
ETH Library

Measurement of the underlying
event activity in inclusive Z boson
production in proton-proton
collisions at √s=13 TeV

Journal Article

Author(s):
CMS Collaboration; Sirunyan, Albert M.; Bachmair, Felix; Bäni, Lukas; Berger, Pirmin; Bianchini, Lorenzo; Casal, Bruno; Dissertori,
Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor;
Klijnsma, Thomas; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Meinhard, Maren T.; Meister, Daniel; Micheli,
Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël;
Perrozzi, Luca; Quittnat, Milena; Schönenberger, Myriam; Shchutska, Lesya; Tavolaro, Vittorio R.; Theofilatos, Konstantinos;
Vesterbacka Olsson, Minna L.; Wallny, Rainer ; Zagozdzinska, Agnieszka; Zhu, De Hua; et al.

Publication date:
2018-07

Permanent link:
https://doi.org/10.3929/ethz-b-000275783

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Journal of High Energy Physics 2018(7), https://doi.org/10.1007/JHEP07(2018)032

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8038-1613
https://doi.org/10.3929/ethz-b-000275783
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP07(2018)032
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


J
H
E
P
0
7
(
2
0
1
8
)
0
3
2

Published for SISSA by Springer

Received: November 12, 2017

Revised: June 9, 2018

Accepted: June 25, 2018

Published: July 5, 2018

Measurement of the underlying event activity in

inclusive Z boson production in proton-proton

collisions at
√
s = 13TeV

The CMS collaboration

E-mail: cms-publication-committee-chair@cern.ch

Abstract: This paper presents a measurement of the underlying event activity in proton-

proton collisions at a center-of-mass energy of 13 TeV, performed using inclusive Z boson

production events collected with the CMS experiment at the LHC. The analyzed data cor-

respond to an integrated luminosity of 2.1 fb−1. The underlying event activity is quantified

in terms of the charged particle multiplicity, as well as of the scalar sum of the charged

particles’ transverse momenta in different topological regions defined with respect to the Z

boson direction. The distributions are unfolded to the stable particle level and compared

with predictions from various Monte Carlo event generators, as well as with similar CDF

and CMS measurements at center-of-mass energies of 1.96 and 7 TeV respectively.

Keywords: Hadron-Hadron scattering (experiments), Minimum bias, Event-by-event

fluctuation

ArXiv ePrint: 1711.04299

Open Access, Copyright CERN,

for the benefit of the CMS Collaboration.

Article funded by SCOAP3.

https://doi.org/10.1007/JHEP07(2018)032

mailto:cms-publication-committee-chair@cern.ch
https://arxiv.org/abs/1711.04299
https://doi.org/10.1007/JHEP07(2018)032


J
H
E
P
0
7
(
2
0
1
8
)
0
3
2

Contents

1 Introduction 1

2 Data and simulated samples 2

3 The CMS detector 3

4 Experimental methods 4

4.1 Event selection 4

4.2 Track selection 4

5 Unfolding and systematic uncertainties 5

6 Results and discussion 7

7 Summary 11

The CMS collaboration 20

1 Introduction

The production of particles in a hadron-hadron collision includes contributions from parton-

parton scatterings, initial-state radiation (ISR), final-state radiation (FSR), and beam-

beam remnant (BBR) interactions. The large parton densities accessible in proton-proton

(pp) collisions at the CERN LHC result in a significant probability of more than one

parton-parton scattering in the same pp collision, a phenomenon known as multiple par-

ton interactions (MPI). The combination of particle production from MPI (excluding the

parton-parton scattering with the highest momentum transfer) and BBR interactions is

commonly called the underlying event (UE). The UE usually produces particles at low

transverse momentum (pT) that cannot be experimentally distinguished from the particles

produced from ISR and FSR. These processes cannot be completely described by perturba-

tive quantum chromodynamics (QCD) calculations, and require phenomenological models,

whose parameters are tuned by means of fits to data.

The experimental measurement of the UE is often based on a process that defines

the scale of the hardest parton-parton scattering, along with a phase space region with

enhanced sensitivity to particle production associated with the UE activity. A number

of measurements [1–9] have been performed by the Tevatron and LHC experiments at

various center-of-mass energies, ranging from 0.3 TeV to 13 TeV, and using a variety of

hard processes including events with high-pT charged particles or jets, Z+jets, and tt+jets.

Measurements of the UE associated with different hard processes are useful to test the level
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of universality of the underlying MPI dynamics. Events with a harder scale are expected

to correspond, on average, to proton-proton interactions with a smaller impact parameter

and therefore with more MPI [10]. Such increased UE activity is observed to plateau at

high energy scales, which indicates that the smallest impact parameters have been reached

and hence maximum matter overlap in the pp collision [11].

This paper presents a measurement of the UE activity based on events with inclusive

Z → µ+µ− production at
√
s = 13 TeV. Underlying event measurements based on Z

boson production have been carried out previously at
√
s = 1.96 TeV [9] and 7 TeV [3, 8] by

Tevatron and LHC experiments. Z boson production is a process with a clean experimental

signature and well understood theoretically, allowing clear identification of the UE activity.

Measurements with Z bosons also make it possible to partially distinguish the MPI and

ISR/FSR contributions [3, 12]. In this paper, the properties of the UE are measured as a

function of conventional observables related to the impact parameter of the pp collision,

such as the number of charged particles and the scalar sum of their pT. The data are

corrected for detector effects and compared to Monte Carlo (MC) event generators, as well

as with earlier results at
√
s = 1.96 TeV [9] and 7 TeV [3].

The outline of the paper is as follows. Section 2 describes the data and simulated

samples used for the validation and unfolding studies. Section 3 gives a brief description of

the CMS detector, whereas section 4 describes the event and track selection criteria, and

the observables used for quantification of the UE. The unfolding procedure and systematic

effects are discussed in section 5, and the final results are presented in section 6. Finally,

the analysis is summarized in section 7.

2 Data and simulated samples

The analysis is performed on a sample of pp collisions at
√
s = 13 TeV, corresponding to

an integrated luminosity of 2.1 fb−1. Data were collected with the CMS detector in 2015

when the average number of inelastic collisions per bunch crossing (pileup) was about 20.

For the evaluation of the event and track selection efficiencies, signal and background

processes are simulated at next-to-leading order (NLO) accuracy with mc@nlo 2.2.2 [13]

and, for single top production, with powheg 2.0 [14, 15]. To study the model dependence,

the Z+jets events are also simulated at leading order (LO) with MadGraph5 2.2.2 [16, 17]

combined with pythia8 [18] using the CUET8PM1 [19] tune. Diboson (WW, WZ and ZZ)

as well as multiple-jet production, via strong interaction processes, are generated at LO

with pythia8 standalone. The NNPDF3.0 [20] set is used as the default set of parton

distribution functions (PDFs) for all generated LO and NLO samples.

These simulated samples are processed and reconstructed in the same manner as the

collision data. The detector response is simulated in detail by using the Geant4 pack-

age [21]. The samples include additional pileup pp interactions, with a multiplicity distri-

bution matching that observed in data.

The measured UE distributions are unfolded to correct for detector effects and selection

efficiencies, and compared to various MC simulation predictions:
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• MadGraph + pythia8: Z+jets events are generated with MadGraph, followed by

parton showering and hadronization with pythia8 (CUET8PM1 tune). The Mad-

Graph generator includes up to 4 partons in the matrix element calculations, while

additional jets can be generated by pythia8 during parton showering.

• powheg + pythia8: Z+jets events are produced up to NLO accuracy with the

powheg ‘Multiscale-improved NLO’ method [15]. The pythia8 generator as-

sumes pT-ordered parton showers, and the latter are interleaved with MPI. Tune

CUET8PM1 is used for hadronization and parton showering. To quantify the ef-

fect of MPI, events are also simulated without MPI. To study the impact of color-

reconnection (CR) between final state partons, pythia8 events are also simulated

without CR.

• powheg + herwig++: to further investigate the model dependence, powheg

events are also hadronized using herwig++ [22] with tune EE5C [19]. herwig++,

unlike pythia8, generates angular-ordered parton showers. It simulates MPI ac-

cording to a model similar to that of pythia8, with tunable parameters for the

regularization of the parton-parton cross section at very low momentum transfers,

but without the interleaving with parton showers. In most models, the number of

MPI follows a Poission distribution with a mean that depends on the overlap of the

matter distributions of the hadrons.

Monte Carlo events are generated at
√
s = 7 and 13 TeV, as well as for proton-

antiproton collisions at
√
s = 1.96 TeV.

3 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter. Within the solenoid volume are a silicon pixel and strip tracker, a lead tungstate

crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each

composed of a barrel and two endcap sections. Forward calorimeters extend the pseudo-

rapidity coverage provided by the barrel and endcap detectors. Muons are measured in

gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid, cover-

ing the pseudorapidity range |η| < 2.4, with detection planes based on three technologies:

drift tubes, cathode strip chambers, and resistive-plate chambers.

The silicon tracker measures charged particles within the range |η| < 2.5. It consists

of 1440 silicon pixel and 15 148 silicon strip detector modules and is located in the 3.8 T

field of the superconducting solenoid. For nonisolated particles of 1 < pT < 10 GeV and

|η| < 1.4, the track resolutions are typically 1.5% in pT and 25–90 (45–150)µm in the

transverse (longitudinal) impact parameter [23]. Matching muons to tracks measured in

the silicon tracker results in a relative pT resolution for muons with 20 < pT < 100 GeV of

1.3–2.0% in the barrel and better than 6% in the endcaps. The pT resolution in the barrel

is better than 10% for muons with pT up to 1 TeV [24].

A more detailed description of the CMS detector, together with a definition of the

coordinate system used and the relevant kinematic variables, can be found in ref. [25].
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4 Experimental methods

4.1 Event selection

Events are selected online by requiring the presence of at least two isolated muon candidates

with pT > 17 (8) GeV for the leading (subleading) muon. Offline, events are required to

have at least one well-reconstructed vertex [23] within ±24 cm of the nominal interaction

point along the z-direction. At least five tracks are required to be associated with the

vertex, which should be at most 2 cm from the beam axis in the transverse plane. Muons are

reconstructed with the particle-flow algorithm [26] and are required to satisfy identification

criteria based on the number of hits in the muon detectors and tracker, the transverse

impact parameter with respect to the beam axis, and the normalized χ2 of the global

muon track fit. The backgrounds from jets misidentified as muons and from semileptonic

decays of heavy quarks are suppressed by applying an isolation condition on the muon

candidates. The relative isolation variable, Irel, for muons is defined as:

Irel =

[∑
p charged
T + max

(
0.,
∑
E neutral

T +
∑
EγT − 0.5

∑
pPUT

)]
pµT

. (4.1)

Here
∑
E neutral

T and
∑
EγT are the sums of the transverse energies of neu-

tral hadrons and photons, respectively, in a pseudorapidity-azimuth cone of size

∆R ≡
√

(ηµ − ηneutral,γ)2 + (φµ − φneutral,γ)2 < 0.4 around the muon direction. The quan-

tity
∑
p charged
T represents the pT sum of the charged hadrons, in the same cone around the

muon, associated with the selected vertex. Finally,
∑
pPUT is the pT sum of the charged

hadrons, in the same cone around the muon, not associated with the selected vertex. A

muon is considered isolated if Irel < 0.15. Misalignment in the detector geometry affects the

measurement of muons in a different manner for data and simulation. To account for this

effect, different muon momentum corrections [27] are applied to data and simulated events.

Offline, the leading and subleading muons are required to have a pT larger than 20

and 10 GeV, respectively, so as to be in the region where the trigger efficiency is highest

and pT-independent [28]. These muons are required to be associated to the vertex with

the largest value of the p2T sum of the tracks belonging to it. Events with two oppositely

charged muons are further required to have an invariant mass (Mµµ) in the window 81–

101 GeV. After all the selections, a high-purity sample of Z candidates is extracted with

estimated background contributions, mainly from top quark and diboson processes, below

1%. About 1.3 million Z candidate events are left in the data, which is in agreement within

5% with the NLO simulation predictions.

4.2 Track selection

All charged particles, except the selected muons, with pT > 0.5 GeV and |η| < 2 are

considered for the UE study. To reduce the number of incorrectly reconstructed tracks, a

high-purity reconstruction algorithm [29] is used.

The distance of closest approach between the track and the selected vertex in the

transverse plane and in the longitudinal direction are required to be less than three times
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the respective uncertainties. These requirements help reduce contamination of secondary

tracks from decays of long-lived particles, photon conversions, and pileup. Tracks with

poorly measured momenta are removed by requiring σ(pT)/pT < 5%, where σ(pT) is

the uncertainty in the pT measurement. The track selection efficiencies in the data and

simulated samples agree within 4–5%.

These selected charged particle tracks are used to construct the relevant UE observ-

ables, namely the particle density and ΣpT density, which are defined as follows:

• Particle density: the average number of charged particles in an event per unit ∆η∆φ

area.

• ΣpT density: the average of the scalar pT sum of all selected charged particles in an

event per unit ∆η∆φ area.

Here, ∆η = |ηZ − ηch| and ∆φ = |φZ − φch| are the pseudorapidity and azimuthal sep-

aration between each charged particle and the Z boson. In order to enhance the sensitivity

to the UE, observables are calculated in different phase-space regions defined with respect

to the φ direction of the Z boson. These regions are classified as:

• towards region: ∆φ < 60◦,

• transverse region: 60◦ < ∆φ < 120◦,

• away region: ∆φ > 120◦.

The UE observables are studied as a function of the transverse momentum of the dimuon

system (pµµT ).

5 Unfolding and systematic uncertainties

In order to compare data and predictions, the UE distributions are corrected to the stable

particle level (lifetime cτ > 10 mm) with the iterative D’Agostini method [30], which

also accounts for bin-to-bin migrations. In the present analysis, two-dimensional dis-

tributions are unfolded with a response matrix constructed from events simulated with

MadGraph + pythia8.

The unfolded measured distributions may be distorted by a variety of systematic ef-

fects, as discussed below.

• Model dependence: the events simulated with MadGraph + pythia8 reproduce

the measured pµµT distribution within 10–20%. The effect of this discrepancy on the

final UE distributions is evaluated by reweighting the simulated sample so that it

describes the measured pµµT distribution. These weights are applied to the response

matrix used for the unfolding. The difference between the unfolded distributions

with and without these weight factors is 2–5%. An additional cross-check is per-

formed by using response matrices constructed with events simulated with the Mad-

Graph + pythia8 and the mc@nlo + pythia8 event generators. The difference

between the unfolded distributions obtained with the response matrices constructed

with these two generators is found to be less than 0.5%.
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Observable Uncertainty (%)

Model dependence 2–5

Tracking efficiency 4–6

Pileup 0.5

Trigger 0.1

Physics background 0.5–1

Muon momentum correction 0.4–0.7

Total Uncertainty 4.8–7.8

Table 1. Summary of the systematic uncertainties in the particle and ΣpT densities.

• Tracking efficiency: the tracking efficiency is known with an uncertainty of 4% [23, 31].

To estimate the effect of this uncertainty on the UE distribution, 4% of the tracks are

randomly removed in the simulated events while constructing the response matrix.

The effect on the unfolded distributions is approximately 4–6%.

• Pileup: pileup events produce low-pT particles that can contribute to the UE activity.

However, the effect of pileup is expected to be small in the present analysis because all

tracks are required to originate from the same primary vertex. The effect of pileup

is further reduced by the unfolding procedure because the simulated samples also

include pileup. Any possible residual effect is evaluated by varying the pp inelastic

cross section used in the simulation by 5%. The bias on the unfolded distributions is

less than 0.5%.

• Trigger: the triggers used in the analysis require that the muons be isolated, which

may bias the UE distributions. The effect of this requirement is evaluated by com-

paring UE distributions obtained with and without the trigger requirement in the

simulation. This affects the results by up to 0.1%.

• Physics background: the Z boson production events are required to be in the mass

window 81–101 GeV. In this region, there is a small (about 0.3%) contribution of

dimuons from diboson and top quark decays. These background processes may bias

the UE distributions because of the different event topologies and parton radiation

patterns as compared to the Z boson events. The effect of these background processes

is evaluated, using simulations, by comparing the UE distributions for the Z-boson

events and for the Z-boson events combined with background processes. The UE

distributions change by 0.5–1%.

• Muon momentum correction: the effect of the muon momentum corrections [27] is

studied by comparing the corrected data distributions with the ones without correc-

tions. The resulting effect on the particle density is up to 0.4%, and up to 0.7% for

the ΣpT density distribution.

Table 1 summarizes the dominant systematic uncertainties in the particle and ΣpT
densities. Adding all aforementioned sources in quadrature results in a total systematic

uncertainty of 4.8–7.8%, depending on the UE observable and particular bin.
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Figure 1. Unfolded distributions of particle density (left) and ΣpT density (right) in Z events, as a

function of pµµT in the towards (∆φ < 60◦), transverse (60◦ < ∆φ < 120◦), and away (∆φ > 120◦)

regions. Error bars represent the statistical and systematic uncertainties added in quadrature.

6 Results and discussion

Figure 1 shows the comparison of the measured UE activity in the towards, transverse,

and away regions. The activity in the away region increases sharply with pµµT , but more

slowly in the towards and transverse regions. This is expected as particle production in the

away region is mostly dominated by the hadronic recoil system, which is highly correlated

with pµµT . Because of the large spatial separation, the contribution of the hadronic recoil

is small in the transverse region, and becomes even smaller in the towards region. The

activity in the three regions becomes similar as pµµT approaches zero; this observation again

corroborates the hypothesis that differences in the UE activity for the three regions are

due to varying parton radiation contributions. Unlike the UE measurement with leading

jet/track [3, 6], in the present analysis the UE activity is not zero when pµµT approaches

zero. This behavior reflects the fact that the initial scale in the Z boson events, given

by the lepton pair invariant mass in the range 81–101 GeV, is already large enough to

determine a significant overlap between the transverse parton densities of the colliding

protons, and hence a large number of MPI. From the UE measurements using the leading

charged particle (jet) approach [3, 6], it is observed that the MPI contribution reaches its

maximal value at an energy scale of 5 (12–15) GeV. Above this energy, there is a slow

rise in the number of particles produced, which is mainly attributed to the increase in the

parton radiation contributions. In the present measurement, the minimum scale is set by

the dimuon mass (81–101 GeV), which is larger than the energy where the MPI contribution

saturates. Therefore, the increase in UE activity with pµµT should be mainly ascribed to

the rise in the recoil hadronic contribution and associated ISR/FSR [3].

Figures 2–4 present data-model comparisons of the UE distributions as a function of the

Z boson pT in the away, transverse, and towards regions, respectively. The bottom panel of

each plot presents the ratio of the simulated to the measured distributions. The powheg
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Figure 2. Unfolded distributions of particle density (left) and ΣpT density (right) in Z events in the

away region as a function of pµµT , compared to various model predictions: MadGraph + pythia8

(dashed line), powheg + pythia8 (solid line), and powheg + herwig++ (dashed-dotted line).

The bottom panels of each plot show the ratios of the simulations to the measured distribu-

tions. The bands in the bottom panels represent the statistical and systematic uncertainties added

in quadrature.

sample, which uses herwig++ for parton showering and hadronization, overestimates

the UE activity by 10–15% in all topological regions, whereas when pythia8 is used the

measured distributions are reproduced within 5%. The MadGraph sample in combination

with pythia8 also reproduces the measurement within 5%. The mc@nlo predictions (not

shown in the figures) have the same level of agreement with the data as MadGraph. Color

reconnection between the produced partons influences the multiplicity and pT of final-state

particles. Its global impact in the measured UE observables is evaluated by comparing the

pythia8 predictions with and without CR, and is found to be negligible.

To understand the evolution of the UE activity with
√
s, the present measurement is

compared with results obtained at
√
s = 1.96 TeV at the Tevatron and at 7 TeV at the

LHC. As the away region is dominated by the jet balancing the Z boson, the particle

activity in this region is not considered for this specific study. Figures 5–8 show the UE

activity as a function of pµµT at
√
s = 1.96, 7, and 13 TeV. The predictions of powheg with

pythia8 as well as with herwig++ are also shown. The ratios of the simulations to the

measurements are plotted in the bottom panel of each plot. The powheg + pythia8 pre-

dictions reproduce the measurements within 10% at
√
s of 1.96 TeV and 7 TeV, and within
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Figure 3. Unfolded distributions of particle density (left) and ΣpT density (right) in Z events

in the transverse region as a function of pµµT , compared to various model predictions: Mad-

Graph + pythia8 (dashed line), powheg + pythia8 (solid line), and powheg + herwig++

(dashed-dotted line). The bottom panels of each plot show the ratios of the simulations to the

measured distributions. The bands in the bottom panels represent the statistical and systematic

uncertainties added in quadrature.

5% at 13 TeV. The combination of powheg and herwig++ describes the measurements

within 10–15, 10–20, and 20–40% at
√
s of 1.96, 7, and 13 TeV, respectively.

The data show a significant increase in the UE activity with
√
s, which is qualitatively

described by the model predictions. The collision energy evolution is quantified in figure 9,

which shows the ratio of the UE activities at 13 and 7 TeV, and at 1.96 and 7 TeV, for the

data and the simulations. An increase of 25–30% in particle and ΣpT densities is observed

as the collision energy increases from 7 to 13 TeV. This behavior is quantitatively well

described by powheg + pythia8 and powheg + herwig++. As the collision energy

increases from 1.96 to 7 TeV, the UE activity increases by 60–80% for both the particle

and ΣpT densities. Event generators predict a slower rise, but the agreement improves

at higher values of pµµT . The increase in particle and ΣpT densities from 7 to 13 TeV is

consistent with that observed in the leading jet/track analyses [3, 6].

To further quantify the energy dependence of the UE activity, events with a pµµT smaller

than 5 GeV are studied. Setting an upper limit on pµµT reduces the ISR and FSR contri-

butions and the remaining UE activity stems mainly from MPI. With the requirement

pµµT < 5 GeV, the UE activity is similar in the towards and transverse regions. Therefore,
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Figure 4. Unfolded distributions of particle density (left) and ΣpT density (right) in Z events in the

towards region as a function of pµµT , compared to various model predictions: MadGraph + pythia8

(dashed line), powheg + pythia8 (solid line), and powheg + herwig++ (dashed-dotted line).

The bottom panels of each plot show the ratios of the simulations to the measured distribu-

tions. The bands in the bottom panels represent the statistical and systematic uncertainties added

in quadrature.

the UE activity is combined in these two regions. Figure 10 shows the UE activity, with

the pµµT < 5 GeV requirement, as a function of
√
s for data compared to model predictions.

There is a significant increase, by a factor 2–2.5, as the collision energy rises from 1.96 to

13 TeV, which is qualitatively reproduced by powheg. The energy evolution is better de-

scribed by powheg with pythia8, whereas hadronization with herwig++ overestimates

the UE activity at all collision energies. The comparison of the distributions with and

without MPI indicates that the ISR and FSR contributions, which increase slowly with

center-of-mass energy, are small.

The CUETP8M1 and EE5C tunes employed here are mostly obtained from fits to

minimum-bias measurements and UE measurements with leading jets or leading tracks.

The fact that these tunes reproduce globally well the present data supports the hypothesis

that the UE activity is independent of the hard process. The present study also confirms

that the collision energy dependence of the UE activity is similar for different hard pro-

cesses. Unlike UE studies with a leading track/jet, the present measurements provide new

handles to better understand the evolution of ISR, FSR, and MPI contributions separately,

as functions of the event energy scale and the collision energy.
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Figure 5. Comparison of the particle density measured in Z events at
√
s = 13 TeV with that at

7 (CMS) [3] and 1.96 TeV (CDF) [9] in the towards region as a function of pµµT . The data are also

compared with the model predictions of powheg + pythia8 (solid line) and powheg + herwig++

(dashed-dotted line). The bottom panels of each plot show the ratios of the model predictions

to the measurements. The bands in the bottom panels represent the statistical and systematic

uncertainties added in quadrature.

7 Summary

This paper presents a measurement of the underlying event (UE) activity using inclusive Z

boson production events in proton-proton collisions at a center-of-mass energy of 13 TeV.

The data correspond to an integrated luminosity of 2.1 fb−1. The UE activity, quantified

in terms of charged particle and ΣpT densities, is measured as a function of the pT of the

muon pair from the Z boson decay. The distributions are corrected for detector effects and

compared to various model predictions. The MadGraph and powheg generators, with

parton showering and hadronization modeled with pythia8 using the CUET8PM1 tune,

reproduce the measurements within 5%. The combination of powheg and herwig++

(tune EE5C) overestimates the measurements by 10–15%. The present results are also

– 11 –



J
H
E
P
0
7
(
2
0
1
8
)
0
3
2

0 20 40 60 80 100
[GeV]µµ

T
p

0.6
0.8

1

1.2

1.4

M
C

 /
 D

a
ta

Total uncertainty

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

M
C

 /
 D

a
ta

Total uncertainty

0 20 40 60 80 100
0.6

0.8

1

1.2

1.4

M
C

 /
 D

a
ta

Total uncertainty

0 20 40 60 80 100

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
 [

G
e

V
/r

a
d

]
〉 

T
p

Σ 〈
)]

 
φ

∆(
∆

η
∆

1
/[

CMS

 + X-µ
+

µ → Z + X → ) ppp( 

Charged particles

Towards
 = 13 TeVspp, 

CMS,

 = 7 TeVspp, 

CMS,

 = 1.96 TeVs, pp

CDF,

 = 13 TeVspp,

POWHEG + PYTHIA8,

 = 7 TeVspp, 

POWHEG + PYTHIA8,

 = 1.96 TeVs, pp

POWHEG + PYTHIA8

 = 13 TeVspp,

POWHEG + HERWIG++,

 = 7 TeVspp, 

POWHEG + HERWIG++,

 = 1.96 TeVs, pp

POWHEG + HERWIG++,

Figure 6. Comparison of the ΣpT density measured in Z events at
√
s = 13 TeV with that at 7

(CMS) [3] and 1.96 TeV (CDF) [9] in the towards region as a function of pµµT . The data are also

compared with the model predictions of powheg + pythia8 (solid line) and powheg + herwig++

(dashed-dotted line). The bottom panels of each plot show the ratios of the model predictions

to the measurements. The bands in the bottom panels represent the statistical and systematic

uncertainties added in quadrature.

compared with previous measurements at 1.96 and 7 TeV. The UE activity almost doubles

as the collision energy increases from 1.96 to 13 TeV. Monte Carlo event generators provide

a reasonable description of the evolution of the UE activity as the collision energy rises from

1.96 to 13 TeV, although they tend to underestimate its increase in the 1.96–7 TeV range.

The overall good description of the UE activity in Z boson events by Monte Carlo generators

previously tuned to minimum-bias and leading track/jet UE measurements confirms the

universality of the physical processes producing the underlying event in pp collisions at

high energies.
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Figure 7. Comparison of the particle density measured in Z events at
√
s = 13 TeV with that

at 7 (CMS) [3] and 1.96 TeV (CDF) [9] in the transverse region as a function of pµµT . The

data are also compared with the model predictions of powheg + pythia8 (solid line) and

powheg + herwig++ (dashed-dotted line). The bottom panels of each plot show the ratios of

model predictions to the measurements. The bands in the bottom panels represent the statistical

and systematic uncertainties added in quadrature.
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Figure 8. Comparison of the ΣpT density measured in Z events at
√
s = 13 TeV with that at

7 (CMS) [3] and 1.96 TeV (CDF) [9] in the transverse region as a function of pµµT . The data are

also compared with the predictions of powheg + pythia8 (solid line) and powheg + herwig++

(dashed-dotted line). The bottom panels of each plot show the ratios of the model predictions

to the measurements. The bands in the bottom panels represent the statistical and systematic

uncertainties added in quadrature.
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Figure 9. Comparison of the increase in UE activity in Z events, from
√
s = 1.96 TeV (CDF) [9]

to 7 TeV (CMS) [3], with that from
√
s = 7 TeV (CMS) to 13 TeV (CMS) in the towards (top) and

transverse (bottom) regions. Panels on the left show the particle density, whereas panels on the

right show the ΣpT density as a function of pµµT . The data distributions are also compared with

predictions of powheg + pythia8 (dashed-dotted line) and powheg + herwig++ (solid line).

The error bars represent the statistical and systematic uncertainties added in quadrature.
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Figure 10. Average particle density (left) and average ΣpT density (right) for Z events with

pµµT < 5 GeV as a function of the center-of-mass energy, measured by CMS and CDF [9] in

the combined towards + transverse regions, compared to predictions from powheg + pythia8,

powheg + herwig++, and powheg + pythia8 without MPI. The error bars represent the sta-

tistical and systematic uncertainties added in quadrature.
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Université de Mons, Mons, Belgium

N. Beliy

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
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J.D. Ruiz Alvarez

University of Split, Faculty of Electrical Engineering, Mechanical Engineering

and Naval Architecture, Split, Croatia

B. Courbon, N. Godinovic, D. Lelas, I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

University of Split, Faculty of Science, Split, Croatia

Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov6, T. Susa

University of Cyprus, Nicosia, Cyprus

M.W. Ather, A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos,

P.A. Razis, H. Rykaczewski

– 21 –



J
H
E
P
0
7
(
2
0
1
8
)
0
3
2

Charles University, Prague, Czech Republic

M. Finger7, M. Finger Jr.7

Universidad San Francisco de Quito, Quito, Ecuador

E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

Y. Assran8,9, M.A. Mahmoud10,9, A. Mahrous11

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

R.K. Dewanjee, M. Kadastik, L. Perrini, M. Raidal, A. Tiko, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland

P. Eerola, J. Pekkanen, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
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Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia

Paraskevi, Greece

G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas,

I. Topsis-Giotis

National and Kapodistrian University of Athens, Athens, Greece

S. Kesisoglou, A. Panagiotou, N. Saoulidou

University of Ioánnina, Ioánnina, Greece

I. Evangelou, C. Foudas, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas,

J. Strologas, F.A. Triantis
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Piemonte Orientale c, Novara, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b,

C. Biinoa, N. Cartigliaa, F. Cennaa,b, M. Costaa,b, R. Covarellia,b, A. Deganoa,b,

N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b,

E. Monteila,b, M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia,

G.L. Pinna Angionia,b, F. Raveraa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b,

K. Shchelinaa,b, V. Solaa, A. Solanoa,b, A. Staianoa, P. Traczyka,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
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Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas, Lis-

boa, Portugal

P. Bargassa, C. Beirão Da Cruz E Silva, B. Calpas, A. Di Francesco, P. Faccioli,

M. Gallinaro, J. Hollar, N. Leonardo, L. Lloret Iglesias, M.V. Nemallapudi, J. Seixas,

O. Toldaiev, D. Vadruccio, J. Varela

Joint Institute for Nuclear Research, Dubna, Russia

I. Golutvin, V. Karjavin, I. Kashunin, V. Korenkov, G. Kozlov, A. Lanev, A. Malakhov,

V. Matveev35,36, V.V. Mitsyn, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov,

V. Smirnov, V. Trofimov, B.S. Yuldashev37, A. Zarubin, V. Zhiltsov

– 28 –



J
H
E
P
0
7
(
2
0
1
8
)
0
3
2

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Y. Ivanov, V. Kim38, E. Kuznetsova39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov,

V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

Institute for Nuclear Research, Moscow, Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,

N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov,

A. Spiridonov, A. Stepennov, M. Toms, E. Vlasov, A. Zhokin

Moscow Institute of Physics and Technology, Moscow, Russia

T. Aushev, A. Bylinkin36

National Research Nuclear University ‘Moscow Engineering Physics Institute’

(MEPhI), Moscow, Russia

M. Chadeeva40, P. Parygin, D. Philippov, S. Polikarpov, E. Popova, V. Rusinov

P.N. Lebedev Physical Institute, Moscow, Russia

V. Andreev, M. Azarkin36, I. Dremin36, M. Kirakosyan36, A. Terkulov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University,

Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, A. Ershov, A. Gribushin, L. Khein, V. Klyukhin,

O. Kodolova, I. Lokhtin, O. Lukina, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin,

A. Snigirev

Novosibirsk State University (NSU), Novosibirsk, Russia

V. Blinov41, D. Shtol41, Y.Skovpen41

State Research Center of Russian Federation, Institute for High Energy

Physics, Protvino, Russia

I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Kon-

stantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian,

A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear

Sciences, Belgrade, Serbia

P. Adzic42, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic, V. Rekovic
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5: Also at Université Libre de Bruxelles, Bruxelles, Belgium

6: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia

7: Also at Joint Institute for Nuclear Research, Dubna, Russia

8: Also at Suez University, Suez, Egypt

9: Now at British University in Egypt, Cairo, Egypt

10: Also at Fayoum University, El-Fayoum, Egypt

11: Now at Helwan University, Cairo, Egypt
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