, there are 21 × 20/2 = 210

bivariate models and thus, 210 series of dynamic correlations for each country.

2.5.1 Results for the US

The descriptive statistics of the estimated parameters of the bivariate DCC models

are presented in Table 2.1. The results are satisfactory as the estimates for a are

always between 0 and 0.188 and b estimates are also non-negative and smaller than

unity. For some sector pairs the a estimate is relatively large and thus, the correlation

process is quite erratic. This could indicate that these sector-pairs are rather weakly

integrated. Further, the median for a is 0.016 and for b 0.888 and thus, the sum
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equals 0.904. This implies a rather moderate level of persistence in the correlation

process.

The asymmetric version of the DCC model is preferred in 21 cases by the log-

likelihood criterion. Given that the coe�cient of γ is estimated to be positive, it

indicates a higher reaction of the conditional correlations to negative than positive

news for these sector pairs.

Table 2.1: Descriptive statistics of the all DCC model estimates for US data

Statistic N Mean St. Dev. Min Median Max

a 210 0.032 0.038 0.000 0.016 0.188
b 210 0.726 0.314 0.000 0.888 0.993
γ 21 0.207 0.100 0.068 0.210 0.440

In order to examine the interindustry comovement of the manufacturing sectors

altogether, the mean of the pairwise conditional correlations is calculated. In Figure

2.1, the average conditional correlation across all the US manufacturing sectors is

plotted with the 95 % con�dence bands and the shaded areas indicate US recession as

de�ned by the National Bureau of Economic Research. First of all, the mean of the

average dynamic correlation over the sample period is moderate and around 0.187.

This is in line with the previous literature given that Long and Plosser (1987) �nd

the comovement to range between 0.07 and 0.28 and Foerster et al. (2011) document

the level of average pairwise correlation to be 0.19, for instance.

The correlation process seem to have been more erratic in the earlier years. Yet,

we cannot observe a clear time trend, even though the average correlation seem

to have decreased slightly during 1980s. In particular, we can observe that the

comovement is not constant but �uctuates considerably over time. Moreover, the

conditional correlation has increased substantially during the recession periods in

1970s, 1980s and 2007-09 indicating that the sectors were comoving stronger in these

downturns than otherwise. However, during the depressions in early 1990s and 2001,

there is no noticeable increase in sectoral comovement in US manufacturing. This
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might re�ect that fact that these two recessions were less related to manufacturing

sector than other busts.
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Figure 2.1: Average conditional correlation with 95 percent con�dence bands and
US recession periods

A further issue considering sectoral comovement that we can address with the

disaggregated manufacturing data is, whether and how the dynamics di�er between

non-durable and durable goods sectors. Already Lucas (1977) states that the pro-

duction of durable goods have more amplitude than the non-durable goods. Also

Mankiw (1985) assesses the role of durable goods sectors for business cycles and

points out that the sectors producing durable goods are essential for business cy-

cle �uctuations and therefore, understanding movements in durable goods sectors

is important for understanding business cycles at large. Christiano and Fitzgerald

(1998) show also that the comovement of hours worked with total hours worked is

in durable goods manufacturing higher than across the non-durable manufacturing

sectors.

For this purpose, we calculate the average conditional correlation across durable

respectively non-durable goods sectors separately. Looking at the average time-

varying correlations in Figure 2.2, we can observe that the conditional correlation

across sectors producing durable goods is noticeably higher and more erratic than the

one of non-durable goods sectors. The slight increase in the correlations during the

recession of 2007-09 is also observable among non-durable goods sectors, however,

less pronounced. These �ndings supports the fact that durable good sectors tend

to comove in general stronger than non-durable goods sectors implying stronger
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sectoral linkages and/or greater importance of aggregate shocks as the magnitude

of common shocks is equal to all sectors. Yet, not only the level of comovement

is higher but also the comovement across durable goods sectors �uctuates more

suggesting that the reaction to (aggregate) shocks are alternating over time.
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Durable goods sectors

Non−durable goods sectors

Figure 2.2: Average conditional correlations among durable goods and non-durable
goods sectors and US recession periods

2.5.2 Results for Germany

We repeat the same analysis for German data. The descriptive statistic of the

pairwise DCC model estimates are reported in Table 2.2. According to this table,

the asymmetric version of the model is preferred only in 9 cases by the log-likelihood

criterion indicating that the reactions to common factors tends to be symmetric

regarding the sign of shocks for most of the sector pairs.

Table 2.2: Descriptive statistics of the bivariate DCC model estimates for German
data

Statistic N Mean St. Dev. Min Median Max

a 209 0.040 0.062 0.000 0.013 0.362
b 209 0.744 0.317 0.000 0.912 0.998
γ 11 0.410 0.174 0.039 0.441 0.719

Figure 2.3 plots the average conditional correlation together with 95% con�dence

intervals and the German recession periods (de�ned as at least two consecutive
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quarters of negative growth of real GDP). Again, in some economic downturns the

correlations jump and we can observe the noticeably increase in the correlation

during the economic crisis in 2007-09 also in the German data. Nevertheless, there

are also some periods of higher correlations which do not overlap with German

recession phases.

Altogether, the pattern of the �uctuations as well as the level of average condi-

tional correlation are found to be quite similar both in the US and in Germany for

the overlapping sample period.
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Figure 2.3: Average conditional correlation with 95 percent con�dence bands and
German recession periods

2.6 Explaining dynamics of sectoral comovement

In the previous chapter, we found evidence for �uctuations in the conditional corre-

lations between monthly growth rates of IPI in manufacturing sectors both in the

US and in Germany. However, with DCC-GARCH analysis we cannot assess the

causes for the non-constant sectoral correlations. In general, sectors comove because

of the direct e�ects of common factors and pass-through of shocks due to sectoral

linkages. Therefore, the changes over time in interindustry comovement indicate

altering magnitude of common shocks, changing sensitivity of sectors to common

factors and/or varying strength of propagation of shocks. Yet, since the intensity

of the pass-through depends mainly on sectoral linkages which are assumed to be
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rather constant or changing slowly, the �rst two reasons should be the main drivers

of the �uctuations in interindustry correlations.

First, we examine which common factors are relevant for sectoral comovement

in a regression analysis. The aggregate factors we consider include real monetary

policy rates (in levels) (IntR) to account for monetary policy changes , stock market

indices (SP500 rsp. DAX ) to incorporate �nancial market developments as well as

changes in oil prices (oil) to control for movements in oil prices. Moreover, we also

want to consider the role of volatility respectively uncertainty for the comovement

since its role for real economic activity has received a lot of attention lately. The

stock market volatility (volSP500 rsp. volDAX ) is combined series from annual-

ized monthly standard deviation of the daily returns and implied volatility index, as

implied volatility index is not available for the whole sample period. Furthermore,

we include the Business Con�dence Indicator (BCI ), which is based on business

tendency survey data, to account for changes in �rms' con�dence. Additionally, to

examine if comovement increases during recessions, we add also a recession dummy

respectively dummies for each recession. The data de�nitions and sources are re-

ported in Tables A.7 and A.8 in A Appendix.

Table 2.3 displays the results of the estimated models for US data with the mean

dynamic conditional correlation as the dependent variable. Standardized coe�cient

and heteroskedasticity robust standard errors are reported. In the baseline model,

column (1) in Table 2.3, we include one lag of the dynamic correlation (DCt−1) to

account for serial correlation as well as one period lagged measures of the aggregate

variables.

We �nd that the coe�cients on stock market index and con�dence indicator

are signi�cant and negative, suggesting that the higher the stock market index re-

spectively the con�dence, the lower the comovement. In other words, in times of

pessimism the sectoral production decisions are more similar than in periods of high

expectations. In addition, the coe�cient on stock market volatility is positive and

signi�cant, even though smaller size than for SP500 and BCI, implying higher cor-

relations in times of high volatility. On the other hand, interest rates and oil prices

seem to be unrelated for the correlations between the sectors.
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Table 2.3: Estimation results of regression models for US data

Mean dynamic correlation (DC)

(1) (2) (3)

DCt−1 0.7320∗∗∗ 0.7320∗∗∗ 0.7250∗∗∗

(0.0388) (0.0389) (0.0411)

volSP500t−1 0.0901∗∗∗ 0.0772∗∗∗ 0.0684∗∗∗

(0.0271) (0.0280) (0.0261)

SP500t−1 −0.1120∗∗∗ −0.1070∗∗∗ −0.1060∗∗∗
(0.0336) (0.0332) (0.0299)

Oilt−1 0.0208 0.0148 0.0073
(0.0212) (0.0219) (0.0203)

IntRt−1 −0.0387 −0.0382 −0.0293
(0.0321) (0.0318) (0.0253)

BCIt−1 −0.1110∗∗∗ −0.0967∗∗∗ −0.1050∗∗∗
(0.0336) (0.0311) (0.0383)

d.rec.US 0.0396
(0.0303)

d.rec.7375 0.0328
(0.0479)

d.rec.80 0.0348
(0.0439)

d.rec.8182 0.0098
(0.0312)

d.rec.9091 −0.0150
(0.0230)

d.rec.01 −0.0011
(0.0196)

d.rec.0709 0.0441
(0.0395)

AIC 755.2 759.2 785.5
Observations 518 518 518
R2 0.7700 0.7710 0.7730
Adjusted R2 0.7670 0.7680 0.7680

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Next, we assess the meaning of the recession periods in model (2). The recession

dummy variable (d.rec.US ) takes 1 during US recession periods and zero otherwise.

The recession dummy turn out to be positive but not signi�cant while the other
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coe�cients remain similar, even though slightly lower compared to the model (1).

This indicates that the included common factors are able to capture to a great

extent the increase in comovement during some of the recessionary periods. When

examining the e�ects of each recession period separately (column 3), all coe�cient

turn out to be insigni�cant. Yet, while most of the dummy variables are positive, two

are found to be negative indicating that during the economic slowdown in early 1990s

as well as beginning of 2000s the sectoral comovement in manufacturing even might

have even decreased somewhat. This suggests that these recessions were hardly

related to manufacturing sector, i.e. the factors causing these speci�c downturns

were not of great importance for manufacturing �rms.

We repeat the same exercise for German data. According to the results in Table

2.4, the �ndings are quite di�erent compared to results for the US. The only variable,

which is found to have a signi�cant coe�cient in the model (1), is the stock market

volatility. When we add the recession dummy variable (column 2), it turns out to

be positive and signi�cant implying that the included variables cannot capture fully

the higher correlations during recessionary times. The results of the model with

separate dummy variables for each recession (column (3)) reveal that correlation

between manufacturing sectors did increase during some recession periods but not

always as was found also for the US data. However, given that the sample period

is much shorter for Germany than for the US, the comparison of the results is not

straightforward.

In the next step, we study if the movements in the correlations could be due

to changes in the variance of common factors. For this purpose, we calculate the

rolling standard deviations (12 months) of the US variables used in the regression

analysis since the sample period for the US is much longer. The results in Figure

2.4 implicate that the variances of the common factors do �uctuate considerably.

While the variability of interest rates has reduced over time, the plots for the other

variables look quite di�erent. The variances peak for all factors expect interest

rates during the �nancial crises around 2007-2009. Given that the results of rolling

analysis are greatly in�uenced by the window length, we do not want to emphasize

27



these �ndings too much but exploit them to point out that the variances of the

aggregate factors are clearly non-constant over time.

Table 2.4: Estimation results of regression models for German data

Mean dynamic correlation (DC)

(1) (2) (3)

DCt−1 0.6680∗∗∗ 0.6500∗∗∗ 0.6390∗∗∗

(0.0525) (0.0515) (0.0491)

volDAXt−1 0.2960∗∗∗ 0.2910∗∗∗ 0.2130∗

(0.0974) (0.1020) (0.1170)

DAXt−1 0.0355 0.0789 0.0899
(0.0618) (0.0611) (0.0601)

Oilt−1 0.0948 0.0423 −0.0237
(0.0617) (0.0578) (0.0551)

IntRt−1 0.0335 −0.0077 −0.0705
(0.0631) (0.0626) (0.0640)

BCIt−1 −0.0517 −0.0483 −0.0704
(0.0533) (0.0516) (0.0522)

d.rec.GE 0.1180∗∗

(0.0565)

d.rec.91 0.0884∗

(0.0482)

d.rec.9293 0.0981∗

(0.0526)

d.rec.9596 −0.0217
(0.0215)

d.rec.0203 0.0151
(0.0399)

d.rec.0809 0.1540∗

(0.0802)

d.rec.1213 −0.0158
(0.0661)

AIC 469.5 469.1 488.3
Observations 225 225 225
R2 0.6090 0.6200 0.6350
Adjusted R2 0.5980 0.6070 0.6140

Note:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Finally, to address the possible changes in the sensibility of the sectors to com-

mon factors, rolling regression analysis of the model (1) for the US is conducted. We

set the window length to 8 years. Looking at the rolling standardized coe�cients

in Figure 2.5, we observe that they exhibit considerable movements. The coe�-

cient of the lagged dependent variable (DCt−1) decrease continuously until 2008

and increase then sharply back to the higher level. The coe�cient on stock market

volatility is found to have increased since mid 2000s as well as the coe�cient on

business con�dence index has become also more negative since early 2000s imply-

ing greater in�uence of these variables on the sectoral comovement during the last

decades. Yet, the estimates for stock market index, oil prices and interest rates

do even change sign during the sample period indicating unstable relationships to

intersectoral correlations.

In summary, our �ndings suggest that both the time-varying variance of the

common factors as well as the changes in the sensitivity of sectors to aggregate

factors play role for the movements in sectoral comovement. Yet, further research

is needed to explore these channels in more detail and to account, for instance, for

the possible time-varying interdependencies between the common factors itself.
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Figure 2.4: Rolling standard deviations (window length of 12 month)
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Figure 2.5: Rolling standardized regression estimates
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2.7 Conclusions

In this paper, we examine dynamics of sectoral comovement among disaggregated

manufacturing sectors in the US and in Germany. Given that the aggregate volatility

depends not only on the volatility of individual sectors but to a great extent of corre-

lations between them, understanding sectoral comovement is crucial for explaining

business cycles. For this purpose, we employ a multivariate dynamic conditional

correlation (DCC) general autoregressive conditional heteroskedasticity (GARCH)

framework to assess the time-varying and asymmetric aspects in volatilities as well

as in correlations of growth rates of manufacturing production. The advantage of

DCC-GARCH is that we can examine possible changes in conditional correlations

depending on state or circumstances of the economy as well as generally over time.

Our results reveal that variance of industrial production growth in manufactur-

ing sectors in the US tend to be asymmetric i.e. most industries react stronger to

unfavourable than favourable shocks. However, we �nd only limited evidence for

asymmetries in correlations what implies that most sector pairs react similarly to

common shocks, irrespective of the sign of shocks. Most notably, we show that the

sectoral comovement in the US and German manufacturing is not constant but shows

irregular movements. Interestingly, the correlations seem to have increased consid-

erably during some economic downturns, especially during the recession in 2007-09,

but there are also recessionary periods in which the comovement hardly changes.

This indicates that contractions tend to be more synchronized than expansions in

manufacturing sector.

Since sectors comove because of the direct e�ects of common factors and pass-

through of (aggregate and sectoral) shocks, the changes over time in interindustry

comovement indicate altering magnitude of common shocks, changing sensitivity of

sectors to common factors and/or varying strength of propagation of shocks. Yet,

since the intensity of the pass-through depends mainly on sectoral linkages which

are assumed to be rather constant or changing slowly, the �rst two reasons should

be the main drivers of the �uctuations in interindustry correlations.
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We examine �rst which aggregate factors are relevant for sectoral comovement

in a regression analysis. Our �ndings for the US indicate that stock market in-

dex as well as business con�dence are related to sectoral comovement. Especially,

in times of pessimism the sectoral production decisions are more similar than in

periods of high expectations. Also stock market volatility is found to play a role

implying higher correlations in times of high volatility. Yet, for Germany, only the

stock market volatility is found to have a signi�cant impact on sectoral correlations.

Furthermore, our �ndings suggest that time-varying variance of common factors as

well as the altering impact of these factors is relevant for the �uctuations in sectoral

comovement. However, further research is needed to explore these issues in more

detail.
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Chapter 3

The role of common expectations for

sectoral comovement: evidence from

business survey data
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3.1 Introduction

The term business cycle refers to two types of comovement: aggregate and sectoral

comovement. The former describes the synchronized movements of aggregate vari-

ables such as consumption, investment and hours worked. The latter outlines the

comovement of inputs and outputs across sectors. The joint behavior of sectors is

commonly interpreted as evidence for aggregate shocks causing the business cycle

(e.g., Lucas (1977)), such as monetary policy or technology shocks a�ecting all in-

dustries in a similar manner. However, generating sectoral comovement in business

cycle models has turned out to be di�cult even in case of aggregate technology

shocks as discussed by Christiano and Fitzgerald (1998), for instance. Moreover,

the �nding of Hornstein (2000) that production is stronger correlated across sec-

tors than productivity, also referred to as excess comovement, do not support an

aggregate technology shock based explanations. Further common factors that could

account for sectoral correlations are hard to identify.

Yet synchronized movements across sectors do not necessarily need to be a re-

sult of common shocks but also sector-speci�c shocks could be propagated through

sectoral linkages to other sectors causing industries to move together. Neverthe-

less, sectoral linkages tend not to be strong enough, especially at the more detailed

level of disaggregation, to account for a realistic level of interindustry comovement

(e.g., Foerster et al. (2011)). As production complementarities have not turned

out to be a successful explanation, further ideas have been proposed. Christiano

and Fitzgerald (1998) discussed information externalities as a potential source of

interindustry comovement and Veldkamp and Wolfers (2007) were the �rst to o�er

a theoretical model for the role of common expectations, or aggregate information,

for sectoral comovement. They argue that complementarity in information acqui-

sition could also explain the excess comovement puzzle - an important but often

ignored empirical �nding. Their explanation is based on the idea that �rms collect

also aggregate information about productivity developments, as it is cheaper to ac-

quire than sector-speci�c information. Based on similar anticipations, �rms tend

to make similar input and output decisions even though their actual productivity

developments may di�er.

36



As noted by Veldkamp and Wolfers (2007) themselves, the challenge with their

hypothesis is that it is di�cult to assess empirically since the anticipations, on which

agents are assumed to base their decisions, are not directly observable. Data on

expectations, and especially data on expectations about productivity developments,

is scarce. Not to mention that sector-level measures of expectations are hardly

available. Lamla et al. (2007) study the meaning of information complementarities

for sectoral comovement by examining if newspaper news a�ect �rms' perceptions

and expectations. Their results support the hypothesis Veldkamp andWolfers (2007)

as they �nd that economy-wide news a�ect �rms' business assessments and plans

more than sector-speci�c media information does.

In this paper, we take a di�erent approach and try to link the common expec-

tations directly to the level output comovement across manufacturing sectors. For

this purpose, we extract the common component of sectoral expectations and ex-

amine how much of the correlation between disaggregated manufacturing output it

can explain. Moreover, to reveal how unexpected changes in common expectations

are propagated through the economy, it is important to know the magnitude of the

responses in di�erent sectors. To tackle these issues, we construct in this paper

novel measures of anticipated labour productivity changes at both sector as well

as aggregate levels to assess this hypothesis empirically. The proposed measures of

expected labour productivity changes are based on micro data of business tendency

survey.

In Section II, we discuss the theoretical background and related literature in

more detail. Section III describes the data from business tendency surveys (BTS)

we use in this paper. Our data source is the monthly Swiss manufacturing survey

of KOF Swiss Economic Institute. Firms in the manufacturing sector are surveyed

each month and asked, among other, questions about their expectations. Using the

question Q.8b �Expectations about production for the next three months" and Q.8d

�Expectations about future number of employees for the next three months" we are

able to de�ne unique, direct measures of anticipated (labour) productivity changes.

Furthermore, we show that our measure of anticipated productivity changes e�ec-

tively tracks labour productivity.
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With our sector level expectations measures, we explore the hypothesis of Veld-

kamp and Wolfers (2007) empirically in Section IV and shed light on the role of

aggregate information for inter-industry synchronization. To �nd out whether there

is such an aggregate information component in sectoral expectations and to dis-

cover the industry-speci�c sensitivity, we employ factor analysis. The results of this

exercise support the hypothesis of Veldkamp and Wolfers (2007) as we �nd that

the �rms in di�erent sectors actually do base their expectations on similar infor-

mation. To assess the quantitative meaning of common information for sectoral

comovement, we examine how much of inter-industry correlations of manufactur-

ing production are related to the common factor of the sectoral expectations. We

show that after accounting for the aggregate information, the pairwise correlations

across manufacturing industries are considerably lower. This implies that infor-

mation complementarities are relevant for explaining the synchronized movements

across industries.

Moreover, through VAR analysis we can observe how the dynamic e�ects of

manufacturing production to a surprise change in the common component of ex-

pectations di�er across sectors. Our �ndings reveal that there is a great deal of

heterogeneity in the reactions of the disaggregated manufacturing sectors to changes

in expectations. In particular, expectation shocks are found to propagate mainly

through the sectors producing capital goods and consumer durables. This is line

with the expenditure side literature on news shocks (e.g., Beaudry et al. (2011) and

Beaudry and Portier (2014)) as it is theoretically argued and empirically found that

investment reacts most to information about future fundamentals. Furthermore,

the responses of durable and non-durable consumption goods di�er considerably as

consumer non-durables seem to be almost unrelated to �rms' expectations.

Section V contains conclusions.

3.2 Theoretical background and related literature

The term business cycle refers, on the one hand, to joint movement of aggregate

variables such as output, investment and consumption and on the other hand, to
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synchronized movements of disaggregated sectoral variables. Therefore not only ag-

gregate comovement, but also sectoral comovement, is a main feature of business

cycles. However, business cycle research has so far chie�y concentrated on exam-

ining comovement between aggregate variables. This is likely the case as standard

business cycle models assume only one economic sector. Obviously, within such a

framework, sectoral comovement cannot be addressed. Additionally, within two-

sector models (with investment and consumption good sectors) generating sectoral

comovement has turned out to be di�cult even in the case of aggregate technology

shocks as discussed by Christiano and Fitzgerald (1998), for instance. This is be-

cause investment increases more than consumption in response to a technology shock

and, therefore, labour should move from the consumption sector to the investment

sector. This implies negative comovement of hours worked in these two sectors.

Yet the synchronized movement across sectors does not necessarily need to be a

result of common shocks but also sector-speci�c shocks could be propagated through

the other sectors causing industries to move together. The necessary condition for

this kind of propagation is a mechanism which limits the law of large numbers,

that is, that sector-speci�c (uncorrelated) disturbances do not cancel out. Long

and Plosser (1983) show that in a multisector framework with intersectoral link-

ages (input-output dependencies), independent sectoral shocks alone may induce

sectoral comovement. However, they assume full depreciation of capital and when

this assumption is relaxed, many properties no longer generalize as noted by Rebelo

(2005). Similarly Horvath (1998, 2000), Dupor (1999), Shea (2002) and Carvalho

(2008) examine the role of intersectoral dependencies transmitting sector-speci�c

shocks within structural multisector models. Nonetheless, sectoral linkages tend to

be too weak, especially at more detailed level of disaggregation, in order to account

for a realistic level of interindustry comovement (see, Foerster et al. (2011)).

Further, these models usually assume contemporaneous sectoral linkages as they

are based on data from yearly input-output tables. Yet, the more realistic as-

sumption is that the intermediate goods as well as capital goods are produced at

least a period (month or quarter) earlier before they �ow into production of other

goods, that is, production complementarities tend to operate with lag(s). In such a
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framework, it is much harder to make sectors to move synchronized. Many of the

empirical applications employ yearly data and legitimate the assumption of contem-

poraneous linkages. In addition, further mechanisms such as inventories (Cooper

and Haltiwanger (1990)) and trade credit (Raddatz (2010)) have been proposed,

playing though at best only a moderate role in explaining synchronized sectoral

movements.

A further proposition how sectoral comovement might evolve is based on informa-

tion complementarities or common information. Christiano and Fitzgerald (1998)

discuss information externalities as a potential source of inter-industry comove-

ment. However, Veldkamp and Wolfers (2007) were the �rst to o�er a theoretical

model for the role of expectations, or aggregate information, for sectoral comove-

ment. However, the idea that changes in expectations might be an essential driving

force of �uctuations in aggregate economic activity was brought to light already at

the beginning of the 20th century (see, Beveridge (1909), Clark (1934) and Pigou

(1927)). For long time, this idea did not receive much attention as the tradional

explanations of business cycles concentrated on productivity shocks. Beaudry and

Portier (2004, 2006) combine the ideas and argued that changes in expectations

re�ect news about future fundamentals, i.e., technological changes are anticipated

such that they become known in the form of news before they are actually real-

ized in a higher technological level. As already suggested in the early 90s by Fama

(1990), Beaudry and Portier (2006) use stock prices to identify the changes in ex-

pectations of economic agents and markets. Since then, this hypothesis has received

growing attention (e.g., Jaimovich and Rebelo (2009), Beaudry and Lucke (2010),

Schmitt-Grohe and Uribe (2012), Forni et al. (2014)). The main question in this

literature is, whether these kind of news are important for business cycles through

their impact on �rms' motivation to start to invest immediately in anticipation of

future demand and build up capital goods before any changes in fundamentals have

actually occurred. The higher demand for investment should in turn lead to an in-

crease in consumption generating an aggregate expansion. In general, these models

are attractive as they can generate recessions without technological deterioration

but as a reaction to over-optimism.
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The news literature, like the business cycle literature in general, has mainly

focused on explaining and documenting aggregate comovement between macroeco-

nomic aggregates such as investment and consumption. However, if news shocks are

important for business cycles, they should also be relevant for sectoral comovement,

i.e., be able to explain the synchronized movements across disaggregated sectors.

Christiano and Fitzgerald (1998) argue that anticipations of future developments

of the economy are incorporated in �rms' current investment decisions. Due to in-

formation externalities, a �rm is interested in actions of other �rms because these

actions may reveal information on a topic, such as the future state of the econ-

omy, which is also of interest for the �rm itself. Further, Veldkamp and Wolfers

(2007) note that complementarity in information acquisition could also explain the

excess comovement puzzle - documented by Hornstein (2000) i.e., why production

is stronger correlated across sectors than productivity. This stylized fact does not

support the idea of an aggregate productivity shock as a driver of economic �uc-

tuations. Veldkamp and Wolfers (2007) argue that �rms try to economize their

information costs and therefore, gather also aggregate information, as it is cheaper

to acquire than industry-speci�c information is. From this it follows that sectoral

expectations tend to be positively correlated and thus, also the production choices

based on these expectations.

More precisely, Veldkamp and Wolfers (2007) propose an island model of pro-

duction in which the productivity of island i is unknown at the start of each period

and therefore, information or expectation about productivity matter. Each sector's

productivity is given by

zi = µz + βiz̄ + ηi + ei (3.1)

where µz is a known aggregate component, z̄ is an unknown but learnable aggregate

component, ηi is an unknown but learnable industry-speci�c component, ei is an

unknown and unlearnable industry-speci�c component, and z̄ ∼ N(0, σ2
z), ηi ∼

N(0, σ2
n) as well as ei ∼ N(0, φ2

j). βi measures the strength of which sector i's

productivity comoves with the aggregate.
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The industry-speci�c signal about the industry i's (future) productivity is de�ned

by:

si = βi(z̄ + e0) + ηi (3.2)

where z̄ + e0 is the signal about aggregate productivity, ηi is the sector-speci�c

signal and e0 ∼ N(0, φ2
0). Thus, the industry-speci�c signal is the sum of the (noisy)

aggregate signal and industry-speci�c signal. The expectations about zi, E[zi|Ii],
are the driving force of this model as the labour e�ort is a function of anticipations

about productivity and production as well, since it depends on labour input:

yi = zini (3.3)

n∗i =
1

ρV ar[zi|Ii]
(E[zi|Ii]− ψ) (3.4)

where n∗ is the �rst-order condition for labour, Ii denotes the available information.

The empirical evidence for the role of anticipations for synchronized movements

across industries in general and for excess comovement in particular is still scarce.

Lamla et al. (2007) study the meaning of information complementarities for sec-

toral comovement as suggested by Veldkamp and Wolfers (2007) by examining if

newspaper news a�ect �rms' perceptions and expectations. Their results support

the hypothesis Veldkamp and Wolfers (2007) as they �nd that economy-wide news

a�ect �rms' business assessments and plans more than sector-speci�c media infor-

mation does.

3.3 Data Description

Our main data source is the monthly KOF manufacturing survey for Switzerland.

That is a voluntary monthly survey among �rms in the manufacturing sector. In

this analysis, we use the answers of the following two questions: Q.8b �Expectations

about production for the next three months" and Q.8d �Expectations about future

number of employees for the next three months". The answer categories are �in-

crease", �stay at same" and �decrease". The anticipated future changes are de�ned

through a contingency table (Table 3.1) where P (., .) denotes the relative frequency
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of certain expectation combination. The expectation at period t about future pro-

duction at period t + 1 are denoted by Etyt+1 and about number of employees by

Etnt+1.

Table 3.1: Expectation combinations

Etyt+1 = Increase Etyt+1 = Unchanged Etyt+1 = Decrease
Etnt+1 = Increase P(+,+) P(+,=) P(+,-)
Etnt+1 = Unchanged P(=,+) P(=,=) P(=,-)
Etnt+1 = Decrease P(-,+) P(-,=) P(-,-)

We interpret that a �rm that expects an increase in production but unchanged

or decreasing number of employees, anticipates a positive (labour) productivity in-

crease. The same argumentation goes the other way round for negative changes.

Obviously, it is not guaranteed that the both variables are assumed to change with

same intensity such that also in the case both are expected to increase, output might

increase more than the number of employees. Yet, we do not examine this issue here

further, but concentrate on the cases which di�erent directions are assumed. More-

over, we weight the answers by the capped number of employees1.

Following Kawasaki and Zimmermann (1986) we calculate from this frequency

distribution a measure of anticipated productivity changes as a weighted balance of

positive and negative anticipated changes. We try two di�erent speci�cations:

EXP.B1 = (APPC − ANPC)/(APPC + ANPC) where

Anticipated positive productivity changes (APPC) = P (=,+)+P (−,+)+P (−,=)

Anticipated negative productivity changes (ANPC) = P (+,=)+P (+,−)+P (=,−)

as well as EXP.B2 = (APPC − ANPC)/(APPC + ANPC) where

Anticipated positive productivity changes (APPC) = P (=,+) + P (−,+)

Anticipated negative productivity changes (ANPC) = P (+,=) + P (+,−).

1To hinder that big �rms dominate the results, a size cap is often applied in business tendency
surveys. In our case, the threshold is set to 500, that is, for w > 500 where w is the number of
full time equivalents employees, the weight is then calculated by w0.7 instead just using w.
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All measures are seasonally adjusted and normalized. As the question about

the employment expectations was introduced only in 2004 for the monthly survey,

our sample period is January 2004 - June 2017. As many economic variables are

available only at a quarterly frequency, we aggregate our monthly measures also to

quarterly variables taking quarterly averages. Further, we also construct sector level

measures for the NACE letter code level industry branches2.

Moreover, we use the data on manufacturing production which we take from

the Swiss Federal Statistic O�ce (SFSO). We adjust the series seasonally in order

to be able to use the quarter-on-quarter growth rates. Also the value added and

employment data come from the SFSO. We calculate labour productivity as value

added divided by labour force. The relative sizes of the dissaggregated sectors we

derived from sectoral turnovers also provided by SFSO.

3.3.1 Firms' expectations and labour productivity

Since we argue that our measures could capture changes in labour productivity, we

�rst visually explore the relationship between these variables. We do not expect that

our expectations measures are able to track all the movements in labour productivity,

especially the transitory movements which are hard to be anticipated, but they

should be able to track the overall trend. Figure 3.1 plots quarterly averages of

EXP.B1, EXP.B2 and the HP-trend of labour productivity growth (to illustrate

trend growth). The positive comovement between EXP.B2 and labour productivity

growth is obvious. We can observe that the expectations started deteriorate slowly

during 2007 before dropping considerably end of 2008 and 2009. However, the

anticipations recovered also quickly showing a sharp increase.

2De�nition of letter classes: Food (CA = NACE 10-12), Textiles (CB = 13-15), Wood (CC = 16-
18), ChemicalsPharma (CD + CE + CF = 19-21), Rubber (CG = 22-23), Metals (CH = 24-25),
Electronics (CI = 26), Electricals (CJ = 27), Machinery (CK = 28), Transport (CL = 29-30),
Other (CM = 31-33). The di�erence to the o�cial letter classes of NACE is the class CN which
combines the CD+CE and CF classes. As the number of observations is very small for the class
CL in the survey data, we cannot calculate the sector level expectations measure for this class.
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Yet, the EXP.B1 measure does not seem to be able to capture the changes in

productivity so well. Thus, we will use the EXP.B2 measure in this analysis as it

is found e�ectively to re�ect information about changes in labour productivity.
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−2

0

2

2005−1 2010−1 2015−1

LP

EXP.B1

EXP.B2

Figure 3.1: EXP.B1, EXP.B2 and labour productivity growth (scaled)

3.4 Aggregate versus sectoral information

In this section, we analyse the hypothesis of Veldkamp and Wolfers (2007) with our

sector level indicators in more detail and shed light on the role of aggregate informa-

tion for sectoral production movements. First, we document sectoral comovement

as well as excess comovement in Swiss data. The correlation matrix between man-

ufacturing production growth in disaggregated sectors3 in Table 3.2 illustrates the

amount of comovement. The correlations vary between −0.32 and 0.6 indicating

a rather heterogeneous structure of intersectoral relations. The mean correlation

amounts 0.21 implying that industries move on average moderately together which

is in line with the �ndings of Long and Plosser (1987) and Foerster et al. (2011).

3Due to data availability, we use following letter-level sector groups: Food (CA = NACE 10-12),
Textiles (CB = 13-15), Wood (CC = 16-18), Chemicals (CD+CE = 19-20), Pharma (CF =
21), Rubber (CG = 22-23), Metals(CH = 24-25), Electronics (CI = 26), Electricals (CJ = 27),
Machinery (CK = 28), Transport (CL = 29-30), Other (CM = 31-33)
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Table 3.2: Correlations between sectoral manufacturing production growth

1 2 3 4 5 6 7 8 9 10 11

Food
Textiles 0.35
Wood 0.26 0.35

Chemicals -0.32 -0.03 0.07
Pharma 0.15 0.23 0.09 -0.01
Rubber 0.05 0.12 0.39 0.23 -0.08
Metals 0.14 0.20 0.55 0.15 0.01 0.58

Electronics 0.13 0.36 0.46 -0.09 0.23 0.42 0.31
Electricals 0.24 0.21 0.39 0.11 0.26 0.27 0.24 0.27
Machinery 0.26 0.26 0.39 -0.02 0.09 0.17 0.42 0.20 0.35
Transport -0.01 0.24 0 -0.12 0.07 0.36 -0.01 0.13 0.29 0.16
Other 0.18 0.30 0.60 0 0.10 0.27 0.37 0.50 0.17 0.50 0.11

To illustrate excess comovement, we calculate the average pairwise correlations

for growth rates of industrial production as well as labour productivity for the

manufacturing sectors. In Figure 3.2 we can observe that output is in general higher

correlated across sectors than productivity is as originally found by Hornstein (2000).

Again, this indicates that traditional productivity shocks do not appear to be the

main reason for the synchronized movements.
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Figure 3.2: Excess comovement in Swiss Data

The descriptive statistics of the manufacturing production series (in log di�er-

ences) are reported in Table 3.3. The sectoral volatilities are found to di�er greatly.

Panel B underlines the stylized fact that the durable consumer goods sector exhibits

higher volatility than non-durable consumer goods. Also capital goods production

seems to be more variable than non-durable consumer goods production what is
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in line with the fact that investment is more erratic than consumption, especially

non-durables consumption. These di�erences in volatilities imply that sectors are

a�ected by di�erent sectoral shocks or respond di�erently to aggregate shocks. In

particular, the industries with higher volatility are presumably subject to more

sector-speci�c disturbances.

Table 3.3: Descriptive Statistics of sectoral manufacturing production series

Panel A. Letter-code classi�cation

Mean Std. Dev. Min. Max. Range Corr.

Food 0.20 1.42 -2.63 3.23 5.85 0.13
Textiles -0.22 4.53 -17.68 16.08 33.77 0.24
Wood -0.18 1.01 -2.92 1.56 4.48 0.32
Chemicals -0.10 5.22 -25.23 9.07 34.30 -0.00
Pharma 1.72 3.01 -4.76 9.32 14.08 0.10
Rubber -0.07 2.40 -6.91 5.19 12.09 0.25
Metals -0.06 1.82 -4.71 3.02 7.73 0.27
Electronics 0.59 3.62 -8.62 7.40 16.02 0.26
Electricals 1.43 2.96 -3.93 12.85 16.78 0.25
Machinery -0.05 4.70 -9.47 10.01 19.48 0.25
Transport 0.60 7.69 -18.44 20.18 38.62 0.11
Other 0.46 2.06 -5.11 3.60 8.71 0.28

Panel B. MIG classi�cation

Mean Std. Dev. Min. Max. Range Corr.

Int 0.19 2.05 -12.19 2.97 15.16 0.34
Cap 0.37 2.60 -8.81 5.49 14.30 0.32
Dur 0.45 4.10 -10.68 7.68 18.35 0.24
NDur 0.81 1.77 -3.06 4.50 7.56 0.22
Notes: Corr. = Average pairwise correlations. Int = Intermediate goods, Cap =
Capital goods, Dur = Durable consumer goods, NDur = Non-Durable consumer
goods

As explained earlier, Veldkamp and Wolfers (2007) assume that �rms pursue to

collect aggregate information about productivity developments since it is cheaper

to acquire than sector-speci�c information. Since �rms need to make most input

and output decisions before technological level (or demand) has realized and as their
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expectations are correlated through the public information, their input and output

decisions are more synchronized than their actual productivity developments.

To �nd out if there is such an aggregate information component in sectoral

anticipations, we employ factor analysis. We extract the common component z̄+ e0

of sectoral expectations measures by dynamic factor analysis and to estimate the

sector-speci�c sensitivity (βi) to the common information component. Thus, we

consider a simple model with one common trend only:

yt = Zxt + vt where vt ∼MVN(0,R) (3.5)

xt = xt−1 + wt where wt ∼MVN(0,Q) (3.6)

where yt is a vector of observations of sectoral expectations, xt is the common

trend and Z is a vector of factor loadings. We assume the covariance matrix R to

be diagonal but unequal.

Table 3.4: Factor loadings of sectoral expectations

Food Textiles Wood ChemicalsPharma Rubber Metals Electronics Electricals Machinery Other

coef 0.36 0.25 0.38 0.29 0.51 0.46 0.46 0.17 0.51 0.36
se 0.08 0.09 0.09 0.09 0.08 0.08 0.09 0.09 0.09 0.09

The estimated factor loadings (βi's) with their standard errors are reported in

Table 3.4. Since the βi's are found to be positive and relatively high, this indi-

cates that sectors actually do base their expectations on similar information, yet to

varying degree. The results reveal that expectations of Rubber, Electronics and Ma-

chinery industries co-vary most strongly with the aggregate signal. Electricals and

Textiles sectors exhibit the lowest relation to the learnable aggregate component,

which indicates that this sector comoves only weakly with the aggregate productivity

development. Furthermore, the share of the variance explained by the common fac-

tor is documented in Table 3.5. Especially, the expectations of Rubber, Electronics,

Machinery and Metals are to a great extent explained by the common component.

All together, these results are in line with the �ndings of Lamla et al. (2007) and

support the hypothesis of Veldkamp and Wolfers (2007) that �rms seem to gather

notably aggregate information.
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Table 3.5: Share of variance of sectoral expectations explained by the common factor

Food Textiles Wood ChemicalsPharma Rubber Metals Electronics Electricals Machinery Other

0.30 0.14 0.32 0.18 0.58 0.47 0.48 0.07 0.58 0.30

Next, we ask the question how much of the comovement of manufacturing pro-

duction across the disaggregated sectors can common information explain? To ex-

amine this, we regress the sectoral manufacturing production series against two

autoregressive lags and current and lagged values of the common component (ex-

tracted from sectoral expectations in the previous exercise). The residuals of these

regressions will show the movements which cannot be explained by the common

information. Therefore, the level of correlation between these residuals (compared

to the correlation between actual sectoral series) indicates how much of the comove-

ment between sectors can be accounted to common expectations. That is, the lower

the correlation between these residuals, the greater the role of aggregate information

for synchronized movements. Table 3.6 presents the correlation matrix. In general,

the sectoral manufacturing correlations are considerably lower after accounting for

the common expectation component. Nevertheless, there are great di�erences across

the sector pairs. For some industry pairs the correlations seem to be even higher

after controlling for aggregate information. All together, the average pairwise cor-

relation is found to amount to 0.06 (compared to 0.15 between the AR-innovations)

indicating that almost two thirds of output comovement can be attributed to the

common component of sectoral expectations. This �nding emphasizes that aggre-

gate information plays an essential role in synchronized industry �uctuations. On

the other hand, also some other aggregate factors or production complementarities

seem to be meaningful since not all of the comovement can be explained through

common information.

Moreover, we examine how unexpected changes in the common information com-

ponent are actually propagated through the economy. To analyse how these dynamic

e�ects di�er across sectors, we estimate bivariate VARs (with 2 lags and a constant)

consisting of the common expectation component and a sectoral manufacturing pro-

duction variable (in log di�erences). Here, we use the MIG classi�cation of the
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manufacturing sectors (instead of the letter-level classi�cation) to get a clearer pic-

ture.

Table 3.6: Correlations between sectoral manufacturing production innovations after
accounting for common information

1 2 3 4 5 6 7 8 9 10 11

Food
Textiles 0.21
Wood 0.21 -0.04

Chemicals -0.18 -0.04 0.05
Pharma 0.16 0.37 0.07 0.03
Rubber 0.13 -0.15 0.14 0.27 0.03
Metals -0.03 -0.06 0.20 0.11 -0.14 0.40

Electronics 0.07 0.17 0.10 -0.11 0.27 0.31 0.01
Electricals 0.13 -0.08 -0.03 0.25 0.24 0.08 -0.02 -0.05
Machinery 0.05 -0.06 0.06 -0.10 0.17 0 0.01 0.01 0.12
Transport 0.07 0.22 -0.04 -0.11 0.13 0.13 -0.19 0.10 0.21 0.17
Other 0.22 0 0.37 0.03 -0.02 0.10 0.06 0.26 -0.21 0.23 -0.04

Figure 3.3 displays the cumulative impulse responses of manufacturing produc-

tion at the sectoral level to innovations in the common factor of expectations. The

capital goods producing sector is found to react strongest showing a slow-building

and apparently permanent response. A one-standard-deviation innovation to the

common factor leads to roughly 4 percent higher production in capital goods sec-

tors which indicates a sizable e�ect of expectation shocks. This is in line with our

�nding that expectations of industries like Machinery and Metals load strongly on

the common information component. Furthermore, as capital goods are needed for

investments and investment is theoretically argued and empirically found to react

the most to information about future fundamentals, see e.g., Beaudry et al. (2011)

and Beaudry and Portier (2014), our �ndings �t in the same picture with the results

of news literature on aggregate comovement. Also the manufacturing production

of durable goods reacts to a surprise change in the aggregate factor similar to the

capital goods production, though somewhat weaker and slower. Nevertheless, the

non-durable goods industry shows hardly any response to innovations in the com-

mon factor of expectations. This is plausible as durable consumption is known to be

more cyclical and responsive to sentiments than expenditure on non-durable goods
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(see, Fuhrer (1993)). The intermediate goods sector shows qualitatively comparable,

yet quantitatively smaller response than capital goods production.

Moreover, the fact that the innovations to expectation cause long-run increases

in manufacturing production in various sectors again points out that our expectation

indicators e�ectively re�ect information about future fundamentals. If the changes

in �rms' anticipations would mostly capture sentiments or noise, we would expect to

�nd rather transitory e�ects on economic activity. Furthermore, the positive e�ect

on impact, found for all except consumer non-durables, indicates that �rms start to

adjust right away before the higher level of productivity has actually been realized.
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Figure 3.3: Cumulative impulse responses of manufacturing production (MP) across
sectors to the common factor of the expectations (with 90 percent con�dence inter-
vals)
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3.5 Conclusion

The business cycle literature has so far mainly focused on explaining and document-

ing aggregate comovement between macroeconomic aggregates such as investment

and consumption. Yet, another crucial characteristics of business cycles is sectoral

comovement, that is, the synchronized movements of inputs and outputs across sec-

tors. Also the stylized fact of excess comovement, which means that production

is stronger correlated across sectors than productivity, is regularly ignored in both

theoretical and empirical works.

This paper examines the hypothesis of Veldkamp and Wolfers (2007) about the

meaning of aggregate information for synchronized input and output movements

across industries. Yet, the empirical support for this theory is still scarce as sector-

level expectation data is hardly available. To �ll this gap, we employ micro data

from business tendency surveys to construct novel sector- and aggregate-level mea-

sures of anticipated productivity changes. Our indicator is found to track labour

productivity which indicates that �rms are able to anticipate its changes quite well.

The results of our factor analysis support the hypothesis of Veldkamp andWolfers

(2007) as we �nd that the �rms in di�erent sectors actually do base their expectations

on similar information. Further, after controlling for the aggregate information

component, the manufacturing production exhibits considerably lower correlations

across disaggregated sectors. This indicates that common information plays a crucial

role in explaining the synchronized sectoral movements.

Our further �ndings reveal that there is a great deal of heterogeneity in the re-

actions of the disaggregated manufacturing sectors to changes in expectations. In

particular, expectation shocks are found to propagate mainly through the sectors

producing capital goods and consumer durables. This is line with the expenditure

side literature on news shocks (e.g., Beaudry et al. (2011) and Beaudry and Portier

(2014)) as it theoretically argued and empirically found that investment reacts most

to information about future fundamentals. Moreover, the �nding that innovations

to expectations measures cause long-run increases in manufacturing production in

various sectors points to out that our expectation indicators e�ectively re�ect infor-

mation about future fundamentals.
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Chapter 4

Is it good to be bad or bad to be

good?: Assessing the impact of

abnormal weather on consumer

spending
1

1This chapter is co-work with Boriss Siliverstovs. We thank MeteoSwiss for providing us with the
access to the weather data.
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4.1 Introduction

In the retail business, exceptional weather is often argued to have an impact on

consumer spending. Such e�ects of abnormal weather typically manifest themselves

as transitory shifts in consumer intertemporal spending decisions. Yet, formal sup-

port for this anecdotal evidence has hardly been found as the empirical literature on

the impact of (abnormal) weather on consumer spending is still scarce. Obviously,

usual weather e�ects can be easily quanti�ed and removed by standard seasonal

adjustment procedures. However, these procedures often struggle to appropriately

accommodate the e�ects of weather anomalies, i.e., (very) untypical weather for a

given season or month of the year, and may require non-conventional intervention

in order to prevent distortions in the seasonal adjustment of the data of interest.

Understanding how unusual weather a�ects consumer spending is of importance

for several reasons. On one hand, it reveals how consumer decisions are a�ected by

abnormal weather conditions. Already Linden (1962) noted that unusual weather

conditions cause shifts in timing of purchases, generate purchases that might other-

wise not occur or cause a permanent loss of demand. Yet, the channels of exceptional

weather on retail sales are multiple. First, weather may a�ect consumers' mood and

therefore their spending decisions as argued by Murray et al. (2010). The more sun-

light, the better the mood and the higher the willingness to spend (more) money. We

refer to this as mood channel. Second, weather conditions also a�ect the convenience

of the shopping experience (sunny weather vs., heavy rain or snow) and thus, in-

crease or decrease, respectively, the motivation for shopping (convenience channel).

Furthermore, weather conditions can boost sales of weather related products such as

air conditioners, umbrellas and snow shovels (weather-related products). Moreover,

when season changes there is need for di�erent apparel as well as leisure equipment.

Unusual bad or good weather can shift sales peaks during the months when new

seasonal products are launched (seasons change channel). However, all these e�ects

could be (partly) caught up in the following month(s). All in all, weather anomalies

tend to a�ect the utility derived from a consumption good in a speci�c period and

therefore cause intertemporal consumption patterns.
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On the other hand, it is a well-known fact that consumer expenditure has a sub-

stantial transitory component that cannot be explained by changes in fundamental

economic factors, such as income or interest rates. Unusual weather is assumed to

be one of the main reasons for it. The transitory component can be problematic as

it can distort the measurement of the e�ects of fundamental factors on spending.

For instance, the estimation of elasticity of intertemporal substitution (EIS), one

of the central parameters of macroeconomic and �nance models, is a�ected by this

issue. Furthermore, as retail sales is the most comprehensive measure of private ex-

penditures at monthly frequency (national accounting data on private consumption

is available on at quarterly frequency) and thus, is one of the main economic indi-

cators, its movements are followed closely by central banks and economic analysts.

Yet, it is crucial to disentangle if the observed changes are rather transitory (and

possibly followed by a rebound in following month) or re�ect genuine changes in

underlying factors. Therefore, impacts caused by exceptional weather are relevant

for business cycle analysis and monitoring current economic conditions as well as

making projections in the future. Moreover, if abnormal weather a�ects retail sales,

there could also be demand-led e�ects on inventories, production and employment,

to mention but a few. In addition, the knowledge of weather impacts is also crucial

for business planning and forecasting, especially for retailers.

Nevertheless, the e�ects of unusual weather conditions on consumer spending

has so far received only limited attention in the empirical literature. The probably

�rst study examining the transitory e�ects of weather on economic activity is the

paper of Maunder (1973). Using weekly non-seasonally adjusted data, his �ndings

indicate that weather conditions can account for a moderate share of the short-term

variation in retail trade sales in the US. Also Starr-McCluer (2000) studies the e�ects

of weather on (nominal) retail sales in the US on monthly and quarterly basis. She

�nds unusual hot and cold weather (measured by cooling and heating days) to have

a signi�cant but rather small e�ect on monthly nominal retail trades. Furthermore,

her results reveal that the e�ects tend to di�er depending on the quarter (the periodic

analysis is done only for quarterly data). Yet, one problem with analysing unusual

weather e�ects at national level in such a big country as the US is that weather
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tends to be very diverse across the country and therefore estimated impacts might

average out at this level of aggregation. Busse et al. (2015) examine the in�uence of

weather on car purchases in the US. They show that the choice of car type depends

on the weather on the day of the purchase, even after controlling for the past weather

conditions. Thus, their �ndings imply that consumers are a�ected by the weather

conditions such that they tend to overstate the future utility when buying high-value

durable goods.

The main aim of our analysis is to investigate if weather anomalies lead to inter-

temporal shifts in consumer spending at monthly frequency and to quantify the size

of these e�ects. We contribute to the existing literature in di�erent ways. In relation

to Maunder (1973) who considers only contemporaneous e�ects and uses only three

years of data, we analyse longer time series and allow also for rebound impacts to

get more reliable evidence. Compared to Starr-McCluer (2000) we use more precise

weather measures using actual temperature instead of number of cooling or heating

days only. More importantly, we conduct the periodic analysis on monthly level

to be able to discover the exact nature of abnormal weather e�ects which tend to

"wash out at a quarterly frequency" as noted by Starr-McCluer (2000). Murray

et al. (2010), like most of the marketing literature, employ data of a particular store

and speci�c product groups. Nevertheless, for statements of total (nation wide)

impacts, aggregate sales data is required. Oppose to Busse et al. (2015) who con-

centrate on very speci�c market and do not use nation-wide data, we analyse various

product groups containing aggregate retail sales data, which allows us to make con-

clusions about the total impacts of abnormal weather on consumer expenditures.

In particular, we add on all of these works o�ering theoretical model based on con-

sumer choice. Moreover, the application of long-run restrictions and quanti�cation

of these e�ects borrowing the approaches of Boldin and Wright (2015) who examine

the weather-adjustment of employment data, is new in weather-related consumer

spending literature.

58



In Section II, we develop a stylized model of intertemporal consumption in which

abnormal weather a�ects consumption enjoyment, i.e., the utility derived from con-

sumption. These e�ects are allowed to vary across periods as the impact of weather

anomalies is very likely to di�er depending on the month.

In Section III we then use Swiss retail sales and weather data as described to

test if exceptional weather does in�uence consumer decisions as proposed by the

theoretical model. As Switzerland is a small country where weather does not di�er

greatly between the highly populated areas (where most retail sales are made), we

can conduct this analysis using national macroeconomic data and thus, be able to

evaluate how large the impacts of abnormal weather at the aggregate level are. We

consider three di�erent weather variables: temperature, precipitation and sunshine.

In line with the literature, the abnormal weather measures are de�ned as deviations

from their month-speci�c long-term (running) mean.

Section IV documents our empirical results. Our �ndings reveal that weather

anomalies do cause intertemporal shifts in consumer expenditure in Switzerland.

They can explain a considerable share of the variability of seasonally-adjusted retail

sales, especially in the non-food sector. We �nd that consumers react at most to

exceptional temperatures and less to exceptional precipitation or sunshine, implying

that temperature is the most in�uential weather variable for explaining the intertem-

poral shifts in consumer spending. Furthermore, the e�ects of abnormal weather are

found to di�er across seasons, i.e., to be month-speci�c, both with respect to the

sign and to the magnitude. In particular, our �ndings indicate that weather e�ects

manifest mainly through the seasons change channel: exceptionally warm tempera-

tures in early spring (good to be good) as well as unusually cold conditions in late

summer and early autumn (good to be bad) are generally associated with higher

sales than usual. That is, weather conditions in line with the coming season motivate

to make the purchases early in the season. In other words, depending on the season

(or month) unusually good weather may boost or restrain consumer expenditures,

and vice versa.
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Section V presents the results of several extensions of our analysis presented in

the main body of the paper aiming to verify their robustness. The �nal section

concludes.

4.2 Theoretical model

To formalize our arguments theoretically, we develop a stylized model of intertempo-

ral consumption. In this model, weather conditions a�ect consumption enjoyment

i.e., the utility derived from consumption. As discussed above, this can be due to

the mood, convenience, weather related products and seasons change e�ects. Fur-

thermore, we allow the importance of these weather conditions to vary seasonally.

Assuming an isoelastic utility function, this can be formalized as follows

Ut =
C1−γ
t

1− γ
sθmt , (4.1)

where st stands for the weather state taking value 1 by average (normal) weather, θm
indexes the importance of the weather state and m = 1, . . . , 12 denotes the month in

which t falls. st can be interpreted as a taste-shifter, a variable that shifts marginal

utility. We assume life time utility to be additive so that

Vt =
T∑
i=0

βiUt+i, 0 < β ≤ 1, (4.2)

where β is a time discount factor. The budget constraint is de�ned as

Ct+1 = Yt+1 − At+1 + (1 + rt+1)At, (4.3)

where Y is real income, r is the real interest rate and A is the end-of-period real

value assets. Maximization of total utility yields

C−γt+1s
θm+1

t+1

C−γt sθmt
=

1

β(1 + rt+1)
. (4.4)
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Taking logarithms and adding the disturbance gives us

γlnCt+1 + lnsθm+1

t+1 = γlnCt + lnsθmt − ln

(
1

β(1 + rt+1)
+ εt+1

)
. (4.5)

We assume that the stochastic term is normally and identically distributed

ln

(
1

β(1 + rt+1)
+ εt+1

)
∼ N(µ, σ2).

Thus, we can use the properties of log-normal distributions to derive the following

results:

Et

(
1

β(1 + rt+1)
+ εt+1

)
= exp(µ+ 1/2σ2)

and further,

µ = ln(1/β(1 + rt+1))− 1/2σ2.

Finally, we can write the equation (5) as

lnCt+1 = ω +
ln(1 + rt+1)

γ
+ lnCt + θmlnst − θm+1lnst+1 + ut+1, (4.6)

where

ωt =
1

γ
ln(β + 1/2σ2).

Reordering the terms gives us the �nal speci�cation:

ln
Ct+1

Ct
= ω +

ln(1 + rt+1)

γ
+ θmlnst − θm+1lnst+1 + ut+1. (4.7)

Equation (4.7) states that the growth in consumption depends on the time discount

factor (β), the interest rate, the weather state of the current period as well as the

weather state of the previous period and the forecast error. This implies that through

intertemporal optimization unusual weather may cause shifts in consumption over

time.
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Often it is assumed that the utility does not depend only on the current con-

sumption expenditure but also on the previous consumption level. A utility function

with habit formation can be written as

Ut =
1

1− γ
C̃t

1−γ
sθmt (4.8)

where C̃t = Ct
Cφt−1

and φ controls the importance of habit formation. Then, the

maximization of total utility yields

(
Ct+1

Cφ
t

)−γ sθm+1

t+1

Cφ
t

=

(
Ct

Cφ
t−1

)−γ
sθmt

Cφ
t−1

1

β(1 + rt+1)
. (4.9)

Under the same assumptions as earlier, we get

ln
Ct+1

Ct
= ω +

ln(1 + rt+1)

γ
+ θmlnst + θm+1lnst+1 + (1− 1

γ
)φln

Ct
Ct−1

. (4.10)

Now, the growth of consumption depends also on the growth rate of the previous

period.

4.3 Data

For this analysis we employ three data sets: data on weather, retail sales and

macroeconomic variables such as interest rates and in�ation. The weather data

for this paper comes from the Swiss Federal O�ce of Meteorology and Climatology

(MeteoSwiss)2. The various weather variables are available for numerous weather

stations in Switzerland. The national values are de�ned as simple average of 12

speci�c weather stations3. Since we want to examine the e�ects of unusual weather,

we construct our weather variables as deviations from the month-speci�c long-run

2For the data access, see https://gate.meteoswiss.ch/idaweb/
3Stations: BAS (Basel), BER (Bern), CHD (Château-d'Oex), CHM (Chaumont), DAV (Davos),
ENG (Engelberg), GVE (Geneva-Cointrin), LUG (Lugano), SAE (Saentis), SIA (Segl-Maria),
SIO (Sion), SMA (Zurich)
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mean following international standards4. First, we calculate the national averages

of 12 stations for the monthly values. Then the rolling 30-years mean for each

month is computed. Finally, we de�ne the deviations as the monthly value minus

the (one-year) lagged rolling mean as follows:

Wm
t = wmt −

1

30

t−1∑
t−31

wmt (4.11)

where wmt denotes the value of the weather variable in month m. We repeat this

for all the three weather variables we consider: homogenized monthly mean tem-

perature (2 meters above the ground), homogenized monthly mean precipitation (in

millimeters) and monthly mean duration of sunshine (in hours). The sample period

of the weather variables runs from January 1980 to February 2017. These variables

are plotted in Figure 4.1.
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Figure 4.1: Weather variables - deviations from long-run rolling mean

The Swiss Federal Statistical O�ce (FSO) provides data on retail trade sales in

Switzerland. The indexes start on January 2002. The data are available for total

retail trade (NOGA 47) and for the sub-branches. Our main series are the seasonally

and calender e�ects adjusted retail sector without fuel (NOGA 47 without NOGA

473)[Total wo fuel], retail sales of food, beverages and tobacco (NOGA 4711 and

4See, De�nition of World Meteorological Organization to Climatological Normals:
http://www.wmo.int/pages/prog/wcp/wcdmp/GCDS1.php
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472) [Food] as well as retail sales of non-food (NOGA 4719, 474-479) [Non-Food].

Figure 4.2 shows the series over the sample period from January 2002 to December

2016.

Moreover, the data on short-term nominal interest rates as well as CPI index

we extract from the SNB Dataportal for the same sample period (January 2002 -

December 2016).
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Figure 4.2: Nominal Retail sales (Month-to-Month growth rates)

4.4 Empirical analysis

In this section, we present our estimation results for several model speci�cations.

In Section 4.1, we estimate our baseline model where we impose identical weather

e�ects for all months. In Section 4.2, we relax this assumption and allow for month-

speci�c or periodic weather e�ects. In Section 4.3, we test the null hypothesis that

there are no long-run e�ects of abnormal weather on the level of consumption.

4.4.1 Baseline speci�cation

To examine the short-term e�ects of unusual weather on retail trade sales, we esti-

mate various regression speci�cations derived from equation (4.7) of our theoretical

model.
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In the �rst step, we consider constant weather e�ects over the year i.e., assume

that θ do not vary seasonally:

∆Ct = ω +

p∑
i=1

ai∆Ct−i + δRt +
1∑
l=0

θlWt−l + εt, (4.12)

where Ct is log nominal retail sales (index) at time t, p indicates the number of

autoregressive lags, Rt = ln(1+rt) whereas rt is the short-term interest rate and δ =

1/γ captures the elasticity of intertemporal substitution. Wt−l = {Temp, Rain, Sun}
is one of our weather variables and l denotes a lag.

Coe�cient estimates for this equation are reported in Table 4.1. In column (1),

we do not include any weather variables so that we can later compare the results

with this baseline speci�cation. In column (2), we include the contemporaneous and

lagged values of the temperature variable, in the third and fourth columns - those of

the precipitation and the sunshine. In column (5), the estimation result of a model

with all weather variables is presented.

Table 4.1: Average weather e�ects

Dependent variable:

Nominal Retail turnover (dl)

(1) (2) (3) (4) (5)

Constant 0.041 (0.093) 0.050 (0.101) 0.036 (0.094) 0.027 (0.097) 0.037 (0.102)
∆ct−1 −0.756∗∗∗ (0.075) −0.748∗∗∗ (0.075) −0.752∗∗∗ (0.075) −0.756∗∗∗ (0.075) −0.738∗∗∗ (0.076)
∆ct−2 −0.534∗∗∗ (0.085) −0.521∗∗∗ (0.085) −0.531∗∗∗ (0.085) −0.532∗∗∗ (0.086) −0.505∗∗∗ (0.086)
∆ct−3 −0.217∗∗∗ (0.075) −0.209∗∗∗ (0.075) −0.214∗∗∗ (0.075) −0.215∗∗∗ (0.075) −0.198∗∗∗ (0.075)
Rt 0.452∗∗∗ (0.119) 0.446∗∗∗ (0.119) 0.454∗∗∗ (0.120) 0.448∗∗∗ (0.120) 0.425∗∗∗ (0.122)
Tempt −0.081 (0.056) −0.144∗∗ (0.070)
Tempt−1 0.066 (0.056) 0.082 (0.070)
Raint −0.001 (0.002) −0.0003 (0.003)
Raint−1 0.0002 (0.002) 0.001 (0.003)
Sunt 0.001 (0.003) 0.005 (0.005)
Sunt−1 0.001 (0.003) 0.001 (0.005)

Observations 176 176 176 176 176

R2 0.389 0.399 0.390 0.390 0.409

Adjusted R2 0.374 0.378 0.368 0.368 0.373

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Our estimation results suggest that when restricting the weather e�ects to be

equal for all months of the year, there is a very limited evidence suggesting that

abnormal weather in�uences retail sales in Switzerland. Almost all but one (Tempt
in column (5)) weather variables are insigni�cant and the adjusted R2 increases

only marginally for models in columns (2) and (5) out of all models augmented
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with weather variables (columns (2)-(5)) as compared with our benchmark model

in column (1) that excludes all weather variables.

4.4.2 Month-speci�c weather e�ects

Next, we examine if consumers are a�ected by weather anomalies di�erently at di�er-

ent seasons or months. Therefore, we allow the weather e�ects to di�er periodically,

i.e., θ may vary over the year:

∆Ct = ω +

p∑
i=1

ai∆Ct−i + δRt +
1∑
l=0

θ1,lD
JanWt−l +

1∑
l=0

θ2,lD
FebWt−l + · · ·+

1∑
l=0

θ12,lD
DecWt−l + εt (4.13)

where Wt−l = {Temp, Rain, Sun} is one of our weather variables and Dm a dummy

variable taking value 1 in month m and zero otherwise.

The results for the temperature variable are presented in Table 4.2. Again, in

the �rst column the estimated coe�cients for the baseline model without weather

variables are documented. The second column presents the results of the model with

month-speci�c temperature e�ects. Numerous temperature coe�cients turn out to

be statistically signi�cant, however, the signs and the sizes of the coe�cients di�er

greatly. The estimate for March is found to be positive indicating that unusual warm

weather in March boost the retail sales. The coe�cient on June temperature is, in

turn, found to be negative implying that abnormal hot weather during the summer

month exercises a dampening e�ect on the retail sales. From August to October

the coe�cients on the temperature dummies are negative and signi�cant, with the

October coe�cient having the highest value. This �nding implies that abnormal

warm weather conditions during early autumn have negative impact on the retail

sales hindering changes in the garderope and shifting the seasonal sales peaks later.

We repeat the same analysis using precipitation and sunshine as weather vari-

ables. The results are documented in Tables B.1 and B.2 in B Appendix. Never-

theless, the results imply similar impacts as the model with temperature: abnormal
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nice weather (less rain or more sunshine, respectively) in spring months boost the

sales of retailers, whereas it hinders the sales in early autumn. However, hardly any

of the coe�cients are signi�cant.

Table 4.2: Month-speci�c e�ects of Temperature

Dependent variable:

Nominal Retail turnover (dl)

(1) (2)

Constant 0.041 (0.093) 0.033 (0.097)
∆ct−1 −0.756∗∗∗ (0.075) −0.688∗∗∗ (0.077)
∆ct−2 −0.534∗∗∗ (0.085) −0.470∗∗∗ (0.084)
∆ct−3 −0.217∗∗∗ (0.075) −0.164∗∗ (0.071)
Rt 0.452∗∗∗ (0.119) 0.509∗∗∗ (0.115)

DJanTempt 0.074 (0.187)

DFebTempt 0.028 (0.140)

DMarTempt 0.503∗∗ (0.199)

DAprTempt 0.213 (0.139)

DMayTempt 0.068 (0.209)

DJunTempt −0.315∗∗ (0.145)

DJulTempt 0.197 (0.176)

DAugTempt −0.615∗∗∗ (0.156)

DSepTempt −0.327∗ (0.182)

DOctTempt −0.697∗∗∗ (0.214)

DNovTempt −0.241 (0.162)

DDecTempt 0.195 (0.210)

DJanTempt−1 0.114 (0.202)

DFebTempt−1 −0.152 (0.192)

DMarTempt−1 −0.160 (0.119)

DAprTempt−1 −0.093 (0.206)

DMayTempt−1 −0.374∗∗ (0.153)

DJunTempt−1 0.187 (0.207)

DJulTempt−1 −0.049 (0.146)

DAugTempt−1 0.271∗ (0.157)

DSepTempt−1 0.461∗∗∗ (0.163)

DOctTempt−1 0.416∗∗ (0.198)

DNovTempt−1 0.157 (0.202)

DDecTempt−1 0.399∗∗ (0.196)

Observations 176 176

R2 0.389 0.608

Adjusted R2 0.374 0.534
Residual Std. Error 1.190 (df = 171) 1.030 (df = 147)
F Statistic 27.200∗∗∗ (df = 4; 171) 8.150∗∗∗ (df = 28; 147)

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Various coe�cients on the lagged weather variables are also found to be signi�-

cant. Again, depending on the month, the sign of the estimates di�er. The coe�cient

TempMay
t−1 tells us that the unusually warm weather in April has a negative e�ect

on retail sales in May. On the other hand, the abnormally high temperatures in

August, imply a positive rebound e�ect in September.

The estimated coe�cients for temperature are also graphically illustrated in

Figure 4.3 showing again temperature e�ects being positive in the �rst half of the

year and become in general negative in the second half of the year. For the previous
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month's e�ect the picture is basically the opposite, the rebound e�ects being negative

in �rst �ve months and turning positive from August on which is consistent with

the rebound concept.

Our results allow us to draw several conclusions regarding the relative importance

of di�erent channels through which abnormal weather is expected to a�ect consumer

spending decisions. These �ndings do not support the mood channel since unusually

good weather (warm, sunny, less rain) is found to have in some months positive and

other months negative e�ects, if the mood e�ect would be the main channel we

would expect the coe�cients be always positive. Also the convenience channel does

not �nd great support for similar reasons, bad weather seems to boost the sales

in speci�c months. The weather-related products do not seem to play crucial role

either since the impacts in winter or summer months are quantitatively small and

not signi�cant, expect one. Yet, we �nd strong support for the seasons change

e�ects. Abnormal high temperatures foster seasonal product sales in spring i.e.,

make new seasonal products more appealing. On the other hand, especially cold

weather conditions lead to higher sales in late summer and early autumn. That is,

weather conditions in line with the coming season motivate to make the purchases

early in the season. All in all, this implies that in some months warm weather boost

consumer spending, whereas in other months cold temperatures induce more sales.
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Figure 4.3: Month-speci�c coe�cients of temperature variables

All in all, abnormal weather is found to be able to explain considerable share

of the variance of retail sales growth since the adjusted R2 increases considerably.

The other weather variables (precipitation and sunshine) seems to matter less as the
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adjusted R2 hardly increases. Our �ndings suggest that there are positive e�ects of

abnormal weather on the retail sales that can be realized equally well for unusually

hot or cold days, depending on a season, or vice versa. Moreover, these e�ects are

further reinforced because of rebound e�ects, i.e., what is over- or under-consumed

in a given month tends to be caught up in the following month.

Moreover, since we might have problem over�tting as the number of parameters is

high compared to the number of observations, we check the robustness of the results

in Table 4.2 applying variable selection based on LASSO analysis. In Table B.3 in

B Appendix we report the results of the re-estimated model with fewer variables as

suggested by LASSO procedure. The main �ndings still remain the same.

4.4.3 Long-run restrictions

In the previous section, we documented a rebound e�ect of the abnormal weather on

retail sales. In this section, we test whether over- or under-consumption that take

place in a given month tends to be exactly compensated in the following month such

that there are no long-run e�ects brought by unusual weather on retail trade. In

doing so, we follow Boldin and Wright (2015) (BW) and de�ne monthly (dummy)

variables such that they take 1 in a speci�c month (to capture the current weather

e�ect) and -1 in the following month but for previous month's weather, i.e., equal

size but opposite sign weather e�ect is imposed for the following month, and 0

otherwise. This implies that weather shocks cannot have permanent e�ects on the

level of retail sales but will be followed by a bounce back in the following month

or later through the autoregressive dynamics. One further advantage of testing

and eventually correctly imposing these restrictions is that it allows us signi�cantly

reduce the number of parameters to be estimated in our regressions, thus mitigating

the potential problem of over�tting.

The estimation results for total retail sales (without fuel), food and non-food

sector are shown in Table 4.3. The likelihood ratio test indicates that we cannot

reject these BW-restrictions, i.e., there is no evidence for permanent weather e�ects.

The �ndings in column (1) are similar to the earlier results that is we �nd a positive

e�ect of excess temperatures in the early spring months, adverse e�ect in June and
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from August to November. In the other two columns we document the results for

food and non-food sectors separately. The �ndings suggest that weather a�ects

mainly the non-food sales, since the estimation results for non-food are similar but

stronger than for total retail sales without fuel. For food, the temperature e�ects are

not found to be signi�cant in the �rst half of the year, but coe�cients on weather

variables from October to December are negative and signi�cant, however smaller

size than for non-food.

Table 4.3: Month-speci�c e�ects of Temperature with long-run restriction

Dependent variable:

Total Food Non-Food

(1) (2) (3)

Constant 0.035 (0.080) 0.079 (0.089) −0.024 (0.102)
∆ct−1 −0.602∗∗∗ (0.069)
∆ct−2 −0.404∗∗∗ (0.078)
∆ct−3 −0.123∗ (0.068)
∆ct−1 −0.503∗∗∗ (0.082)
∆ct−2 −0.263∗∗∗ (0.090)
∆ct−3 −0.095 (0.084)
∆ct−1 −0.567∗∗∗ (0.068)
∆ct−2 −0.434∗∗∗ (0.074)
∆ct−3 −0.161∗∗ (0.066)
Rt 0.390∗∗∗ (0.104) 0.330∗∗∗ (0.113) 0.454∗∗∗ (0.131)

DJanTempt 0.181 (0.124) −0.027 (0.143) 0.346∗∗ (0.156)

DFebTempt 0.105 (0.088) −0.018 (0.098) 0.211∗ (0.111)

DMarTempt 0.353∗∗ (0.143) 0.152 (0.158) 0.476∗∗∗ (0.182)

DAprTempt 0.301∗∗∗ (0.097) 0.170 (0.106) 0.272∗∗ (0.122)

DMayTempt −0.045 (0.137) −0.022 (0.152) −0.122 (0.174)

DJunTempt −0.167∗ (0.094) 0.014 (0.103) −0.252∗∗ (0.119)

DJulTempt −0.094 (0.113) 0.180 (0.125) −0.218 (0.143)

DAugTempt −0.563∗∗∗ (0.114) −0.068 (0.121) −0.833∗∗∗ (0.147)

DSepTempt −0.337∗∗ (0.131) −0.101 (0.144) −0.549∗∗∗ (0.166)

DOctTempt −0.423∗∗∗ (0.143) −0.296∗ (0.151) −0.503∗∗∗ (0.186)

DNovTempt −0.375∗∗∗ (0.116) −0.301∗∗ (0.129) −0.419∗∗∗ (0.145)

DDecTempt 0.093 (0.131) −0.292∗∗ (0.145) 0.293∗ (0.167)

LR-test (p-value) 0.229 0.693 0.304
Observations 176 176 176

R2 0.573 0.294 0.603

Adjusted R2 0.530 0.223 0.563
Residual Std. Error (df = 159) 1.030 1.140 1.310
F Statistic (df = 16; 159) 13.300∗∗∗ 4.150∗∗∗ 15.100∗∗∗

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

For some months the sign of the weather impact is the di�erent for food and

non-food sales indicating opposite e�ects. Yet, only for December, the coe�cients

for both product groups are signi�cant. The unusually warm weather boost the

non-food sales whereas it found have a negative e�ect on food sales.

Unlike Busse et al. (2015), we do not �nd evidence for projection bias since we

�nd that unusual temperatures lead mainly to shifts in the purchase timing. Yet, we

consider also very di�erent product groups. Busse et al. (2015) examine car sales,
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that is, highly durable and specialized products, whereas we examine the retail sales

(which do not include car sales) but include also many non-durable categories. It

seems that in our case the abnormal temperatures supporting the coming season

trigger consumer to make their purchases early in the season.

Table 4.4: Incremental adjusted R2

Temperature

Total 0.1554
Food 0.0219

Non-Food 0.1725

Also the increase in adjusted R2 is the highest for the non-food retailers as shown

in Table 4.4 implying that the unusual temperatures can capture considerable share

of the volatility of retail sales. Altogether, abnormal weather seems to cause inter-

temporal e�ects as consumers do shift their non-food purchases depending on the

temperature conditions.

To assess the quantitative meaning of these weather impacts, we �rstly calculate

the partial R2 for the month-speci�c weather variables in order to see which months

are especially meaningful. The bars in Figure 4.4 tells us the proportion of variation

explained by each month that cannot be explained by the other variables. The

highest value is found for August indicating that the temperature in August can

explain around 13 % of the variation in the total retail sales, for non-food even more

than 15 % cannot be captured by the other variables.

Another way to quantify the weather impact is to de�ne counterfactual series as

in Boldin and Wright (2015). The counterfactual series are calculated by setting the

weather indicators to zero but using the same residuals. The di�erence between the

original series and the counterfactual series can then be interpreted as the weather

e�ect. We make these calculations for the models in Table 4.3. As shown in Figure

4.5 the highest median absolute weather e�ects are found in August, September

and November of size around 0.6-0.7 percentage points indicating that temperature

anomalies can account for a noticeable change in the retail sales growth. The biggest
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Figure 4.4: Partial R-squared
Note: Upper panel: Model in column (1) in Table 3, middle panel: column(2) in
Table 3, lower panel: column (3) in Table 3

(absolute) contribution of unusual temperature in September is as high as 2.5 per-

centage points. For almost half of the months is the median absolute temperature

e�ect over 0.5 percentage points.

Again, it is obvious in Figure 4.5 that the non-food sector is in�uenced much more

strongly by exceptional temperatures than the food retail sales. Here, the highest

median e�ect is found for August and it counts for more than 1 percentage point,

whereas the greatest impact of almost 4 percentage points is found for September.

Altogether these �ndings imply that the in�uence of abnormal temperature on retail

trade is sizeable.

4.5 Robustness

To examine if our results are sensitive to the de�nition of the dependent variable,

we estimate also the main equations using real retail sales instead of nominal as well

as year-to-year growth rates instead of month-to-month speci�cation. Table B.4 in

B Appendix provides the results for the speci�cation in real terms. The outcomes
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are very much like those in Table 4.3 in B Appendix. We again found the expected

negative sign for the real short-term interest rates.
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Figure 4.5: Absolute month-speci�c temperature e�ects
Note: Upper panel: Model in column (1) in Table 3, middle panel: column(2) in
Table 3, lower panel: column (3) in Table 3)

The impact of abnormal temperature is also found to be quite similar when the

year-on-year growth rates of nominal retail sales are used instead of month-to-month

changes (Table B.5 in B Appendix). In the third robustness check we control for
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unemployment rate to make sure that the results are not sensitive for labour market

situation. The results are reported in Table B.6 in B Appendix. In column (1) the

change in unemployment rate whereas in column (2) the level of unemployment rate

is used. In both cases the �ndings concerning the weather e�ects do not change.

Further, we also examine if including exchange rate a�ects the results. This is not

the case as shown in Table B.7 in B Appendix.

4.6 Conclusions

Already Linden (1962) noted that unusual weather conditions cause shifts in timing

of purchases, generate purchases that might otherwise not occur or cause a perma-

nent loss of demand. Also in the business press, exceptional weather is often argued

to have an impact on consumer spending and business activity in general, being one

of the main causes for the transitory shifts.

We contribute to the so far scarce literature by a comprehensive periodic anal-

ysis at monthly frequency accounting for both contemporaneous as well as lagged

e�ects and using precise weather measures. Moreover, the application of long-run

restrictions and quanti�cation of these e�ects borrowing the approaches of Boldin

and Wright (2015) who examine the weather-adjustment of employment data, is new

in weather-related consumer spending literature. In addition, we develop a stylized

model based on consumer choice in order to illustrate how abnormal weather a�ects

the utility and therefore, leading into intertemporal shifts in consumption.

Our �ndings reveal that weather anomalies do cause substantial intertemporal

shifts - the long-run restrictions cannot be rejected - in consumer expenditure in

Switzerland. They can explain a considerable share of the variability of seasonally-

adjusted retail sales, especially in the non-food sector. We �nd that consumers react

at most to exceptional temperatures, less to abnormal precipitation or sunshine,

implying that temperature is the most in�uential weather variable for explaining

volatility of retail sales. Furthermore, the e�ects of abnormal weather are found to

di�er across seasons i.e., to be month-speci�c, both the sign and the magnitude.

In particular, our �ndings indicate that weather e�ects manifest mainly through

74



the seasons change channel: exceptionally warm weather in spring tends to boost

the sales (good to be good), whereas unusually cold conditions in late summer/early

autumn are generally associated with higher sales (good to be bad). That is, weather

conditions in line with the coming season motivate to make the purchases early in

the season. In other words, depending on the season (or month) unusually good or

bad weather may boost or restrain consumer expenditures.
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Chapter 5

Detecting outliers in small samples

from skewed and heavy-tailed

distributions
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5.1 Introduction

Outliers are usually de�ned as observations which appear to be incoherent with

the majority of observations of a data set (cf. Barnett and Lewis (1994)). As

already Barnett and Lewis (1994) note, outliers are a subjective concept (appear to

be incoherent) as well as a relative concept (the majority of observations of a data set

or the underlying population). Closely related notation is a contaminant which refers

to an observation from a di�erent population than the main population. However,

not all contaminants are suspect, for example, if they occur in the middle of the

data set. Only when they are also extreme observations, that is, the smallest or the

largest data points of a sample, they might be outlying. Yet, not even all extreme

observations are outliers, only if they are far enough from the other data points,

they are potentially considered as outliers. To identify the unusual observations in

practice, many outlier detection methods have been proposed. They aim to provide

guidance on which data points should be considered as outlying.

Further, Chambers (1986) was �rst to di�erentiate between representative and

non-representative outliers. The former are observations with correct values and are

not considered to be unique, whereas non-representative outliers are elements with

incorrect values or are for some other reason considered to be unique. Most of the

outlier analyses focus on the representative outliers as non-representatives values

should be taken care of already in data editing and validation.

The main reason to be concerned about possible outliers is that calculated esti-

mates might di�er considerably depending on whether or not they are included in

the sample. The data points with substantial in�uence on the estimates are also

called in�uential observations and they should be identi�ed and if needed, treated

in order to ensure unbiased results.
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Q1 − 1.5IQR Q3 + 1.5IQR

Q1 Q3

0.35% 0.35%

−4 sd −3 sd −2 sd −1 sd median 1 sd 2 sd 3 sd 4 sd

Figure 5.1: Standard boxplot for standard normal distribution

Owing to the fact that most of the outlier detection methods assume that the

underlying population is normally distributed, in case of non-normal distribution

too many or the wrong observations are potentially declared as outlying. Thus, if

the base distribution itself is assumed to be asymmetric or heavy-tailed, this needs

to be taken into account in outlier analysis. For example, resistant rules, also known

as boxplot, which was �rst proposed by Tukey (1977), are very popular in outlier

labelling (displayed in Figure 5.1). The problem with skewed data is, however, that

one tends to identify (too) many outliers in the long tail but hardly any in the short

tail as illustrated in Figure 5.2. Yet, in the case of a symmetric, but heavy-tailed

sample, numerous observations tend to be outside the fences on both sides as shown

in Figure 5.3. The same issues also concern other outlier detection techniques such

as relative distance based methods.

Even though a large number of techniques to identify outlying observations have

already been proposed (see, for example Barnett and Lewis (1994)), methods to

deal with outliers in skewed or heavy-tailed data are still scarce. Hubert and Van-

dervieren (2008) propose an adjusted boxplot for skewed distribution in order to

address the issue that in the case of skewed data the standard boxplot often la-

bels incorrectly too many observations in the upper tail as outliers. Bru�aerts et al.

(2014) go even further and suggest a generalized boxplot for skewed and heavy-tailed

distributions based on the Tukey g-and-h distribution. A similar idea is behind the

79



work of Xu et al. (2014) who present an outlier detection approach relying to the

Tukey's g-and-h distribution.

Q1 − 1.5IQR Q3 + 1.5IQR

Q1 Q3

0% 2.8%

0 −1 sd median 1 sd 2 sd 3 sd 4 sd

Figure 5.2: Standard boxplot for χ2
5-distribution

Q1 − 1.5IQR Q3 + 1.5IQR

Q1 Q3

2.7% 2.7%

−4 sd −3 sd −2 sd −1 sd median 1 sd 2 sd 3 sd 4 sd

Figure 5.3: Standard boxplot for t(3)-distribution

In general, outlier detection methods are derived asymptotically. However, in

practice we often need to deal with small to moderate sample sizes. Furthermore,

if the true data generating process is unknown - as it is often the case - and the

distributional characteristics of the observations may di�er from period to period

and subsample to subsample, a method that can deal with altering levels of heavy-

tailness and skewness is needed.

In this paper, we investigate outlier detection in the case of varying distributional

characteristics and in particular, for small sample sizes. Yet, as outlier detection
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(and treatment) involves in general a lot of subjectivity, we pursue an approach in

which no (or hardly any) parameters need to be de�ned but that would still be able

to deal with data from di�erent non-normal distributions.

Our starting point is the adjusted boxplot proposed by Hubert and Vandervieren

(2008) as it is easy to understand and compute. Also its graphical representation

is an advantage. In the �rst step, we examine the small sample properties of this

method. A well-known issue in outlier analysis is that the percentage of identi�ed

outliers is higher for small samples as shown for instance by Hoaglin et al. (1986).

Unsurprisingly, we �nd this to be the case also with the adjusted boxplot of Hubert

and Van Der Veeken (2008). Furthermore, we reveal that in small samples from

right skewed distributions, the average left percentage of outliers tend to exceed the

average right percentage implying that more observations are labelled as outliers

in the short tail than in the long tail. This is obviously problematic. Moreover,

in order to ensure that in the case of symmetric but fat-tailed data, not too many

observations are declared as outliers as usually is the case, the acceptance interval

needs to be adjusted for heavy-tailness.

With our modi�cation, we address these three issues to widen the practical ap-

plications of the adjusted boxplot. Within a simulation study we show that the

modi�ed boxplot is applicable also for heavy-tailed data and small samples. We

also present real data examples.

The remainder of this paper is organized as follows. In the next section, we

describe the existing methods and address the issues with the adjusted boxplot in

a simulation study. In section 3 we propose modi�cations for the adjusted boxplot

and demonstrate with simulations their performance. Section 4 o�ers real data

applications. Finally, section 5 concludes.

5.2 Existing methods

Resistant rules, �rstly proposed by Tukey (1977), are very popular in outlier la-

belling. Also known as inner fences of the boxplot, the rule is de�ned as

q0.25 − k(q0.75 − q0.25); y0.75 + k(q0.75 − q0.25) (5.1)
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where q0.25, q0.75 denote the �rst and third sample quartiles and k = 1.5. q0.75− q0.25
is also known as interquartile range. The use of quartiles makes this method itself

resistant to extreme values, unlike methods based on classical estimates of location

and scale such as mean and standard deviation.

The average percentage of outside observations, that is, observations outside this

interval can be derived as follows:

1− (F (q0.75 + 1.5(q0.75 − q0.25))− F (q0.25 − 1.5(q0.75 − q0.25)))

where F denotes the (empirical) cumulative distribution function. For normal dis-

tribution, 0.7 % of observations or 0.35 % on each side are identi�ed as outlying as

illustrated in Figure 5.1. This implies that in a large Gaussian sample only very

few observations would be identi�ed as outliers. However, in small samples this

fraction is considerably higher as discussed in Hoaglin et al. (1986). This is because

the quantile estimation for small samples can be problematic. Yet, obviously the

parameter k can also be chosen to take greater values such as k = 2 or k = 3 in

which case the fraction of outlying observations would be even smaller. However, as

k = 1.5 is the mostly applied speci�cation, we choose to use that in our analysis.

Although there is a considerable amount of literature on outlier detection as

summarized by Barnett and Lewis (1994) for instance, approaches assessing outlying

observations in the case of asymmetric or fat-tailed data are still few. One of the

few works dealing with skewed data, is the work of Hubert and Vandervieren (2008)

who present an adjustment to the standard boxplot to account for the potential

skewness. Bru�aerts et al. (2014) propose, in turn, a generalized version of the

boxplot for both skewed and heavy-tailed distributions based on the Tukey g-and-h

distribution. The work of Xu et al. (2014) is based on a similar idea as they propose

also an outlier detection approach relying on the Tukey's g-and-h distribution.

Next, we explain and discuss the adjusted boxplot of Hubert and Vandervieren

(2008). The techniques based on the Tukey's g-and-h distribution we leave out as

the method of Bru�aerts et al. (2014) requires multiple transformations which are

hard to follow whereas the approach proposed by Xu et al. (2014) is based on the

�tted distribution parameters and thus, not ideal for small samples.
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5.2.1 Adjusted Boxplot

Hubert and Vandervieren (2008) introduced an adjusted boxplot for skewed data.

The whiskers of the boxplot are adjusted to incorporate skewness as follows

wl = q0.25 − 1.5e−aMCIQR;wu = q0.75 + 1.5ebMCIQR for MC ≥ 0

wl = q0.25 − 1.5e−bMCIQR;wu = q0.75 + 1.5eaMCIQR for MC < 0
(5.2)

where a = 4, b = 3 and MC equals to the medcouple, a measure of skewness

introduced by Brys et al. (2004) de�ned as

MCn = med
yi<medn<yj

h(yi, yj)

where q0.5 is the sample median and for all yi 6= yj and

h(yi, yj) =
(yj − q0.5)− (q0.5 − yi)

yj − yi
.

The parameters are de�ned such that the adjusted boxplot detect 0.7% observations

as outliers as the standard boxplot does in the case of a normal distribution. The

advantage of this adjustment over the standard boxplot is illustrated in Figure 5.4 for

the χ2
5- distribution. Since the adjusted boxplot does not incorporate any measure

of heavy-tailness, it cannot account for heavy-tailness as noted by the authors.

We examine �rst the small sample properties of this method. For this purpose

we simulate data from normal, χ2- (right skewed) and t-distributions (heavy-tailed).

Within each simulation, we generate 1000 samples of sizes 30, 50, and 1000 observa-

tions. We calculate the average total percentage of outside observations, as well as

the average percentage of lower and upper outside observations in each case. The

results are documented in Tables 5.1, 5.2 and 5.3. in the case of normal distribution,

N(0, 1) and N(0, 5), the adjusted boxplot detects approximately as many outlying

observations in a large sample (n = 1000) as a standard boxplot would do (Table

5.1). Also the average right and left percentage are close to each other. However,

for the smaller samples of 30 or 50 observations, the average percentage increases

considerably. For skewed data in Table 5.2, the adjusted boxplot works well for large
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samples. Yet again, the number of observations declared as outliers increases greatly

for small samples. Moreover, the lower percentage becomes even higher than the

upper one, which is not desirable. In Table 5.3 far too many observations are outside

the fences in the case of t-distributions, this is expected since there is no adjustment

for the heavy tails. These �ndings indicate that the adjusted boxplot of Hubert and

Vandervieren (2008) tend not to perform well when applied to small samples from

normal or skewed distributions or large samples from heavy-tailed distributions.

Q1 − 1.5IQR Q3 + 1.5IQR

Q1 Q3

wl wu

Q1 Q3

0 −1 sd median 1 sd 2 sd 3 sd 4 sd

Figure 5.4: Standard and adjusted boxplot for χ2
5-distribution

5.3 Modi�ed adjusted boxplot

As we showed in the previous section, there are three main issues with the adjusted

boxplot. First, like for standard boxplot, too many observations are declared as

outliers in small samples (the total percentage exceeds 0.7% considerably). Second,

for skewed data, the percentage of lower outliers exceeds the percentage of upper

outliers in small samples. Third, too many observations are outside the fences in

the case the tails are heavier than with a normal distribution. We aim to address

these problems by modifying the adjusted boxplot and examine its performance in

a simulation study.
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The �rst issue is well-known and examined in Hoaglin et al. (1986) for standard

boxplots, for instance. They show that the fraction of observations labelled as

outliers increase approximately with cr/n with c0 = 17, c1 = 39, c2 = 22 and

c3 = 30, where r is the remainder from division n/4. Thus, we modify the fences of

the adjusted boxplot by the factor cr/n for n < 500.

The second point is more di�cult to solve. It implies that the de�ned skewness

adjustment factor −4 and 3 or −3 and 4, respectively, should depend on the sample

size n or to be adjusted for small samples through another factor which depends on

the sample size. As we found that the skewness adjustment tend to be too strong

in small samples, the adjustment factor should be lower for smaller data sets. We

aim to introduce a further factor as a function of the sample size fss(n) to achieve

better results for data sets with small number of observations. This factor should

converge to one in the case of multiplicative factor or zero in the case of additive

factor. We examine following multiplicative model:

fss(n) = 1− nα

which should satisfy (for mc > 0)

q0.25 − 1.5e−4MC(1−nα) ≈ ql

or

q0.75 − 1.5e3MC(1−nα) ≈ qu

where qp denotes the pth quantile of the sample and l = 0.0035 and u = 0.9965.

Therefore, the α should satisfy

ln

(
−
ln(2/3(q0.25−ql+cr/n)

IQR
)

−4MC
+ 1

)
≈ αln(n) (5.3)

Through a simulation study, we aim to �nd out the optimal value for the con-

stant α. We generate 100 samples of sizes 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,

200, 300, 400, 500 from various right skewed distributions (χ2
2, χ

2
6, χ

2
10, F (10, 80),
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F (10, 90), Pareto(0.5, 1), Pareto(1, 1)). We apply linear regression without inter-

cept to estimate α. The coe�cient estimate is found to be −0.32 (see, Table C.1

in C Appendix), which we round to −0.3 for convenience reasons. Therefore, we

propose to modify the skewness adjustment by the factor 1− n−0.3 for n < 500.

To address the third weakness, we need to adjust the fences by a tail measure.

Here, we apply an index of (upper) tail weight de�ned as

TIu =
F−1(0.98)− F−1(0.5)

F−1(0.75)− F−1(0.5)
/

Φ−1(0.98)− Φ−1(0.5)

Φ−1(0.75)− Φ−1(0.5)
(5.4)

where F is the empirical cumulative distributive function and Φ is the distribution

function of a standard normal. This means that the tail weight is relative to the

normal distribution, i.e., equal to 1 in the case F is normal. As this measure

quanti�es the upper tail weight, we also calculate the same index for the lower tail

and then take the average of these two measures as total index:

TIl =
F−1(0.5)− F−1(0.02)

F−1(0.5)− F−1(0.25)
/

Φ−1(0.5)− Φ−1(0.02)

Φ−1(0.5)− Φ−1(0.25)
(5.5)

TI =
TIu + TIl

2
. (5.6)

To make sure that this correction works only for heavy-tailed distribution, we in-

troduce the following condition TIl > 1, T Iu > 1. This means that both tails need

to be heavier than the normal case, for this correction factor to be applied. This

assures that the acceptance interval is adjusted only for heavy tailed data sets and

not for skewed data sets.

To �nd the appropriate constant for this adjustment TIγ, we proceed the same

way as in the previous step. We generate heavy-tailed data (100 samples with 1000

observations from t(5), t(10), t(20), Cauchy(0, 0.5), Cauchy(0, 1), Cauchy(0, 2))

and then, conduct the regression analysis:

ln

(
2/3

q0.25 − ql + cr/n

IQR
− (−4MC(1− n−0.3)

)
/ln(TI) ≈ γ (5.7)
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The results indicate that γ equal to 2.5 (rounded) is appropriate (see, Table C.2 in

C Appendix).

The �nal form of the modi�ed adjusted boxplot can be written as follows

wml = q0.25 − (1.5e−4(1−n
−0.3)MCIQR× TI2.5 + cr/n);

wmu = q0.75 + (1.5e3(1−n
−0.3)MCIQR× TI2.5 + cr/n) for MC ≥ 0

wml = q0.25 − (1.5e−3(1−n
−0.3)MCIQR× TI2.5 + cr/n);

wmu = q0.75 + (1.5e4(1−n
−0.3)MCIQR× TI2.5 + cr/n) for MC < 0

(5.8)

where TI = 1 if TIl < 1 or TIu < 1. As the general small sample correction as

well as the sample-size adjustment for the skewness are applied for n < 500, the

modi�ed boxplot performs asymptotically similar as the adjusted boxplot for large

normal and skewed samples.

wl wu

Q1 Q3

Q1 Q3

−4 sd −3 sd −2 sd −1 sd median 1 sd 2 sd 3 sd 4 sd

Figure 5.5: Adjusted and modi�ed adjusted boxplot for t(3)-distribution

Figure 5.5 illustrates the di�erence between the adjusted and the modi�ed ad-

justed boxplot for the t(3)-distribution. The whiskers of the modi�ed version are

considerably longer and therefore, less observations will be declared as outlying.

In order to examine how this modi�ed approach behave under various models,

we conduct a simulation study. We generate both uncontaminated samples like in

the previous section as well as contaminated samples.
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5.3.1 Uncontaminated samples

Within each simulation, we generate 1000 samples of sizes 30, 50, and 1000 observa-

tions from normal distributions (N(0, 1) and N(0, 5)), chi-squared distributions (χ2
3

and χ2
5) and t-distributions (t(3) and t(5)) as in the previous section.

In Table 5.1 the results for samples from normal distribution are presented. We

can observe that the average percentages are very similar for both methods for large

samples. Yet, for small samples, the average share of outliers is for the modi�ed

boxplot considerably lower, due to the small sample correction factor. This is also

illustrated in Figure 5.6.

For right skewed data (Table 5.2) the asymptotic properties of these both ap-

proaches are approximately the same. However, again, di�erences occur for smaller

samples. As in the previous case, the total percentage is higher for the adjusted

boxplot than for the modi�ed version. Moreover, whereas for the standard adjusted

boxplot the lower percentage becomes higher than the upper percentage, this is not

the case for the modi�ed boxplot. This implies that the introduced skewness ad-

justment for small samples does its intended job. Figure 5.7 demonstrates this case

graphically.

As Hubert and Vandervieren (2008) do not incorporate any heavy-tailness mea-

sure in their adjusted boxplot, it labels too many observations as outlying in samples

from t-distribution as shown in Table 5.3. Yet, the modi�ed version can deal with

the heavy tails better as it identi�es about the same number of outliers than in the

case of a normal distribution.

Table 5.1: Average percentage of outside observations for normal distribution

Standard Boxplot Adjusted Boxplot Modi�ed Boxplot

n SD Tot % Low % Up % Tot % Low % Up % Tot % Low % Up %

30 1 1.69 0.85 0.84 4.56 2.20 2.36 0.35 0.14 0.21
50 1 1.15 0.56 0.59 3.32 1.59 1.73 0.60 0.28 0.32
1000 1 0.71 0.35 0.35 0.90 0.46 0.44 0.80 0.41 0.39
30 5 1.41 0.71 0.70 4.30 2.35 1.95 1.43 0.78 0.65
50 5 1.26 0.64 0.62 3.43 1.60 1.83 1.38 0.68 0.70
1000 5 0.71 0.36 0.36 0.93 0.47 0.46 0.81 0.41 0.40
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Table 5.2: Average percentage of outside observations for χ2 distribution

Standard Boxplot Adjusted Boxplot Modi�ed Boxplot

n DF Tot % Low % Up % Tot % Low % Up % Tot % Low % Up %

30 3 4.07 0.00 4.07 4.15 2.75 1.41 1.24 0.00 1.24
50 3 3.89 0.00 3.89 3.18 2.06 1.12 1.23 0.02 1.21
1000 3 3.77 0.00 3.77 0.42 0.03 0.38 0.42 0.03 0.38
30 5 3.03 0.00 3.02 4.16 2.59 1.57 1.28 0.07 1.22
50 5 2.95 0.00 2.95 3.28 2.06 1.21 1.24 0.08 1.16
1000 5 2.79 0.00 2.79 0.62 0.18 0.44 0.62 0.18 0.44
Note: DF = Degrees of freedom

Table 5.3: Average percentage of outside observations for t-distribution

Standard Boxplot Adjusted Boxplot Modi�ed Boxplot

n DF Tot % Low % Up % Tot % Low % Up % Tot % Low % Up %

30 3 5.82 2.93 2.89 7.77 3.88 3.88 1.22 0.64 0.58
50 3 5.72 2.94 2.78 7.31 3.78 3.53 1.73 0.90 0.83
1000 3 5.53 2.76 2.76 5.73 2.87 2.86 0.67 0.33 0.34
30 5 3.80 1.87 1.93 6.25 3.10 3.14 0.77 0.36 0.41
50 5 3.36 1.71 1.64 5.20 2.78 2.42 1.39 0.72 0.67
1000 5 3.32 1.65 1.66 3.54 1.75 1.79 0.79 0.40 0.39
Note: DF = Degrees of freedom
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Figure 5.6: Adjusted and modi�ed adjusted boxplot for a small normal sample (n
= 30)
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Figure 5.7: Adjusted and modi�ed adjusted boxplot for a small sample (n = 30)
from χ2

5-distribution

5.3.2 Contaminated samples

To examine how robust the proposed version of the adjusted boxplot is, we also

generate data samples from contaminated distributions, �rstly introduced by ? and

since then widely applied in outlier and robust analysis to simulate samples with

potentially outlying observations. The samples are drawn from contaminated dis-

tributions de�ned as

F = (1− λ)G+ λH (5.9)

where G is the original distribution, λ denotes the contamination level and H is

the distribution from which the outliers are drawn. Since we are concerned about

outliers in the case in which the true distribution itself is asymmetric or heavy-tailed,

we generate data �rst from

F = (1− λ)χ2
5 + λN(30, 1)

and let the λ vary between 0 and 0.05. This corresponds to right skewed data with

asymmetric contamination from a normal sample.
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The second group of samples are drawn from

F = (1− λ)t7 + λt1

where the contamination level λ is again let to vary from 0 to 0.05, i.e., we contam-

inate a heavy tailed distribution with outliers from a distribution with even heavier

tails.

For samples from an asymmetrically contaminated χ2-distribution we observe

that the modi�ed method do detect more outliers for higher levels of contamination

like the adjusted boxplot does. Particularly, more upper outliers are identi�ed than

lower ones, as expected since we contaminated the sample asymmetrically with only

upper contaminants. Moreover, the lower percentage is always smaller than the

upper percentage for the modi�ed boxplot which indicates that the incorporated

skewness correction factor for small samples performs as requested.

Table 5.4: Average percentage of outside observations for contaminated χ2-
distribution

Standard Boxplot Adjusted Boxplot Modi�ed Boxplot

n CL Tot % Low % Up % Tot % Low % Up % Tot % Low % Up %

30 0.000 3.12 0.00 3.11 4.36 2.67 1.69 1.29 0.05 1.24
50 0.000 3.00 0.00 3.00 2.95 1.84 1.11 1.18 0.09 1.09
1000 0.000 2.81 0.00 2.81 0.60 0.16 0.44 0.60 0.16 0.44
30 0.025 4.77 0.01 4.77 5.92 2.89 3.02 2.96 0.01 2.94
50 0.025 4.85 0.00 4.85 5.20 2.26 2.95 3.20 0.09 3.11
1000 0.025 4.72 0.00 4.72 3.06 0.34 2.72 3.06 0.34 2.72
30 0.050 6.74 0.00 6.74 7.36 3.28 4.07 4.55 0.02 4.53
50 0.050 6.72 0.00 6.72 6.86 2.56 4.30 5.11 0.09 5.02
1000 0.050 6.68 0.00 6.68 5.68 0.58 5.09 5.68 0.58 5.09
Note: CL = Contamination level

in the case of a contaminated t-distribution (Table 5.5), the modi�ed boxplot

labels more outliers the higher the contamination level, like the adjusted boxplot.

Yet, the average level outlying observations is considerably lower due to adjustment

for heavy tails.
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All in all, the modi�ed adjusted boxplot is found to perform well also in the

contaminated samples, i.e., it is able to identify an appropriate share of outlying

observations but does not declare too many observations as outliers.

Table 5.5: Average percentage of outside observations for contaminated t-
distribution

Standard Boxplot Adjusted Boxplot Modi�ed Boxplot

n CL Tot % Low % Up % Tot % Low % Up % Tot % Low % Up %

30 0.000 3.15 1.59 1.56 5.71 2.84 2.87 0.72 0.38 0.34
50 0.000 2.74 1.30 1.44 4.67 2.17 2.50 1.15 0.52 0.63
1000 0.000 2.52 1.26 1.26 2.75 1.37 1.39 0.83 0.42 0.41
30 0.025 3.58 1.86 1.72 6.12 2.98 3.14 0.84 0.49 0.34
50 0.025 3.14 1.59 1.55 5.24 2.65 2.59 1.42 0.72 0.70
1000 0.025 2.95 1.48 1.47 3.16 1.58 1.57 0.97 0.48 0.49
30 0.050 3.70 1.79 1.91 6.20 3.22 2.98 0.98 0.48 0.50
50 0.050 3.63 1.82 1.81 5.68 2.92 2.76 1.55 0.78 0.77
1000 0.050 3.32 1.67 1.66 3.54 1.79 1.75 1.13 0.57 0.56
Note: CL = Contamination level

5.4 Real-data examples

We illustrate the usefulness of the modi�ed adjusted boxplot within two real data

applications.

5.4.1 Heavy-tailed data

In the �rst example, we use �nancial market data as they traditionally display heavy

tails. We use the daily values of Dow Jones Industrial Average (DJIA) from 15th

October 2007 to 30th September 2017 and calculate the daily returns. In Figure

5.8 we show the kernel density of the data and the adjusted as well as the modi�ed

adjusted boxplots. It is obvious that the data has relatively heavy tails. That is

why also the whiskers of the modi�ed boxplot are considerably longer than those of

the adjusted boxplot of Hubert and Vandervieren (2008) and thus, labelling much

fewer observations as outlying than the adjusted boxplot (1.95% vs. 9.04 %).
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Figure 5.8: Adjusted and modi�ed adjusted boxplot for Dow Jones Industrial Aver-
age

5.4.2 Small skewed sample

The second example covers the case of a small skewed sample. For this application,

we consider the coal mining disaster data of Jarrett (1979). We calculate the time

di�erences between the disaster (in days) and use the �rst 30 observations only. In

Figure 5.9 the di�erences between the boxplot methods are illustrated. The lower

whisker of the modi�ed version is longer and thus, ensuring that fewer observations

in the short tail seem to be outlying. On the other hand, the left whisker is shorter

than that of the adjusted boxplot and therefore, the upper percentage of outlying

observations turns also to be higher.
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Figure 5.9: Adjusted and modi�ed adjusted boxplot for a small sample (n = 30)
from coal data

5.5 Conclusions

Even though a large number of techniques to identify outlying observations have

already been proposed, methods to deal with outliers in skewed or heavy-tailed

data are still scarce. Hubert and Vandervieren (2008) propose an adjusted boxplot

for skewed distributions as the standard boxplot often incorrectly labels too many

observations as outliers. However, we show that their method is not optimal for small

normal or skewed samples nor for heavy tailed data. First, too many observations

are declared as outliers in small samples. Second, for skewed data, the percentage

of lower outliers exceeds the percentage of upper outliers in small samples. Third,

too many observations are outside the fences in the case the tails are heavier than

in the case of a normal distribution.

In this paper, we propose a modi�cation of the adjusted boxplot of Hubert and

Vandervieren (2008) to address these three issues. With our modi�cation, we widen

the practical application of the adjusted boxplot method. Within a simulation study

and real data examples we show that the modi�ed adjusted boxplot is applicable

also for heavy-tailed data and for small samples from skewed distributions.
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Table A.1: US data de�nition

NAICS_Code Description Short Label

311 Nondurable Goods: Food Food
312 Nondurable Goods: Beverage and tobacco prod-

uct
BevTob

313 Nondurable Goods: Textile mills Textile
314 Nondurable Goods: Textile product mills Textileprod
315 Nondurable Goods: Apparel Apparel
316 Nondurable Goods: Leather and allied product Leather
321 Durable manufacturing: Wood product Wood
322 Nondurable manufacturing: Paper Paper
323 Nondurable manufacturing: Printing and related

support activities
Print

324 Nondurable manufacturing: Petroleum and coal
products

Petroleum

325 Nondurable manufacturing: Chemical Chemical
326 Nondurable manufacturing: Plastics and rubber

products
Rubber

327 Durable manufacturing: Nonmetallic mineral
product

Mineral

331 Durable manufacturing: Primary metal MetalPri
332 Durable manufacturing: Fabricated metal product MetalFab
333 Durable manufacturing: Machinery Machinery
334 Durable manufacturing: Computer and electronic

product
Electronics

335 Durable manufacturing: Electrical equipment, ap-
pliance, and component

Electricals

336 Durable Goods: Transportation equipment Transportation
337 Durable manufacturing: Furniture and related

product
Furniture

339 Durable manufacturing: Miscellaneous Miscellaneous
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Table A.3: Diagnostic test for ARMA(l,k)-residuals for US data

w LB (20) w LB 2̂ (20) Arch LM (10) Skewness Kurtosis Jarque-Bera

Food 21.12 101.49 ∗∗∗ 27.08 ∗∗∗ -0.06 3.91 18.12 ∗∗∗
BevTob 26.31 ∗∗ 74.37 ∗∗∗ 33.16 ∗∗∗ -0.04 3.69 10.43 ∗∗∗
Textile 34.27 ∗∗∗ 229.95 ∗∗∗ 89.09 ∗∗∗ -0.01 5.55 140.41 ∗∗∗

Textileprod 15.54 33.68 ∗∗∗ 22.56 ∗∗ 0 4.05 23.89 ∗∗∗
Apparel 26.34 ∗ 86.67 ∗∗∗ 65.32 ∗∗∗ -0.05 4.88 76.38 ∗∗∗
Leather 14.24 37.59 ∗∗∗ 9.72 -0.62 7.22 418.74 ∗∗∗
Wood 23.16 ∗ 16.79 5.66 -1.68 18.10 5171.38 ∗∗∗
Paper 40.53 ∗∗∗ 154.64 ∗∗∗ 72.47 ∗∗∗ -0.03 5.07 93.02 ∗∗∗
Print 34.4 ∗∗∗ 132.69 ∗∗∗ 57.55 ∗∗∗ -0.17 3.63 11.07 ∗∗∗

Petroleum 16.17 79.53 ∗∗∗ 76.85 ∗∗∗ -0.03 9.26 848.07 ∗∗∗
Chemical 18.08 135.63 ∗∗∗ 92.07 ∗∗∗ -0.73 8.94 810.2 ∗∗∗
Rubber 41.59 ∗∗∗ 154.2 ∗∗∗ 74.02 ∗∗∗ 0.19 15.00 3133.99 ∗∗∗
Mineral 20.42 131.21 ∗∗∗ 49.81 ∗∗∗ -0.07 3.94 19.39 ∗∗∗
MetalPri 26.72 ∗ 78.11 ∗∗∗ 59.88 ∗∗∗ -0.25 4.40 47.53 ∗∗∗
MetalFab 29.91 ∗∗ 80.24 ∗∗∗ 54.48 ∗∗∗ -0.24 4.87 80.93 ∗∗∗
Machinery 36.16 ∗∗∗ 33.57 ∗∗∗ 25.72 ∗∗∗ 0.01 3.62 8.27 ∗∗
Electronics 23.55 170.23 ∗∗∗ 68.58 ∗∗∗ -0.02 5.27 111.89 ∗∗∗
Electricals 50.89 ∗∗∗ 100.82 ∗∗∗ 35.85 ∗∗∗ 0.03 4.79 69.22 ∗∗∗

Transportation 9.83 40.68 ∗∗∗ 34.69 ∗∗∗ -0.35 9.96 1059.52 ∗∗∗
Furniture 28.46 ∗ 48.55 ∗∗∗ 29.66 ∗∗∗ -0.05 5.41 126.27 ∗∗∗

Miscellaneous 19.05 65.72 ∗∗∗ 35.46 ∗∗∗ -0.16 4.21 33.85 ∗∗∗
* p < 0.1; ** p < 0.05; *** p < 0.01

Table A.4: Diagnostic test for ARMA(l,k)-residuals for German data

w LB (20) w LB 2̂ (20) Arch LM (10) Skewness Kurtosis Jarque-Bera

FoodBevTob 42.85 ∗∗∗ 25.57 8.43 0.05 2.96 0.14
Textiles 20.25 40.45 ∗∗∗ 28.9 ∗∗∗ -0.37 5.92 109.57 ∗∗∗
Apparel 11.99 18.41 7.6 -0.31 3.55 8.29 ∗∗
Leather 22.42 39.88 ∗∗∗ 29.75 ∗∗∗ -0.23 5.47 76.81 ∗∗∗
Wood 30.03 ∗ 47.34 ∗∗∗ 36.96 ∗∗∗ 0.08 4.39 23.7 ∗∗∗
Paper 31.16 ∗∗ 32.14 ∗∗ 17.29 ∗ -0.56 4.47 41.04 ∗∗∗
Print 13.94 14.9 4.19 -0.08 4.16 16.66 ∗∗∗

Petroleum 22.08 24.87 7.76 -0.67 4.78 60.06 ∗∗∗
ChemicalsPharma 26.77 32.81 ∗∗ 28.22 ∗∗∗ -0.38 6.32 140.49 ∗∗∗

Rubber 21 38.36 ∗∗∗ 25.73 ∗∗∗ -1.20 11.90 1026.61 ∗∗∗
GlassStone 26.39 62.98 ∗∗∗ 16.86 ∗ -0.81 7.97 330.79 ∗∗∗
MetalPri 14.53 78.34 ∗∗∗ 61.43 ∗∗∗ -0.37 4.63 38.79 ∗∗∗
MetalFab 21.8 55.4 ∗∗∗ 47.65 ∗∗∗ -0.62 5.70 106.77 ∗∗∗
Electronics 12.34 7.38 5.57 -0.90 12.30 1083.45 ∗∗∗
Electricals 40 ∗∗∗ 39.69 ∗∗∗ 31.6 ∗∗∗ 0.15 5.24 61.91 ∗∗∗
Machinery 30.26 ∗∗ 47.7 ∗∗∗ 41.45 ∗∗∗ -0.36 10.70 732.1 ∗∗∗
Vehicles 11.82 67.67 ∗∗∗ 36.9 ∗∗∗ -0.35 6.16 126.92 ∗∗∗
Transport 21.19 73.87 ∗∗∗ 32.91 ∗∗∗ -0.41 3.87 17.51 ∗∗∗
Furniture 31.46 ∗∗ 32.23 ∗∗ 31.53 ∗∗∗ -0.54 8.35 360.48 ∗∗∗
Other 17.63 37.2 ∗∗∗ 19.37 ∗∗ -0.39 3.88 16.53 ∗∗∗
Repair 28.23 ∗ 18.82 9.15 1.43 9.02 538.6 ∗∗∗

* p < 0.1; ** p < 0.05; *** p < 0.01
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Table A.2: German data de�nition

NACE Code Description Short Label

C10-C12 Manufacture of food products; beverages and to-
bacco products

FoodBevTob

C13 Manufacture of textiles Textiles
C14 Manufacture of wearing apparel Apparel
C15 Manufacture of leather and related products Leather
C16 Manufacture of wood and of products of wood and

cork, except furniture; manufacture of articles of
straw and plaiting materials

Wood

C17 Manufacture of paper and paper products Paper
C18 Printing and reproduction of recorded media Print
C19 Manufacture of coke and re�ned petroleum prod-

ucts
Petroleum

C20-C21 Manufacture of chemicals and chemical products;
basic pharmaceutical products and pharmaceuti-
cal preparations

ChemicalsPharma

C22 Manufacture of rubber and plastic products Rubber
C23 Manufacture of other non-metallic mineral prod-

ucts
GlassStone

C24 Manufacture of basic metals MetalPri
C25 Manufacture of fabricated metal products, except

machinery and equipment
MetalFab

C26 Manufacture of computer, electronic and optical
products

Electronics

C27 Manufacture of electrical equipment Electricals
C28 Manufacture of machinery and equipment n.e.c. Machinery
C29 Manufacture of motor vehicles, trailers and semi-

trailers
Vehicles

C30 Manufacture of other transport equipment Transport
C31 Manufacture of furniture Furniture
C32 Other manufacturing Other
C33 Repair and installation of machinery and equip-

ment
Repair
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Table A.7: US data sources

Variable Description Source

volSP500 Combined series of the annualized monthly volatility of the
daily SP500 returns (until 12/1985) and the implied volatil-
ity index from SP500 option (VXO) (from 1/1986 on)

Yahoo Finance

d.rec.US Dummy variable based on the US Business Cycle Expan-
sions and Contractions data provided by The National Bu-
reau of Economic Research (NBER)

Federal Reserve Economic data

IntR Real Federal Funds Rate; e�ective Federal Funds Rate less
realized in�ation measured by year-on-year growth rate of
CPI

Federal Reserve Economic data

SP500 Log In�ation adjusted (CPI) SP500 Yahoo Finance, Federal Reserve Eco-
nomic data

oil Log In�ation adjusted (CPI) Spot Crude Oil Price: West
Texas Intermediate (WTI)

Federal Reserve Economic data

BCI Business Con�dence Index OECD

Table A.8: German data sources

Variable Description Source

volDAX Combined series of the annualized monthly volatility of the
daily DAX returns (until 10/2005) and the implied volatil-
ity index from DAX option (VDAX) (from 11/2005 on)

Yahoo Finance

d.rec.GE Dummy variable for recessions; derived from the growth
rates of seasonally adjusted real Gross Domestic Product

Federal Statistical O�ce

IntR Combined series of German Discount rate until 12/1998
and ECB policy Rate less realized in�ation measured by
year-on-year growth rate of CPI

Federal Reserve Economic data, Intern-
tional Monetary Fund, OECD

DAX Log In�ation adjusted (CPI) German stock market index
(DAX)

Yahoo Finance, OECD

oil Log In�ation adjusted (CPI) Spot Crude Oil Price: West
Texas Intermediate (WTI)

Federal Reserve Economic data

BCI Business Con�dence Index OECD
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Table B.1: Month-speci�c e�ects of Rain

Dependent variable:

Nominal Retail turnover (dl)

(1) (2)

Constant 0.041 (0.093) −0.023 (0.100)
∆ct−1 −0.756∗∗∗ (0.075) −0.750∗∗∗ (0.080)
∆ct−2 −0.534∗∗∗ (0.085) −0.472∗∗∗ (0.088)
∆ct−3 −0.217∗∗∗ (0.075) −0.188∗∗ (0.077)
Rt 0.452∗∗∗ (0.119) 0.409∗∗∗ (0.130)

RainJan
t 0.014∗ (0.008)

RainFeb
t −0.003 (0.010)

RainMar
t −0.012 (0.009)

Rain
Apr
t −0.009 (0.008)

Rain
May
t −0.003 (0.007)

RainJun
t −0.002 (0.008)

RainJul
t −0.007 (0.007)

Rain
Aug
t 0.015∗∗ (0.006)

Rain
Sep
t −0.014 (0.010)

RainOct
t 0.002 (0.008)

RainNov
t 0.001 (0.005)

RainDec
t −0.004 (0.006)

RainJan
t−1 0.008 (0.007)

RainFeb
t−1 −0.009 (0.008)

RainMar
t−1 −0.005 (0.011)

Rain
Apr
t−1 0.003 (0.009)

Rain
May
t−1 0.014∗∗ (0.007)

RainJun
t−1 −0.008 (0.007)

RainJul
t−1 −0.0003 (0.008)

Rain
Aug
t−1 0.003 (0.006)

Rain
Sep
t−1 −0.002 (0.006)

RainOct
t−1 −0.017∗ (0.010)

RainNov
t−1 −0.003 (0.008)

RainDec
t−1 0.006 (0.005)

Observations 176 176

R2 0.389 0.495

Adjusted R2 0.374 0.398
Residual Std. Error 1.190 (df = 171) 1.170 (df = 147)
F Statistic 27.200∗∗∗ (df = 4; 171) 5.140∗∗∗ (df = 28; 147)

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

112



Table B.2: Month-speci�c e�ects of Sunshine

Dependent variable:

Nominal Retail turnover (dl)

(1) (2)

Constant 0.041 (0.093) 0.003 (0.096)
∆ct−1 −0.756∗∗∗ (0.075) −0.693∗∗∗ (0.081)
∆ct−2 −0.534∗∗∗ (0.085) −0.472∗∗∗ (0.087)
∆ct−3 −0.217∗∗∗ (0.075) −0.178∗∗ (0.076)
Rt 0.452∗∗∗ (0.119) 0.447∗∗∗ (0.128)

SunJan
t −0.001 (0.018)

SunFeb
t 0.003 (0.011)

SunMar
t 0.018∗∗ (0.007)

Sun
Apr
t 0.011∗ (0.006)

Sun
May
t −0.005 (0.008)

SunJun
t −0.005 (0.007)

SunJul
t 0.013 (0.008)

Sun
Aug
t −0.024∗∗∗ (0.007)

Sun
Sep
t 0.002 (0.013)

SunOct
t −0.013 (0.015)

SunNov
t −0.003 (0.016)

SunDec
t 0.0001 (0.011)

SunJan
t−1 0.008 (0.012)

SunFeb
t−1 0.021 (0.018)

SunMar
t−1 −0.008 (0.012)

Sun
Apr
t−1 −0.004 (0.007)

Sun
May
t−1 −0.014∗∗ (0.006)

SunJun
t−1 0.002 (0.008)

SunJul
t−1 −0.003 (0.007)

Sun
Aug
t−1 0.009 (0.008)

Sun
Sep
t−1 0.011 (0.008)

SunOct
t−1 0.026∗ (0.014)

SunNov
t−1 −0.012 (0.016)

SunDec
t−1 0.006 (0.014)

Observations 176 176

R2 0.389 0.522

Adjusted R2 0.374 0.431
Residual Std. Error 1.190 (df = 171) 1.140 (df = 147)
F Statistic 27.200∗∗∗ (df = 4; 171) 5.730∗∗∗ (df = 28; 147)

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.3: Month-speci�c e�ects of Temperature - Lasso speci�cation

Dependent variable:

Nominal Retail turnover (dl)

Constant 0.030 (0.092)
∆ct−1 −0.602∗∗∗ (0.064)
∆ct−2 −0.338∗∗∗ (0.064)
Rt 0.430∗∗∗ (0.104)

DMarTempt 0.591∗∗∗ (0.195)

DAprTempt 0.220 (0.135)

DJunTempt −0.250∗ (0.128)

DAugTempt −0.628∗∗∗ (0.156)

DSepTempt −0.356∗ (0.181)

DOctTempt −0.646∗∗∗ (0.211)

DNovTempt −0.249 (0.161)

DMayTempt−1 −0.380∗∗∗ (0.134)

DAugTempt−1 0.252 (0.157)

DSepTempt−1 0.531∗∗∗ (0.159)

DOctTempt−1 0.465∗∗ (0.197)

DNovTempt−1 0.178 (0.201)

DDecTempt−1 0.493∗∗∗ (0.159)

Observations 176

R2 0.577

Adjusted R2 0.535
Residual Std. Error 1.030 (df = 159)
F Statistic 13.600∗∗∗ (df = 16; 159)

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.4: Month-speci�c e�ects of Temperature - Real retail sales

Dependent variable:

Real Retail turnover (dl)

(1) (2)

Constant 0.284∗∗∗ (0.097) 0.245∗∗∗ (0.084)
∆ct−1 −0.741∗∗∗ (0.076) −0.596∗∗∗ (0.070)
∆ct−2 −0.493∗∗∗ (0.088) −0.372∗∗∗ (0.079)
∆ct−3 −0.171∗∗ (0.078) −0.099 (0.070)
IntRt 0.258∗ (0.152) 0.282∗∗ (0.133)

DJanTempt 0.175 (0.128)

DFebTempt 0.095 (0.091)

DMarTempt 0.367∗∗ (0.150)

DAprTempt 0.334∗∗∗ (0.102)

DMayTempt −0.059 (0.145)

DJunTempt −0.146 (0.097)

DJulTempt −0.069 (0.116)

DAugTempt −0.559∗∗∗ (0.117)

DSepTempt −0.366∗∗∗ (0.135)

DOctTempt −0.413∗∗∗ (0.149)

DNovTempt −0.413∗∗∗ (0.120)

DDecTempt 0.108 (0.135)

Observations 173 173

R2 0.368 0.561

Adjusted R2 0.352 0.516
Residual Std. Error 1.230 (df = 168) 1.070 (df = 156)
F Statistic 24.400∗∗∗ (df = 4; 168) 12.500∗∗∗ (df = 16; 156)

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.5: Month-speci�c e�ects of Temperature - year-on-year growth rates

Dependent variable:

Nominal Retail turnover (yoy)

(1) (2)

Constant 0.350∗∗ (0.144) 0.305∗∗ (0.140)
∆ct−1 0.108 (0.077) 0.211∗∗∗ (0.080)
∆ct−2 0.146∗ (0.076) 0.113 (0.078)
∆ct−3 0.229∗∗∗ (0.076) 0.224∗∗∗ (0.076)
∆ct−12 −0.185∗∗∗ (0.063) −0.170∗∗∗ (0.063)
Rt 1.370∗∗∗ (0.255) 1.220∗∗∗ (0.250)

DJanTempt 0.016 (0.184)

DFebTempt 0.141 (0.136)

DMarTempt 0.602∗∗∗ (0.223)

DAprTempt 0.301∗∗ (0.142)

DMayTempt 0.201 (0.214)

DJunTempt 0.163 (0.252)

DJulTempt −0.002 (0.172)

DAugTempt −0.189 (0.213)

DSepTempt −0.496∗∗ (0.200)

DOctTempt −0.419∗ (0.235)

DNovTempt −0.343∗ (0.185)

DDecTempt −0.241 (0.204)

Observations 156 156

R2 0.589 0.648

Adjusted R2 0.575 0.605
Residual Std. Error 1.550 (df = 150) 1.500 (df = 138)
F Statistic 43.000∗∗∗ (df = 5; 150) 14.900∗∗∗ (df = 17; 138)

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table B.6: Month-speci�c e�ects of Temperature with unemployment rate

Dependent variable:

Nominal Retail turnover (dl)

(1) (2)

Constant 0.044 (0.082) −0.660 (0.714)
∆ct−1 −0.605∗∗∗ (0.069) −0.608∗∗∗ (0.069)
∆ct−2 −0.408∗∗∗ (0.078) −0.410∗∗∗ (0.078)
∆ct−3 −0.127∗ (0.068) −0.128∗ (0.068)
Rt 0.384∗∗∗ (0.104) 0.450∗∗∗ (0.120)
∆ut −1.060 (1.570)
ut 0.228 (0.233)

DJanTempt 0.181 (0.124) 0.179 (0.124)

DFebTempt 0.103 (0.088) 0.104 (0.088)

DMarTempt 0.352∗∗ (0.143) 0.351∗∗ (0.143)

DAprTempt 0.298∗∗∗ (0.097) 0.299∗∗∗ (0.097)

DMayTempt −0.054 (0.138) −0.042 (0.138)

DJunTempt −0.165∗ (0.094) −0.166∗ (0.094)

DJulTempt −0.093 (0.113) −0.093 (0.113)

DAugTempt −0.564∗∗∗ (0.114) −0.560∗∗∗ (0.114)

DSepTempt −0.334∗∗ (0.131) −0.336∗∗ (0.131)

DOctTempt −0.423∗∗∗ (0.143) −0.423∗∗∗ (0.143)

DNovTempt −0.376∗∗∗ (0.116) −0.374∗∗∗ (0.116)

DDecTempt 0.091 (0.131) 0.091 (0.131)

Observations 176 176

R2 0.574 0.575

Adjusted R2 0.528 0.530
Residual Std. Error (df = 158) 1.030 1.030
F Statistic (df = 17; 158) 12.500∗∗∗ 12.600∗∗∗

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table B.7: Month-speci�c e�ects of Temperature with exchange rate

Dependent variable:

Nominal Retail turnover (dl)

(1) (2)

Constant 0.053 (0.081) −0.579 (1.090)
∆ct−1 −0.591∗∗∗ (0.069) −0.604∗∗∗ (0.069)
∆ct−2 −0.395∗∗∗ (0.077) −0.407∗∗∗ (0.078)
∆ct−3 −0.130∗ (0.068) −0.125∗ (0.068)
Rt 0.370∗∗∗ (0.104) 0.294 (0.198)
∆ExcRt 0.087 (0.055)
ExcRt 0.457 (0.806)

DJanTempt 0.165 (0.124) 0.181 (0.124)

DFebTempt 0.094 (0.087) 0.104 (0.088)

DMarTempt 0.362∗∗ (0.142) 0.353∗∗ (0.143)

DAprTempt 0.288∗∗∗ (0.097) 0.300∗∗∗ (0.097)

DMayTempt −0.041 (0.137) −0.045 (0.138)

DJunTempt −0.166∗ (0.093) −0.166∗ (0.094)

DJulTempt −0.078 (0.113) −0.093 (0.113)

DAugTempt −0.545∗∗∗ (0.114) −0.561∗∗∗ (0.114)

DSepTempt −0.352∗∗∗ (0.130) −0.336∗∗ (0.131)

DOctTempt −0.434∗∗∗ (0.143) −0.424∗∗∗ (0.143)

DNovTempt −0.388∗∗∗ (0.115) −0.375∗∗∗ (0.116)

DDecTempt 0.071 (0.131) 0.096 (0.131)

Observations 176 176

R2 0.580 0.574

Adjusted R2 0.534 0.528
Residual Std. Error (df = 158) 1.030 1.030
F Statistic (df = 17; 158) 12.800∗∗∗ 12.500∗∗∗

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table C.1: Estimation results of α

Dependent variable:

α

ln(n) −0.322∗∗∗
(0.004)

Observations 5,102
R2 0.587
Adjusted R2 0.587

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table C.2: Estimation results of γ

Dependent variable:

γ

Constant 2.625∗∗∗

(0.154)

Observations 242
R2 0.000
Adjusted R2 0.000

Note: s.e. in parentheses ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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