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A fully-autonomic methodology for embedding self-tuning competence
in online traffic control systems

Anastasios Kouvelas1, Elias Kosmatopoulos2, Ioannis Papamichail3, Markos Papageorgiou3

Abstract— Recent advances in technology and computer sci-
ence play a key role towards the design of the next generation
of Intelligent Transportation Systems (ITS). The architecture
of such complex systems is crucial to include supporting
algorithms that can embody self managing properties within the
existing ITS strategies. This paper presents a recently developed
adaptive optimization algorithm that combines methodologies
from the fields of traffic engineering, optimization and machine
learning in order to embed self-tuning properties in traffic
control systems. The derived Adaptive Fine-Tuning (AFT)
algorithm comprises a fully-autonomic tool that can be used in
online ITS applications of various types, in order to optimize
their performance by automatically fine-tuning the system’s
design parameters. The algorithm is evaluated in simulation
experiments, examining the ability of self-tuning the design pa-
rameters of a traffic control strategy for urban road networks.

I. INTRODUCTION

Despite the continuous advances in the fields of control
and computing, the design and deployment of efficient traffic
control systems remains a significant objective. This is
mainly due to the complexity and the strong nonlinearities
involved in the modeling of traffic flow processes. Practical
control design approaches are often based on simplified
models for the system dynamics, as the use of more complex
models is virtually unavoidable in most real life applications.
As a result, although the derived regulators are theoretically
optimal, they usually exhibit suboptimal performance. The
ultimate performance of a designed or operational traffic
control system (e.g. urban signal control or ramp metering
or variable speed limit) depends on two main factors: (a)
the exogenous influences, e.g. demand, weather conditions,
incidents, and (b) the values of some design parameters
included in the control strategy.

Every time a new control algorithm is implemented in the
real world, there is a period of (sometimes tedious) fine-
tuning activity that is needed in order to elevate the control
algorithm to its best achievable performance. Fine-tuning
concerns the selection of appropriate (or even optimal) values
for a number of design parameters included in the control
strategy. Typically, this procedure is conducted manually,
via trial-and-error, relying on expertise and human judgment
and without the use of a systematic approach. Currently, a
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considerable amount of human effort and time is spent by
experienced engineers, practitioners and traffic operators on
tuning operational systems. In many cases, the result of this
manual procedure does not lead to a desirable outcome in
terms of a measurable performance metric.

This paper presents a recently developed methodology
that combines the principles of traffic engineering, automatic
control and machine learning and enables online self-tuning
autonomicity to operational traffic systems. This problem is
discussed in depth in [1] where the algorithm AFT (Adaptive
Fine-Tuning), which was originally introduced in [2], is
analyzed and tested in different simulation environments.
This fully autonomic online procedure is aiming at replacing
the conventional manual optimization practice by embedding
self-tuning capabilities in control strategies. AFT can self-
adjust the tunable parameters of control systems, so that
they reach the maximum (measurable) performance that is
achievable with the utilized control strategy.

II. BACKGROUND

A. Problem formulation

Consider a general discrete-time control system which is
dictated by different feedback-type regulators and its under-
lying dynamics are described by the following nonlinear first-
order difference equation

z(t+ 1) = F (z(t), ui(t), d(t), t) , z(0) = z0 (1)

where z(t), ui(t), d(t) are the vectors of system states,
control inputs, and exogenous (possibly measurable) signals,
respectively, t = 0, 1, 2, . . . denotes the discrete time-index,
i denotes the regulator-index and F (·) is a sufficiently
smooth nonlinear vector function. Note, that the proposed
methodology can be applied to a control system even if the
function F is unknown.

Consider also, that one or more control laws are applied
to the system (1), which are described as follows

ui(t) = $i (θi, z(t)) (2)

where $i(·) are known smooth vector functions and θi is
the vector of tunable parameters for the i-th regulator. Note,
that there is no restriction imposed neither on the form of
(2) nor on the number of the regulators applied. Furthermore,
the discrete time-index t may be different for each control
law i.



The overall system performance is evaluated through the
following objective function (performance index)

J (θ; z(0), DT ) = πT (z(T )) +

I∑
i=1

T−1∑
t=0

πi,t (z(t), ui(t))

= πT (z(T )) +

I∑
i=1

T−1∑
t=0

πi,t (z(t), $ (θi, z(t))) (3)

where θ = vec (θ1, θ2, . . . , θI), πT and πi,t are known non-
negative functions, I is the number of regulators that need to
be tuned, T is the finite time-horizon over which the control
laws (2) are applied and

DT
4
= [d(0), d(1), . . . , d(T − 1)] (4)

denotes the time-history of the exogenous signals over the
optimization horizon T . By defining x = vec (z(0), DT ),
equation (3) may be rewritten as

J (θ; z(0), DT ) = J (θ, x) . (5)

AFT is an iterative algorithm which can be applied every
T and will update the current system parameters vector θ so
as to achieve better performance. Equation (5) indicates that
the system performance depends on the vector of tunable
parameters θ and the exogenous vector x. Assuming that the
signal x is bounded (i.e. |x(t)| ≤ B, ∀ t ∈ Z for a finite
value B > 0), it can be omitted from equation (5) as the
objective is to optimize the expected value E [J(θ)] given
the variations in x. In [3] it has been mathematically proven
that AFT algorithm asymptotically converges to the optimal
solution of this problem.

The requirement for convergence itself is not sufficient
in most practical implementations. Another crucial issue is
the safe and efficient behavior of the system. Algorithms
similar to AFT, that enable systems with autonomic self-
tuning properties, should also guarantee stable and sus-
tainable system performance during the field deployment.
The violation of this requirement in a practical application
may cause serious problems (e.g. performance degradation,
safety, etc.). For instance, in the case of operational traffic
control systems, this could lead to serious problems (e.g.,
complaints, dangerous driving, etc.) that may force the traffic
operators to cancel the self-tuning process. This requirement
has been addressed successfully in [4] for AFT algorithm.

B. Theoretical foundations

The self-tuning problem discussed in the previous subsec-
tion is closely related to the problem of dynamic parameter
estimation, that has been studied for decades by many
researchers. The problem of interest is to find the values
of a vector θ∗ ∈ Θ that minimize the expected value of a
scalar-valued performance function E [J(θ)] assuming that
measurements of the function are available for different θ.
The vector θ represents a collection of tunable (or adjustable)
parameters that need to be tuned. The nonlinear function
J(θ) is a scalar measure that summarizes the performance
of the system and is assumed to be continuous in Θ. The

vector θ∗ represents the optimal solution and the domain Θ
reflects allowable values (constraints) on the components of
θ and has to be a compact space.

Many stochastic approximation algorithms have been de-
veloped for the solution of this problem. Robbins and
Monro [5] were the first to propose an adaptive technique
for dynamic parameter estimation. Important extensions of
this algorithm followed by Kiefer and Wolfowitz in [6],
where FDSA (Finite Difference Stochastic Approximation)
algorithm was introduced. FDSA has provided the basis for
many learning or parameter tuning algorithms in control
engineering problems. An extension of FDSA is the RDSA
(Random Directions Stochastic Approximation) algorithm,
which was firstly introduced in [7] and makes use of many
random perturbations of θ in order to come up with a good
set of tunable parameters (based on the measurements of the
performance criterion J(θ)).

Finally, Spall in [8] introduced SPSA (Simultaneous Per-
turbation Stochastic Approximation) algorithm for stochastic
optimization of multivariate systems. This algorithm attempts
to estimate the gradient ∂J(θ)/∂θ in one discrete time-step
by applying a random perturbation to the current vector
θ and it has been widely applied to parameter estimation
problems. It is worth noting, that SPSA does not guarantee
the requirement of safe and efficient performance during the
tuning process, mainly due to the use of random perturba-
tions applied to the regulator parameters.

The theoretical intuition of AFT algorithm lies in the area
of the algorithms mentioned above. However, its scope is
to enable traffic control systems with autonomic self-tuning
capabilities. In this paper we explore the efficiency of AFT
through simulation experiments. The problem of online self-
tuning of the urban signal control strategy TUC ([9], [10]) is
investigated. A micro-simulation environment of traffic flow
is used for evaluating the performance of the algorithm.

III. THE SELF-TUNING ALGORITHM

A. Introduction

Fig. 1 illustrates the working principle of AFT algorithm.
The basic functioning procedure of the self-tuning process
may be summarized as follows:
• The traffic flow process (e.g. urban road network) is

controlled in real time by a control strategy (of any
kind) which includes a number of tunable parameters.

• At the end of appropriately defined periods (e.g. at
the end of each day), AFT algorithm receives the
value of the real (measured) performance index (e.g.
average speed over space and time for traffic networks).
Note, that the performance index J (θ) is a (generally
unknown) function of the tunable parameters θ that need
to be adjusted.

• Using the measured performance (the samples of which
increase iteration by iteration), AFT algorithm calcu-
lates new tunable parameter values to be applied at the
next period (e.g. the next day) in an attempt to improve
the system performance.
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Fig. 1. Working principle of AFT for autonomic self-tuning of online
traffic control systems.

• This (iterative) procedure is continued over many pe-
riods (e.g. days) until a maximum in performance is
reached; then, AFT algorithm may remain active for
continuous adaptation or can be switched off and re-
activated at a later stage (e.g. after few months).

The main components used to develop the employed
algorithm are summarized as follows:
• A universal approximator Ĵ (θ) is used (e.g., a neural

network or a polynomial-like approximator) in order
to obtain an approximation of the nonlinear mapping
Ĵ (θ) ≡ J (θ).

• An on-line adaptive/learning mechanism is employed
for training the above approximator. Globally con-
vergent learning algorithms (see e.g., [11], [12]) are
required for such a purpose.

• At each algorithm iteration k, many randomly chosen
candidate perturbations ∆θ(k)

(j) of vector θ∗(k) are
generated (where θ∗(k) is the best set of parameters so
far). The effect of each of the candidate sets θ∗(k) +

∆θ(k)
(j) to the system performance is estimated by

using the approximator mentioned above. The perturba-
tion that corresponds to the best estimate (i.e., the one
that leads to the best value for Ĵ

(
θ∗(k) + ∆θ(k)

(j)
)

)
is picked to depict the new values for the tunable
parameters θ(k+1). This vector is selected to be applied
at the next period (e.g. the next day).

B. The universal approximator Ĵ (θ)

The universal approximator used in the simulation exper-
iments in order to approximate the objective function J (θ),
is a linear-in-the-weights polynomial-like approximator with
Lg regressor terms, which takes the form

Ĵ (θ) = ϑTφ (θ) (6)

where ϑ denotes the vector of the approximator parameter
estimates and

φ (θ) =
[
φ1 (θ) , φ2 (θ) , . . . , φLg (θ)

]T
. (7)

The non-linear functions φi (θ) are given by

φi (θ) = Sd1(θm1
)·Sd2(xm2

), di ∈ {0, 1} (8)

where di,mi are randomly chosen at each iteration of
AFT algorithm (with m1,m2 ∈ {1, 2, . . . , nθ}, where nθ
is the number of components of vector θ) and S(·) is a
smooth monotone nonlinear function. In the neural networks
literature [13], [14] this function is usually chosen to be
sigmoidal. In our simulations we choose

S(θ) = tanh (λ1θ + λ2) (9)

where λi are non-negative real numbers initially defined by
the user; after 4–5 iterations of the algorithm the values of
λi are optimized so as to minimize

min

k−1∑
`=1

(
J` − ϑTφ(k)`

)2
. (10)

C. AFT algorithm description

Below, we discuss in details the application steps of the
algorithm. Table I denotes the variables used while Table II
displays all the steps that are performed at every iteration k
of the algorithm. More precisely, the steps that are executed
at every iteration are as follows:
• Step 1: Calculate 2K random perturbations. In this step
K random perturbations are calculated (according to
e.g. Gaussian distribution). The resulting 2K candidate
vectors θ∗(k) ± ∆θ(k)

(j) are then projected in Θ, in
order to satisfy the problem constraints.

• Step 2: Calculate the number of approximator regressor
terms. The number of the approximator’s regressor
terms Lg(k) to be used in this iteration is calculated.

• Step 3: Calculate the number of past measurements.
The algorithm keeps a window of past measurements
which moves along with the iterations. In this step the
starting point of the window in the past is calculated.
The end point of the window is always k − 1.

• Step 4: Produce the polynomial-like approximator. Af-
ter steps 2, 3 the structure of the universal approximator
may be formed and applied for nonlinear fitting to the
data included in the window of the past measurements.

• Step 5: Calculate the optimal approximator parameter
estimates. The optimal values of the approximetor’s
parameters ϑ are calculated according to the solution
of a least squares estimation method.

• Step 6: Apply the 2K random perturbations ±∆θ(k)
(j)

to Ĵ(k). The 2K candidate vectors θ∗(k) ± ∆θ(k)
(j)

are applied to the approximator Ĵ(k) for evaluation.
• Step 7: Pick the best random perturbation (according to
Ĵ(k)). The vector θ(k) with the best estimated perfor-
mance is selected for application in the next simulation
experiment.

It is worth noting, that similarly to RDSA, the proposed
algorithm introduces random perturbations to the control
design parameter vector θ. Besides, the use of random pertur-
bations is crucial for the efficiency of the proposed algorithm
as it provides the so-called persistence of excitation property,
which is a sufficient and necessary condition for the neural
approximator Ĵ(θ) to be able to efficiently learn the unknown



TABLE I
VARIABLES USED WITHIN AFT ALGORITHM

k iteration index
` past performance measurements index
J` performance value for the `-th calibration experiment
Ĵ` an estimate of J` obtained at the `-th iteration
θ(k) the vector of tunable parameters at the k-th calibration

experiment
θ∗(k) the best set of tunable parameters until the k-th

experiment (according to the real measurements)
∆(k)(j) zero-mean random sequences (e.g. Gaussian),

j = 1, 2, . . . , 2K
∆θ(k) the perturbation picked by the algorithm in iteration k

TABLE II
AFT ALGORITHM DESCRIPTION

1) calculate 2K random perturbations
∆θ(k)(j) = α(k)∆(k)(j), j ∈ {1, 2, . . . , 2K}

2) calculate the number of approximator regressor terms
Lg(k) = min

{
2 (k − 1) , L̄g

}
3) calculate the number of past measurements

`(k) = max {k − Th, 1}

4) produce the polynomial-like approximator
φ`(k) = φ (θ`(k))

5) calculate the optimal approximator parameter estimates
ϑ(k) 7→ arg minϑ(k)

1
2

∑k−1
`=`(k)

(J` − ϑτφ`(k))2

6) apply the 2K random perturbations ±∆θ(k)(j) to Ĵ(k)

Ĵ
(
±∆θ(k)(j) + θ∗(k)

)
= ϑ(k)τφ

(
±∆θ(k)(j) + θ∗(k)

)
7) pick the best random perturbation (according to Ĵ(k))

∆θ(k) = arg max∆θ(k)(±j) Ĵ
(
±∆θ(k)(j) + θ∗(k)

)
α(k) is a user-defined positive sequence (e.g. constant
stepsize α(k) ≡ α ∈ (0, 1))
Th, L̄g ,K are user-defined positive integers
θ∗(k) + ∆θ(k) denotes the vector of tunable parameters picked to be
applied at the next experiment k + 1

function J(θ). However, due to the use of Step 6 (see
Table II) the proposed methodology avoids poor performance
or instability problems, and guarantees safe and efficient
performance. As shown in [2], [3] using strict mathematical
arguments, the performance of the system can be, in the
worst case, similar to the system performance without the
self-tuning property plus some random term. The magnitude
of this term is proportional to the magnitude and variance of
the exogenous inputs x.

D. Efficient stochastic stepsizes αk
The first step of AFT algorithm (Table II) makes use of an

arithmetic sequence α(k) which plays a critical role, often
determining whether the algorithm converges or diverges.
These factors are sometimes referred to as stepsizes, but
also gains or learning coefficients, depending on the field of
application. The choice of the gain sequence α(k) is critical

for the performance of stochastic approximation methods.
In many applications, a constant stepsize is used (instead
of a decaying one) as a way of avoiding gains that are too
small for large k. On the other hand, there is considerable
appeal to the idea that the stepsize should depend on the
actual trajectory of the algorithm. When the stepsizes depend
on the observations they are called stochastic stepsizes.
For large-scale problems, it is possible that we have to
estimate hundreds of parameters. It seems unlikely that all
the parameters will approach their optimal value at the same
time (wide variation in learning rates can occur). Stochastic
stepsizes try to adjust to the data in a way that keeps the
stepsize larger while the parameter being estimated is still
changing quickly.

Conditions guaranteeing that the stochastic approxmation
iterate converges to θ∗ as k → ∞ are presented in many
places (e.g., [15], [16]). All the existing proofs require three
basic conditions about the applied stepsizes

α(k) ≥ 0, k = 0, 1, ..., (11)

∞∑
k=0

α(k) =∞, (12)

∞∑
k=0

α(k)2 <∞. (13)

Equation (11) requires that the stepsizes must be nonneg-
ative. The most important requirement is (12), which states
that the infinite summation of stepsizes must be infinite. If
this condition is violated, the algorithm might stall very early
without reaching the optimal solution. Finally, condition (13)
requires that the infinite sum of the squares of the stepsizes is
finite. A good intuitive justification for this condition is that
it guarantees that the variance of the estimate of the optimal
solution goes to zero in the limit. The three conditions
mentioned above provide a careful balance in having the gain
α(k) decay neither too fast nor too slow. Figure 2 presents
the decaying sequence

α(k) =
α(0)

α(0) + k
(14)

which satisfies the three conditions mentioned above, for k =
1, 2, . . . , 50 and different values of parameter α(0).

For our experiments, we introduce an adaptive technique
for the calculation of stepsize αi(k) (where i refers to the i-th
component of vector θ), at each iteration of AFT algorithm
k. This technique is based on the signs (±) of the product
of the differences ∆θi(k), ∆θi(k − 1) picked for the last
two iterations. If there are frequent sign changes, this is an
indication that the iterate is near θ∗i ; if the signs are not
changing, this is an indication that the iterate is far from θ∗i .
This forms the basis for an adaptive choice of the gain αi(k),
where a larger gain is used if there are no sign changes and
a smaller gain is used if the signs change frequently.

Given the desirability for a gain sequence that balances
algorithm stability in the early iterations and non-negligible
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gains in the later iterations, the form used in AFT is

αi(k) =
α(0)

α(0) +Ki
. (15)

Initially Ki = 1,∀i and then for every iteration k = 2, 3, . . .
we have

Ki =

{
Ki if ∆θi(k)∆θi(k − 1) > 0

Ki + 1 if ∆θi(k)∆θi(k − 1) < 0.
(16)

This form is inspired by the famous learning method
RPROP [17] and the arithmetic sequence (14). This formula
takes into account only the sign of ∆θi and acts indepen-
dently on each θi. This way, every component i of vector θ
converges with a different rate according to the frequency of
sign changes. Another common technique is to periodically
restart the arithmetic sequence. That is, after starting the
search with an initial condition θ(0), α(0), periodically
restart the gain sequence at α(0).

IV. SIMULATION EXPERIMENTS

In order to evaluate the efficiency of the self-tuning al-
gorithm extensive simulation experiments have been carried
out. The microscopic simulation environment Aimsun was
used in order to replicate a real world implementation of
the algorithm. In our experiments the Traffic-responsive
Urban Control (TUC) strategy is used to regulate the signals
of the city of Chania, Greece, in real-time. The system
autonomously self-tunes its design parameters by the use of
AFT algorithm. All the data used in Aimsun and TUC (turn-
ing rates, lost times, staging, saturation flows) are provided
by the operators of the Traffic Control Center of the city
and correspond to the data of the real network. This paper
presents the simulation results, comparing the performance
of TUC strategy when using AFT for autonomic self-tuning
of a predefined set of design parameters with the base-
case (no AFT case). In the base-case, the aforementioned
parameters of the original TUC system have been manually
fine-tuned to virtual perfection by the system operators [18].

A. Brief Introduction to TUC strategy

TUC ([9], [10]) is a recently developed, efficient real-
time urban traffic control strategy. Its design principles are
based on feedback control theory as opposed to most of
the existing strategies employing model-based optimization
techniques. TUC consists of three distinct interconnected
control modules that allow for real-time control of the
following:

• Green times (splits): This module splits the total
effective green time duration to the different stages of
an intersection. The control objective is to minimize the
risk of oversaturation and the spillback of link queues.
For accomplishing this, the strategy is suitably varying,
in a coordinated manner, the green-phase duration of all
stages at all network junctions around some nominal
values. The changes of the splits are done in real-
time without affecting the offsets or cycle times. A
multivariable regulator is used in this module which
is derived using the Linear-Quadratic control theory
(see [9], [10] for details).

• Cycle time: One way to influence traffic conditions via
traffic lights is by modifying cycle time. Fundamentally,
a longer cycle time typically increases the junction
capacity, because the proportion of the constant lost
time (intergreen) becomes accordingly smaller. On the
other hand, a longer cycle time may increase vehicle
delays in undersaturated junctions due to longer waiting
times during the red phase. Considering these remarks,
the objective of cycle control module is to increase
the junctions capacities as much as necessary to limit
the maximum observed saturation level in the network.
Within TUC, this objective is effectuated by application
of a simple feedback algorithm, that uses as a criterion
for the increase or decrease of the cycle the current
maximum saturation level of a prespecified percentage
of the network critical links ([10]).

• Offsets: The objective of this module is to coordinate
the traffic lights of successive intersections and achieve
a green wave along an arterial. TUC performs offset
control in a decentralized way, that is, for successive
couples of junctions along the predefined arterials.
For each couple of junctions, the offset specification
changes the starting time of a specific main stage of the
upstream junction, whereby this main stage is uniquely
determined from the arterial composition. TUC con-
siders the possible existence of vehicle queues while
specifying the offset between two successive junctions,
through the application of a simple decentralized feed-
back control law.

These three control modules are complemented by a fourth
module for provision of public transport priority. All control
modules are based on feedback concepts of various types,
which leads to TUC’s computational simplicity as compared
to model-based optimization approaches, without actually
sacrificing efficiency. In this paper, we will concentrate on
the autonomic tuning of TUC’s split, cycle and offset control



Fig. 3. Satellite view of the Chania urban road network.
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Fig. 4. Simulation model of the Chania urban road network.

module parameters.

B. Network and simulation setup

Chania, located at the north-western part of Crete, is the
capital of the prefecture of Chania and covers 12.5km2.
Chania is the second biggest prefecture of Crete in size,
population and development. Figure 3 exhibits a satellite
view of the trial urban road network (red bullets correspond
to the controlled junctions), which has a total length of
approximately 8km and consists of 16 controlled junctions.

Figure 4 represents the model of the network developed
for the simulation investigations. It consists of 16 signalized
junctions (nodes) and 60 links (arrows). Each network link
corresponds to a particular junction phase. Typical loop-
detector locations within Chania urban network links are
either around the middle of the link or some 40m upstream
of the stop-line. Split, cycle and offset control modules of
TUC strategy are applied to the network for all simulation
investigations. For the implementation of AFT algorithm the
following design values were used: Th = 90, L̄g = 150,
K = 100 and initial values to λi according to λ1 = 100,
λ2 = 0. Finally, a simulation step of 0.25s is considered for
the microscopic simulation model.

C. Demand scenarios and integration with Aimsun

In order to investigate the performance of AFT algorithm
under different traffic conditions, two basic traffic demand
scenarios (time-history of vehicles entering the network in
the network origins during the day) were designed based
on actual measurements, each with a simulation horizon
of 4 hours. Scenario 1 comprises medium demand in all
network origins, while scenario 2 comprises high demand

and the network faces serious congestion for some 2 hours,
with some link queues spilling back into upstream links.
For simplicity, we assume that a demand scenario with a
time horizon of 4 hours corresponds to a day. Each day
(iteration of the AFT algorithm) a randomly perturbed 5%-
width version of the basic demand scenarios is produced
and the assessment criterion is gathered from the Aimsun
simulator. Then, the design parameters of TUC strategy
are updated by AFT algorithm according to the calculated
assessment criterion.

The overall closed-loop scheme consists of two main
control loops as inner and outer loops. The inner loop is
used by TUC strategy to produce the traffic signal settings.
More specifically at each control cycle, Aimsun delivers
the (emulated) occupancy measurements at the locations
where detectors are placed (as in real conditions). These
measurements are used by the control modules of TUC
strategy to produce the traffic signal settings (splits, cycle,
and offsets). The signal settings are then forwarded to the
micro-simulator for application. The outer loop is used by
AFT algorithm to update the design parameters of TUC
strategy. More specifically, at each day, Aimsun delivers the
mean speed for the whole urban road network (this is the
measurement of the performance index J(θ)). The mean
speed is used by AFT algorithm in order to produce the new
values for the design parameters of split, cycle and offset
control modules of TUC strategy (the vector θ). The new set
of the design parameters is then forwarded to TUC strategy
for application, and so forth.

V. EVALUATION RESULTS

This section presents the quantitative results of the sim-
ulation experiments. It should be noted that Aimsun is a
stochastic model, which implies that it is based on stochastic
distributions in order to calculate all the internal parameters
of the simulations. As a result, two replications of the same
simulation are not identical, unless they are fed with the same
random seed. For our experiments, 10 simulation runs with
different random seeds were carried out for each scenario in
order to account for the statistical variations of the results.

A. Results for demand scenario 1

The simulation results obtained for demand scenario 1
described above (medium demand) are presented here. Ta-
ble III displays the mean speed for the original TUC system
and the mean speed when using AFT for the system self-
tuning, for each replication. Also, the standard deviation of
the mean speed due to the ±5% daily random perturbations
of the demand is presented. It should be noted, that the AFT
algorithm is learning the traffic system dynamics during the
first iterations (days) and then converges to a local optimal
solution. Table III also displays the number of days needed
for AFT to converge (column 4). The evaluation results of
AFT (i.e. the mean speed for the whole network, column 5
in Table III) are computed for the simulation horizon after
the convergence of the algorithm (i.e. after the convergence
day). Thus, the first iterations of the learning procedure



TABLE III
COMPARISON OF THE AVERAGE MEAN SPEED (MS) OF TUC STRATEGY

WITH AND WITHOUT THE SELF-TUNING ALGORITHM (AFT) FOR

DEMAND SCENARIO 1.

No AFT Conv. AFT (after convergence day)
ID MS St.Dev. Day MS St.Dev. Improvement
1 16.41 0.68 10 20.04 0.83 22.10%
2 16.53 0.80 9 19.51 1.02 18.02%
3 16.09 0.51 4 19.85 0.71 23.43%
4 16.30 0.56 8 19.52 0.90 19.72%
5 16.40 0.66 5 18.95 1.00 15.55%
6 16.29 0.73 9 19.25 0.97 18.18%
7 16.38 0.73 6 19.26 0.91 17.59%
8 16.23 0.86 14 19.32 0.65 19.02%
9 16.07 0.68 8 19.79 0.88 23.15%

10 16.18 0.90 11 19.53 0.73 20.69%
Average 16.29 0.71 8.4 19.50 0.86 19.73%
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Fig. 5. Mean speed trajectories with and without the use of AFT algorithm
for scenario 1 (4 different replications).

are excluded from the mean speed comparison. Finally, the
percentage of improvement over the no AFT case is shown
in the last column of the table.

It can be seen that the use of the self-tuning algorithm
leads to an average improvement of the system performance
of some 20% for this demand scenario. The variations
between different replications due to the stochasticity of the
simulator and the random demand perturbations are low. The
average mean speed for the original TUC system is 16.29
km/h and after the convergence of the self-tuning process
this speed is increased to 19.50 km/h.

Diagrams in Fig. 5 compare the network-wide mean speed
of the original TUC system (blue line) versus TUC system
combined with the self-tuning algorithm (red line) delivered
for scenario 1. In all diagrams, it can be seen that the
application of AFT algorithm to the signal control strategy
TUC leads to better performance than the original TUC
for this demand scenario. More precisely, AFT algorithm
achieves to optimize the overall system performance within
few days (iteration number in x-axis), by efficiently self-
tuning the design parameters for all TUC’s control modules.

At the same time, the overall system maintains the daily
mean speed of the network always in higher levels than the
initial day (which corresponds to the initial values of the
parameters).

The trajectory of the system performance (mean speed) is
persistently increasing until it converges to a local maximum
value. Note that the oscillations appearing in both blue
and red lines of the graphs are due to the ±5% daily
random perturbations applied to the demand scenario. In all
simulation runs, equations (15)–(16) were applied for the
stepsize of AFT algorithm, with α(0) = 1.42. The decaying
sequence of α(k) provided by this formula has the advantage
that after some iterations converges to small values for the
stepsize α(k), providing the algorithm with candidate sets of
parameters close to the optimal solution found so far.

B. Results for demand scenario 2

This section presents the simulation results obtained for
the demand scenario 2 (high demand). Table IV displays
the mean speed for the original TUC system and the mean
speed when using AFT for the system self-tuning, for each
replication. Also, the standard deviation of the mean speed
due to the ±5% daily random perturbations of the demand
is presented. Again, AFT algorithm is learning the traffic
system dynamics during the first iterations (days) and then
converges to a local optimal solution. Thus, the results
for AFT (column 4 in Table IV) are computed after the
convergence of the algorithm (column 3). Finally, the last
column of Table IV displays the percentage of improvement
over the no AFT case.

It can be seen that the use of AFT algorithm leads to an
average improvement of the system performance of some
41% for this demand scenario, while the time needed for
convergence is 7.9 days on average. The average mean speed
for the original TUC system is 9.67 km/h and after the
convergence of AFT this speed is increased to 13.61 km/h.
Also, the average standard deviation of the daily mean speed
is decreased to the half (from 1.63 km/h to 0.82 km/h) after
the application of AFT, leading to smaller daily variations
after the algorithm’s convergence.

Diagrams in Fig. 6 compare the network-wide mean speed
of the original TUC system (blue line) versus TUC system
combined with AFT algorithm (red line) delivered for this
demand scenario. In all diagrams, it can be seen that the
application of the AFT algorithm leads to better performance
than the original TUC system itself. More precisely, AFT
algorithm achieves to optimize the overall system perfor-
mance within few days (iteration number in x-axis), by
efficiently fine-tuning the design parameters for all TUC’s
control modules, while avoiding decreasing the daily mean
speed lower than the initial point.

In all graphs, the trajectory of the system performance
(mean speed) is persistently increasing until it converges to
a local maximum value. Note that the oscillations appear-
ing in the blue lines of the diagrams (no AFT case), are
due to the ±5% daily random perturbations applied to the
demand scenario. The same perturbations are also applied



TABLE IV
COMPARISON OF THE AVERAGE MEAN SPEED (MS) OF TUC STRATEGY

WITH AND WITHOUT THE SELF-TUNING ALGORITHM (AFT) FOR

DEMAND SCENARIO 2.

No AFT Conv. AFT (after convergence day)
ID MS St.Dev. Day MS St.Dev. Improvement
1 9.99 1.41 12 13.33 0.44 33.35%
2 10.39 1.36 5 13.41 1.25 29.03%
3 9.87 1.60 8 13.49 0.91 36.67%
4 9.90 1.56 6 13.55 1.18 36.91%
5 9.97 1.79 15 14.37 0.55 44.14%
6 9.19 1.88 6 13.85 0.42 50.61%
7 8.95 1.92 4 13.22 0.77 47.74%
8 9.06 1.56 4 13.14 0.76 44.93%
9 10.04 1.54 13 13.86 0.90 38.09%

10 9.39 1.67 6 13.93 1.06 48.31%
Average 9.67 1.63 7.9 13.61 0.82 40.70%
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Fig. 6. Mean speed trajectories with and without the use of AFT algorithm
for scenario 2 (4 different replications).

to the AFT case. However, the oscillations of the red lines
(after the convergence of the algorithm) are clearly lower.
Finally, the diagrams depict slight differences between the
replications due to the stochasticity of the simulator and the
random demand perturbations. However, all the simulations
experiments demonstrate the superiority of AFT algorithm
over the manually fine-tuned TUC system.

VI. CONCLUSIONS

The paper investigated the efficiency of AFT algorithm for
the problem of optimizing the design parameters of traffic
control systems. This adaptive optimization methodology
aims at replacing the conventional manually-based optimiza-
tion practice with a fully-autonomic procedure. Extensive
simulation experiments have been conducted and it has been
demonstrated that the self-tuning algorithm (AFT) leads to
better network performance (in terms of daily mean speed)
compared to the original TUC system. This underlines the
superiority of the fully-autonomic optimization procedure
over the case where the design parameters are manually fine-
tuned by field experts.

Currently, there is an ongoing field implementation taking
place in the city of Chania under the research project
AGILE (funded by European Commission FP7-ICT-5-3.5,
Engineering of Networked Monitoring and Control Systems,
contract #257806). The overall system described in this paper
is implemented in the Traffic Control Center of the city.
TUC strategy is controlling the traffic lights in real-time and
AFT algorithm is running in parallel embedding self-tuning
capabilities in the control strategy. The results of this study
are going to demonstrate if the algorithm is feasible and
efficient in real life conditions.
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