
Diss. ETH No. 25237

COMPUTATIONALLY
EFFICIENT INFERENCE FOR

LARGE-SCALE DATA.

A dissertation submitted to
ETH Zürich

for the degree of
Doctor of Sciences

presented by
GIAN-ANDREA THANEI

Master of Sciences in Mathematics, ETH Zürich
born June 13, 1989

citizen of Zürich, Switzerland

accepted on the recommendation of
Prof. Dr. Nicolai Meinshausen, examiner

Prof. Dr. Rajen Shah, co-examiner
Prof. Dr. Peter Bühlmann, co-examiner

2018

Before you judge a man, walk a mile in his shoes. After that
who cares?... He’s a mile away and you’ve got his shoes! –

Anonymous.

Acknowledgments

I will always remember the time during my PhD as very enjoyable. En-
joyable for the things I learned, the experiences I made and the friends I
got to know.

I am very thankful to my supervisors Nicolai and Rajen. They are both
amazing researchers. Through their engaged and open-minded supervi-
sion, I was able to considerably improve my skills and understanding.
Thank you!

I also want to thank my co-examiner Peter for sitting in my defense.
Peter is a good sport and the spring of humorous atmosphere at SfS.
Thank you!

Of course, research in solitude is not my thing - I had the great pleasure to
work with Nicolai, Rajen, Ben, Dominik, Michael and Christina. Thank
you!

A big thank you goes to the fun crew of G18: Dominik, Ema, Sholt,
Niklas, Nicholas and Domagoj, who became really good friends. Life
would be boring without my buddies Stefan, Philine, Andi K., Steven,
Marcos, JP and many more. And above all, Mirjam. I am very grateful
to my parents Ursula and Peter, my sisters, my aunt Anita and Helga &
Dieter for all their support. Thank you!

Contents

Abstract ix

Zusammenfassung xi

Introduction 1

1 Random projections for large-scale regression 5
1.1 Introduction . 5
1.2 Theoretical results . 9
1.3 Averaged compressed least squares 15
1.4 Discussion . 19
1.5 Appendix . 19

2 Fast interaction search in high-dimensional data 25
2.1 Introduction . 26

2.1.1 Related work . 27
2.1.2 Organisation of the paper 30

2.2 The xyz algorithm for binary data 30
2.2.1 Optimality of minimal subsampling 34
2.2.2 The final version of xyz 36
2.2.3 Computational and statistical properties of xyz . . 37

2.3 Interaction search on continuous data 40
2.3.1 Continuous Y and binary X 40
2.3.2 Continuous Y and continuous X 41

2.4 Application to Lasso regression 46
2.5 Experiments . 48

2.5.1 Comparison of minimal subsampling and dense pro-
jections . 48

2.5.2 Scaling . 49
2.5.3 Run on SNP data 50

viii CONTENTS

2.5.4 Regression on artificial data 52
2.5.5 Regression on real data 54

2.6 Discussion . 55
2.7 Appendix . 56

3 Fast graphical model selection under latent confounding 79
3.1 Introduction . 79

3.1.1 Related work . 82
3.1.2 Organisation of the paper 84

3.2 Ridge, rowspace projections and latent confounding 84
3.2.1 Model setting . 84
3.2.2 A brief review of ridge and rowspace projections . 85
3.2.3 Latent confounders in linear models 86
3.2.4 Why RP is only weakly affected by latent con-

founding . 86
3.3 Learning graph structures with RP 88

3.3.1 Model setting . 88
3.3.2 Nodewise RP . 89
3.3.3 Graphical RP . 89
3.3.4 SVD decomposition for numerical stability 90
3.3.5 Fast inner product computation and GRP-xyz . . 91

3.4 Experiments . 92
3.4.1 Simulating a graphical model with latent confounders 92
3.4.2 Average precision 94
3.4.3 Asymptotic run time behaviour 96

3.5 Real data example: modelling gene regulatory networks
across multiple tissues . 97
3.5.1 The GTEX datasets 97
3.5.2 Results . 99

3.6 Appendix . 102
3.6.1 Proof of the RP-Rescaling lemma 102

Bibliography 103

Curriculum Vitae 109

Abstract

In many areas of science and industry, the volume of data doubles every
year (Marx, 2013). Simultaneously decisions are increasingly made based
on this data. These factors combined give rise to computational chal-
lenges in statistics. Classical statistical methods are often not directly
applicable to large data sets due to their computational demands. At the
same time, an accurate analysis is necessary to make informed decisions.

This thesis investigates computationally efficient approximations to many
standard statistical techniques. These approximations most often come
with a loss in statistical accuracy. The main theoretical contributions of
this dissertation are in understanding this loss of accuracy.

We start with examining random projections (Thanei et al., 2016a) which
allow us to represent data in lower dimensions. We then run classical
methods on the projected data. This approach leads to computationally
efficient estimators. Furthermore, under certain assumptions, we can
show that the most important features are preserved in the projected
data.

The idea of projecting data onto lower dimensions can also be applied
to high-dimensional interaction search (Thanei et al., 2016b). We show
that the performance of this type of interaction search strongly depends
on the choice of the projection distribution. This leads us to define a
projection distribution that manages the trade-off between run time and
accuracy in an optimal way.

Interaction search is related to many different statistical problems, for
example inference in graphical models. Graphical models are used to
represent dependencies within data. The estimation of a graphical model
can be computationally very intensive. Using today’s methods, even

x Abstract

estimating the graph of a precision matrix with a thousand variables can
take a considerable amount of time. We introduce a new method (Thanei
et al., 2018) that enables efficient graph estimation. Additionally, we
demonstrate that this method is robust to pitfalls in statistical analysis
such as confounding.

Zusammenfassung

In vielen Bereichen der Wissenschaft und Industrie verdoppelt sich das
Datenvolumen jedes Jahr (Marx, 2013). Gleichzeitig werden viele Ent-
scheidungen basierend auf Daten getroffen. Diese Entwicklungen führen
zu grossen rechnerischen Herausforderungen in der Statistik. Klassische
statistische Methoden sind aufgrund ihrer Rechenanforderungen oft nicht
direkt auf grosse Datenmengen anwendbar. Zugleich ist eine genaue Ana-
lyse notwendig, um fundierte Entscheidungen zu treffen.

In dieser Arbeit werden rechnerisch effiziente Annäherungen zu einigen
statistischen Standardtechniken untersucht. Solche Annäherungen haben
oftmals einen Verlust an statistischer Genauigkeit zur Folge. Wir machen
theoretische Beiträge um diesen Genauigkeitsverlust detailiert zu verste-
hen.

Zunächst untersuchen wir Zufallsprojektionen (Thanei u. a., 2016a), die
es uns erlauben, Daten in niedrigeren Dimensionen darzustellen. Wir
führen dann die klassischen Methoden auf den projizierten Daten aus.
Dieser Ansatz führt zu rechnerisch effizienten Schätzern. Unter bestimm-
ten Annahmen können wir ausserdem zeigen, dass die wichtigsten Infor-
mationen in den projizierten Daten erhalten bleiben.

Die Idee, Daten auf niedrigere Dimensionen zu projizieren, kann unter
anderem auf die hochdimensionale Interaktionssuche angewendet werden
(Thanei u. a., 2016b). Wir zeigen, dass die Rechenzeit dieser Art der
Interaktionssuche stark von der Wahl der Projektionsverteilung abhängt.
Dies führt uns dazu, eine Projektionsverteilung zu definieren, die den
Kompromiss zwischen Rechenzeit und Genauigkeit optimal steuert.

Die Interaktionssuche ist mit vielen verschiedenen statistischen Proble-
men verbunden wie zum Beispiel Inferenz von grafischen Modellen. Grafi-

xii Zusammenfassung

sche Modelle werden verwendet, um Abhängigkeiten innerhalb von Daten
darzustellen. Die Schätzung eines grafischen Modells ist sehr recheninten-
siv. Mit den heutigen Methoden kann bereits das Schätzen eines Grafen
von tausend Variablen eine beträchtliche Zeit in Anspruch nehmen.

Wir führen eine neue Methode ein (Thanei u. a., 2018), mit der Gra-
fen sehr effizient geschätzt werden können. Darüber hinaus argumentie-
ren wir, dass diese Methode robust ist gegenüber Herausforderungen wie
Messstörungen durch unbeobachtete Variablen.

Introduction

This thesis is a collection of three manuscripts on computationally ef-
ficient inference for large-scale data. The focus of the first chapter is
on prediction using linear models. The second and third chapters focus
on variable screening. The goal of all these investigations is to develop
computationally efficient and accurate estimators.

By large-scale data, we either mean that the data has many samples
(large n) or that the data is high-dimensional (large p). Each setting
leads to its own computational and statistical challenges.

For the large sample case, the computational issue can usually be alle-
viated through subsampling. This entails computing estimates on small
subsamples of the data and then aggregating those estimates. The aggre-
gation step is most often some form of averaging. Many estimators based
on subsampling and subsequent aggregation behave similar to estimators
computed directly on the full data. The subsampling scheme, however,
allows for a straightforward parallelization. Hence the challenges of this
type of optimization are mostly of implementational nature.

High-dimensionality is a more challenging problem from a statistical
point of view. If only a few samples are available but there are many
measurements per sample, subsampling will not be of much help. Ad-
ditionally, reducing the number of variables without losing important
information is not straightforward. In high-dimensional problems, it is
crucial to reduce the dimension of the data while conserving the de-
pendency structure of the variables. In this thesis, we develop methods
that exploit dimension reduction techniques but preserve the essential
dependency structure among variables.

In the first chapter, we consider the problem of using variables X to

2 Introduction

predict responses Y with a linear model. Under suitable assumptions, we
show that by randomly projecting X onto a matrix of smaller dimension
XΦ (where Φ is a matrix with random Gaussian entries) and then using
XΦ to predict Y we gain a run time improvement of a quadratic order
whilst retaining accuracy (Thanei et al., 2016a).

In Chapter 2, we consider interaction search in high-dimensional data.
For example, in genome-wise association studies (GWAS) interactions
can indicate whether the presence of two genotypes (encoded by muta-
tions) affects a phenotype. This problem is computationally difficult as
one has to scan through all possible pairs of variables which results in a
run time that is quadratic in the number of variables. For GWAS data
it is typical to have millions of variables but only a few hundred patients
(samples). Scanning all possible pairs can take a few days or up to a few
weeks with a desktop computer.

Interaction search is equivalent to closest pair search (Thanei et al.,
2016b). To solve the closest pair search problem, we first project the
data down to a single dimension. In the projected space, the closest
pair search can be conducted in a run time that is linear in the number
of variables. This computationally cheap closest pair search is repeated
many times over to increase detection power. We call this procedure the
xyz algorithm. We show that the xyz algorithm has subquadratic run
time in the number of variables. In practice, the xyz algorithm is able
to scan GWAS data (with one million variables) for strong interactions
within a few minutes.

We make an important theoretical discovery regarding the choice of the
projection distribution. Namely, we show that using projection matri-
ces with Gaussian entries, whose usage is motivated by the Johnson-
Lindenstrauss Lemma, does not result in run time improvements overall.
We define a minimal subsampling projection and show that using the xyz
algorithm with this minimal subsampling projection leads to a minimal
run time for a given detection power.

Due to the massive computational cost, high-dimensional regression es-
timators, such as the Lasso, are not able to include interaction terms
without imposing some structural assumptions. The xyz algorithm can
be used in conjunction with coordinate-wise update algorithms to yield
a new version of the Lasso that is able to include any type of interaction
term with small computational cost.

In Chapter 3, we consider the problem of high-dimensional variable se-

Introduction 3

lection in the presence of latent confounders. Recent work indicates, that
by implicitly projecting the signal β onto the rowspace (sample space) of
the data X can give valuable information for variable selection. We show
this procedure remains valid even in the presence of latent confounders
(Thanei et al., 2018).

Through nodewise application, our findings naturally extend to graphical
model learning. Current methods for learning graphical models in the
presence of latent confounders have a run time that is at least quadratic,
or most often cubic in the number of variables. Hence, these meth-
ods are not applicable to many domains facing the problem of high-
dimensionality, such as gene expression data. Our estimator is able to
infer the most important edges in the graph within a run time that is lin-
ear in the number of variables. This enables learning the graphical model
of gene expression data in a matter of seconds compared to a matter of
hours or days for established methods.

Chapter 1

Random projections for
large-scale regression

Fitting linear regression models can be computationally very expensive
in large-scale data analysis tasks if the sample size and the number of
variables are very large. Random projections are extensively used as a
dimension reduction tool in machine learning and statistics. We discuss
the applications of random projections in linear regression problems, de-
veloped to decrease computational costs, and give an overview of the
theoretical guarantees of the generalization error. It can be shown that
the combination of random projections with least squares regression leads
to similar recovery as ridge regression and principal component regres-
sion. We also discuss possible improvements when averaging over mul-
tiple random projections, an approach that lends itself easily to parallel
implementation1.

1.1 Introduction

Assume we are given a data matrix X ∈ Rn×p (n samples of a p-
dimensional random variable) and a response vector Y ∈ Rn. We assume
a linear model for the data where Y = Xβ + ε for some regression coef-
ficient β ∈ Rp and ε i.i.d. mean-zero noise. Fitting a regression model

1This chapter has been published in (Thanei et al., 2016a)

6 Chapter 1: Random projections for large-scale regression

by standard least squares or ridge regression requires O(np2) or O(p3)
flops. In the situation of large-scale (n, p very large) or high dimensional
(p� n) data these algorithms are not applicable without having to pay
a huge computational price.

Using a random projection, the data can be “compressed” either row-
or column-wise. Row-wise compression was proposed and discussed in
Dhillon et al. (2013b), McWilliams et al. (2014a), and Zhou et al. (2007).
These approaches replace the least-squares estimator

argmin
γ∈Rp

‖Y −Xγ‖22 with the estimator argmin
γ∈Rp

‖ψY − ψXγ‖22,

(1.1)
where the matrix Ψ ∈ Rm×n (m � n) is a random projection matrix
and has, for example, i.i.d. N (0, 1) entries. Other possibilities for the
choice of Ψ are discussed below. The high-dimensional setting and `1-
penalized regression is considered in Zhou et al. (2007), where it is shown
that a sparse linear model can be recovered from the projected data un-
der certain conditions. The optimization problem is still p-dimensional,
however, and computationally expensive if the number of variables is
very large.

Column-wise compression addresses this later issue by reducing the prob-
lem to a d-dimensional optimization with d � p by replacing the least-
squares estimator

argmin
γ∈Rp

‖Y −Xγ‖22 with the estimator Φ argmin
γ∈Rd

‖Y −XΦγ‖22,

(1.2)
where the random projection matrix is now Φ ∈ Rp×d (with d� p). By
right multiplication to the data matrix X we transform the data matrix
to XΦ and thereby reduce the number of variables from p to d and thus
reducing computational complexity. The Johnson-Lindenstrauss Lemma
(Dasgupta and Gupta, 2003; Indyk and Motwani, 1998; Johnson and Lin-
denstrauss, 1984) guarantees that the distance between two transformed
sample points is approximately preserved in the column-wise compres-
sion.

Random projections have also been considered under the aspect of pre-
serving privacy (Blocki et al., 2012). By pre-multiplication with a ran-
dom projection matrix as in (1.1) no observation in the resulting matrix
can be identified with one of the original data points. Similarly, post-
multiplication as in (1.2) produces new variables that do not reveal the
realized values of the original variables.

1.1 Introduction 7

In many applications the random projection used in practice falls under
the class of Fast Johnson-Lindenstrauss Transforms (FJLT) (Ailon and
Chazelle, 2006). One instance of such a fast projection is the Subsam-
pled Randomized Hadamard Transform (SRHT) (Tropp, 2011). Due to
its recursive definition, the matrix-vector product has a complexity of
O(p log(p)), reducing the cost of the projection to O(np log(p)). Other
proposals that lead to speedups compared to a Gaussian random projec-
tion matrix include random sign or sparse random projection matrices
(Achlioptas, 2003). Notably, if the data matrix is sparse, using a sparse
random projection can exploit sparse matrix operations. Depending on
the number of non-zero elements in X, one might prefer using a sparse
random projection over a FJLT that cannot exploit sparsity in the data.
Importantly, using XΦ instead of X in our regression algorithm of choice
can be disadvantageous if X is extremely sparse and d cannot be chosen
to be much smaller than p. (The projection dimension d can be chosen by
cross validation.) As the multiplication by Φ “densifies” the design ma-
trix used in the learning algorithm the potential computational benefit
of sparse data is not preserved.

For OLS and row-wise compression as in (1.1), where n is very large
and p < m < n, the SRHT (and similar FJLTs) can be understood as a
subsampling algorithm. It preconditions the design matrix by rotating
the observations to a basis where all points have approximately uniform
leverage (Dhillon et al., 2013b). This justifies uniform subsampling in
the projected space which is applied subsequent to the rotation in or-
der to reduce the computational costs of the OLS estimation. Related
ideas can be found in the way columns and rows of X are sampled in
a CUR-matrix decomposition (Mahoney and Drineas, 2009). While the
approach in Dhillon et al. (2013b) focuses on the concept of leverage,
McWilliams et al. (2014a) propose an alternative scheme that allows for
outliers in the data and makes use of the concept of influence (Cook,
1977). Here, random projections are used to approximate the influence
of each observation which is then used in the subsampling scheme to
determine which observations to include in the subsample.

Using random projections column-wise as in (1.2) as a dimensionality re-
duction technique in conjunction with (`2 penalized) regression has been
considered in Lu et al. (2013), Kabán (2014) and Maillard and Munos
(2009). The main advantage of these algorithms is the computational
speedup while preserving predictive accuracy. Typically, a variance re-
duction is traded off against an increase in bias. In general, one disad-

8 Chapter 1: Random projections for large-scale regression

vantage of reducing the dimensionality of the data is that the coefficients
in the projected space are not interpretable in terms of the original vari-
ables. Naively, one could reverse the random projection operation by
projecting the coefficients estimated in the projected space back into the
original space as in (1.2). For prediction purposes this operation is ir-
relevant, but it can be shown that this estimator does not approximate
the optimal solution in the original p-dimensional coefficient space well
(Zhang et al., 2013). As a remedy, Zhang et al. (2013) propose to find
the dual solution in the projected space to recover the optimal solution
in the original space. The proposed algorithm approximates the solution
to the original problem accurately if the design matrix is low-rank or can
be sufficiently well approximated by a low-rank matrix.

Lastly, random projections have been used as an auxiliary tool. As an ex-
ample, the goal of McWilliams et al. (2014b) is to distribute ridge regres-
sion across variables with an algorithm called Loco. The design matrix
is split across variables and the variables are distributed over processing
units (workers). Random projections are used to preserve the dependen-
cies between all variables in that each worker uses a randomly projected
version of the variables residing on the other workers in addition to the
set of variables assigned to itself. It then solves a ridge regression using
this local design matrix. The solution is the concatenation of the coeffi-
cients found from each worker and the solution vector lies in the original
space so that the coefficients are interpretable. Empirically, this scheme
achieves large speedups while retaining good predictive accuracy. Using
some of the ideas and results outlined in the current manuscript, one can
show that the difference between the full solution and the coefficients
returned by Loco is bounded.

Clearly, row- and column-wise compression can also be applied simultane-
ously or column-wise compression can be used together with subsampling
of the data instead of row-wise compression. In the remaining sections,
we will focus on the column-wise compression as it poses more difficult
challenges in terms of statistical performance guarantees. While row-wise
compression just reduces the effective sample size and can be expected
to work in general settings as long as the compressed dimension m < n
is not too small (Zhou et al., 2007), column-wise compression can only
work well if certain conditions on the data are satisfied and we will give
an overview of these results. If not mentioned otherwise, we will refer
with compressed regression and random projections to the column-wise
compression.

1.2 Theoretical results 9

The structure of the manuscript is as follows: We will give an overview of
bounds on the estimation accuracy in the following section 1.2, including
both known results and new contributions in the form of tighter bounds.
In Section 1.3 we will discuss the possibility and properties of variance-
reducing averaging schemes, where estimators based on different realized
random projections are aggregated. Finally, Section 1.4 concludes the
manuscript with a short discussion.

1.2 Theoretical results

We will discuss in the following the properties of the column-wise com-
pressed estimator as in (1.2), which is defined as

β̂Φ
d = Φ argmin

γ∈Rd
‖Y −XΦγ‖22, (1.3)

where we assume that Φ has i.i.d. N (0, 1/d) entries. This estimator will
be referred to as the compressed least squares estimator (CLSE) in the
following. We will focus on the unpenalized form as in (1.3) but note that
similar results also apply to estimators that put an additional penalty on
the coefficients β or γ. Due to the isotropy of the random projection, a
ridge-type penalty as in Lu et al. (2013) and McWilliams et al. (2014b)
is perhaps a natural choice. An interesting summary of the bounds on
random projections is on the other hand that the random projection as
in (1.3) already acts as a regularization and the theoretical properties
of (1.3) are very much related to the properties of a ridge-type estimator
of the coefficient vector in the absence of random projections.

We will restrict discussion of the properties mostly to the mean squared
error (MSE)

EΦ

[
Eε(‖Xβ −Xβ̂Φ

d ‖22)
]
. (1.4)

First results on compressed least squares have been given in (Maillard
and Munos, 2009) in a random design setting. It was shown that the bias
of the estimator (1.3) is of order O(log(n)/d). This proof used a modified
version of the Johnson-Lindenstrauss Lemma. A recent result (Kabán,
2014) shows that the log(n)-term is not necessary for fixed design settings
where Y = Xβ + ε for some β ∈ Rp and ε is i.i.d. noise, centered
Eε[ε] = 0 and with the variance Eε[εε′] = σ2In×n. We will work with
this setting in the following.

10 Chapter 1: Random projections for large-scale regression

The following result of (Kabán, 2014) gives a bound on the MSE for fixed
design.

Theorem 1.2.1. (Kabán, 2014) Assume fixed design and Rank(X) ≥ d.
Then

EΦ

[
Eε(‖Xβ −Xβ̂Φ

d ‖22)
]
≤ σ2d+

‖Xβ‖22
d

+ trace(XTX)
‖β‖22
d

. (1.5)

Proof. See Appendix.

Compared with (Maillard and Munos, 2009), the result removes an un-
necessary O(log(n)) term and demonstrates the O(1/d) behaviour of the
bias. The result also illustrates the tradeoffs when choosing a suitable
dimension d for the projection. Increasing d will lead to a 1/d reduction
in the bias terms but lead to a linear increase in the estimation error
(which is proportional to the dimension in which the least-squares esti-
mation is performed). An optimal bound can only be achieved with a
value of d hat depends on the unknown signal and in practice one would
typically use cross-validation to make the choice of the dimension of the
projection.

One issue with the bound in Theorem 1.2.1 is that the bound on the bias
term in the noiseless case (Y = Xβ)

EΦ

[
Eε(‖Xβ −Xβ̂Φ

d ‖22)
]
≤ ‖Xβ‖

2
2

d
+ trace(XTX)

‖β‖22
d

(1.6)

is usually weaker than the trivial bound (by setting β̂Φ
d = 0) of

EΦ

[
Eε(‖Xβ −Xβ̂Φ

d ‖22)
]
≤ ‖Xβ‖22 (1.7)

for most values of d < p. By improving the bound, it is also possible to
point out the similarities between ridge regression and compressed least
squares.

The improvement in the bound rests on a small modification in the orig-
inal proof in (Kabán, 2014). The idea is to bound the bias term of (1.4)
by optimizing over the upper bound given in the foregoing theorem.

1.2 Theoretical results 11

Specifically, one can use the inequality

EΦ[Eε[‖Xβ−XΦ(ΦTXTXΦ)−1ΦTXTXβ‖22]]

≤ min
β̂∈Rp

EΦ[Eε[‖Xβ −XΦΦT β̂‖22]],

instead of

EΦ[Eε[‖Xβ−XΦ(ΦTXTXΦ)−1ΦTXTXβ‖22]]

≤ EΦ[Eε[‖Xβ −XΦΦTβ‖22]].

To simplify the exposition we will from now on always assume we have
rotated the design matrix to an orthogonal design so that the Gram
matrix is diagonal:

Σ = XTX = diag(λ1, ..., λp). (1.8)

This can always be achieved for any design matrix and is thus not a re-
striction. It implies, however, that the optimal regression coefficients β
are expressed in the basis in which the Gram matrix is orthogonal, this
is the basis of principal components. This will turn out to be the natural
choice for random projections and allows for easier interpretation of the
results.
Furthermore note that in Theorem 1.2.1 we have the assumption Rank(X) ≥
d, which tells us that we can apply the CLSE in the high dimensional set-
ting p� n as long as we choose d small enough (smaller than Rank(X),
which is usually equal to n) in order to have uniqueness.
With the foregoing discussion on how to improve the bound in Theorem
1.2.1 we get the following theorem:

Theorem 1.2.2. Assume Rank(X) ≥ d, then the MSE (1.4) can be
bounded above by

EΦ[Eε[‖Xβ −Xβ̂Φ
d ‖22]] ≤ σ2d+

p∑
i=1

β2
i λiwi (1.9)

where

wi =
(1 + 1/d)λ2

i + (1 + 2/d)λi trace(Σ) + trace(Σ)2/d

(d+ 2 + 1/d)λ2
i + 2(1 + 1/d)λi trace(Σ) + trace(Σ)2/d

. (1.10)

Proof. See Appendix.

12 Chapter 1: Random projections for large-scale regression

The wi are shrinkage factors. By defining the proportion of the total
variance observed in the direction of the i-th principal component as

αi =
λi

trace(Σ)
, (1.11)

we can rewrite the shrinkage factors in the foregoing theorem as

wi =
(1 + 1/d)α2

i + (1 + 2/d)αi + 1/d

(d+ 2 + 1/d)α2
i + 2(1 + 1/d)αi + 1/d

. (1.12)

Analyzing this term shows that the shrinkage is stronger in directions
of high variance compared to directions of low variance. To explain this
relation in a bit more detail we compare it to ridge regression. The MSE
of ridge regression with penalty term λ‖β‖22 is given by

Eε[‖Xβ−XβRidge‖22] = σ2

p∑
i=1

(λi
λi + λ

)2

+

p∑
i=1

β2
i λi

(λ

λ+ λi

)2

. (1.13)

Imagine that the signal lives on the space spanned by the first q principal
directions, that is βi = 0 for i > q. The best MSE we could then achieve
is σ2q by running a regression on the first q first principal directions.
For random projections, we can see that we can indeed reduce the bias
term to nearly zero by forcing wi ≈ 0 for i = 1, . . . , q. This requires
d � q as the bias factors will then vanish like 1/d. Ridge regression
on the other hand requires that the penalty λ is smaller than the q-th
largest eigenvalue λq (to reduce the bias on the first q directions) but large
enough to render the variance factor λi/(λi+λ) very small for i > q. The
tradeoff in choosing the penalty λ in ridge regression and choosing the
dimension d for random projections is thus very similar. The number
of directions for which the eigenvalue λi is larger than the penalty λ
in ridge corresponds to the effective dimension and will yield the same
variance bound as in random projections. The analogy between the
MSE bounds (1.9) for random projections and (1.13) for ridge regression
illustrates thus a close relationship between compressed least squares and
ridge regression or principal component regression, similar to Dhillon et
al. (2013a).

Instead of an upper bound for the MSE of CLSE as in Maillard and
Munos (2009) and Kabán (2014), we will in the following try to derive
explicit expressions for the MSE, following the ideas in Kabán (2014)
and Marzetta et al. (2011) and we give a closed form MSE in the case

1.2 Theoretical results 13

of orthonormal predictors. The derivation will make use of the following
notation:

Definition 1.2.3. Let Φ ∈ Rp×d be a random projection. We define the
following matrices:

ΦX
d =Φ(ΦTXTXΦ)−1ΦT ∈ Rp×p

and TΦ
d =EΦ[ΦX

d] = EΦ[Φ(ΦTXTXΦ)−1ΦT] ∈ Rp×p.

The next Lemma (Marzetta et al., 2011) summarizes the main properties
of ΦX

d and TΦ
d .

Lemma 1.2.4. Let Φ ∈ Rp×d be a random projection. Then

i) (ΦX
d)T = ΦX

d (symmetric),

ii) ΦX
d XTXΦX

d = ΦX
d (projection),

iii) if Σ = XTX is diagonal ⇒ TΦ
d is diagonal.

Proof. See Marzetta et al. (2011).

The important point of this lemma is that when we assume orthogonal
design then TΦ

d is diagonal. We will denote this by

TΦ
d = diag(1/η1, ..., 1/ηp),

where the terms ηi are well defined but without an explicit representation.

A quick calculation reveals the following theorem:

Theorem 1.2.5. Assume Rank(X) ≥ d, then the MSE (1.4) equals

EΦ[Eε[‖Xβ −Xβ̂Φ
d ‖22]] = σ2d+

p∑
i=1

β2
i λi

(
1− λi

ηi

)
. (1.14)

Furthermore we have
p∑
i=1

λi
ηi

= d. (1.15)

Proof. See Appendix.

14 Chapter 1: Random projections for large-scale regression

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

d

M
S

E
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

exact
bound

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

M
S

E

● ●

●

exact
bound

Figure 1.1: Numerical simulations of the bounds in Theorems 1.2.2 and 1.2.5. Left:
the exact factor (1−λ1/η1) in the MSE is plotted versus the bound w1 as a function
of the projection dimension d. Right: the exact factor (1−λp/ηp) in the MSE and the
upper bound wp. Note that the upper bound works especially well for small values
of d and for the larger eigenvalues and is always below the trivial bound 1.

By comparing coefficients in Theorems 1.2.2 and 1.2.5, we obtain the
following corollary.

Corollary 1.2.6. Assume Rank(X) ≥ d, then

∀i ∈ {1, ..., p} : 1− λi
ηi
≤ wi (1.16)

As already mentioned in general we cannot give a closed-form expression
for the terms ηi in general. However, for some special cases (1.26) can
help us to get to an exact form of the MSE of CLSE. If we assume
orthonormal design (Σ = CIp×p) then we have that λi/ηi is a constant
for all i and and thus, by (1.26), we have ηi = Cp/d. This gives

EΦ[Eε[‖Xβ −Xβ̂Φ
d ‖22]] = σ2d+ C

p∑
i=1

β2
i

(
1− d

p

)
, (1.17)

and thus we end up with a closed form MSE for this special case.

Providing the exact mean-squared errors allows us to quantify the con-
servativeness of the upper bounds. The upper bound has been shown to
give a good approximation for small dimensions d of the projection and
for the signal contained in the larger eigenvalues.

1.3 Averaged compressed least squares 15

1.3 Averaged compressed least squares

We have so far looked only into compressed least squares estimator with
one single random projection. An issue in practice of the compressed
least squares estimator is its variance due to the random projection as
an additional source of randomness. This variance can be reduced by
averaging multiple compressed least squares estimates coming from dif-
ferent random projections. In this section we will show some properties
of the averaged compressed least squares (ACLSE) estimator and discuss
its advantage over the CLSE.

Definition 1.3.1. (ACLSE) Let {Φ1, ...,ΦK} ∈ Rp×d be independent

random projections, and let β̂Φi

d for all i ∈ {1, ...,K} be the respective
compressed least squares estimators. We define the averaged compressed
least squares estimator (ACLSE) as

β̂Kd :=
1

K

K∑
i=1

β̂Φi

d . (1.18)

One major advantage of this estimator is that it can be calculated in
parallel with the minimal number of two communications, one to send
the data and one to receive the result. This means that the asymptotic
computational cost of β̂Kd is equal to the cost of β̂Φ

d if calculations are

done onK different processors. To investigate the MSE of β̂Kd , we restrict
ourselves for simplicity to the limit case

β̂d = lim
K→∞

β̂Kd (1.19)

and instead only investigate β̂d. The reasoning being that for large
enough values of K (say K > 100) the behaviour of β̂d is very simi-

lar to β̂Kd . The exact form of the MSE in terms of the ηi’s is given in
Kabán (2014). Here we build on these results and give an explicit upper
bound for the MSE.

Theorem 1.3.2. Assume Rank(X) ≥ d. Define

τ =

p∑
i=1

(λi
ηi

)2

.

16 Chapter 1: Random projections for large-scale regression

The MSE of β̂d can be bounded from above by

EΦ[Eε[‖Xβ −Xβ̂d‖22]] ≤ σ2τ +

p∑
i=1

β2
i λiw

2
i ,

where the wi’s are given (as in Theorem 1.2.1) by

wi =
(1 + 1/d)λ2

i + (1 + 2/d)λi trace(Σ) + trace(Σ)2/d

(d+ 2 + 1/d)λ2
i + 2(1 + 1/d)λi trace(Σ) + trace(Σ)2/d

.

and

τ ∈ [d2/p, d].

Proof. See Appendix.

Comparing averaging to the case where we only have one single estima-
tor we see that there are two differences: First the variance due to the
model noise ε turns into σ2τ with τ ∈ [d2/p, d], thus τ ≤ d. Secondly the
shrinkage factors wi in the bias are now squared, which in total means
that the MSE of β̂d is always smaller or equal to the MSE of a single
estimator β̂Φ

d .

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d

M
S

E

●

●

●

●

●

●

●

●

●
●

●
● ●

●

single
average

0 10 20 30 40

0.
2

0.
4

0.
6

0.
8

1.
0

d

M
S

E

●

●

●

●

●

●

●
●

● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

single
average

0 10 20 30 40

0.
5

1.
0

1.
5

2.
0

d

M
S

E

●

●

●

●

●
●

● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

single
average

Figure 1.2: MSE of averaged compressed least squares (circle) versus the MSE of the
single estimator (cross) with covariance matrix Σi,i = 1/i. On the left with σ2 = 0
(only bias), in the middle σ2 = 1/40 and on the left σ2 = 1/20. One can clearly see
the quadratic improvement in terms of MSE as predicted by Theorem 1.3.2.

We investigate the behavior of τ as a function of d in three different
situations (Figure 1.2). We first look at two extreme cases of covariance
matrices for which the respective upper and lower bounds [d2/p, d] for τ

1.3 Averaged compressed least squares 17

are achieved. For the lower bound, let Σ = Ip×p be orthonormal. Then
λi/ηi = c for all i, as above. From

p∑
i=1

λi/ηi = d

we get λi/ηi = d/p. This leads to

τ =

p∑
i=1

(λi/ηi)
2 = p

d2

p2
=
d2

p
,

which reproduces the lower bound. We will not be able to reproduce the

0 10 20 30 40

0
10

20
30

40

d

M
S

E

lower bound
tau
upper bound

0 10 20 30 40

0
10

20
30

40

d

M
S

E

lower bound
tau
upper bound

Figure 1.3: Simulations of the variance factor τ (line) as a function of d for three
different covariance matrices and in lower bound (d2/p) and upper bound (d) (square,
triangle). On the left (Σ = Ip×p) τ as proven reaches the lower bound. In the middle
(Σi,i = 1/i) τ reaches almost the lower bound, indicating that in most practical
examples τ will be very close to the lower bound and thus averaging improves MSE
substantially compared to the single estimator. On the right the extreme case example
from (1.20) with d = 5, where τ reaches the upper bound for d = 5.

upper bound exactly for all d ≤ p. But we can show that for any d there
exists a covariance matrix Σ, such that the upper bound is reached. The
idea is to consider a covariance matrix that has equal variance in the first
d direction and almost zero in the remaining p− d. Define the diagonal
covariance matrix

Σi,j =

1, if i = j and i ≤ d
ε, if i = j and i > d

0, if i 6= j

. (1.20)

We show limε→0 τ = d. For this decompose Φ into two matrices Φd ∈
Rd×d and Φr ∈ R(p−d)×d:

Φ =

(
Φd
Φr

)
.

18 Chapter 1: Random projections for large-scale regression

The same way we define βd, βr, Xd and Xr. Now we bound the ap-
proximation error of β̂Φ

d to extract information about λi/ηi. Assume a

squared data matrix (n = p) X =
√

Σ, then

EΦ[argmin
γ∈Rd

‖Xβ −XΦγ‖22] ≤ EΦ[‖Xβ −XΦΦ−1
d βd‖

2
2]

= EΦ[‖Xrβr −XrΦrΦ
−1
d βd‖

2
2]

= εEΦ[‖βr − ΦrΦ
−1
d βd‖

2
2]

≤ ε(2‖βr‖22 + 2‖βd‖22EΦ[‖Φr‖22]EΦ[‖Φ−1
d ‖

2
2])

≤ εC,

where C is independent of ε and bounded since the expectation of the
smallest and largest singular values of a random projection is bounded.
This means that the approximation error decreases to zero as we let
ε→ 0. Applying this to the closed form for the MSE of β̂Φ

d we have that

p∑
i=1

β2
i λi

(
1− λi

ηi

)
≤

d∑
i=1

β2
i

(
1− λi

ηi

)
+ ε

p∑
i=d+1

β2
i

(
1− λi

ηi

)
has to go to zero as ε→ 0, which in turn implies

lim
ε→0

d∑
i=1

β2
i

(
1− λi

ηi

)
= 0,

and thus limε→0 λi/ηi = 1 for all i ∈ {1, ..., d}. This finally yields a limit

lim
ε→0

p∑
i=1

λ2
i

η2
i

= d.

This illustrates that the lower bound d2/p and upper bound d for the
variance factor τ can both be attained. Simulations suggest that τ is
usually close to the lower bound, where the variance of the estimator is
reduced by a factor d/p compared to a single iteration of a compressed
least-squares estimator, which is on top of the reduction in the bias
error term. This shows, perhaps unsurprisingly, that averaging over ran-
dom projection estimators improves the mean-squared error in a Rao-
Blackwellization sense. We have quantified the improvement. In prac-
tice, one would have to decide whether to run multiple versions of a
compressed least-squares regression in parallel or run a single random

1.4 Discussion 19

projection with a perhaps larger embedding dimension. The computa-
tional effort and statistical error tradeoffs will depend on the implemen-
tation but the bounds above will give a good basis for a decision.

1.4 Discussion

We discussed some known results about the properties of compressed
least-squares estimation and proposed possible tighter bounds and exact
results for the mean-squared error. While the exact results do not have
an explicit representation, they allow nevertheless to quantify the con-
servative nature of the upper bounds on the error. Moreover, the shown
results allow to show a strong similarity of the error of compressed least
squares, ridge and principal component regression. We also discussed the
advantages of a form of Rao-Blackwellization, where multiple compressed
least-square estimators are averaged over multiple random projections.
The latter averaging procedure also allows to compute the estimator
trivially in a distributed way and is thus often better suited for large-
scale regression analysis. The averaging methodology also motivates the
use of compressed least squares in the high dimensional setting where
it performs similar to ridge regression and the use of multiple random
projection will reduce the variance and result in a non random estimator
in the limit, which presents a computationally attractive alternative to
ridge regression.

1.5 Appendix

In this section we give proofs of the statements from the section theoret-
ical results.
Theorem 1.2.1. (Kabán, 2014) Assume fixed design and Rank(X) ≥ d,
then the AMSE 1.4 can be bounded above by

EΦ[Eε[‖Xβ −Xβ̂Φ
d ‖22]] ≤ σ2d+

‖Xβ‖22
d

+ trace(XTX)
‖β‖22
d

. (1.21)

20 Chapter 1: Random projections for large-scale regression

Proof. (Sketch)

EΦ[Eε[‖Xβ −Xβ̂Φ
d ‖22]] = EΦ[‖Xβ −XΦ(ΦTXTXΦ)−1ΦTXTXβ‖22] + σ2d

≤ EΦ[‖Xβ −XΦ(ΦTXTXΦ)−1ΦTXTXΦΦTβ‖22] + σ2d

= EΦ[‖Xβ −XΦΦTβ‖22] + σ2d.

Finally a rather lengthy but straightforward calculation leads to

EΦ[‖Xβ −XΦΦTβ‖22] =
‖Xβ‖22
d

+ trace(XTX)
‖β‖22
d

(1.22)

and thus proving the statement above.

Theorem 1.2.2. Assume Rank(X) ≥ d, then the AMSE (1.4) can be
bounded above by

EΦ[Eε[‖Xβ −Xβ̂Φ
d ‖22]] ≤ σ2d+

p∑
i=1

β2
i λiwi (1.23)

where

wi =
(1 + 1/d)λ2

i + (1 + 2/d)λi trace(Σ) + trace(Σ)2/d

(d+ 2 + 1/d)λ2
i + 2(1 + 1/d)λi trace(Σ) + trace(Σ)2/d

. (1.24)

Proof. We have for all v ∈ Rp

EΦ[min
γ̂∈Rd
‖Xβ −XΦγ̂‖22] ≤ EΦ[‖Xβ −XΦΦT v‖22].

Which we can minimize over the whole set Rp:

EΦ[min
γ̂∈Rd
‖Xβ −XΦγ̂‖22] ≤ min

v∈Rp
EΦ[‖Xβ −XΦΦT v‖22].

This last expression we can calculate following the same path as in The-
orem 1.2.1:

EΦ[‖Xβ −XΦΦT v‖22] =βTXTXβ − 2βTXTXEΦ[ΦΦT]v

+ vTEΦ[ΦΦTXTXΦΦT]v

=βTXTXβ − 2βTXTXv

+ (1 + 1/d)vTXTXv +
trace(Σ)

d
‖v‖22,

1.5 Appendix 21

where Σ = XTX. Next we minimize the above expression w.r.t v. For
this we take the derivative w.r.t. v and then we zero the whole expression.
This yields

2
(

1 +
1

d

)
Σv + 2

trace(Σ)

d
Ip×pv − 2Σβ = 0.

Hence we have

v =
((

1 +
1

d

)
Σ +

trace(Σ)

d
Ip×p

)−1

Σβ,

which is element wise equal to

vi =
βiλi

(1 + 1/d)λi + trace(Σ)/d
.

Define the notation s = trace(Σ). We now plug this back into the original
expression and get

min
v∈Rp

EΦ[‖Xβ −XΦΦT v‖22] =βTΣβ − 2βTΣv

+ (1 + 1/d)vTΣv +
s

d
‖v‖22

=

p∑
i=1

β2
i λi − 2βiviλi + (1 + 1/d)v2

i λi + s/dv2
i

=

p∑
i=1

(
β2
i λi − 2β2

i λi
λi

(1 + 1/d)λi + s/d

+ β2
i λi(1 + 1/d)

λ2
i

((1 + 1/d)λi + s/d)2

+ β2
i λi

s

d

λi
((1 + 1/d)λi + s/d)2

)
=

p∑
i=1

β2
i λiwi,

by combining the summands we get for wi the expression mentioned in
the theorem.

Theorem 1.2.5. Assume Rank(X) ≥ d, then the MSE (1.4) equals

EΦ[Eε[‖Xβ −Xβ̂Φ
d ‖22]] = σ2d+

p∑
i=1

β2
i λi

(
1− λi

ηi

)
. (1.25)

22 Chapter 1: Random projections for large-scale regression

Furthermore we have
p∑
i=1

λi
ηi

= d. (1.26)

Proof. Calculating the expectation yields

EΦ[Eε[‖Xβ−Xβ̂d‖22]] = βTΣβ−2βTΣTΦ
d Σβ+EΦ[Eε[YTXΦX

d XTY]].

Going through these terms we get:

βTΣβ =

p∑
i=1

β2
i λi

βTΣTΦ
d Σβ =

p∑
i=1

β2
i

λ2
i

ηi

EΦ[Eε[YTXΦX
d XTY]] = βTΣEΦ[ΦX

d]Σβ + EΦ[Eε[εTXΦX
d XTε]].

The first term in the last line equals
∑p
i=1 β

2
i λ

2
i /ηi. The second can be

calculated in two ways, both relying on the shuffling property of the trace
operator:

EΦ[Eε[εTXΦX
d XTε]] = Eε[εTXTX

d XTε]]

= σ2 trace(XTX
d XT)

= σ2 trace(ΣTX
d) =

p∑
i=1

λi
ηi
.

EΦ[Eε[εTXΦX
d XTε]] = σ2EΦ[trace(XΦX

d XT)]

= σ2EΦ[trace(ΣΦX
d)]

= σ2EΦ[trace(Id×d)] = σ2d.

Adding the first version to the expectation from above we get the exact
expected mean squared error. Setting both versions equal we get the
equation

d =

p∑
i=1

λi
ηi

1.5 Appendix 23

Theorem 1.3.2. Assume Rank(X) ≥ d, then there exists a real number

τ ∈ [d2/p, d] such that the AMSE of β̂d can be bounded from above by

EΦ[Eε[‖Xβ −Xβ̂d‖22]] ≤ σ2τ +

p∑
i=1

β2
i λiw

2
i ,

where the wi’s are given as

wi =
(1 + 1/d)λ2

i + (1 + 2/d)λi trace(Σ) + trace(Σ)2/d

(d+ 2 + 1/d)λ2
i + 2(1 + 1/d)λi trace(Σ) + trace(Σ)2/d

and

τ ∈ [d2/p, d].

Proof. First a simple calculation (Kabán, 2014) using the closed form
solution gives the following equation:

EΦ[Eε[‖Xβ −Xβ̂d‖22]] = σ2

p∑
i=1

(λi
ηi

)2

+

p∑
i=1

β2
i λi

(
1− λi

ηi

)2

. (1.27)

Now using the corollary from the last section we can bound the second
term the following way: (

1− λi
ηi

)2

≤ w2
i . (1.28)

For the first term we write

τ =

p∑
i=1

(λi
ηi

)2

. (1.29)

Now note that since λi/ηi ≤ 1 we have(λi
ηi

)2

≤ λi
ηi

(1.30)

and thus we get the upper bound by

p∑
i=1

(λi
ηi

)2

≤
p∑
i=1

λi
ηi

= d. (1.31)

24 Chapter 1: Random projections for large-scale regression

For the lower bound of τ we consider an optimisation problem. Denote
ti = λi

ηi
, then we want to find t ∈ Rp such that

p∑
i=1

t2i is minimal

under the restrictions that

p∑
i=1

ti = d and 0 ≤ ti ≤ 1.

The problem is symmetric in each coordinate and thus ti = c. Plugging
this into the linear sum gives c = d/p and we calculate the quadratic
term to give the result claimed in the theorem.

Chapter 2

The xyz algorithm for
fast interaction search in
high-dimensional data

When performing regression on a data set with p variables, it is often of
interest to go beyond using main linear effects and include interactions as
products between individual variables. For small-scale problems, these
interactions can be computed explicitly but this leads to a computational
complexity of at least O(p2) if done naively. This cost can be prohibitive
if p is very large.

We introduce a new randomised algorithm that is able to discover interac-
tions with high probability and under mild conditions has a runtime that
is subquadratic in p. We show that strong interactions can be discovered
in almost linear time, whilst finding weaker interactions requires O(pα)
operations for 1 < α < 2 depending on their strength. The underlying
idea is to transform interaction search into a closest pair problem which
can be solved efficiently in subquadratic time. The algorithm is called
xyz and is implemented in the language R. We demonstrate its efficiency
for application to genome-wide association studies, where more than 1011

interactions can be screened in under 280 seconds with a single-core 1.2
GHz CPU1.

1This chapter has been published in (Thanei et al., 2016b)

26 Chapter 2: Fast interaction search in high-dimensional data

2.1 Introduction

Given a response vector Y ∈ Rn and matrix of associated predictors
X = (X1, . . . ,Xp) ∈ Rn×p, finding interactions is often of great interest
as they may reveal important relationships and improve predictive power.
When the number of variables p is large, fitting a model involving inter-
actions can involve serious computational challenges. The simplest form
of interaction search consists of screening for pairs (j, k) with high inner
product between the outcome of interest Y and the point-wise product
Xj ◦Xk:

Keep all pairs (j, k) for which YT (Xj ◦Xk)/n > γ. (2.1)

This search is of complexity O(np2) in a naive implementation and
quickly becomes infeasible for large p. Of course one would typically
be interested in maximising (absolute values of) correlations rather than
dot products in (2.1), an optimisation problem that would be at least as
computationally intensive.

Even more challenging is the task of fitting a linear regression model
involving pairwise interactions:

Yi = µ+

p∑
j=1

Xijβj +

p∑
k=1

k−1∑
j=1

XijXikθjk + εi. (2.2)

Here µ ∈ R is the intercept and βj and θjk contain coefficients for main
effects and interactions respectively, and εi is random noise.

In this paper, we make several contributions to the problem of searching
for interactions in high-dimensional settings.

(a) We first establish a form of equivalence between (2.1) and closest-pair
problems (Agarwal et al., 1991; Shamos and Hoey, 1975). Assume for
now that all predictors and outcomes are binary, so Xij , Yi ∈ {−1, 1}
(we will later relax this assumption) and define Z ∈ {−1, 1}n×p as
Zij = YiXij . Then it is straightforward to show that (2.1) is equiv-
alent to

Keep all pairs (j, k) for which ‖Xj − Zk‖2 < γ′ (2.3)

for some γ′. This connects the search for interactions to literature
in computational geometry on problems of finding closest pairs of
points.

2.1 Introduction 27

(b) We introduce the xyz algorithm to solve (2.3) based on randomly
projecting each of the columns in X and Z to a one-dimensional
space. By exploiting the ability to sort the resulting 2p points with
O(p log(p)) computational cost, we achieve a run time that is always
subquadratic in p and can even reach a linear complexityO(np) when
γ is much larger than the interaction strengths |YT (Xj ◦Xk)|/n of
the bulk of the pairs (j, k). We show that our approach can be
viewed as an example of locality sensitive hashing (Leskovec et al.,
2014) optimised for our specific problem.

(c) We show how any method for solving (2.1) can be used to fit regres-
sion models with interactions (2.15) by building it into an algorithm
for the Lasso (Tibshirani, 1996). The use of xyz thus leads to a
procedure for applying the Lasso to all main effects and interactions
with computational cost that scales subquadratically in p.

(d) We provide implementations of both the core xyz algorithm and its
extension to the Lasso in the R package xyz, which is available on
github (Thanei, 2016) and CRAN.

Our work here is thus related to “closest pairs of points” algorithms in
computational geometry as well as an extensive literature on modelling
interactions in statistics, both of which we now review.

2.1.1 Related work

A common approach to avoid the quadratic cost in p of searching over
all pairs of variables (2.1) is to restrict the search space: one can first
seek a small number of important main effects, and then only consider
interactions involving these discovered main effects. More specifically,
one could fit a main effects Lasso (Tibshirani, 1996) to the data first, add
interactions between selected main effects to the matrix of predictors, and
then run the Lasso once more on the augmented design matrix in order
to produce the final model (see Wu et al. (2010) for example). Tree-based
methods such as CART (Breiman et al., 1984) work in a similar fashion
by aiming to identify an important main effect and then only considering
interactions involving this discovered effect.

However it is quite possible for the signal to be such that main effects cor-
responding to important interactions are hard to detect. As a concrete
example of this phenomenon, consider the setting where X is generated

28 Chapter 2: Fast interaction search in high-dimensional data

randomly with all entries independent and having the uniform distribu-
tion on {−1, 1}. Suppose the response is given by Yi = Xi1Xi2, so there is
no noise. Since the distribution Yi|Xij is the same for all k, main effects
regressions would find it challenging to select variables 1 and 2. Note
that by reparametrising the model by adding one to each entry of X for
example, we obtain Yi = (Xi1−1)(Xi2−1) = 1−Xi1−Xi2+Xi1Xi2. The
model now respects the so-called strong hierarchical principle (Bien et al.,
2013) that interactions are only present when their main effects are. The
hierarchical principle is useful to impose on any fitted model. However,
imposing the principle on the model does not imply that the interactions
will easily be found by searching for main effects first. The difficulty of
the example problem is due to interaction effects masking main effects:
this is a property of the signal E(Yi) and of course no reparametrisation
can make the main effects any easier to find. Approaches that increase
the set of interactions to be considered iteratively can help to tackle this
sort of issue in practice (Bickel et al., 2010; Friedman, 1991; Hao and
Zhang, 2014; Shah, 2016) as can those that randomise the search pro-
cedure (Breiman, 2001). However they cannot eliminate the problem
of missing interactions, nor do these approaches offer guarantees of how
likely it is that they discover an interaction.

As alluded to earlier, the pure interaction search problem (2.3) is re-
lated to close pairs of points problems, and more specifically the close
bichromatic pairs problem in computational geometry (Agarwal et al.,
1991). Most research in this area has focused on algorithms that lead to
computationally optimal results in the number of points p whilst consid-
ering the dimension n to be constant. This has resulted in algorithms
where the scaling of the computational complexity with n is at least of
order 2n (Shamos and Hoey, 1975). Since for meaningful statistical re-
sults one would typically require n � log(p), these approaches would
not lead to subquadratic complexity. In the special case where n = p
and Zij , Xij ∈ {−1, 1}, (2.3) may be seen to be equivalent to search-
ing for large magnitude entries in the product of square matrices X and
ZT . This latter problem is amenable to fast matrix multiplication algo-
rithms, which in theory can deliver a subquadratic complexity of roughly
O(p2.4) = O(np1.4) (Davie and Stothers, 2013; Le Gall, 2012; Williams,
2012). However the constants hidden in the order notation are typically
very large, and practical implementations are unavailable. The Strassen
algorithm (Strassen, 1969) is the only fast matrix multiplication algo-
rithm used regularly in practice to the best of our knowledge. With a
complexity of roughly O(p2.8) = O(np1.8), the improvement over a brute

2.1 Introduction 29

force close pairs search is only slight.

The strategy we use is most closely related to locality sensitive hashing
(LSH) (Indyk and Motwani, 1998) which encompasses a family of hashing
procedures such that similar points are mapped to the same bucket with
high probability. A close pair search can then be conducted by searching
among pairs mapped to the same bucket. In fact, our proposed algorithm
for solving (2.3) can be thought of as an example of LSH optimised for
our particular problem setting.

A seemingly attractive alternative to the subsampling-based LSH-strategy
we employ is the method of Random Projections which is motivated by
the theoretical guarantees offered by the Johnson–Lindenstrauss Lemma
(Achlioptas, 2003). Perhaps surprisingly, we can show that using Ran-
dom Projections instead of our subsampling-based scheme leads to a
quadratic run time for interaction search (see Theorem 2.2.1 and section
2.5.1).

An approach that bears some similarity with our procedure is epiq (Arkin
et al., 2014). This works by projecting the data and then searches
through a lower dimensional representation for close pairs. This appears
to improve upon a naive brute force empirically but there are no proven
guarantees that the run time improves on the O(np2) complexity of a
naive search.

The Random Intersection Trees algorithm of Shah and Meinshausen
(2014) searches for potentially deeper interactions in data with both X
and Y binary. In certain cases with strong interactions a complexity close
to linear in p is achieved; however it is not clear how to generalise the
approach to continuous data or embed it within a regression procedure.

The idea of Kong et al. (2016) is to first transform the data by forming
Ỹ = Y ◦Y and X̃j = Xj ◦Xj for each predictor. Next X̃j and Ỹ are
tested for independence using the distance correlation test. In certain
settings, this can reveal important interactions with a computational cost
linear in p. However, the powers of these tests depend on the distributions
of the transformed variables X̃j . For example in the binary case when
X ∈ {−1, 1}n×p, each transformed variable will be a vector of 1’s and
the independence tests will be unhelpful. We will see that our proposed
approach works particularly well in this setting.

30 Chapter 2: Fast interaction search in high-dimensional data

2.1.2 Organisation of the paper

In Section 2.2 we consider the case where both the response Y and the
predictors X are binary. We first demonstrate how (2.15) may be con-
verted to a form of closest pair of points problem. We then introduce a
general version of the xyz algorithm which solves this based on random
projections. As we show in Section 2.2.1 there is a particular random
projection distribution that is optimal for our purposes. This leads to
our final version of the xyz algorithm which we present in Section 2.2.3
along with an analysis of its run time and probabilistic guarantees that
it recovers important interactions. In Section 2.3 we extend the xyz al-
gorithm to continuous data. These ideas are then used in Section 2.4
to demonstrate how the xyz algorithm can be embedded within com-
mon algorithms for high-dimensional regression (Friedman et al., 2010)
allowing high-dimensional regression models with interactions to be fit-
ted with subquadratic complexity in p. Section 2.5 contains a variety
of numerical experiments on real and simulated data that complement
our theoretical results and demonstrate the effectiveness of our proposal
in practice. We conclude with a brief discussion in Section 2.6 and all
proofs are collected in the Appendix.

2.2 The xyz algorithm for binary data

In this section, we present a version of the xyz algorithm applicable in
the special case where both X and Y are binary, so Xij ∈ {−1, 1} and
Yi ∈ {−1, 1}. We build up to the algorithm in stages, giving the final
version in Section 2.2.2.

Define Z ∈ {−1, 1}n×p by Zij = YiXij and

γjk =
1

n

n∑
i=1

1{Yi=XijXik}. (2.4)

We call γjk the interaction strength of the pair (j, k). It is easy to see
that the interaction search problem (2.1) can be expressed in terms of
either the γjk or the normalised squared distances. Indeed

2γjk − 1 = YT (Xj ◦Xk)/n = ZTj Xk/n = 1− ‖Zj −Xk‖22/(2n). (2.5)

Thus those pairs (j, k) with Y T (Xj ◦Xk)/n large will have γjk large, and
‖Zj −Xk‖22 small.

2.2 The xyz algorithm for binary data 31

This equivalence suggests that to solve (2.1), we can search for pairs (j, k)
of columns Zj ,Xk that are close in `2 distance. At first sight, this new
problem would also appear to involve a search across all pairs, and would
thus incur an O(np2) cost. As mentioned in the introduction, close pair
searches that avoid a quadratic cost in p incur typically an exponential
cost in n. Since n would typically be much larger than log(p), such
searches would be computationally infeasible.

We can however project each of the n-dimensional columns of X and
Z to a lower dimensional space and then perform a close pairs search.
The Johnson–Lindenstrauss Lemma, which states roughly that one can
project p points into a space of dimension O(log(p)) and faithfully pre-
serve distances, may appear particularly relevant here. The issue is that
the projected dimension suggested by the Johnson–Lindenstrauss Lemma
is still too large to allow for an efficient close pairs search. The following
observation however gives some encouragement: if we had Y = Xj ◦Xk

so Xj = Zk, even a one-dimensional projection R ∈ Rn will have
|RT (Xj − Zk)| = 0 = ‖Xj − Zk‖2, which implies that a perfect in-
teraction will have zero distance in the projected space. We will later see
that our approach leads to a linear run time in such a case. Importantly,
we are only interested in using a projection that preserves the distances
between the close pairs rather than all pairs, which makes our problem
very different to the setting considered in the Johnson–Lindenstrauss
Lemma.

With this in mind, consider the following general strategy. First project
the columns of X and Z to one-dimensional vectors x and z using a
random projection R: x = XTR, z = ZTR. Next for some threshold
τ , collect all pairs (j, k) such that |xj − zk| ≤ τ in the set C. By first
sorting x and z, a step requiring only O(p log(p)) computations (see for
example Sedgewick (1998)), this close pairs search can be shown to be
very efficient. Given this set of candidate interactions, we can check for
each (j, k) ∈ C whether we have YT (Xj ◦Xk)/n > γ. The process can
be repeated L times with different random projections, and one would
hope that given enough repetitions, any given strong interaction would
be present in one of the candidate sets E1, . . . , EL with high probability.
This approach is summarised in Algorithm 1 which we term the general
form of the xyz algorithm. A schematic overview is given in Figure 2.1.

There are several parameters that must be selected, and a key choice to be
made is the form of the random projection R. For the joint distribution
G of R we consider the following general class of distributions, which

32 Chapter 2: Fast interaction search in high-dimensional data

Algorithm 1 A general form of the xyz algorithm.

Input: X ∈ {−1, 1}n×p, Y ∈ {−1, 1}n
Parameters: ξ = (G,L, τ, γ). HereG is the joint distribution for the
projection vector R, L is the number of projections, and τ and γ are
the thresholds for close pairs and interactions strength respectively.
Output: I set of strong interactions.

1: Form Z via Zij = YiXij and set I := ∅.
2: for l ∈ {1, . . . , L} do
3: Draw random vector R ∈ Rn with distribution G and project the

data using R, to form

x = XTR and z = ZTR.

4: Find all pairs El for which (j, k) such that |xj − zk| ≤ τ
5: Add to I those pairs in El for which |XT

j Zk|/n > γ.
6: end for

includes both dense and sparse projections. We sample a random or
deterministic number M of indices from the set {1, . . . , n}, i1, . . . , iM ,
either with or without replacement. Then, given a distribution F ∈ F
where F is a class of distributions to be specified later, we form a vector
D ∈ RM with independent components each distributed according to F .
We then define the random projection vector R by

Ri =

M∑
m=1

Dm1{im=i}, i = 1, . . . , n. (2.6)

Each configuration of the xyz algorithm is characterised by fixing the
following parameters:

(i) G, a distribution for the projection vector R which is determined
through (2.6) by F ∈ F , a distribution for the subsample size M
and whether sampling is with replacement or not;

(ii) L ∈ N, the number of projection steps;

(iii) τ ≥ 0, the close pairs threshold;

(iv) γ ∈ (0, 1), the interaction strength threshold.

2.2 The xyz algorithm for binary data 33

We will denote the collection of all possible parameter levels by Ξ. This
includes the following subclasses of interest. Fix F ∈ F .

(a) Dense projections. Let R ∈ Rn have independent components
distributed according to F and denote the distribution of R by G.
This falls within our general framework above with M set to n and
sampling without replacement. Let

Ξdense := {ξ ∈ Ξ with joint distribution equal to G}.

(b) Subsampling. Let Gsubsample be the set of distributions for R ob-
tained through (2.6) when subsampling with replacement. Let +

Ξsubsample := {ξ ∈ Ξ : joint distribution G ∈ Gsubsample}.

(c) Minimal subsampling. Let Ξminimal be the set of all parameters
in Ξsubsample such that the close pairs threshold is τ = 0 and M takes
randomly values in the set {m,m+ 1} for some positive integer m.

Ξminimal := {ξ ∈ Ξsubsample with τ = 0 and M ∈ {m,m+1} for some m ∈ N}.

Note that we have suppressed the dependence of the classes above on
the fixed distribution F ∈ F for notational simplicity. We define F to
be the set of all univariate absolutely continuous and symmetric distri-
butions with bounded density and finite third moment. The restriction
to continuous distributions in F ensures that Ξminimal is invariant to the
choice of F : when τ ≡ 0, every F ∈ F with L ∈ N and the distribu-
tion for M fixed yields the same algorithm. Moreover the set of close
pairs in Cl is simply the set of pairs (j, k) that have Ximj = Zimk for all
m = 1, . . . ,M , that is the set of pairs that are equal on the subsampled
rows. We note that the symmetry and boundedness of the densities in
F and finiteness of the third moment are mainly technical conditions
necessary for the theoretical developments in the following section. We
will assume without loss of generality that the second moment is equal to
1. This condition places no additional restriction on Ξ since a different
second moment may be absorbed into the choice of τ .

Minimal subsampling represents a very small subset of the much larger
class of randomised algorithms outlined above. However, Theorem 2.2.1
below shows that minimal subsampling is essentially always at least as
good as any algorithm from the wider class, which is perhaps surprising.

34 Chapter 2: Fast interaction search in high-dimensional data

a.) b.) c.)

Figure 2.1: Illustration of the general xyz algorithm. The strongest interaction is
the pair (1, 2) and p = 4. Panel a.) illustrates the interaction search among Y
and Xj ◦ Xk, panel b.) shows the closest pair problem after the transformation
Zij = XijYi and panel c.) depicts the closest pair problem after the data has been
projected. These are the three main steps in the xyz algorithm.

A beneficial consequence of this result is that we only need to search
for the optimal ways of selecting M and L; the threshold τ is fixed at
τ = 0 and the choice of the continuous distribution F is inconsequen-
tial for minimal subsampling. The choices we give in Section 2.2.2 yield
a subquadratic run time that approaches linear in p when the interac-
tions to be discovered are much stronger than the bulk of the remaining
interactions.

2.2.1 Optimality of minimal subsampling

In this section, we compare the run time of the algorithms in ξ ∈ Ξdense,
Ξsubsample and Ξminimal that return strong interactions with high proba-
bility. Let (j∗, k∗) be the indices of a strongest interaction pair, that is
γj∗k∗ = maxj,k∈{1,...,p} γjk. We will consider algorithms ξ with γ set to
γj∗k∗ . Define the power of ξ ∈ Ξ as

Power(ξ) := Pξ((j∗, k∗) ∈ I).

For η ∈ (0, 1), let

Ξdense(η) = {ξ ∈ Ξdense : Power(ξ) ≥ η},

and define Ξsubsample(η) and Ξminimal(η) analogously. Note that these
classes depend on the underlying F ∈ F , which is considered to be fixed,
and moreover that we are fixing γ = γj∗k∗ . We consider an asymp-
totic regime where we have a sequence of response–predictor matrix pairs

2.2 The xyz algorithm for binary data 35

(Y(n),X(n)) ∈ Rn × Rn×pn . Write γ
(n)
jk for the corresponding interac-

tion strengths, and let γ
(n)
1 = maxj,k γ

(n)
jk . Let fγ(n) be the probability

mass function corresponding to drawing an element of γ(n) uniformly at
random. Note that fγ(n) has domain {0, 1/n, 2/n, . . . , 1}. We make the
following assumptions about the sequence of interaction strength matri-
ces γ(n).

(A1) There exists c0 such that |{(j, k) : γ
(n)
jk = γ

(n)
1 }| ≤ c0pn.

(A2) There exists γl > 0, γu < 1 such that γu ≥ γ(n)
1 ≥ γl for all n.

(A3) There exists ρ < 1 such that fγ(n) is non-increasing on [ργ
(n)
1 , γ

(n)
1)∩

{0, 1/n, . . . , 1}.

Assumption (A1) is rather weak: typically one would expect the maximal
strength interaction to be essentially unique, while (A1) requires that at
most of order pn interactions have maximal strength. (A2) requires the
maximal interaction strength to be bounded away from 0 and 1, which
is the region where complexity results for the search of interactions are
of interest. As mentioned earlier, if the maximal interaction strength
is 1, it will always be retained in the close-pair sets Cl, whilst if its
strength is too close to 0, then it is near impossible to distinguish it from
the remaining interactions. (A3) ensures a certain form of separation
between maximal strength interactions and the bulk of the interactions.

To aid readability, in the following we suppress the dependence of quan-
tities on n in the notation. Given X and Y, we may define T (ξ) as
the expected number of computational operations performed by the al-
gorithm corresponding to ξ. We have the following result.

Theorem 2.2.1. Given F ∈ F and η ∈ (0, 1), there exists n0 such that
for all n ≥ n0 we have

inf
ξ∈Ξminimal(η)

T (ξ) = inf
ξ∈Ξsubsample(η)

T (ξ), (2.7)

inf
ξ∈Ξminimal(η)

T (ξ)

np2
→ 0, (2.8)

and there exists c > 0 such that

inf
ξ∈Ξdense(η)

T (ξ)

np2
> c. (2.9)

36 Chapter 2: Fast interaction search in high-dimensional data

The theorem shows that the optimal run time is achieved when using min-
imal subsampling. The last point is surprising: setting R ∼ N (0, I) will
not improve the computational complexity over the brute-force approach
and dense Gaussian projections hence do not reduce the complexity of
the search.

2.2.2 The final version of xyz

The optimality properties of minimal subsampling presented in the pre-
vious section suggest the approach set out in Algorithm 2, which we will
refer to as the xyz algorithm. Here we are using a simplified version of

Algorithm 2 Final version of the xyz algorithm.

Input: X ∈ {−1, 1}n×p, Y ∈ {−1, 1}n, subsample size M , number
of projections L, threshold for interaction strength γ.
Output: I set of strong interactions.

1: Form Z via Zij = YiXij .
2: for l ∈ {1, . . . , L} do
3: Form R ∈ Rn as in (2.6) with distribution F = U [0, 1] and set

x = XTR, z = ZTR.
4: Find all pairs (j, k) such that xj = zk and store these in El.
5: Add to I those pairs in El for which |XT

j Zk|/n > γ.
6: end for

the minimal subsampling proposal given in the previous section where we
keep M fixed rather than allowing it to be random. The reason is that
the potential additional gain from allowing M to be any one of two con-
secutive numbers with certain probabilities is minimal but necessary for
Theorem 2.2.1 and so the simpler approach is preferable. We note that
the uniform distribution in line 3 may be replaced with any continuous
distribution to yield identical results.

To perform the equal pairs search in line 4, we sort the concatenation
(x, z) ∈ R2p to determine the unique elements of {x1, . . . , xp, z1, . . . , zp}.
At each of these locations, we can check if there are components from
both x and z lying there, and if so record their indices. This procedure,
which is illustrated in Figure 2.2, gives us the set of equal pairs E in
the form of a union of Cartesian products. The computational cost is
O(p log(p)). This complexity is driven by the cost of sorting whilst the
recording of indices is linear in p. We note, however, that looping through

2.2 The xyz algorithm for binary data 37

4
6

7 2 3
5
1 9 8

3 2
4

1 5 7 6
9

8

Figure 2.2: Illustration of an equal pairs search among components of x, z ∈ Rp

when p = 9. The horizontal locations of blue and green circles numbered j give xj
and zj respectively. Sorting of (x, z) allows traversal of the unique locations. At each
of these it is checked whether points of both colours are present, and if so, the indices
are recorded. Here the set of equal pairs ({3}×{4, 6})∪ ({5}×{2})∪ ({7, 9}×{1, 5})
would be returned.

the set of equal pairs in order to output a list of close pairs of the form
(j1, k1), . . . , (j|E|, k|E|) would incur an additional cost of the size of E,
though in typical usage we would have |E| = o(p). Readers familiar with
locality sensitive hashing (LSH) can find a short interpretation of equal
pairs search as an LSH-family in the appendix. In the next section, we
discuss in detail the impact of minimal subsampling on the complexity
of the xyz algorithm and the discovery probability it attains.

2.2.3 Computational and statistical properties of xyz

We have the following upper bound on the expected number of compu-
tational operations performed by xyz (Algorithm 2) when the subsample
size and number of repetitions are M and L:

C(M,L) := np
(i)

+ L{Mp
(ii)

+ p log(p)
(iii)

+ n Eξ(|E1|)
(iv)

}. (2.10)

The terms may be explained as follows: (i) construction of Z; (ii) mul-
tiplying M subsampled rows of X and Z by R ∈ Rn; (iii) finding the
equal pairs; (iv) checking whether the interactions exceed the interaction
strength threshold γ. Note we have omitted a constant factor from the
upper bound C(M,L). There is a lower bound only differing from (2.10)
in the equal pairs search term (iii), which is p instead of p log(p). It
will be shown that (iv) is the dominating term and therefore the upper
and lower bound are asymptotically equivalent, implying the bounds are
tight.

An interaction with strength γ is retained in E1 with probability γM .

38 Chapter 2: Fast interaction search in high-dimensional data

Hence it is present in the final set of interactions I with probability

η(M,L) = 1− (1− γM)L. (2.11)

The following result demonstrates how the xyz algorithm can be used
to find interactions whilst incurring only a subquadratic computational
cost.

Theorem 2.2.2. Let FΓ be the distribution function corresponding to
a random draw from the set of interaction strengths {γjk}j,k∈{1,...,p}.
Given an interaction strength threshold γ, let 1 − FΓ(γ) = c1/p. Define
γ0 = p−1/M and let c2 be defined by 1−FΓ(γ0) = c2p

log(γ)/ log(γ0)−1. We
assume that γ0 < γ. Finally given a discovery threshold η′ ∈ [1/2, 1) let
L be the minimal L′ such that η(M,L′) ≥ η′. Ignoring constant factors
we have

C(M,L) ≤ log{1/(1− η′)}(1 + c1 + c2)[{1 + 1/ log(γ−1
0)} log(p) + n]p1+log(γ)/ log(γ0)

If n � log(p) and γ0 is bounded away from 1 we see that the dominant
term in the above is

cnp1+log(γ)/ log(γ0), (2.12)

where c = log{1/(1 − η′)}(1 + c1 + c2). Typically we would expect γ
to be such that |{γjk : γjk > γ}| ∼ p as only the largest interactions
would be of interest: thus we may think of c1 as relatively small. If
M is such that γ0 is also larger than the bulk of the interactions, we
would also expect c2 to be small. Indeed, suppose that the proportion
of interactions whose strengths are larger than γ0 is 1 − FΓ(γ0) = c′1/p.
Then c2 = c′1/p

log(γ)/ log(γ0) < c′1. As a concrete example, if γ = 0.9 and
M is such that γ0 = 0.55, the exponent in (2.12) is around 1.17, which is
significantly smaller than the exponent of 2 that a brute-force approach
would incur; see also the examples in Section 2.5. Note also that when
γ = 1, the exponent is 1 for all γ0 < 1: if we are only interested in
interactions whose strength is as large as possible, we have a run time
that is linear in p.

It is interesting to compare our results here with the run times of ap-
proaches based on fast matrix multiplication. By computing XTZ we
may solve the interaction search problem (2.1). Naive matrix multipli-
cation would require O(np2) operations, but there are faster alternatives
when n = p. The fastest known algorithm (Williams, 2012) gives a theo-
retical run time of O(np1.37) when n = p. For xyz to achieve such a run

2.2 The xyz algorithm for binary data 39

time when γ0 = 0.55 for example, the target interaction strength would
have to be γ ≥ 0.81: a somewhat moderate interaction strength. For
γ > 0.81, xyz is strictly better; we also note that fast matrix multiplica-
tion algorithms tend to be unstable or lack a known implementation and
are therefore rarely used in practice. A further advantage is that the xyz
algorithm has an optimal memory usage of O(np).

We also note that whilst Theorem 2.2.2 concerns the the discovery of
any single interaction with strength at least γ, the run time required to
discover a fixed number interactions with strength at least γ would only
differ by a multiplicative constant. If we however want a guarantee of
discovering the p strongest pairs the bound in Theorem 2.2.2 would no
longer hold.

To minimise the run time in (2.12), we would like γ0 to be larger than
most of the interactions in order that c2 and hence c be small, yet a
smaller γ0 yields a more favourable exponent. Thus a careful choice of
M , on which γ0 depends, is required for xyz to enjoy good performance.
In the following we show that an optimal choice of M exists, and we
discuss how this M may be estimated based on the data.

Clearly if for some pair (M,L), we find another pair (M ′, L′) with η(M ′, L′) >
η(M,L) but C(M ′, L′) ≤ C(M,L), we should always use (M ′, L′) rather
than (M,L). It turns out that there is in fact an optimal choice of M
such that the parameter choice is not dominated by any others in this
fashion. Define

M∗ = arg min
M∈N

{
− 1

log(1− γM)

(
Mp+ p log(p) + n

∑
j,k

γMjk

)}
, (2.13)

where it is implicitly assumed that the minimiser is unique. This will
always be the case except for peculiar values of γ and γjk.

Proposition 2.2.3. Let L ∈ N . If (M ′, L′) ∈ N 2 has η(M ′, L′) ≥
η(M∗, L), then also C(M ′, L′) ≥ C(M∗, L) with the final inequality being
strict if M ′ 6= M∗ and M∗ is a unique minimiser.

Thus there is a unique Pareto optimal M . Although the definition of
M∗ involves the moments of FΓ, this can be estimated by sampling from
{γjk}. We can then numerically optimise a plugin version of the objective
to arrive at an approximately optimal M .

40 Chapter 2: Fast interaction search in high-dimensional data

2.3 Interaction search on continuous data

In the previous section we demonstrated how the xyz algorithm can be
used to efficiently solve the simplest form of interaction search (2.1) when
both X and Y are binary. In this section we show how small modifica-
tions to the basic algorithm can allow it to do the same when Y is
continuous, and also when X is continuous. We discuss the regression
setting in Section 2.4.

2.3.1 Continuous Y and binary X

We begin by considering the setting where X ∈ {−1, 1}n×p, but where we
now allow real-valued Y ∈ Rn. Without loss of generality, we will assume
‖Y‖1 = 1. The approach we take is motivated by the observation that
the inner product YT (Xj ◦Xk) can be interpreted as a weighted inner
product of Xj ◦Xk with the sign pattern of Y, using weights wi = |Yi|.
With this in mind, we modify xyz in the following way. We set Z to
be Zij = sign(Yi)Xij . Let i1, . . . , iM ∈ {1, . . . , n} be i.i.d. such that
P(is = i) = wi. Forming the projection vector R using (2.6), we then
find the probability of (j, k) being in the equal pairs set may be computed
as follows.

{P(RTXj = RTZk)}1/M = P(Xi1j = sign(Yi1)Xi1k)

=

n∑
i=1

P(Xi1j = sign(Yi1)Xi1k|i1 = i)P(i1 = i)

=

n∑
i=1

|Yi|1{Xij=sign(Yi)Xik}

=
∑

i:sign(Yi)=XijXik

YiXijXik =: γ̃jk,

where P here is with respect to the randomness of R (and, equivalently,
the random indices i1, . . . , iM) with Y and X considered fixed. The
calculation above shows that the run time bound of Theorem 2.2.2 con-
tinues to hold in the setting with continuous Y provided we replace the
interaction strengths γjk with their continuous analogues γ̃jk.

As a simple example, consider the model

Yi = Xi1Xi2 + εi,

2.3 Interaction search on continuous data 41

with εi ∼ N (0, σ2) and X generated randomly having each entry drawn
independently from {−1, 1} each with probability 1/2. Then for a non-
interacting pair j 6= 1, 2 or k 6= 1, 2, we have γ̃jk ≈ 0.5. For the pair
(1, 2) we calculate an interaction strength of

γ̃12 = P(sign(Yi1) = Xi11Xi12) = P(sign(Xi11Xi12 + εi) = Xi11Xi12)

= P(|εi| < 1) +
1

2
P(|εi| > 1) =

1

2
(1 + P(|εi| < 1)).

A quick simulation gives the following table:

σ2 0.1 0.25 0.5 1 2 5
γ̃12 0.99 0.98 0.92 0.84 0.76 0.67

Using Theorem 2.2.2 and the above table we can estimate the compu-
tational complexity needed to discover the pair (1, 2) given a value of
σ2.

2.3.2 Continuous Y and continuous X

The previous section demonstrated how resampling with non-uniform
weights transforms a setup with continuous Y into one with binary re-
sponse. If both X and Y are continuous, we continue to use the previous
strategy to deal with the continuous response. For the matrix X with
continuous predictor values we cannot use weighted resampling as the
weights would depend on the interaction pair of interest. In the following
we examine the effects of transformations of X to a binary data matrix
X̃. To allow for randomized mappings, we define the transformations via
a function g : R 7→ [0, 1] as

P(X̃ij = 1) = g(Xij) and 1− P(X̃ij = −1) = 1− g(Xij),

where the transformation is always applied independently for each entry
of the predictor matrix.

The following gives the probability of Yi agreeing in sign with X̃ijX̃ik

when i is sampled with probability proportional to |Yi|.

Proposition 2.3.1. Given the transform P(X̃ij = 1) = g(Xij) and sam-
pling an index is according to P(is = i) = Yi/‖Y‖1, then the probability

42 Chapter 2: Fast interaction search in high-dimensional data

of a match is

P(sign(Yis) = X̃isjX̃isk) =
1

2
+

1

2‖Y‖1

n∑
i=1

Yi(1− 2g(Xij))(1− 2g(Xik)).

(2.14)

Thus we may define a continuous analogue of the interaction strength
γjk based on the transform given by g as

γgjk =
1

2
+

1

2‖Y‖1

n∑
i=1

Yi(1− 2g(Xij))(1− 2g(Xik)).

These quantities may be substituted into Theorem 2.2.2 to yield the fol-
lowing upper bound on expected run time when using xyz on transformed
data.

Corollary 2.3.2. Let FΓg be the distribution function corresponding to
a random draw from the set of interaction strengths {γgjk}j,k∈{1,...,p}.
Given an interaction strength threshold γ, let 1− FΓg (γ) = c1/p. Define
γ0 = p−1/M and let c2 be defined by 1−FΓ(γ0) = c2p

log(γ)/ log(γ0)−1. We
assume that γ0 < γ. Finally given a discovery threshold η′ ∈ [1/2, 1) let
L be the minimal L′ such that η(M,L′) ≥ η′. Ignoring constant factors
we have

C(M,L)

≤ log{1/(1− η′)}(1 + c1 + c2)[{1 + 1/ log(γ−1
0)} log(p) + n]p1+log(γ)/ log(γ0)

The expected computational costs depends critically on the distribu-
tion of the interaction strengths FΓg . To gain a better understanding
of what impact different transformations have on this distribution and
subsequently on run time we will study the following simple model for
(Y,X) ∈ Rn × Rn×p:

Yi = Xij∗Xik∗ + εi, i = 1, . . . , n, (2.15)

where the εi are independent and have identical sub-exponential distri-
butions symmetric about 0 and the rows of X are i.i.d. We now introduce
two practically useful choices of g and study their properties in the con-
text of model (2.15).

2.3 Interaction search on continuous data 43

The unbiased transform

A natural choice for the transform g is one that satisfies the unbiasedness
requirement:

E(X̃ij) = Xij . (2.16)

It turns out that this requirement uniquely defines the transform, which
we refer to as the unbiased transform.

Proposition 2.3.3. Let Xij ∈ [−1, 1]. If its transformed version X̃ij

satisfies (2.16), then g takes the form

P(X̃ij = 1) = g(Xij) =
Xij + 1

2
.

Furthermore the interaction strength in (2.14) is given by

P(sign(Yis) = X̃isjX̃isk) = γgjk =
1

2
+

1

2‖Y‖1

n∑
i=1

YiXijXik.

Proposition 2.3.3 shows that γgjk is a monotone function of the inner
product

n∑
i=1

YiXijXik

We remark that if the entries of X do not lie in [−1, 1], we may divide
each entry in the ith row by νi := maxj |Xij |, and multiply Yi by ν2

i , for
each i. Proposition 2.3.3 will then hold for the scaled versions of Y and
X. In order to describe the performance of the unbiased transform when
applied to data generated by the model (2.15), we define the following
quantities:

E(|Xij∗Xik∗ |) = m1, E(X2
ij∗X

2
ik∗) = m2 and E(|εi|) = mε.

We consider an asymptotic regime where p = pn may diverge as n tends
to infinity, though we suppress this in the notation. We introduce the
following assumptions.

(B1) m2(ru− 1) ≤ E(Xij∗Xik∗XijXik) ≤ m2(1− ru), for ru ∈ (0, 1) and
∀ j, k ∈ {1, . . . , p}2.

(B2) The noise level satisfies the bound

1

1− ru
> 1 +

mε

m1
.

44 Chapter 2: Fast interaction search in high-dimensional data

(B3) Let p be such that be such that

log(n) log(p)

n

n→∞→ 0.

(B1) ensures non-interactions are not too strongly correlated to the ac-
tual interaction pair (j∗, k∗). Note that (B3) allows for high-dimensional
settings with p� n.

Theorem 2.3.4. Assume all entries of X have mean zero and lie in
[−1, 1] almost surely. Further assume (B1)–(B3) hold. When M and L
are as in Corollary 2.3.2 and the unbiased transform is used, we have

C(M,L) = oP

(
np

1+δ+
log(1/2+m2/2(m1+mε))

log(1/2+m2(1−ru)/2m1)

)
for any δ > 0. Here P is with respect to the randomness in X and ε.

Though the run time above can often improve significantly on the worst-
case quadratic run time, observe that unlike in the binary case, if there is
no noise and Yi = Xij∗Xik∗ , we do not necessarily have a run time close

to linear in p. For example, when Xij
iid∼ Uniform(−1, 1), the interaction

strength of the true interaction can be shown to equal to

γgj∗k∗ =
1

2
+

∑n
i=1 YiXij∗Xik∗

2‖Y‖1
=

1

2
+
‖Y‖22
2‖Y‖1

n→∞
=

13

18
.

Substituting this into the run time given by Theorem 2.2.2, this would
result in an expected complexity of roughly O(np1.47); this is still sub-
stantially smaller than a quadratic run time, but raises the question as
to whether such a loss in speed is avoidable.

Additionally, if X has several outlying entries, normalising the design
matrix by scaling by the row-wise maximums can shrink γgj∗k∗ towards
1/2. To limit the impact of this normalisation, we can first cap the en-
tries of X so their absolute value is bounded by some c > 0. Though
the resulting interaction strength will not have the form given in Propo-
sition 2.3.3, it may better discriminate between interactions of interest
and noise.

Capping with c = 1 is closely related to applying the sign transform,
which we study next.

2.3 Interaction search on continuous data 45

The sign transform

We now consider the sign transform given by X̃ij = sign(Xij); if there
are zero cases we use a coin toss to map them to {−1, 1}. For the sign
transform we have g(Xij) = 2sign(Xij)−1 and so the interaction strength
is given as:

P(sign(Yis) = X̃isjX̃isk) = γgjk =
1

2
+

1

2‖Y‖1

n∑
i=1

Yisign(Xij)sign(Xik).

The sign transform recovers the close to linear run time achieved in the
binary case when a interaction is perfect as now if Yi = Xij∗Xik∗ , we
have γgj∗k∗ = 1. Also the sign transform is not adversely affected by the
presence of outlying entries in X, and for our theory we can relax the
assumption that the entries of X are in [−1, 1] to here only requiring that
they have a subexponential distribution. To facilitate comparison with
the unbiased transform, we impose assumptions analogous to (B1)–(B3):

(C1) rs/2 ≤ P(Xij < 0|Xik, Xij∗ , Xik∗) ≤ 1 − rs/2, for rs ∈ (0, 1) and
∀ j, k ∈ {1, ..., p}2.

(C2) The noise level satisfies

1

1− rs
> 1 +

mε

m1
.

(C3) Let p be such that

log(p)5

n

n→∞→ 0.

Theorem 2.3.5. Suppose that each entry of X has a mean-zero subex-
ponential distribution. Further assume (C1)–(C3). When M and L are
as in Corollary 2.3.2 and the sign transform is used, we have

C(M,L) = oP

(
np1+δ+

log(1/2+m1/2(m1+mε))

log(1−rs)

)
for any δ > 0. Here P is with respect to the randomness in X and ε.

Both transforms yield a run time of the form oP(npα). Comparing the
exponents α we have:

46 Chapter 2: Fast interaction search in high-dimensional data

unbiased transform:

αu = 1 +
log(1/2 +m2/2(m1 +mε))

log(1/2 +m2(1− ru)/2m1)

sign transform:

αs = 1 +
log(1/2 +m1/2(m1 +mε))

log(1/2 + (1− rs)/2)
.

For bounded data X ∈ [−1, 1]n×p and whenmε � m1, we havem1/2(m1+
mε) ≈ 1/2 so that αs = 1 whereas αu > 1. Hence in case of a strong
signal the sign transform can give a smaller run time than the unbiased
transform.

2.4 Application to Lasso regression

Thus far we have only considered the simple version of the interaction
search problem (2.1) involving finding pairs of variables whose interaction
has a large dot product with Y. In this section we show how any solution
to this, and in particular the xyz algorithm, may be used to fit the Lasso
(Tibshirani, 1996) to all main effects and pairwise interactions in an
efficient fashion.

Given a response Y ∈ Rn and a matrix of predictors X ∈ Rn×p, let
W ∈ Rn×p(p+1)/2 be the matrix of interactions defined by

W = (X1 ◦X1,X1 ◦X2, · · · ,X1 ◦Xp,X2 ◦X2,X2 ◦X3, · · · ,Xp ◦Xp).

We will assume that Y and the columns of X have been centred. Note
that the centring of X means the W implicitly contains main effects
terms. Let W̃ be a version of W with centred columns. Consider the
Lasso objective function

(β̂, θ̂) = argmin
β∈Rp,θ∈Rp(p+1)/2

{
1

2n
‖Y −Xβ − W̃θ‖22 + λ(‖β‖1 + ‖θ‖1)

}
.

(2.17)
Note that since the entire design matrix in the above is column-centred,
any intercept term would always be zero.

In order to avoid a cost of O(np2) it is necessary to avoid explicitly
computing W. To describe our approach, we first review in Algorithm 3

2.4 Application to Lasso regression 47

the active set strategy employed by several of the fastest Lasso solvers
such as glmnet (Friedman et al., 2010). We use the notation that for
a matrix M and a set of column indices H, MH is the submatrix of
M formed from those columns indexed by H. Similarly for a vector v
and component indices H, vH is the subvector of v formed from the
components of v indexed by H.

Algorithm 3 Active set strategy for Lasso computation

Input: X, Y and grid of λ values λ1 > · · · > λL.
Output: Lasso solutions β̂λl and θ̂λl at each λ on the grid.

1: for l ∈ {1, . . . , L} do

2: If l = 1 set A,B = ∅; otherwise set A = {k : β̂λl−1,k 6= 0} and

B = {k : θ̂λl−1,k 6= 0}.
3: Compute the Lasso solution (β̂, θ̂) when λ = λl under the addi-

tional constraint that β̂Ac = 0 and θ̂Bc = 0.
4: Let U = {k : |XT

k (Y − XAβ̂A − W̃Bθ̂B)|/n > λl} and V =

{k : |W̃T
k (Y −XAβ̂A − W̃Bθ̂B)|/n > λl} be the set of coordinates

that violate the KKT conditions when (β̂, θ̂) is taken as a candidate
solution.

5: If U and V are empty, we set β̂λl = β̂, θ̂λl = θ̂. Else we update
A = A ∪ U and B = B ∪ V and return to line 3.

6: end for

As the sets A and B would be small, computation of the Lasso solution
in line 3 is not too expensive. Instead line 4, which performs a check of
the Karush–Kuhn–Tucker (KKT) conditions involving dot products of
all interaction terms and the residuals, is the computational bottleneck:
a naive approach would incur a cost of O(np2) at this stage.

There is however a clear similarity between the KKT conditions check for
the interactions and the simple interaction search problem (2.1). Indeed
the computation of V , the set containing all interactions that violate the
KKT conditions, may be expressed in the following way:

Keep all pairs (j, k) for which |(Y −XAβ̂A − W̃Bθ̂B)T (Xj ◦Xk)/n| > λl.
(2.18)

Note that since Y −XAβ̂A − W̃Bθ̂B is necessarily centered, there is no
need to center the interactions in (2.18). In order to solve (2.18) we can
use the xyz algorithm, setting γ in Algorithm 2 to λl and Y to each of
±(Y −XAβ̂A − W̃Bθ̂B) in turn.

48 Chapter 2: Fast interaction search in high-dimensional data

Precisely the same strategy of performing KKT condition checks using
xyz can be used to accelerate computation for interaction modeling for a
variety of variants of the Lasso such as the elastic net (Zou and Hastie,
2005) and `1-penalised generalised linear models. Note also that it is
straightforward to use a different scaling for the penalty on the interac-
tion coefficients in (2.17), which may be helpful in practice.

2.5 Experiments

To test the algorithm and theory developed in the previous sections, we
run a sequence of experiments on real and simulated data.

2.5.1 Comparison of minimal subsampling and dense
projections

One of the surprising outcomes of our theoretical analysis is extent of
the suboptimality of Gaussian random projections, which whilst they
suffice for the conclusion of the Johnson–Lindenstrauss Lemma, are not
well-suited for our purposes here (see Theorem 2.2.1). We can explicitly
compute the probability of retaining an interaction of strength γ in E1

for both dense Gaussian projections ξGauss and minimal subsampling
ξminimal given an equal computational budget. We consider various val-
ues of p ranging from 10 up to 106 and we fix n = 1000. We set L = 1
and select other parameters of the algorithms to ensure the average size
of E1 is equal to p in the setting when all interaction strengths are equal
to 0.5. Specifically we make the following choices.

• ξGauss: the close pairs threshold τ ≥ 0 is the 1/p–quantile of the
distribution of |W | when W ∼ N(0, 0.5n).

• ξminimal: the subsample size M = dlog(1/p)/ log(0.5)e.

We then plot the probability η of discovering an interaction of strength
γ, as a function of γ for different values of p (Figure 2.3). For ξminimal,
η is given in equation (2.11). For ξGauss, η is the 1/p–quantile of the
distribution of |W | when W ∼ N(0, n(1− γ)).

2.5 Experiments 49

2.5.2 Scaling

In this experiment we test how the xyz algorithm scales on a simple test
example as we increase the dimension p. We generate data X ∈ Rn×p
with each entry sampled independently uniformly from {−1, 1}. We do
this for different values of p, ranging from 1000 to 30 000: this way for the
largest p considered there are more than 400 million possible interactions.
Then for each X we construct response vectors Y such that only the pair
(1, 2) is a strong interaction with an interaction strength taking values
in {0.7, 0.8, 0.9}. Through this construction, if n is large enough, all the
pairs except (1, 2) will have an interaction strength around 0.5, and very
few will have one above 0.55. We thus set M so that γ0 = p−1/M ≈ 0.55.
Since the only strong interaction is (1, 2), we set γ = γ12 Each data
set configuration determined by p and γ12 is simulated 300 times and
we measure the time it takes xyz to find the pair (1, 2). In Figure 2.3
we plot the average run time against the dimension p with the different
choices for γ12 highlighted in different colours.

Theorem 2.2.2 indicates that the run time should be of the order np1+log(γ)/ log(γ0).
We see that the experimental results here are in close agreement with
this prediction.

interaction strength γ

di
sc

ov
er

y
pr

ob
ab

ili
ty

 η

0.5 0.6 0.7 0.8 0.9 1

1e
−

6
1e

−
4

1e
−

2

dimension p

tim
e

in
 s

ec
on

ds

●

●

●

●

●

●

●

1e3 5e3 1e4 3e4

0.
1

1
10

50

Figure 2.3: Left panel: Discovery probability as a function of γ for different values of
p ∈ {101, . . . , 106} (colours decreasing in p from yellow p = 106 to green p = 10). The
lower lines correspond to the dense Gaussian projections, the upper lines to minimal
subsampling. It can be seen that the discovery probability for minimal subsampling
is much higher (up to factor 104) than for Gaussian projections. Right panel: Time
to discover the interaction pair as a function of the data set dimension p. Lines
correspond to the theoretical prediction and symbols give the actual measured run
time. Colour coding: green γ = 0.7, orange γ = 0.8 and purple γ = 0.9.

50 Chapter 2: Fast interaction search in high-dimensional data

2.5.3 Run on SNP data

In the next experiment we compare the performance of xyz to its closest
competitors on a real data set. For each method we measure the time
it takes to discover strong interactions. We consider the LURIC data
set (Winkelmann et al., 2001), which contains data of patients that were
hospitalised for coronary angiography. We use a preprocessed version
of the data set that is made up of n = 859 observations and 687 253
predictors. The data set is binary. The response Y indicates coronary
disease (1 corresponding to affected and −1 healthy) and X contains
Single Nucleotide Polymorphisms (SNPs) which are variations of base-
pairs on DNA. The response vector Y is strongly unbalanced: there are
681 affected cases (Yi = 1) and 178 unaffected (Yi = −1). For a fair
comparison among the classes −1 and 1 we generate a subsample of the
data set with equal class distributions. We repeat the subsampling a
few times and pick the interactions that consistently appear over many
subsamples.

To get a contrast of the performance of xyz we compare it to epiq (Arkin
et al., 2014), another method for fast high-dimensional interaction search.
In order for epiq to detect interactions it needs to assume the model

Yi = αj∗k∗Xij∗Xik∗ + εi, (2.19)

where εi ∼ N (0, σ2). It then searches for interactions by considering the
test statistics

Tjk = (RT (Y ◦Xj))(R
TXk)

where R ∼ N (0, I). These are used to try to find the pair (j∗, k∗), which
is assumed to be the pair for which the inner product YT (Xj ◦Xk) is
maximal. It is an easy calculation to show that E(Tjk) = YT (Xj ◦Xk).
To maximise the inner product on the right, epiq considers pairs where
T 2
jk is large by looking at pairs where both (RT (Y ◦Xj))

2 and (RTXk)2

are large. While the approach of epiq is somewhat related to xyz, there
are no bounds available for the time it takes to find strong interactions.

We also compare both methods to a naive approach where we subsam-
ple a fixed number of interactions uniformly at random, and retain the
strongest one. We refer to this as naive search.

At fixed time intervals we check for the strongest interaction found so far
with all three methods. We plot the interaction strength as a function
of the computational time (Figure 2.4). All three methods eventually

2.5 Experiments 51

discover interactions of very similar strength and it would be a hasty
judgement to say whether one significantly outperforms the others. xyz
nevertheless discovers the strongest interactions on average for a fixed
run time compared to the other two approaches. To get a clearer picture
we run two additional experiments on a slight modification of the LURIC
data set. We implant artificial interactions where we set the strength to
γ12 = 0.8 and another example with γ12 = 0.9. In these two experiments
xyz clearly outperforms all other methods considered (Figure 2.4; panels
3 and 4). Besides xyz being the fastest at interaction search, it also
offers a probabilistic guarantee that there are no strong interactions left
in the data. This guarantee comes out of Theorem 2.2.2. To run xyz we
have to calculate the optimal subsample size (2.13) for use of minimal
subsampling:

M∗ = arg min
M∈N

{
− 1

log(1− γM)

(
Mp+ p log(p) + n

∑
j,k

γMjk

)}
= 21.

The sum in this optimisation can be approximated by uniformly sampling
over pairs. Assume we have an interaction pair (j∗, k∗) with interaction
strength γj∗k∗ = 0.85 and say the rest of the pairs (j, k) have an in-
teraction strength of no more than γjk ≤ 0.55. The probability that
we discover this pair in one run (L = 1) of the xyz algorithm is γ21

j∗k∗ .
Therefore the probability of missing this pair after L = 100 runs is given
by

(1− γ21
j∗k∗)

L ≈ 0.03.

Note that the number of possible interactions is p(p− 1)/2 ≈ 1011. The
whole search took 280 seconds. Naive search offers a similar guarantee,
however it is extremely weak. The probability of not discovering the pair
after drawing pL samples (with L = 100) is bounded by [1 − 2/{p(p −
1)}]Lp ≈ 0.999. If we consider the run time guarantee from Theorem
2.2.2, the dominating term in the complexity of xyz in terms of p is

p1+
log(0.85)
log(0.55) ≈ p1.27.

This may be compared to the expected run time of order p2 for naive
search, which means that xyz is about 30 000 times faster than naive
search (when p = 687 253). In the empirical comparison this factor is
around 20 000.

52 Chapter 2: Fast interaction search in high-dimensional data

interaction strength

0.35 0.45 0.55

0
20

00
40

00
60

00

● ● ● ● ● ●

time

in
te

ra
ct

io
n

st
re

ng
th

● ● ● ● ● ●
● ● ● ● ● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1
10 50 200

●
●

●

●
●

●

time

● ● ● ● ● ●

● ● ● ● ● ●

10 50 200

●

● ● ● ● ●

time

●
●

●
●

●
●

● ● ● ● ● ●

10 50 200

Figure 2.4: Left: Histogram of interaction strength of 106 interaction pairs, sampled
at random from the more than 1011 existing pairs from the LURIC data set. The
right three panels show the interaction strength of the discovered pairs as a function
of the computation time for xyz (green), epiq (orange) and naive search (purple).
The first panel gives results on the the original LURIC data set, and the second and
third (rightmost) panels show results with an implanted interaction with strengths
γ12 = 0.8 and γ12 = 0.95 respectively. It can be clearly seen that xyz outperforms its
competitors by a large margin.

2.5.4 Regression on artificial data

In this section we demonstrate the capabilities of xyz in interaction search
for continuous data as explained in Section 2.3. We simulate two different
models of the form (2.15):

Yi = µ+

p∑
j=1

Xijβj +

p∑
k=1

k−1∑
j=1

XijXikθjk + εi.

We consider three settings. For all three settings we have n = 1000. We
let p ∈ {250, 500, 750,
1000}. Each row of X is generated i.i.d. as N (0,Σ). The magnitudes
of both the main and interaction effects are chosen uniformly from the
interval [2, 6] (20 main effects and 10 interaction effects) and we set εi ∼
N (0, 1). The three settings we consider are as follows.

1. Σ = I ∈ Rp×p, we generate a hierarchical model: θjk 6= 0 ⇒
βj 6= 0 and βk 6= 0. We first sample the main effects and then pick
interaction effects uniformly from the pairs of main effects.

2. Σ = I ∈ Rp×p, we generate a strictly non-hierarchical model: θjk 6=
0 ⇒ βj = 0 and βk = 0. We first sample the main effects and

2.5 Experiments 53

then pick interaction effects uniformly from all pairs excluding main
effects as coordinates.

3. We repeat the setting 2 with a data set that contains strong corre-
lations. We create a dependence structure in X, by first generating
a DAG with on average 10 edges per node. Each node is sampled
so that it is a linear function of its parents plus some indepen-
dent centred Gaussian noise, with a variance of 10% the variance
coming from the direct parents. The resulting correlation matrix
then unveils for each variable Xj a substantial number of variables
strongly correlated to Xj (There is usually around 10 variables
with a correlation of above 0.9). Such a correlation structure will
make it easier to detect pairs of variables whose product can serve
as strong predictor of Y, even though it has not been included in
the construction of Y.

We run three different procedures to estimate the main and interaction
effects.

• Two-stage Lasso: We fit the Lasso to the data, and then run
the Lasso once more on an augmented design matrix containing
interactions between all selected main effects. Complexity analy-
sis of the Least Angle Regression (LARS) algorithm (Efron et al.,
2004) suggests the computational cost would be O(npmin(n, p)),
making the procedure very efficient. However, as the results show,
it struggles in situations such as that given by model 2, where a
main effects regression will fail to select variables involved in strong
interactions.

• Lasso with all interactions: Building the full interaction ma-
trix and computing the standard Lasso on this augmented data
matrix. Analysis of the LARS algorithm would suggest the compu-
tational complexity would be in the order O(np2 min(n, p2)). Nev-
ertheless, for small p, this approach is feasible.

• xyz: This is Algorithm 3; we set the parameter L to be
√
p in

order to target the strong interactions.

The experiment (seen in Figure 2.5) shows that xyz enjoys the favourable
properties of both its competitors: it is as fast as the two-stage Lasso
that gives an almost linear run time in p, and it is about as accurate as
the estimator calculated from screening all pairs (brute-force).

54 Chapter 2: Fast interaction search in high-dimensional data

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

no
rm

al
iz

ed
 p

re
di

ct
io

n
er

ro
r

0.01 0.1 1 10 100

●●
●●

●
●

●●
●

●

●
●

●

●●

●

●
●●●

time

0.01 0.1 1 10 100

●●
● ●

●

●

●

●
●
●

●

●
●● ●

●

●
●

●

●

time

0.01 0.1 1 10 100

●

●

●●

●

●●

●

●
●

●

●

●● ●

●

●●
●

●

time

Figure 2.5: Normalised `22 prediction error as a function of time in seconds. Triangle:
Two-stage Lasso. Circle: xyz -regression. Cross: Brute-force. The different colours
correspond to different values of p: green p = 250, orange p = 500, purple p = 750
and pink p = 1000. The left panel shows the results on setting 1, center panel shows
setting 2 and right panel setting 3.

2.5.5 Regression on real data

Here we run xyz regression on continuous real data sets where the ground
truth is unknown. On each data set we pick at random p = 2000 variables
and run xyz and the Lasso implemented in glmnet with all interactions
included. We subsample an increasing number of variables to vary the
difficulty of the regression problem. For each sample we measure the run
time and the normalized out of sample squared `22 error:

‖Ytest −Xtestβ̂ − W̃testθ̂‖22
‖Ytest‖22

.

Experiments are run on the following three different data sets:

• Riboflavin: The Riboflavin production data set (Bühlmann et
al., 2014) contains n = 71 samples and p = 4088 predictors (gene-
expressions). The response Y and the design X are both continu-
ous.

• Kemmeren: The Kemmeren (Kemmeren and al., 2014) data set
records knockouts of p = 6170 genes. The data X is continuous. We
sample Y randomly from the genes not present in the subsample
taken from X.

• Climate: The climate data set from the CNRM model from
the CMIP5 model ensemble (Knutti et al., 2013) simulates the

2.6 Discussion 55

temperature of points on the northern hemisphere which is recorded
in X. The response Y simulates the temperature on a random
position on the southern hemisphere. The data contains n = 231
observations.

−2 −1 0 1 2

0.
15

0.
25

0.
35

0.
45

time

no
rm

al
iz

ed
 m

ea
n

sq
ua

re
d

er
ro

r

−2 −1 0 1 2

0.
15

0.
25

0.
35

0.
45

time

−2 −1 0 1 2

0.
15

0.
25

0.
35

0.
45

time

Figure 2.6: From left to right column the experiments correspond to Riboflavin,
Kemmeren and Climate. The y-axis depicts the normalized squared error and the
x-axis records the run time in seconds on the log10 scale. It can be seen that xyz
(purple) offers clear computational advantages while giving similar level of prediction
error to the Lasso fitted to all interactions as implemented in glmnet (green).

For each experiment we fix the number of runs L to
√
p so the run time

of xyz is O(np1.5). The experiments show that the xyz algorithm has
a similar prediction performance to the Lasso applied to all interactions
as implemented in glmnet. However xyz is around 100 times faster for
p = 2000. The results of all 6 experiments can be seen in Figure 2.6.

2.6 Discussion

In this work we exploited a relationship between closest pairs of point
problems and interaction search. By solving the former problem using
random projections to project points down to a one-dimensional space
and then sorting the resulting projected points, we were able to pro-
duce an algorithm for interaction search that enjoys a run time that is
sub quadratic under mild assumptions and when used to search for very
strong interactions can be almost linear. Though we have looked at in-
teraction search in this paper, the basic engine for computing the large
inner products between collections of vectors may have other interesting
applications, for example in large-scale clustering problems. We hope to
study such applications in future work.

56 Chapter 2: Fast interaction search in high-dimensional data

2.7 Appendix

Table 2.1: Table of frequently used notation

n, p number of samples and number of variables
X,Y predictor matrix and response vector

Xj j-th variable/columns of X
β,θ coefficients of main effects and interaction effects
γjk interaction strength of the pair (j, k)
G distribution of projection
M subsample size
R projection vector
L number of projections, repetitions of the xyz algorithm

τ, γ close pairs threshold and interaction strength threshold
Ξ set of all configurations of the xyz algorithm, the elements of this

set are denoted by ξ
η probability that interaction is present in the output of the xyz

algorithm

X̃ binarized version of X
W predictor matrix containing all possible interaction pairs

Appendix A.

Here we include proofs that were omitted earlier.

Proof of Theorem 2.2.1

In the following, we fix the following notation for convenience:

Ψ = Ξminimal, Ψ(η) = Ξminimal(η),

Ξ = Ξsubsample, Ξ(η) = Ξsubsample(η).

Note that both Ψ(η) and Ξ(η) depend on F though this is suppressed in
the notation. Also define Ξall = Ξ∪Ξdense and Ξall(η) = Ξ(η)∪Ξdense(η).

2.7 Appendix 57

We will reference the parameters levels contained in ξ ∈ Ξall as ξL and
ξτ . If ξ ∈ Ξ then we will write ξM for the distribution of the subsample
size M .

If we let V denote the complexity of the search for τ -close pairs, similarly
to (2.10) we have that

T (ξ) = c1np+ L(c2 EξMp+ Eξ V + c3n Eξ |E1|), (2.20)

where c1, c2, c3 are constants. Suppose ψ ∈ Ψ and ξ ∈ Ξ have Eξ |E1| =
Eψ |E1|. Then since searching for τ -close pairs is at least as computa-
tionally difficult as finding equal pairs we know that Eξ V ≥ Eψ V .

Similarly for ξ ∈ Ξdense we have

T (ξ) = c1np+ L(c2np+ Eξ V + c3n Eξ |E1|). (2.21)

For ξ ∈ Ξall, define

α(ξ) = Eξ |E1|/p2, β(ξ) = Pξ((j∗, k∗) ∈ I1)

where I1 is the set of candidate interactions I when L = 1. Note that

Pξ((j∗, k∗) ∈ I) = 1− {1− β(ξ)}ξL .

Thus any ξ ∈ Ξall(η) with T (ξ) minimal must have ξL as the smallest L
such that 1− {1− β(ξ)}ξL ≥ η, whence

ξL = dlog(1− η)/ log{1− β(ξ)}e . (2.22)

Note that β(ξ) does not depend on ξL, so the above equation completely
determines the optimal choice of L once other parameters have been
fixed. We will therefore henceforth assume that L has been chosen this
way so that the discovery probability of all the algorithms is at least η.

The proofs of (2.8) and (2.9) are contained in Lemmas 2.7.4 and 2.7.5
respectively. The proof of (2.7) is more involved and proceeds by estab-
lishing a Neyman–Pearson type lemma (Lemmas 2.7.2 and 2.7.3) showing
that given a constraint on the ‘size’ α that is sufficiently small, minimal
subsampling enjoys maximal ‘power’ β. To complete the argument, we
show that any sequence of algorithms with size α remaining constant as
p → ∞ cannot have a subquadratic complexity, whilst Lemma 2.7.4 at-
tests that in contrast minimal subsampling does have subquadratic com-
plexity under the assumptions of the theorem. Several auxiliary technical
lemmas are collected in Section 2.7

58 Chapter 2: Fast interaction search in high-dimensional data

Our proofs Lemmas 2.7.2 and 2.7.3 make use of the following bound
on a quantity related to the ratio of the size to the power of minimal
subsampling.

Lemma 2.7.1. Suppose ψ ∈ Ψ has distribution for M placing mass on
M and M + 1. Under the assumptions of Theorem 2.2.1,

α(ψ)

γM1
≤ 2

1− ρ
1

M + 1
.

Proof. We have

α(ψ)

γM1
≤ 1

p2

∑
j,k

(γjk/γ1)M ≤ c0
p

+

nγ1−1∑
i=0

(i

nγ1

)M
fn(i/n).

Now the sum on the RHS is maximised over fn obeying constraints (A1)
and (A2) in the following way. If ργ1n > γ1n − 1 then fn places all
available mass on γ1 − 1/n. Otherwise fn should be as close to constant
as possible on dργ1ne /n, . . . , (γ1n− 1)/n, and zero below dργ1ne /n. In
both cases it can be seen that

nγ1−1∑
i=0

(i

nγ1

)M
fn(i/n) ≤ 2

1− ρ

∫ 1

(1+ρ)/2

xMdx ≤ 2

1− ρ
1

M + 1
.

The following Neyman–Pearson-type lemma considers only non-randomised
algorithms in Ξ. In Lemma 2.7.3 we extend this result to randomised
algorithms.

Lemma 2.7.2. Let Ξ0 be the set of ξ ∈ Ξ such that ξM places mass only
on a single M , so the subsample size is not randomised. There exists an
α0 independent of n such that for all α′ ≤ α0, we have

sup
ψ∈Ψ:α(ψ)≤α′

β(ψ) = sup
ξ∈Ξ0:α(ξ)≤α′

β(ξ).

Moreover the suprema are achieved.

Proof. Each ξ ∈ Ξ0 is parametrised by its close pairs threshold τ and
subsample size M . Given a ξ ∈ Ξ0 with parameter values τ and M
we compute α(ξ) as follows. Note that by replacing the threshold τ by

2.7 Appendix 59

τ/2, we may assume that X and Z have entries in {−1/2, 1/2}. Thus
Xj−Zk has components in {−1, 0, 1}. Let Jjk be the number of non-zero
components of (Ximj−Zimk)Mm=1. Then Jjk ∼ Binom(M, 1−γjk). Thus

P
(∣∣∣∣∣

M∑
m=1

Dm(Ximj − Zimk)

∣∣∣∣∣ ≤ τ
)

= P(Jjk = 0)

+

M∑
r=1

P
(∣∣∣∣∣

r∑
m=1

Dm

∣∣∣∣∣ ≤ τ
)
P(Jjk = r),

noting that Dm
d
= −Dm. By Lemma 2.7.6 we know there exists an a > 0

such that for all τ ≤ a
√
M the RHS is bounded below by

γMjk +

M∑
r=r0

c1τ√
r

(
M

r

)
γM−rjk (1− γjk)r (2.23)

for M sufficiently large. Here the constants a, c1 > 0 and r0 ∈ N depend
only on F .

Consider τ > a
√
M . In this case, for r ≤ M sufficiently large we have

by Lemma 2.7.6

P
(∣∣∣∣∣

r∑
m=1

Dm

∣∣∣∣∣ ≤ τ
)
≥ P

(∣∣∣∣∣
r∑

m=1

Dm

∣∣∣∣∣ ≤ a√r
)
≥ c1a.

However then for M sufficiently large,

P(Jjk = 0) +

M∑
r=1

P
(∣∣∣∣∣

r∑
m=1

Dm

∣∣∣∣∣ ≤ τ
)
P(Jjk = r) ≥ c1a/2,

so α(ξ) ≥ c1a/2. Note also that we must have α0 ≥ α(ξ) ≥ γMl , so
M ≥ log(α0)/ log(γl). Thus by choosing 0 < α0 < c1a/2 sufficiently
small, we can rule out τ > a

√
M and so we henceforth assume that

τ ≤ a
√
M , and that M is sufficiently large such that (2.23) holds for all

(j, k).

We have

α(ξ) ≥ 1

p2

∑
j,k

{
γMjk + τ

M∑
r=r0

c1√
r

(
M

r

)
γM−rjk (1− γjk)r

}
. (2.24)

60 Chapter 2: Fast interaction search in high-dimensional data

Similarly we have

β(ξ) ≤ γM1 + τ

M∑
r=1

c2√
r

(
M

r

)
γM−r1 (1− γ1)r. (2.25)

Now substituting the upper bound on τ implied by (2.24) into (2.25), we
get

β(ξ) ≤ γM1 +QM

(
α(ξ)− 1

p2

∑
j,k

γMjk

)

where

QM =
c2
∑M
r=1 r

−1/2
(
M
r

)
γM−r1 (1− γ1)r

c1p−2
∑
j,k

∑
r=r0

r−1/2
(
M
r

)
γM−rjk (1− γjk)r

.

Now by Lemma 2.7.7, for M sufficiently large and some constant Q we
have

QM ≤ Q
√

1− γ1∑
j,k

√
1− γjk/p2

≤ Q.

Thus

β(ξ) ≤ γM1 +Q

(
α(ξ)− 1

p2

∑
j,k

γMjk

)
(2.26)

for all M sufficiently large. Now given α0, let M0 be such that

1

p2

∑
j,k

γM0

jk ≥ α0 ≥
1

p2

∑
j,k

γM0+1
jk .

Consider the minimal subsampling algorithm ψ that chooses subsample
size as either M0 or M0 + 1 with probabilities b and 1− b such that

α(ψ) =
1

p2

∑
j,k

{bγM0

jk + (1− b)γM0+1
jk } = α0.

Then we have β(ψ) = bγM0
1 + (1 − b)γM0+1

1 . Now suppose ξ ∈ Ξ0 has
α(ξ) ≤ α0. Then in particular M ≥ M0 + 1. We first examine the case

2.7 Appendix 61

where M = M0 + 1. Then

1

γM0
1

{β(ψ)− β(ξ)} ≥ b+ (1− b)γ1 − γ1 −
Q

γM0
1

(
α0 −

1

p2

∑
j,k

γM0+1
j,k

)
= b+ (1− b)γ1 − γ1 −

aQ

γM0
1

1

p2

∑
j,k

(γM0

j,k − γ
M0+1
j,k)

≥ b
(

(1− γu)− 2Q

1− ρ
1

M0 + 1

)
,

using Lemma 2.7.1 in the final line. Note this is non-negative for M0

sufficiently large. When M ≥M0 + 2 we instead have

β(ξ)

β(ψ)
≤ β(ξ)

γM0+1
1

≤ γ1 +
2Q

γ1(1− ρ)

1

M0 + 1
≤ γu +

2Q

γl(1− ρ)

1

M0 + 1
< 1

for M0 sufficiently large. Recall that by making α0 sufficiently small, we
can force M0 to be arbitrarily large. Thus the result is proved.

Lemma 2.7.3. There exists an α0 independent of n such that for all
α′ ≤ α0, we have

sup
ψ∈Ψ:α(ψ)≤α′

β(ψ) = sup
ξ∈Ξ:α(ξ)≤α′

β(ξ).

Moreover the suprema are achieved.

Proof. With a slight abuse of notation, write ξ(M ′, τ ′) for the element of
ξ ∈ Ξ that fixes M = M ′ and τ = τ ′. Using the notation of Lemma 2.7.2,
define function f : [0, 1]→ [0, 1] by

f(α′) = sup
ξ∈Ξ0:α(ξ)≤α′

β(ξ).

Note that for ξ ∈ Ξ we have

β(ξ) ≤ EM∼ξM f [α{ξ(M, ξτ)}]. (2.27)

Now by Lemma 2.7.2 we know there exists α0 (depending on F) such
that on [0, α0], f is the linear interpolation of points(

1

p2

∑
j,k

γMj,k, γ
M
1

)∞
M=1

.

62 Chapter 2: Fast interaction search in high-dimensional data

We claim that f is concave on [0, α0]. Indeed, it suffices to show that the
slopes of the successive linear interpolants are decreasing in this region,
or equivalently that their reciprocals are increasing. We have

1

p2

∑
j,k

γM+1
jk − γMjk
γM+1

1 − γM1
=

1

p2

∑
j,k

(
γj,k
γ1

)M
γjk − 1

γ1 − 1
(2.28)

which increases as M decreases, thus proving the claim.

Note also that the RHS of (2.28) is at most α(ψ)/{(1 − γu)γM1 } when
ψ has subsample size fixed at M . Thus by Lemma 2.7.1 we see the
derivatives of the linear interpolants approach infinity as they get closer
to the origin. This implies the existence of an 0 < α1 < α0 such that
− sup

(
∂(−f)(α1)

)
≥ {1 − f(α1)}/(α0 − α1), where ∂(−f)(α1) denotes

the subdifferential of the function −f at α1. We may therefore invoke
Lemma 2.7.8 to conclude that for ξ with α(ξ) ≤ α1

EM∼ξM f [α{ξ(M, ξτ)}] ≤ f [EM∼ξM α{ξ(M, ξτ)}]
= f(α(ξ)) ≤ f(α1) = max

ψ∈Ψ:α(ψ)≤α1

β(ψ).

Combining with (2.27) gives the result.

The next lemma establishes subquadratic complexity of minimal sub-
sampling.

Lemma 2.7.4. Under the assumptions of Theorem 2.2.1, we have

inf
ψ∈Ψ(η)

T (ψ)/(np2)→ 0

Proof. Let ψ ∈ Ψ be such that ψM places all mass on M . We have that
β(ψ) = γM1 . Thus using the inequality −x ≤ log(1−x) for x ∈ (0, 1), we
have

ψL ≤ −γ−M1 log(1− η).

Lemma 2.7.1 gives an upper bound on ψL Eψ E1. Note that Eψ V =
O(p log(p)). Thus ignoring constant factors, we have

T (ψ)/(np2) ≤ M + log(p)

γM1 np
+

1

M + 1
.

Taking M =
⌊
log(1/

√
p)/ log(γ1)

⌋
then ensures T (ψ)/(np2)→ 0.

2.7 Appendix 63

Lemma 2.7.5. Let ξ ∈ Ξdense. There exists c > 0 and n0 ∈ N such that
for all n ≥ n0,

inf
ξ∈Ξdense

T (ξ)/(np2) > c.

Proof. Each ξ ∈ Ξdense is parametrised by its close pairs threshold τ .
Given a ξ ∈ Ξdense(F) with close pairs threshold τ we compute α(ξ)
as follows. Similarly to Lemma 2.7.2 we may assume without loss of
generality that X and Z have entries in {−1/2, 1/2} so Xj − Zk has

components in {−1, 0, 1}. Since Ri
d
= −Ri as F ∈ F , we have

P
(∣∣∣∣∣

n∑
i=1

Ri(Xij − Zik)

∣∣∣∣∣ ≤ τ
)

= P
(∣∣∣∣∣∣

n(1−γjk)∑
i=1

Ri

∣∣∣∣∣∣ ≤ τ
)
.

We now use Lemma 2.7.6. For n(1−γu) sufficiently large, when τ ≤ a
√
n

the RHS is bounded below by

c1τ√
n(1− γjk)

.

Here constant a, c1 > 0 also depend only on F . Thus

α(ξ) ≥ 1

p2

∑
j,k

c1τ√
n(1− γjk)

≥ c1τ/
√
n. (2.29)

Similarly we have

β(ξ) ≤ c2τ√
n(1− γ1)

. (2.30)

Note that from (2.29), when τ > a
√
n we have α(ξ) ≥ c1a. Thus from

(2.21) we know there exists n0 such that for all n ≥ n0, we have

inf
ξ∈Ξdense(η):ξτ>a

√
n
T (ξ)/(np2) ≥ inf

ξ∈Ξdense(η):ξτ>a
√
n
ξLα(ξ) ≥ ξLc1a > 0.

(2.31)
We therefore need only consider the case where τ ≤ a

√
n and where

α(ξ)→ 0.

Substituting the upper bound on τ implied by (2.29) into (2.30), we get

β(ξ) ≤ α(ξ)
c2

c1
√

1− γu
.

64 Chapter 2: Fast interaction search in high-dimensional data

Note that then

ξL ≥
log(1− η)

log{1− α(ξ)c2/(c1
√

1− γu)}
≥ c3

log
(
1/1− η

)
α(ξ)

for some c3 > 0 provided α(ξ) < 1/2 say. However this gives us

inf
ξ∈Ξdense(η):ξτ≤a

√
n
T (ξ)/(np2) ≥ inf

ξ∈Ξdense(η):ξτ≤a
√
n
ξLα(ξ)

≥ min{1/2, c3 log
(
1/1− η

)
} > 0.

Combined with (2.31) this give the result.

With the previous lemmas in place, we are in a position to prove (2.7)
of Theorem 2.2.1.

Proof of Theorem 2.2.1

The proofs of (2.8) and (2.9) are contained in Lemmas 2.7.4 and 2.7.5
respectively. To show (2.7) we argue as follows. Given F and η, suppose
for contradiction that there exists a sequence ξ(1), ξ(2), . . . and n1 < n2 <
· · · such that (making the dependence on n of the computational time
explicit)

inf
ψ∈Ψ(η)

T (nk)(ψ) > T (nk)(ξ(k))

for all k. By Lemma 2.7.4, we must have T (nk)(ξ(k))/(np2) → 0. This
implies that α(ξ(k))→ 0. By Lemma 2.7.3, we know that for k sufficiently
large

sup
ψ∈Ψ:α(ψ)=α(ξ(k))

β(ψ) ≥ β(ξ(k)).

Let ψ(k) be the maximiser of the LHS. In order for T (nk)(ψ(k)) > T (nk)(ξ(k)),
it must be the case that E

M∼ψ(k)
M

M > E
M∼ξ(k)M

M . However we claim

that ξ = ψ(k) minimises EM∼ξM M among all ξ ∈ Ξ with α(ξ) ≤
α(ξ(k)) =: α0, which gives a contradiction and completes the proof. Let
f be the function that linearly interpolates the points(

1

p2

∑
j,k

γMj,k, M

)∞
M=1

.

Note that f is decreasing. By considering the inverse of f it is clear
that f is convex. With a slight abuse of notation, write ξ(M, τ) for the

2.7 Appendix 65

element of ξ ∈ Ξ such that ξM places all mass on M and ξτ = τ . Note
that

EM∼ξM M = EM∼ξM f [α{ξ(M, 0)}] ≥ EM∼ξM f [α{ξ(M, ξτ)}].

Now suppose ξ has α(ξ) ≤ α0. Then from the above and Jensen’s in-
equality,

EM∼ξM M ≥ f
(
EM∼ξM α(ξ(M, ξτ))

)
≥ f(α0) = E

M∼ψ(k)
M

M.

Proof of Theorem 2.2.2

First note that from (2.11) we have L ≤ log(1 − η′)/ log(1 − γM) + 1.
Then using the inequality log(1− x) ≤ −x for x ∈ (0, 1), we have

L ≤ log{1/(1− η′)}+ 1

γM
.

Note that from the definition of γ0 we have γ−M = plog(γ)/ log(γ0). We
then see that

γ−M E(E1) = γ−M
∑
j,k

γMjk

≤ γ−M
(∑
j,k:γjk>γ

γMjk +
∑

j,k:γ0<γjk≤γ

γMjk +
∑

j,k:γjk≤γ0

γMjk

)
≤ c1pγ−M + c2p

1+log(γ)/ log(γ0) + p2γM0 γ−M

≤ (c1 + c2 + 1)p1+log(γ)/ log(γ0).

Collecting together the terms in (2.10) we have

C(M,L) ≤np

+[log{1/(1− η′)}+ 1][log(p){1 + 1/ log(γ−1
0)}+ n(c1 + c2 + 1)]p

1+
log(γ)
log(γ0)

from which the result easily follows.

66 Chapter 2: Fast interaction search in high-dimensional data

Proof of Proposition 2.2.3

Let η∗ = η(M∗, L). Note that in order for η(M ′, L′) ≥ η∗ it must be the
case that L′ ≥ log(1− η∗)/ log(1− γM ′). Therefore

C(M ′, L′)− np ≥ log(1− η∗)
log(1− γM ′)

(
M ′p+ p log(p) + n

∑
j,k

γM
′

jk

)

≥ min
M∈N

log(1− η∗)
log(1− γM)

(
Mp+ p log(p) + n

∑
j,k

γMjk

)
(2.32)

=
log(1− η∗)

log(1− γM∗)

(
M∗p+ p log(p) + n

∑
j,k

γM
∗

jk

)
= C(M∗, L).

Moreover, the inequality leading to (2.32) is strict if M∗ is the unique
minimiser and M ′ 6= M∗.

Technical lemmas

Lemma 2.7.6. Let F ∈ F and suppose (Ri)
∞
i=1 is an i.i.d. sequence with

Ri ∼ F .

Then for all a > 0, there exists c1, c2 > 0 and l0 ∈ N such that for all
l ≥ l0 and 0 ≤ τ ≤ a

√
l we have

c1τ√
l
≤ P

(∣∣ l∑
i=1

Ri
∣∣ ≤ τ) ≤ c2τ√

l
.

Proof. Let fl be the density of
∑l
i=1Ri/

√
l. Note that as E(|R1|3) <∞,

we must have E(R2
1) < ∞, so we may assume without loss of generality

that E(R2
1) = 1. Then by Theorem 3 of Petrov (1964) we have that for

sufficiently large l,

|fl(t)− φ(t)| ≤ c√
l(1 + |t|3)

. (2.33)

Here c is a constant and φ(t) = e−t
2/2/
√

2π is the standard normal
density. Now by the mean value theorem, we have

2 inf
0≤t≤τ/

√
l
{fl(t)}

τ√
l
≤ P

(∣∣ l∑
i=1

Ri
∣∣/√l ≤ τ/√l) ≤ 2 sup

0≤t≤τ/
√
l

{fl(t)}
τ√
l
.

2.7 Appendix 67

Thus from (2.33), for l sufficiently large we have

P
(∣∣ l∑

i=1

Ri
∣∣ ≤ τ) ≥ τ√

l

(√
2√
π

exp{−τ2/(2l)} − 2c√
l

)
.

Note that for a > 0 and l sufficiently large we have
√

2/πe−a
2/2 > 2c/

√
l,

whence

P
(∣∣ l∑

i=1

Ri
∣∣ ≤ τ) ≥ c1τ√

l

for 0 ≤ τ ≤ a
√
l, some c1 > 0. A similar argument yields the upper

bound in the final result.

Lemma 2.7.7. Suppose γ ∈ [0, 1). For all M ∈ N we have

M∑
r=1

1√
r

(
M

r

)
(1− γ)rγM−r ≤

√
2√

(1− γ)M
. (2.34)

Given r0 ∈ N and γ ∈ [0, 1), there exists c > 0 and M0 ∈ N such that
for all M ≥M0 we have

M∑
r=r0

1√
r

(
M

r

)
(1− γ)rγM−r ≥ c√

(1− γ)M
. (2.35)

Proof. First we show the upper bound (2.34). Let J ∼ Binomial(M, 1−
γ).

M∑
r=1

1√
r

(
M

r

)
(1− γ)rγM−r ≤

√
2

M∑
r=1

1√
r + 1

(
M

r

)
(1− γ)rγM−r

≤
√

2 E(1/
√
J + 1).

Next, by Jensen’s inequality we have E(1/
√
J + 1) ≤

√
E{1/(J + 1)}.

68 Chapter 2: Fast interaction search in high-dimensional data

We now compute E{1/(J + 1)} as follows.

E
(

1

J + 1

)
=

M∑
r=0

1

r + 1

(
M

r

)
(1− γ)rγM−r

=
1

M + 1

M∑
r=0

(
M + 1

r + 1

)
(1− γ)rγM−r

=
1

(1− γ)(M + 1)

M∑
r=0

(
M + 1

r + 1

)
(1− γ)r+1γM−r

=
1− γM+1

(1− γ)(M + 1)
≤ 1

(1− γ)(M + 1)
.

Putting things together gives (2.34).

Turning now to (2.35), we see that the LHS equals

E(1/
√
J1{J≥r0}) = E(1/

√
J |J ≥ r0)P(J ≥ r0).

By Jensen’s inequality we have

E(1/
√
J |J ≥ r0) ≥ 1√

E(J |J ≥ r0)
=

√
P(J ≥ r0)√
E(J1{J≥r0})

≥
√
P(J ≥ r0)√
(1− γ)M

.

But as M →∞, P(J ≥ r0)→ 1, which easily gives the result.

Lemma 2.7.8. Let f : [0,∞)→ [0, 1] be non-decreasing. Suppose there
exists 0 < α1 < α0 such that:

(i) f is concave on [0, α0];

(ii) − sup
(
∂(−f)(α1)

)
≥ {1− f(α1)}/(α0 − α1), where ∂(−f)(α1) de-

notes the subdifferential of the function −f at α1.

Then if random variable X has E(X) ≤ α0, then f(E X) ≥ E f(X).

Proof. Write m = − sup
(
∂(−f)(α1)

)
Let function g : [0,∞) → [0,∞)

be defined as follows.

g(x) =

{
f(x) if 0 ≤ x ≤ α1

f(α1) +m(x− α1) if x > α1.

2.7 Appendix 69

A Note that g thus defined has g(α0) ≥ 1. We see that g is convex and
g ≥ f . Thus if E(X) ≤ α1, by Jensen’s inequality we have

f(E X) = g(E X) ≥ E g(X) ≥ E f(X).

Appendix B

Connection to LSH

Minimal subsampling as considered in Algorithm 2 is closely related to
the locality-sensitive hashing (LSH) framework: Define h(j) = RTXj (R
corresponds to the minimal subsampling projection) to be the hashing
function and H to be the family of such functions, from which we sample
uniformly. Then H is (γ, cγ, p1, p2)-sensitive, that is:

• if γjk ≥ γ then P(h(j) = h(k)) ≥ p1

• if γjk ≤ cγ then P(h(j) = h(k)) ≤ p2,

where 0 < c < 1. In the case of the minimal subsampling we have
p1 = γM and p2 = γMcM . However, the typical LSH machinery cannot
be applied directly to the equal pairs problem above. In our setting, we
are not interested in preserving close pairs but rather the closest pairs.
Theorem 2.2.1 establishes that the family H leads to the maximal ratio
p1/p2 among all linear hashing families.

Appendix C

Proof of Proposition 2.3.1

Proof.

P(sign(Yi) = X̃ijX̃ik) =
sign(Yi) + 1

2
(g(Xij)g(Xik) + (1− g(Xij))(1− g(Xik)))

+
1− sign(Yi)

2
(g(Xij)(1− g(Xik)) + (1− g(Xij))g(Xik))

=
1

2
+

sign(Yi)

2
(1− 2g(Xij))(1− 2g(Xik)).

70 Chapter 2: Fast interaction search in high-dimensional data

Appendix D

The unbiased transform and the sign transform

Proposition 2.3.3

Proof. The equation

E [X̃ij] = P(X̃ij = 1)− P(X̃ij = −1) = Xij ,

implies

P(X̃ij = 1) =
Xij + 1

2

This uniquely determines the unbiased transform.

Next we show two Lemmas that will be useful when proving Theo-
rems 2.3.4 and 2.3.5.

Lemma 2.7.9. Consider the setup of Theorem 2.3.4. Then there exists
constants Cε1 , C

ε
2 > 0 such that defining

αun,p = αun,p(t) =

(
1 +

t+ log(nCε1)

Cε2

)√
2{t+ log(4p)}/n,

with probability at least 1− 2 exp(−t) we have:∑
i YiXij∗Xik∗

‖Y‖1
/∈
[
−

m2 − αun,p
m1 +mε + αun,p

,
m2 − αun,p

m1 +mε + αun,p

]
∑n
i=1 YiXijXik

‖Y‖1
∈
[
−
m2(1− ru) + αun,p

m1 − αun,p
,
m2(1− ru) + αun,p

m1 − αun,p

]
∀(j, k) 6= (j∗, k∗).

Proof. First we consider a capped version of ε:

ε′i =

{
εi if |εi| ≤ σ
σsign(εi) otherwise,

2.7 Appendix 71

where σ is to be chosen later. We may apply Hoeffding’s inequality to
these bounded variables. We have to bound two terms:∑n

i=1 YiXij∗Xik∗

‖Y‖1

from below and

∑n
i=1 YiXijXik

‖Y‖1
from above, for (j, k) 6= (j∗, k∗).

Schematically the first term can be dealt with in the following way:

P
(A+B

C +D
≥ a+ b

c+ d

)
≥ 1− P(A ≤ a)− P(B ≤ b)− P(C ≥ c)− P(D ≥ d)

(2.36)

where

A+B =

n∑
i=1

(Xij∗Xik∗)
2 +ε′iXij∗Xik∗ and C+D =

n∑
i=1

|Xij∗Xik∗+ε′i|.

We deal with each term individually. Using Hoeffding’s inequality we
get:

A : P
(∑p

i=1(Xij∗Xik∗)
2 ≤ nm2 − δ

)
≤ exp(−δ2/2n))

B : P
(∑n

i=1 ε
′
iXij∗Xik∗ ≤ −κ

)
≤ exp(−κ2/2nσ2)

C : P
(∑n

i=1 |Xij∗Xik∗ | ≥ nm1 + δ
)
≤ exp(−δ2/2n)

D : P
(∑n

i=1 |ε′i| ≥ nmε + κ
)
≤ exp(−2κ2/nσ2).

This gives us a bound of the interaction strength of the true interaction
pair:

P
(∑

i YiXij∗Xik∗

‖Y‖1
≥ nm2 − δ − κ
nm1 + nmε + δ + κ

)
≥ 1− exp(−δ2/2n)− exp(−δ2/2n)

− exp(−κ2/2nσ2)− exp(−κ2/2nσ2)

Similarly we can treat the interaction strength of the non interacting
pairs:

72 Chapter 2: Fast interaction search in high-dimensional data

A : Here we use assumption (B1):

m2(ru − 1) ≤ E [Xij∗Xik∗XimXio] ≤ m2(1− ru).

Hence, P
(∑n

i=1Xij∗Xik∗XijXik ≥ nm2(1−ru)+δ
)
≥ exp(−δ/2n).

For the rest we run the same bounds as before (using |Xij∗Xik∗ + ε′i| ≥
|Xij∗Xik∗ |+ ε′i). This yields the bound

P
(∑n

i=1 YiXijXik

‖Y‖1
≤ nm2(1− ru) + δ + κ

nm1 − δ − κ

)
≥ 1− exp(−δ2/2n)− exp(−δ2/2n)

− exp(−κ2/2nσ2)− exp(−κ2/2nσ2)

The above inequality needs to hold for all at most p2 pairs that are not
interactions, so that we effectively multiply the exponential terms with
p2. Another factor of 2 is multiplied in for the negative sign, as the
fraction also has to be bounded away from −1. In total we thus have:∑n

i=1 YiXij∗Xik∗

‖Y‖1
/∈
[
− nm2 − δ − κ
nm1 + nmε + δ + κ

,
nm2 − δ − κ

nm1 + nmε + δ + κ

]
∑n
i=1 YiXijXik

‖Y‖1
∈
[
− nm2(1− ru) + δ + κ

nm1 − δ − κ
,
nm2(1− ru) + δ + κ

nm1 − δ − κ

]
∀(m, o) 6= (j, l)

with probability at least

1− exp(−δ2/2n)− exp(−δ2/2n)− exp(−κ2/2nσ2)− exp(−κ2/2nσ2).

Finally, let σ ≥ 1, then we have to set δ and κ so that the probability is
bigger than 1− exp(−t). This gives:

exp(−t) = 4p exp(−δ2/2n) and exp(−t) = 4p exp(−κ2/2nσ2).

This gives

δ =
√

2n(t+ log(4p)) and κ =
√

2nσ2(t+ log(4p)).

Thus for αun,p =

√
2(t+log(4p))(1+σ2)√

n
,∑

i YiXij∗Xik∗

‖Y‖1
/∈
[
−

m2 − αun,p
m1 +mε + αun,p

,
m2 − αun,p

m1 +mε + αun,p

]
∑n
i=1 YiXijXik

‖Y‖1
∈
[
−
m2(1− ru) + αun,p

m1 − αun,p
,
m2(1− ru) + αun,p

m1 − αun,p

]
∀(j, k) 6= (j∗, k∗) with probability at least 1− exp(−t).

2.7 Appendix 73

Now we extend this result to the case of unbounded errors, that is we
now assume that with high probability εi are bounded:

P(εi = ε′i, ∀ i) = 1− exp(−t).

Here we used the sub-exponential tail behavior of ε. We have P(|εi| ≥
t) ≤ Cε1 exp(−Cε2t). Hence we set

t = Cε2σ − log(nCε1) ⇒ σ =
t+ log(nCε1)

Cε2

Thus,

αun,p =

√
2{t+ log(4p)}{1 + (

t+log(nCε1)
Cε2

)}2}
√
n

with probability at least 1− 2 exp(−t) we have:∑
i YiXij∗Xik∗

‖Y‖1
/∈
[
−

m2 − αun,p
m1 +mε + αun,p

,
m2 − αun,p

m1 +mε + αun,p

]
∑n
i=1 YiXijXik

‖Y‖1
∈
[
−
m2(1− ru) + αun,p

m1 − αun,p
,
m2(1− ru) + αun,p

m1 − αun,p

]
∀(j, k) 6= (j∗, k∗).

Next we prove the equivalent result for the sign transform. The proof is
very similar to the unbiased case:

Lemma 2.7.10. Consider the setup of Theorem 2.3.5. Then there exists
constants CX1 , C

X
2 , C

ε
1 , C

ε
2 > 0 such that defining

αsn,p = αsn,p(t) =

√
2(t+ log(4p))

((
t+log(pnCX1)

CX2

)4

+
(
t+log(nCε1)

Cε2

)2)
√
n

,

with probability at least 1− 3 exp(−t) we have:∑n
i=1 Yisign(Xij∗Xik∗)

‖Y‖1
/∈
[
−

m1 − αsn,p
m1 +mε + αsn,p

,
m1 − αsn,p

m1 +mε + αsn,p

]
∑n
i=1 Yisign(XijXik)

‖Y‖1
∈
[
−
m1(1− rs) + αsn,p

m1 − αsn,p
,
m1(1− rs) + αsn,p

m1 − αsn,p

]
∀ (m, o) 6= (j∗, k∗).

74 Chapter 2: Fast interaction search in high-dimensional data

Proof. First consider capped versions of the random variables of interest:

X ′ij =

{
Xij if |Xij | ≤M
Msign(Xij) otherwise

and ε′i =

{
εi if |εi| ≤ σ
σsign(εi) otherwise

where M and σ are to be chosen later. Given these capped variables we
can use Hoeffding’s inequality as we now deal with bounded variables.
We have to bound two terms:∑n

i=1 Yisign(X ′ij∗X
′
ik∗)

‖Y‖1

from below and

∑n
i=1 Yisign(X ′ijX

′
ik)

‖Y‖1
from above, for (j, k) 6= (j∗, k∗)

As in Lemma 2.7.9 equation (2.36):

A+B =

n∑
i=1

|X ′ij∗X ′ik∗ |+ε′isign(X ′ij∗X
′
ik∗) and C+D =

n∑
i=1

|X ′ij∗X ′ik∗+ε′i|.

We deal with each term individually. Using Hoeffding’s inequality we
get:

A : P
(∑p

i=1 |X ′ij∗X ′ik∗ | ≤ nm1 − δ
)
≤ exp(−δ2/2nM4))

B : P
(∑n

i=1 ε
′
i ≤ −κ

)
≤ exp(−κ2/2nσ2)

C : P
(∑n

i=1 |X ′ij∗X ′ik∗ | ≥ nm1 + δ
)
≤ exp(−δ2/2nM4)

D : P
(∑n

i=1 |ε′| ≥ nm′ε + κ
)
≤ exp(−2κ2/nσ2)

This gives us a bound of the interaction strength of the true interaction
pair:

P
(∑

i Yisign(X ′ij∗X
′
ik∗)

‖Y‖1
≥ nm1 − δ − κ
nm1 + nmε + δ + κ

)
≥ 1− 2 exp(−δ2/2nM4)− 2 exp(−κ2/2nσ2)

Similarly we can treat the interaction strength of the non interacting
pairs:

2.7 Appendix 75

A : Here we use assumption (C1). It implies

rs/2 ≤ P(sign(X ′ij∗X
′
ik∗) = sign(X ′ijX

′
ik)|X) ≤ 1− rs/2.

This we use for computing the expectation:

E[X ′ij∗X
′
ik∗sign(X ′ijX

′
ik)] = E[E[|X ′ij∗X ′ik∗ |sign(X ′ijX

′
ikX

′
ij∗X

′
ik∗)]

= E[E[2|X ′ij∗X ′ik∗ |1{sign(X′ijX
′
ikX

′
ij∗X

′
ik∗)=1}|X]]− E[|X ′ij∗X ′ik∗ |]

= E[E[2|X ′ij∗X ′ik∗ ||X]]P(sign(X ′ijX
′
ikX

′
ij∗X

′
ik∗) = 1|X)− E[|X ′ij∗X ′ik∗ |]

= E[|X ′ij∗X ′ik∗ |](2P(sign(X ′ijX
′
ikX

′
ij∗X

′
ik∗) = 1|X)− 1).

Thus the expectation is given as:

m1(rs − 1) ≤ E[X ′ij∗X
′
ik∗sign(X ′ijX

′
ik)] ≤ m1(1− rs).

Hence, P
(∑n

i=1X
′
ij∗X

′
ik∗sign(X ′ijX

′
ik) ≥ nm1(1−rs)+δ

)
≥ exp(−2δ/nM4).

For the rest we use the same bounds as before (using |X ′ij∗X ′ik∗ + ε′i| ≥
|X ′ij∗X ′ik∗ |+ ε′i). This yields the bound

P
(∑n

i=1 Yisign(X ′ijX
′
ik)

‖Y‖1
≤ nm1(1− rs) + δ + κ

nm1 − δ − κ

)
≥ 1− exp(−2δ2/nM4)− exp(−2κ2/nσ2).

The above inequality needs to hold for the at most p2 pairs that are not
interactions, so that we effectively multiply the exponential terms with
p2. Another factor of 2 is multiplied in for the negative sign, as the
fraction also has to be bounded away from −1. In total we thus have:∑

i Yisign(X ′ij∗X
′
ik∗)

‖Y‖1
/∈
[
− nm1 − δ − κ
nm1 + nmε + δ + κ

,
nm1 − δ − κ

nm1 + nmε + δ + κ

]
∑n
i=1 Yisign(X ′ijX

′
ik)

‖Y‖1
∈
[
− nm1(1− rs) + δ + κ

nm1 − δ − κ
,
nm1(1− rs) + δ + κ

nm1 − δ − κ

]
∀(j, k) 6= (j∗, k∗)

with probability at least 1− 2p exp(−δ2/2nM4)− 2p exp(−κ2/2nσ2).

Finally we have to set δ and κ so that the probability is bigger than
1− exp(−t). This gives:

exp(−t) = 4p exp(−δ2/2nM4) and exp(−t) = 4p exp(−κ2/2nσ2)

76 Chapter 2: Fast interaction search in high-dimensional data

This gives

δ =
√

2nM4(t+ log(4p)) and κ =
√

2nσ2(t+ log(4p))

Thus for αsn,p =

√
2(t+log(4p))(M4+σ2)√

n∑
i Yisign(X ′ij∗X

′
ik∗)

‖Y‖1
/∈
[
−

m1 − αsn,p
m1 +mε + αsn,p

,
m1 − αsn,p

m1 +mε + αsn,p

]
∑n
i=1 Yisign(X ′ijX

′
ik)

‖Y‖1
∈
[
−
m1(1− rs) + αsn,p

m1 − αsn,p
,
m1(1− rs) + αsn,p

m1 − αsn,p

]
∀(j, k) 6= (j∗, k∗)

with probability at least 1− exp(−t).

We now extend this result to the case of unbounded variables, that is
we now assume that with high probability the variables Xij and εi are
bounded:

P(Xij = X ′ij , ∀ i, j) = 1− exp(−t) and P(εi = ε′ij , ∀ i) = 1− exp(−t).

Here we used the sub-exponential tail behaviour of the Xij and εi. There
exists constants CX1 , CX2 such that P(|Xij | ≥ t) ≤ CX1 exp(−CX2 t) and
similarly for ε. Hence we set

t = CX2 M − log(pnCX1) ⇒M =
t+ log(pnCX1)

CX2

t = Cε2σ − log(nCε1) ⇒ σ =
t+ log(nCε1)

Cε2

Thus we have

αsn,p =

√
2(t+ log(4p))

((
t+log(pnCX1)

CX2

)4

+
(
t+log(nCε1)

Cε2

)2)
√
n

Next we prove Theorem 2.3.4:

Proof. Given δ, ε > 0, choose t such that 3 exp(−t) < ε. From (B3) we
have that αun,p(t) defined in Lemma 2.7.9 satisfies αun,p(t)→ 0 as n→∞.

2.7 Appendix 77

Thus from Lemma 2.7.9 we know that there exists N such that for all
n ≥ N , with probability 1− ε we have

log(γgj∗k∗)

log(γgjk)
<

log{(1 + m2

m1+mε
)/2}

log{(1 + m1

m2(1−rs))/2}
+ δ/2.

Thus for n ≥ N , applying Corollary 2.3.2 we have that with probability
1− ε,

C(M,L) ≤ cnp1+δ/2+
log(1/2+m2/2((m1+mε)))

log(1/2+m2(1−ru)/(2m1)) ,

for some constant c.

The proof of Theorem 2.3.5 is very similar and is thus omitted.

Chapter 3

Rowspace projections for
fast graphical model
selection under latent
confounding1

3.1 Introduction

Conditional independence graphs are well-established as a formalism for
identifying related variables in high-dimensional settings. They consist
of a node for each variable and have an edge between two nodes if and
only if the corresponding variables are conditionally dependent given all
other variables. The most popular model for continuous data assumes
that the observations have a multivariate Gaussian distribution. In this
context, lack of edges in the conditional independence graph correspond
to zeroes in the inverse covariance – or precision – matrix Lauritzen
(1996). To facilitate estimation of the location of the zeroes when the
number of variables p exceeds the number of observations n, it is typi-
cally assumed that the precision matrix is sparse. Two basic approaches
to the estimation problem have emerged in the literature. One can aim

1This chapter is not yet publicly available.

80 Chapter 3: Fast graphical model selection under latent confounding

for a sparse estimate of the precision matrix, for example by adding a `1
penalty to the entries in the usual Gaussian log-likelihood; this is known
as the graphical Lasso (Friedman et al., 2008; Yuan and Lin, 2007a).
An alternative is to form sparse estimates of the means of each vari-
able conditional on every other variable, for example through nodewise
Lasso regressions Tibshirani (1996): this is the so-called neighbourhood
selection approach (Meinshausen and Bühlmann, 2006).

Although the simplifying assumption of sparsity has motivated the devel-
opment of several popular methods for conditional independence graph
estimation, there are a number of settings of interest where the presence
of unobserved variables acting as confounders is known to be an issue and
prevents the marginal inverse covariance of the observed data from being
sparse. In genomics, for example, confounding occurs due to technical
factors or unobserved environmental variables (Gagnon-Bartsch et al.,
2013; Leek and Storey, 2007; Stegle et al., 2012). In other settings, con-
founding may be present but its origin unknown. Driven by the needs
of practitioners, there has been growing interest in extensions that al-
low for the presence of latent variables: conditional on these unobserved
latent variables, one can assume that the observations have a sparse in-
verse covariance matrix. This model was pioneered by Chandrasekaran
et al. (2012) in the context Gaussian graphical model (GGM) estimation,
building on previous work for the noiseless setting by Chandrasekaran et
al. (2011) and Candès et al. (2011). In order to guarantee identifiability,
it is usually assumed that there are only a few latent variables, and that
each of them acts on a large fraction of the p observed variables.

Whilst much progress has been made in developing estimation procedures
for both the sparse Gaussian graphical model and its extension with
latent variables, there remain several important challenges.

Methods for both models struggle computationally when p is large. The
problem is most severe for methods capable of handling latent variables
as their scaling with p can prohibit their application on datasets where
p is moderate in size (i.e. of the order of a thousand). For example,
whole genome-scale data remains a challenge even for some of the fastest
methods for sparse GGM estimation, such as neighbourhood selection,
particularly when it is desired to apply methods in an interactive fashion,
as is often demanded by applications, for example when making choices
about how to preprocess the data.

In this paper, we propose a simple method for estimating the structure

3.1 Introduction 81

of the conditional independence graph in the challenging latent variable
GGM setting. To fix ideas, consider a data matrix X ∈ Rn×p and an
unobserved matrix of latent variables L ∈ Rn×q. Suppose that the rows
of the combined matrix (X,L) ∈ Rn×(p+q) have independent Np(0,Σ)
distributions. The goal is to estimate the subgraph of the full conditional
independence graph, or equivalently to locate the non-zero entries in the
submatrix ΩX ∈ Rp×p of Ω := Σ−1, corresponding to the observed
variables. Note that the marginal conditional independence graph of X
alone may be dense even if ΩX is sparse, due to the latent confounding,
and thus may not provide meaningful information about which variables
are closely related to one another.

Our procedure is based on the following estimator:

Ĝ = XT (XXT)−1X. (3.1)

Whilst Ĝ does not directly provide an estimate ΩX, we demonstrate that
the entries in Ĝ with large magnitudes correspond to large magnitude
entries in ΩX. In this way, the method gives an effective way of screening
for edges in the conditional independence subgraph for X.

Our method is closely connected to employing nodewise ridge regressions
but allowing the tuning parameter to tend to 0. Recently Wang and Leng
(2015) studied such a scheme, which they call high-dimensional ordinary
least-squares projection (HOLP) for variable selection in a sparse high-
dimensional linear model setting. HOLP is equivalent to projections to
the rowspace of the design. While their method is compelling, there
seems to be a gap in their theoretical assessment of the procedure. Nev-
ertheless, it seems that by imposing additional model assumptions their
result could be saved. We will from now on refer to HOLP as rowspace
projections (RP). As a single application of RP has a computational
complexity of O(n2p) naively employing this for each nodewise regres-
sion would give an overall runtime of O(n2p2). In contrast, our estimator
(3.1) which we call the graphical RP has a complexity of O(np2): this is
the same as computing the empirical covariance matrix.

When p is very large indeed, even performing a computation for each
of the p(p − 1)/2 potential edges in the graph can be problematic. We
show that by employing fast methods for large inner product search,
large entries in Ĝ can be identified with a computational cost that is
subquadratic in p. Specifically, we illustrate that using the xyz algorithm
(Thanei et al., 2016b) can give an overall runtime of O(Knp) where K
may be chosen by the user depending on the available computational

82 Chapter 3: Fast graphical model selection under latent confounding

budget; we show empirically that choosing K ≈ n can give similar results
to regular graphical RP.

We illustrate graphical RP’s behaviour on simulated and real data. In
particular, we apply our method to a collection of 13 independent gene
expression datasets for which known confounders are available (p ≈
15, 000, n ≈ 400). Using an external source of validation, we demon-
strate that the method is especially robust to confounding and produces
estimates that are more biologically relevant than those of other state-of-
the-art approaches, at a fraction of their computational cost: performing
graphical model selection on these datasets using graphical RP (in combi-
nation with xyz) comes with a runtime in the order of a second compared
to a few hours for neighbourhood selection with the Lasso.

3.1.1 Related work

As hinted at in the introduction, performing covariance selection (Demp-
ster, 1972) when p is larger than n is a task which has garnered consider-
able attention over the past few decades. In such settings, the covariance
matrix is singular. This prevents a straightforward computation of its
inverse and prompts the need for additional assumptions. In the Gaus-
sian setting, the one-to-one correspondence between the edges of the
conditional independence graph and the non-zero entries of the precision
matrix (Lauritzen, 1996) has motivated the use of sparsity as a criterion
to select a parsimonious model, and thus address the problems inherent
to high-dimensionality.

Two families of approaches for the estimation of sparse inverse covari-
ance matrices have emerged in the literature. Some estimators penalise
the Gaussian log-likelihood or the empirical risk (Friedman et al., 2008;
Rothman et al., 2008; Yuan and Lin, 2007a; Zhang and Zou, 2014) –
a noteworthy example being the so-called graphical lasso (Friedman et
al., 2008; Yuan and Lin, 2007b). The graphical lasso (denoted GLasso
henceforth) is a penalised maximum likelihood estimator (MLE) which
adds a `1 penalty to the entries of the precision matrix; its theoretical
properties are studied in (Ravikumar et al., 2010). Another family of
methods proceeds by carrying out nodewise regressions – one for each
of the p variables – in order to uncover the conditional dependencies of
each node on the remaining ones (Cai et al., 2016; Cai et al., 2011; Mein-
shausen and Bühlmann, 2006; Ren et al., 2015; Yuan, 2010) Common
regression methods to perform these p regressions are the Lasso, as in

3.1 Introduction 83

Meinshausen and Bühlmann (2006), or the Dantzig selector. As is com-
mon in the literature, we will refer to neighbourhood selection with the
Lasso by NS.

Providing theoretical guarantees for graphical model selection in the pres-
ence of latent variables is even more challenging: some edges might be
included in the model as a byproduct of confounding, thus raising iden-
tifiability issues. As mentioned earlier, one possibility is to assume that
the precision matrix of interest is sparse conditional on the unobserved
variables. In the Low-Rank plus Sparse (LRpS) estimator suggested
by Chandrasekaran et al. (2012), the inverse covariance matrix and the
matrix which summarises the effect of the latent variables are estimated
simultaneously using a regularised MLE which penalises a weighted com-
bination of the `1-norm and trace norm of the parameters. A key re-
quirement of LRpS is that the latent variables be few and influential.
A simpler approach which is often used in practice is to proceed in two
steps: 1) estimate the first k principal components (PCs) of the data ma-
trix; 2) perform p univariate regressions of the n−dimensional columns
on the k PCs, and use one of the methods mentioned in the previous
paragraph on the residuals. Using this approach followed by NS will be
denoted PCA. Both LRpS and PCA require the estimation of a low-rank
matrix which encodes the effect of the latent variables on the observed
ones – a task which cannot be performed consistently when p > n due to
the convergence rate of the extreme eigenvalues of the sample covariance
matrix (Johnstone, 2001). A more modest goal is to focus only on the
estimation of the sparse matrix of interest. The CLIME-like estimator
of Ren and Zhou (2012) estimates a Gaussian graphical model in the
presence of latent variables at a rate of

√
log(p)/n. In Ren et al. (2015)

consistency is obtained for a similar rate but under milder conditions.

In spite of the very attractive statistical properties of some estimators,
their use is sometimes made impossible by their computational cost: the
base estimator might itself be slow, or it might be just slow enough to
prevent its use in combination with other popular approaches such as sta-
bility selection (Meinshausen and Bühlmann, 2010; Shah and Samworth,
2013). For that reason, large values of p might constrain practitioners
to settle for methods that offer poorer statistical performances, but can
be used interactively on a single computer. One such method is Sure
Independence Screening (SIS) which performs screening via a threshold-
ing of the absolute marginal correlations (Fan and Lv, 2008). Another
approach which will be described in detail in the next section is projec-

84 Chapter 3: Fast graphical model selection under latent confounding

tion to the rowspace RP which allows screening and model selection with
O(n2p) cost in the regression case and O(np2) for graphical modelling.
Surprisingly, RP is robust to the presence of latent confounders allowing
for variable screening in the challenging latent GGM setting with a cost
similar to SIS.

3.1.2 Organisation of the paper

We first discuss the idea of projecting to the rowspace and its applica-
tion to variable selection. We then briefly argue by example how this
technique is robust to latent confounders. From there we show the com-
putational efficiency of graphical RP and discuss ways to gain further
speedups. All these findings we underline with simulations and experi-
ments on real data.

3.2 Ridge, rowspace projections and latent
confounding

3.2.1 Model setting

Consider the standard linear model

Y = Xβ + ε (3.2)

with response Y ∈ Rn, design matrix X ∈ Rn×p, vector of coefficients
β ∈ Rp and errors ε ∼ Np(0, σ2I). We will treat the design as random
and assume here that the rows of X are independent with distribution
Np(0,Σ). When p ≥ n, X will have full row rank almost surely. β itself
is assumed to be sparse with only a few nonzero entries defined by the
set S = {j|βj 6= 0}. It is typically assumed that the sparsity parameter
s = |S| is comparatively small: For example s ≤

√
n. Our main goal is

to screen variables, that is we estimate a set of candidate variables Ŝ so
that S ⊂ Ŝ is true with high probability.

3.2 Ridge, rowspace projections and latent confounding 85

3.2.2 A brief review of ridge and rowspace projec-
tions

In the above context, the Ridge estimator for β with λ > 0 is given by

β̂λ := (XTX + λIp)
−1XTY = XT (XXT + λIn)−1Y (3.3)

The right hand side is usually referred to as kernel Ridge and is commonly
used in high-dimensional data due to its lower computational complexity
than classical Ridge (left hand side). The kernel Ridge estimator allows
us to define Ridge in the limit where λ→ 0:

β̂ = lim
λ↓0

XT (XXT + λI)−1Y = XT (XXT)−1Y (3.4)

β̂ is called the Rowspace Projection estimator (RP), as it projects the

signal β onto the rowspace of X. Another interpretation of β̂ is as the
minimal l2 norm vector perfectly predicting Y:

β̂ = argmin ||β||22
Y=Xβ

Whilst β̂ is unsuitable as a genuine estimate of β or for prediction of Y ,
the ordering of |β̂| is nevertheless informative. There have been some

attempts to understand the theoretical aspects of β̂ for variable screen-
ing. In Wang and Leng (2015) the authors show that the orderings of |β̂|
are such that the true nonzero coefficients of β correspond to the largest
entries of |β̂|:

Ŝk = {(i)| |β̂|(i) ≥ |β̂|(k)} ⊃ S

with high probability for k ∈ N, where k is much smaller than p. The the-
ory in (Wang and Leng, 2015) holds for orthogonal designs (Σ = Ip×p).
Nevertheless, there is strong evidence that these are only theoretical lim-
itations and in practice many more general settings allow for variable
screening using RP.

One might ask why it is necessary to consider yet another tool for variable
screening when there are already numerous methods such as SIS and
Lasso that do a fine job? It turns out that the key advantage of RP over
the Lasso and other standard high-dimensional screening techniques is
its ability to cope with latent confounders.

86 Chapter 3: Fast graphical model selection under latent confounding

3.2.3 Latent confounders in linear models

The presence of latent confounders is equivalent to the model where the
true signal decomposes into a sparse part β and a dense part γ. We
can see this as follows: In the regression setting we are given a set of
p predictors X1, ..., Xp. We assume each predictor has an independent
source of variation Zj and there exists a latent variable H (it could be
more than one) which also contributes to the variation of Xj :

Xj = Zj + αjH

The response Y is generated through a sparse linear model β, a contri-
bution from H and independent noise:

Yi = βTXi. + δHi + εi i ∈ {1, ..., n}

The contribution coming from δHi can be decomposed into variation
depending on Xi. and variation ψ that is uncorrelated to X. Define

γ = argmin
b∈Rp

E[||δH−Xb||22]

and so
δH = Xγ +ψ,

where Cor(X, ψ) = 0. The linear model for Y can be rephrased as

Y = X(β + γ) +ψ + ε

Hence latent variables increase the noise variance on one hand but also
distort the sparse signal. We can still detect the correct active set if γ is
distributed onto many variables and has small entries. Essentially this
requires both the correlations within X and the maximal element of γ
(||γ||∞) to be bounded from above. Of course β is not itself identifiable,
but we can still hope to recover the variables with the largest β coeffi-
cients provided βmin is sufficiently large compared to ‖γ‖∞ and ||ε||∞.
Subsequently we will give some intuition on why Ridge and RP are able
to recover large β coefficients even when there is structural noise such as
γ.

3.2.4 Why RP is only weakly affected by latent con-
founding

In this section, we want to gain an intuitive understanding for the reason
for the robustness of RP to latent confounders. For this, we compare the

3.2 Ridge, rowspace projections and latent confounding 87

X Y

Z εH

α δ

β

Figure 3.1: Observed variables variables are in grey. The signal from β is distorted
by the presence of the hidden confounder H.

outcome of SIS, Lasso and RP for a simple model. We assume there is
one latent variable H that has an influence on all but the first variable:

X1 = Z1 and Xj = Zj +H ∀ j ∈ {2, ..., p}

The response shall be

Yi = βTXi. +Hiδ + εi = X1β1 +Hiδ + εi, i ∈ {1, ..., n}

so that the only significant effect to be discovered is X1. We will argue
now on approximate terms why RP is more robust to the latent variable
H than SIS and the Lasso.

SIS orders variables based on marginal correlations, hence it would select
X1 as a first variable if the correlation of X1 and Y is larger than the
marginal correlation of any other variable Xj with Y :

|Cor(X1,Y)|︸ ︷︷ ︸
≈ β1

> |Cor(Xj ,Y)|︸ ︷︷ ︸
≈ δ

∀ j ∈ {2, ..., p}

If δ is considerably larger than β1 it is unlikely that X1 will be chosen as
the strongest effect. The Lasso encounters a similar problem. It selects,
just like SIS, the first variable based on the size of marginal correlations.
Later in the path when λ is decreased a possible coefficient vector could
look as follows:

β̂Lasso ≈ (β1, 0, ..., 0, δ, ..., 0)

The nonzero δ entry appears at a random position (at the best possible
predictor for the confounding signal in Y). So if δ is really large in
comparison to β1 the ordering of the Lasso will not be informative.

RP distributes signal onto many correlated predictors because from a
l2 penalty perspective it is cheaper to use many small coefficients than

88 Chapter 3: Fast graphical model selection under latent confounding

a single large one to explain the signal of δH. Hence RP would likely
return a coefficient vector that looks as follows:

β̂RP ≈ (β1, δ/(p− 1), ..., δ/(p− 1))

And so the requirement for RP to return the correct ordering is more
like β1 > δ/p which is far weaker than β1 > δ.

The argued outcomes of β̂Lasso and β̂RP are also plausible in view of the
l1 and l2 penalties:

β ||β||1 ||β||22
β̂Lasso ≈ (β1, 0, ..., 0, δ, 0, ..., 0) |β1|+ |δ| β2

1 + δ2

β̂RP ≈ (β1,
δ
p−1 , ...,

δ
p−1) |β1|+ |δ| β2

1 + δ2/(p− 1)

The Lasso does not benefit in terms of penalty from a dense coefficient
vector, whereas RP distributes the latent signal over many coefficients
and thus RP is likely to pick X1 first, whereas for other approaches the
orderings more crucially depend on the size of δ.

3.3 Learning graph structures with RP

3.3.1 Model setting

The preceding discussion translates directly to graphical models. Assume
we are given data X ∈ Rn×p where each row of X has the distribution

Xi. ∼ N (0,Σ), i ∈ {1, ..., n}

The conditional independence graph is defined through the set of nonzero
entries of Ω = Σ−1. In the presence of latent confounders we assume
that Σ decomposes as

Σ = Σ0 + ΓΓT

where Γ ∈ Rp×q with q < p denotes the contritbuiton of the confounders
to the covariance. Our goal now is to isolate the nonzero structure of Ω =
Σ−1

0 . In the setting without confounders it is well known (Meinshausen
and Bühlmann, 2006) that the set of nonzeros of Ω can be uncovered
through regressing each variable Xj on all others X−j (excluding Xj)
using the Lasso. The resulting (sparse) coefficients βj are estimates

3.3 Learning graph structures with RP 89

for the nonzero entries in the j-th column of Ω. This motivates the
same procedure using RP (instead of Lasso) when there is an additional
covariance term ΓΓT for the latent confounders.

3.3.2 Nodewise RP

For each variable Xj we select its most important neighbours using RP.
Technically this is achieved through the following estimator:

β̂j = XT
−j(X−jX

T
−j)
−1Xj

which lets us select the neighbours of Xj based on the size of the absolute

coefficients in β̂j . By the arguments of the previous section β̂j will
contain the correct ordering of neighbours and this ordering will not be
strongly affected by confounders. Running this over each node j is called
nodewise RP and incurs a computational cost of O(n2p2), the same cost
as the nodewise Lasso. The nodewise RP estimator is denoted by a
matrix N̂ that contains β̂j in the j-th column, where the value N̂jj is
undefined and set to one.

Through its ordering β̂j gives an estimate for the active set of the j-th
column of Ω. However, one needs to be cautious when estimating a path
of the full graph. The columns of N̂ are not necessarily comparable: The
largest value in the first column of N̂ could be smaller than all entries in
the second column (ignoring the diagonal). For a graphwise estimate, this
would imply choosing all neighbours of the second node before choosing
any neighbour of the first node. While practically possible, statistically it
would be hard to trust such an estimate. This, however, happens quite
frequently when using N̂ as an estimate for the full graph. To build
a graph edge after edge there needs to be some way of comparing the
orderings of one column to another. The simplest property that would
allow us to do so is to symmetrize N̂. That is to find a diagonal matrix
DN̂ so that N̂DN̂ is symmetric. Such an estimator is called graphwise.
The next section shows that Rowspace Projections naturally fulfill this
graphwise criterion.

3.3.3 Graphical RP

The graphical RP estimator is given as:

Ĝ = XT (XXT)−1X

90 Chapter 3: Fast graphical model selection under latent confounding

Compared to the nodewise estimate the graphical RP estimator is com-
putationally more efficient; it requires only O(np2) operations, shaving
off a factor of n from the computational complexity of nodewise RP. Note
that the computational complexity of Ĝ is equivalent to that of SIS for
graphical modelling and also the computation of the empirical covariance
matrix. Also, note that Ĝ literally is the projection to the rowspace.

We claim that the graphical RP estimator allows us to do build a path
on the edges of the whole graph by considering the orderings of the full
Ĝ matrix. To see this first note that Ĝ is symmetric, hence fulfilling
the graphwise requirement. More importantly, each column is a valid
nodewise estimate: The j-th column of Ĝ is a rescaled version of β̂j .
This follows from the following Lemma:

Lemma 3.3.1. RP-Rescaling: Define β̂j = XT
−j(X−jX

T
−j)
−1Xj and

Ĝj = XT (XXT)−1Xj(−j). Then there exists c > 0 such that

cβ̂j = Ĝj

where

c =
1

1 + XT
j (X−jXT

−j)
−1Xj

Proof. See Appendix.

This is a surprising property of both RP and also Ridge estimators. Back
in the regression setting it means that by including Y as a predictor
the resulting coefficient vector would only differ from the original one
(where Y is not a predictor) by a scaling factor. This is an especially
useful property in graphical modelling as it allows to design the nodewise
regressions in a more efficient manner.

The Rescaling-Lemma tells us that the columns of Ĝ are rescaled node-
wise RP estimates. Therefore we call Ĝ graphical RP (GRP).

3.3.4 SVD decomposition for numerical stability

An issue that arises when we normalize X to be centered and have unit
variance is that XXT is not invertible, it will have rank n− 1. One way
to address this issue is to add a small λ penalty to make the inversion
well conditioned:

Ĝλ = XT (XXT + λI)−1X

3.3 Learning graph structures with RP 91

Another way of avoiding the singularity is to use the singular value de-
composition (SVD). Decomposing X as X = UDV T we can compute

Ĝ = XT (XXT)−1X = V V T

And so the workflow would instead be to compute the SVD of X (at cost
of O(n2p)) and then to find large entries in the inner product of V and
V T . This approach has the advantage that it is numerically more stable
than inverting XXT .

3.3.5 Fast inner product computation and GRP-xyz

Each time we compute Ĝ we need to compute an inner product between
two matrices A and B and then we order the entries of ATB. Possible
examples for A and B are:

• GRP: A = X and B = (XXT)−1X

• GRP-svd: A = V T and B = V T , where V is coming from the
SVD of X = UDV T .

Choices for A and B could also include custom normalizations. The
computation of the inner product between A and B costs O(np2) and
finally the search for large entries in ATB costs around O(p2 log(p)).
So the total cost of GRP is O(np2), assuming computations of A and
B cost at most O(n2p). Hence, the multiplication and search steps are
the run time bottlenecks of GRP. These two steps are equivalent to large
inner product search - i.e. searching for large inner products between the
columns of A and B. There has recently been some effort into research
in this area of optimisation. For example, the xyz-algorithm (Thanei et
al., 2016b) with high probability can list all large inner products between
A and B in time O(npL), where L can be set by the user and the larger
this value is chosen the more accurate this search gets. We will mostly
use L = n, which yields a run time of O(n2p) for GRP. We call this
version GRP-xyz.

The xyz-algorithm finds large inner products by first transforming the
data to binary form, that is Abin, Bbin ∈ {−1, 1}n×p are binary versions
of A and B. They are transformed in such a way that large inner prod-
ucts in ATB are still large in AT

binBbin. Next one randomly subsamples

92 Chapter 3: Fast graphical model selection under latent confounding

rows of Abin and Bbin and projects them to one dimension, giving vec-
tors a, b ∈ Rp. This projection step is injective, each entry in a and b
allows to reconstruct the original binary subsample. The final step is to
look for equal entries in a and b. Equal entries are more likely to stem
from large inner products. The random subsampling and all subsequent
steps are repeated L times to increase detection power

We typically choose L = n. Ignoring the dependence of n on p this gives
an algorithm that allows to perform graphical model selection scaling
linearly in p. It is computationally cheaper than computing the actual
covariance Σ̂. We will demonstrate the capabilities of GRP-xyz in the
next section.

3.4 Experiments

In the following experiments, we use simulated and real data to verify
the claims of the previous sections.

3.4.1 Simulating a graphical model with latent con-
founders

Xj denotes a node in a graph with Var(Xj) = 1. We may decompose
the variance of Xj as follows:

1 = Var(Xj) = Var(
∑

l∈Pa(j)

XlAlj)︸ ︷︷ ︸
f0

+ Var(εi)︸ ︷︷ ︸
f1

+ Var(

q∑
k=1

Hkγjk)︸ ︷︷ ︸
f2

. (3.5)

Here Pa(j) denotes the parental set of node j, A ∈ Rp×p is the adjacency
matrix of the graph (upper triagonal), γjk is the effect of the k-th latent
variable on the j-th node. f0 is the contribution of the actual signal,
f1 is the contribution of the noise and f2 the contribution of the latent
confounders. We construct a graph as follows:

1.) Draw a random causal order of the graph: Number the variables.

2.) Draw a parental set that fulfills the graph structure: Construct
the adjacency matrix A. In a first step this is just zeros and ones,
decribing the structure of the graph.

3.4 Experiments 93

3.) For each parent Xl of Xj draw the parent coefficient βlj ∼ N(0, 1)

4.) Set Alj = βlj/c, where c is chosen so that decomposition 3.5 is
fulfilled.

S
IS

S
IS

S
IS

S
IS

S
IS

S
IS

S
IS

S
IS︸ ︷︷ ︸

a.)

︸ ︷︷ ︸
b.)

︸ ︷︷ ︸
c.)

Figure 3.2: Averaged estimated graphs for SIS (a.), GRP (b.) and NS (c.). The correct
graph is the circle in the center of each point cloud. The estimated edges are indicated
in red. The edges are averaged over estimates from many different data realizations,
strong red coloring indicates an edge often selected and more transparent coloring
indicates that this edge was only chosen a few times. For each method, we test three
different settings from left to right: No latent confounding, weak confounding and
strong confounding. Both SIS and nodwise-Lasso estimate an arbitrarily wrong graph
in the presence of strong confounders, whereas GRP is robust to latent confounding.

This procedure gives us the correctly normalized adjacency matrix A,
from which we can easily compute the covariance matrix and its inverse:

Ω = Σ−1 = (I −A)D−1(I −AT),

WhereD ∈ Rp×p is a diagonal matrix of the residual variance, henceD =
diag(f1). Finally, we add latent confounders adhering to decomposition
3.5. We simulate the graph in such a, rather involved, way because we
want to control these different sources of variation. It is quite common
in the literature (Luo et al., 2014) to construct an inverse covariance and
then adjust the diagonal to make it symmetric positive definite. With
such a construction the resulting model has a large residual variance f1

and the signal to noise ratio f0/f1 varies a lot from node to node. This
renders graphical estimation trivial for a few nodes and impossible for
most others. Our framework allows us to directly control the residual
variances and we can explicitly set the difficulty of the problem. We
simulate from the following different graphs:

• A.) Random graph: If i 6= j then Ωij 6= 0 with probability ps.

• B.) Cluster: Clusters of different sizes. If (i, j) belong to the same
cluster, then they are connected with probability κ.

94 Chapter 3: Fast graphical model selection under latent confounding

• C.) Banded: If |i − j| < ρ then Ωij = 1, where ρ is called the
bandwidth. A chain graph would be a special case with ρ = 1.

To get a feeling for realistic values of f0, f1 and f2 we compare the his-
togram of the simulated covariances to the histogram of real covariances.

We find that for graphs without latent variables the histogram of the
covariance is skinny; there is only very few large entries and most entries
are concentrated around zero. This does not compare well to real-world
covariances (Figure 3.3), where there are many more large entries and
they are more evenly distributed in (−1, 1). When we add latent variables
to the graph the distribution of the entries of the covariance matrix is
similar to that of real covariances. We found that realistic values for the
decomposition are for example f1 = 0.3 and f2 = 0.6. We are not arguing

Random Cluster Banded

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

Gene expression Riboflavin

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

Figure 3.3: Left (2 rows): Correlation histogram of the three graph types A-C with
n = 100 and p = 1000. The top row corresponds to the data without latent con-
founders f2 = 0 and with residual variance f1 = 0.9. The bottom row depicts the
same covariances with q = 5 latents where f1 = 0.3 and f2 = 0.6. Right: Two real
data covariances, left is a gene expression data set (Lonsdale and al., 2013) and right
is the Riboflavin data set (Dezeure et al., 2015). Both of these real data sets show a
similar covariance to the simulated ones where latent confounders are present.

that in general latent variables are present in data, it seems however that
at least for the examples above, latent confounders offer a simple way to
overcome the unrealistic distribution of the covariance entries when the
underlying graph is sparse.

3.4.2 Average precision

In this experiment, we compare different methods for selecting graphical
models. The goal is to understand how the performance changes once
more and more latent factors are added or their strength increases. As a
key performance indicator, we use precision-recall curves. We compute

3.4 Experiments 95

SIS NS PCA (elbow) PCA (oracle) FastGGM GRP GRP−xyz

0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
0.0

0.2

0.4

q/n

av
er

ag
e

pr
ec

is
io

n

τ 0 0.2 0.4 0.7 1.3 2.5 6

Figure 3.4: Comparison of average precision for learning the structure of a random
graph. We fix the signal at f0 = 0.3 and increase the number of latents to samples
q/n from 0 up to 0.8. Each curve corresponds to a different value of τ = f2/f1.

the area under these curves and compare it for different methods. This is
called the average precision. An average precision close to 1 implies the
method does a perfect job at estimating the graph structure, whereas a
value around 0 indicates the method does not work and picks up random
noise.

The experiments are designed as follows: We sample from a random
graph with n = 100, p = 1000, sparsity roughly s = 10 and a signal
strength of f0 = 0.3. Let us encode the tradeoff between independent
noise and latent variance by the ratio τ = f2/f1. τ = 0 means there are
no latents affecting the data, τ large means that latents have a strong
influence on the data. We vary both τ in an interval of τ ∈ [0, 6] and q
the number of latents q/n ∈ [0, 0.8]. Each method is assessed according
to the following two characteristics:

• Robustness to q: How do different numbers of latent variables affect
the average precision.

• Robustness to τ : How do different strengths of latents affect the
average precision.

We note the following key observations (Figure 3.4):

• Both nodewise Lasso and SIS react strongly to latents when their
number is small (q < 5). After this initial drop the average preci-
sion increases as the number of latents increases while τ remains
fixed. This comes from the fact that more latents with the same
strength are less correlated and so the latent variation feels more
like additional noise. If the number of latents keeps increasing

96 Chapter 3: Fast graphical model selection under latent confounding

we end up in the setting where the residual noise variance equals
f1 + f2.

• In contrast to SIS and nodewise Lasso the PCA based methods
struggle more when there are many latent confounders. Then the
latent signal spreads over many principal components and is much
harder to remove without destroying actual signal.

• GRP is the most stable of all the methods: Its performance de-
creases only slightly when the number of latents or their strength
is increased. Compared to PCA it suffers in accuracy when there
are only a few latents. Also, note that eventhough GRP-xyz is an
approximate version of GRP, it nevertheless has a similar accuracy
and behaviour to GRP overall.

3.4.3 Asymptotic run time behaviour

High-dimensional graphical model selection is computationally expen-
sive. GRP and in particular GRP-xyz offers run time improvements over
many traditional methods, which allows us to consider sparse graphs with
node counts beyond 104. In this experiment, we want to demonstrate the
computational advantage of GRP and its variants.

We simulate from a chain graph. For timing and memory reasons we
don’t consider a full chain graph, but instead simulate a chain of length
n and the rest of the graph remains empty. We slowly increase n while p
ranges from 100 up to 30000. The pairings of n and p are approximately
n ≈ 2

√
p.

The experiment shows (Figure 3.5) clearly how SIS and GRP have much
lower run time than the other methods. The run time benefit of GRP-
xyz becomes apparent as the dimensionality increases: It takes roughly
30 seconds to fit a graph of size p = 30000. More sophisticated methods
such as LRpS or Glasso cannot be used within a reasonable time on data
sets larger than p = 500 due to their restrictive run time behaviour. In
general, most method’s run time does not seem to be affected by the
presence of latents except for FastGGM where the EM-type algorithm
seems to have convergence issues in the presence of strong latents. The
practical run time behaviour of GRP, its robustness to latent variables
and its potential speed up through xyz opens up many areas of applica-
tions where the number of variables above 104 is the norm.

3.5 Real data example: modelling gene regulatory networks across multiple
tissues 97

no confounding confounding, q=3 confounding, q=80% n

100 1000 10000 100 1000 10000 100 1000 10000

−2

0

2

p

lo
g 1

0(
tim

e)

Method
SIS
NS

PCA (elbow)
Glasso

FastGGM (single)
FastGGM (multi)

LRpS
GRP

GRP−xyz

Figure 3.5: Comparison of run time (log-scale to basis of 10) of different methods
and their average precision while fixing the signal strength to f0 = 0.2. The average
precision is indicated by the size of the dots. Depicted are three settings of a chain
graph: One with no latents τ = 0 (left), another one with τ = 1 and q = 3 latents
(center) and a third graph with τ = 1 and many latents q = 0.8n. Note that not all
methods can be run on a graph of size p = 30000 due to their massive run time and
memory requirement for such data sizes.

3.5 Real data example: modelling gene reg-
ulatory networks across multiple tissues

We illustrate a few key properties of our approach on a collection of
datasets made publicly available by the GTEX consortium (Lonsdale
and al., 2013). The performance of the various methods is first assessed
in terms of sensitivity to the addition of confounding. We then use an
external source of validation – the gene ontology (Ashburner, 2000) – in
order to measure the biological relevance of the estimated graphs.

3.5.1 The GTEX datasets

The GTEX consortium conducted a large-scale RNA-Seq experiment
which generated gene expression data for more than fifty human tis-
sues coming from hundreds of human donors. The resulting datasets
have two features that make them particularly well-suited for demon-
strating the behaviour of the suggested estimator. First, they are very
high-dimensional since the number of genes expressed in any given tis-
sue (p) is typically around 15, 000, while the sample size (n) is at most
500. Second, the kind of confounding we assume in this paper is ubiq-
uitous in genomics applications (Gagnon-Bartsch et al., 2013; Leek and

98 Chapter 3: Fast graphical model selection under latent confounding

Storey, 2007; Stegle et al., 2012). In their own analyses, the GTEX con-
sortium accounted for confounding by leveraging external information
(e.g. gender, genetic relatedness between donors) and by inferring some
confounders from the data itself using PEER (Stegle et al., 2012). The
resulting sets of covariates (around 60 per tissue) are available on their
website.

For each tissue – e.g. whole blood, lung, thyroid – we use an n × p
data matrix X of gene expression levels, along with the n × k matrix
of covariates which are deemed confounders by the consortium. Each
of the datasets available had already been fully processed, normalised
and filtered by GTEX. We further filtered out tissues with n < 300.
Thirteen tissues passed this filter, with a ratio n/p ranging between 0.02
and 0.03 and values of p ranging between 14, 337 and 16, 306. Such large
values of p prevented us from running some of the methods mentioned
in our numerical simulations. We restricted ourselves to neighbourhood
selection (NS) with the Lasso, SIS, FastGGM, GRP and GRP-xyz with
L = 200.

For a fixed tissue, we ordered the covariates according to how “influen-
tial” they are in X by performing a univariate linear regression of each
of the p gene expression levels on each of the k covariates. The de-
gree of influence of a covariate was defined to be its average r-squared
over all p regressions, thus allowing us to rank covariates from strongest
to weakest in terms of variance explained. Thanks to this ranking, we
defined a sequence of datasets Xj as follows. For j ∈ {0, . . . , k}, we
let Xj = X −Hj(H

T
j Hj)

−1HT
j X, where Hj is the n × j matrix with

columns the j most influential covariates for the tissue under consider-
ation. Thus, X0 denotes the “raw”, or confounded, data. At the other
end, Xk is the “unconfounded” dataset, the one that is typically in use
in genomics applications (provided enough external information is avail-
able).

For any given tissue, each of the aforementioned methods yields a se-
quence of graphs (also called graph path) with an increasing number of
edges. Consequently, for a given method M , we denote by GM (i,X)
the graph with i edges returned by method M when applied to dataset
X. For example, if M is neighbourhood selection, then GNS(i,X) is
obtained by reducing the value of the shrinkage parameter λ until the
estimated graph has exactly i edges. Likewise, if M ∈ {GRP, GRP-
xyz, SIS, FastGGM}, GM (i,X) is obtained by thresholding the absolute
value of the coefficients in such a way that exactly i entries are above the

3.5 Real data example: modelling gene regulatory networks across multiple
tissues 99

threshold. Given any two graphs – G1 and G2, say – we measure their
similarity by computing the Jaccard index of their edge sets. We write
J (G1,G2).

3.5.2 Results

We first sought to assess the sensitivity of the various methods to the
addition of confounding. To that end, we looked at the similarity be-
tween the paths estimated in the confounded and the unconfounded
datasets. More precisely, for each tissue and each method, we com-
puted SimM,i,j := J (GM (i,Xj),GM (i,Xk)) as a function of i, and for
a few values of j : 0 (the raw dataset), 5, 10, 30. An overall measure
of stability, AvgSimM,i,j , is obtained by averaging the value of SimM,i,j

over the 13 distinct tissues. In Figure 3.6 a), we plot AvgSimM,i,j for
the first 100 graphs entering the path of each method (in the supple-
mentary materials, a breakdown by tissue is also given). Unsurprisingly,
as j gets closer to k, the datasets Xj and Xk become more and more
similar and the Jaccard index between the estimates gets closer to 1.
GRP’s Jaccard index also improves as j increases, but very little since it
is already rather high when j = 0. Given that a number of the covariates
were estimated using external data (e.g. gender and genotype data), this
is an encouraging result. It tends to show that GRP, while helped by
the lack of confounding, remains consistent in its estimates. In contrast,
SIS’s path is strongly influenced by the presence of the covariates, with
a Jaccard similarity between raw and unconfounded data nearing zero.
Consistently returning the same set of edges irrespective of confounding
does not imply anything about the quality of the estimates. It is pos-
sible that NS’s and SIS’s paths become better and better as covariates
get regressed out. To test this hypothesis, we scored the graphs using
a reference dataset: the gene ontology (Ashburner, 2000). Briefly, the
gene ontology is a popular database which allows the annotation of each
gene by a set of terms classified into three categories: cellular compo-
nents, molecular function and biological process. Thus, genes that tend
to perform similar functions or to interact are expected to be annotated
by similar terms. By mapping each node of each graph to its GO terms,
one can compute an “enrichment statistic” reflecting whether the graph
contains edges between related genes more often than would be expected
in a random graph with a similar topology (such a graph has an expected
statistic of 1) (Frot et al., 2018, §6.2). By randomly permuting the an-

100 Chapter 3: Fast graphical model selection under latent confounding

a) j=0 j=5 j=10 j=30

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Number of edges (i)

Ja
cc

. I
nd

ex
. (

A
vg

S
im

M
, i

, j
)

Method SIS NS FastGGM GRP GRP−xyz

b) j=0 j=5 j=30 j= kT

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
0.0

0.1

0.2

0.3

0.4

Number of edges (i)

A
vg

 E
nr

. S
ta

t.

Method SIS NS FastGGM GRP GRP−xyz

Figure 3.6: a) AvgSimM,i,j . Jaccard index between the edge sets returned by the
methods in the unconfounded and confounded datasets, as a function of the number of
edges i (x-axis) and the number of covariates being regressed j. Results are averaged
over 13 distinct tissues. b) Average enrichment statistic, as a function of the number
of edges i, and the number of covariates being regressed j. For j = k, all available
covariates are regressed out. Values of the enrichment statistic are first normalised
within the range [0, 1] for each tissue, and then averaged over tissues.

3.5 Real data example: modelling gene regulatory networks across multiple
tissues 101

notations, empirical p-values can also be obtained. We computed this
statistic for the first 100 graphs entering the path of each method, in
each tissue. To make results comparable across tissues, we then divided
the values of the statistic by the maximum value obtained by any of the
methods in a given tissue. In summary, enrichment statistics were first
normalised within the range [0, 1] on a tissue basis, and then averaged
across tissues. Figure 3.6 b) shows the value of the average enrichment
statistic as a function of the number of edges and the number of covari-
ates regressed out (a detailed plot with values for each tissue is given
in the supplementary materials). First, we see that for most methods
the first few edges entering the path tend to be of high quality. Second,
GRP and GRP-xyz yield graphs that are at least as biologically rele-
vant as other methods for all values of i, especially in the presence of
confounding. Even though GRP-xyz appears less stable than GRP in
Figure 3.6 a), its performance according to the statistic is very similar
to GRP’s, which indicates that both methods are capable of picking up
the same signal in these rather noisy data sets. We also note how the
performance of NS steadily increases as more and more covariates are
regressed out until it equals GRP’s. This tends to confirm that the co-
variates estimated by the GTEX consortium were indeed masking true
biological signal. Considering the speed-up provided by GRP-xyz, it is
encouraging to see that its performance in the raw dataset is on par
with NS’s in the unconfounded one. On these datasets, the runtime of
GRP-xyz was of the order of a second while GRP’s was in the minutes;
NS’s and FastGGM’s were in the hours up to a day. Finally, we recall
once more that some of the covariates are estimated using external in-
formation that may not always be available in other applications. Thus,
although NS and GRP offer similar performances when all covariates are
accounted for, one would expect GRP to be more applicable in practice
since it performs almost as well in the raw dataset on an unprocessed
data and hence GRP is not in need of expert or domain knowledge in
order to find and remove confounders. This potentially saves a lot of
tedious human labor.

102 Chapter 3: Fast graphical model selection under latent confounding

3.6 Appendix

3.6.1 Proof of the RP-Rescaling lemma

Proof. Use the rank one update formula:

(XXT)−1 = (X−jX
T
−j + XjX

T
j)−1

= (X−jX
T
−j)
−1 −

(X−jX
T
−j)
−1XjX

T
j (X−jX

T
−j)
−1

1 + XT
j (X−jXT

−j)
−1Xj

Ĝj is given by

Ĝj = XT
−j(XXT)−1Xj

= XT
−j(X−jX

T
−j + XjX

T
j)−1Xj

= XT
−j(X−jX

T
−j)
−1Xj

− 1

1 + XT
j (X−jXT

−j)
−1Xj

XT
−j(X−jX

T
−j)
−1XjX

T
j (X−jX

T
−j)
−1Xj

= XT
−j(X−jX

T
−j)
−1Xj

−
XT
j (X−jX

T
−j)
−1Xj

1 + XT
j (X−jXT

−j)
−1Xj

XT
−j(X−jX

T
−j)
−1Xj

= β̂j −
XT
j (X−jX

T
−j)
−1Xj

1 + XT
j (X−jXT

−j)
−1Xj

β̂j

= β̂j
1

1 + XT
j (X−jXT

−j)
−1Xj

And so c = 1
1+XT

j (X−jXT
−j)
−1Xj

Bibliography

Achlioptas, D. (2003). “Database-friendly random projections: Johnson-
Lindenstrauss with binary coins.” Journal of Computer and System
Sciences.

Agarwal, P., H. Edelsbrunner, O. Schwarzkopf, and E. Welzl (1991). “Eu-
clidean minimum spanning trees and bichromatic closest pairs.” Dis-
crete & Computational Geometry.

Ailon, N. and B. Chazelle (2006). “Approximate Nearest Neighbors and
the fast Johnson-Lindenstrauss Transform.” Proceedings of the 38th
Annual ACM Symposium on Theory of Computing.

Arkin, Y., E. Rahmani, M. Kleber, R. Laaksonen, W. März, and E.
Halperin (2014). “EPIQ: efficient Detection of SNP–SNP epistatic in-
teractions for quantitative traits.” Bioinformatics.

Ashburner, M. et al. (2000). “Gene Ontology: Tool for the unification of
biology.” Nature Genetics.

Bickel, P., Y. Ritov, and A. Tsybakov (2010). “Hierarchical selection of
variables in sparse high-dimensional regression.” IMS Collections.

Bien, J., J. Taylor, and R. Tibshirani (2013). “A lasso for hierarchical
Interactions.” Annals of Statistics.

Blocki, J., A. Blum, A. Datta, and O. Sheffet (2012). “The Johnson-
Lindenstrauss Transform itself preserves differential privacy.” 53rd An-
nual Symposium on Foundations of Computer Science.

Breiman, L. (2001). “Random forests.” Machine Learning.
Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). “Classification

and regression trees.”
Bühlmann, P., M. Kalisch, and L. Meier (2014). “High-dimensional statis-

tics with a view towards applications in biology.” Annual Review of
Statistics and Its Application.

104 BIBLIOGRAPHY

Cai, T. T., W. Liu, and H. H. Zhou (2016). “Estimating sparse precision
matrix: Optimal rates of convergence and adaptive estimation.” Annals
of Statistics.

Cai, T., W. Liu, and X. Luo (2011). “A constrained `1 minimization ap-
proach to sparse precision matrix estimation.” Journal of the American
Statistical Association.

Candès, E. J., X. Li, Y. Ma, and J. Wright (2011). “Robust principal
component analysis?” Journal of the ACM.

Chandrasekaran, V., S. Sanghavi, P. A. Parrilo, and A. S. Willsky (2011).
“Rank-sparsity incoherence for matrix decomposition.” SIAM Journal
on Optimization.

Chandrasekaran, V., P. A. Parrilo, and A. S. Willsky (2012). “Latent
variable graphical model selection via convex optimization.” Annals of
Statistics.

Cook, R. D. (1977). “Detection of influential observations in linear re-
gression.” Technometrics.

Dasgupta, S. and A. Gupta (2003). “An elementary proof of a theorem
of Johnson and Lindenstrauss.” Random Structures and Algorithms.

Davie, A. and A. Stothers (2013). “Improved bound for complexity of
matrix multiplication”. Proceedings of the Royal Society of Edinburgh:
Section A Mathematics.

Dempster, A. (1972). “Covariance selection”. Biometrics.
Dezeure, R., P. Bühlmann, L. Meier, N. Meinshausen, et al. (2015).

“High-dimensional Inference: Confidence intervals, p-values and R-
software hdi.” Statistical science.

Dhillon, P. S., D. P. Foster, and S. Kakade (2013a). “A risk comparison
of ordinary least squares vs ridge regression.” The Journal of Machine
Learning Research.

Dhillon, P., Y. Lu, D. P. Foster, and L. Ungar (2013b). “New subsam-
pling algorithms for fast least squares regression.” Advances in Neural
Information Processing Systems.

Efron, B., T. Hastie, I. Johnstone, and R. Tibshirani (2004). “Least angle
regression.” Annals of Statistics.

Fan, J. and J. Lv (2008). “Sure independence screening for ultrahigh-
dimensional Feature Space.” Journal of the Royal Statistical Society,
Series B.

Friedman, J. (1991). “Multivariate adaptive regression splines.” Annals
of Statistics.

BIBLIOGRAPHY 105

Friedman, J., T. Hastie, and R. Tibshirani (2010). “Regularization paths
for generalized linear models via coordinate descent.” Journal of Sta-
tistical Software.

Friedman, J., T. Hastie, and R. Tibshirani (2008). “Sparse inverse co-
variance estimation with the graphical lasso.” Biostatistics.

Frot, B., L. Jostins, and G. McVean (2018). “Graphical model delec-
tion for gaussian conditional random fields in the presence of latent
variables.” Journal of the American Statistical Association.

Gagnon-Bartsch, J. A., L. Jacob, and T. P. Speed (2013). Removing un-
wanted variation from high-dimensional data with negative controls.
Tech. rep. Department of Statistics, University of California at Berke-
ley.

Hao, N. and H. Zhang (2014). “Interaction screening for ultrahigh-dimensional
data.” Journal of the American Statistical Association.

Indyk, P. and R. Motwani (1998). “Approximate nearest neighbors: to-
wards removing the curse of dimensionality.” Proceedings of the 30th
Annual ACM Symposium on Theory of Computing.

Johnson, W. and J. Lindenstrauss (1984). “Extensions of lipschitz map-
pings into a hilbert space.” Contemporary Mathematics: Conference
on Modern Analysis and Probability.

Johnstone, I. (2001). “On the distribution of the Largest eigenvalue in
principal components analysis.” Annals of Statistics.

Kabán, A. (2014). “New bounds on compressive linear least squares re-
gression”. Artificial Intelligence and Statistics.

Kemmeren, P. and et al. (2014). “Large-scale genetic perturbations reveal
regulatory networks and an abundance of gene-specific repressors.”
Cell.

Knutti, R., D. Masson, and A. Gettelman (2013). “Climate model geneal-
ogy: Generation CMIP5 and how we got there.” Geophysical Research
Letters.

Kong, Y., D. Li, Y. Fan, and J. Lv (2016). “Interaction pursuit with
feature screening and selection.” arXiv:1605.08933.

Lauritzen, S. (1996). “Graphical models.” Oxford University Press.
Le Gall, F. (2012). “Faster algorithms for rectangular matrix multiplica-

tion.” 53rd Annual Symposium on Foundations of Computer Science.
Leek, J. T. and J. D. Storey (2007). “Capturing heterogeneity in gene

expression studies by surrogate variable analysis.” PLoS Genetics.
Leskovec, J., A. Rajaraman, and J. Ullman (2014). “Mining of massive

data sets”. Cambridge University Press.

106 BIBLIOGRAPHY

Lonsdale, J. and et al. (2013). “The genotype-tissue expression (GTEx)
project.” Nature Genetics.

Lu, Y., P. Dhillon, D. P. Foster, and L. Ungar (2013). “Faster ridge regres-
sion via the subsampled randomized Hadamard Transform.” Advances
in Neural Information Processing Systems.

Luo, S., R. Song, and D. Witten (2014). “Sure screening for gaussian
graphical models.” arXiv:1407.7819.

Mahoney, M. W. and P. Drineas (2009). “CUR matrix decompositions
for improved data analysis.” Proceedings of the National Academy of
Sciences.

Maillard, O. A. and R. Munos (2009). “Compressed least-squares regres-
sion”. Advances in Neural Information Processing Systems.

Marx, V. (2013). “The big challenges of big data.” Nature.
Marzetta, T., G. Tucci, and S. Simon (2011). “A random matrix theoretic

approach to handling singular covariance estimates.” IEEE Trans. In-
formation Theory.

McWilliams, B., G. Krummenacher, M. Lučić, and J. M. Buhmann (2014a).
“Fast and robust least squares estimation in corrupted linear models.”
Advances in Neural Information Processing Systems.

McWilliams, B., C. Heinze, N. Meinshausen, G. Krummenacher, and
H. P. Vanchinathan (2014b). “LOCO: Distributing ridge regression
with random projections.” arXiv:1406.3469.

Meinshausen, N. and P. Bühlmann (2006). “High-dimensional graphs and
variable selection with the lasso.” Annals of Statistics.

– (2010). “Stability selection.” Journal of the Royal Statistical Society,
Series B.

Petrov, V. (1964). “On local limit theorems for sums of independent
random variables.” Theory of Probability & Its Applications.

Ravikumar, P., M. Wainwright, G. Raskutti, and B. Yu (2010). “High-
dimensional covariance estimation by minimizing `1-penalized log-determinant
divergence.” Annals of Statistics.

Ren, Z. and H. H. Zhou (2012). “Discussion: latent variable graphical
model selection via convex optimization.” Annals of Statistics.

Ren, Z., T. Sun, C.-H. Zhang, H. H. Zhou, et al. (2015). “Asymptotic
normality and optimalities in estimation of large gaussian graphical
models.” Annals of Statistics.

Rothman, A., P. Bickel, E. Levina, and J. Zhu (2008). “Sparse permuta-
tion invariant covariance estimation.” Electronic Journal of Statistics.

Sedgewick, R. (1998). “Algorithms in C.”

BIBLIOGRAPHY 107

Shah, R. (2016). “Modelling interactions in high-dimensional data with
backtracking.” Journal of Machine Learning Research.

Shah, R. and N. Meinshausen (2014). “Random intersection trees.” The
Journal of Machine Learning Research.

Shah, R. and R. J. Samworth (2013). “Variable selection with error con-
trol: another Look at stability selection.” Journal of the Royal Statis-
tical Society, Series B.

Shamos, M. and D. Hoey (1975). “Closest-point problems”. 16th Sympo-
sium on Foundations of Computer Science.

Stegle, O., L. Parts, M. Piipari, J. Winn, and R. Durbin (2012). “Using
probabilistic estimation of expression residuals (PEER) to obtain in-
creased power and interpretability of gene expression analyses.” Nature
Protocols.

Strassen, V. (1969). “Gaussian elimination is not optimal.” Numerische
Mathematik.

Thanei, G.-A. (2016). xyz R package.
Thanei, G.-A., C. Heinze, and N. Meinshausen (2016a). “Random pro-

jections for large-scale regression.” Big and Complex Data Analysis,
Springer.

Thanei, G.-A., N. Meinshausen, and R. D. Shah (2016b). “The xyz algo-
rithm for fast interaction search in high-dimensional data.” arXiv:1610.05108.

Thanei, G.-A., B. Frot, N. Meinshausen, and R. D. Shah (2018). “Rows-
pace projections for fast graphical modelling in the presence of latent
confounders.” Manuscript.

Tibshirani, R. (1996). “Regression shrinkage and selection via the lasso.”
Journal of the Royal Statistical Society, Series B.

Tropp, J. A. (2011). “Improved analysis of the subsampled randomized
hadamard transform.” Advances in Adaptive Data Analysis.

Wang, X. and C. Leng (2015). “High-dimensional ordinary least dquares
projection for screening variables.” Journal of the Royal Statistical So-
ciety, Series B.

Williams, V. (2012). “Multiplying matrices faster than coppersmith-
winograd.” Proceedings of the 44th annual ACM symposium on Theory
of Computing.

Winkelmann, B., W. März, B. Boehm, R. Zotz, J. Hager, P. Hellstern,
and J. Senges (2001). “Rationale and design of the LURIC study-
a resource for functional genomics, pharmacogenomics and long-term
prognosis of cardiovascular disease.” Pharmacogenomics.

108 BIBLIOGRAPHY

Wu, J., B. Devlin, S. Ringquist, M. Trucco, and K. Roeder (2010).
“Screen and clean: a tool for identifying interactions in genome-wide
association studies.” Genetic Epidemiology.

Yuan, M. and Y. Lin (2007a). “Model selection and estimation in the
gaussian graphical model.” Biometrika.

– (2007b). “On the non-negative garrotte estimator.” Journal of the
Royal Statistical Society, Series B.

Yuan, M. (2010). “High-dimensional inverse covariance matrix estimation
via linear programming.” Journal of Machine Learning Research.

Zhang, L., M. Mahdavi, R. Jin, T. Yang, and S. Zhu (2013). “Recovering
optimal solution by dual random projection.” Conference on Learning
Theory.

Zhang, T. and H. Zou (2014). “Sparse precision matrix estimation via
lasso penalized D-trace loss.” Biometrika.

Zhou, S., J. D. Lafferty, and L. A. Wasserman. (2007). “Compressed
regression.” Advances in Neural Information Processing Systems.

Zou, H. and T. Hastie (2005). “Regularization and variable selection via
the elastic net.” Journal of the Royal Statistical Society, Series B.

Curriculum Vitae

Name Gian-Andrea Thanei

Nationality Swiss

Citizen of Zürich

Date of birth June 13, 1989

Education

• ETH Zürich: Doctoral study

– Department of Mathematics (November 2014 - present)
Supervisors: Nicolai Meinshausen and Rajen Shah (Cambridge)

• ETH Zürich: Master of Sciences in Mathematics (September 2010
- July 2014)

Working Experience

• Winton Capital, Zürich; July 2017 - September 2017

• Super Computing Systems, Zürich; August 2014 - October 2014

Academic Visits

• Newton Institute, University of Cambridge, Cambridge, UK; April
2018, Host: Rajen Shah

110 Curriculum Vitae

Submitted papers

• G. Thanei, R. Shah and N. Meinshausen. (2016). The xyz-algorithm
for fast high-dimensional interaction search. Available at: arXiv:1610.05108.
Resubmitted to JMLR (minor revision).

Working papers

• G. Thanei, B. Frot, R. Shah and N. Meinshausen. Rowspace pro-
jections for fast graphical model selection under latent confounding.

Publications

• G. Thanei, C. Heinze-Deml and N. Meinshausen (2016). Random
projections for large-scale regression (2016). Big and Complex Data
Analysis, Methodologies and Applications, Springer Series

• M. Sokolov, J. Ritscher, N. MacKinnon, J. Bielser, D. Brühlmann,
D. Rothenhäusler, G. Thanei, M. Soos, M. Stettler, J. Souquet, H.
Broly, M. Morbidelli and A. Butté (2016). Robust factor selection
in early cell culture process development for the production of a
biosimilar monoclonal antibody. Biotechnology Progress.

R packages

• xyz: On CRAN and github.

(Invited) Talks

• The xyz algorithm for fast interaction search in high-dimensional
data. ERCIM, December 2017, London.

• The xyz algorithm for fast interaction search in high-dimensional
data. EMS, July 2017, Helsinki.

• The causal feedback model in time series. March 2017, Oberwol-
fach.

• Fast interaction search for logistic regression. Google Workshop,
April 2016, Zürich.

Curriculum Vitae 111

• Optimal projections for interaction search. March 2016, Oberwol-
fach.

	Abstract
	Zusammenfassung
	Introduction
	Random projections for large-scale regression
	Introduction
	Theoretical results
	Averaged compressed least squares
	Discussion
	Appendix

	 Fast interaction search in high-dimensional data
	Introduction
	Related work
	Organisation of the paper

	The xyz algorithm for binary data
	Optimality of minimal subsampling
	The final version of xyz
	Computational and statistical properties of xyz

	Interaction search on continuous data
	Continuous Y and binary X
	Continuous Y and continuous X

	Application to Lasso regression
	Experiments
	Comparison of minimal subsampling and dense projections
	Scaling
	Run on SNP data
	Regression on artificial data
	Regression on real data

	Discussion
	Appendix

	Fast graphical model selection under latent confounding
	Introduction
	Related work
	Organisation of the paper

	Ridge, rowspace projections and latent confounding
	Model setting
	A brief review of ridge and rowspace projections
	Latent confounders in linear models
	Why RP is only weakly affected by latent confounding

	Learning graph structures with RP
	Model setting
	Nodewise RP
	Graphical RP
	SVD decomposition for numerical stability
	Fast inner product computation and GRP-xyz

	Experiments
	Simulating a graphical model with latent confounders
	Average precision
	Asymptotic run time behaviour

	Real data example: modelling gene regulatory networks across multiple tissues
	The GTEX datasets
	Results

	Appendix
	Proof of the RP-Rescaling lemma

	Bibliography
	Curriculum Vitae

