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ABSTRACT6

A large part of the research utilizing the concept of Macroscopic Fundamental Diagram (MFD) relies heavily7

on an approximation of the trip completion rate derived for steady states. This model, referred to hereafter as8

the PL model, only requires the knowledge of the MFD, the average trip length and the current accumulation.9

An alternative approach, known as the trip-based model, allows to determine the trip completion rate exactly10

(provided that the road network is governed by an MFD) when the trip length distribution and inflow history11

are known. This work investigates the soundness of the PL approximation under time-varying inflow by12

comparing it to the more complex trip-based model. The trip length distribution is shown to be an important13

determinant of the accuracy of the PL model, not only via its mean but also via its coefficient of variation.14

The PL approximation is exact when trip length follows an exponential distribution, and relatively good15

when the coefficient of variation is close to 1. Other coefficients of variation lead to the emergence of16

hysteresis phenomena, whose properties depend on whether the coefficient of variation is smaller or greater17

than 1. A third type of model (the M model) is proposed to address the cases where the PL model does18

not provide sufficient accuracy. The M model has a dynamic behavior very similar to the one of the trip-19

based model, but it is described by an ordinary differential equation, thus being more suitable for control20

purposes. Despite their differences in accuracy, the PL and M models are found to perform equally well21

when integrated in a model predictive control framework.22
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Lamotte, Murashkin, Kouvelas and Geroliminis 3

INTRODUCTION23

Different methods have been proposed over the last 50 years to describe the average speed and average24

link flow at the zone level (1, 2, 3). Today, the most popular method relies on the concept of Macroscopic25

Fundamental Diagram (MFD), also known as Network Fundamental Diagram. These diagrams describe the26

effects of congestion by relating together two of the three spatially aggregated variables describing the state27

of road network: average speed, production, and accumulation of vehicles (i.e. the number of vehicles in28

the zone).29

When Daganzo (4) re-introduced these diagrams, he associated them with the concept of Network30

Exit Function (NEF), thereby highlighting their potential for regional traffic flow management. A NEF is a31

function expressing the outflow of the zone, i.e. the trip completion rate (from the zone view-point, trips may32

be completed either by parking inside the zone or by crossing the perimeter). However, because it depends33

only on some constants and on the current accumulation, the NEF introduced by Daganzo (4) has come to34

be known as another MFD. To avoid any confusion, we will refer to this specific NEF as the outflow MFD or35

PL model (this abbreviation refers to its mathematical expression), while the relations between accumulation36

and speed or production will be referred to as speed MFD and production MFD. An important particularity37

of the outflow MFD is that even though it is dedicated to study the dynamics of congestion, its formula was38

derived using a steady-state assumption (4).39

More recently, several authors studying the departure time choice problem at the city scale intro-40

duced an alternative description of the congestion dynamics, based on the speed MFD but avoiding the41

steady state approximation (5, 6, 7, 8). This so-called “trip-based" model is computationally more demand-42

ing than the PL model and may cause intractability. Yet, it also provides a sounder treatment of propagation43

phenomena, avoiding some artifacts associated with the PL model, such as the temporary reduction of ex-44

perienced travel time that can follow a demand surge (9, 10).45

These developments naturally raised several questions: what are the fundamental differences be-46

tween the PL model and the trip-based model? Under which conditions do they perform similarly? Which47

model is most suitable for control applications? The recent paper by Mariotte et al. (10) analyses some of48

these issues, but focuses primarily on the consequences of a non-stationary inflow with homogeneous trip49

length, in line with Daganzo (4). The present paper breaks with this line of research and investigates the50

impact of trip length heterogeneity.51

Under an exponential distribution of trip length (coefficient of variation σ/L = 1), the trip-based52

model and the PL model are shown to be equivalent. For coefficients of variations close to 1, the discrepancy53

between the two models remains quite small, such that the PL model may describe the congestion dynamics54

more accurately than a trip-based model applied with a distribution whose coefficient of variation would55

have been poorly estimated. The cases σ/L << 1 and σ/L >> 1 are found to have entirely different56

dynamic properties.57

We also introduce a third type of NEF which reproduces extremely well the behavior of the trip-58

based model at a much lower computational cost. This is achieved by keeping track of the average remaining59

distance to be traveled. By comparison, the trip-based model keeps track of the distance remaining to be60

traveled by each individual user, while the PL model does not keep any record of traveled distance. Such a61

model offers valuable intuition and represents an attractive trade-off for control applications. An example62

of integration in a Model-Predictive Control (MPC) framework is proposed.63

DIFFERENT MODELS64

The speed (production) and outflow MFDs65

On one hand, the speed and production MFDs of road networks are analogous to the Fundamental Diagram66

(FD) of road sections. The three network variables equivalent for speed, flow and density are the average67

speed v [kmh−1], the production or network flow P [veh kmh−1], and the accumulation of vehicles inside68

the zone n [veh]. While the three variables are related by P (t) � n(t)v(t), the MFD provides another69
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Lamotte, Murashkin, Kouvelas and Geroliminis 4

relationship describing the effect of congestion, for instance P = P(n), or v = V(n). Although the70

existence of such a relation should not be considered as universal, it has been observed in multiple cities71

with relatively little scatter (11, 12, 13, 14, 15, 16, 17), using local measurements from e.g. inductive loop72

detectors and/or probe data. The importance of scatter has been related to the heterogeneity across links73

(18) and clustering algorithms have been developed to identify homogeneous regions suitable for MFD74

analyses (19). The speed MFD V is generally assumed to be continuous and strictly decreasing from the75

free-flow speed vf to 0 on an interval [0, njam]. The corresponding production MFD follows a unimodal76

curve, reaching its maximum at the so-called critical accumulation.77

On the other hand, traffic flow management at the regional level relies on the conservation equation78

ṅ(t) = I(t)−O(t), (1)

where n(t) denotes the accumulation of vehicles inside the zone at time t, ṅ its time derivative, O(t) the79

outflow rate and I(t) the inflow rate (note that trips may start either inside the zone, or by crossing the80

perimeter). While the inflow rate is often exogenous, the outflow rate is estimated via a NEF. The outflow81

MFD provides a simple expression for this outflow, which can be derived as follows. Consider a system in82

steady state, where vehicles enter the network at a constant rate I . Let L denote the average trip length of83

entering users and M(t) the total distance that remains to be traveled by all users in the network at time t.84

The evolution of M is governed by the following equation:85

Ṁ(t) = I(t)L− n(t)v(t). (2)

Since ṅ = 0 and Ṁ = 0 in steady state, O = I = nv
L = P

L . Daganzo (4) postulates that this result still holds86

approximately as long as the production MFD exists and the inflow varies slowly enough, so that O(t) can87

be approximated as OPL(t) � O(n(t)) � P(n(t))/L (hence the appellation “PL model”). This assumption88

was given some support by Geroliminis and Daganzo (11), who observed using both loop detector data and89

taxi data that the ratio of production over trip completion rate remained approximately constant over their90

observation period for the city center of Yokohama, Japan. The objective of this work is to further investigate91

the conditions under which this approximation is reasonable and to propose alternative NEFs more suitable92

under time-varying conditions.93

The trip-based model94

The trip-based model (TB) of outflow derives directly from the existence of a speed MFD and vehicle95

conservation, without requiring the steady state assumption. One way to introduce it starts from the simple96

observation that a user with trip length l0 that entered at time t0 should exit after traveling l0, i.e. after a97

delay τ0 satisfying98 ∫ t0+τ0

t0

V(n(u)) du = l0. (3)

Among the users that entered the network at time s, the proportion that is still in the network at the time99

t > s is given by 1 − F
(∫ t

s V(n(u)) du
)

, where F (·) is the cumulative distribution function (cdf) of trip100

length corresponding to the trip-generating process (the corresponding pdf is denoted f ).1 Assuming that101

the flow I(s) entering the zone is known for all times s < t and that I(s) = 0 for all times s < 0, the102

accumulation at time t is103

n(t) =

∫ t

0
I(s)

(
1− F

(∫ t

s
V(n(u)) du

))
ds. (4)

1Note that in full generality F might be time dependent. It is assumed constant in this paper as real world observations generally

exhibit low variability in time.

TRB 2018 Annual Meeting Paper revised from original submittal.



Lamotte, Murashkin, Kouvelas and Geroliminis 5

By differentiating Eq. (4), we obtain an expression that has the same form as Eq. (1), but where the outflow104

is described by:105

OTB(t) = V(n(t))
∫ t

0
I(s)f

(∫ t

s
V(n(u)) du

)
ds. (5)

While this expression is in general difficult to solve analytically, it can be easily implemented in106

an event- and agent-based simulation (see Section 4.2). In two cases however, the TB model turns out to107

be identical to the PL model. First, since both the TB and PL models are based on the speed MFD, they108

are trivially equivalent in steady state. This is true regardless of the trip length distribution. Second, both109

models are equivalent when the trip length follows an exponential distribution (with constant coefficient).110

Indeed, an exponential distribution is characterized by the fact that for all l ∈ R
+, f(l) = (1 − F (l))/L,111

where L is the mean of the distribution. By replacing f in Eq. (5) and by combining it with Eq. (4), one112

obtains that OTB(t) = V(n(t))n(t)/L = OPL(t), regardless of the inflow variations. This result illustrates113

the well-known “memory-less” property of the exponential distribution.114

It is worth mentioning as well that the outflow described by Eq. (5) is always positive but is not115

bounded above. While the current practice consists in bounding the outflow by the receiving capacity of116

the neighboring regions (plus some internal capacity corresponding to internal trips), it is our view that that117

the physical boundary capacity is actually very large (especially for internal trips) and rarely binding, such118

that it can be ignored altogether. Note however that this statement applies only to the instantaneous outflow.119

Inflows and outflows exceeding the capacity of the outflow MFD cannot be sustained on the long term.120

The M model121

The PL and TB models might be considered as two extreme ways of modeling the outflow. While the TB122

model keeps track of the distance remaining to be traveled by each single user, the PL model does not keep123

any record of past events. We now propose a trade-off between these two extreme alternatives. The M model124

summarizes all past events into the average distance remaining to be traveled.125

In steady state, the average distance remaining to be traveled is simply given by L∗ =
∫ +∞
0 g(l) l2 dl,126

where g is the pdf of the trip length distribution among all users present in a snapshot. Since users remain127

in the network for a duration proportional to their trip length, g(l) is proportional to f(l)l. Imposing that128 ∫ +∞
0 g(l) dl = 1 implies that g(l) = f(l)l

L . Thus129

L∗ =
∫ +∞

0
g(l)

l

2
dl =

∫ +∞

0
f(l)

l2

2L
dl =

L2 + σ2

2L
. (6)

We propose then to account for variations in the remaining distance to be traveled via the following alterna-130

tive model:131

OM(t) =
n(t)v(t)

L

(
1 + α

(
M(t)

n(t)L∗ − 1

))
=

n(t) + α
(
M(t)
L∗ − n(t)

)
L

v(t), (7)

where M(t) represents the total remaining distance to be traveled by all users (as in Eq. (2)).132

We show first that all three models (TB, PL and M) are equivalent in the steady state or when trip133

length follows an exponential distribution. Since we already showed the equivalence between the TB and134

PL models for these two cases, we only need to show that the M model is also equivalent to the PL model.135

We do so by demonstrating that M(t) = n(t)L∗ always holds in these two cases.136

In the steady state, M(t) = n(t)L∗ holds by definition of L∗. Then, if trip length follows an137

exponential distribution, Ṁ(t) = I(t)L−n(t)v(t) =
(
I − n(t)v(t)

L

)
L = ṅ(t)L. Taking M(0) = n(0) = 0,138

we have M(t) = n(t)L. Since for the exponential distribution L∗ = L, we obtain the desired result.139
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Let us now consider the general case. If M(t) > n(t)L∗, the average distance to be traveled is140

larger than in the steady state, so one might expect that OTB(t) < n(t)v(t)
L . Similarly, if M(t) < n(t)L∗,141

one might expect that OTB(t) >
n(t)v(t)

L . This suggests that the parameter α in Eq. (7) should be negative.142

In practice, we suggest to use α = −3. The choice of this value is motivated by the fact that, if trip length143

follows a gamma distribution with pdf f(l) = 4l
L2 e

−2l
L , then the M model is equivalent to the TB model.144

In order to obtain that result, we first write M(t) as

M(t) =

∫ +∞

0
l∗
∫ t

0
I(s)f

(
l∗ +

∫ t

s
V(n(u)) du

)
ds dl∗

=

∫ t

0
I(s)

∫ +∞

0
l∗f

(
l∗ +

∫ t

s
V(n(u)) du

)
dl∗ ds, (8)

where l∗ denotes the distance remaining to be traveled by individual users. Note then that if f(l) satisfies145

f(l) =
1

L

(
(1− F (l)) + α

(
1

L∗

∫ +∞

0
l∗f(l∗ + l) dl∗ − (1− F (l))

))
, (9)

then by replacing M(t) and n(t) in Eq. (7) by their expressions taken respectively from Eq. (8) and (4), we146

obtain that OM(t) = OTB(t).147

We now prove that the gamma distribution f(l) = 4l
L2 e

−2l
L satisfies equation (9) for α = −3. First,

note that

1− F (l) =

∫ +∞

0
f(l + l∗) dl∗ =

∫ +∞

0

4(l + l∗)
L2

e
−2(l+l∗)

L dl∗

=

(
4l

L2

∫ +∞

0
e

−2l∗
L dl∗ +

∫ +∞

0

4l∗

L2
e

−2l∗
L dl∗

)
e

−2l
L =

(
2l

L
+ 1

)
e

−2l
L .

Besides, note that∫ +∞

0
l∗f(l∗ + l) dl∗ =

(
l

∫ +∞

0

4l∗

L2
e

−2l∗
L dl∗ +

∫ +∞

0
l∗
4l∗

L2
e

−2l∗
L dl∗

)
e

−2l
L = (l + L)e

−2l
L .

By combining these two equations with Eq. (9) and by taking into account that for the considered distribution148

σ
L = 1√

2
and L∗ = 3L

4 , Eq. (9) boils down to149

4l = 2l + L+ α

(
4

3
(l + L)− (2l + L)

)
,

which is always true for α = −3.150

Thus, the M model and the TB model are equivalent (i) in steady state regardless of the trip length151

distribution, (ii) under time-varying conditions when trip length follows an exponential distribution (σ/L =152

1) and (iii) under time-varying conditions when trip length follows a gamma distribution with f(l) = 4l
L2 e

−2l
L153

(in that case σ/L = 1/
√
2), provided that α = −3. Furthermore, it is shown in the following section that154

the M model with α = −3 produces results that are similar to those of the TB model for other distributions.155

Thus, setting α to −3 should be considered as a good rule of thumb, even though other values might work156

better for specific cases.157
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COMPARISON AND SENSITIVITY ANALYSIS158

Description of key factors and metric of accuracy159

Due to the lack of real world data, the numerical applications reported hereafter were made with σ/L varying160

between 0 and 1.2. Larger coefficients of variations are not considered as they would require rather fat tails161

and large maximum trip length (which would be typically much larger than the zone width). We introduce162

hereafter two families of distributions allowing us to vary σ continuously while keeping the same average163

trip length L:164

• uniform distributions of the type U
[
L−√

3σ, L+
√
3σ

]
are used to obtain ratios165

σ/L ∈ (
0, 1/

√
3
]

;166

• mixtures of uniform distributions of the type w1U [0, L]+w2U
[
0, L+ 3σ2

L

]
, where w1 = 1− L2

3σ2 ,167

w2 =
L2

3σ2 are used to obtain σ/L > 1/
√
3.168

The other key factor analyzed hereafter is inflow variability. Its importance as a determinant of the169

accuracy of the PL model has been known since the introduction of this model (4). Here, we obtain different170

levels of inflow variability by changing the time-scale of the inflow variations (via the coefficient h in the171

inflow equation (11)).172

In order to quantify the differences in predicted dynamic behavior, we introduce the following metric173

ξA/B =

∫ |nA(t)− nB(t)| dt∫ |nB(t)− ns| dt , (10)

where nA and nB denote the accumulations obtained over time with two different models A and B, B acting174

as the reference, while ns denotes the steady state accumulation (corresponding to the inflow (1−ppeak)N/T175

- see Eq. (11)). The bounds of the integral are chosen to exclude any warm-up period and focus on the176

effects of the perturbation. The metric ξ can be interpreted as the average error in accumulation over time,177

normalized by the excess in vehicles hours traveled due to the demand peak with the reference model. For178

the sake of readability, the models being compared are indicated in plain text rather than as subscripts in the179

remainder of this article.180

Implementing the trip-based model in simulations181

The system whose evolution is described by (4) has been recognized as analytically intractable with general182

inflow functions and trip length distributions (5). It can however be solved exactly for the case of discrete183

users (7, 9, 10). The solving procedure takes as input a speed MFD V(n) and a population, described by184

three vectors of length N (which is the number of agents): a first vector contains the departure times of185

all agents, a second contains the trip lengths and a third contains the weights (this third vector can also be186

omitted if all agents have the same weight). Then, the algorithm proceeds event by event, in a chronological187

order, by keeping track of time t and of the cumulative distance traveled by a fictive user since the first188

departure (which we take as the origin of time): x(t) =
∫ t
0 v(u) du. An event is the departure or arrival189

of an agent. When a departure occurs (denote tdep the departure time, l the trip length and w the weight),190

we increase the current accumulation n by the weight of that agent (w) and add to the list of exits that an191

agent with weight w should exit when x will be equal to x(tdep) + l. When an arrival occurs, we simply192

decrease the accumulation n by the weight of the user exiting. Once an event is processed, we identify the193

next event by comparing the next departure time with the next arrival, given that accumulation and speed194

remain constant between two events.195

Considering discrete users also raises issues related to stochastic processes. These, although very196

interesting, are beyond the scope of the present paper. To circumvent these issues and approximate the197

deterministic solution of Eq. (4) for a continuum of users, we used both a large number of agents (2× 106)198

TRB 2018 Annual Meeting Paper revised from original submittal.



Lamotte, Murashkin, Kouvelas and Geroliminis 8

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 2 4 6 8
0

1

2

3

4

5

6

0 2 4 6 8
5

10

15

20

25

30

FIGURE 1 Time series of accumulation, outflow and speed with several ratios σ/L. Accumulation
and outflow are normalized by the critical outflow.

and an ad hoc discretization scheme. While a continuum of users would usually be best represented by a199

large number of different trip lengths, generating 2×106 well-distributed values of trip length and associating200

them randomly to departure times would introduce strong temporal variations in the average trip length and201

standard deviation of the trip generating process. To avoid this phenomenon, we only generated a small202

number (1000) of representative trip lengths, and associated them with a one-to-one mapping to batches of203

1000 users, taken by increasing departure times.204

We summarize hereafter the different numbers and functions used for simulations. Given a total205

demand N (in units of vehicles), the inflow is given for all t ∈ [0, T ] by:206

I(t) =

{
(1− ppeak)

N
T + ppeak

Nπ
2h cos(πh t), if t ∈ [T/2− h/2, T/2 + h/2]

(1− ppeak)
N
T , otherwise.

(11)

The simulation duration T is chosen to ensure that the system has enough time to stabilize before and after207

the peak. The parameter ppeak is the proportion of the total inflow that is part of the perturbation and h208

corresponds to the width of the demand peak. Small values of h correspond to highly variable inflows. In209

the reference scenario, h = 2h. The average trip length in all simulations is 3 km, the average speed when210

the network is empty was taken to be 30 kmh−1 and the speed MFD has the form:211

V(n) =
{
30(1− n/njam)

2, if n ∈ [0, njam]

0, otherwise.

Note that the production is maximized for the critical accumulation ncr = njam/3. With the PL model,212

the corresponding maximum outflow is C = 30
L

(
2
3

)2
ncr = βncr, where β = 40

9 � 4.44 h−1. We will,213

somehow abusively, refer to C as the capacity of the network considered. Rather than specifying some214

values for the demand (via ppeak and N ) or for the capacity (via njam), we specify the demand relatively to215

the capacity. The size of the inflow perturbation is set identical to the jam accumulation (Nppeak = njam)216

for all simulations and the steady-state inflow is set equal to some percentage of the capacity (60% in the217

reference scenario, i.e. (1− ppeak)
N
T = 0.6C = 0.6

(
40
9

)
ncr � 2.67ncr).218

Gridlock and hysteresis219

The time series of accumulation, outflow and speed obtained with the trip-based model for trip length dis-220

tributions corresponding to ratios of σ/L ranging from 0.4 to 1.2 are represented in Fig. 1, along with the221
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FIGURE 2 State trajectories obtained with the trip-based for several ratios σ/L, represented in the
accumulation-outflow space together with the outflow MFD. The points corresponding to the warm-
up period (t < 1) and to the end of the simulation (t > 7) are not represented. The color indicates
the occurrence time.

time series obtained with the PL model (which only depends on L). In the three sub-figures, the time series222

obtained with the PL model are strikingly similar to those obtained with the trip-based model and σ/L = 1.223

This observation is to be considered in conjunction with the equivalence result established for exponential224

distributions (which also have σ/L = 1). These results also confirm the fundamental role played by the first225

and second moments of the trip length distribution.226

Note also that the existence of congestion might lead to differences in the steady state. As smaller227

coefficients of variations correspond to more severely congested situations, the differences between different228

coefficients of variations are amplified by congestion. For σ/L = 0.4, the system reaches gridlock (and is229

trapped in this state).230

The Fig. 2a and Fig. 2b represent the trajectory of the system in the space of the outflow MFD231

for the cases σ/L < 1 and σ/L ≥ 1, respectively. Starting from the steady state, the system describes a232

loop in the outflow-accumulation space. This loop is counter-clockwise for σ/L ≤ 0.9 and clockwise for233

σ/L ≥ 1.1. For σ/L = 1, the trajectory follows the outflow MFD curve closely but actually describes an234

elongated “8”. The same patterns could actually also be observed under free-flow conditions but they are235

amplified here by the severe congestion.236

Sensitivity analysis237

We now provide some statistics regarding the sensitivity of the different models to variations in h (inflow238

variability) and in the coefficient of variation σ/L. In order to highlight the generality of the obtained results,239

we provide these statistics both under congested conditions and under free-flow conditions, i.e. when the240

speed is not influenced by accumulation. In that case, Eq. (4) boils down to:241

n(t) =

∫ t

0
I(s) (1− F ((t− s)vf)) ds.

Since we only consider trip length distributions that are mixtures of uniform distributions, F is piece-wise242

linear and the entire integral can be solved easily for a large range of inflow functions, including sinusoidal243

functions.244

Fig. 3 summarizes the values of the accuracy metric ξ with the TB model as a reference for a wide245
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FIGURE 3 Error between the different models (PL vs TB in the first column, M vs TB in the second
column) under free-flow (first row) and congested conditions (second row).

range of inflow variability (h, normalized with the average free-flow travel time Tf ), coefficient of variation,246

and for both the PL and M models. The subplots on the first row are for free-flow conditions and those on247

the second row for congested conditions.248

In both the congested and free-flow cases, the error between the PL and TB models is maximized249

when the inflow varies very rapidly and when the coefficient of variation of trip length is close to 0. In such250

cases, the error can exceed 30%. For more reasonable inflows however, the error is dramatically reduced251

for the entire range of coefficients of variations. When h/Tf > 18 for instance, the error between the PL252

and TB models is systematically smaller than 10%. The error between the PL and TB models seems to253

be minimized for a value of σ/L around 1, which is in line with the result obtained for the exponential254

distribution. In comparison, the M model produces much smaller errors (less than 1% for a wide range of255

scenarios) and is less sensitive to the value of σ/L.256

Imperfectly estimated coefficient of variation257

Overall, the previous results suggest that the dynamics of the TB model depend heavily on the trip length258

distribution considered. We investigate in this section the consequences of using a complex model (TB) but259

with the wrong trip length distribution. More specifically, we use only (mixtures of) uniform distributions260

of the type described in Section 4.1 but we consider different coefficients of variation.261

After running 13 scenarios based on the TB model with trip length distributions having different co-262

efficient of variations, this metric was computed for all the 132 possible pairs of time series of accumulation263

and results were summarized in Fig. 4. When the two trip length distributions are identical, the error is of264
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FIGURE 4 Comparison of relative errors ξ when considering two scenarios based on the trip-based
model with different trip length distributions and when using the PL model as an approximation of
the trip-based model. The peak duration h was increased from 2 to 2.15 compared to the scenario
described in Section 4.2, such that setting σ/L = 0 does not lead to gridlock.

course null. Note also that the table is not exactly symmetric as the denominator in the calculation of ξA/B is265

not the same as in the calculation of ξB/A. For comparison, we also evaluated the metric ξ when the reference266

is the TB model with one of the 13 possible trip length distribution and the approximation is the PL model.267

For a coefficient of variation σ/L = 0.7, the PL model achieves an error ξ = 14.4%. The trip-based model268

achieves smaller errors only when the ratio σ/L is relatively close to its true value (σ/L ∈ [0.5, 0.9]). The269

worst accuracy is obtained when considering a trip-based model with homogeneous trip length, in which270

case the error reaches 55.2%. This suggests that the PL model may actually perform relatively well in many271

realistic cases and that considering a more complex model (like the TB model) might be counter-productive272

if the second moment of the trip length distribution cannot be estimated with a sufficient accuracy.273

CONTROL274

In this section, we investigate the usage of the presented models for control purposes. The concept of275

perimeter control is utilized, where the inflow to an urban area (zone) is restricted in order to achieve276

minimization of total delays. For this purpose, we define a control variable u(t) that acts on the boundary277

of the zone and restricts the inflow, based on the current measured accumulation n(t). Vehicles that cannot278

enter the zone right away are stored in a so-called “virtual queue”, whose size at time t (in units of vehicles)279

is denoted VQ(t). For simplicity, we assume the entire inflow comes from neighboring regions, so that it280

can be fully controled at the perimeter. Thus, when perimeter control is active on the boundary, equation (1)281

becomes282

ṅ(t) = u(t)Ĩ(t)−O(t), (12)

with

Ĩ(t) =

{
I(t) if V Q(t) = 0,

c if V Q(t) > 0,

where c denotes the boundary capacity and u(t) ∈ [0, 1]. The controller can for instance restrict all the283

users from entering the network by setting u(t) = 0 in cases of strong gating, or can allow everyone to284

enter (u(t) = 1) in cases of light traffic conditions, i.e. low accumulation values inside the zone of interest.285

Vehicles that are not allowed to enter by the control policy are stored in a virtual queue at the boundary of286
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FIGURE 5 Analysis of different set-points for the bang-bang control policy for models PL and M.

the network. We model the vehicle accumulation in the virtual queue and study its contribution to the overall287

system delay.288

Bang-bang policy289

One control policy that is presented in Daganzo (4) is the so-called bang-bang policy, where the control290

actions switch from minimum to maximum according to the measured accumulation n(t) inside the zone.291

The objective of this policy is to keep the region accumulation as close as possible to a set point ñ = ncr for292

most of the time by closing the “gates” to the area. This policy is proven to be optimal for the PL model,293

in the sense that if we operate around the critical accumulation ncr the outflow of the system over time294

is maximized, and no matter the accumulation of the virtual queue, the total delay is also minimized (see295

Daganzo (4) for the complete proof).296

Here we investigate different values for the set-point ñ and we apply the bang-bang control to the297

presented models in order to assess the performance of the system. In order to compute the total delay we298

consider the time spent in the network by all vehicles plus the time spent in the virtual queue waiting to299

enter the network. The summation of the two gives the total time spent (TTS) which is the criterion for300

comparing different strategies. Fig. 5 presents the numerical experiments for a range of ñ from 3000 to301

6000 vehicles, whereas the critical point of the MFD that maximizes flow is ncr = 4110. For all this range302

the bang-bang policy is activated in the PL and M model and the figure presents the evolution of the integral303

of accumulations in the network and virtual queue. The PL model achieves the minimum TTS at a point304

very close to the actual critical accumulation, whereas the M model minimizes the TTS for an accumulation305

about 150 vehicles (3%) smaller than the critical (Fig. 5(c)). Moreover, this point is not constant for the M306

model and moves slightly to the left or right depending on the demand variations. This discrepancy between307

the models is due to the different dynamic equations and the resulting hysteresis on the MFD that affects the308

optimal point for the bang-bang policy.309
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FIGURE 6 Simulation of no control (NC) case and application of MPC utilizing the different models
(PL and M).

Model predictive control (MPC)310

Another usage of the presented models could be for real-time control of urban areas based on the concept311

of model predictive control. In that case, given a current state of the network n(t) and the trajectory of the312

future inflow I(t) for a given prediction horizon (e.g. up to t + Tp), one can use the model and solve an313

optimization problem to minimize delays for this horizon. Such a finite horizon optimal control problem314

has an objective function of the form315

J = min

∫ t+Tp

t
n(t) dt+

∫ t+Tp

t
VQ(t) dt, (13)

and is subject to the constraints that all the variables should follow explicitly the dynamic equations of the316

considered model.317

Fig. 6 presents some simulation results for MPC by utilizing the models presented in the previous318

sections. The TB model is used as the plant (real process) for the experiments and the models PL and M319

as the prediction models for the MPC. We simulate the inflow of Fig. 6(a) which brings the system to a320

steady state, then we have the peak hour and we finish again with the same steady state. Fig. 6(b) presents321

the trajectories of accumulations for all the studied scenarios. First of all, we have the no control (NC) case322
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where no controller is applied to the trip-based plant. Then, we have the MPC cases with both models and323

the bang-bang (BB) policy that regulates the accumulation around the actual critical point of the unimodal324

production MFD curve. It should be noted that for these experiments we use the same discretization as325

described in the section with the simulation comparison. The two models have very similar performance to326

the BB policy (with slight improvement that is not visible in the plot), resulting in reduced delays for the327

system compared to NC (area between the blue curve and the other curves). Note that in the total delay of328

the control experiments one needs also to include the area that is computed by the integral of the vehicles329

in the virtual queue which is depicted in Fig. 6(c). Nevertheless, the control examples have still significant330

improvements compared to NC, as the order of magnitude of the vehicles in the virtual queue is much lower331

that the accumulation inside the zone of interest. Finally, Fig. 6(d) represents the outflow curves of all332

instances. We can observe the hysteresis of the outflow MFD as well as the difference between NC and333

the other cases, that do not reach states that reduce the zone outflow, as they are regulated at a point that334

maximizes the outflow (we get many states around this point during the simulation).335

From the results presented in this figure we can conclude that the PL model gives very similar results336

to the M model when used for the MPC horizon. Although the M model is much closer to the trip-based337

plant (as demonstrated in the simulation comparison section), when utilized for model predictive control the338

two models exhibit similar results. The PL model has been used in previous works for perimeter control339

purposes (see e.g. Kouvelas et al. (20) for a multi-region system), and the analysis presented here supports340

the conjecture that it is not an inadequate model for future prediction and control.341

CONCLUSIONS342

This investigation on the influence of the trip length distribution on the trip completion rate under variable343

inflow provides a better understanding of the conditions under which the PL model represents a sound344

approximation. It is shown in particular that the PL model describes well realistic situations with large trip345

length heterogeneity (σ/L close to 1) but performs rather poorly when trip length is homogeneous (which346

is the most common assumption in the literature). In the latter case, the M model introduced in this paper347

can capture most of the complexity of the TB model, at a considerably smaller cost. The simple PL model348

seems however to be sufficient for control strategies with feedback.349
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