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ABSTRACT

Ruminant production systems are important con-
tributors to anthropogenic methane (CH4) emissions, 
but there are large uncertainties in national and global 
livestock CH4 inventories. Sources of uncertainty in 
enteric CH4 emissions include animal inventories, feed 
dry matter intake (DMI), ingredient and chemical com-
position of the diets, and CH4 emission factors. There 
is also significant uncertainty associated with enteric 
CH4 measurements. The most widely used techniques 
are respiration chambers, the sulfur hexafluoride (SF6) 
tracer technique, and the automated head-chamber sys-

tem (GreenFeed; C-Lock Inc., Rapid City, SD). All 3 
methods have been successfully used in a large number 
of experiments with dairy or beef cattle in various en-
vironmental conditions, although studies that compare 
techniques have reported inconsistent results. Although 
different types of models have been developed to pre-
dict enteric CH4 emissions, relatively simple empirical 
(statistical) models have been commonly used for in-
ventory purposes because of their broad applicability 
and ease of use compared with more detailed empirical 
and process-based mechanistic models. However, extant 
empirical models used to predict enteric CH4 emissions 
suffer from narrow spatial focus, limited observations, 
and limitations of the statistical technique used. There-
fore, prediction models must be developed from robust 
data sets that can only be generated through collabo-
ration of scientists across the world. To achieve high 
prediction accuracy, these data sets should encompass 
a wide range of diets and production systems within 
regions and globally. Overall, enteric CH4 prediction 
models are based on various animal or feed character-
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istic inputs but are dominated by DMI in one form 
or another. As a result, accurate prediction of DMI is 
essential for accurate prediction of livestock CH4 emis-
sions. Analysis of a large data set of individual dairy 
cattle data showed that simplified enteric CH4 predic-
tion models based on DMI alone or DMI and limited 
feed- or animal-related inputs can predict average CH4 
emission with a similar accuracy to more complex em-
pirical models. These simplified models can be reliably 
used for emission inventory purposes.
Key words: enteric methane, uncertainty, prediction 
model, livestock

INTRODUCTION

The livestock sector is a significant source of an-
thropogenic greenhouse gas (GHG) emissions. In the 
United States, emissions from livestock production 
contributed an estimated 48% of the 2015 agricultural 
GHG emissions (US EPA, 2017). In Europe (EU-28), 
59% of estimated agricultural GHG emissions were 
from livestock in 2015 (http:// ec .europa .eu/ eurostat/ 
web/ agriculture/ data/ database; accessed December 5, 
2017). Methane (CH4) and nitrous oxide are the 2 most 
important GHG from agricultural activities. Methane, a 
potent short-lived (12.2-yr lifetime; Myhre et al., 2013) 
GHG, is emitted from livestock operations through en-
teric fermentation in the animal’s gastrointestinal tract 
(reticulo-rumen and hindgut) and similar methanogenic 
processes in manure. Globally, enteric CH4 emissions 
make up about one-fifth of the 10 to 12 Gt CO2-equiva-
lent/yr GHG emissions from the Agriculture, Forestry, 
and Other Land Use sector (IPCC, 2014). There are, 
however, large uncertainties associated with estimating 
GHG emissions from livestock (or any other source), 
which has led to discrepancies between top-down (i.e., 
based on atmospheric measurements) and bottom-up 
(based on national or regional activity data and emission 
factors for different CH4 sources) and among bottom-
up CH4 emission inventories (Miller et al., 2013; Hristov 
et al., 2014, 2017; Wecht et al., 2014; Maasakkers et al., 
2016). These uncertainties may be related to uncertain-
ties in changes in CH4 sinks (Rigby et al., 2017), or to 
uncertainties in changes in CH4 sources. As an example, 
a recent bottom-up inventory analysis, based mostly 
on national inventory reports, suggested that global 
livestock CH4 emissions are 11% greater than estimates 
based on Intergovernmental Panel on Climate Change 
(IPCC) emission factors (Wolf et al., 2017). As an 
11% difference is well within the uncertainty bounds 
for livestock CH4 inventories (Hristov et al., 2017; US 
EPA, 2017), conclusions from such analyses have to be 
interpreted with caution. Therefore, the objective of 
this paper was to review uncertainties and discrepan-

cies in CH4 inventories as related to livestock emissions, 
enteric CH4 measurement methods, and DMI and CH4 
prediction models. The review and data presented 
here are an integral part of the GLOBAL NETWORK 
project and the Feed and Nutrition Network (http:// 
animalscience .psu .edu/ fnn/ current -research/ global 
-network -for -enteric -methane -mitigation; accessed De-
cember 4, 2017) within the Livestock Research Group 
of the Global Research Alliance for Agricultural Green-
house Gases (www .globalresearchalliance .org; accessed 
December 4, 2017).

UNCERTAINTIES IN ATMOSPHERIC METHANE 
CONCENTRATIONS AND ATTRIBUTION  

TO LIVESTOCK SOURCES

Globally, atmospheric mixing ratio of CH4 (the num-
ber of moles of CH4 per mole of air) was relatively stable 
between 1999 and 2006 but have increased continu-
ously since 2006 at a rate of 4 to 12 nmol/mol per year 
(https:// www .esrl .noaa .gov/ gmd/ ccgg/ trends _ch4/ 
#global _growth; accessed June 16, 2017). There is no 
consensus about the major drivers for this increase and, 
in addition, there is considerable disagreement regard-
ing the contribution of livestock to global CH4 emis-
sions. Reports based on isotopic composition of CH4 in 
the atmosphere, ice cores, and archived air, or combined 
data from bottom-up and top-down methodologies sug-
gested that post-2006 increases in CH4 emissions are 
predominantly caused by increases in microbial CH4 
(Nisbet et al., 2016; Saunois et al., 2016; Schaefer et 
al., 2016). Microbial, or biogenic, CH4 is generated by 
methanogenic archaea and can be from wetlands and 
agricultural activities, mainly livestock production and 
rice cultivation (Stolper et al., 2015). The atmospheric 
mixing ratio of CH4 is a function of emissions and sinks. 
The major sink for atmospheric CH4 is oxidation by 
hydroxyl radicals (OH), occurring mostly in the tropo-
sphere, which accounts for approximately 90% of the 
global CH4 sink (Kirschke et al., 2013). Because of the 
short lifetime of OH, direct observations of atmospheric 
OH mixing ratio are difficult to accomplish (Rigby et 
al., 2017). Therefore, the increase in atmospheric CH4 
cannot be reliably attributed to an overall increase in 
emissions. The analysis by Rigby et al. (2017) pointed 
to “significant OH-related uncertainties” in the atmo-
spheric CH4 budget and concluded that it is impos-
sible to implicate global CH4 emission changes as the 
primary driver for recent trends in atmospheric CH4 
mixing ratio.

If there was an increase in atmospheric CH4 mixing 
ratio and the increase was caused by agricultural sourc-
es, specifically livestock emissions, the trends in atmo-
spheric CH4 should correspond to dynamics in global 

http://ec.europa.eu/eurostat/web/agriculture/data/database
http://ec.europa.eu/eurostat/web/agriculture/data/database
http://animalscience.psu.edu/fnn/current-research/global-network-for-enteric-methane-mitigation
http://animalscience.psu.edu/fnn/current-research/global-network-for-enteric-methane-mitigation
http://animalscience.psu.edu/fnn/current-research/global-network-for-enteric-methane-mitigation
www.globalresearchalliance.org
https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/#global_growth
https://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/#global_growth
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livestock populations. During 1999 to 2006, however, 
when atmospheric CH4 mixing ratio plateaued, global 
cattle and buffalo populations (these species make up 
84% of all livestock enteric CH4 emissions; FAOSTAT, 
2017) continued to increase from 1.46 (1999) to 1.59 
(2006) billion head (FAOSTAT, 2017), at a rate of ap-
proximately 18.8 million head/yr, which apparently 
did not affect atmospheric CH4 over the same period. 
Since 2006, the rate of increase for the populations of 
these ruminant species declined to 7.3 million head/yr 
(FAOSTAT, 2017); we note that FAOSTAT does not 
specify uncertainty for their estimates, which is likely 
large for cattle inventories (and emission factors) in 
developing countries. Thus, it appears that the global 
dynamics in large ruminant inventories do not support 
the suggested farmed livestock origin of the increase in 
atmospheric CH4 from 2006 to 2015. Potential increases 
in CH4 emission from non-livestock agricultural sources 
to the global CH4 budget cannot be excluded. Glob-
ally, the area harvested for paddy rice (emissions from 
which are typically 22 to 24% of the emissions from 
livestock), for example, had increased 42% from the 
1960s to 2015 (FAOSTAT, 2017), although new rice 
varieties (i.e., water-saving and drought-resistance rice, 
or WDR; Luo, 2010) require less water and thus emit 
less CH4 (Sun et al., 2016).

Source attribution of atmospheric CH4 is largely based 
on its stable isotope signature, specifically 13C/12C. The 
average isotopic signature of microbial CH4 appears to 
be quite distinct from that of fossil fuel CH4 (Wang et 
al., 2015; Schwietzke et al., 2016). In the Wang et al. 
(2015) study, average δ13C of thermogenic CH4 from the 
Northern Appalachian Basin was −36.2 to −25.7 ‰, 
whereas δ13C of enteric CH4 from cows from the Pennsyl-
vania State University’s dairy herd was −54.2 to −52.8 
‰. Based on CH4 isotopic signature data, Schwietzke 
et al. (2016) concluded that fossil fuel CH4 emissions 
are not increasing over time, implying that emissions 
of CH4 from microbial sources have been increasing. 
Examination of the δ13CH4 database used in the Schwi-
etzke et al. (2016) study (https:// www .esrl .noaa .gov/ 
gmd/ ccgg/ d13C -src -inv/ ; accessed December 4, 2017), 
however, shows a relatively large variability and uncer-
tainty in the δ13CH4 data, from −68‰ (SD = 3.0‰) for 
C3 plant–based ruminant diets to −54‰ (SD = 3.0) 
for C4 plant diets; the authors used δ13CH4 of −66.8 ± 
2.8‰ as a global average for ruminants, which is very 
close to that for wetlands (−61.5 ± 0.6‰). Wang et 
al. (2015) also reported similar δ13CH4 for ruminal and 
swamp CH4 samples. In the Schwietzke et al. (2016) 
database (over 8,100 observations), δ13CH4 of fossil fuel 
CH4 (average of −45.0 ± 6.96‰ with minimum and 
maximum of −64.1 and −29.1‰, respectively) had a 
standard deviation as high as 15 to 16‰. This large 

variability in the isotopic signatures of microbial and 
fossil fuel CH4 requires a more cautious interpretation 
of the data on CH4 emission source distribution and the 
conclusions of Schwietzke et al. (2016). Furthermore, a 
recent analysis by Turner et al. (2017) showed signifi-
cant overlap in the δ13CH4 isotopic signatures of fossil 
fuel (−15 to −76‰) and non-fossil-fuel (−31 to −93‰) 
CH4 sources. As pointed out by Turner et al. (2017), fos-
sil fuel CH4 is not entirely thermogenic in origin (based 
on its isotopic signature), with over 20% of the world’s 
natural gas reserves generated by microbial activities 
(i.e., carrying biogenic isotopic signature). Thus, col-
lectively, we can conclude that quantitative attribution 
of changes in atmospheric CH4 concentrations to CH4 
sources based on δ13CH4 data is at least questionable. 
Both enteric and manure emissions contribute to live-
stock CH4, with manure reportedly being less depleted 
in 13C than enteric CH4, which further decreases the 
usefulness of the δ13CH4 signature approach for estimat-
ing the share of microbially derived CH4 (Klevenhusen 
et al., 2010). Additional isotope measurements such as 
14CH4, hydrogen isotopes, deuteromethane, or clumped 
isotopes (heavy isotopes that are bonded to other heavy 
isotopes; Eiler, 2007; Stolper et al., 2015; Wang et al., 
2015) would help better discriminate individual source 
contributions.

UNCERTAINTIES IN LIVESTOCK  
METHANE INVENTORIES

Globally, estimated non-CO2 GHG emissions from 
agriculture increased at a rate of 0.9%/yr between 1990 
and 2010 (IPCC, 2014). In the United States, the Envi-
ronmental Protection Agency (US EPA, 2017) reported 
a 16% decrease in CH4 emissions between 1990 and 
2015, due mainly to estimated decreases in emissions 
associated with fossil fuel exploration and production. 
The EPA’s bottom-up CH4 inventory was challenged 
by top-down analyses suggesting that livestock CH4 
emissions are underestimated by as much as 80% by 
the EPA (Miller et al., 2013; Wecht et al., 2014). In 
the Wecht et al. (2014) study, oil and gas emissions, 
the largest source of anthropogenic CH4 in the United 
States, were estimated to be 20% lower than EPA’s 
bottom-up estimates. A more recent top-down analy-
sis indicated a sharp 30% increase in anthropogenic 
CH4 emissions in the United States between 2002 and 
2014 (Turner et al., 2016). According to their study, 
the spike in atmospheric CH4 was mainly over the cen-
tral part of the United States. Although the authors 
(Turner et al., 2016) mentioned a 20% increase in oil 
and gas production and a 9-fold increase in shale gas 
production in the United States (from 2002 to 2014), 
they concluded that the data do not allow attribution 

https://www.esrl.noaa.gov/gmd/ccgg/d13C-src-inv/
https://www.esrl.noaa.gov/gmd/ccgg/d13C-src-inv/
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of atmospheric CH4 mixing ratio to a specific source. 
It is worth pointing out that the cattle population (the 
major source of livestock enteric and manure CH4 emis-
sions) in the United States has been declining since the 
late 1970s, from 111 million in 1980 to 92 million in 
2016 (NASS, 2017). Body weight of beef (and dairy) 
cattle has been increasing, however; as an example, 
despite the decreasing beef cattle numbers, total beef 
slaughter production has increased from about 107 to 
125 million kilograms from 1980 to 2016 (NASS, 2017). 
This increase in the live and carcass weight of cattle, 
which likely corresponds to greater DMI, will partially 
offset the potential decrease in enteric CH4 emission 
from the beef sector in the United States, caused by 
decreasing cattle inventories.

The uncertainties in livestock enteric CH4 emissions 
in the current US EPA (2017) report are −11 and 18% 
(lower and upper bounds, respectively), corresponding 
to a 95% confidence interval, with the lower bound 
corresponding to the 2.5th percentile and the upper 
bound corresponding to 97.5th percentile, respectively. 
For CH4 emissions from manure management, the 
uncertainty is −18 and 20%, respectively (US EPA, 
2017). These uncertainties result from several factors, 
including uncertainties in animal inventories, DMI, 
ingredient and chemical composition of the diet, and 
CH4 emission factors (for enteric fermentation) and 
inaccuracies of measurement of CH4 emission from 
manure (minute amounts, often emitted as bubbles) 
related to manure composition, manure management 
system, duration of manure storage, and environmental 
factors such as temperature and wind. A recent gridded 
(0.1° × 0.1° grid; which represents an area of 81 to 109 
km2) inventory of livestock CH4 emissions in the con-
tinental United States reported lower and upper 95% 
confidence bounds of −15.6 and 16.9% (as % of the 
mean; enteric), −65.0 and 63.3% (manure), and −19.3 
and 19.2% (total emissions), respectively (Hristov et 
al., 2017). In that analysis, major sources of uncertain-
ties for enteric CH4 were animal BW (lower and upper 
95% confidence bounds across cattle categories: −18 
to −24% and 21 to 29%, respectively), DMI (−21 to 
−29% and 21 to 29%), and CH4 yield (−18 to −41% 
and 19 to 42%). In a model designed to estimate enteric 
CH4 from Dutch dairy farms, Bannink et al. (2011) 
reported that the largest uncertainty (18%) was related 
to VFA stoichiometry. Estimates for total livestock 
CH4 emissions in the Hristov et al. (2017) study were 
comparable to current US EPA (2017) estimates for 
2012 (last census of agriculture) and to estimates from 
the gridded Emission Database for Global Atmospheric 
Research (EDGAR, 2011) inventory. However, the spa-
tial distribution of emissions in the Hristov et al. (2017) 
analysis differed significantly from that of EDGAR and 

a recent gridded inventory based on US EPA’s emis-
sion database (Maasakkers et al., 2016). For example, 
the combined enteric and manure CH4 emissions from 
livestock in Texas and California (the largest contribu-
tors to the national total) in the Hristov et al. (2017) 
study were 36% lower and 100% greater, respectively, 
than estimates from EDGAR. These differences origi-
nate from differences in emission factors between the 2 
analyses [lower emission factors for feedlot cattle (i.e., 
Texas) and higher emission factors for dairy cows (i.e., 
California) in the Hristov et al., 2017 analysis]. Gridded 
bottom-up emission inventories, such as EDGAR, are 
commonly used to assess the contribution of CH4 from 
different sectors within a region. Top-down approaches 
use these bottom-up inventories as a prior estimate 
of total emissions and, in some cases, to allocate the 
resulting (posterior) emission estimates to emission 
sources (Saunois et al., 2016). As a result, spatial 
distribution of emissions in gridded inventories likely 
strongly affects the conclusions of top-down approaches 
that use them, especially in the source attribution of 
emissions (i.e., biogenic vs. thermogenic or livestock 
vs. fossil fuel); therefore, conclusions from such studies 
should be interpreted with caution, even more when 
aiming to make future projections and evaluate mitiga-
tion options.

UNCERTAINTIES IN ENTERIC METHANE 
MEASUREMENT TECHNIQUES

Several established techniques exist for direct mea-
surement of enteric CH4 emissions from ruminants. 
These include respiration chambers (RC), the sulfur 
hexafluoride (SF6) tracer technique, and more recently, 
the GreenFeed technique (GF; C-Lock Inc., Rapid 
City, SD), which is an automated head-chamber sys-
tem. In addition, several indirect techniques have also 
been proposed and used for measuring enteric CH4 
emissions (reviewed by Negussie et al., 2017). A com-
prehensive review of current enteric CH4 measurement 
techniques was recently published by an international 
team of scientists (Hammond et al., 2016a) as part of 
the GLOBAL NETWORK project.

The GLOBAL NETWORK project has collected 
thousands of measurements of CH4 emissions from 
individual animals and accompanying data (e.g., diet 
composition and DMI) to develop robust, broadly ap-
plicable CH4 prediction equations for applications such 
as livestock CH4 inventories. Contributors supplying 
data to the GLOBAL NETWORK project used various 
methods for measuring enteric CH4. Three databases 
were created, one each for dairy cows, beef cattle, and 
small ruminants (sheep and goats). In Table 1, we pres-
ent data for the main measurement techniques that 
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were included in the dairy database of the GLOBAL 
NETWORK project. The RC sub-database included 
cows with DMI and milk yield that were lower than 
those of cows included in the GF sub-data set but com-
parable to those in the SF6 data set. Also, the range of 
DMI was narrower for GF and SF6 than for RC. As evi-
dent from the data, significant variation was associated 
with all measurement methods for CH4 emission rate, 
yield, and intensity; the coefficient of variation (CV) 
for emission rate (g of CH4/d) averaged 30, 18, and 
28% for RC, GF, and SF6, respectively. It is important 
to note that the variability included in these CV val-
ues includes all sources of variation, not just variation 
due to method of measurement and how it was used. 
Methane emission rate is determined primarily by the 
amount of rumen fermentable substrate and, for this 
reason, comparisons of CV are better made based on 
CH4 yield; that is, grams of CH4 per kilogram of DMI. 
On this basis, the CV for RC is reduced to 21% and 
is comparable to that for GF and SF6 (21 and 27%, 
respectively). Low variability, however, does not always 
mean high accuracy. Each method has to be carefully 
evaluated by researchers who, based on their expertise 
and available data, can determine whether a method 
can be reliably used to measure enteric CH4 emission 
from ruminants for the specific conditions and objec-
tives of their experiment and animals used.

Respiration Chambers

Respiration chambers have been considered the gold 
standard for measuring enteric CH4 emission from farm 
animals, although this is only the case if RC are oper-
ated properly and recoveries are fixed and preferably 
close to 100%. Moreover, there are many kinds of cham-
bers and operation procedures with varying accuracies. 
As shown in a collaborative project in the United 
Kingdom, RC can also produce inaccurate results 
(Gardiner et al., 2015). In that ring-test, measured CH4 
recovery was unacceptably low for several of the RC 
tested. Critical sources of variation for measurement of 
CH4 emission through RC are airflow rate through the 
chamber and the dynamics of air mixing in the cham-
ber, which determines response time. In the ring-test 
by Gardiner et al. (2015), 3 potential sources of experi-
mental error were evaluated by testing the measured 
recovery of a reference source of ultra-high-purity CH4 
standard released at calibrated rates at specific points 
in the chambers to test the accuracy of specific compo-
nents of the measurement system. The tested sources 
of error were analyzer error, ducting efficiency (from 
chambers to analyzers, including measurements of air-
flow), and mixing of air in chamber. Of these, ducting 
and airflow measurement were the largest source of 

variation in CH4 standard recovery within and between 
RC and research facilities (1.3, 15.3, and 3.4% variation 
for analyzers, ducting/flow, and air mixing in chamber, 
respectively). Chambers need to be routinely calibrated 
and demonstrate gas recovery rates of approximately 
100% both before and after each experimental deploy-
ment, as highlighted recently by Gerrits et al. (2018).

As well as these issues, several other common but 
often overlooked issues can influence CH4 yield mea-
surements made using RC. Animals in RC must have 
stable daily feed intake. Moate et al. (2012) showed 
that, for a dairy cow in RC, approximately 30% of to-
day’s CH4 emissions are a result of yesterday’s DMI. 
It is commonly observed that dairy cows may slightly 
reduce their DMI on the first day they enter a respi-
ration chamber (data from the first day are normally 
excluded from the analysis). Thus, day-to-day variation 
in total DMI can cause an error in estimated CH4 yield 
of up to 3% (Moate et al., 2012). If RC are fitted with 
air locks for entry and feeding, disruption to measure-
ments is minimized, the entry and presence of staff in 
the RC can be accounted for (see Reynolds and Tyr-
rell, 2000), and measurements can be obtained without 
interruption for successive 24-h periods (Flatt et al., 
1958; Tyrrell et al., 1979). However, many modern RC 
are constructed such that the chamber doors must be 
opened for approximately 30 min at least twice per day 
to enable milking and cleaning. With exclusion of these 
time slots, CH4 measurements from a specific chamber 
may cover approximately 23 h/d. There does not ap-
pear to be an internationally agreed protocol for filling 
the total 1-h “gap” in missing CH4 measurements. In-
terpolation may be used for this purpose but what ap-
proximation should be used for the missing data? This 
would not be a problem if the rate of CH4 emissions 
were constant over the course of a day, but with dairy 
cows, there is often considerable hour-to-hour variation 
in rate of CH4 production, with the peak hourly rate 
of CH4 emission being more than 3 times the minimum 
hourly rate of CH4 emission. Depending on feeding 
(immediately upon entrance or just before leaving the 
chamber), the most accurate estimate of CH4 produc-
tion rates during the two 30-min gap periods is the 
average of the CH4 production immediately preceding 
and after each opening, or the CH4 production rate 
immediately preceding each opening of the chamber. 
However, the most common practice is to use the mean 
rate of CH4 production as measured during the 23 h 
for which data are available. The latter interpolation 
method can result in an overestimation of CH4 emis-
sion and hence CH4 yield by approximately 2% (P. J. 
Moate, unpublished data). In contrast, van Gastelen et 
al. (2017) established a very small difference of 0.1% 
in daily CH4 emission rate when comparing discarding 
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(and interpolating between last time point before open-
ing and first time point after closing the chamber) with 
not discarding the data from these time slots.

The SF6 Technique

Another widely used technique to measure enteric 
CH4 emissions is the SF6 tracer method (Zimmerman, 
1993; Johnson et al., 1994). Variability with the SF6 
technique has been notoriously high (Pinares-Patiño and 
Clark, 2008; Pinares-Patiño et al., 2011), but the modi-
fications by Deighton et al. (2014) addressed the most 
important sources of error, and the modified technique 
produced CH4 measurements with accuracy similar to 
measurements using RC. Part of the variation with SF6 
seems intrinsic to the technique because the estimated 
CH4 emission rate appears sensitive to factors that af-
fect the proportions of exhaled and eructated air in 
the air samples collected and distance of the sampling 
point from to the mouth/nostrils (Berends et al., 2014), 
which is not an issue with RC. Several important condi-
tions must be met to reduce variability in the CH4 mea-
surement data when the SF6 technique is used. These 
include (1) high and known release rate of SF6 from the 
permeation tube, (2) at least 5 (depending on day-to-
day variation in emission rates; Arbre et al., 2016) con-
secutive measurement days, and (3) low concentrations 
of SF6 and CH4 in the background air (i.e., using the 
technique in enclosed barns is not recommended, unless 
there is adequate ventilation throughout the measure-
ment period; Dorich et al., 2015; Hristov et al., 2016). 
Even with adequate ventilation, samples of background 
air concentrations should always be included to correct 
the measurements obtained. In this regard, the method 
of obtaining background concentrations is important 
and should be as representative as possible of the 
background air in which the measurements are being 
obtained. A suitable approach is to include animals in 
the trial that are sampled in the same way as the other 
animals in the study but are not given an SF6 perme-
ation tube. Other concerns addressed by the studies of 
Deighton et al. (2014) include variation in release rate 
of permeation tubes over time (months) after calibra-
tion and variation in sampling rate over time (hours) 
during the sampling day, both of which can introduce 
bias in estimates obtained. Variation in release rate can 
be accounted for in part by using Michaelis-Menten 
kinetics to estimate the decay in release rate over time, 
rather than first-order kinetics (Deighton et al., 2014) 
if measurements are obtained more than 60 d after 
calibration of permeation tubes. Deighton et al. (2014) 
also showed that bias due to variation in sampling rate 
over the course of a 24-h sampling period is markedly 
reduced when orifice plate flow controllers, rather than 

capillary tubes, are used to obtain air samples. Because 
of diurnal changes in CH4 emission over the course of 
each day, sampling for less than 24 h is not appropriate 
for estimates of daily rate of CH4 emission. When these 
conditions and considerations are addressed, the SF6 
tracer technique can produce accurate CH4 emission 
data from a large group of animals. In a review of CH4 
emission techniques, Hammond et al. (2016a) reported 
that, in 5 studies comparing CH4 emissions from dairy 
cows obtained using RC and SF6 (simultaneously in 2 
studies), measurements of CH4 emission were not sig-
nificantly different in 4 studies and were different in 1 
study (422 vs. 469 g/d). Detailed guidelines for using 
the SF6 technique were published by an international 
panel of experts (Berndt et al., 2014).

The GreenFeed System

A more recent technique for direct measurement of 
enteric CH4 emissions is the automated head-chamber 
system GreenFeed, which was developed for spot sam-
pling of exhaled and eructated gases (Zimmerman and 
Zimmerman, 2012). When properly used (Hristov et al., 
2015a), GF can be a reliable technique for measuring 
enteric CH4 emissions from ruminant animals (Dorich 
et al., 2015; Hammond et al., 2016a,b; Hristov et al., 
2016). An important prerequisite for decreasing uncer-
tainty of the measurement when using GF is that all 
animals visit the unit at times that enable estimation 
of the diurnal pattern of CH4 emission over successive 
24-h periods. Methane emissions have a clear diurnal 
pattern related to the pattern of feed intake (usually 
lower at night; Brask et al., 2015; Hammond et al., 
2016a); therefore, for accurate daily emission estimates, 
animal visits need to be distributed appropriately over 
the 24-h feeding cycle. The number and timing of vis-
its to GF will vary depending on the type of animal, 
the diet fed, and the level of DMI (Hammond et al., 
2016a,b). Reliable results with GF can be obtained 
when the number and timing of animal visits are con-
trolled by the investigator, which is easily achievable in 
a tiestall barn situation (Branco et al., 2015; Hristov et 
al., 2015b; Dittmann et al., 2016). Alternatively, mea-
surements have to take place over a prolonged period 
(up to 3 to 5 wk, depending on the study objectives; 
Arbre et al., 2016; Renand and Maupetit, 2016; Arthur 
et al., 2017). Obtaining measurements at specific time 
points from each animal on a study over a series of 
days increases precision and, as a result, can provide 
an accurate determination of treatment effects on CH4 
emission. However, the measurements obtained are not 
necessarily accurate estimates of daily emission rate, 
if the timing of measurements does not adequately 
account for the diurnal pattern of emission (Doreau 
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et al., 2018). For studies in which groups of animals 
are provided access to a GF unit (or units), timing 
of use can be influenced by programming the unit to 
only provide feed to animals at specific intervals, which 
encourages the animals to visit the unit at varied times 
throughout successive days. Nevertheless, in practice, 
the number of visits tends to be higher at specific times 
of the day (e.g., Hammond et al., 2015, 2016a,b) and 
may be influenced by the type of diet fed.

A recent evaluation of a large number of estimates of 
CH4 emission rate (g/d) from 2 studies in growing beef 
cattle (Arthur et al., 2017) examined the number of 
observations (spot measurements) required to reliably 
estimate daily emission rate using GF, based on the 
reduction in variance observed with increasing number 
of observations. The authors found that as long as mea-
surements were of sufficient duration (at least 3 min), 
30 observations were sufficient to obtain reliable CH4 
emission data, regardless of how many times per day 
the measurements were obtained (on average 4.4 per 
day in one study and 1.3 per day in another), although 
the problem of unbalanced spread of visits over a 24-h 
period in view of diurnal CH4 production patterns is 
not necessarily solved. These results emphasize the 
need for sufficient numbers of GF measurements per 
experimental unit (animal on a given treatment) for 
studies where animals are allowed voluntary access to 
the equipment. Another potential source of error in 
outdoor use is the effect of wind on the capture ef-
ficiency of the GF unit, which is used in the calculation 
of CH4 emission rate for each measurement. Variation 
in wind speed and direction can affect measurements 
(Huhtanen et al., 2015a); thus, it is recommended that 
units used outdoors be fitted with anemometers to 
record wind speed during measurements so attempts 
can be made to correct measurements for the effects 
of wind. Measurements obtained using GF, similar to 
those obtained using the SF6 technique, do not include 
CH4 emissions from the rectum, but these emissions 
are typically small (approximately 1–3%, as measured 
or estimated by Murray et al., 1976 and Muñoz et al., 
2012, respectively).

Overall, both GF and SF6 are established techniques 
and can produce accurate estimates for enteric CH4 
emission when properly used and calibrated. Emphasis 
on further improvement of the methodology and ex-
perimental set-up (Deighton et al., 2014; Hristov et al., 
2015a) will increase the accuracy of these techniques. 
Direct comparisons of GF and SF6 with RC have shown 
acceptable agreement in some studies (e.g., Grainger 
et al., 2007; Muñoz et al., 2012; Deighton et al., 2014; 
Hammond et al., 2016b; Velazco et al., 2016; Jonker 
et al., 2016; Huhtanen et al., 2018; Alemu et al., 2017; 
Rischewski et al., 2017) but not in others (e.g., Pin-

ares-Patiño et al., 2011; Hammond et al., 2015). The 
modified SF6 technique, as proposed by Deighton et al. 
(2014), showed good agreement with RC; CH4 yield was 
not different between SF6 and RC, and the between-
animal CV were similar between the 2 techniques (6.5 
and 7.5%, respectively). A recent meta-analysis showed 
a strong relationship (R2 = 0.92) between CH4 emis-
sions measured in RC and by GF used in the same ex-
periment (Figure 1; Huhtanen et al., 2018). Sources of 
uncertainties with both techniques have been discussed 
above. To reduce variability in data generated by SF6 
or GF, researchers have to strictly follow recommended 
procedures or adjust these procedures to their specific 
experimental conditions when necessary.

Indirect Methods

Indirect approaches have been proposed and used 
to measure enteric CH4 emissions in livestock. Usu-
ally, these methods are associated with lower accuracy 
and greater uncertainty in the emission data than the 
direct methods described above. One approach used 
estimated CO2 emission and measured CO2: CH4 ratio 
in exhaled air to estimate CH4 emission (Madsen et 
al., 2010). Changes in digestive and metabolic activities 
(even at the same level of feed intake), differences in 
feed efficiency, as well as variation in ruminal fermenta-
tion can all influence the amount of CO2 produced by 
the animal and thus affect the predicted CH4 emission 
(Huhtanen et al., 2015a). The CO2: CH4 ratio technique 
is comparable to the SF6 technique in some ways, but 

Figure 1. Relationship between enteric methane emission mea-
sured using GreenFeed (GF; C-Lock Inc., Rapid City, SD) and that 
measured using respiration chambers (RC) in 6 studies (n = 20; 
Hammond et al., 2015, 2016b; Jonker et al., 2016; Alemu et al., 2017; 
Rischewski et al., 2017) in which the 2 techniques were directly com-
pared. RMSPE = root mean squared prediction error.
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it is usually based on “spot” measurements of breath 
CH4 concentration, rather than integrated measure-
ments over 24 h, and the emission rate of the “tracer” 
gas (CO2) is estimated, rather than relying on emission 
from a calibrated delivery device in the rumen, as with 
the SF6 technique. Haque et al. (2017) evaluated CH4 
production calculated using observed CO2 production 
in RC versus using CO2 production calculated based on 
the heat production method of Madsen et al. (2010). 
In that evaluation, CH4 production estimated using 
calculated CO2 production resulted in smaller differ-
ences and changed the significance of treatment effects 
between diets compared with using the actual observed 
CO2 production.

Another indirect method proposed by Garnsworthy 
et al. (2012) relies on estimating CH4 emission during 
an eructation event and the frequency of eructation 
during a measurement period—the “sniffer” method. 
A feature of the method is that hundreds of repeated 
measurements can be made at little additional cost 
over prolonged periods. In 2 experiments with lactating 
cows, however, Huhtanen et al. (2015a) found larger 
variability with the sniffer method and no relationship 
to emissions measured using GF. Distance from the 
sampling inlet had a strong influence on measured gas 
concentration in a laboratory study and, in an animal 
study, the measured CH4 concentration was strongly 
related to head position (Huhtanen et al., 2015a). In 
addition, head position was a highly repeatable charac-
teristic precluding that an increased number of obser-
vations could solve the problem. Another recent study 
concluded that the capability of the sniffer method 
to adequately measure and rank CH4 emission rates 
among dairy cows is highly uncertain and requires fur-
ther investigation into the sources of variation (Wu et 
al., 2018).

Another indirect technique uses a laser CH4 detector 
to measure CH4 mixing ratio in the air between the 
laser device and the animal (usually 1 to 3 m). The 
method allows CH4 measurements in on-farm condi-
tions and from a large number of animals; however, 
comparative studies found a positive but weak relation-
ship between the laser method and RC measurements 
(Chagunda et al., 2013; Ricci et al., 2014), although the 
device was found to accurately record variations in CH4 
in spent air of RC (Sorg et al., 2017). Environmental 
factors such as temperature, wind velocity (particularly 
important for grazing conditions), proximity of other 
animals, humidity, and others can affect the accuracy 
of the measurements. Further critical evaluation of 
these indirect methods has been provided in Hammond 
et al. (2016a), but as the methods are “indirect,” they 
rely on assumed relationships between concentrations 
of CH4 in breath and other parameters and as such are 

subject to greater variance and uncertainty than direct 
measures of CH4 emission rate.

UNCERTAINTIES IN PREDICTING ENTERIC 
METHANE EMISSIONS

Relationship of DMI with CH4 Emission  
and Prediction of DMI

Dry matter intake is an important factor in enteric 
CH4 prediction models. Models predicting DMI can be 
used in conjunction with emission factors to estimate 
enteric CH4 emissions in a Tier 2 approach (which is 
based on country-specific emission factors and other 
data). Appuhamy et al. (2016) evaluated 40 prediction 
equations using data that included measured DMI and 
feed quality attributes. The best performing models 
in each region (North America, Europe, and Australia 
and New Zealand) were then re-evaluated using pre-
dicted DMI and compared with estimates that used 
measured DMI. Appuhamy et al. (2016) reported that 
models using estimated DMI predicted enteric CH4 
emissions as accurately as the measured data if DMI 
could be estimated with reasonable accuracy. Thus, 
enteric CH4 emissions could be predicted well without 
DMI measurements for North America. For Europe, 
using estimated DMI rather than observed DMI re-
sulted in satisfactory CH4 emissions prediction. For 
Australia and New Zealand, CH4 emissions could not 
be estimated well without actual DMI measurements. 
These differences were likely due to the models used. 
The DMI prediction model was developed based on 
North American data and may not work well with diets 
that have greater forage proportion, including cattle 
on pasture. In the GLOBAL NETWORK database 
of individual dairy cow data (Niu et al., 2018), CH4 
prediction equations with a greater number of indepen-
dent variables performed best and had lower root mean 
squared prediction error (RMSPE) as a percentage 
of the mean observed value (14.7 to 19.8%). However, 
less complex models requiring only DMI had predictive 
ability comparable to those of the more complex mod-
els (RMSPE = 15.2 to 21.4%). This indicates that DMI 
alone may be sufficient to predict enteric CH4 emissions 
for inventory purposes (as discussed in Hristov et al., 
2017). The coefficient of determination for the relation-
ship of measured CH4 emissions with DMI, however, 
can be highly variable and may be influenced by several 
factors, including CH4 measurement technique.

The relationships of measured CH4 production and 
DMI (absolute or expressed on a BW basis) and NDF 
intake (NDFI) in the GLOBAL NETWORK dairy 
database (Niu et al., 2018) were investigated using the 
MIXED and REG procedures of SAS (version 9.4; SAS 
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Institute Inc., Cary, NC). Table 2 summarizes the re-
sults of these analyses. The linear relationship of DMI 
and CH4 production was moderately strong (R2 = 0.58) 
for the RC data (Figure 2, RC) and similar to the rela-
tionship for the entire data set (R2 = 0.63; Figure 2, all 
data) but was very weak for GF (R2 = 0.05; Figure 2, 
GF) and low for the SF6 technique (R2 = 0.27; Figure 
2, SF6); nonlinear models did not improve the relation-
ship (data not shown). The estimated slopes indicate a 
much larger incremental yield in CH4 with increasing 
DMI for RC than for GF and SF6 (16.12 ± 0.299, 7.53 
± 0.775, and 5.87 ± 1.373 g of CH4/kg of DMI, respec-
tively). The prediction error was also lower for RC than 
for GF or SF6. Similarly, relationships between DMI as 
a fraction of BW, NDFI, or milk yield or ECM yield 
and CH4 were stronger for RC data than for GF or SF6. 
This can be partially explained by the wider range of 
DMI data in the RC subset compared with that of GF 
or SF6. The relationship of CH4 emissions and DMI 
is usually strong with wider ranges of DMI (Hristov 

et al., 2013; Charmley et al., 2016) and weak when 
the range of DMI is narrower (Hristov et al., 2015b). 
The meta-analysis by Charmley et al. (2016) was on a 
large Australian data set (1,033 observations) includ-
ing both dairy and beef cattle data and clearly showed 
that relationship between DMI and CH4 emissions was 
strong (R2 = 0.92) and the intercept was close to zero 
when DMI range was large (from about 2 to 28 kg/d in 
their analysis). If RC data in the current analysis were 
restricted to DMI >15 kg/d, R2 for the relationship 
with DMI decreased to 0.41 and root mean squared 
error increased to 68.2 (data not shown).

A moderate relationship between DMI and CH4 
emissions has been established for both GF and SF6 
techniques. In a meta-analysis of dairy cow studies by 
Grainger et al. (2007), the relationship between DMI 
and CH4 emission as measured by the SF6 technique 
was R2 = 0.56 and was better than the relationship be-
tween DMI and CH4 emission for RC (R2 = 0.39). The 
authors noted that in only 22% of the studies was the 

Table 2. Relationships of enteric methane emission (g/head per day), measured using direct methods, and DM or NDF intake and milk and 
3.5% fat- and protein-corrected milk yields in dairy cows (data from the GLOBAL NETWORK project; Niu et al., 2018)

Method1  Variable2 n3

Intercept4

 

Slope4

 

REG5

Estimate SE Estimate SE RMSE R2 CV

All data  DMI 4,152 110.9 6.91  13.55 0.294  49.4 0.63 13.9
  DMI/BW 3,993 222.0 10.0  44.42 2.134  90.0 0.26 25.2
  NDFI 3,729 157.8 7.43  31.23 0.783  76.3 0.46 21.0
  NDFI/BW 3,604 256.2 9.03  94.52 5.277  95.0 0.15 26.2
  MY 3,983 293.0 7.53  2.54 0.157  90.9 0.23 25.1
  FPCMY 3,865 262.2 7.33  3.51 0.158  86.3 0.32 23.8
RC  DMI 3,024 64.7 6.99  16.12 0.299  66.6 0.58 19.3
  DMI/BW 2,924 180.7 9.60  56.41 2.402  83.6 0.34 24.2
  NDFI 2,629 126.2 7.81  35.69 0.807  69.9 0.53 20.0
  NDFI/BW 2,563 226.1 9.66  116.3 5.95  88.4 0.25 25.2
  MY 2,874 275.6 8.14  2.92 0.177  89.3 0.25 25.6
  FPCMY 2,761 243.4 7.86  3.98 0.177  84.3 0.34 24.2
GF  DMI 731 265.8 22.17  7.53 0.775  76.5 0.05 17.6
  DMI/BW 680 396.9 23.96  12.91 5.400  78.3 0.00 18.0
  NDFI 703 288.2 20.03  20.41 2.144  71.3 0.12 16.2
  NDFI/BW 652 409.9 21.51  33.17 14.28  74.7 0.02 17.1
  MY 729 391.6 18.07  1.41 0.353  78.1 0.00 17.9
  FPCMY 728 359.3 18.77  2.21 0.355  77.6 0.01 17.8
SF6  DMI 397 237.8 28.64  5.87 1.373  76.1 0.27 24.0
  DMI/BW 389 288.8 30.20  16.58 7.32  86.7 0.04 27.5
  NDFI 397 243.7 29.31  14.87 3.32  85.6 0.08 27.0
  NDFI/BW 389 287.1 29.21  45.27 16.07  88.5 0.00 28.1
  MY 380 316.0 28.66  1.34 0.805  81.4 0.14 25.3
  FPCMY 376 291.1 27.73  2.16 0.757  80.5 0.17 25.1
1All data = all data in the GLOBAL NETWORK project dairy data set; RC = data from studies using respiration chambers only; GF = data 
from studies using the GreenFeed system (C-Lock Inc., Rapid City, SD) only; SF6 = data from studies using the sulfur hexafluoride tracer 
technique only.
2DMI = dry matter intake, kg/d; NDFI = neutral-detergent fiber intake, kg/d; BW = body weight, kg; DMI (or NDFI)/BW = DMI or NDFI 
as % of BW; MY = milk yield, kg/d; FPCMY = 3.5% fat- and protein-corrected milk yield, kg/d (from Leiva et al., 2000, based on Tyrrell and 
Reid, 1965).
3n = number of observations in the data set.
4Mixed regression model analysis; all P-values <0.001.
5REG = fit statistics from a fixed regression model; RMSE = root mean squared error.
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DMI of the cows >20 kg/d; more data are needed to es-
tablish a reliable relationship for greater DMI. A mod-
erately strong relationship (R2 = 0.44) of DMI and CH4 
emissions was demonstrated for GF in a beef data set 
(445 observations; DMI ranged from 3.6 to 19.1 kg/d) 
by Bird-Gardiner et al. (2017). In an experiment with 
dairy cows consuming around 28 kg of DM/d, however, 
the relationship of DMI with CH4 emissions measured 
with GF or the SF6 technique was relatively weak: R2 = 
0.47 and 0.08, respectively (Hristov et al., 2015b). The 
absence of a strong relationship between DMI and CH4 
emissions observed in the current analysis for both GF 
and SF6, compared with the relationship for RC (Table 
2 and Figure 2), is difficult to explain but reflects, in 
part, the variation associated with implementation the 
former techniques, as discussed earlier.

Most models developed to predict enteric CH4 emis-
sions usually include either DMI or some form of feed/
nutrient intake; therefore, as pointed out earlier, ac-
curate prediction of DMI is important for accurate pre-
diction of CH4 emissions and yield. The current dairy 
NRC (2001) model predicts DMI based on the cow’s 
metabolic BW, FCM yield, and stage of lactation. Dry 
matter intake prediction models for other categories of 
dairy cattle or beef cattle involve a variable for BW 
(metabolic BW or initial shrunk BW) and NEM con-
centration (NRC 2000, 2001, 2016). Numerous DMI 
prediction models have been proposed and evaluated 
(Ingvartsen, 1994; Mertens, 1995). An in-depth review 
of these models is outside the scope of this analysis 
and the examples given here are to illustrate the vari-
able approaches (e.g., feed composition; animal factors 

Figure 2. Relationship of methane emission (g/head per day) and DMI (kg/d) data from the GLOBAL NETWORK database (Niu et al., 
2018); All data = all data from the database, RC = data from studies in which methane emission was measured in respiration chambers, GF 
= data from studies in which methane emission was measured using GreenFeed (C-Lock Inc., Rapid City, SD), and SF6 = data from studies in 
which methane emission was measured using the sulfur hexafluoride technique. For more details, see text and Tables 1 and 2.
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such as BW, parity, and lactation stage; physiological 
mechanisms; genomic prediction of DMI) undertaken 
to understand the factors important in regulating DMI 
in dairy cows.

Although it is generally agreed that DMI is the most 
important factor influencing CH4 production, the gen-
eral nature of this relationship remains undetermined. 
In the original equation proposed by Blaxter and Clap-
perton (1965), the relationship was curvilinear based 
on feeding level. More recently, Knapp et al. (2014) also 
proposed a curvilinear relation between DMI and CH4 
production, with CH4 yield decreasing at high DMI. 
In dairy cows, very high DMI is usually only achieved 
with diets containing a relatively high proportion of 
concentrate feeds, and high concentrate diets are known 
to decrease CH4 production (Blaxter and Clapperton, 
1965). When the diet of cattle contains less than 30% 
concentrate, the relationship between DMI and CH4 
production has been shown to be linear, even to intakes 
up to 27 kg of DM/d (Charmley et al., 2016). A meta-
analysis by Hristov et al. (2004) indicated that dietary 
concentrations of protein and carbohydrate fractions 
were important variables in predicting DMI in lactating 
dairy cows (and DMI was the dominant factor for esti-
mating milk and milk protein yield). Shah and Murphy 
(2006) proposed an exponential DMI model based on 
lactation asymptotic maximum DMI and DIM. Zom et 
al. (2012) proposed a DMI prediction model based on 
estimated (from parity number, DIM, and days preg-
nant) feed intake capacity and a feed-specific satiety 
value, based on feed chemical composition and digest-
ibility. The latter model and 4 other models (NRC, 
2001 and 3 European models) were evaluated by Jensen 
et al. (2015). The models predicted DMI with various 
accuracies (RMSPE of 1.2 to 3.2 kg/d); best prediction 
was by a complex model involving BW, parity, DIM, 
milk yield, and dietary (forage) NEL. An analysis of 
DMI prediction by 5 feeding systems yielded predic-
tion errors of 1.6 to 3.2 kg/d (Krizsan et al., 2014). 
Appuhamy et al. (2018) evaluated the comprehensive 
(IPCC-CMP) and simplified (IPCC-SMP) IPCC mod-
els (IPCC, 2006), the modified Cornell Net Carbohy-
drate and Protein System model (CNCPS; Fox et al., 
1992 as modified by Arnerdal, 2005), and the NRC 
(2001) models to predict DMI using an independent 
data set. The modified CNCPS, relying on BW and 
FCM yield, more accurately predicted DMI (RMSPE = 
14.1%) than the NRC (RMSPE = 19.4%), IPCC-SMP 
(RMSPE = 16.9%), or IPCC-CMP (RMSPE = 23.4%) 
models. Overall, the results by Appuhamy et al. (2018) 
demonstrated that DMI can be predicted successfully 
using information such as milk yield and milk fat con-
tent (routinely available on dairy farms), which could 
therefore be used to estimate enteric CH4 emissions.

Prediction of CH4 Emissions

Prediction models have been widely used to estimate 
variation in CH4 emissions for a variety of purposes 
(Kebreab et al., 2006). Many countries and regions of 
the world have set targets for the reduction of GHG 
emissions including CH4. For example, California re-
cently passed legislation mandating a reduction in the 
statewide emission of CH4 by 40% below the 2013 lev-
els by 2030 (State of California, 2017). Assessment of 
baseline emission in 2013 was determined using mathe-
matical models, particularly those recommended by the 
IPCC (2006) and used in almost all national inventory 
protocols. Therefore, the accuracy of the model used is 
important in setting and assessing achievable targets. 
As existing models are based on limited databases, new 
and more-accurate models are required to establish 
the baseline for assessing any reduction in emissions 
or estimating global CH4 emissions attributable to 
enteric fermentation. Where data sets used for CH4 
emission prediction model development are composed 
of data from multiple sources (e.g., different research 
groups and multiple studies) such as, for example, the 
GLOBAL NETWORK project, the effect of both re-
search groups and studies should be incorporated in 
the model (Niu et al., 2018). In addition, if more than 
one CH4 measurement technique was used by the same 
research group, the within-group variation from differ-
ent techniques should also be considered.

Types of Models Used to Predict  
Enteric CH4 Emissions

Enteric CH4 emission predictions are obtained us-
ing different types of models. These range from simple 
emission factors (e.g., IPCC, 2006; Tier 1) and em-
pirical models (e.g., Ramin and Huhtanen, 2013) to 
more detailed mechanistic models (e.g., Baldwin, 1995; 
Mills et al., 2001). Some models have been developed 
specifically to predict enteric CH4 emissions from feed 
intake and other diet attributes (such as, for example, 
NDF and ether extract concentrations; e.g., Moraes 
et al., 2014); others have been modified or adapted to 
calculate emissions from ruminal fermentation kinetics 
(e.g., Alemu et al., 2011). Models estimating enteric 
CH4 emissions can be broadly characterized as being 
empirical or mechanistic. Empirical models are based 
on mathematical or statistical associations of diet in-
take and composition and other animal factors with 
enteric CH4 emissions. Mechanistic models are based 
on biochemical, metabolic, and physiological principles 
and attempt to simulate enteric CH4 emissions on the 
basis of a mathematical description of fermentation 
biochemistry.
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Empirical Models. Empirical models to predict 
CH4 emissions have been developed since the 1930s 
(Kriss, 1931) and there are many models in this cat-
egory found in the scientific literature. For example, 
Appuhamy et al. (2016) listed 40 such models that 
were developed in North America, Europe, Australia, 
and New Zealand. Because enteric CH4 emissions are 
strongly related to feed intake, all models include a 
measure of intake, such as DMI, gross energy (GE) in-
take (GEI), ME intake, or NDFI. However, feed intake 
of individual animals is not routinely measured under 
commercial farm operations, and thus there may be a 
need to develop equations that do not require feed in-
take measures or estimates. The advantage of empirical 
models is that they can be constructed relatively easily 
from observed data and do not require a large number 
of inputs from the user. The most commonly used in-
puts for empirical model development are summarized 
in Figure 3. However, because enteric CH4 emissions 
are affected by several factors other than feed intake, 
prediction ability may be compromised if the sample is 
not large enough and a representative population is not 
sampled. It is a challenge to represent CH4-mitigating 
additives, including nitrate (Olijhoek et al., 2016) and 
3-nitrooxypropanol (Hristov et al., 2015b) in existing 
empirical models. Empirical models are currently used 
to estimate the contribution of the livestock industry 
to GHG emissions, particularly enteric CH4 emissions 
nationally and globally. For example, several countries, 
including the United States, use the following IPCC 
Tier 2 equation to determine enteric CH4 emissions:

 CH4 = Ym × GEI, 

where CH4 is enteric CH4 emission in MJ/head per day, 
and Ym = CH4 conversion factor defined as percentage 
of GEI (MJ/head per day). This needs 2 kinds of inputs: 
feed DMI and the GE concentration of feeds. Although 
GE can be determined by bomb calorimetry, this ana-
lytical method is tedious and requires some expertise. 
Most forages and grains have a GE of approximately 
18.4 MJ/kg of DM, but protein-rich or high-fat feeds 
such as oilseeds have a much greater GE as fats contain 
approximately 37 MJ/kg of DM and protein contains 
approximately 24 MJ/kg of DM, whereas feeds rich in 
minerals (ash) have a lower GE content. However, IPCC 
(1997) guidelines estimate GEI through determination 
of net energy requirements for body functions, which are 
then connected to DMI using estimated energy digest-
ibility and digestible energy utilization efficiency. The 
steps involved in determining GEI and Ym introduce 
errors in estimating enteric CH4 emissions. The use of a 
constant value for Ym is a major concern because it can 

vary considerably with varying DMI and DM digestibil-
ity (Appuhamy et al., 2016). It can take values ranging 
from 3 to 10% (Mills et al., 2003), and the IPCC Ym 
constants do not encompass this range. Factors such 
as feed quality, production level (related to DMI), and 
diet composition affect the proportion of energy lost in 
the form of CH4 (e.g., Moraes et al., 2014; Jayasundara 
et al., 2016). Hence, assigning a constant Ym can lead 
to considerable uncertainty in the emission estimates, 
particularly in regions with diverse production systems. 
Several authors have challenged the use of constant Ym 
value of 6.5 ± 1.0% of GEI (IPCC, 2006) across differ-
ent regions of the world for dairy cattle (e.g., Kebreab 
et al., 2008). For example, the average Ym for dairy 
cattle has been reported to be 5.4 to 5.7% for North 
America (Kebreab et al., 2008; Appuhamy et al., 2016; 
Jayasundara et al., 2016; Niu et al., 2018). The uncer-
tainty around Ym is about 1 percentage point, which is 
quite large and leads to gross overestimation of enteric 
CH4 emissions for North America. In Europe, the Ym 
varies between 6.0 and 6.9% (7.1 for Switzerland; Zeitz 
et al., 2012; Niu et al., 2018), and in Australia and New 
Zealand, the value is closer to the most recent IPCC 
recommendations at 6.6% (Appuhamy et al., 2016). 
Hence, recommendations for estimating enteric CH4 
emissions from dairy cows should be made on a regional 
rather than global basis. The analysis of Appuhamy 
et al. (2016) showed that no single empirical model is 
superior to others in all regions of the world. Any par-
ticular model may have strengths in simulating some 
aspects of the CH4 emissions but not all at the same 
time. Multi-model ensemble methodology has become 
a widely accepted approach to improve prediction by 
taking advantage of complementary individual models 
and adjusting various biases, particularly in hydrology, 
climate, economy, and recently in crop growth models 
(Huang et al., 2017). If a regional or even global esti-
mate of Ym is desired, it may be possible to use the top 
5 to 10 models within a region in a multiple CH4 model 
ensemble to improve region-wide prediction.

Mechanistic Models. A limited number of mecha-
nistic models have been developed to predict nutrient 
absorption from the digestive tract, including VFA, 
and these models have been modified to predict enteric 
CH4 emissions by adding hydrogen calculations. These 
include the “Molly” model that describes nutrient 
utilization in cattle with the ability to predict enteric 
CH4 emissions through hydrogen balance in the rumen 
(Baldwin, 1995); the “Cowpoll” model, which is based 
on a series of dynamic, deterministic, and nonlinear dif-
ferential equations of nutrient utilization and includes 
CH4 production in the rumen and hindgut (Dijkstra 
et al., 1992; Mills et al., 2001; Bannink et al., 2011); 
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the Nordic cow model “Karoline,” which is a dynamic, 
mechanistic model describing digestion and metabolism 
in dairy cows (Danfær et al., 2006; Huhtanen et al., 
2015b); and the “AusBeef” model, which is a dynamic, 
mechanistic, and deterministic model of beef cattle pro-
duction that uses a detailed representation of biological 
processes to determine nutrient utilization and CH4 
emissions (based on Nagorcka et al., 2000, which is an 
adapted version of the model of Dijkstra, 1994).

In all extant mechanistic models, the underlying 
principles in predicting CH4 emissions are similar. The 
models predict nutrient digestion, absorption, microbial 
growth, and fermentation stoichiometry to determine 
type and amount of VFA production, hydrogen, and 
ultimately enteric CH4 emissions during ruminal (and 
sometimes hindgut) fermentation. The models differ 
mainly in the number of microbial groups included, 
source and particle size of feed, substrates for VFA pro-
duction, and VFA stoichiometry. Methane emissions are 
calculated in a similar way in all models, by calculating 
hydrogen balance in the rumen and assuming that any 
excess hydrogen is converted to CH4. However, hydrogen 
production by cattle can be substantial, depending on 
diet composition, and hydrogen production shows large 
diurnal variation with peaks of production shortly after 
a meal (e.g., Hristov et al., 2015b; Guyader et al., 2015; 
Olijhoek et al., 2016; van Gastelen et al., 2017). Predic-
tion accuracy of CH4 emissions in mechanistic models 
depends largely on the accuracy of the stoichiometric 
models used and their accuracy to predict VFA molar 

proportions (Bannink et al., 2011). Alemu et al. (2011) 
evaluated several stoichiometric models and reported 
that their performance varies widely ranging from 5.2 
to 43.2% RMSPE. There is a scarcity of studies that 
measured VFA production rates, because this requires 
the use of isotopes to differentiate between VFA con-
centrations (which are net production) observed in the 
rumen and production rates.

Researchers in the Netherlands apply a Tier 3 ap-
proach for national inventory of dairy cattle CH4 emis-
sions (based on country-specific experimental data and 
typically involving modeling and higher resolution land-
use and land-use change data) using a mechanistic model 
(Bannink et al., 2011). Using this approach, Bannink 
et al. (2016) were able to explain part of the observed 
variation in enteric CH4 emissions due to variation in 
grass silage quality, and DMI. Several model compari-
sons have been performed by Benchaar et al. (1998) and 
Kebreab et al. (2008), showing that the Cowpoll model 
agreed with observed data better than Molly or other 
empirical models for CH4 emission from dairy cattle. 
For feedlot cattle, the Molly model performed better 
than Cowpoll [before Ellis et al. (2014) improved the 
prediction of CH4 emissions and representation of ru-
men fermentation for finishing beef cattle]. Kass et al. 
(2017) compared the Molly model with Karoline model 
in their ability to predict CH4 emissions and concluded 
that, although both models predicted CH4 emissions 
reasonably well, the Karoline model was more accurate 
based on smaller mean and slope bias. The limitation 

Figure 3. Diet and animal factors used to estimate enteric methane production in extant empirical models. Color version available online.
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to the extensive use of mechanistic models of nutrient 
utilization is that they require inputs that may not be 
available at the production system level.

Critical Data Gaps Limiting Enteric  
CH4 Quantification

Ellis et al. (2010) evaluated the prediction ability 
of several models to estimate enteric CH4 emissions 
observed under various experimental conditions and 
concluded that, in general, predictions of these broadly 
applicable models were poor (based on RMSPE). Ac-
cording to Moraes et al. (2014), the poor predictive 
ability of current models can be due in part to the 
relatively small data sets used for model parameter-
ization and the modeling techniques. Except for those 
that were developed by Moraes et al. (2014) for cattle 
in North America, most prediction models used a few 
hundred observations to develop relationships between 
enteric CH4 emissions and dietary or animal factors. 
Normally, this number would not encompass the di-
versity of diets and animal factors in various regions 
of the world. Therefore, empirical models should ide-
ally be developed from a database containing well over 
1,000 individual observations or treatment means with 
accompanying information about dietary and animal 
factors that are known to affect enteric CH4 emissions. 
In some cases, the improvement could be limited to 
the average animal, and observed variation might not 
be explained if key parameters are not included. Such 
databases will allow the development of robust esti-
mates of average CH4 emissions that can be tailored 
to be specific to a region and allow for various types 
of models ranging from simple one-covariate models to 
much more complex models that include several dietary 
and animal variables. Most of the CH4 emission data in 
the literature originate from Europe, North America, 
Australia, and New Zealand (Appuhamy et al., 2016). 
Recently, there has been an increase in data being pub-
lished from Central and South America (e.g., Dini et al., 
2012; Muñoz et al., 2015), but there is still a dearth of 
data from Asia and Africa. Further research is required 
to produce data from indigenous and improved breeds 
of dairy cattle in Asia and Africa, and the data should 
encompass the production systems and feeds available 
in those regions. In our opinion, further development of 
enteric CH4 prediction models would need regional data 
sets with as many data points as possible that have 
reliable DMI and CH4 emission measurements. For the 
purpose of national inventories, the IPCC Tier 2 model 
with region-specific Ym factors would be most suitable.

Statistical methods that have been used in develop-
ing empirical models to date may not be appropriate 
because of the limitation of the framework used, such as 

not including random effects of animals or studies. Most 
of the current models (e.g., Ramin and Huhtanen, 2013) 
were developed with parametric inference gained from 
the likelihood function (frequentist statistical method). 
In this method, only a sequential application of simple 
significance tests can be calculated. In addition, only 
nested models can be compared, and different models 
are selected if alternative procedures or starting covari-
ates are included in the statistical procedures. On the 
other hand, Bayesian methods are subjective and use 
prior beliefs to define a prior probability distribution on 
the possible values of the unknown parameters. Some 
examples of implementation of Bayesian modeling in 
animal nutrition and CH4 emission prediction include 
those by Strathe et al. (2012) and Moraes et al. (2014). 
Even mechanistic, dynamic ruminant nutrition models 
used for enteric CH4 emissions prediction can benefit 
from Bayesian methods to capture the inherent variabil-
ity of the biological system under study and provide an 
assessment of the error associated with complex model 
results (Reed et al., 2016). Model evaluation methods 
have also advanced and it is possible to run Monte 
Carlo simulations and cross-validation techniques for 
large data sets and compare the predictive abilities 
of multiple CH4 prediction models. Models should be 
developed at different complexity levels, which require 
different levels of activity data and dietary information 
for better functionality, as users will have various levels 
of information available to them in making predictions. 
In addition, the trade-off between model complexity 
and predictive ability should be quantified so users can 
decide whether the extra resources required for better 
prediction are justified by the increase in prediction. 
The trade-off has to be determined in the context of 
the aim for which the models are going to be used, 
such as for national inventory, assessment of mitigation 
options, and others.

Therefore, it is important that future models for a 
broad application be developed from large data sets 
with collaboration of scientists worldwide, as in the 
GLOBAL NETWORK project, and using robust state-
of-the-art statistical techniques for model develop-
ment and evaluation. The data sets should encompass 
a wide range of diets and production systems within 
regions and globally. It is also possible to develop a 
multi-model ensemble to improve enteric CH4 emission 
prediction and determine uncertainty associated with 
the prediction.

CONCLUSIONS

There are large uncertainties in livestock CH4 na-
tional and global inventories; sources of uncertainties 
in enteric CH4 emission include animal inventories, 
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feed DMI, ingredient and chemical composition of the 
diet, and CH4 emission factors. There is also significant 
uncertainty associated with enteric CH4 measurements. 
Widely used measurement techniques are respiration 
chambers, the SF6 tracer technique, and the GreenFeed 
system. All 3 methods need to be correctly and ap-
propriately used to generate reliable and accurate data 
and valid tests of effects of diets and other treatments 
on enteric CH4 emission or animal variation in CH4 
emission rates; some uncertainty remains as direct 
comparisons of techniques have shown inconsistent 
results. We emphasize that each of these techniques 
can have low accuracy and precision or produce mis-
leading results if not properly implemented. Detailed 
guidelines for these techniques have been published and 
should be followed rigorously by researchers. Enteric 
CH4 prediction models are based on various animal or 
feed characteristic inputs but are dominated by DMI in 
one form or another. Therefore, accurate prediction of 
DMI is of pivotal importance for accurate prediction of 
livestock CH4 emissions. It is recommended that simpli-
fied enteric CH4 prediction models based on DMI alone 
or DMI and limited feed- or animal-related inputs be 
developed and used for inventory purposes, where suf-
ficient details or accuracy on dietary inputs are lacking. 
Broadly applicable and robust prediction models must 
be developed from large data sets generated through 
collaboration of scientists worldwide. To achieve high 
prediction accuracy, these data sets should encompass 
a wide range of diets and production systems within 
regions and globally. The uncertainty in enteric CH4 
prediction can be reduced by developing region-specific 
Ym values. Similarly, the uncertainty in DMI estimation 
can be decreased by using DMI prediction equations 
that are region-specific instead of the GEI approach of 
IPCC Tier 2.
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