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Abstract: An alternative approach for real-time network-wide traffic control in cities that
has recently gained a lot of interest is perimeter flow control. The basic concept of such an
approach is to partition heterogeneous cities into a small number of homogeneous regions (zones)
and apply perimeter control to the inter-regional flows along the boundaries between regions.
The transferring flows are controlled at the traffic intersections located at the borders between
regions, so as to distribute the congestion in an optimal way and minimize the total delay of
the system. The focus of the current work is to study three aspects that are not covered in the
perimeter control literature, which are: (a) the treatment of some model parameters that are
not measurable in real life implementations and can affect the performance of the controller
(e.g. advanced online estimation schemes can be developed for this purpose), (b) integration
of appropriate external demand information that has been considered system disturbance in
the derivation of feedback control laws in previous works, and (c) mathematical formulation
of the original nonlinear problem in a linear form, so that optimal control can be applied in a
(rolling horizon) model predictive concept. This work presents the mathematical analysis of the
optimal control problem, as well as the approximations and simplifications that are assumed in
order to derive the formulation of a linear optimization problem. Preliminary simulation results
for the case of a macroscopic environment (plant) are presented, in order to demonstrate the
efficiency of the proposed approach. Results for the closed-loop model predictive control scheme
are presented for the nonlinear case, which is used as “benchmark”, as well as the linear case.

Keywords: Model predictive control; nonlinear optimisation; linear approximation; urban
perimeter control.

1. INTRODUCTION

Traffic congestion is a major problem for urban environ-
ments and modern metropolitan areas. Most cities around
the world have been persistently becoming denser and
wider over the last decades and the problem of urban
traffic management is steadily gaining momentum due
to its economic, social and environmental impact. Many
efforts have been carried out to optimize signal settings
during the peak hours, where networks face serious con-
gestion problems and the performance of the infrastructure
degrades significantly. The state-of-practice strategies fail
to deal efficiently with oversaturated conditions (i.e. queue
spillbacks and partial gridlocks), as they are either de-
signed by use of simplified models that do not accurately
replicate some traffic flow phenomena (e.g. propagation
of congestion), or based on application-specific heuristics.
An alternative approach for real-time network-wide traf-
fic control that has recently gained a lot of interest is
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perimeter flow control (or gating). The basic concept of
such an approach is to partition heterogeneous cities into
a small number of homogeneous regions (zones) and apply
perimeter control to the inter-regional flows along the
boundaries between regions. The inter-transferring flows
are controlled at the traffic intersections located at the
borders between regions, so as to distribute the congestion
in an optimal way and minimize the total delay of the
system (an alternative objective could maximize the total
throughput).

Perimeter flow control can be viewed as a high-level
regional control scheme and might be combined with
other strategies (e.g. local, distributed or coordinated con-
trollers) in a hierarchical control framework; this topic has
gained a lot of attraction in the research community lately.
For a recent review on this research direction the reader is
referred to Keyvan-Ekbatani et al. (2012); Yildirimoglu
et al. (2015). The original model for the dynamics of
the multi-region process (plant) is highly nonlinear and
the modelling tool that is utilized is the Macroscopic
Fundamental Diagram (MFD) (see e.g. Ramezani et al.
(2015)). MFD provides a concave, low-scatter relationship



between network vehicle accumulations [veh] or density
[veh/km] and network circulating flow [veh/h] or pro-
duction [veh·km] for every region of the system which is
homogeneously congested. Clustering techniques can help
partition a network into regions with small variance of link
densities (see e.g. Saeedmanesh and Geroliminis (2016)).
Recently, there has been some effort to simplify this model;
the authors in Hajiahmadi et al. (2015) proposed a hybrid
model for formulating this problem and applied model
predictive control (MPC) in conjunction with switching
plans control. A pre-defined set of MFDs is introduced
(which correspond to regional switching plans), and some
affine approximations are made in order to reduce the
complexity of the derived hybrid MPC approach.

In the current work we devise a linear program (LP)
formulation to solve the finite-time optimal perimeter flow
control problem. Moreover, we investigate two more as-
pects of the problem that have not been covered in the
literature: (a) the treatment of some model parameters
that are not easily measurable with loop detectors data in
real life implementations, and can affect the performance
of the controller; especially the regional route choice pa-
rameters and the origin-destination information, and (b)
integration of realistic external demand information that
has been considered system disturbance in the derivation
of multivariable feedback control laws in previous works
(Kouvelas et al. (2015)). Finally, the derived LP is solved
in a rolling time horizon using a feedback MPC framework,
and the control decisions are applied to the nonlinear plant
for evaluation. The efficiency of the control decisions is
compared to a “benchmark” case, in which the nonlinear
MPC problem is solved using state-of-the-art nonlinear
numerical solvers. Simulation results for the case of a
macroscopic model (plant) are presented. Note that this
benchmark approach is more challenging for application
in real life due to computational requirements, and most
importantly, the lack of detailed data (i.e. high resolution
vehicle trajectories data is needed). Essentially, real-world
data availability can restrain the methodologies that can
be applied, and, consequently, the real-time applicability
of the benchmark approach is deemed cumbersome.

2. AGGREGATED DYNAMICS FOR A
PARTITIONED CITY

Consider an urban network partitioned in N homogeneous
regions with well-defined MFDs (Figure 1). The index
i ∈ N = {1, 2, . . . , N} denotes the region of the system,
ni(t) the total accumulation (number of vehicles) in region
i, and nij(t) the number of vehicles in region i with final
destination region j ∈ N , at a given time t. Let Ni be
the set of all regions that are directly reachable from
the borders of region i, i.e. adjacent regions to region i.
The discrete time MFD dynamics of the N -region system
can be described by the following first order difference
equations

(1)
nii(kp + 1) = nii(kp) + Tp

(
qii(kp)−Mii(kp)

−
∑
h∈Ni

Mh
ii(kp) +

∑
h∈Ni

M i
hi(kp)

)
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Fig. 1. The network of a city partitioned into a multi-region
MFD system.

(2)
nij(kp + 1) = nij(kp) + Tp

(
qij(kp)−

∑
h∈Ni

Mh
ij(kp)

+
∑
h∈Ni

M i
hj(kp)

)

where i, j ∈ N , i 6= j; kp = 0, 1, . . . ,Kp − 1 is the model
discrete time index, Tp [sec] the sample time period of
the model (i.e. time t = kpTp). The exogenous variables
qij(kp) [veh/sec] denote the (uncontrollable) traffic flow
demand that is generated in region i, at time step kp,
with final destination in region j (i.e. qii(kp) is the demand
generated in region i that has final destination in region i).
The variables Mh

ij(kp) [veh/sec] denote the transfer flows
from region i to region h, that have final destination region
j, while Mii(kp) [veh/sec] is the internal trip completion
rate of region i (without going through another region).
Consequently, the total accumulation ni(kp) for region i
can be computed by ni(kp) =

∑
j∈N nij(kp).

We assume that for each region i there exists a production
MFD between accumulation ni(kp) and total production,
Pi(ni(kp)) [veh·m/sec], which describes the performance
of the system in an aggregated way. This MFD can be
estimated using measurements from loop detectors and/or
GPS trajectories. Transfer flows Mh

ij(kp) and internal
trip completion rates Mii(kp) are calculated according to
the corresponding production MFD of the region, and
proportionally to the accumulations nij(kp) as follows

Mii(kp) = θii(kp)
nii(kp)

ni(kp)

Pi(ni(kp))

Li
(3)

Mh
ij(kp)

= min

{
Cih(nh(kp)), uih(kc)θ

h
ij(kp)

nij(kp)

ni(kp)

Pi(ni(kp))

Li

}
(4)

where i, j ∈ N , h ∈ Ni; kc = bkp/Ncc, with Nc some
positive integer, is the control discrete time index (i.e. the
control cycle is always a multiple of the plant sample time
Tp), and Li [m] is the average trip length for region i, which
is assumed to be independent of time and destination,



internal (inside region i) or external (to some other region
j). The parameters θii(kp), θhij(kp) reflect the route choice
of drivers and are assumed to be exogenous (i.e. can
be constant or time varying and they are provided by
another methodology). The transfer flows Mh

ij(kp) are the
minimum between the sending flow from region i (which
only depends on the accumulation of the region), and the
receiving capacity Cih(nh(kp)) [veh/sec] of region h. This
flow capacity is a piecewise function of the accumulation
nh(kp) (usually modelled with two pieces, one constant
value and a decreasing curve), and is introduced to prevent
overflow phenomena within the regions, i.e. each region i
has a maximum accumulation ni,max such that

0 ≤ ni(kp) ≤ ni,max, ∀ i ∈ N . (5)

If ni(kp) = ni,max, the region reaches gridlock and all the
inflows along the periphery are restricted. Finally, the con-
trol variables uih(kc), ∀ i ∈ N , h ∈ Ni denote the fraction
of the flow that is allowed to transfer from region i to re-
gion h for the time interval [(Nckc)Tp, (Nckc +Nc − 1)Tp].
Physical constraints are applied to the values of the control
variables as follows

0 ≤ uih(kc) ≤ 1, ∀ i ∈ N , h ∈ Ni (6)

but also – depending on the implementation – operational
constraints of the following form might apply, i.e.,

|uih(kc)− uih(kc − 1)| ≤ uRih, ∀ i ∈ N , h ∈ Ni. (7)

Equations (1)–(4) are a discretized version of equations
presented in Ramezani et al. (2015) and represent the
traffic dynamics of an N -region urban network considering
the heterogeneity effect and integrating an aggregated
routing model. Note, that these equations allow the drivers
to choose any arbitrary sequence of regions as their route
and their path can cross region boundaries multiple times.

2.1 Nonlinear model predictive control (NMPC)

The MFD dynamics described in the previous section
derive a nonlinear model that has been used in other
works (Geroliminis et al. (2013); Ramezani et al. (2015)) to
apply nonlinear model predictive control (NMPC). Here,
we solve the same problem again to obtain a benchmark,
which is then used as a comparison to the LP formulation
presented later. In order to have a well defined problem
and without loss of generality – since this is a nonlinear
MPC problem – the following assumptions are made for
formulating the problem:

• the quantities qii(k), qij(k) and θii(k), θhij(k) are
considered exogenous variables that can be measured
or given by another algorithm beforehand,
• as in many similar works, the capacity constraint
Cih(nh(kp)) in (4) is dropped, since from a control
viewpoint it is not necessary; the control actions will
not allow the system to operate in states close to
gridlock, and this constraint is never activated inside
the NMPC.

Given these two reasonable assumptions the nonlinear
optimal control problem for a horizon of Np model steps
is defined as follows

maximize
nii(k), nij(k),

uih(κ)

kp+Np−1∑
k=kp

∑
i∈N

Li
[
Mii(k) + uih(κ)Mh

ij(k)
]

(8)

subject to

equations (1), (2), (3), (4), (5), (6), (7)

Mh
ij(k) = uih(κ)θhij(k)

nij(k)

ni(k)

Pi(ni(k))

Li
(9)

ni(k) =
∑
j∈N

nij(k) (10)

k = kp, kp + 1, . . . , kp +Np − 1, κ = bk/Ncc (11)

∀ i, j ∈ N , h ∈ Ni
The objective function (8) tries to maximize the total
production of the system for a horizon of Np model
steps (or NpTp seconds). This problem can be solved in
reasonable time by use of advanced nonlinear optimization
toolboxes (e.g. ipopt 1 ), and in our case serves as a
benchmark for the results reported later. Note that if
we want to compare the results with the LP approach
described later, the objective function should be the same
in both cases in order to have a fair comparison.

2.2 Linearising the problem

In the current work we derive a linear approximation
of the model described in the previous section, and we
formulate a linear MPC problem that can be utilized
for real-time control purposes. In order to linearise the
dynamic equations we assume the following simplifications
and approximations:

• We introduce the model parameters for the accu-
mulation proportions, i.e. αii(k) = nii(k)/ni(k) and
αij(k) = nij(k)/ni(k), i ∈ N , j ∈ Ni. One approach,
that is implemented here, is to get feedback for the
values of these parameters every time that we roll
the horizon. They can be estimated in real-time from
measurements (e.g. using extended Kalman filter or
maximum likelihood approximation) and then be
kept constant for all the optimisation horizon. Note
that the parameters can be time varying but they
need to be exogenous signals for the MPC framework.

• New “dummy” control variables uii(k) are introduced
∀ k = kp, kp +1, . . . , kp +Np−1, that restrict the trip
completion rates at every region i. Although these
variables are not reasonable from a physical point of
view, they are required in order for the problem to be
linear. A conjecture is that the solution of MPC will
always result in uii(k) = 1, ∀ i ∈ N , ∀ k = kp, kp +
1, . . . , kp + Np − 1, but this needs to be validated
through results.

• Most importantly, we introduce new decision vari-
ables

fii(k) = uii(k)Gi(ni(k))θii(k)αii(k) (12)

fih(k) = uih(k)Gi(ni(k))
∑
j∈N

θhij(k)αij(k) (13)

∀ i, j ∈ N , h ∈ Ni
that help linearise the equations. In (12)–(13) the
variables θii(k), θhij(k), αii(k), αij(k) are considered
time varying exogenous signals and as a result the
nonlinearity of the problem comes from the product
of the control inputs uih(k) with the MFD functions.

1 http://www.i2c2.aut.ac.nz/Wiki/OPTI/index.php/Solvers/

IPOPT



• To overcome this, we approximate the MFDs of
the regions with piecewise affine (PWA) functions
Gi(ni(k)) that form a convex set (see e.g. Figure 3
for a case study with 4 regions). Each MFD can be
approximated with l = 1, 2, . . . , Ni affine functions,
and we denote as Gli(ni(k)) each affine function l.

In conclusion, the control variables have the prop-
erty of being bounded (i.e. uih(k) ∈ [0, 1], ∀ i ∈
N , h ∈ Ni, k = kp, kp + 1, . . . , kp +Np − 1) and the
MFDs that can be approximated by PWA functions.
As a result, we are looking for an optimal solution
within a convex set, and in this particular case the
product can be linearised by introducing the new vari-
ables fii(k), fih(k) (see Gomes and Horowitz (2006)
for some theoretical analysis of a similar convexifica-
tion in a ramp metering control problem). Moreover,
PWA approximations is a popular technique to reduce
complexity and attempt to linearise nonlinear sys-
tems (see e.g. Xu et al. (2016)); alternatively someone
could use robust control to solve another version of
this problem, by introducing uncertain parameters
(see e.g. Haddad (2015)). Finally, once the optimal
solution is computed, there is a unique transformation
between the new variables and the original control
variables uii(k), uih(k). This is a modelling trick that
allows us to simplify the problem without loosing any
accuracy in the dynamics.

3. LINEAR MODEL PREDICTIVE CONTROL
(LMPC)

The assumptions outlined above are reasonable approx-
imations/simplifications of the nonlinear model in order
to derive a linear formulation that can be used for on-
line MPC. In this section we formulate a linear model
predictive control (LMPC) problem, which does not keep
track of the origin-destination information of vehicles.
This dynamic model has less online data requirements
(as it carries lower level of information, i.e. only state
and demand trajectories di, instead of dij), but under
certain optimization horizons can provide similar optimal
solutions for the control variables (see Section 4).

3.1 LMPC without OD information

Moving one step forward with our approximation, the new
model does not need to keep track of the OD information
(aggregated information about each region can be suffi-
cient for control purposes). Hence, by adding all the states
nij and nii for each region i, we get a linear model that
does not consider OD data, but only aggregated demands
in the region level. In that case, the derived LP that
approximates the original system and can be solved online
is as follows

maximize
ni(k), fii(k),

fih(k)

kp+Np−1∑
k=kp

∑
i∈N

Li [fii(k) + fih(k)] (14)

subject to

(15)
ni(k + 1) = ni(k) + Tp

(
qi(k)− fii(k)−

∑
h∈Ni

fih(k)

+
∑
h∈Ni

fhi(k)

)

0 ≤ fii(k) ≤ θii(k)αii(k)Gli(ni(k)) (16)

0 ≤ fih(k) ≤ Gli(ni(k))
∑
j∈N

θhij(k)αij(k) (17)

0 ≤ ni(k) ≤ ni,max (18)

k = kp, kp + 1, . . . , kp +Np − 1 (19)

∀ i, j ∈ N , h ∈ Ni, l = 1, 2, . . . , Ni
where the objective function (14) again represents the total
production of the system. All the constraints of this prob-
lem are linear, and, as a consequence, the computational
requirements are quite low, even for a network with many
regions and large prediction horizons. Note that constraint
(7) can also be applied for the first step of the LMPC
without breaking the linearity, by using the following linear
inequalities

fih(kp) ≤
(
uPR
ih + uRih

)
GP
i (ni(kp))

∑
j∈N

θhij(kp)αij(kp)

(20)

fih(kp) ≥
(
uPR
ih − uRih

)
GP
i (ni(kp))

∑
j∈N

θhij(kp)αij(kp)

(21)
∀ i, j ∈ N , h ∈ Ni

where uRij are user defined bounds, uPR
ij are the control

commands applied to the plant in the previous control
cycle, and GP

i (ni(kp)) are the affine functions that the
accumulations ni(kp) of each region i belong to (this can
be easily found as ni(kp) are known). Besides, only the
first control decision is applied to the nonlinear plant and
then we roll the horizon.

4. PROOF OF CONCEPT

This section presents some simulation results obtained for
the described methodology. The simulation model (plant)
is the nonlinear model presented (1)–(5). The test case
network is a replica of the network used in Kouvelas et al.
(2017) and corresponds to a part of the CBD of Barcelona
in Spain (Figure 2(a)). The network is partitioned into 4
regions in order to apply perimeter control (Figure 2(b)).
Figure 3 presents the MFDs of the 4 regions from data
obtained from a microsimulation model in Kouvelas et al.
(2017). The red lines present the PWA approximation
of the MFDs with the affine functions utilised by the
LP approximation. The approximation is pretty accurate
and this relaxation should not cause any problems in
the optimization procedure. In that respect, the nonlinear
model and PWA approximation are almost identical; note
also, that this approximation can be done with many more
lines than presented here without hardening significantly
the computations of the LP solver (6 pieces are shown for
each MFD in Figure 3, while in the LMPC 30 pieces have
been used for better accuracy).
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Fig. 2. Test case network: (a) map of Barcelona CBD; (b)
partitioning into 4 homogeneous regions and control
variables.

0 0.5 1 1.5 2

Accumulation [veh] ×104

0

2

4

6

8

10

12

14

16

18

20

22

O
ut

flo
w

 [v
eh

/s
ec

]

MFD
1

PWA
1

n
1,cr

MFD
2

PWA
2

n
2,cr

0 0.5 1 1.5 2

Accumulation [veh] ×104

0

2

4

6

8

10

12

14

16

18

20

22

O
ut

flo
w

 [v
eh

/s
ec

]

MFD
3

PWA
3

n
3,cr

MFD
4

PWA
4

n
4,cr

Fig. 3. MFDs for the 4 regions of the case study network
(blue); piecewise affine approximation of the MFDs to
be used in linear MPC (red).

First, we present a comparison of the plant (1)–(5) and
the linear model presented earlier (12)–(13), (15), (18)
for the no control (NC) case (i.e. uih(kc) = 1, ∀ i ∈
N , h ∈ Ni, kc = bkp/Ncc), which will also be our
base scenario. Figure 4 presents a demand scenario (i.e.
generated vehicles per time unit for all the simulation
horizon) for the case study with 4 regions (e.g. 4×4
OD matrix). For this demand, Figure 5 displays the
trajectories of accumulations nij for the plant and for the
linear model, which actually correspond to the estimation
of nij used within the LMPC framework (using ni and
αij). The prediction horizon for the linear model is 21
times higher than the sample time of the plant (e.g. Np =
21). The trajectories of the accumulations nij demonstrate
that the linear model can be used to approximate the
original nonlinear plant (given small prediction horizons
and feedback of model parameters αij). This model is a
quite accurate representation of the original system, thus
is appropriate to be used for the LMPC framework.

Finally, Figure 6 displays the results for the regional ac-
cumulations when the two approaches are applied to con-
trol the transferring flows between regions. The objective
of the controller is to maximize the production in the
network and the parameters used for this simulation are
Tp = 20sec, Nc = 3, Np = 21, uRij = 0.2, Ni = 30,
∀ i, j ∈ N . It is clear that the controller improves the traffic
states of the system, and the area between the blue and the
dashed black lines (or dashed green lines) corresponds to
the total delay improvement in the system. These results
are quite promising, as it is demonstrated that we can
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Fig. 4. Traffic demand for the four regions and all simula-
tion horizon (4×4 OD matrix, i refers to origin and j
to destination).
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Fig. 5. Vehicle accumulations nij for the plant (solid lines)
and the linear model (dashed lines) when applied for
21 steps of prediction (Np = 21) and the NC case.

achieve the same level of improvement by using the linear
approximation of the model described in section 3.1, which
also does not require OD information. Table 1 presents the
performance evaluation of the two approaches. All simu-
lated scenarios start and finish with an empty network and
serve all the demand (79143 vehicles) 2 . The total travelled
distance (TTD) in all scenarios is equal to 169.55 × 103

veh·km and the total travelled time (TTT) by all vehicles
in the network is computed by

TTT =

Kp−1∑
k=0

∑
i∈N

ni(k) (22)

and presented in Table 1 for each case. Both NMPC and
LMPC achieve a substantial improvement in terms of net-
work mean speed (NMS=TTD/TTS) and TTT (around
20–30%).Their performance is quite similar, however the
LMPC approach has less data requirements and it is a LP
formulation that guarantees convergence and optimality.

2 Note that for very small accumulation values at the beginning and
end of simulation NC is applied in all cases.
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Fig. 6. Vehicle accumulations ni for the 4 regions for NC
case (blue lines), NMPC (dashed black lines), and
LMPC (dashed green lines) when applied for 21 steps
of prediction (Np = 21).

Table 1. Performance of different approaches.

Criteria NC NMPC (%) LMPC (%)

TTS
(veh·h)×103

17.73 13.76 -22.39 13.58 -23.41

NMS
(km/h)

9.57 12.32 28.74 12.49 30.51

5. CONCLUSION

A LP formulation is derived for solving the perimeter
control problem in multi-region cities. The originally non-
linear system is relaxed and approximated by a simplified
linear model that under certain assumptions can track
the behaviour of the multi-region system. The new model
requires less information in terms of real-time measure-
ments (e.g. traffic states, OD demands), and, because it
is formulated as a LP, it guarantees optimality and fast
convergence of the solver. The simulation results need to
be further investigated in order to assess the goodness
of the solution obtained through the linear MPC to the
benchmark, which consists of the nonlinear MPC problem
with full information about demands and state feedback
measurements. Note that a field implementation of the
benchmark approach would require real-time measure-
ments (or estimates) of nij and dij , while the LMPC
version requires only region-based measurements (i.e. ni
and di) and not detailed origin-destination data.

Future work will deal with the development of a more
solid methodology for estimating the model parameters
αij (e.g. online extended Kalman filter), as the values of
these parameters are crucial for the optimization horizon.
These parameters can be estimated at every control cycle
and then considered constant for all the optimization
horizon of the MPC and this could not be sufficient for the
improvement of the system. Simple estimation/prediction
techniques can be used to enhance the knowledge for this
parameters and help the convex problem to track the
nonlinear dynamics in a better way. Investigations about
different convex objective functions for the MPC is also
another research topic. The proposed methodology needs
to be evaluated for different realistic objective functions

and demand profiles. Finally, another research direction is
to use perimeter control as a first-level controller in cities
(as it deals with zone interactions) and develop a second-
level of distributed control (e.g. Kouvelas et al. (2014)) for
optimizing locally. The combination of the two provides a
hierarchical control scheme that could potentially be more
efficient in alleviating traffic congestion in cities, but this
needs also to be further investigated.
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