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Abstract
We propose the S-leaping algorithm for the acceleration of Gillespie’s stochastic sim-
ulation algorithm that combines the advantages of the two main accelerated methods;
the τ -leaping and R-leaping algorithms. These algorithms are known to be efficient
under different conditions; the τ -leaping is efficient for non-stiff systems or systems
with partial equilibrium, while the R-leaping performs better in stiff system thanks to
an efficient sampling procedure. However, even a small change in a system’s set up
can critically affect the nature of the simulated system and thus reduce the efficiency
of an accelerated algorithm. The proposed algorithm combines the efficient time step
selection from the τ -leaping with the effective sampling procedure from the R-leaping
algorithm. The S-leaping is shown to maintain its efficiency under different conditions
and in the case of large and stiff systems or systems with fast dynamics, the S-leaping
outperforms both methods. We demonstrate the performance and the accuracy of the
S-leaping in comparison with the τ -leaping and R-leaping on a number of benchmark
systems involving biological reaction networks.

Keywords Stochastic simulation algorithms · Stiff systems · Accelerated simulation

1 Introduction

The celebrated Gillespie’s stochastic simulation algorithm (SSA) (Gillespie 1976,
1977) simulates continuous-time Markov chains systems. An example of such system
is a well-stirred chemically reacting systemwith small population of reactants (Ander-
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son and Kurtz 2011). The SSA is an exact numerical algorithm. However, since SSA
allows to simulate only one reaction event per time step, it becomes computation-
ally costly for large systems and long timescales. Over the years, several algorithms
were proposed to accelerate the SSA at the expense of sacrificing its accuracy. The
most prominent are the τ -leaping (Gillespie 2001) with its further enhancements (Cao
et al. 2005, 2006, 2005, 2007; Rathinam et al. 2003; Tian and Burrage 2004) and
the R-leaping algorithm (Auger et al. 2006; Mjolsness et al. 2009). Other accelerated
algorithms involve the FLAVOR-SSA, where flow averaging is used to accelerate the
simulation (Bayati et al. 2010), coupling of multi-scale frameworks with any stochas-
tic simulation algorithm (Koumoutsakos and Feigelman 2013) and an adaptive mesh
refinement algorithm for reaction–diffusion systems (Bayati et al. 2011). One can
finally mention a special class of algorithms which achieve both exact, SSA-like,
sampling of the reaction events and computational acceleration, as initiated by the
Exact R-leaping (Mjolsness et al. 2009); the acceleration offered by such techniques
is, however, weaker than in the τ -leaping and R-leaping algorithms.

The τ -leaping algorithm (Gillespie 2001) accelerates the SSA by advancing the
state of the system by a larger time step τ , allowing multiple reaction events to occur
within the preselected time step. The number of firings of each reaction channel at each
time step is a random variable that follows Poisson distribution. On the other hand,
the R-leaping algorithm preselects the total number of reaction firings L (Auger et al.
2006). The time step needed for those L reactions events to occur follows a Gamma
distribution and the number of firings of each reaction follows a multinomial distri-
bution, which can be efficiently sampled through correlated binomial distributions.
Both approximate algorithms are valid under the leap condition which states that the
propensities must remain approximately constant during each simulation step.

Each of these algorithms is efficient under different conditions. In non-stiff systems,
the τ -leaping is more effective than the R-leaping algorithm. In addition, the implicit
extension of the τ -leaping for stiff systems where some reaction channels appear
in partial equilibrium (Cao et al. 2007), allows to advance the system with bigger
time steps, which yields to significant speed-up over the explicit R-leaping method.
However, the sampling procedure in the τ -leapingmethod requires to drawone random
number for each reaction channel. This is especially inefficient in big and stiff systems,
where only few reaction channels are fired per time step. On the other hand, since
the samples in the R-leaping are drawn from a correlated probability distribution,
the amount of drawn random numbers can be reduced by reordering the reaction
indices in a way that the most probable reaction channels are sampled first. This yields
appreciable computational savings in big and stiff systems.

In this paper, we present the S-leaping algorithm as an efficient coupling of both
methods. Our algorithm uses the efficient time step selection procedure present in the
τ -leaping. This feature allows the S-leaping to exploit the advantage of implicit for-
mulation for stiff systemswith partial equilibrium. In addition, the S-leaping estimates
the total number of firings within a preselected time interval as a sample from Poisson
distribution. The knowledge of the total number of reaction channels allows to draw
individual firings from the correlated binomial distributions, with further optimization
through reordering of reaction channels in big and stiff systems. Thus, the S-leaping
algorithm provides an effective fusion of both methods. The name of the method was
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3076 J. Lipková et al.

chosen so that it represents the position of the S-leaping between the R-leaping and
τ -leaping method.

The paper is organized as follows. In Sect. 2, we provide a brief specification of the
SSA, τ -leaping and R-leaping algorithms. The S-leaping algorithm is introduced in
Sect. 3. In Sect. 4, the S-leaping method is tested on four benchmark cases, a non-stiff,
a stiff, a fast dynamics and a large reaction network. We conclude with a summary in
Sect. 5.

2 Background

We consider a well-stirred system that contains N molecular species {S1, . . . , SN }
that can react through M chemical reactions channels {R1, . . . , RM }. In what follows,
the letter i ∈ {1, . . . , N } will be used for chemical species, e.g., Si , and the letter
j ∈ {1, . . . , M} for chemical reactions, e.g., R j . The state of the system is character-
ized by the state vector X(t) = (X1(t), . . . , XN (t)), where Xi (t) denotes the number
of molecules Si at time t . The dynamics of each reaction channel R j are being char-
acterized by a propensity function a j and a state change vector ν j = (ν1 j , . . . , νN j ).
Given the state vector x = (x1, . . . , xN ) = X(t), the quantity a j (x)dt gives the
probability that the reaction R j will occur in the next infinitesimal time interval
[t, t + dt). The state change vector ν j gives the change in the molecular popula-
tion caused by one reaction R j . Finally, we define a0 as the sum of all propensity
functions a0(x) = ∑M

j=1 a j (x).
For the rest of the paper, we will use the notation B, �, E,M, and P to denote

the probability distribution function of the binomial, the gamma, the exponential, the
multinomial and the Poisson distribution, respectively. The same notation will be used
to denote the function that produces pseudo-random numbers from the respective
distribution. With �x�, we will denote the closest integer to x .

2.1 The Stochastic Simulation Algorithm

The SSA (Gillespie 1977) is an exact algorithm for simulating the time evolution of
well-stirred chemically reacting systems. It is an exact algorithm in the sense that the
generated sample paths are distributed according to the solution of the corresponding
chemical master equation (Gillespie 1977). However, since SSA simulates only one
reaction event per time step, it becomes inefficient for most realistic systems. The SSA
algorithm is summarized in Algorithm 1.

2.2 Approximate Accelerated Stochastic Simulation Algorithms

Several approximate stochastic simulation algorithms (Auger et al. 2006; Cao et al.
2006, 2005; Gillespie 2001) have been introduced to accelerate the SSA by advancing
the system with larger time steps, allowing to fire more reactions per time step. The
accurate advancement of the system is limited by the so-called leap condition, which
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Algorithm 1 Stochastic Simulation Algorithm (SSA)
1: Initialise: Tend, x ← X(0), t ← 0

2: while t < Tend do

3: Compute a j (x) for j = 1, . . . , M and a0(x)

4: τ ← E (1/a0(x))

5: Choose the j-th reaction with probability a j (x)/a0(x)

6: x ← x + ν j

7: t ← t + τ

8: end while

states that propensities a j (x) should remain approximately constant over the time
interval [t, t + τ),

|a j (X(t + τ)) − a j (X(t))| ≤ ε a0(x), j = 1, . . . , M , (1)

where 0 < ε � 1 is a user-defined parameter that controls the models accuracy.

2.2.1 Nonnegative �-Leaping

The τ -leaping algorithm (Gillespie 2001) preselects a deterministic time step τ , much
bigger than the mean stochastic time step of SSA. Then, the number of times kPj
the reaction R j will be fired during the time interval [t, t + τ) is sampled from a
Poisson distribution with parameter a j (x)τ . Since the Poisson random variables kPj
are unbounded, the algorithm might result in negative populations. To overcome this
problem a nonnegative version of the τ -leaping algorithm was proposed in Cao et al.
(2005). The algorithm identifies the critical reactions, those which are Nc firings from
exhausting one of its reactants. No more than one critical reaction can occur within
the time leap τ , while multiple non-critical reactions are allowed. The critical reaction
is handled by the SSA, while the non-critical reactions are modeled by the τ -leaping
method. Several methods (Cao et al. 2006; Gillespie 2001; Gillespie and Petzold 2003)
were introduced for the computation of the leap length τ . The most efficient one (Cao
et al. 2006) selects τ by

τ = min
i∈Irs

⎧
⎪⎨

⎪⎩

max
{

εxi
gi (x)

, 1
}

| μi (x) | ,
max

{
εxi
gi (x)

, 1
}2

| σ 2
i (x) |

⎫
⎪⎬

⎪⎭
, (2)

for x = X(t) and Irs the set of indices of all reactant species. The factor gi takes into
account the highest order of reaction, denoted as hi , in which species Si appears as a
reactant,

gi (x) = hi + hi
ni

ni−1∑

j=1

j

xi − j
, (3)
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where ni denotes the maximum number of Si molecules required by any of the highest
order reactions (Sandmann 2009). Finally, the terms μi and σ 2

i are given by

μi (x) =
∑

j∈Jncr

νi j a j (x), ∀i ∈ Irs , (4)

σ 2
i (x) =

∑

j∈Jncr

ν2i j a j (x), ∀i ∈ Irs, , (5)

where Jncr is the set of all non-critical reactions. The nonnegative τ -leaping algorithm
is outlined in Algorithm 2.

Algorithm 2 Nonnegative τ -leaping
1: Initialise: Tend, x ← X(0), t ← 0, Nc ← 10.
2: while t < Tend do
3: Compute a j (x) for j = 1, . . . , M and a0(x)
4: Compute the list of critical reactions Jcrit. The reaction R j is critical if:

a j (x) > 0 and min
i

⌊
xi

|νi j |

⌉

≤ Nc

5: Compute time the step τ1 by Eq. (2)
6: if τ1 < 10 1

a0(x)
then

7: Execute 100 steps of the SSA
8: else
9: ac0(x) = ∑

j∈Jcrit
a j (x) and τ2 ← E(1/ac0(x)) {time of critical reaction}

10: if τ1 ≤ τ2 then
11: τ ← τ1
12: k j ← P(a j (x)τ ), j /∈ Jcrit
13: k j = 0, j ∈ Jcrit
14: else
15: τ ← τ2
16: Choose jc with probability a jc (x)/a

c
0(x) and jc ∈ Jcrit

17: k jc ← 1
18: k j ← 0 for j ∈ Jcrit and j 	= jc
19: k j ← P(a j (x)τ ) for j /∈ Jcrit
20: end if
21: end if
22: if there is a negative component in x + ∑M

j=1 k j ν j then
23: τ1 ← τ/2 and go to 6.
24: else
25: x ← x + ∑M

j=1 k j ν j

26: t ← t + τ .
27: end if
28: end while
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2.2.2 Adaptive �-Leaping

An adaptive version of the τ -leaping algorithm was introduced in Cao et al. (2007).
It automatically alternates between the explicit (Algorithm 2) and implicit τ -leaping
(Rathinam et al. 2003) algorithm. The implicit τ -leaping algorithm is inspired by the
implicit Euler method for differential equations. Ideally, we would like to compute
the state X(t + τ) as

X(t + τ) = X(t) +
M∑

j=1

ν j k
P
j (X(t + τ)) . (6)

However, this would require the generation of random samples from a Poisson distri-
bution with unknown parameter,

kPj (X(t + τ)) ∼ P(a j (X(t + τ) τ ) .

To avoid this difficulty, a partial implicit approach was introduced in Rathinam et al.
(2003). If kPj is a random variable that follows a Poisson distribution with mean a jτ ,

then kPj can be expressed as a sum of a random variable with mean a jτ and zero mean

random variable kPj − a jτ ,

kPj = a jτ + kPj − a jτ . (7)

The partial implicit approach evaluates the variable a jτ at the state X(t + τ) and the
zero mean variable kPj − a jτ at the state X(t). Applying this approach to the firings

kPj in Eq. (6) leads to the following implicit system of equations,

x′ = x +
M∑

j=1

ν j a j (x′)τ +
M∑

j=1

ν j

(
kPj (x) − a j (x)τ

)
. (8)

for x = X(t) and x′ = X(t + τ). If we denote by X� the solution of the above implicit
system,which can be obtainedwithNewton-Raphsonmethod, the implicit state update
in Eq. (6) is given by,

X(t + τ) = X(t) +
M∑

j=1

ν j k
P�
j , (9)

where
kP�
j =

⌊
a j (X�)τ + kPj (X(t)) − a j (X(t))τ

⌉
. (10)

The rounding in Eq. (10) ensures that the updated population will remain integer.
Implicit numerical methods provide an efficient way for solving stiff systems since

they advance the system with bigger time steps than explicit methods. While implicit
methods for differential equations are unconditionally stable, the time step in the
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implicit leaping methods is bounded by the leap condition of Eq. (1). The computation
of the implicit leap step τ under the condition of partial equilibrium was introduced in
Cao et al. (2007). The assumption is that if some reaction channels are in equilibrium
or close to a partial equilibrium, then the net change of their propensities would be
small. Thus the dynamics of the system would be driven by the reactions outside the
equilibrium and the implicit time step can be computed as

τ (im) = min
i∈Irs

⎧
⎪⎨

⎪⎩

max
{

εxi
gi (x)

, 1
}

|μ(im)
i (x)|

,
max

{
εxi
gi (x)

, 1
}2

σ
(im)
i (x)2

⎫
⎪⎬

⎪⎭
, (11)

where gi is given by Eq. (3) and μ
(im)
i , σ (im)

i are given by

μ
(im)
i (x) =

∑

j∈Jnecr

νi j a j (x), ∀i ∈ Irs , (12)

σ
(im)
i (x)2 =

∑

j∈Jnecr

ν2i j a j (x), ∀i ∈ Irs , (13)

for x = X(t). Here, Jnecr denotes the set of indices of the reaction channels that are
neither critical nor in partial equilibrium.

In general, it is difficult to detect which reaction channels are currently in partial
equilibrium; however, it can be easily detected for reversible reactions (Cao et al.
2007). Let R+ and R− denote a pair of reversible reactions, with the corresponding
propensity functions a+ and a−. If the reaction R+ and R− are in partial equilibrium,
their propensities must be similar,

|a+(x) − a−(x)| ≤ δmin{a+(x), a−(x)} , (14)

where δ is a small positive number, usually chosen around 0.05 (Cao et al. 2007). The
adaptive τ -leaping algorithm is outlined in Algorithm 3.

2.2.3 R-Leaping

The R-leaping algorithm (Auger et al. 2006), instead of prescribing the time step, it
imposes the total number of reactions L that can be fired during the next time interval.
Under the leap condition of Eq. (1), the number of firings is computed as Auger et al.
(2006),

L = a0(x)min
i∈Irs

⎧
⎪⎨

⎪⎩

max
{

εxi
gi (x)

, 1
}

| μi (x) | ,
max

{
εxi
gi (x)

, 1
}2

| σ 2
i (x) |−|μ2

i (x)/a0(x)|

⎫
⎪⎬

⎪⎭
, (15)

for x = X(t), Irs the set of indices of all reactant species and the terms gi , μi (x) and
σ 2
i (x) given by Eqs. (3), (4) and (5), respectively. The time span τL for the L reactions
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Algorithm 3 Adaptive τ -leaping
1: Initialise: Tend, x ← X(0), t ← 0, Nc ← 10.

2: while t < Tend do

3: Compute a j (x) for j = 1, . . . , M and a0(x)

4: Compute the list of critical reactions Jcrit. The reaction R j is critical if:

a j (x) > 0 and min
i

⌊
xi

|νi j |

⌉

≤ Nc

5: Compute τ (ex) using Eq. (2) and τ (im) using Eq. (11)

6: if τ (im) > 100 τ (ex) then

7: The system is stiff and τ1 ← τ (im)

8: else

9: The system is non-stiff and τ1 ← τ (ex)

10: end if

11: if τ1 ≤ 10 1
a0(x)

then

12: Execute 100 steps of the SSA.

13: else

14: ac0(x) = ∑
j∈Jcrit

a j (x) and τ2 ← E(1/ac0(x)) {time of critical reaction}

15: if τ2 > τ1 then

16: τ ← τ1

17: if the system is currently stiff then

18: Compute k j using Eq. (10) for j /∈ Jcrit
19: else

20: k j ← P(a j (x)) for j /∈ Jcrit
21: end if

22: else

23: τ ← τ2

24: Choose jc with probability a jc (x)/a
c
0(x) and jc ∈ Jcrit

25: k jc ← 1

26: k j ← 0 for j ∈ Jcrit and j 	= jc
27: if τ2 < τ ex or the system is non-stiff then

28: k j ← P(a j (x)τ ) for j /∈ Jcrit
29: else

30: Compute k j using Eq. (10) for j /∈ Jcrit
31: end if

32: end if

33: if there is a negative component in x + ∑M
j=1 k j ν j then

34: τ1 ← τ/2 and go to 11

35: else

36: x ← x + ∑M
j=1 k j ν j

37: t ← t + τ

38: end if

39: end if

40: end while
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follows the gamma distribution, τL ∼ �(L, 1/a0(x)). The number of firings kBj for
the reaction channel R j , fired within the time span τL , is sampled from a sequence of
correlated binomial distributions,

kBj ∼ B
⎛

⎝L −
j−1∑

m=1

kBm ,
a j (x)

a0(x) − ∑ j−1
m=1 am(x)

⎞

⎠ . (16)

This approach requires at most M − 1 drawings of random numbers since kBM =
L −∑M−1

j=1 kBj . Furthermore, it can be shown that the sampling procedure is invariant
under the permutation of reaction channels indices (Auger et al. 2006). This fact can
be exploited to reduce the number of samples drawn per time step by reordering the
reactions indices in a way that the most probable reactions channels are sampled first.
The R-leaping algorithm is summarized in Algorithm 4.

The sampling of reaction channels from the bounded binomial distribution reduces
the appearance of negative species, compared to sampling from the unbounded Poisson
distribution. However, in systems involving species with population close to zero tak-
ing place in very fast reactions, the R-leaping algorithm might also introduce negative
population. To control the appearance of negative population, an additional bounding
condition for L wasproposed (Auger et al. 2006). In systemswith high rejection rates of
the proposed state update, the total number of firings is computed as L = min(L ′, L ′′),
where L ′ is given by Eq. (15) and

L ′′ = min
j=1,...,M

(

1 − θ

(

1 − a0(x)
a j (x)

))

L j , (17)

where

L j = min
i=1,...,N

νi j<0

⌊
xi

|νi j |
⌉

. (18)

The parameter θ controls appearance of negative species. Smaller values of θ lead to
better control of negative species but also lead to lower performance.

3 S-Leaping

Here, we propose the S-leaping, an algorithm which combines the advantages of
the τ -leaping and R-leaping algorithms. The S-leaping couples the efficient time
step selection of the τ -leaping with the effective binomial sampling of the R-leaping
algorithm. The coupling of the algorithms is achieved in the following way. First, the
time step τ is selected according to Eq. (2). Then the total number of firings L that
will take place in the time interval [t, t + τ) is estimated. Since in the τ -leaping each
reaction channel is independently sampled as k j ∼ P(a j (x)τ ), the total amount of all
firings L follows the Poisson distribution with parameter a0(x)τ , i.e.,

L(t) ∼ P(a0(x)τ ) , (19)
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Algorithm 4 R-Leaping
1: Initialise: Tend, x ← X(0), t ← 0, steps ← 0, p ← frequency of reordering.

2: while t < Tend do

3: Compute a j (x) for j = 1, . . . , M and a0(x)

4: if mod (steps, p) = 0 then

5: Reorder the reactions such that a1(x) ≥ a2(x) ≥ . . . ≥ aM (x)

6: end if

7: Compute L by Eq. (15), then set L ← max(L, 1)

8: Sample k j by Eq. (16)

9: if there is a negative component in x + ∑M
j=1 k j ν j then

10: L ← L/2 and go to 8.

11: else

12: τ ← �(L, 1/a0(x))

13: x ← x + ∑M
j=1 k j ν j

14: t ← t + τ

15: steps = steps + 1

16: end if

17: end while

for x = X(t). Knowing the number of reactions that will take place in [t, t + τ),
the firings of each channel k j can be sampled from the binomial distribution given
by Eq. (16). If the sampled L is zero, it means the system will advance to the
time t = t + τ without any changes since no reaction will be fired. In this case
the system can be further advanced by setting L = 1 and τ ∼ �(1, 1/a0(x))
and proceeding with the S-leaping algorithm. Notice that this is just one step of
SSA since the � distribution with parameters 1 and 1/a0(x) is equal to exponen-
tial distribution with parameter 1/a0(x). The S-leaping algorithm is summarized in
Algorithm 5.

To control the appearance of the negative species, the S-leaping algorithm can
inherit the control mechanism from the τ -leaping or R-leaping. Here we bound L
similarly as in the R-leaping method. In systems with high rejections rates, the total
amount of firings is computed as L = min(L ′, L ′′), where L ′ is given by Eq. (19)
and L ′′ by Eq. (17). If L ′′ was chosen, then the time step τ should be recomputed as
τ ∼ �(L, 1/a0(x)).

Thanks to the coupling of the two algorithms, the S-leaping performs always aswell
as the τ -leaping or R-leaping algorithm. In the non-stiff systems, the S-leaping benefits
from the efficient time step selection and might outperform the R-leaping method. On
the other hand, in the case of big and stiff systems, the S-leaping surpasses the τ -
leaping due to the effective sampling of the reaction channels. Moreover, since the
behavior of the systemmight change over time, the S-leaping can outperform both the
R-leaping and τ -leaping. Finally, since the S-leaping uses the same time step selection
as the τ -leaping, the algorithm can easily be extended to an adaptive explicit-implicit
version.
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Algorithm 5 S-Leaping
1: Initialise: Tend, x ← X(0), t ← 0, steps ← 0, p ← frequency of reordering.

2: while t < Tend do

3: Compute a j (x) for j = 1, . . . , M and a0(x)

4: if mod (steps, p) = 0 then

5: Reorder the reactions such that a1(x) ≥ a2(x) ≥ . . . ≥ aM (x)

6: end if

7: Compute τ by Eq. (2)

8: Sample L by Eq. (19)

9: if L=0 then

10: t ← t + τ

11: L ← 1 and τ ← �(1, 1/a0(x)

12: end if

13: Sample k j by Eq. (16)

14: if there is a negative component in x + ∑M
j=1 k j ν j then

15: τ ← τ/2 and go to 8

16: else

17: Update: x ← x + ∑M
j=1 k j ν j

18: t ← t + τ

19: steps = steps + 1.

20: end if

21: end while

3.1 Adaptive S-Leaping

The adaptive leap methods switch between explicit (Algorithm 5) and implicit method
depending on the stiffness of the system. The implicit S-leaping method updates the
system state as,

X(t + τ) = X(t) +
M∑

j=1

ν j k
B
j (X(t + τ)) . (20)

This requires sampling random numbers kBj (X(t + τ)) from the binomial distribution
B(α(x′), β(x′)) with mean and variance evaluated at the unknown state x′ = X(t + τ)

given by,

α(x′) = L(x′) −
j−1∑

m=1

kBm (x′) ,

β(x′) = a j (x′)
a0(x′) − ∑ j−1

m=1 am(x′)
.

In the implicit τ -leaping algorithm, each firing kPj is independently approximated by
the partially implicit formulation given by Eq. (7). This can not be directly applied in
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the S-leaping, since each sample kBj depends on all previously drawn samples kB� , � =
1, 2, . . . , j − 1. The partially implicit treatment for the S-leaping can be obtained by
rather considering the distribution of the whole vector of all firings (k1, . . . , kM ),
i.e., the multinomial distribution with parameter (

a1(x)
a0(x)

, . . . ,
aM (x)
a0(x)

) and L the number

of trials. If kMj is the j-th entry of a random vector that follows the multinomial

distributionwith parameters ( a1(x)a0(x)
, . . . ,

aM (x)
a0(x)

) and L , then kMj can be expressed as the

sum of a random variable with mean
a j (x)
a0(x)

L and the zero mean variable kMj − a j (x)
a0(x)

L ,
i.e.,

kMj = a j (x)
a0(x)

L + kMj − a j (x)
a0(x)

L . (21)

The variable
a j
a0
L is evaluated at the unknown state X(t + τ), while the variable

kMj − a j
a0
L is evaluated at the known state X(t). The partial implicit approximation to

the variables kMj leads to the following system of implicit equations,

x′ = x +
M∑

j=1

ν j
a j (x′)
a0(x′)

L(t + τ) +
M∑

j=1

ν j

(

kMj (x) − a j (x)
a0(x)

L(t)

)

, (22)

for x = X(t) and x′ = X(t+τ). Since themultinomial random vectors kMj in Eq. (22)
depend on the known state x and since the j-th element of the multinomial distribution
follows binomial distribution, kMj (x) are computed by Eq. (16). However, L(t + τ)

is also a random variable from Poisson distribution with the parameter evaluated at
the unknown state X(t + τ),

L(t + τ) ∼ P(a0(X(t + τ))τ ) . (23)

The term L(t + τ) could be expressed in the partial implicit manner following Eq. (7).
However, a simpler formulation can be obtain by a mean approximation,

L(t + τ) ≈ a0(X(t + τ))τ , (24)

which corresponds to the computation of the L in the R-leaping method. The advan-
tage of the mean approximation in Eq. (24) is that it significantly reduces numerical
complexity of the implicit system in Eq. (22), while the partial implicit approximation
provided by Eq. (7) would increase the complexity even more. Since we are dealing
with stiff system, increased complexity could reduce accuracy of the numerical meth-
ods used for solving the implicit system of equations. If X� is the solution of the
implicit system of Eq. Eq. (22), then the implicit update is obtained as

X(t + τ) = X(t) +
M∑

j=1

ν j k
M�
j , (25)
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where

kM�
j =

⌊

a j (X�)τ + kMj (X(t)) − a j (X(t))

a0(X(t))
L(t)

⌉

. (26)

This means that both, the implicit τ -leaping and implicit S-leaping algorithm solve
the implicit system with the same computational complexity. However, since the
implicit S-leaping can exploit reordering of reaction channels, it might result in less
random number generations (at most M samples) than the implicit τ -leaping (always
M samples). This might allow the implicit S-leaping to outperform the implicit τ -
leaping, especially in large stiff systems where only few reaction channels are fired
per time step. The adaptive S-leaping method is summarized in Algorithm 6.

Algorithm 6 Adaptive S-Leaping
1: Initialise: Tend, x ← X(0), t ← 0, steps ← 0, p ← frequency of reordering.

2: while t < Tend do

3: Compute a j (x) for j = 1, . . . , M and a0(x)

4: if mod (steps, p) = 0 then

5: Reorder the reactions such that a1(x) ≥ a2(x) ≥ . . . ≥ aM (x)

6: end if

7: Compute τ (ex) by Eq. (2) and τ (im) by Eq. (11)

8: if τ (im) > 100 τ (ex) then

9: System is stiff and τ ← τ (im)

10: else

11: System is non-stiff and τ ← τ (ex)

12: end if

13: if the system is currently non stiff then

14: Compute L by Eq. (19)

15: if L=0 then

16: t ← t + τ

17: L ← 1 and τ ← �(1, 1/a0(x)

18: end if

19: Sample k j by Eq. (16)

20: else

21: Compute k j by Eq. (26), where L(t) is given by Eq. (19)

22: end if

23: if there is a negative component in x + ∑M
j=1 k j ν j then

24: τ ← τ/2 and go to 13

25: else

26: x ← x + ∑M
j=1 k j ν j

27: t ← t + τ

28: steps = steps + 1.

29: end if

30: end while
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4 Numerical Simulations

To demonstrate the efficiency of the S-leaping algorithm, it is studied in comparison
with the τ -leaping and R-leaping methods on four reaction networks. The first one
is a non-stiff system simulating decaying dimerization. The second system is a stiff
decaying dimerization with reversible reaction channels in partial equilibrium. The
third one is a system with very fast dynamics simulating the evolution of Bacillus
subtilis. The last one is a LacZ/LacY system, which consists of a relatively large
amount of reactions and which stiffness change over time. For each reaction network
and each algorithm, we measure two quantities: the error and the execution time of
the algorithm.

The error is measured as follows. For 25 equally distributed time points and all
species we estimate the distance between the distributions of the tested algorithm and
the SSA (Cao et al. 2006). Since the methods do not advance the system with a fixed
time step, the population at a given time is approximated by the population at the
closest time where the algorithm has landed. The distance d between two distributions
P and Q is approximated by the estimated histogram as

d = 
∑

k

|P̃(k) − Q̃(k)| , (27)

where  is the bin size and P̃(k), Q̃(k) are the values of the histogram for P and Q
at the k-th bin. The histogram is computed using Ns = 104 independent trajectories
and K = 10 number of bins. Finally, the average error over all time points and all
species is reported. This definition of the error can be interpreted as a global error,
since it accounts for temporal and interspecies error of the algorithm. Averaging the
error over many time points takes into account the error not only at equilibrium but at
transient regimes as well.

Cao and Petzold (2006) introduced the histogram self-distance as a measure of
accuracy of the histogram distance estimation. Any estimate below the value of self-
distance should be considered inaccurate. A bound for the self-distance was derived in
Cao and Petzold (2006) and is given by

√
4K/(πNs). In all the histogram error plots,

we show the self-distance estimate as a constant blue line. Although the errors close or
below this line should not be considered accurate we present them for completeness.

The execution time is averaged over 10 independent runs. The ratio between the
execution time of SSA and the execution time of each algorithm is reported as a speed-
up. Note that here the SSA is used only as a reference in order to compare the relative
speed-up of the three approximate algorithm, the τ -, the R- and S-leaping. The execu-
tion times of the three methods are compared using as a reference the execution time
of SSA. Hence changing the base implementation of SSA will not affect these com-
parisons results. Moreover, since we report the speed-up over the baseline SSA rather
than CPU time, the presented results do not depend on the type of the used computer.

All reaction networks discussed in this section follow the law of mass action which
states that the rate of a reaction is proportional to the product of the concentrations of
the reactants. For example, for the reaction 2S1 + S2 → S3 with reaction rate c, the
propensity is defined as,

123



3088 J. Lipková et al.

Table 1 The reaction network for the Dimerization system studied in Sects. 4.1 and 4.2

Reaction Reaction rate (non-stiff) Reaction rate (stiff)

R1 S1 −→ ∅ 1 1

R2 S1 + S1 −→ S2 0.002 10

R3 S2 −→ S1 + S1 0.5 1000

R4 S2 −→ S3 0.04 0.1

a(x) = c x1 (x1 − 1) x2 . (28)

For the general formula of the propensity function under the law of mass action we
refer to Anderson and Kurtz (2011), Erban et al. (2007).

All the tested methods are implemented in the C++ language, using the C++11
random number generator library and the code is publicly available.1

4.1 Non-stiff Decaying Dimerization

Following the same test as in Auger et al. (2006), Gillespie (2001), Gillespie and
Petzold (2003) we consider the non-stiff decaying dimerization system summarized
in Table 1. The initial populations are X(0) = (4150, 39565, 3445) and the system
is evolved until Tend = 10 using ε = {0.01, 0.03, 0.05}. In Fig. 1, we show the
convergence of the histograms of the approximate algorithms to that of the SSA for
the second species S2 at time t = 10. All the approximate methods converge to the
SSA solution as the accuracy parameter ε decreases. Figure 2 shows the accuracy (left)
and the performance (right) for all leap methods with different accuracy parameter ε.
In this system, all the leaping methods have comparable accuracy and performance.
No additional speed-up was obtained by reordering of the reaction channels in the
R-leaping and S-leaping, since in each step of the simulation all reaction channels are
fired.

4.2 Stiff Decaying Dimerization

To study the efficiency of the adaptive S-leapingmethodwe consider the stiff decaying
dimerization system studied in Cao et al. (2007), Rathinam et al. (2003). The system is
defined by the same set of reactions and initial conditions as in Sect. 4.1, see Table 1.
The stiffness arises from the reaction rates that vary by a few orders of magnitude. The
behavior of this system changes over time starting with a non-stiff phase. However,
once the reversible reactions R2 and R3 approach the equilibrium, the system becomes
stiff. Under this set up S1 and S2 are the fast variables, while S3 is the slow variable.
The system is evolved until the final time Tend = 10 for ε = {0.01, 0.03, 0.05}.

In Fig. 3, we present the accuracy and the performance of the adaptive τ -leaping
and adaptive S-leaping as well as the explicit R-leaping, τ -leaping and S-leaping. All
explicit methods reach comparable accuracy and performance. The adaptive methods

1 https://github.com/JanaLipkova/SSM
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Fig. 2 (Color figure online) Errors and efficiency for non-stiff dimerization system of Sect. 4.1

Fig. 3 (Color figure online) Errors and efficiency for stiff dimerization system discussed in Sect. 4.2

provide significant speed-up over their explicit counterparts. The reduced accuracy of
the adaptive methods arises from the dumping effect of the implicit methods on the
fast variables. As reported in Rathinam et al. (2003), the implicit schemes capture the
distribution of the slow variable S3 correctly. However, for the fast variables S1 and S2,
the mean is computed correctly but the histogram distribution around the mean is too
narrow. Rathinam et al. (2003) proposed a downshifting strategy to restore the natural
fluctuations in the fast variables by simulating the final time steps of the adaptive
method with the explicit method. As shown in Cao et al. (2005), Rathinam et al.
(2003), the downshifting leads to correct histogram distributions for all variables at
the final time. Since the downshifting procedure corrects the dumping effect only in the
final time, the global error of the adaptive method will not be reduced to the level of the
explicit methods. Since we report the global error, the downshifting strategy was not
appliedhere.However, the downshiftingprocedure canbeused to increase the accuracy
of the adaptive τ -leaping and adaptive S-leaping method at the fixed time point.

4.3 Bacillus subtilis

This system describes the cellular differentiation dynamics of the Bacillus subtilis
which exhibits stochastic behavior at the single-cell level (Maamar et al. 2007; Süel
et al. 2006). The differentiation dynamics depends on the expression of the transcrip-
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Table 2 The reaction network
for the Bacillus subtilis system
studied in Sect. 4.3

Reaction Reaction rate

R1 ∅ −→ S1 + 3S3 1.51 × 10−1

R2 S1 + S2 −→ 4S3 3.1 × 10−4

R3 S2 −→ 4S3 3.4 × 10−3

R4 S3 −→ S1 + S2 2.0 × 10−2

R5 S1 + 2S2 −→ ∅ 6.2 × 10−5

R6 2S1 −→ S1 + S2 4.9 × 10−4

Fig. 4 (Color figure online) Error of the leap methods (left) and a single trajectory of the Bacillus subtilis
computed with SSA (right)

Table 3 The averaged number
of simulation steps and the
execution time for the Bacillus
subtilis system with the
ε = 0.05 presented in Sect. 4.3

Method Average number
of steps

Average CPU
time (s)

SSA 266.6 0.028

τ -leap 423.4 0.086

R-leap 263.2 0.053

S-leap 220.8 0.045

tional genes S1=Spo0A, S2=ComG and S3=sinI and the reaction network is presented
in Table 2 (Chattopadhyay et al. 2013). The system is evolved until the final time
Tend = 10 with initial population X(0) = (300, 150, 200). Figure 4 (right) shows
a single realization of the Bacillus subtilis system computed with SSA. This system
exhibits diverse reaction rates and very fast dynamics. As a consequence, the leap
methods are strongly restricted by the leap condition and do not provide additional
speed-up over SSA. Table 3 shows the average number of steps executed by each
method and the averaged CPU time for ε = 0.05. The R-leaping algorithm advances
the system only with one reaction per time step, emulating the SSA. Moreover, the
τ -leaping executes two times more steps than SSA. In this system, the S-leaping is
the only method which requires less steps than SSA. Since in this case the leap meth-
ods do not provide additional speed-up, the SSA alone would be the best choice.
This example, however, shows that the S-leaping maintains its performance even in
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Table 4 The reaction network for the LacZ/LacY system discussed in Sect. 4.4

Reaction Reaction rate

R1 PLac + RNAP −→ PLacRNAP 0.17

R2 PLacRNAP −→ PLac + RNAP 10

R3 PLacRNAP −→ TrLacZ1 1

R4 TrLacZ1 −→ RbsLacZ + PLac + TrLacZ2 1

R5 TrLacZ2 −→ TrLacY1 0.015

R6 TrLacY1 −→ RbsLacY + TrLacY2 1

R7 TrLacY2 −→ RNAP 0.36

R8 Ribosome + RbsLacZ −→ RbsribosomeLacZ 0.17

R9 RbsribosomeLacZ −→ Ribosome + RbsLacZ 0.45

R10 Ribosome + RbsLacY −→ RbsribosomeLacY 0.17

R11 RbsribosomeLacY −→ Ribosome + RbsLacY 0.45

R12 RbsribosomeLacZ −→ TrRbsLacZ + RbsLacZ 0.4

R13 RbsribosomeLacY −→ TrRbsLacY + RbsLacY 0.4

R14 TrRbsLacZ −→ LacZ 0.015

R15 TrRbsLacY −→ LacY 0.036

R16 LacZ −→ dgrLacZ 6.42×10−5

R17 LacY −→ dgrLacY 6.42×10−5

R18 RbsLacZ −→ dgrRbsLacZ 0.3

R19 RbsLacY −→ dgrRbsLacY 0.3

R20 LacZ + lactose −→ LacZlactose 9.52 ×10−5

R21 LacZlactose −→ product + LacZ 431

R22 LacY −→ lactose + LacY 14

fast dynamical systems and outperforms the other leap methods. All methods reach
comparable accuracy as shown in Fig. 4 (left).

4.4 LacZ/LacY

In this section, we consider the LacZ/LacY model which describes the expression of
the LacZ and LacY genes and the activity of LacZ and LacY proteins in Escherichia
Coli (Kierzek 2002). The reaction network consists of 22 reactions and 23 species. We
present the reaction network, along with the reaction rate of each reaction in Table 4.
The propensity functions of this system vary by a few orders of magnitude making the
system stiff. Moreover, the reaction system is considered inside a growing cell, with
generation time Tgen = 2100. The growing volume changes the stiffness of the system
over time since the propensities of the second and higher order reactions have to be
rescaled by the volume.We consider two different initial conditions. In the first casewe
assume a small initial population where all species are initially 0 except for PLac=1.
In the second case, we consider bigger initial populations with all species initialized
at 50 and PLac=100. In addition, the number of the species RNAP and ribosome
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are sampled every time step from a normal distribution N (35(1 + t/Tgen), 3.52) and
N (350(1 + t/Tgen), 352), respectively, for each case. The role of the system with
small initial population is to investigate the behavior of all methods in the presence of
negative population,while the behaviorwithout the appearance of negative populations
is studied in the system with the bigger initial population.

The systemwith small initial population is simulated until Tend = 2100. Since none
of the reversible reactions approached partial equilibrium during this time interval,
only explicit methods are reported. To control the appearance of negative species,
the τ -leaping algorithm is used with control parameter Nc = 10 (Cao et al. 2005),
while in the S-leaping and R-leaping we used θ = 0.1 as suggested in Auger et al.
(2006). For comparison purposes, all three methods are also considered without the
control mechanism. The frequency of reordering in the R-leaping and S-leaping is set
to p = 10000 as proposed in Auger et al. (2006). Figure 5 (right) shows the speed-up
for the leap methods over SSA for Tend = 2100. A single evaluation of the SSA for
time Tend = 2100 takes around 45 min, making the evaluation of the models accuracy
at this time point computationally expensive. Instead, Fig. 5 (left) reports the error for
all methods over the time interval [0, 100]. For this system, the error is averaged over
the species TrLacZ2, TrRbsLacZ, and RbsribsomeLacY.

The τ -leaping algorithm, as presented in Algorithm 2, executes mainly SSA steps
andprovides almost no speed-up over SSA.Therefore,we turned off theSSAexecution
in the reported τ -leaping algorithms. The leapmethodswithout the control mechanism
provide better speed-up over SSA; however, their accuracy is reduced due to the
high rejection rate. The sampling of reaction channels from the correlated binomial
distribution in the R-leaping and S-leaping leads to lower rejection rate in comparison
with the τ -leaping, which is also reflected by the lower accuracy of the τ -leaping
method.

The control mechanisms in all leap methods result in high accuracy, at the cost of
slightly reduced performance. The error reported in Fig. 5 (left) is relatively constant
and do not scale with ε, since the accuracy of these leapmethods ismainly restricted by
the mechanism preventing appearance of the negative species. The S-leaping reached
comparable accuracy with the R-leaping, since they both use similar control mech-
anisms. On the other hand, the τ -leaping considers most reactions critical and thus
advance them with SSA, which lead to higher accuracy. The R-leaping and S-leaping
algorithms benefit from the reordering of reaction channels and outperform the τ -
leaping. Moreover, since the stiffness of the system changes over time, the S-leaping
outperforms both methods.

The system with big initial population is evolved until time Tend = 100. As before,
the τ -leaping with the SSA steps performsmostly SSA and therefore the SSA step was
disabled. Since all species appear in relatively large populations, the leap methods are
considered without the control of negative population. The performance and accuracy
of all methods is shown in Fig. 6. The S-leaping algorithm again outperforms both the
τ -leaping and R-leaping method due to the combined advantages inherited from the
both methods.
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Fig. 5 (Color figure online) Errors and efficiency for the LacZ/LacY system discussed in Sect. 4.4, with
small initial population

Fig. 6 (Color figure online) Errors and efficiency for the LacZ/LacY system discussed in Sect. 4.4, with
large initial population

5 Conclusion

In this paper, we have introduced the S-leaping, an approximate algorithm for accel-
erating the SSA. The algorithm combines the advantages of two main approximate
algorithms, the τ -leaping and R-leaping.

The S-leaping method uses a time step selection, intrinsic to the τ -leaping, which
enables the extension of the algorithm to an implicit version. Furthermore, the S-
leaping exploits the efficient sampling procedure from the R-leaping which reduce
appearance of negative species.Moreover, the reordering of reaction channels inherited
from the R-leaping, leads to a better performance of the S-leaping, compared to the τ -
leaping, in big and stiff systems. On the other hand, if a stiff system involves reversible
reactions appearing close to equilibrium, then the implicit approach derived from the
τ -leaping accelerates the S-leaping by a few orders of magnitude in comparison with
the explicit methods.

The performance of the proposed algorithmwas tested on several examples, includ-
ing a stiff, a non-stiff and a system involving slow and fast reactions with some species
appearing in populations close to zero. In all test cases, accuracy of the S-leaping is
similar to accuracy of the other acceleratedmethods. The performance of the S-leaping
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is comparable with the fastest method or even outperform both, the τ -leaping and R-
leaping methods. The S-leaping can be thus consider as optimal adaptive coupling of
the R-leaping and τ -leaping method.

Future work directions involve the extension of the S-leaping algorithm to systems
with spatial component by using compartment-based approach (Erban and Chapman
2009) or Brownian dynamics models (Lipkova et al. 2011) to extend the simulation
framework for reaction-diffusion processes that arise in many biological systems.
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