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Enhancing model-based feedback perimeter control with

data-driven online adaptive optimization
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École Polytechnique Fédérale de Lausanne (EPFL)
GC C2 390, Station 18, CH-1015 Lausanne, Switzerland

Abstract

Most feedback perimeter control approaches that are based on the Macroscopic
Fundamental Diagram (MFD) and are tested in detailed network structures
restrict inflow from the external boundary of the network. Although such a
measure is beneficial for the network performance, it creates virtual queues
that do not interact with the rest of the traffic and assumes small unrestricted
flow (i.e. almost zero disturbance). In reality, these queues can have a negative
impact to traffic conditions upstream of the protected network which is not
modelled. In this work an adaptive optimization scheme for perimeter control
of heterogeneous transportation networks is developed and the aforementioned
boundary control limitation is dropped. A nonlinear model is introduced
that describes the evolution of the multi-region system over time, assuming
the existence of well-defined MFDs. Multiple linear approximations of the
model (for different set-points) are used for designing optimal multivariable
integral feedback regulators. Since the resulting regulators are derived from
approximations of the nonlinear dynamics, they are further enhanced in real-
time with online learning/adaptive optimization, according to performance
measurements. An iterative data-driven technique is integrated with the
model-based design and its objective is to optimize the gain matrices and set-
points of the multivariable perimeter controller based on real-time observations.

∗Corresponding author. Tel.: +41-21-69-32481; Fax: +41-21-69-35060.
Email addresses: tasos.kouvelas@epfl.ch (Anastasios Kouvelas),

mohammadreza.saeedmanesh@epfl.ch (Mohammadreza Saeedmanesh),
nikolas.geroliminis@epfl.ch (Nikolas Geroliminis)

Preprint submitted to Transportation Research Part B July 16, 2017



The efficiency of the derived multi-boundary control scheme is tested in
microsimulation for a large urban network with more than 1500 roads that is
partitioned in multiple regions. The proposed control scheme is demonstrated
to achieve a better distribution of congestion (by creating “artificial” inter-
regional queues), thus preventing the network degradation and improving
total delay and outflow.

Keywords: real-time urban perimeter control, macroscopic fundamental
diagram, linear feedback regulators, online learning, adaptive optimization,
adaptive fine-tuning (AFT).

1. Introduction

Real-time traffic management is deemed to be an efficient and cost effective
way to ameliorate traffic conditions and prevent gridlock phenomena in cities.
Although many methodologies have been developed for real-time signal control
over the last decades (see e.g. Papageorgiou et al. (2003) for a good review),
the design of efficient control strategies for heterogeneous large-scale urban
networks that can deal with oversaturated conditions (where queues spill back
to upstream links) remains a significant challenge. Local adaptive strategies
that are widely used around the world are based on heuristic optimization
techniques and are not efficient when the network faces congestion propagation
phenomena and queue spillbacks. Other traffic responsive strategies (Gartner,
1983; Mirchandani and Head, 1998) use complex optimization methods, which
make their online application to large-scale urban networks difficult due to
high computational requirements.

More recently, a practicable network-wide control strategy (TUC) has
been developed (Diakaki et al., 2002, 2003) that tries to deal with over-
saturated conditions by minimizing the variance of relative occupancies of
the network links; this strategy has been tested in simulation but also in
various field implementations (see e.g. Aboudolas et al. (2010); Kouvelas et al.
(2011b)). Another conception, that has been recently proposed for regulating
urban traffic and is based on a decentralized approach of the problem, is
the max-pressure controller (Varaiya, 2013; Kouvelas et al., 2014). This
distributed control law, which was originally applied to production processes
and communication networks and has lately gained a lot of attention in traffic
control, acts locally in coupled intersections and has been proven (under cer-
tain conditions) to stabilize the queues of the network. In the same direction,
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Muralidharan et al. (2015) studied the network stability under fixed-time
control; this analysis provides useful insights about simple network traffic
instances (i.e. the demand is assumed to be “feasible” – can be accommo-
dated by the signals) and can potentially lead to analytical derivations of
performance measures (i.e. total travel time, total delay). Note, however, that
in the case of heterogeneous networks with multiple pockets of congestion
and heavily directional demand flows such an analysis is not straightforward
(due to the lack of spillback modelling and infeasible demand1) and this type
of control (i.e. TUC, max-pressure) may not be optimal or the stabilization
of the system in a reasonable time period might not be feasible.

An alternative approach for real-time network-wide control for heteroge-
neous urban networks that is steadily gaining momentum is the perimeter
flow control, which adds an additional layer of a more aggregated approach
for modelling and control. While a global optimization framework for all
controllers in the city may sound impossible (due to both computational
burden and model uncertainty and unpredictability), identifying some critical
intersections and regulating them effectively can significantly alleviate the
level of congestion (and even make more efficient the local strategies). The
basic concept of such an approach is to partition the heterogeneous network
into a small number of homogeneous regions and apply perimeter control to
the inter-transferring flows along the boundaries between regions. The input
flows to a region (which are also output flows for the neighbouring regions)
can be controlled at the intersections located at the borders of the region, so
as to maximize the total throughput of the system. Perimeter control (or
gating) policies have been introduced for single-region homogeneous networks
(Daganzo, 2007; Keyvan-Ekbatani et al., 2012) and multi-region heterogeneous
networks (Geroliminis et al. (2013); Aboudolas and Geroliminis (2013) and
many other works) using different control methodologies. The key modelling
tool that is used by all the aforementioned strategies is the Macroscopic
Fundamental Diagram (MFD), which provides a concave, low-scatter relation-
ship between network vehicle accumulation (veh) or density (veh/km) and
network production (veh·km) or circulating flow (veh/h). The concept of a
network MFD was firstly introduced in Godfrey (1969), but the empirical

1This is a demand where one can prove mathematically that no feasible control can
prevent congestion. One pathway to deal with this is demand management strategies (e.g.
congestion pricing), but if this is not the case one can try to manage congestion in an
efficient way for the system.
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verification of its existence with dynamic features is quite recent (Geroliminis
and Daganzo, 2008).

Evidently, the stability of the MFD shape faces two main challenges
which are (a) the hysteresis phenomena that appear at the onset or offset of
congestion (Buisson and Ladier, 2009; Geroliminis and Sun, 2011a; Gayah and
Daganzo, 2011a; Saberi and Mahmassani, 2012), and (b) the heterogeneity
of traffic in urban networks (Mazloumian et al., 2010; Geroliminis and Sun,
2011b; Knoop et al., 2012). Essentially, heterogeneous networks do not exhibit
a well-defined MFD, especially in the congested regime. Partitioning such a
network into homogeneous regions (i.e. areas with compact shape that have
small variance of link densities) can result in well-defined MFD as shown in Ji
and Geroliminis (2012). Nevertheless, the MFD concept constitutes a useful
tool for designing control policies, as it provides aggregated relationships
between macroscopic traffic variables and reduces the complexity of traffic
flow dynamics (i.e., there is no need for tracking the state of each individual
link of the network).

Despite the vast literature related to empirical observations, modelling
and control with MFDs, there are still multiple challenges in this growing field
of research. In this work, we address 3 main challenges related to modelling,
control and applicability of methodologies in real situations. First, (a) we
reformulate the system dynamics developed in previous works in a way that
the derived controllers can be implemented with limited data from inductive
loop detectors. Second, (b) in the experimental studies all the controlled
queues are internal to the simulated network and interact and influence the
rest of the traffic and (c) an online data-driven approach is utilized to optimize
the controller parameters.

With respect to (a) previous works have developed and described nonlinear
dynamics of MFD systems with multiple regions (see e.g. Ramezani et al.
(2015) for a detailed description). Nevertheless, these equations include state
variables for vehicle accumulations nij (where i is the current region of vehicles
and j the destination region) and proper information about OD demand dij.
If nij and dij can be measured with a decent level of accuracy, then the model
predictive control approach developed in these works can properly solve the
problem. However, there are some difficulties in estimating these variables
without vehicle trajectories (i.e. only by using loop detector data). Thus, our
current work does not contribute per se in the modelling of MFD dynamics,
but rather adjusts previous formulations in a way that is very useful for
control purposes without knowledge of nij states. Regarding contributions (b)
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and (c) the work of Aboudolas and Geroliminis (2013) (for multiple regions)
and Keyvan-Ekbatani et al. (2012) (for single region) specify set points n̂i for
each region i, which are integrated in the control framework. The specification
of n̂i for monocentric networks with clear attractions of destinations is treated
properly by Aboudolas and Geroliminis (2013), while heterogeneous networks
with multiple regions of attraction would require a non-trivial choice of n̂i.
Physically speaking, if a control approach can keep all regions below or close
to the critical accumulation of each MFD – ni that maximizes the regional
outflow – then the problem is well resolved by previous works (see Aboudolas
and Geroliminis (2013) for multiple regions and Keyvan-Ekbatani et al. (2012)
for single region problems). A challenge that we address in this work is the
case where keeping all regions at the desired n̂i is not possible. For example,
if heavily directional flows from the periphery of a network pass through a
small region to enter the center, the set point of the small region should be
smaller than the set point of the periphery. The fact that we do not control
the external boundary of the network, makes such a consideration crucial, as
keeping all regions uncongested or at the critical accumulation might not be
feasible.

1.1. State of the art of perimeter control

There are some recent works (Geroliminis et al., 2013; Aboudolas and
Geroliminis, 2013; Keyvan-Ekbatani et al., 2015) that deal with perimeter
control for multi-region systems with MFD-based modelling. However, none
of the above works deals with parameter uncertainties or short-term and
long-term variations in the system dynamics, i.e. all model parameters are
deterministic and the behaviour of the model does not change over time.2

In Haddad et al. (2013); Ramezani et al. (2015) a model predictive control
approach is proposed and a nonlinear MFD-based model is used to describe
the dynamics of the system. Although the controller is tested for different
errors in the MFDs and the demand profiles, perfect knowledge of the model
parameters is assumed. In Aboudolas and Geroliminis (2013) a multivariable
linear quadratic state feedback regulator is studied for perimeter control

2As a consequence, a defect of some field implementations is that they do not consider
the adaptation of the system to external disturbances that can affect the dynamics (e.g.
seasonal effects, changes in driving behaviour and/or infrastructure characteristics). In
many cases the utilized models are calibrated once and are not re-calibrated in a regular
basis.
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and two versions of the optimization problem are tested (with (LQI) and
without (LQR) integral action). The LQI/LQR gain matrices are designed
by linearising the nominal nonlinear traffic dynamics around a predefined
set-point. Note that such nominal optimal control laws do no guarantee
the robustness properties with respect to uncertainties. In this case study
the inflow from the external boundary of the network is restricted by the
regulator, creating virtual point queues that do not interact with traffic
upstream of the protected regions. A more recent work (Haddad and Mirkin,
2016) utilizes the context of model reference adaptive control in order to
improve the performance of feedback controllers under uncertainties. The
derived controllers incorporate input delay and can deal with bounded external
dependencies. Finally, a conventional pathway to address this problem is
through robust control design and recently there have been some notable
efforts in this direction (see e.g. Haddad and Shraiber (2014); Haddad (2015)).
These approaches can effectively deal with parameter uncertainties, but, on
the other hand, the control actions may in some cases be quite conservative
(if many stochastic scenarios are generated). Finally, the studies in Gayah
and Daganzo (2011a); Haddad and Geroliminis (2012); Gayah et al. (2014)
reveal some fruitful insights about the stability and robustness of MFD-based
systems under different adaptive signal approaches for systems with simplified
dynamics and topologies.

In this work we revisit and readjust previous formulations of MFD dynam-
ics of multiple regions (Ramezani et al., 2015), to derive a generic MFD-model
that can deal with limited data and simpler state description. Multiple linear
approximations of the model (for different set-points) are exploited to derive
optimal multivariable proportional integral (PI) feedback regulators. These
regulators are applied to the multi-region network and provide an initial
set of observations of the system. Then, the gain matrices and set-points
of the PI controller are updated in real-time by an adaptive optimization
algorithm based on performance measurements. The set of observations that
is obtained by the linearised model together with the real measurements
are inputs to the algorithm and provide some initial samples for the online
learning procedure. Microsimulation experiments demonstrate the versatility
and real-time applicability of the approach.

A novelty of this case study is that the queues created due to control
actions are inside the microsimulaton model. Note, that all the perimeter or
gating control strategies that utilise MFD modelling and have been tested in
microsimulation environment (e.g. Keyvan-Ekbatani et al. (2012); Aboudolas
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and Geroliminis (2013); Keyvan-Ekbatani et al. (2015)), apply control in
the external boundary of the network and as a consequence queued vehicles
create point queues that do not interact or constrain other movements. This
is similar to applying ramp-metering control on a motorway and assume
infinite storage capacity on the on-ramps, which might be problematic if
queues spillback in the urban network. In reality, movements outside the
protected zones might be influenced by these queues and this is not modelled
in microsimulation. In this work, the protected zones/boundaries are internal
to the network and interactions are taken into consideration. This approach
significantly challenges the performance of the feedback regulator, as (a) the
disturbance in the system due to uncontrolled inflow is higher compared to
systems that restrict the flow at the external boundaries of the network and
(b) queues at the boundaries between regions can affect other movements (e.g.
perpendicular to the boundary) due to spillbacks.

Another issue that is investigated is the optimal selection of MFD set-
points for antagonistic regions. The specification of set-points for monocentric
networks (Keyvan-Ekbatani et al., 2015) with well-defined destination attrac-
tions is straightforward, as the objective is to operate the protected regions
around the critical accumulation that maximizes flow. In this case study,
we show that the aforementioned strategies might not succeed in bringing
the system to the desired states. Nevertheless, heterogeneous networks with
multiple regions of attraction would require a non-trivial choice of set-points
(which are related to the level of congestion in each region). Physically
speaking, if a control approach can keep all regions below or close to the
critical accumulation of each MFD, then the problem is well resolved (see e.g.
Aboudolas and Geroliminis (2013)). However, in the case of excessive demand
where not all regions can be uncongested, one region could be favoured against
another one (through the set-points selection) if this is beneficiary for the
overall system. In cases of high demand/supply ratios that congestion can
provably not be avoided the objective is to optimally distribute the conges-
tion across the regions. One may select to “protect” a region that attracts
many trips (master) and let another region be congested (slave) if it is not
crucial for the system delay, in order to maximize system throughput. A
challenge, which is investigated here, is the optimal choice of set-points that
can lead heterogeneous systems in desired states with minimum congestion
by utilizing the master-slave concept. While model predictive approaches
(see e.g. Ramezani et al. (2015)) can identify close-to-optimal control policies
that minimize system-wide delays, unreliable predictions might harden the
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procedure.
In this work we try to overcome all the aforementioned difficulties by

combining model-based optimal control design with data-driven online tuning
of the regulator. An automatic fine-tuning algorithm (building on Kouvelas
et al. (2011a)) is integrated to identify optimal values for the set-points
(and gains) in an online adaptive mode. AFT (Adaptive Fine-Tuning) is
an iterative algorithm that receives a scalar performance index (e.g. total
delay) for different sets of controller parameters (gain matrices ans set-points)
and tries to learn the nonlinear mapping between these parameters and
the regulator performance. In each iteration AFT uses this knowledge in
order to update the values of the parameters aiming at better performance.
The control inputs consist of the ratios of inter-transferring flows between
neighbouring regions and the actuators correspond to the traffic lights of these
areas (e.g. inter-regional boundaries). The overall control scheme is tested in
microsimulation for the urban network of Barcelona, Spain, which includes
more than 600 intersections and the impact of the applied perimeter control
is evaluated via the corresponding MFDs and other performance measures.
The fixed-time policy of the city is compared to the final controller that is
obtained after the convergence of AFT.

The remainder of the paper is organized as follows: Section 2 presents
the modelling of aggregated dynamics for an urban network partitioned in N
regions. In Section 3, a linear optimal control methodology is described that
can be applied to different linear approximations of the model. The designed
control is enhanced in real-time by a data-driven adaptive optimization
algorithm, which is described in details in Section 4. Finally, the integrated
control scheme is applied to the network of Barcelona in microsimulation and
the obtained results are presented in Section 5. The main conclusions are
summarized in Section 6.

2. Modelling of a multi-region MFD-based system

Consider an urban network partitioned in N homogeneous regions (Fig-
ure 1(a)). The index i ∈ N = {1, 2, . . . , N} denotes the region of the system
and ni(t) the total accumulation (number of vehicles) in region i at a given
time t. Let Ni be the set of all regions that are directly reachable from the
borders of region i (i.e. adjacent regions to region i) and qi,in(t), qi,out(t) the
inflow and outflow of region i at time t, respectively. Also, let di(t) denote
the total uncontrolled traffic demand (disturbance) in region i at time t. Note
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Figure 1: A network modelled as a multi-region MFDs system: (b) production MFDs; (b)
sending flows MFDs.

that di(t) includes both the internal generated demand (vehicles entering
the network from on-street and off-street parking areas) and the external
uncontrollable inflows. The conservation equation for each region i of the
system reads (as in most of the aforementioned papers dealing with MFD
and perimeter control)

dni(t)

dt
= qi,in(t)− qi,out(t) + di(t) (1)

For every region i it is assumed that there exists a production MFD relating
the accumulation ni(t) to the total production Pi(ni(t)) and describes the
performance of the sub-system in an aggregated way. This MFD can be easily
estimated using measurements from loop detectors and/or GPS trajectories.
The total outflow Oi of region i (number of vehicles exiting the region per
unit time, either because they finished their trip or because they move to a
neighbouring region) can be estimated by Oi(ni(t)) = Pi(ni(t))/Li, where Li is
the average trip length for region i, which is assumed to be independent of time
and destination, internal or external, in i. Furthermore, let Mij(ni(t)), (i 6= j)
denote the sending flow from region i to region j at time t. This variable can
also be related to the accumulation ni(t) by using an MFD (as demonstrated
later) and estimated by using the measurements of all the detectors located in
the borders between regions i and j (Figure 1(b)). Finally, Mii(ni(t)) denotes
the internal trip completion rate in region i (vehicles finishing their trip inside
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the region) and is given by

Mii(ni(t)) = Oi(ni(t))−
∑
j∈Ni

Mij(ni(t)) (2)

2.1. Outflow model discrepancy

The model Oi(ni(t)) = Pi(ni(t))/Li mentioned above approximates the
outflow of a region under certain assumptions and has been used in various
works in the literature. It is an adequate model for control design as it derives
simplified system dynamics without delays, i.e., it considers that the outflow
is always given by the ratio of production over trip length (and trip length is
assumed constant). While there are empirical verifications about the validity
of this model with aggregated data (e.g. Geroliminis and Daganzo (2008)) it
should not be considered a universal law. Strong fluctuations in the demand
that create fast evolving transient states, spatial heterogeneity of congestion
or route choice effects can influence the trip length distribution of vehicles
in a region at a specific time and Pi over Li approximation of outflow might
experience some errors. While we consider this a valid assumption for a range
of cases, further research both in the theoretical and empirical side would be
useful to investigate this limitation, but this is out of the scope of the present
work. Here, it is used only for calculating Mii(ni(t)) for every region i, as
it is not straightforward to measure this quantity in reality without probe
vehicle data.

Note also, that the transfer flow can be lower than the sending flow Mij,
as it can be restricted by control actions uij ∈ [0, 1]; the actual transfer flow is
equal to uijMij . Nevertheless, equation (2) should not include any control vari-
able uij , as this would mean that if the sending flow is restricted, then the in-
ternal trip completion rate Mii could increase (consider the extreme case where
uij = 0, ∀j ∈ Ni; then still Mii < Oi(ni(t)) should hold in equation (2)). Pre-
vious works with model predictive control (Geroliminis et al., 2013; Ramezani
et al., 2015) estimate the flows Mij by utilizing more detailed description of the
system states, i.e. Mij(nij(t), ni(t)) = min {nij(t)/ni(t) ·Oi(ni(t)), Cj(nj(t))},
where nij describes the number of vehicles in region i with j as the next des-
tination and Cj(nj(t)) the receiving capacity of region j, which is a piecewise
function of nj(t) with two pieces, one constant value and a decreasing curve.
As it is difficult to estimate the variables nij without probe vehicle informa-
tion and the current work mainly utilizes loop detector data to estimate the
system states, the functions of sending flows Mij are directly estimated by
the measurements of the fixed-time control scenario.
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The description of system states that embeds constraints in the outflow
based on the receiving region has been discussed in previous publications (first
in Geroliminis and Daganzo (2007), also in Haddad et al. (2013); Ramezani
et al. (2015); Knoop and Hoogendoorn (2014)). Indeed, the most compre-
hensive dynamic equations are the ones presented in Ramezani et al. (2015),
where the sending flow Mij is a function of nij , ni, but also nj and the spatial
heterogeneity of link density in region i. It is clear that our approximation
simplifies the dynamics of the network, but the feedback control design is able
to treat this assumption properly. Note also (as it has been discussed in the
aforementioned paper), that the receiving (or boundary) capacity constraint
can be omitted during the optimization process without introducing stability
issues, as (a) boundary capacity decreases for accumulations much larger
than the critical accumulation (see Geroliminis and Daganzo (2007) – we
have also estimated the boundary capacity of the network of Barcelona and
this conclusion is valid for our experiments), (b) the control inputs will not
allow the system to get close to gridlock, and (c) feedback can contribute in
these effects (with some delay of course). The model still provides a decent
description of system dynamics even under adaptive control conditions.

2.2. Aggregated system dynamics

The inflow to region i is the summation of the transferring flows from all
its neighbouring regions and is given by

qi,in(t) =
∑
j∈Ni

uji(t)Mji(nj(t)) (3)

where the control variables uji(t), ∀j ∈ Ni, i ∈ N denote the fraction of the
flow that is allowed to transfer from region j to region i at time t, to be
calculated by the perimeter controller. Equivalently, the outflow of region i is
the summation of the transferring flows to all its neighbouring regions plus
the trip completion rate in region i and is given by

qi,out(t) = Mii(ni(t)) +
∑
j∈Ni

uij(t)Mij(ni(t)) (4)

The values of the control variables uij are constrained by physical or
operational constraints as follows

0 < uij,min ≤ uij(t) ≤ uij,max < 1, ∀i ∈ N , j ∈ Ni (5)
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where uij,min, uij,max are the minimum and maximum permissible transferring
rates of flows, respectively. Also, each region i has a maximum accumulation
ni,max, i.e. 0 ≤ ni(t) ≤ ni,max, ∀i ∈ N , and if ni(t) = ni,max then the region
reaches gridlock and all the inflows along the periphery are restricted. Invoking
(3)–(4) and (1) the following non-linear state equation is obtained

dni(t)

dt
=
∑
j∈Ni

uji(t)Mji(nj(t))−Mii(ni(t))−
∑
j∈Ni

uij(t)Mij(ni(t)) + di(t) (6)

Note that (6) is a more accurate representation of system dynamics compared
to Aboudolas and Geroliminis (2013), i.e. the outflows of the regions are
controlled since the exiting (sending) flows from region i, Mij, are multiplied
with the control variables uij , which is necessary as there are some uncontrolled
boundaries that create larger disturbance to the system.

This nonlinear model may be linearized around some set-point (n̂i, n̂j , ûij ,

ûji, d̂i), j ∈ Ni. The selection of n̂i is closely related to the existence of MFDs
Oi(ni(t)), Mij(ni(t)), which are approximated by third degree polynomial
functions of ni(t) and provide a critical accumulation at which the performance
of the region is optimized. The desired set-point should satisfy the steady-state
version of (6) which reads

0 =
∑
j∈Ni

ûjiMji(n̂j)−Mii(n̂i)−
∑
j∈Ni

ûijMij(n̂i) + d̂i (7)

The solution of the linear system of equations (i.e. steady-state for every region
i) for given n̂i, d̂i, provides the nominal control actions ûij, ∀i ∈ Ni, j ∈ N
that stabilize the system around the equilibrium point. Note that this system
of linear equations may have multiple feasible solutions (depending on the
layout of the network). By denoting ∆x = x− x̂ analogously for all variables
the linearization of (6) around the selected set-point yields

∆ṅi(t) =
∑
j∈Ni

∆uji(t)Mji(n̂j(t)) +
∑
j∈Ni

ûji(t)∆nj(t)M
′
ji(n̂j(t))

−∆ni(t)M
′
ii(n̂i(t))−

∑
j∈Ni

∆uij(t)Mij(n̂i(t))

−
∑
j∈Ni

ûij(t)∆ni(t)(t)M
′
ij(n̂i(t)) + ∆di(t) (8)
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By applying the linear equation (8) to an urban network partitioned in N
regions, the following state equation is obtained (in compact vector form)
that describes the evolution of the system in time

∆ṅ(t) = Ā∆n + B̄∆u + C̄∆d (9)

where ∆n ∈ RN is the state deviations vector ∆ni = ni − n̂i, ∀i ∈ N ;
∆u ∈ RM is the control deviations vector ∆uij = uij − ûij, ∀i ∈ N , j ∈ Ni;

∆d ∈ RN is the demand deviations vector ∆di = di− d̂i, ∀i ∈ N ; Ā ∈ RN×N ,
B̄ ∈ RN×M are the appropriate state and control matrices, that are derived
by application of (8), ∀i ∈ N , j ∈ Ni; C̄ = IN×N is the identity matrix.

The continuous time linear state system (9) of the multi-region system
may be directly translated in discrete time (with sample time T ) by use of
standard formulas (e.g. zero-order hold method (Brown and Hwang, 1997)).
The resulting discrete time system in vector form reads

∆n(k + 1) = A∆n(k) + B∆u(k) + ∆d(k) (10)

where k = 0, 1, . . . , K−1 is the discrete time index and A ∈ RN×N , B ∈ RN×M

are the corresponding discrete time state and control matrices.

3. Model-based design of multivariable PI feedback regulators

The discrete time linear system (10) approximates the original non-linear
system around the set-point and can be used for application of efficient
methodologies from linear MIMO (multiple-input-multiple-output) optimal
control theory. The approach of Linear-Quadratic-Integral (LQI) control is
employed here.

3.1. The Linear-Quadratic-Integral methodology

In this approach the state of the system (10) is augmented by additional
state variables that integrate the error signal ∆n, which is then used as a
feedback term to provide zero steady-state error. The new state variables are
given by

∆y(k + 1) = ∆y(k) + C∆n(k) (11)

where ∆y ∈ RZ is the integral vector and C ∈ RZ×N is typically a binary
matrix (i.e. its entries are 0 or 1), such that Z components (or linear combi-
nations of components) of the system state are integrated in (10). Note that
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N + Z ≤M must hold in order for the system to be fully controllable. The
augmented discrete time system (10)–(11) can be written in compact form as

∆ñ(k + 1) = Ã∆ñ(k) + B̃∆u(k) + C̃∆d(k) (12)

where ñ(k) =
[
∆n(k) ∆y(k)

]ᵀ
is the augmented state vector and Ã, B̃, C̃

are the augmented state, control, and demand matrices, respectively, which
are given by

Ã =

[
A 0
C I

]
, B̃ =

[
B
0

]
, C̃ =

[
C̄
0

]
(13)

Finally, for formulating the LQI optimal control problem the following
quadratic objective criterion is defined

min
u
J (u) =

1

2

K∑
k=0

(
∆nᵀ(k)Q∆n(k) + ∆uᵀ(k)R∆u(k) + ∆yᵀ(k)S∆y(k)

)
(14)

where Q ∈ RN×N , R ∈ RM×M and S ∈ RZ×Z are user-defined diagonal
weighting matrices that can influence the magnitude of each term of the
objective criterion and are usually defined via trial-and-error. The optimal
closed-loop solution of (14) subject to (12) for an infinite time horizon (i.e.
K =∞), and assuming ∆d(k) = 0, leads to the following multivariable PI
feedback regulator (see Papageorgiou et al. (2012) for details)

u(k) = u(k − 1)−KP [n(k)− n(k − 1)]−KI [n(k)− n̂] (15)

where KP,KI ∈ RM×N are the proportional and integral gains of the regulator,
which are computed by the solution of the corresponding discrete-time Riccati
equation and depend only on the matrices Ã, B̃, Q, R and S defined above.
In case that future demand flow predictions are available (i.e. ∆d(k) 6= 0,
in (12)), simple feedforward control techniques can be used to integrate the
disturbance predictions to the problem solution (Papageorgiou et al., 2012).
It should be noted that the number of control variables M depends on the
network partition and the sets Ni, i ∈ N , yet for any arbitrary formation of
the N -region system N ≤M always holds. Finally, it should be emphasized
that a well-known property of the PI regulator (15) is that it provides zero
steady-state error (due to the existence of the integral term), i.e. n(k) = n̂
under stationary conditions. Nevertheless, the traffic conditions are rarely
stationary and the controller in (15) can be further improved through the
automatic fine tuning method presented later.
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3.2. Implementation aspects

The state feedback regulator (15) is activated in real-time at each control
interval T and only within specific time windows based on the current accu-
mulations n(k) (i.e. by use of two thresholds ni,start and ni,stop

3 and real-time
measurements). The required real-time information of the vehicle accumu-
lations n(k) can be directly estimated via loop detector time-occupancy
measurements. Furthermore, in cases where only sparse measurements are
available, different approaches to estimate MFD related state variables with
real data are described in Leclercq et al. (2014), Ortigosa et al. (2014) and
Ampountolas and Kouvelas (2015).

Equation (15) calculates the fraction of flows u(k) to be allowed to transfer
between neighbouring regions. It should be emphasized that the solution of
LQI methodology does not take into consideration any type of constraints
for the state or control variables. In case the ordered values uij(k) violate
the constraints (5) they should be adjusted to become feasible, i.e. truncated
to [uij,min, uij,max]. Moreover, the values of u(k − 1) used on the right-hand
side of (15), should be the bounded values of the previous time step (i.e.
after the application of the constraints) in order to avoid possible wind-up
phenomena in the PI regulator. The obtained uij(k) values are then used to
derive the green time durations for the stages of the signalized intersections
located at the inter-regional boundaries. For a given pair of sending and
receiving regions, i, j, respectively, the ordered transferring flow by the
controller is uij(k)Mij(ni(k)) vehicles per time unit. This flow is distributed
to the corresponding intersections proportionally to the saturation flows of
the controlled links (i.e., typically, links with more lanes are anticipated to
accommodate more flow). To this end, every link z is required to transfer
uij(k)Mij(ni(k))Sz/Sij flow, where Sz is the saturation flow of the link and
Sij the summation of all saturation flows related to the i→ j movement. The
green stage duration gz is given by gz(k) = uij(k)Mij(ni(k))Cij/Sij, where
Cij defines the cycle time; without loss of generality Cij is assumed to be
equal for all intersections included in the i→ j movement (i.e. the equation
can be readily modified if this assumption does not hold). Note that the real
transferring flows may be different than the ordered ones for different reasons
(e.g. low demand, spillback from downstream links); however, the regulator is

3In practical applications usually ni,stop < ni,start is selected in order to avoid frequent
activations/deactivations of the controller.
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robust to these occurrences due to its feedback structure (i.e. the differences
will be integrated into the measurements of the following control cycles).

The structure of the controller (15) is similar to the one used in Aboudolas
and Geroliminis (2013) although derived by a more accurate model. Moreover,
here there are no control variables at the external borders of the network, but
only at the inter-regional borders. As a consequence, there are no vehicles
kept outside of the network in order to protect the congestion of the regions
(which is also the case for most of the gated intersections in Keyvan-Ekbatani
et al. (2012)) and all the queues created by the controller are internal to
the network and thus affecting other movements. More importantly, in the
current work the gain matrices KP,KI and set-points n̂ of the controller
are optimized in real-time by a learning/adaptive algorithm based on real
performance measurements, ensuing a more realistic set-up of the problem.
The closed-loop adaptive optimization scheme that constantly updates the
parameters of the controller is presented in the next section. Our analysis
shows that due to the additional complexities related to uncontrolled external
boundaries, previous PI-type strategies are not capable to perform at the
desired states (see Section 5.4) without a proper framework of adaptation,
which is described in the next section.

4. Adaptive optimization algorithm description

The parameters KP, KI, n̂ of the regulator (15) are updated in real-time
based on measurements of an objective function, so as to optimize the perfor-
mance of the controller. The Adaptive Fine-Tuning (AFT) algorithm is used
for that purpose. AFT is a recently developed algorithm (see Kosmatopoulos
and Kouvelas (2009); Kouvelas et al. (2011a) for details) for tuning the pa-
rameters (in the specific case the gain matrices and set-points) of controller in
an optimal way. It is an iterative algorithm that is based on machine learning
techniques and adaptive optimization principles and adjusts the control gains
and set-points to uncertainties and variations of the process under control.
The working principle of the integrated closed-loop system (PI regulator and
AFT) is presented in Figure 2 and may be summarized as follows:

• The N -region MFDs system is controlled in real-time by the multivari-
able PI regulator (15) which includes a number of tunable parameters
θ , vec (KP,KI, n̂), where θ is a vector with size 2× (M ×N) +N
and its elements are the entries of KP,KI, n̂ taken column-wise.
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• At the end of appropriately defined periods Tc (e.g. at the end of
each day), AFT algorithm receives the value of the real (measured)
performance index J (e.g. total delay of the system), as well as the
values of the most significant measurable external disturbances x (e.g.
aggregated demand). Note that the scalar performance index J (θ,x)
is a (generally unknown) function of the external factors x and the
tunable parameters θ.

• Using the measured quantities (the samples of which increase iteration
by iteration), AFT calculates new values for the tunable parameters
to be applied at the next period (e.g. the next day) in an attempt to
improve the system performance.

• This (iterative) procedure is continued over many periods (e.g. days)
until the algorithm converges and an optimal performance is reached;
then, AFT algorithm may remain active for continuous adaptation or
can be switched off and re-activated at a later stage.

The main component of the employed algorithm is a universal approxima-
tor Ĵ (θ,x) (e.g., a polynomial-like approximator or a neural network) that is
used in order to obtain an approximation of the nonlinear mapping J (θ,x),
based on all previous samples. At each iteration kc, the algorithm uses all
the collected data for the sets of parameters applied at iterations 1, 2, . . . , kc
and performs the steps described in Algorithm 1 in order to determine the
new set of parameters for the next period (e.g. next day). A shortcoming of
AFT approach (as for most data-driven learning algorithms) is that the first
iterations might create controllers with poor performance and unacceptable
behaviour (as shown later), due to the lack of information. While the per-
formance of the designed controller will improve after some iterations, real
life implementation would be problematic as the first trials might create very
congested conditions in the system. In our approach, we perform the first
iterations based on different mulrivariable PI regulators, that are obtained
by solving the Riccati equation (see problem formulation (12) and (14)) for
different desired states. This allows for good quality initial solutions that
overcome the discrepancies of first AFT iterations and provide data samples
for the learning procedure. The combination of the offline model-based con-
trol design presented in Section 3.1 and the online data-driven adaptation
with AFT provides a robust approach for dealing with the perimeter control
problem, as it will be demonstrated in the next section.
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Figure 2: The integrated closed-loop adaptive system (multivariable PI regulator and AFT
algorithm).

5. Application of the perimeter control scheme to a large network

The efficiency of the adaptive flow control scheme described in the previous
sections is tested in microsimulation experiments. The Aimsun microscopic
environment (Version 8.0.8) is used and the real-time implementation of the
control scheme is replicated through the simulator API. Only loop detector
data is utilized to estimate the state of the system, highlighting the feasibility
and applicability of the developed framework in a real life conditions.

5.1. Network description

The urban network of Barcelona, Spain is used as the test site (see
Figure 3(a) for a representation of the studied area on the map). The network
covers an area of 12 square kilometers with about 600 intersections and 1500
links of various lengths and is modelled and calibrated in Aimsun (Figure 3(c)).
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Algorithm 1: AFT algorithm for iteration kc (originally proposed in
Kouvelas et al. (2011a)).

Data: α0, Lg,max, θmin, θmax, all available measurements of vectors θ, x
and scalar J up to iteration kc.

Result: Calculate the new set of tunable parameters θ(kc + 1) to be
applied at the next period kc + 1.

1: Set Lg = min {2 (kc − 1) , Lg,max}.
2: Produce a new polynomial approximator with Lg regressor terms,

which has the following structure

Ĵ (kc) (θ,x) = ϑᵀ(kc)φ
(kc) (θ,x) (16)

where ϑ(kc) ∈ RLg are the weights of the approximator for iteration kc
(equivalent to the synaptic connections in neural networks) and
φ(kc) (θ,x) is a vector with Lg sigmoidal functions of polynomials
constructed using the elements of vectors θ,x (nonlinear activation
functions or neurons).

3: Obtain the weights ϑ(kc) by the solution of the following optimization
problem

ϑ(kc) = arg min
ϑ(kc)

1

2

kc∑
`=1

(
J` − ϑ(kc)

ᵀφ
(kc)
`

)2
(17)

4: Generate Λ random perturbations

∆θ(p)(kc) = α(kc)δ
(p)(kc), p ∈ {1, 2, . . . ,Λ} (18)

where α(kc) = α0/ (α0 + kc) is a time-decaying stepsize and δ(p)(kc)
are zero-mean Gaussian random vectors.

5: Produce 2Λ new candidate vectors of parameters

θ(±p)(kc + 1) = θ∗(kc)±∆θ(p)(kc) (19)

where θ∗(kc) is the “best” set of tunable parameters until the kc-th
experiment, i.e. the one with the best performance so far.

6: Project all the candidate vectors θ(±p)(kc + 1) to the permissible
domain Θ = [θmin,θmax].
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7: Evaluate the effect of each candidate vector to the system performance

by using the approximator Ĵ (kc), i.e.

Ĵ
(kc)
(±p) = ϑ(kc)

ᵀφ(kc)
(
θ(±p)(kc + 1), x̄(kc + 1)

)
(20)

where x̄(kc + 1) is an estimate of the external disturbances x for the
next experiment kc + 1.

8: Pick the vector that corresponds to the best estimate, i.e.

θ(kc + 1) = arg min
θ(±p)(kc+1)

Ĵ (kc)
(
θ(±p)(kc + 1), x̄(kc + 1)

)
(21)

to determine the set of parameters θ(kc + 1) to be applied at the next
period kc + 1.

The number of lanes for through traffic varies from 2 to 5 and the free flow
speed is 45 kilometers per hour. Traffic lights at signalized intersections are
operating on multi-phase fixed-time plans with constant (but not equal) cycle
lengths.5 For the simulation experiments, typical loop-detectors have been
installed around the middle of each network link. The OD-based demand
that is used for the simulations consists of 123 origin centroids and 132
destination centroids and provides a good replication of real life conditions as
it generates realistic traffic congestion patterns in the network. The duration
of the simulation is 5 hours including a 15 minutes warm-up period. In the no
control case (where a set of the real fixed-time plans of the city are applied to
the intersections) the network faces some serious congestion problems, with
queues spilling back to upstream intersections. Note, that drivers adapt to
the traffic conditions through a C-Logit route choice model (standard module
of the simulator) that is activated every 3 minutes, therefore the distribution
of demand into the network is more realistic. Previous works (Gayah and
Daganzo, 2011b; Mahmassani et al., 2013; Yildirimoglu et al., 2015) have
shown for different models and network configurations that driver adaptivity

4Source: https://maps.here.com/.
5Intersections that are considered for perimeter flow control have different constant

cycle durations; these durations are not affected here (i.e. only the durations of green
phases are changed) in order to maintain the coordination.
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Figure 3: The test site of Barcelona, Spain: (a) Map of the studied area4; (b) results of
the clustering algorithm and choice of controlled intersections; blue circles correspond to
intersections belonging to u14, red to u24, green to u34 and black to u4j , j = 1, 2, 3; (c)
Aimsun model of the network (blue lines connect the centroids to origins and green to
destinations); (d) representation of the simulation model partitioned in four regions and
the control variables.

increases the performance of large-scale networks and decreases hysteresis
loops in the MFDs, which is closer to real-life observations. Note that the
developed controller does not utilize any information related to OD; only loop
detector data is required.

5.2. Network partitioning and macroscopic fundamental diagrams

Traffic congestion in the city of Barcelona is unevenly distributed, creating
multiple pockets of congestion in different areas of the network. As MFD
depends on the distribution of link densities (occupancies, speeds), partitioning
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heterogeneously loaded cities with uneven distribution of congestion into
homogeneous regions is a possible solution to take advantage of well-defined
MFDs. In fact, the outflow of the network is a function of both average and
variance of link densities. Since traffic conditions are spatially correlated in
adjacent roads and congestion propagates from adjacent links, describing
the main pockets of congestion in a city with a small number of clusters
without the need for detailed information in every link of the network is
conceivable. By partitioning, we aim to group spatially-connected links with
close density values within a cluster, which increases the network flow for
the same average density. Spatial connectivity is a necessary condition that
makes feasible the application of perimeter control strategies. The partitioning
algorithm used in this study is an optimization framework called “Snake”
algorithm (Saeedmanesh and Geroliminis, 2016), which considers heterogeneity
index as a main objective function and contiguity is forced explicitly by
imposing constraints. This approach requires the desired number of clusters
as a predefined input and it obtains the optimal number of clusters by
evaluating heterogeneity metric for different number of clusters. By applying
this algorithm, the network of Barcelona is partitioned into 4 homogeneous
regions that are shown in Figure 3(d). This partitioning simplifies the network
dynamics as there is no need for routing information/decisions (i.e. due to
the configuration of the regions there is only one choice to move from one
region to another). Note, however, that the methodological control approach
proposed in the previous sections can be applied to any arbitrary partitioning
outcome.

The simulation is first executed with the fixed-time signal plans of the
city to obtain the data needed for the control design. Figure 4(a) presents
the production MFD for the whole network for the first two hours of the
simulation (onset of congestion) and ten different replications, each one
with a different random seed that affects the stochastic parameters of the
microsimulator. Each point corresponds to the aggregated measurements
of all the detectors and the time interval is 90 sec (i.e. equal to the control
interval T ). The network MFD has low scatter and reaches the congested
regime (production reduces from 4500 to 2000 veh·km/T ). The production
of each region separately for all replications (again for the first two hours)
is displayed in Figure 4(b). Note that region 2 is the only region that
does not get congested, whereas the rest of the regions get states with
increased accumulations and decreased productions. Region 4 is the only
one that has common boundaries with all other regions. Figures 4(c) and
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4(d) demonstrate the MFDs for the transfer flows uNC
41 M41, u

NC
42 M42, u

NC
43 M43

and the trip completion rate M44 as third degree polynomial functions of
the region accumulation n4. The variable uNC

ij denotes the fixed-time control
applied to the network of Barcelona between region i and j. It is computed
by summing the gzSz/CijSij factors for all the signalized boundary links z of
the i → j movement. This derives a constant term for each movement, i.e.
uNC
ij , which is then used to scale the transferring MFDs and get the sending

flows Mij that are used in the model. The data for the first three transfer
flows of the figures is extracted from the same 10 replications by analysing
all vehicle trajectories, but can be also obtained (in simulation and real life)
from the flow measurements of all the loop detectors along the boundaries
between any two regions. Finally, the trip completion rate M44 is computed
for all the measurement points by equation (2).

The MFDs have relatively low scatter and the fitted functions are utilized
by the model in order to derive the LQI multivariable regulator. This model-
based control design phase assumes that these functions do not depend on
the control decisions (simulation data before and after control validates this
assumption) and are only a function of the accumulation of the sending region
(something that is demonstrated by the simulation data in Figures 4(c) and
4(d)). The feedback nature of the regulator and the online tuning/optimization
by AFT can correct possible discrepancies between modelling assumptions
and real world (or microsimulation in this case study).

5.3. Simulation set-up and offline design of LQI

The network partitioning presented in the previous section derives M = 6
control and N = 4 state variables (i.e. u =

[
u14 u24 u34 u41 u42 u43

]ᵀ
and n =

[
n1 n2 n3 n4

]ᵀ
). The duration of the simulation is 5 hours,

where the first 2 hours represent the onset of congestion and the rest 3 hours
(offset of congestion) are used to make sure that the network is empty of
vehicles at the end of the simulation period and the evaluation metrics are
comparable. The simulation step is set to 0.5 sec and the multivariable PI
regulator is applied every T = 90 sec. The control decisions (after modified
to satisfy the operational constraints) are forwarded for application to 28
signalized intersections (out of 600 in the network) which are all across the
boundaries of region 4. As shown in Figure 3(b), there are 8 intersections for
applying u14 (blue circles), 4 for u24 (red circles), 5 for u34 (green circles), 5
for u41, 3 for u42 and 3 for u43. All the intersections that control the outflow
of region 4 are indicated in Figure 3(b) with black circles although they
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Figure 4: (a) Production MFD for the whole network; (b) production MFD for each
region of the network; (c) transfer flows uNC

41 M41(n4), uNC
42 M42(n4) MFDs for region 4; (d)

transfer flow uNC
43 M43(n4) and internal trip completion M44(n4) MFDs for region 4.

correspond to different control variables. Their location at the borders of
region 4 indicates the control variable in which they belong. The signal plans
of the aforementioned intersections, and more precisely their operational
constraints (e.g. minimum time allocated for pedestrian phases), determine
the corresponding minimum and maximum permissible rates for the control
variables u (constraint (5)). The derived umin,umax applied at the simulation
are given by umin =

[
0.069 0.077 0.061 0.068 0.077 0.077

]ᵀ
and umax =[

0.827 0.695 0.604 0.824 0.81 0.76
]ᵀ

, which are computed by using the
minimum and maximum green phases duration of the 28 intersections.
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For the LQI methodology different linearization set-points n̂ are investi-
gated, which lead to different gain matrices that influence the performance
of the regulator. The selection of appropriate set-points n̂ for a multi-region
system is not straightforward, as at a given time the states of neighbouring re-
gions may be at different regimes of the MFD (i.e. congested or uncongested);
hence the linear approximations of the model may not be reliable. Here,
many different vectors are used for n̂ (spanning various region states6) and
the results of the simulations provide observations that can be used as initial
samples for the learning procedure of AFT algorithm. The matrix C that
provides the state errors and contributes to the integral part of the regulator

is set equal to C =

[
1 0 0 0
0 0 0 1

]
, which means that only errors measured for

regions 1 and 4 are considered. Since these two regions are more important
(masters) the objective criterion minimizes the integral of their state error
ni(k)− n̂i, i = 1, 4. The regions 2 and 3 are not included in the integral part,
which means that this design does not guarantee zero steady-state error for
these regions (slaves). Nevertheless, this configuration renders the dynamical
system fully controllable. Finally, the diagonal weighting matrices Q ∈ R4×4,
R ∈ R6×6 and S ∈ R2×2 are chosen after trial-and-error experiments by
studying the behaviour of the controller. Physically speaking, these weights
depend upon the order of magnitude of each variable and also the weight
of each term on the objective criterion. To this end, many different sets
were tested until achieving a satisfactory control behaviour. Specifically, the
diagonal elements of Q are chosen according to the maximum accumulation
of each region (albeit with different weights), i.e. Qii = 1/ni,max for i = 1, 4
and Qii = 5/ni,max for i = 2, 3; the diagonal elements of R, S are chosen
Rii = 500, Sii = 10−6 for i = 1, 2, 3, 4.

5.4. Control scenarios

Different control scenarios are investigated. The base case is the no control
(NC) scenario where one set of the real well-tuned fixed-time plans of the city
is applied to the network. The performance of different control approaches is
evaluated according to the improvement that they can accomplish compared

6Different levels of congestion are considered for each region (e.g. 0.8ncr, 0.9ncr, 1.1ncr,
1.2ncr, where ncr is the critical accumulation of the region) and many combinations of the
states are used to produce the set-points n̂ and derive linearizations of the corresponding
MFDs.
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to the base case. One option is to apply AFT alone starting from a fixed-
time controller and trying to converge to parameters that will improve the
performance (pure data-driven approach). Another alternative is to use the
model-based PI controller that is derived from LQI optimization methodology
for different linearization points. Finally, the two aforementioned approaches
can be combined into one by using LQI for the first iterations (days) and then
switch to the online adaptation of the parameters by exploiting the knowledge
of the first iterations (LQI/AFT). As demonstrated later a combination of LQI
for the first iterations with online adaptation provides the best performance
for the network.

Another scenario that is tested is to protect only one region of the net-
work. The simulation results reveal that a single region perimeter control,
even if it is carefully designed, is unable to bring the system to a desired
state and congestion is high. This significantly highlights the importance of
careful integration of concepts consistent with the physics of traffic in the
methodological and control framework. Region 4 has been selected to be
protected (as it attracts the highest demand from the origins compared to
the other regions) and the total inflow and outflow to this region is regulated
in the perimeter by a simple I-type regulator which has the following form

u4(k) = u4(k − 1)−K4 [n4(k)− n̂4] (22)

where u4 ∈ R2×1 contains the two decision variables that regulate the inflow
and outflow respectively and there is only one state variable n4, i.e. the
accumulation of region 4. Similarly to (15), the vector K2×1

4 comprises the
gains of the regulator (with K4(1) ∈ R+ and K4(2) ∈ R− the gains for
inflow and outflow, respectively). This single region (SR) control scenario
utilizes the same 28 intersections displayed in Figure 3(b) at the boundary of
region 4 and its objective is to operate the accumulation around the desired
point in order to prevent congested states for this region. In principle, this
feedback regulator increases/decreases the inflow/outflow of the region based
on the difference between the current accumulation and the desired one (when
inflow is decreased because of high accumulation n4(k), outflow increases as
K4(1) and K4(2) have different signs). It is activated/deactivated whenever
the state n4(k) is higher/lower than 0.8n̂4

7. As demonstrated later, such a

7This value has been found after a manual trial-and-error procedure; AFT has been also
used to optimize this parameter but the performance could not be improved any further.
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controller is not successful in decreasing congestion and bringing region 4 and
the overall network in better states. The main reasoning about this is related
to spillbacks to the other regions combined with high uncontrolled inflow in
region 4. The results of all different control approaches are discussed in the
next section.

5.5. Simulation results

This section presents the results obtained by the simulation experiments.
First, AFT is applied online without any prior knowledge of the system and
tries to optimize the regulator parameters. This is a pure data-driven approach
and no model is utilized for the controller. AFT runs for 100 iterations starting
from an initial point where KP = KI = 06×4. For these values the regulator
(15) operates as a fixed-time policy and this point is equivalent to the NC case
(i.e. the actual fixed-time plans of the city are applied). The initial values
for the set points n̂ are obtained from the production MFDs of the NC case
(Figure 4(b)) and are equal to n̂ = [3600, 1400, 2000, 6000]ᵀ. The performance
index of AFT (i.e. the objective function J that tries to minimize) is selected
to be the total delay of the system. In each iteration the whole simulation
of 5 hours runs with the same parameters and the multivariable regulator
is activated/deactivated according to the predefined thresholds ni,start and
ni,stop.8 At the end of the simulation AFT is called to calculate the new values
of KP,KI, n̂ to be used in the next iteration.

Figure 5(a) presents the evolution of the average system delay (measured
in sec/km) over the iterations of the algorithm. For the first iterations the
system performance is extremely ineffective, leading to values of delay three
times higher than the NC case. This “spiky” behaviour of the algorithm
(also reported in Kouvelas et al. (2015)) occurs due to the fact that in the
first iterations there are not many samples (i.e. no prior knowledge of system
performance for different controllers) and the approximator cannot learn from
previous experiments. As the number of iterations increases the learning
process becomes better and the objective function exhibits a convergent
behaviour, leading to results that improve the initial fixed-time controller
(red dashed line in Figure 5(a)). Nevertheless, such an approach might be
difficult to be tested in a real framework as the first few days the control will
be catastrophic for the system.

8The thresholds are selected according to the critical accumulations of each region and
ni,stop = ni,start = 0.8ni,cr.
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To overcome this “spiky” behaviour, AFT is combined with the regulators
that are derived by application of LQI methodology to the linearized model.
More specifically, different LQI regulators are generated (for different lin-
earization set-points) and are simulated to the network for the first iterations.
Then, AFT is applied for online optimization, exploiting the knowledge of all
the conducted simulations (samples of performance J for different values of
KP,KI, n̂). The results are presented in Figure 5(b). In the first 13 iterations
different multivariable PI regulators are applied that are all obtained by the
solution of LQI. The figure displays the average value of the performance
index (average delay) for these 13 iterations with a magenta dashed line. The
blue solid line presents the evolution of delay over AFT iterations, while
the red dashed line indicates the delay of NC case. The algorithm applies
different perturbations of the parameters until it converges. Note by com-
paring Figures 5(a) and 5(b) (vertical axes have different range of values
for visibility purposes) that the high values of delays in the first iterations
are avoided in 5(b), which allows for a potential real life implementation of
the approach (compared to the first problematic iterations of the classical
AFT). Note also, that applying AFT with some good initial iterations (coming
from LQI methodology) facilitates the convergence of the system to better
and smoother solutions, 378 sec/km vs. 331 sec/km (compare Figures 5(a)
and 5(b) after iteration 70). In previous applications of AFT algorithm (see
e.g. Kouvelas et al. (2011a)) a fairly good initial point was provided for the
tuneable parameters (i.e. predefined values based on particular problems
experience) and as a consequence there was no need to generate some “good”
initial iterations. Another technique that has been used is to apply relatively
small stepsizes α0 in Step 4 (see Algorithm 1) in order to prevent the “spiky”
behaviour of the first iterations (especially in field implementations), but this
has the shortcoming that the algorithm may stack in local minima and not
improve the performance.

Table 1 presents some quantitative results about the simulations. First,
the performance index of AFT (average delay9) for all different approaches
is reported. Taking NC as the base case, the delay decreases by about 3.4%
when the SR control is applied. In this scenario, region 4 is protected by
the controller, but due to the excessive demand and the propagation of

9Since the network is empty at the end of the simulation period (i.e. all simulations
serve the same number of vehicles), average and total delay represent the same metric.
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Figure 5: (a) Evolution of network delay for the 100 iterations of AFT; (b) AFT
convergence after running the algorithm with 13 initial points from LQI.

Table 1: Performance index of different approaches; (b) evaluation criteria for NC and BC
simulations.

NC SR LQI AFT LQI/AFT Units

Delay 425.57 411.19 395.79 378.01 331.64 sec/km

Criterion (14) 1.1984 0.6348 0.8144 0.6822 0.4556 veh×103

Improvement
– 3.38 7 11.18 22.07

%
– 47.04 32.05 43.08 61.99

congestion to other regions the relative improvement is insignificant. Clearly,
protecting the region with the higher attraction of destinations is not enough
for the overall network performance. When the multivariable LQI regulator
is applied to control all the regions the improvement rises to 7%. It should be
emphasized that this is the average delay of the 13 points obtained for different
linearization set-points and this approach deserves further investigation (i.e.
how one could choose proper n̂i without a fine-tuning method similar to AFT).
In the case that AFT is applied without any prior knowledge the improvement
is about 11.2% (for the best run); furthermore this approach has the “spiky”
behaviour during the first iterations, and also, even after convergence the
performance for different runs is not stable (see Figure 5(a)). By using the
LQI points for the first iterations and then applying AFT we obtain a stable
convergent behaviour and an improvement of some 22.1%. Then, the value of
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criterion (14) is reported for all control approaches. It should be noted that
only the first and third terms of the quadratic criterion are computed, as the
second term (i.e. variations form nominal control values) cannot be defined
for some of the scenarios (e.g. NC case). The value of the objective function
is calculated for a time window that most of the controllers are active, i.e.
from time t = 1800 sec until t = 10800 sec10. According to this criterion SR
outperforms LQI and AFT approaches while BC is again the most effective.

As a mater of fact the single region (SR) control does not manage to
alleviate congestion, even if it has been designed properly. This highlights
that a method that controls only the external boundary of a network and
estimates the delays outside this boundary with a virtual queue approach,
might disregard significant traffic phenomena related to delays and spillbacks,
especially if some of these movements carry substantial portions of the traffic
demand. Figure 6 provides some more insights about the performance of
SR controller. The goal of the feedback regulator 22 is quite straightforward
(i.e. it tries to keep region 4 around the desired point and does not take
into consideration the states of the other regions) and its behaviour (e.g.
aggressive or conservative actions, oscillations) depends on the gains K4.
Several experiments were carried out for the SR regulator and according to
the simulations results the gains K4 =

[
0.008 −0.008

]ᵀ
were found to have

a satisfactory performance (e.g. non oscillatory behaviour, empty network at
the end of the simulation). It should be noted that there are many values
of these gains for which the network faces severe spillbacks (mostly between
regions 1 and 4) that take a lot of time to be resolved. For the simulation of
the aforementioned gains (which has a total delay improvement of 3.38%),
Figure 6(a) presents the evolution of accumulation in region 4. Note the small
improvement over the NC case even if the regulator does not achieve the
target point due to excessive internal demand, operational constraints on the
control variables and spillbacks that affect the ordered flows. Nevertheless,
the total delay for region 4 (area between the two trajectories) is reduced
significantly. Figure 6(b) displays the control actions of the regulator which

10Note that the compared controllers are not all deactivated at the same time, as this
is done based on measurements from the simulation and the evolution of congestion is
not the same. Here, a window of 100 control cycles has been chosen because most of the
controllers are active during all this period. Finally, the n̂ vector of Section 5.5 is used in
the calculations for all the scenarios (for the sake of comparison), although the controllers
are designed for different set-points (or tuned with AFT).
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Figure 6: (a) Evolution of accumulation of region 4 for NC and SR cases and set-point
of single region controller; (b) control decisions in the boundaries of region 4 for SR case
(regulated inflow and outflow); (c) evolution of accumulations for the other 3 regions of the
network for NC and SR cases; (d) total vehicles waiting to enter region 4 from region 1
and 2 (w14 and w24 respectively) over time for NC and SR cases.

is activated at minute 30 and deactivated at minute 145.5. As expected, the
inflow decreases gradually to the minimum value (and the outflow increases
to maximum) because accumulation in region 4 is higher than the target for
a long period. This is beneficial for region 4 but also does not cause many
problems to the other regions (see accumulations in Figure 6(c)). Region 1
is also improved compared to NC for most of the simulation time, whereas
regions 2 and 3 experience some longer delays.
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By comparing the accumulations of regions 1 and 4 for SR and NC after
time 200 min (Figures 6(a) and 6(c)) we observe that the SR case experiences
higher delays. This is a result of local spillbacks in an area that spans these
two regions and can be also noticed in Figures 6(d). This figure presents the
total number of vehicles inside the links that are controlled in the boundary
between regions 1 and 4 (w14) and 2 and 4 (w24) over time, i.e. vehicles that
are waiting to enter region 4 from regions 1 and 2 respectively. It is the
stripe of links around the boundary (31 roads). In the boundary between 1
and 4 the SR controller has about the same inflow with NC until the time
that the controller is deactivated. This is achieved with much smaller green
duration because in the NC case there are spillbacks in region 4 that prevent
vehicles from entering. Once the controller is deactivated (i.e. both cases have
the same fixed-time plan but the accumulation in region 4 is much lower in
SR) many more vehicles can enter region 4 and w14 decreases dramatically.
However, this has a negative effect later in time as there is a blocking that
delays vehicles in w14 (which also exists in the NC case but for fewer vehicles
and shorter time period; see Figures 6(d) after time 200 min). In the boundary
between regions 2 and 4 things are more clear, with w24 being higher for SR
when the controller is active (due to reduced green duration) and no blocking
occurrence after the deactivation of the controller actions. The number of
vehicles in the boundary between 3 and 4 (not presented here) has a similar
pattern to w24. In conclusion, it should be emphasized that this is the best
SR controller (of this type) that we obtained after a tedious trial-and-error
procedure. It is clear that by only protecting region 4 there are not many
actions that someone could do to improve the total network delay.

The qualitative characteristics of the best controller (BC) that is obtained
after AFT convergence are further investigated in an attempt to interpret
its behaviour. Figure 7(a) illustrates the time series of accumulations for all
regions and for NC (solid lines), BC (dashed lines), respectively. The controller
achieves to maintain the system in better states, i.e. the accumulations of
regions 1 and 4 are substantially improved while regions 2 and 3 are slightly
deteriorated, as they try to support regions 1 and 4 that have a higher
attraction of trips. The integral of the areas between the solid and dashed
lines corresponds to the improvement/deterioration of the total delay. The
space-mean speed of each region (i.e. νi(k) = Pi(k)/ni(k)) over the simulation
time is illustrated in Figure 7(b) from t = 20 min to t = 220 min. Note that
speed increases for regions 1 and 4 shortly after the controller is activated
and less number of vehicles observed in these regions, while regions 2 and 3
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Figure 7: (a) Time series of regions accumulations for NC and BC; (b) time series of
regions space-mean speeds for NC and BC; (c) control decisions over simulation time for
the BC case; (d) cumulative trip endings over simulation time for NC and BC.

are holding more vehicles due to perimeter control restrictions. Figure 7(c)
displays the trajectories of the control variables for the BC case. The controller
is activated after 30 minutes and stays active for 2 hours and 12 minutes. It
is clear from the figure that the antagonistic control variables u14 and u41 or
u34 and u43 exhibit some kind of inverse variation (i.e. when the one increases
the other decreases and vice versa) and this is more clear when region 4 gets
congested (after minute 80). This also happens for variables u24 and u42
but to a smaller extend. Figure 7(d) presents the cumulative number of trip
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endings (i.e. vehicles reaching their destination) during the simulation for
every region. It is clear that BC improves the throughput of regions 1 and 4
(masters) while regions 2 and 3 have less throughput (slaves). In total, BC
manages to serve more vehicles than NC for the same simulation time, and,
as a result, the dissipation of network congestion happens much earlier in
the BC case. Note that while speed is higher and accumulation is lower after
t = 30 min for region 4, trip endings increase compared to NC case only after
t = 150 min. The main reason is that during this period there is a large
number of trips with external destinations to region 4 that passes through
this region (especially with destination in region 1). The transfer flows are
significantly higher (see also pattern for u41) and more trip endings occur
earlier in region 1.

Finally, in order to account for the stochasticity of the simulator, 10
replications were carried out (with different random seeds). These replications
provide a statistical analysis of NC and BC cases for different variations of the
stochastic parameters of the software. They can be considered – in an analogy
to a real case – as different variations among congested days with similar but
not identical demand profiles. Table 2 presents some average quantitative
results of the simulation experiments, where NC and BC are compared for
different metrics obtained by the simulator (the average performance of the 10
replications is presented here). BC outperforms NC in all evaluation criteria
as the applied controller manages to distribute congestion in a better way.
More precisely, the improvement of the delay is about 20% on average, the
space-mean speed of the network is increased by about 22.5% and the time

Table 2: Evaluation criteria for no control (NC) and best controller (BC) simulations
(average of 10 replications).

Evaluation criteria NC BC (%) Units

Delay 514.17 410.93 -20.08 sec/km

Space-mean Speed 6.26 7.67 22.62 km/h

Stop Time 426.82 333.41 -21.89 sec/km

Mean Queue 8519.4 6358.39 -25.37 veh

Mean Virtual Queue 8619.75 7856.77 -8.85 veh

Total Travel Time 70150.94 54371.89 -22.49 h

Total Travelled Distance 419779.67 401040.89 -4.46 km

Vehicles Served 201810 201810 0 veh
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that a vehicle is stopped (because of congestion or traffic lights) is also 22%
less. The statistics of the queues are also reported in order to demonstrate the
improvement of the applied control regarding the virtual queues. Interestingly,
the average value of all the network virtual queues over time is reduced by
almost 9% (i.e., drops from 8619.75 to 7856.77 vehicles). The control actions
(which are all internal to the network) alleviate traffic congestion – this can be
also seen by the 25% improvement of the mean queue, which corresponds to all
the stopped vehicles inside the network over time – and as a consequence they
implicitly also reduce the boundary virtual queues (in contrary to previous
approaches that significantly increase the boundary queues). In addition, the
total travel time is decreased by 22.5% on average. Note that in both cases all
the vehicles are served (as the network is empty at the end of the simulation),
though the total travelled distance (production) of NC case is slightly higher
(4.46%). This happens because of the applied driver adaptivity module which
makes the vehicles choose longer routes (but with shorter travel times) since
the network is heavily congested.

6. Conclusions and discussion

A new macroscopic MFD-based model that describes the aggregated dy-
namics of multi-region systems is introduced. Linear approximations of the
model are used to derive optimal multivariable PI feedback regulators (LQI)
for perimeter flow control. Furthermore, the performance of the regulator is
enriched in real-time by an online adaptive optimization algorithm (AFT).
The efficiency of the integrated adaptive control scheme was tested in mi-
crosimulation. The studied problem is quite difficult from a control viewpoint,
since the boundaries of the network are not controlled and all the inflows
coming from the origin links are considered disturbance for the system. As
a consequence, it is difficult to regulate the system around the set-point by
only controlling the inter-transferring flows between the regions (because of
the high disturbances). Nevertheless, it is shown that by considering the
spatial and temporal heterogeneity between the regions and integrating a
partitioning approach, one can improve the distribution of congestion in the
network through perimeter control actions. The simulation results indicate
that the integrated control scheme (LQI/AFT) can substantially improve
the network performance compared to fixed-time signal plans and previous
adaptive type controllers.

As illustrated here, the online application of AFT algorithm without any
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prior observations of the system performance for different control parameters
is cumbersome, because of its “spiky” behaviour during the first iterations
(e.g. days) of application. To overcome this difficulty, measurements of the
system performance can be collected for different controllers that are designed
offline by applying the LQI methodology. Then, AFT algorithm is applied
to fine-tune the parameters of the multivariable controller (gain matrices
and set-points) so as to achieve a desirable performance. The proposed
methodology is applicable in real life as it is computationally efficient and it
only requires loop detector real-time measurements. Future research directions
will deal with investigations about the activation/deactivation time of the
controllers for multi-region systems, as well as the possibility of integrating
time-dependent parameters (i.e., different gains and set-points in the onset
and offset of congestion). These are mutually related problems that can be
possibly solved together in real-time.

It should be noted, that strong fluctuations in the demand that create fast
evolving transient states, spatial heterogeneity of congestion or route choice
effects can influence the trip length distribution of vehicles in the network
(and the space-mean trip length); as a result, the ratio of production over
outflow (utilized by equation (2)) might exhibit some variations (Mahmassani
et al., 2013; Yildirimoglu and Geroliminis, 2014). If conditions change rapidly
however, the outflow-MFD might not provide a good approximation as it is
“memoryless”, i.e. it ignores the history of the system. If, for instance, there
is a discontinuity in the inflow in the uncongested regime, the accumulation
increases instantaneously and the outflow predicted by the outflow-MFD
increases as well. Intuition suggests that the outflow should only increase
after a delay corresponding to the shortest trip duration. While such a
model is described in Lamotte and Geroliminis (2016), its complexity makes
the integration in a control framework infeasible. As also pointed by Arnott
(2013), such a model has an endogenous delay term, which makes its analytical
solution very challenging. Also, one of the reviewers of the paper mentioned
that in the extreme case that demand patterns follow a Dirac function (with
a zero value everywhere except of a single point with value infinity) then
the model of equation (2) will produce infinite speeds for some vehicles.
Nevertheless, this assumption pushes the model in extreme situations that
probably will never occur in real transport networks. An important aspect
is that further research is needed to better identify the demand conditions
under which the outflow-MFD model might experience significant errors that
deteriorate the control efficiency. Nevertheless, we have to point out that
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the perimeter controllers developed here rely on feedback, and thus some
discrepancies in the model are not considered to be crucial when feedback
frequency (i.e. prediction horizon) is not long.

Another challenging topic is the theoretical analysis of the multi-region
nonlinear system with time varying delays, in order to develop a controller
that takes into account the state-dependent delays and compare it with the
one presented here. This is going to shed more light on the importance of
these delays under various demand variations. Designing controllers for state-
dependent nonlinear delayed systems is a complex and tedious procedure (see
Bekiaris-Liberis and Krstic (2013) for more details). One approach to deal
with such systems, is to design a nominal regulator that stabilizes the delay-
free system and then apply it to the original delayed system and explore its
feasibility and efficiency under different conditions (such designs are presented
in Bekiaris-Liberis and Krstic (2013)). This is a modelling simplification that
we make for the model-based design of the controller and further investigations
are needed in order to assess the theoretical and practical limitations of this
assumption. Future research is going to deal with a detailed study of the
delayed system and explore more advanced control designs (e.g. feedback law
dependent on the delays, predictor feedback control law).

Estimation of nij states by combining loop detector data and vehicle
trajectories (probes), as well as efficient techniques for optimal distribution of
the queued vehicles on the controlled links at the boundaries or regions should
also be research priorities. Finally, a field implementation of the proposed
approach and evaluation in real life conditions could provide further insights
about its benefits. Such a case study is under development in the city of
Geneva in Switzerland.
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