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Abstract

The ability of a cell to regulate and adapt its internal state in response to unpredictable environmental changes
is called homeostasis and this ability is crucial for the cell’s survival and proper functioning. Understanding
how cells can achieve homeostasis, despite the intrinsic noise or randomness in their dynamics, is fundamentally
important for both systems and synthetic biology. In this context, a significant development is the proposed
antithetic integral feedback (AIF) motif, which is found in natural systems, and is known to ensure robust
perfect adaptation for the mean dynamics of a given molecular species involved in a complex stochastic
biomolecular reaction network. From the standpoint of applications, one drawback of this motif is that it often
leads to an increased cell-to-cell heterogeneity or variance when compared to a constitutive (i.e. open-loop)
control strategy. Our goal in this paper is show that this performance deterioration can be countered by
combining the AIF motif and a negative feedback strategy. Using a tailored moment closure method we
derive approximate expressions for the stationary variance for the controlled network, that demonstrate that
increasing the strength of the negative feedback can indeed decrease the variance, sometimes even below its
constitutive level. Numerical results verify the accuracy of these results and we illustrate them by considering
three biomolecular networks with two types of negative feedback strategies. Our computational analysis
indicates that there is a trade-off between the speed of the settling-time of the mean trajectories and the
stationary variance of the controlled species; i.e. smaller variance is associated with larger settling-time.

Introduction 1

The design and implementation of artificial in-vivo biomolecular controllers has gained significant recent 2

interest [4,6,9,12,27,33] due to their potential applications for the tight and robust control of gene expression [6], 3

the optimization of metabolic networks for the efficient production of biomolecules [11,38] , or the development 4

of new treatments for certain genetic diseases [39]. Indeed, many of the instances of those problems can 5

be interpreted from an homeostatic point of view in the sense that they may all be solved by achieving or 6

restoring homeostasis in the corresponding genetic network using synthetic regulatory circuits [6,11,35,38,39]. 7

In this regard, those problems essentially reduce to the design and the implementation of robust and reliable 8

regulatory circuits that can optimize an inefficient network or correct a malfunctioning one – an observation 9

which strongly suggests that ideas from control theory and control engineering [2] could be adapted to 10

biochemical control problems [6, 14,20, 22]. A cornerstone in control theory and engineering is the so-called 11

integral controller that can ensure precise constant set-point regulation for a regulated variable in a given 12

system. Such mechanism, where the action onto the controlled system is depending on the integral of 13

the deviation of the regulated variable from the desired set-point, is to be contrasted with the so-called 14

proportional controller where the system is simply actuated proportionally to the deviation of the regulated 15

variable from the desired set-point. Unlike integral control, the latter strategy is unable to achieve robust 16

1



constant set-point regulation for the controlled variable and to reject constant disturbances. In other words, 17

integral control has the capacity for ensuring perfect adaptation for the regulated variable. The downside, 18

however, is that it may have a destabilizing effect on the dynamics (emergence of oscillations or even diverging 19

trajectories) of the overall controlled system. This may be remedied by adjoining a proportional action, thus 20

giving rise to the so-called Proportional-Integral (PI) controller [1]. 21

Motivated by the above, an integral controller referred to as the antithetic integral controller was proposed 22

in [6] for the control of the mean level of some molecular species of interest in a given biochemical reaction 23

network. This controller requires a pair of species that exhibit stoichiometric inactivation. Such pairs have 24

been reported and include toxin/antitoxin [13,17], sigma-factor/anti-sigma factor [4, 10], mRNA/antisense 25

RNA [32], and scaffold/anti-scaffold [24], among others. Using the antithetic integral feedback motif [6], [27] 26

has recently presented the first rationally-designed integral feedback control system in a living cell and 27

demonstrated its robust perfect adaptation properties. 28

Even if this motif was proposed in [6] as a potential synthetic controller, it is now well understood that 29

this motif is also naturally present in endogenous networks [6, 15,16] where sequestration is involved, which 30

makes it very important from a systems biology point of view. Understanding this network better will bring 31

on some new light on biological regulation mechanisms. A very important feature of this network is that it is 32

fully functional in noisy environments and, hence, in the low copy number regime, which is of fundamental 33

importance as cells often involve low molecular counts. It was notably shown that, under some reasonable 34

conditions, the ergodicity properties of the controlled network are independent of the parameters of the 35

antithetic integral controller – a surprising key property that has no counterpart in the deterministic setting 36

and that dramatically simplifies its implementation. A drawback, however, is the increase of the stationary 37

variance of the regulated species compared to the constitutive variance that would be obtained by using 38

a static open-loop strategy, even though the latter one would be unable to ensure regulation and perfect 39

adaptation for the mean level of the regulated species. This phenomenon is seemingly analogous to the 40

destabilizing behavior of the deterministic integral controller mentioned in the previous paragraph. This 41

variance increase can hence be interpreted as the price to pay for perfect adaptation at the mean species level. 42

The goal of this paper is to investigate the effect of adding a negative feedback to the antithetic integral 43

motif in a way akin, yet different, to deterministic PI controllers. As discussed above, adding a proportional 44

action in the deterministic setting compensates for the destabilizing effect of the integrator. Comparatively, 45

it may seem reasonable to think that, in the stochastic setting, a proportional action could have an analogous 46

effect and would result in a decreased variance for the controlled variable (this is, for instance, what happens 47

when considering certain linear systems driven by white noise). In fact, it has been shown that negative 48

feedback at a transcriptional level in a gene expression network leads to a variance reduction in the protein 49

levels; see e.g. [5,25,31,37] and the references therein. In this regard, it would be interesting to verify whether 50

in endogenous networks implementing an antithetic integral feedback structure a negative feedback loop is 51

present and whether knocking it down would lead to a variance increase in the controlled species. 52

Two types of negative feedback are considered in the present paper: the first one consists of an ON/OFF 53

proportional action whereas the second one is governed by a repressing Hill function. First we theoretically 54

prove using a tailored moment closure method that, in a gene expression network controlled with an antithetic 55

integral controller, the stationary variance in the protein copy number can be decreased by the use of a 56

negative feedback. In this specific case, the steady-state variance is decreasing monotonically as a function 57

of the strength of the negative feedback. An immediate consequence is that it is theoretically possible to 58

set the steady-state variance to a level that lies below the constitutive steady-state variance, which is the 59

value of the steady-state variance that would have been obtained using a constitutive (i.e. open-loop) control 60

strategy. The theoretical prediction will also be observed by exact numerical predictions using Gillespie’s 61

algorithm (Stochastic Simulation Algorithm - SSA [18]). A caveat, however, is that setting the gain of the 62

negative feedback very high will likely result in a very low steady-state variance but may also result in a 63

regulation error for the mean of the controlled species and in a loss of ergodicity for the overall controlled 64

network. In this regard, reducing the steady-state variance below its constitutive level may not always be 65

physically possible. Finally, it is also emphasized that a low stationary variance for the controlled species 66

is often associated with higher settling-time for the controlled species. Hence, there is a tradeoff between 67
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Table 1: Notations
Xi, i = 1, . . . , d i-th species of the controlled reaction network

K number of reactions in the controlled reaction network
Rk, i = k, . . . ,K k-th reaction of the controlled reaction network

S stoichiometric matrix of the controlled reaction network
λ(·) vector of propensity functions of the controlled reaction network
X1 actuated species
X` controlled species

Zi, i = 1, 2 i-th species of the antithetic reaction network
k actuation reaction rate
η comparison reaction rate
θ measurement reaction rate
µ reference reaction rate
Kp feedback strength of the negative feedback
β effective feedback strength of the negative feedback

variability and fast dynamics/small settling-time. The two negative feedback actions also exhibit quite 68

different behaviors. Indeed, while the ON/OFF proportional feedback seems to be efficient at reducing the 69

stationary variance through an increase of its gain, the dynamics of the mean gets first improved by reducing 70

the settling-time but, after the gain goes beyond a certain threshold, the settling-time gets dramatically 71

deteriorated by the appearance of a fast initial transient phase followed by a very slow final one resulting then 72

in a high settling-time. On the other hand, the Hill controller leads to very homogeneous mean dynamics 73

for different feedback strength but the steady-state variance is also much less sensitive and does not vary 74

dramatically. It is proposed that those differences may find an explanation by the presence of zeros in the 75

dynamics. Another possible reason is that the effective proportional gain (which will be denoted by β) is 76

much less sensitive to changes in the feedback strength for the Hill controller than for the ON/OFF controller. 77

Approximate equations for the stationary variance are then obtained in the general unimolecular network 78

case. The obtained expressions shed some light on an interesting connection between the covariances of the 79

molecular species involved in the stochastic reaction network and the stability of a deterministic linear system 80

controlled with a standard PI controller, thereby unveiling an unexpected, yet coherent, bridge between 81

the stochastic and deterministic settings. Applying this more general framework to the a gene expression 82

network with protein maturation allows one to reveal that the steady-state variance may not be necessarily a 83

monotonically decreasing function of the negative feedback strength. In spite of this, the same conclusions as 84

in the gene expression network hold: the variance can sometimes be decreased below its constitutive level but 85

this may also be accompanied with a loss of ergodicity. The same qualitative conclusions for the transient of 86

the mean dynamics and the properties of the controller also hold in this case. 87

Even though the proposed theory only applies to unimolecular networks, stochastic simulations are 88

performed for a gene expression network with protein dimerization; a bimolecular network. Once again, the 89

same conclusions as in for previous networks hold with the difference that the constitutive variance level is 90

unknown in this case due to openness of the moment equations. These results tend to suggest that negative 91

feedback seems to operate in the same way in bimolecular networks as in unimolecular networks. 92

Reaction networks 93

Let us consider a stochastic reaction network (X,R) involving d molecular species X1, . . . ,Xd interacting 94

through K reaction channels R1, . . . ,RK defined as 95

Rk :

d∑
i=1

ζlk,iXi
ρk−−−→

d∑
i=1

ζrk,iXi, k = 1, . . . ,K (1)
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where ρk ∈ R>0 is the reaction rate parameter of the propensity function λk of the mass-action kinetics 96

reaction Rk which is given by λk(x) = ρk
∏d
i=1

xi!
(xi−ζln,i)!

(note that this expression is always well-defined due 97

to terms cancellation in the numerator and denominator) and ζrk = col(ζrk,1, . . . , ζ
r
k,d), ζ

l
k = col(ζlk,1, . . . , ζ

l
k,d) 98

are the source/product complex of the reaction Rk. The corresponding stoichiometric vector is hence given 99

by ζk := ζrk − ζlk ∈ Zd indicating that when this reaction fires, the state jumps from x to x + ζk. The 100

stoichiometric matrix S ∈ Zd×K of this reaction network is defined as S :=
[
ζ1 · · · ζK

]
. Note that the 101

reaction rates ρk are not necessarily constants but are also allowed to be functions of the state of the network. 102

Under the well-mixed assumption, the above network can be described by a continuous-time Markov process 103

(X1(t), . . . , Xd(t))t≥0 with the d-dimensional nonnegative lattice Zd≥0 as state-space; see e.g. [3]. 104

The regulation/perfect adaptation problems and antithetic integral control 105

Let us consider here a stochastic reaction network (X,R). The regulation problem consists of finding another 106

reaction network (i.e. a set of additional species and additional reactions) interacting with (X,R) in a way 107

that makes the interconnection well-behaved (i.e. ergodic) and such that the mean of some molecular species 108

X` for some given ` ∈ {1, . . . , d} converges to a desired set-point (given here by µ/θ for some µ, θ > 0) in a 109

robust way; i.e. irrespective of the values of the parameters of the network (X,R). 110

It was shown in [6] that, under some assumptions on the network (X,R) and the fact that the species 111

X` can be produced from X1 through a sequence of reactions, the antithetic integral controller defined as 112

∅ µ−−−→ Z1︸ ︷︷ ︸
reference

, X`
θ−−−→X` + Z2︸ ︷︷ ︸

measurement

, Z1 + Z2
η−−−→ ∅︸ ︷︷ ︸

comparison

, Z1
k−−−→ Z1 + X1︸ ︷︷ ︸

actuation

, (2)

solves the above regulation problem. This regulatory network consists of two additional species Z1 and Z2, 113

and four additional reactions. The species Z1 is referred to as the actuating species as it is the species that 114

governs the rate of the actuation reaction which produces the actuated species X1 at a rate proportional to 115

Z1. The species Z2 is the sensing species as it is produced at a rate proportional to the controlled species 116

X` through the measurement reaction. The first reaction is the reference reaction as it encodes part of the 117

set-point µ/θ whereas the third reaction is the comparison reaction that compares the population of the 118

controller species and annihilates them accordingly, thereby closing negatively the loop while, and at the 119

same time correlating the populations of the controller species. The comparison (or titration) reaction is the 120

crucial element of the above controller network and, to realize such a reaction, one needs to rely on intrinsic 121

strongly binding properties of certain molecules such as sigma- and anti-sigma-factors [6] or small RNAs and 122

RNAs [26, 33, 40]. An illustration of the interconnection of the controlled network and the antithetic integral 123

controller is depicted in Figure 1. 124

Variance amplification in antithetic integral control 125

We discussed above about the convergence properties of the mean level of the controlled species X` when 126

network (X,R) is controlled with the antithetic integral controller (2). However, it was remarked in [6] 127

that while the mean of X` converges to the desired steady-state, the stationary variance of the controlled 128

species could be much larger than its constitutive value that would be obtained by simply considering a naive 129

constitutive production of the species X1 that would lead to the same mean steady-state value µ/θ. This 130

was interpreted as the price to pay for having the perfect adaptation property for the controlled species. To 131

illustrate this phenomenon, let us consider the following gene expression network: 132

∅ kr−−−→X1, X1
kp−−−→X1 + X2,X1

γr−−−→ ∅,X2
γp−−−→ ∅ (3)

where X1 denotes mRNA and X2 denotes protein. The objective here is to control the mean level of the 133

protein by acting at a transcriptional level using the antithetic controller (2); hence, we set kr = kZ1. Using 134

a tailored moment closure method, it is proved in Section S2 of the SI that the stationary variance VarIπ(X2) 135
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for the protein copy number is approximately given by the following expression 136

VarIπ(X2) ≈ µ

θ

1 +
kp

γr + γp
+

kkp
γrγp

1− kθkp
γrγp(γr + γp)

 , k > 0, k/η � 1. (4)

The rationale for the assumption k/η � 1 is that it allows for closing the moments equation (which is open 137

because of the presence of the comparison reaction) and obtain a closed-form solution for the stationary 138

variance. On the other hand, the constitutive (i.e. open-loop) stationary variance VarOLπ (X2) for the protein 139

copy number obtained with the constitutive strategy 140

kr =
µ

θ

γrγp
kp

(5)

is given by 141

VarOLπ (X2) =
µ

θ

(
1 +

kp
γr + γp

)
. (6)

It is immediate to see that the ratio 142

VarIπ(X2)

VarOLπ (X2)
≈

1 +
kkp

γrγp(γr + γp)

1− kθkp(kp + γr + γp)

γrγp(γr + γp)

, k, θ > 0, k/η � 1 (7)

is greater than 1 for all k, θ > 0 such that the denominator is positive. Note that the above formula is not 143

valid when k = 0 or θ = 0 since this would result in an open-loop network for which set-point regulation 144

could not be achieved. This expression is also a monotonically increasing function of the gain k, a fact that 145

was numerically observed in [6]. This means that choosing k very small will only result in a small increase of 146

the stationary variance of the controlled species when using an antithetic integral feedback. However, this 147

will very likely result in very slow dynamics for the mean of the controlled species. 148

Finally, it is important to stress that while this formula is obviously not valid when the denominator is 149

nonpositive, we know from [6] that in the case of the gene expression network, the closed-loop network will 150

be ergodic with converging first and second-order moments for all k > 0 and all θ > 0 (assuming that the 151

ratio µ/θ is kept constant). This inconsistency stems from the fact that the proposed theoretical approach 152

relies on a tailored moment closure approximation that will turn out to be connected to the Hurwitz stability 153

of a certain matrix that may become unstable when the gain k of the integrator is too large. This will be 154

elaborated more in the following sections. 155

Negative feedback action 156

We will consider in this paper two types of negative feedback action. The first one, referred to as the ON/OFF 157

proportional feedback, is essentially theoretical and cannot be exactly implemented, but it may be seen as a 158

local approximation of some more complex (e.g. nonlinear) repressing function. It is given by the reaction 159

∅ F (X`)−−−→X1 (8)

together with the propensity function F (X`) = Kp max{0, µ − θX`} where Kp is the so-called feedback 160

gain/strength. It is similar to the standard proportional feedback action used in control theory with the 161

difference that a regularizing function, in the form of a max function, is involved in order the restrict the 162

propensity function to nonnegative values. Note that this controller can still be employed for the in-silico 163

control of single-cells using a stochastic controller as, in this case, we would not be restricted anymore to 164

mass-action, Hill or Michaelis-Menten kinetics. This was notably considered in the case of in-silico population 165

control in [7, 8, 19]. 166
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The second type of negative feedback action, referred to as the Hill feedback, consists of the reaction (8) 167

but involves the non-cooperative repressing Hill function F (X`) = Kp/(1 +X`) as propensity function. This 168

type of negative feedback is more realistic as such functions have empirically been shown to arise in many 169

biochemical, physiological and epidemiological models; see e.g. [29]. 170

In both cases, the total rate of production of the molecular species X1 can be expressed as the sum 171

kZ1 + F (X`) which means that, at stationarity, we need to have that Eπ[kZ1 + F (X`)] = u∗ where u∗ is 172

equal to the value of the constitutive (i.e. deterministic) production rate for X1 for which we would have 173

that Eπ[X`] = µ/θ. Noting now that for both negative feedback functions, we will necessarily have that 174

Eπ[F (X`)] > 0, then this means that if the gain Kp is too large, it may be possible that the mean of the 175

controlled species does not converge to the desired set-point implying, in turn, that the overall controlled 176

network will fail to be ergodic. This will be notably the case when Eπ[F (X`)] > u∗. In particular, on the basis 177

of Theorem 2 in [6], a very conservative sufficient condition for the closed-loop network to be ergodic when 178

F (X`) = Kp max{0, µ− θX`} is that Kp < u∗/µ whereas it becomes Kp < u∗ when F (X`) = Kp/(1 +X`). 179

These conditions can be determined by considering the worst-case mean value of the negative feedback 180

strategies; i.e. Kpµ and Kp, respectively. 181

Results 182

Invariants for the antithetic integral controller 183

We describe some important invariant properties of the antithetic integral controller (2) which are independent
of the parameters of the controlled network under the assumption that these invariants exist; i.e. they are
finite. Those invariants proven in the S.I are given by

Covπ(X`, Z1 − Z2) =
µ

θ
, (9)

Eπ(Z1Z2) =
µ

η
, (10)

Eπ(Z2
1Z2) =

µ

η
(1 + Eπ(Z1)) (11)

and

Eπ(Z1Z
2
2 ) =

µ+ θEπ(X`Z2)

η
(12)

and they play an instrumental role in proving all the theoretical results of the paper. Interestingly, we can 184

notice that Covπ(X`, Z1 − Z2) = Eπ[X`], which seems rather coincidental. From the second invariant we can 185

observe that, if η � µ, then Eπ(Z1Z2) ≈ 0, which indicates that the values taken by the random variable 186

Z2(t) will be most of the time equal to 0. Note that it cannot be Z1(t) to be mostly taking zero values since 187

Z1 is the actuating species whose mean must be nonzero (assuming here that the natural production rates 188

of the molecular species in the controlled network are small). Similarly, setting η large enough in the third 189

expression will lead to a similar conclusion. Note that Eπ(Z1) is independent of η here and only depends 190

on the set-point µ/θ, the integrator gain k and the parameters of the network which is controlled. The last 191

expression again leads to similar conclusions. Indeed, if η is sufficiently large, then Eπ(X`Z2) ≈ 0 and, hence, 192

Eπ(Z1Z
2
2 ) ≈ 0 which implies that Z2(t) needs to be most of the time equal to 0. These properties will be at 193

the core of the moment closure method used to obtain an approximate closed-form formula for the covariance 194

matrix for the closed-loop network. 195
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An approximate formula for the stationary variance of the controlled species 196

Let us assume here that the open-loop network (X,R) is mass-action and involves, at most, unimolecular 197

reactions. Hence, the vector of propensity functions can be written as 198

λ(x) = Wx+ w0 (13)

for some nonnegative matrix W ∈ RK×d and nonnegative vector w0 ∈ RK . It is proved in Section S3 of
the SI that, under the assumption k/η � 1, we can overcome the moment closure problem arising from the
presence of the comparison reaction in the antithetic controller and show that the exact stationary covariance
matrix of the network given by[

CovPIπ (X,X) CovPIπ (X,Z)

CovPIπ (Z,X) VarPIπ (Z)

]
, Z := Z1 − Z2

is approximatively given by the matrix Σ solving the Lyapunov equation 199

RΣ + ΣRT +Q = 0 (14)

where

R =

[
SW − βe1eT` ke1
−θeT` 0

]
,

D = diag(WEπ[X] + w0),

Q =

[
SDST + ce1e

T
1 0

0 2µ

]
,

c = − 1

eT` (SW )−1e1

(µ
θ

+ eT` (SW )−1Sw0

)
,

β = −CovPIπ (F (X`), X`)

CovPIπ (X`, X`)

and {ej}Nj=1, for some positive natural number N , stands for the natural basis for RN . Note that since the 200

function F is decreasing then the effective proportional gain, β, is always a positive constant and seems to be 201

mostly depending on Kp but does not seem to change much when k varies (see e.g. Figure S1 and Figure S2 202

in the SI). It can also be seen that for the Lyapunov equation to have a positive definite solution, we need 203

that the matrix R be Hurwitz stable; i.e. all its eigenvalues have negative real part. In parallel of that, it is 204

known from the results in [6] that the closed-loop network will remain ergodic when β = 0 even when the 205

matrix R is not Hurwitz stable. In this regard, the formula (14) can only be valid when the parameters β and 206

k are such that the matrix R is Hurwitz stable. When this is not the case, the formula is out its domain of 207

validity and is meaningless. The stability of the matrix R is discussed in more details in Section S4 of the SI. 208

Connection to deterministic proportional-integral control 209

Interestingly, the matrix R coincides with the closed-loop system matrix of a deterministic linear system 210

controlled with a particular proportional-integral controller. To demonstrate this fact, let us consider the 211

following linear system 212

ẋ(t) = SWx(t) + e1u(t)
y(t) = eT` x(t)

(15)

where x is the state of the system, u is the control input and y is the measured/controlled output. We 213

propose to use the following PI controller in order to robustly steers the output to a desired set-point µ/θ 214

u(t) =
β

θ
(µ− θy(t)) + k

∫ t

0

(µ− θy(s))ds (16)

7



where θ is the sensor gain, β/θ is the proportional gain and k is the integral gain. The closed-loop system is 215

given in this case by 216[
ẋ(t)

İ(t)

]
=

[
SW − βe1eT` ke1
−θeT` 0

] [
x(t)
I(t)

]
+

[
β
θ
1

]
µ (17)

where we can immediately recognize the R matrix involved in the Lyapunov equation (14). 217

Example - Gene expression network 218

We present here the results obtained for the gene expression network (3) using the two negative feedback 219

actions. In particular, we will numerically verify the validity of the formula (4) and study the influence of the 220

controller parameters on various properties of the closed-loop network. The matrix R is given in this case by 221

R =

−γr −β k
kp −γp 0
0 −θ 0

 . (18)

It can be shown that the above matrix is Hurwitz stable (i.e. all its eigenvalues are located in the open left 222

half-plane) if and only if the parameters k, β > 0 satisfy the inequality 223

1− kθkp
γrγp(γr + γp)

+
βkp
γrγp

> 0. (19)

Hence, given k > 0, the matrix R will be Hurwitz stable for any sufficiently large β > 0 illustrating the 224

stabilizing effect of the proportional action. When the above condition is met, then the closed-loop stationary 225

variance VarPIπ (X2) of the protein copy number is approximately given by the expression 226

VarPIπ (X2) ≈ Σ22 =
µ

θ

1 +
kp

γr + γp
+

kkp
γrγp

+
βkp

γr(γr + γp)

1− kθkp
γrγp(γr + γp)

+
βkp
γrγp

 . (20)

For any fixed k > 0 such that (19) is satisfied, the closed-loop steady-state variance is a monotonically 227

decreasing function of β. As a consequence, there will exist a βc > 0 such that 228

Σ22 <
µ

θ

(
1 +

kp
γr + γp

)
(21)

for all β > βc. In particular, when β →∞, then we have that 229

Σ22 →
µ

θ

γp
γr + γp

<
µ

θ
. (22)

We now analyze the results obtained with the antithetic integral controller combined with an ON/OFF 230

proportional feedback. The first step is the numerical comparison of the approximate formula (20) with the 231

stationary variance computed using 106 SSA simulations with the parameters kp = 2, γr = 2, γp = 7, µ = 10, 232

θ = 2 and η = 100. The absolute value of the relative error between the exact and the approximate stationary 233

variance of the protein copy number for several values for the gains k and Kp is depicted in Figure 2. We can 234

observe there that the relative error is less than 15% except when k is very small where the relative error is 235

much larger. However, in this latter case, the mean trajectories do not have time to converge to their steady 236

state value and, therefore, what is depicted in the figure for this value is not very meaningful. In spite of 237

that, we can observe that the approximation is reasonably accurate. 238

We now look at the performance of the antithetic integral controller combined with an OF/OFF propor- 239

tional feedback. Figure 3 depicts the trajectories of the mean protein copy number while Figure 4 depicts 240

the trajectories of the variance of the protein copy number, both in the case where k = 3. Regarding the 241
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mean copy number, we can observe that while at the beginning increasing Kp seems to improve the transient 242

phase, then the dynamics gets more and more abrupt at the start of the transient phase as the gain Kp 243

continues to increase and gets slower and slower at the end of the transient phase, making the means very 244

slow to converge to their set-point. On the other hand, we can see that the stationary variance seems to 245

be a decreasing function of the gain Kp. More interestingly, when the gain Kp exceeds 20, the stationary 246

variance becomes smaller than its constitutive value, which is equal to 6.1111. Figure 5 helps at establishing 247

the influence of the gains k and Kp onto the stationary variance of the protein copy number. We can see that, 248

for any k, increasing Kp reduces the stationary variance while for any Kp, reducing k reduces the variance, 249

as predicted by the approximate formula (20). Hence, a suitable choice would be to pick k small and Kp 250

large. We now compare this choice for the parameters with the one that would lead to a small settling-time 251

for the mean dynamics; see Figure 6. We immediately see that a small k is not an option if one wants to 252

have fast mean dynamics. A sweet spot in this case would be around the right-bottom corner where the 253

settling-time is the smallest. Interestingly, the variance is still at a quite low level even if sometimes higher 254

than the constitutive value. 255

We now perform the same analysis for the antithetic integral controller combined with the Hill feedback 256

and first verify the accuracy of the approximate formula (20). We can observe in Figure 7 that the formula is 257

very accurate in this case. To explain this, it is important to note that the gains Kp in both controllers are 258

not directly comparable, only the values for the parameter β are. For identical Kp’s, the value of β for the 259

ON/OFF proportional feedback is much larger than for the Hill feedback (see Figure S1and S2 in the SI). 260

The Figure 2 and Figure 7 all together simply say that the formula is very accurate when β is small. 261

We now look at the performance of the antithetic integral controller combined with a Hill feedback. 262

Similarly to as previously, Figure 8 depicts the trajectories of the mean protein copy number while Figure 9 263

depicts the trajectories of the variance of the protein copy number, both in the case where k = 3. Regarding 264

the mean copy number, we can observe than the dynamics are much more homogeneous than in the previous 265

case and that increasing Kp reduces the overshoot and, hence, the settling-time. This can again be explained 266

by the fact that β is much smaller in this case. Similarly, the spread of the variances is much tighter than when 267

using the other negative feedback, again because of the fact that β is small in this case. This homogeneity is 268

well illustrated in Figure 10 and Figure 11 where we conclude on the existence of a clear tradeoff between 269

settling-time and stationary variance. 270

As can been seen in Figure 3 and Figure 8, the mean dynamics are quite different and it would be 271

interesting to explain this difference in terms of control theoretic ideas. A first explanation lies in the 272

sensitivity of the parameter β in terms of the feedback strength Kp. In the case of the ON/OFF proportional 273

feedback, this sensitivity is quite high whereas it is very low in the case of the Hill feedback (see Figure S1 274

and Figure S2 in the SI). This gives an explanation on why the mean trajectories are very different in the 275

case of the ON/OFF proportional feedback for different values of Kp while the mean trajectories are very 276

close to each other in the case of the Hill feedback. A second explanation lies in the type of feedback in use. 277

Indeed, the ON/OFF proportional feedback is an error-feedback and, when combined with the antithetic 278

integral controller, may introduce a stable zero in the mean dynamics. On the other hand, the Hill feedback 279

is an output-feedback that does not seem to introduce such a zero. When increasing the negative feedback 280

gain Kp, this zero moves towards the origin. Once very close to the origin, this zero will have an action in the 281

closed-loop mean dynamics that is very close to a derivative action, leading then to abrupt initial transient 282

dynamics. A theoretical basis for this discussion is developed in more details in Section S5 and Section S6 of 283

the SI. 284
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Figure 1: A reaction network controlled with an antithetic integral controller.

Figure 2: Absolute value of the relative error between the exact stationary variance of the protein copy
number and the approximate formula (20) when the gene expression network is controlled with the antithetic
integral controller (2) and an ON/OFF proportional controller.
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Figure 3: Mean trajectories for the protein copy number when the gene expression network is controlled with
the antithetic integral controller (2) with k = 3 and an ON/OFF proportional controller. The set-point value
is indicated as a black dotted line.
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Figure 4: Variance trajectories for the protein copy number when the gene expression network is controlled
with the antithetic integral controller (2) with k = 3 and an ON/OFF proportional controller. The stationary
constitutive variance is equal to 6.1111 and is depicted in black dotted line.
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Figure 5: Stationary variance for the protein copy number when the gene expression network is controlled
with the antithetic integral controller (2) and an ON/OFF proportional controller.
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Figure 6: Settling-time for the mean trajectories for the protein copy number when the gene expression
network is controlled with the antithetic integral controller (2) and an ON/OFF proportional controller.
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Figure 7: Absolute value of the relative error between the exact stationary variance of the protein copy
number and the approximate formula (20) when the gene expression network is controlled with the antithetic
integral controller (2) and a Hill controller.
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Figure 8: Mean trajectories for the protein copy number when the gene expression network is controlled with
the antithetic integral controller (2) with k = 3 and a Hill controller. The set-point value is indicated as a
black dotted line.

16



Figure 9: Variance trajectories for the protein copy number when the gene expression network is controlled
with the antithetic integral controller (2) with k = 3 and a Hill controller. The stationary constitutive
variance is depicted in black dotted line.
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Figure 10: Stationary variance for the protein copy number when the gene expression network is controlled
with the antithetic integral controller (2) and a Hill controller.
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Figure 11: Settling-time for the mean trajectories for the protein copy number when the gene expression
network is controlled with the antithetic integral controller (2) and a Hill controller.

Example - Gene expression network with protein maturation 285

The results obtained in the previous section clearly only hold for the gene expression network and it would be 286

quite hasty to directly generalize those results to more complex unimolecular networks. This hence motivates 287

the consideration of a slightly more complicated example, namely, the gene expression network involving a 288

protein maturation reaction given by 289

∅ kr−−−→X1, X1
kp−−−→X1 + X2,X1

γr−−−→ ∅,X2
γp−−−→ ∅

X2

k′p−−−→X3,X3

γ′
p−−−→ ∅

(23)

where, as before, X1 denotes mRNA, X2 denotes protein and, now, X3 denotes the mature protein. In this 290

case, the goal is to control the average mature protein copy number by, again, acting at a transcriptional 291

level. As this network is still unimolecular, the proposed framework remains valid. In particular, the matrix 292

R is given by 293

R =


−γr 0 −β k
kp −(γp + k′p) 0 0
0 k′p −γ′p 0
0 0 −θ 0

 (24)

and is Hurwitz stable provided that the two following conditions are satisfied 294

β <
1

kpk′p

(
(γr + γp + γ′p + k′p)(γrγp + γrγp.+ γpγ

′
p + γrk

′
p + γ′pk

′
p)− γrγ′p(γp + k′p)

)
(25)

and 295

k2pk
′2
p β

2 + σ1β + σ0 < 0 (26)
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where 296

σ1 = −kpk′p(γr + γ′p + γp + k′p)(γrγp + γrγ
′
p + γpγ

′
p + γrk

′
p + γ′pk

′
p)

+2γrγ
′
pkpk

′
p(γp + k′p),

σ0 = −γrγ′p(γp + k′p)(γr + γp + γ′p + k′p)(γrγp + γrγ
′
p + γpγ

′
p + γrk

′
p + γ′pk

′
p)

+γ2rγp2
2(γp + k′p)

2 + kkpk
′
pθ(γr + γp + γ′p + k′p)

2.

(27)

Considering, for instance, the following parameters kp = 1, γr = 2, γp = 1, k′p = 3, γ′p = 1, µ = 10, θ = 2 and 297

η = 100, the above conditions reduce to 298

β < 30 (28)

and 299

9β2 − 246β + 294k − 720 < 0. (29)

The intersection of these conditions yield the stability conditions 300

k ∈ (0, 49/6) and β ∈
(

41− 7
√

49− 6k

3
,

41 + 7
√

49− 6k

3

)
∩ (0,∞). (30)

It can be verified that for values on the boundary of at least one of those intervals, the matrix R has 301

eigenvalues on the imaginary axis. Standard calculations on the moments equation show that the open-loop 302

variance is given by 303

VarOLπ (X3) =
µ

θ

(
1 + kpk

′
p

k′p + γr + γp + γ′p
(γr + γ′p)(γr + γp + k′p)(γp + γ′p + k′p)

)
. (31)

With the numerical values for the parameters previously given, the open-loop variance is approximately equal 304

to 37/6 ≈ 6.1667. The closed-loop variance, however, is approximately given by 305

VarPIπ (X3) ≈ Σ33 =
µ

θ


θ

µ
VarOLπ (X3) +

ζk
ζd
k +

ζβ
ζd
β +

ζkβ
ζd
kβ

1 +
ξk
ξd
k +

ξβ
ξd
β +

ξβ2

ξd
β2

 (32)

where 306

ξd = γrγ
′
p(γr + γ′p)(γp + k′p)(γr + γp + k′p)(γp + γ′p + k′p)

ξk = −kpk′pθ(γr + γp + γ′p + k′p)
2

ξβ = kpk
′
p(γ

2
rγp + γ2rγ

′
p + γ2rk

′
p + γrγ

2
p + γrγpγ

′
p + 2γrγpk

′
p + γrγ

′2
p

+γrγ
′
pk
′
p + γrk

′2
p + γ2pγ

′
p + γpγ

′2
p + 2γpγ

′
pk
′
p + γ′2p k

′
p + γ′pk

′2
p )

ξβ2 = −k2pk′2p

(33)

and 307

ζd = ξd
ζk = kpk

′
p(γ

2
rγp + γ2rγ

′
p + γ2rk

′
p + γrγ

2
p + 2γrγpγ

′
p + 2γrγpk

′
p + γrγ

′2
p

+2γrγ
′
pk
′
p − θγrγ′p + γrk

′2
p + γ2pγ

′
p + γpγ

′2
p + 2γpγ

′
pk
′
p − θγpγ′p

+γ′2p k
′
p − θγ′2p + γ′pk

′2
p − θγ′pk′p)

ζβ = γ′pkpk
′
p(γ

2
r + γrγp + γrk

′
p + γ′pγr + γ2p + 2γpk

′
p + γ′pγp + k′2p + γ′pk

′
p)

ζkβ = −k2pk′2p .

(34)

An expression that is more complex than, yet very similar to, the formula (20) obtained for the simple gene 308

expression network. For the considered set of parameter values, the approximated variance is a nonmonotonic 309

function of the parameter β as it can be theoretically observed in S3 in the SI. It turns out that this behavior 310

can also be observed in the numerical simulations depicted in Figure S5 in the SI where we can see that the 311

variance exhibits this nonmonotonic behavior. However, it should also be pointed out that the increase of Kp 312

is accompanied with the emergence of a tracking error for the mean dynamics (see Figure S5 in the SI) and 313

a loss of ergodicity for the overall controlled network as emphasized by diverging mean dynamics for the 314

sensing species (see Figure S7 in the SI). This contrasts with the gene expression case where the variance 315
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was a monotonically decreasing function of β. Regarding the mean dynamics, we can see that increasing 316

Kp and, hence, β, to reasonable levels improves the settling-time as depicted in Figure 12 for the special 317

case of k = 3. However, this is far from being the general case since the settling-time can exhibit a quite 318

complex behavior for this network (see 15). The stationary variance depicted in Figure 14 exhibits here a 319

rather standard and predictive behavior where a small k and a large Kp both lead to its reduction. Similar 320

conclusions can be drawn when the network is controlled with a Hill negative feedback controller; see Figure 321

S8, Figure S9, Figure S10 and Figure S11 in the SI. 322

Figure 12: Mean trajectories for the mature protein copy number when the gene expression network with
protein maturation is controlled with the antithetic integral controller (2) with k = 3 and an ON/OFF
proportional controller. The set-point value is indicated as a black dotted line.
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Figure 13: Variance trajectories for the mature protein copy number when the gene expression network
with protein maturation is controlled with the antithetic integral controller (2) with k = 3 and an ON/OFF
proportional controller. The stationary constitutive variance is depicted in black dotted line.
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Figure 14: Stationary variance for the mature protein copy number when the gene expression network with
protein maturation is controlled with the antithetic integral controller (2) and an ON/OFF proportional
controller.
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Figure 15: Settling-time for the mean trajectories for the mature protein copy number when the gene
expression network with protein maturation is controlled with the antithetic integral controller (2) and an
ON/OFF proportional controller.

Example - Gene expression network with protein dimerization 323

The proposed theory is only valid for unimolecular networks but, in spite of that, it is still interesting to see 324

whether similar conclusions could be obtained for a network that is not unimolecular. This motivates the 325

consideration of the following gene expression network with protein dimerization: 326

∅ kr−−−→X1, X1
kp−−−→X1 + X2,X1

γr−−−→ ∅,X2
γp−−−→ ∅

X2 + X2
kd−−−→X3,X3

γd−−−→X2 + X2,X3
γ′
d−−−→ ∅

(35)

where, as before, X1 denotes mRNA, X2 denotes protein but, now, X3 denotes a protein homodimer. In this 327

case, the Lyapunov equation (14) is not valid anymore because of the presence of the dimerization reaction 328

but we can still perform stochastic simulations. The considered parameter values are given by kp = 1, γr = 2, 329

γp = 1, kd = 3, γd = γ′d = 1, µ = 10, θ = 2 and η = 100. We can see in Figure 16, Figure 17, Figure 18, 330

Figure 19 as well as in Figure S12, Figure S13, Figure S14, Figure S15 of the SI that similar conclusions hold. 331
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Figure 16: Mean trajectories for the homodimer copy number when the gene expression network with protein
dimerization is controlled with the antithetic integral controller (2) with k = 3 and an ON/OFF proportional
controller. The set-point value is indicated as a black dotted line.
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Figure 17: Variance trajectories for the homodimer copy number when the gene expression network with
protein dimerization is controlled with the antithetic integral controller (2) with k = 3 and an ON/OFF
proportional controller.
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Figure 18: Stationary variance for the homodimer copy number when the gene expression network with
protein dimerization is controlled with the antithetic integral controller (2) and an ON/OFF proportional
controller.
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Figure 19: Settling-time for the mean trajectories for the homodimer copy number when the gene expression
network with protein dimerization is controlled with the antithetic integral controller (2) and an ON/OFF
proportional controller.

Discussion 332

Adjoining a negative feedback strategy to the antithetic integral controller was shown to reduce the stationary 333

variance for the controlled species, an effect that was expected from previous studies and predicted by the 334

obtained theoretical results. The structure of the negative feedback strategy was notably emphasized to have 335

important consequences on the magnitude of the variance reduction. Indeed, the ON/OFF controller can 336

be used to dramatically reduce the variance while still preserving the ergodicity of the closed-loop network. 337

This can be explained mainly because the proportional effective gain β is very sensitive to changes in the 338

feedback strength Kp and can reach reasonably large values (still smaller than Kp); see Figure S1in the SI. 339

The preservation of the ergodicity property for the closed-loop network comes from Theorem 2 in [6] and the 340

fact that Eπ[Kp max{0, µ− θX`}] remains smaller than the value of the nominal stationary control input (the 341

constant input for which the stationary mean of the controlled species equals the desired set-point) for a wide 342

range of values for Kp. Regarding the mean dynamics, this feedback leads to a decrease of the settling-time 343

but also leads to abrupt transient dynamics for large values of Kp because of the presence of a stable zero 344

in the mean closed-loop dynamics that is inversely proportional to β (which is very sensitive to changes in 345

Kp in this case and which can reach high values). Unfortunately, this controller cannot be implemented 346

in-vivo because it does not admit any reaction network implementation. However, it can still be implemented 347

in-silico for the stochastic single-cell control for the control of cell populations using, for instance, targeted 348

optogenetics; see e.g. [34]. On the other hand, the Hill feedback, while being practically implementable, has a 349

much less dramatic impact on the stationary variance and on the mean dynamics. The first reason is that the 350

effective proportional gain β is less sensitive with respect to changes in Kp and remains very small even when 351

Kp is large; see Fig. S2. The absence of zero in the mean dynamics does not lead to any abrupt transient 352
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dynamics even for large values for Kp but this may also be due to the fact that β always remains small as 353

opposed to the ON/OFF proportional feedback case. A serious issue with this feedback is that ergodicity can 354

be easily lost since Eπ[Kp/(1 +X`)] becomes very quickly larger than the value of the nominal control input 355

as we increase Kp. The properties of both feedback strategies are summarized in Table 2. 356

To prove the main theoretical results, a tailored closure method had to be developed to deal with the 357

bimolecular comparison reaction. A similar one has also been suggested in [30] for exactly the same purpose. 358

These methods rely on the assumption that the molecular count of the controller species Z2 is, most of the 359

time, equal to 0, a property that is ensured by assuming that k/η � 1. This allowed for the simplification 360

and the closure of the moment equations. The theory was only developed for unimolecular networks because 361

of the problem solvability. However, the extension of those theoretical results to more general reaction 362

networks, such as bimolecular networks, is a difficult task mainly because of the moment closure problem 363

that is now also present at the level of the species of the controlled network. In this regard, this extension is, 364

at the moment, only possible using existing moment closure methods (see e.g. [23, 28,36]) which are known 365

to be potentially very inaccurate and would then compromise the validity of the obtained approximation. 366

We believe that obtaining accurate and general theoretical approximations for the stationary variance for 367

bimolecular networks is currently out of reach. It is also unclear whether the obtained qualitative and 368

quantitative results still hold when the assumption k/η � 1 on the controller parameters is not met. 369

Interestingly, the results obtained in the current paper provide some interesting insights on an unexpected 370

connection between deterministic PI control and its stochastic analogues. In particular, it is possible to 371

observe that the destabilizing effect of deterministic integral control is analogous to the variance increase 372

due to the use of the stochastic antithetic integral controller. In a similar way, the stabilizing property of 373

deterministic proportional controllers is the deterministic analogue of the property of variance decrease of the 374

stochastic proportional controller; see Table 3. 375

The controller considered in this paper is clearly analogous to PI controllers. A usual complemental 376

element is the so-called derivative action (or a filtered version of it) in order to add an anticipatory effect 377

to the controller and prevent high overshoot; see [1]. So far, filtered versions of the derivative action have 378

been proposed in a deterministic setting. Notably, the incoherent feedforward loop locally behaves like a 379

filtered derivative action. More recently, a reaction network approximating a filtered derivative action was 380

proposed in [21] in the deterministic setting. It is unclear at the moment whether a stochastic version for 381

the derivative action can be found but it is highly possible that such a stochastic derivative action can be 382

implemented in terms of elementary reactions. 383

The negative feedback strategy considered here is an ideal/simplified one. Indeed, it was assumed in this 384

paper that the controlled species was directly involved in the negative feedback. However, it is very likely 385

that, the controlled species may not be directly usable in the feedback, that intermediary species may be 386

involved (e.g. a gene expression network is involved in the feedback) or that the feedback is in terms of a 387

species upstream the controlled species (for instance feedback uses a protein while the controlled species is 388

the corresponding homodimer). The theory may be adapted to deal with such cases as long as the controlled 389

network is unimolecular. It is however expected that the same qualitative behavior will be observed. The 390

reason for that is that in unimolecular networks, species cooperate in the sense that they act positively on 391

each other. Hence, decreasing the variance of one species will also decrease the variance of all the species 392

that are created from it. For instance, in a gene expression network, if the mRNA variance is decreased, the 393

protein variance will decrease as well, and vice-versa. 394

From a systems biology viewpoint, it would be interesting to witness a qualitative experimental validation 395

of the proposed theory. Indeed, a first question would be the identification of such negative feedback loops in 396

endogenous networks implementing an antithetic integral controller structure. The next question would be 397

verifying whether we would observe an increase in the variance when knocking this feedback loop down. This 398

would strongly suggest that the role of this feedback loop is indeed to reduce the variance. 399

Finally, in a more synthetic biology perspective, the implementation of such negative feedback loops is 400

an important, yet elusive, task. It is unclear at the moment how in-vivo experiments could be conducted. 401

Preliminary experimental results to validate the theoretical/computational ones could be obtained using 402

optogenetics and single-cell control for population control. In-vivo experiments will certainly require a lot 403
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Table 2: Effects of the different feedback strategies on the mean dynamics and the stationary variance.
ON/OFF Proportional Feedback Hill Feedback

Ergodicity robust (+) fragile (-)
β very sensitive (+) poorly sensitive (-)

wide range (+) small range
Mean Dynamics reduce settling-time (+) reduce settling-time (+)

zero dynamics (-) no zero dynamics (+)
Stationary variance dramatic reduction (++) slight reduction (+)

Table 3: The effects of the proportional and integral actions on the dynamics of a system in both the
deterministic and stochastic setting.

Integral action Proportional action

Deterministic regulation (+) no regulation (-)
Setting destabilizing (-) stabilizing (+)

Stochastic regulation (+) no regulation (-)
Setting increases variance (-) decreases variance (+)

more effort. 404
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Figure and table captions 491

� Figure 1. A reaction network controlled with an antithetic integral controller. 492

� Figure 2. Absolute value of the relative error between the exact stationary variance of the protein 493

copy number and the approximate formula (20) when the gene expression network is controlled with 494

the antithetic integral controller (2) and an ON/OFF proportional controller. 495

� Figure 3. Mean trajectories for the protein copy number when the gene expression network is controlled 496

with the antithetic integral controller (2) with k = 3 and an ON/OFF proportional controller. The 497

set-point value is indicated as a black dotted line. 498

� Figure 4. Variance trajectories for the protein copy number when the gene expression network is 499

controlled with the antithetic integral controller (2) with k = 3 and an ON/OFF proportional controller. 500

The stationary constitutive variance is depicted in black dotted line. 501

� Figure 5. Stationary variance for the protein copy number when the gene expression network is 502

controlled with the antithetic integral controller (2) and an ON/OFF proportional controller. 503
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� Figure 6. Settling-time for the mean trajectories for the protein copy number when the gene expression 504

network is controlled with the antithetic integral controller (2) and an ON/OFF proportional controller. 505

� Figure 7. Absolute value of the relative error between the exact stationary variance of the protein 506

copy number and the approximate formula (20) when the gene expression network is controlled with 507

the antithetic integral controller (2) and a Hill controller. 508

� Figure 8. Mean trajectories for the protein copy number when the gene expression network is controlled 509

with the antithetic integral controller (2) with k = 3 and a Hill controller. The set-point value is 510

indicated as a black dotted line. 511

� Figure 9. Variance trajectories for the protein copy number when the gene expression network is 512

controlled with the antithetic integral controller (2) with k = 3 and a Hill controller. The stationary 513

constitutive variance is depicted in black dotted line. 514

� Figure 10. Stationary variance for the protein copy number when the gene expression network is 515

controlled with the antithetic integral controller (2) and a Hill controller. 516

� Figure 11. Settling-time for the mean trajectories for the protein copy number when the gene 517

expression network is controlled with the antithetic integral controller (2) and a Hill controller. 518

� Figure 12. Mean trajectories for the mature protein copy number when the gene expression network 519

with protein maturation is controlled with the antithetic integral controller (2) with k = 3 and an 520

ON/OFF proportional controller. The set-point value is indicated as a black dotted line. 521

� Figure 13. Variance trajectories for the mature protein copy number when the gene expression network 522

with protein maturation is controlled with the antithetic integral controller (2) with k = 3 and an 523

ON/OFF proportional controller. The stationary constitutive variance is depicted in black dotted line. 524

� Figure 14. Stationary variance for the mature protein copy number when the gene expression network 525

with protein maturation is controlled with the antithetic integral controller (2) and an ON/OFF 526

proportional controller. 527

� Figure 15. Settling-time for the mean trajectories for the mature protein copy number when the gene 528

expression network with protein maturation is controlled with the antithetic integral controller (2) and 529

an ON/OFF proportional controller. 530

� Figure 16. Mean trajectories for the homodimer copy number when the gene expression network with 531

protein dimerization is controlled with the antithetic integral controller (2) with k = 3 and an ON/OFF 532

proportional controller. The set-point value is indicated as a black dotted line. 533

� Figure 17. Variance trajectories for the homodimer copy number when the gene expression network 534

with protein dimerization is controlled with the antithetic integral controller (2) with k = 3 and an 535

ON/OFF proportional controller. The stationary constitutive variance is depicted in black dotted line. 536

� Figure 18. Stationary variance for the homodimer copy number when the gene expression network 537

with protein dimerization is controlled with the antithetic integral controller (2) and an ON/OFF 538

proportional controller. 539

� Figure 19. Settling-time for the mean trajectories for the homodimer copy number when the gene 540

expression network with protein dimerization is controlled with the antithetic integral controller (2) 541

and an ON/OFF proportional controller. 542

� Table 1. Notations. 543

� Table 2. Effects of the different feedback strategies on the mean dynamics and the stationary variance. 544

� Table 3. The effects of the proportional and integral actions on the dynamics of a system in both the 545

deterministic and stochastic setting. 546
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Supporting information legends 547

SI Supporting Information. Contains the technical proofs of the results and some additional figures. 548
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