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ABSTRACT
We derive the local dark matter density by applying the integrated Jeans equation method from
Silverwood et al. to SDSS-SEGUE G-dwarf data processed and presented by Büdenbender
et al. We use the MULTINEST Bayesian nested sampling software to fit a model for the baryon
distribution, dark matter, and tracer stars, including a model for the ‘tilt term’ that couples the
vertical and radial motions, to the data. The α-young population from Büdenbender et al. yields
the most reliable result of ρdm = 0.46+0.07

−0.08 GeV cm−3 = 0.012+0.002
−0.002 M� pc−3. Our analyses

yield inconsistent results for the α-young and α-old data, pointing to problems in the tilt term
and its modelling, the data itself, the assumption of a flat rotation curve, or the effects of
disequilibria.

Key words: Galaxy: disc – Galaxy: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

The local dark matter (DM) density is a crucial ingredient in the
interpretation of results from in-laboratory searches for cosmolog-
ical DM, be it Weakly Interacting Massive Particles (WIMPs) (e.g.
Baudis 2013; Marrodán Undagoitia & Rauch 2016), sterile neutri-
nos (Campos & Rodejohann 2016), or axions (e.g. Graham et al.
2015). In each of these cases, the measured signal is degenerately
dependent on the local DM density and the DM particle’s coupling
to the Standard Model. The latter is of immense interest to the study
of the beyond-the-Standard-Model theory underlying DM, and in-
correct conclusions on these models could result from systematic
uncertainties on the local DM density. The local DM density is also
of interest for measuring the local halo shape, testing galaxy forma-
tion theory, and probing alternative gravity models. For a review on
the topic of the local DM density, see Read (2014).

Here, we apply the method for determining the local DM density
presented in Silverwood et al. (2016) to G-dwarf data originat-
ing from the Sloan Digital Sky Survey (SDSS) and presented in
Büdenbender, van de Ven & Watkins, hereafter referred to as B15.
In Section 2, we give further details on this data set. In Section 3,
we present our method and the updates it has undergone since its
initial publication in Silverwood et al. (2016). The kinematics of
stars is dictated by the gravitational potential generated by the sum
of dark and baryonic matter, and so to extract the local DM density
we must have a good description of the baryonic matter distribution.

� E-mail: Sofia.Sivertsson@fysik.su.se (SS); hamish.silverwood@
gmail.com (HS)

Thus, in Section 4 we present the details of the model we use for
the baryonic mass distribution. As in previous work, we make the
approximation that the DM density is constant with height above
the midplane.1 In Section 5, we present our results, finding the most
robust measurement of the local DM density from this data set to
be ρDM = 0.46+0.07

−0.08 GeV cm−3 = 0.012+0.002
−0.002 M� pc−3.

2 DATA

The input data for this analysis are the tracer densities and velocity
dispersions for two stellar populations presented in B15, specifi-
cally those shown in figs 3 and A1 (filled squares) of B15. The raw
observations used to generate these tracer densities and velocity
dispersions come from an SDSS-Sloan Extension for Galactic Un-
derstanding and Exploration (SEGUE) G-dwarf data set originally
presented in Liu & van de Ven (2012), supplemented with proper
motions from the United States Naval Observatory B (USNO-B)
survey. From this data set, B15 extracted two populations defined by
iron and α-element abundances, i.e. [Fe/H] and [α/Fe]. These abun-
dances, especially the [α/Fe] abundance, were previously thought to
be a proxy for stellar age (Ness et al. 2016), and hence B15 referred
to these two populations as α-young and α-old, a nomenclature we
follow. The α-old population has metallicity limits of 0.3 < [α/Fe]

1Up to a height of z ∼ 3 kpc the midplane value is within 10 per cent of
the value given by a spherical Navarro-Frenk-White (NFW) halo with a
scale radius of 20 kpc. The impact of this assumption is discussed further in
Section 3.1.
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1678 S. Sivertsson et al.

and −1.2 < [Fe/H] < −0.3, while the α-young population has limits
[α/Fe] < 0.2 and −0.5 < [Fe/H], see fig. 3 in B15.

We also apply the sign correction to the vRvz velocity dispersion
data from B15 as discussed in Section 3.3 and in Silverwood et al.
(2016). B15 also makes the assumption, as we also do, that the
Milky Way is symmetric about z = 0, and so combine data from
above and below the plane. We will discuss the validity of this
assumption further in Section 6.1.3.

3 ME T H O D

The broad flow of the method remains the same as that of Silverwood
et al. (2016). We first make parametrized models of the baryon den-
sity distribution ρbaryon(z), the constant DM density ρDM(z) = ρDM,
the tracer star density ν(z), and the tilt term, which describes the
coupling of vertical and radial motions for the tracer populations
and incorporates the radial–vertical cross term of the velocity dis-
persion tensor σ Rz. Using the integrated z-direction Jeans equation
described below (equation 7), we can then derive the vertical ve-
locity dispersion σ z(z) for a given set of parameter values. Using
Bayesian nested sampling as implemented by MULTINEST (Feroz &
Hobson 2008; Feroz, Hobson & Bridges 2009; Feroz et al. 2013;
Buchner et al. 2014), we scan through the parameter space, with a
likelihood function given by

L(θ ) = exp

(
−χ2

ν + χ2
σz

+ χ2
σRz

2

)
, (1)

where

χ2
ν = ∑

j

(νdata,j −νmodel,j )2

SD2
ν,j

, (2)

χ2
σz

= ∑
j

(σz,data,j −σz,model,j )2

SD2
σz,j

, (3)

χ2
σRz

= ∑
j

(σRz,data,j −σRz,model,j )2

SD2
σRz,j

. (4)

The j variable iterates over the data points, and SD is the standard
deviation of each data point (e.g. 1σ errors). From this scan, we
derive a marginalized posterior on the local DM density ρDM.

3.1 The integrated jeans equation

The key equation of this method is derived from the Jeans Equations.
Assuming dynamical equilibrium (steady state) and axisymmetry,
the z-Jeans equation in cylindrical coordinates becomes (Binney &
Tremaine 2008; Silverwood et al. 2016)

1

ν

∂

∂z
(νσ 2

z ) + 1

Rν

∂

∂R
(RνσRz)︸ ︷︷ ︸

tilt term:T

= −∂	

∂z
, (5)

where z is the perpendicular distance to the Galactic plane, ν is
the number density of tracer stars, 	 is the gravitational potential,
and σ z is the tracer stars’ velocity dispersion in the z-direction. In
steady state, the Galactic disc cannot oscillate, implying that ν, σ z,
and 	 (and thus the underlying mass distribution also) must all be
symmetric around z = 0. Similarly, steady state implies that v̄z = 0
and hence we use σRz(z) = vzvR . The assumptions of steady state
and axisymmetry are linked; any deviation from axisymmetry, such
as spiral arms, will always imply that the system is evolving with
time.

The Poisson equation in cylindrical coordinates is

∂2	

∂z2
+ 1

R

∂

∂R

(
R
∂	

∂R

)
︸ ︷︷ ︸
rotation curve term:R

= 4πGρ, (6)

where ρ(z) is the total local mass density. As for equation (5), the
φ derivative term has been excluded as we still assume steady state
and hence axisymmetry.

Equation (6) includes the circular velocity Vc through V 2
c =

R∂	/∂R. For a flat rotation curve, the circular velocity is inde-
pendent of R and hence the rotation curve term R vanishes. If the
rotation curve is not completely flat, R will appear as a small shift
of the recovered density, see Garbari et al. (2012) and Silverwood
et al. (2016). We will for now neglect R in the analysis and return
to it in Section 5.4.

As in Silverwood et al. (2016), we then arrive at the key equation
by integrating equation 5 with respect to z:

ν(z)σ 2
z (z) = ν(z0)σ 2

z (z0) −
∫ z

z0

ν(z′)[2πG�(z′) + T (z′)]dz′. (7)

We assume the Solar neighbourhood to be symmetric above and
below the disc plane, and hence the surface density is given by
�(z) = 2

∫ z

0 ρ(z)dz, where ρ(z) is the local density.
In Silverwood et al. (2016), we used a normalization parameter

C ≡ σ 2
z (z0)ν(z0), where C was treated as a free parameter that the

code marginalized over given some prior range. This worked well
for good data which fit the model well. However, to treat C as a free
parameter also for data which have some tension in it gives artificial
freedom to find better-fitting unphysical solutions, because in reality
the C constant is not a free parameter.

As described in Silverwood et al. (2016), this method allows us to
avoid differentiating binned data in the z-direction and the increased
noise this would incur, or making assumptions on the profile of these
quantities in order to derive smooth integrals. We have to assume
models describing quantities involving radial derivatives such as the
tilt term, but we avoid model assumptions on σ 2

z (z), arguably the
most important profile for determining ρdm.

As seen in fig. 3 of B15, the tracer density data for both these
populations are well fitted by one exponential function: ν(z) ∝
exp (−z/h) each. We will hence assume exponential shapes of the
tracer densities for the different populations; note that the normal-
ization of ν(z) cancels in equation (7), and hence for each tracer
population we are only interested in the scaleheight h.

Assuming ν(z) ∝ e−z/h, one sees that ν(z0) falls quickly towards
0 for z0 → ∞, resulting in ν(z0)σ 2

z (z0) → 0 for z0 → ∞. Hence, in
the limit z0 → ∞, equation (7) becomes

σ 2
z (z) = ez/h

∫ ∞

z

e−z′/h[2πG�(z′) + T (z′)]dz′. (8)

The integrand of equation (8) falls quickly enough with z for the
integral to be finite2 even though the integration runs to infinity.

That the integral in equation (8) runs all the way to infinity implies
that σ 2

z (z) depends on the tracer and mass density distribution all the
way out to infinitely large z. However, as ν(z) ∝ e−z/h falls quickly
with z, the contribution to σ 2

z (z) from the integral in equation (8)
over large z becomes very small.3 For example, in this paper the

2This is the case as long as the tilt term is well behaved like our model and
does not increase fast enough to overwhelm the exp (−z/h) term.
3The total density decreases with z and hence the surface density cannot
increase faster than �(z) ∝ z, which would result in a primitive function
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Local DM density from SDSS-SEGUE G-dwarfs 1679

DM density is assumed to be constant for all z, rendering an infinite
DM surface density as z → ∞. To quantify the effect on σ 2

z of
this overprediction of the DM density at large z, one can compare
with the resultant σ 2

z when making the more realistic assumption
that the Galactic DM density is proportional to 1/R, where R is
the distance to the Galactic Centre. For the tracer data used in
this paper, the difference in σ 2

z between these two DM density
assumptions is maximized for the largest z data bin and the α-old
data. However, this maximal difference in the DM contribution
to σ 2

z is still only 2.4 per cent, and the relative difference is of
course reduced further when also taking into account the baryonic
contribution. The smallness of the large z contributions to σ 2

z is
further discussed in Sections 3.2 and 3.3.1.

The integral in equation (8) can be divided into one integral over
�(z) and one over T (z); we will first look at σ 2

z when neglecting
the tilt term and then add the tilt term contribution to σ 2

z .

3.2 Analysis of σ 2
z without the tilt term

When neglecting tilt, equation (8) becomes

σ 2
z (z) = ez/h2πG

∫ ∞

z

e−z′/h�(z′)dz′. (9)

�(z) is the total surface density which can further be divided into
the DM contribution �dm = 2ρdmz, and the baryonic contribution
�baryon. Given data in the range [z−, z+], with z−, z+ > 0, the
baryonic contribution can be divided into components which con-
tribute significantly to the total density above z−, labelled �b1, and
those which do not, e.g. are concentrated close to the disc plane
below z−, labelled �b0. For this latter component, above z− the
density is close enough to zero for the surface density to be con-
sidered constant. Hence, for z > z−, the total surface density is
�(z) = �b0 + �b1(z) + 2ρdmz, and equation (9) then becomes

σ 2
z (z)

2πGh
= �b0 + 2ρdm(h + z)︸ ︷︷ ︸

=�dm(z)+�dm(h)

+ ez/h

h

∫ ∞

z

�b1(z′)e−z′/hdz. (10)

Note that the baryonic density shape inside z does not enter in the
calculation of σ z(z); hence, there is no need to model the shapes of
the baryonic components inside the z region where we have tracer
data.

Also note the term 2ρdm(h + z) of equation (10) can be expressed
as �dm(z) + �dm(h). Despite having a constant DM density to an
infinite height, the contribution of this component to σ 2

z is finite.
The term �dm(h) is a manifestation of the tracer density decaying
exponentially with a scaleheight of h. Thus, the impact of the as-
sumption of constant DM density is controlled by the scaleheight
of the tracer population, with hotter populations reaching higher
above the disc being affected more.

3.3 Tilt term

At the midplane (z = 0), a potential symmetric in z is separable
up to second order (Binney & Tremaine 2008), with the radial and
vertical motions decoupling. Thus, at z = 0 the tilt term vanishes,
though it may increase rapidly as z increases.

Intuitively, the motion of the tracer stars can be viewed as a com-
bination of oscillation around the disc, and orbital motion around

F ∝
∫

e−z�(z)dz ∝ − (z + 1)e−z → 0 as z → ∞. Hence, for all realistic
surface density profiles there always exists a primitive function F(z) such
that F(z) → 0 as z → ∞.

the Galactic Centre; the tilt term can then be seen as a consequence
of this orbital motion around the Galactic Centre. A star in an el-
liptic orbit around the Galactic Centre will on the part of its orbit
where it is moving towards the Galactic Centre (i.e. has vR < 0)
typically also move towards the disc plane; hence, this star will for
z > 0 have vzvR > 0, and vzvR < 0 for z < 0. Similarly, in the part
of the orbit where the star moves away from the Galactic Centre
(i.e. has vR > 0), it will typically also move away from the disc
plane, again resulting in vzvR having the same sign as z. Hence, as
σRz = vzvR , we arrive at the result that σ Rz carries the same sign
as z. See Silverwood (2016) for further motivation on this result on
the sign of σ Rz.

The σ Rz data given in B15 has a sign error, as it is negative for
positive z, and so as done in Silverwood et al. (2016) we apply a
sign correction. We again assume symmetry above and below the
disc plane, and for z > 0 we model the vertical profile of σ Rz using
the functional form σ Rz = Azn, where A and n are fitted to the σ Rz

data. For A ≥ 0 and n > 0, this model naturally encompasses the
requirements that σ Rz ≥ 0 for z ≥ 0 and σ Rz = 0 for z = 0. The
modelling σ Rz = Azn also fits the σ Rz data well, see Fig. 8 and
Silverwood et al. (2016).

The tilt term includes a radial derivative of ν and σ Rz, and so we
must also model their radial behaviours. From Bovy et al. (2016),
we see that, at the Solar location R = R�, the tracer densities for
the different populations are well fitted by an exponential function
ν(R, z) = ν(R�, z)exp (−k0(R − R�)). We assume that also σ Rz is
separable in our local R region and locally parametrize it as σ Rz(R,
z) = σ Rz(R�, z)exp (−k1(R − R�)), which automatically fulfils the
requirement ∂σRz/∂R → 0 for z → 0.

The tilt term, evaluated at our location: R = R�, then becomes

T (R�, z) ≡ 1

Rν

∂

∂R
(RνσRz)

=
(

1

R�
− k

)
σRz(z) =

(
1

R�
− k

)
︸ ︷︷ ︸

≡K

Azn, (11)

where k ≡ k0 + k1, and R� 
 8 kpc is our distance to the Galactic
Centre.

3.3.1 Contribution of T to σ 2
z

With this we can now calculate the tilt contribution to σ 2
z , which

we will refer to as σ 2
z,T . From equation (11), we have T (R�, z) =

KAzn, and using equation (7) with z0 → 0 we get

e−z/hσ 2
z,T (z) = σ 2

z,T (0) − KA

∫ z

0
tne−t/hdt

= σ 2
z,T (0) − KAhn+1�inc

(
n + 1,

z

h

)
, (12)

where �inc is the lower incomplete gamma function.
As for equation (8), equation (12) must hold for all z; in the limit

z → ∞, we have e−z/h → 0 and �inc(n + 1, z/h) → �(n + 1).
Requiring σ 2

z,T (z) to be finite for all z then gives the relation
σ 2

z,T (0) = KAhn+1�(n + 1). Putting this back into equation (12)
yields the result

σ 2
z,T (z) = KAhn+1

(
�(n + 1) − �inc

(
n + 1,

z

h

))
ez/h. (13)

The shape of the tilt contribution to σ 2
z , based on equation (13),

is shown in Fig. 1. Note that even though T → 0 as z → 0, this is
not the case for σ 2

z,T (z); the σ Rz term at higher z affects σ 2
z also at

lower z.
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1680 S. Sivertsson et al.

Figure 1. Illustrating the shape of the tilt contribution to σ z by plotting
σz,T (z) for K = 1 kpc−1, for different values of n under the normalization
requirement σRz(z = 2 kpc) = 400 (km s−1)2, i.e. A = 400/2n. The normal-
ization of A is chosen so that the Azn model gives a reasonable fit for all
n values to the α-old population’s σRz data, see e.g. Fig. 8. For black and
white version of the image: the ordering of the lines on the right-hand side
of the plot is the same as in the legend.

The data we have on σ Rz is quite noisy, as can be seen in e.g.
Fig. 8, and hence there is some freedom in the value of n when
fitting to the σ Rz data. A change in the value of n does however have
a large impact on the value of Azn for large z, i.e. outside the region
where we have σ Rz data. In deriving equation (13), we take the limit
z → ∞ and hence one might worry that any small modification of
n will have a disproportionally large impact on σ 2

z,T (z) also in the
lower z region where we have tracer data. From Fig. 1, showing
σ 2

z,T (z) for different values on n, we however see that this is not
the case; for the z region where we have tracer data, σ 2

z,T (z) has
similar normalization for all plotted values of n. Hence, as was the
case for σ 2

z when neglecting the tilt term, the exponential fall-off
of the tracer density, see e.g. equation (7), protects σ 2

z (z) from a
disproportionally large impact at low z from contributions at high z
where we do not have tracer data.

3.3.2 Prior range on K ≡ (1/R� − k)

In equation (13), A and n are determined by the fit to the σ Rz data.
On the other hand, K, defined in equation (11), is not well measured,
and hence we will need to impose a prior on it.

In this paper, we use two stellar tracer populations from B15: the
α-young and α-old populations; the former consists of stars with
low [α/Fe] and the latter are stars with high [α/Fe]. In Bovy et al.
(2016), they find that the radial surface density profiles of all the
mono-abundance populations with high [α/Fe] are well described
as falling exponential functions with a scalelength of 2.2 ± 0.2 kpc.
Hence, for the α-old stars we use that k0 = 1/2.2 
 0.45 kpc−1.

For the low [α/Fe] populations in Bovy et al. (2016), it is more
complicated as the scalelength is also dependent on [Fe/H]. In Bovy
et al. (2016), they find that for the populations with low [α/Fe] and
[Fe/H] ≤ 0, ν(R, z) is an increasing function of R at the Solar
location R�, contrary to the case for the high [α/Fe] populations.
From B15, we see that only a very small fraction of the stars in
the α-young population have [Fe/H] > 0, and hence we infer from
Bovy et al. (2016) that essentially all subpopulations in our α-young

Figure 2. Model fits of the function Azn to the σRz to data from B15 (with
inverted sign on the data points, see discussion in Section 3.2). As seen in
the plot, the n = 1 fits (solid lines) fit the data well, while the n = 0.1 and
n = 3 fits (dot–dashed lines) are not as good fits. This can also be seen by
comparing the χ2-values for the different fits, which for the α-young data
are 16.7, 12.9 and 23.0, and for the α-old data are 13.4, 4.3, and 23.3, for
the n = 0.1, n = 1, and n = 3 fits, respectively.

population have ν(R, z) which are increasing functions of R. From
Bovy et al. (2016), this then implies that the α-young population
has −0.27 ≤ k0 ≤ 0 kpc−1.

The scalelength of σ Rz(R, z), and hence k1, are not very well
known. To be somewhat generous in our prior ranges, we, for both
populations, assume that σ Rz(R) has a scalelength of more than
1 kpc, i.e. −1 ≤ k1 ≤ 1 kpc−1. This condition on k1 simply assures
that σ Rz cannot change very quickly with R. For example, a scale-
length of σ Rz of <1 kpc (i.e. k1 > 1 kpc−1) implies that σ Rz changes
by a factor of more than 20 over 3 kpc, seemingly in tension with
a smooth behaviour of σ Rz. A further motivation on the validity of
the k1 prior range is found in Appendix A.

For k = k0 + k1, we then arrive at the prior ranges: −1.3 ≤ k ≤
1 kpc−1 for the α-young population and −0.5 ≤ k ≤ 1.5 kpc−1 for the
α-old population. Finally, for the prior range on K ≡ (1/R� − k)
we use R� = 8 kpc. Note that by marginalizing over K we also
marginalize over uncertainties in the Galactocentric distance R�.

The tilt term is expected to be more important for the α-old popu-
lation than for the α-young population; the latter is more confined to
the disc plane and hence less sensitive to the global structure of the
Galaxy. The prior ranges for the K parameter are not too different
between the populations; on the other hand σ Rz(z), and hence A, are
larger for the α-old than for the α-young population for any given
z, see e.g. Fig. 8. Furthermore, the α-old population has a larger
scaleheight, making the larger z part of σ Rz(z) more important, and
hence the tilt term larger as σ Rz(z) increases with z, see e.g. Fig. 8
and recall that σ Rz(z = 0) = 0.

3.3.3 Prior range on n and A

The A and n parameters of equation (13) are fitted to the σ Rz data
using the functional form σ Rz = Azn, as previously described in
Section 3.3.

The used prior range for n is 0.1 < n < 3. As seen in Fig. 2, the
n = 1 fits fit the data quite well, which is not true for the n = 0.1
and n = 3 fits. One exception is the n = 0.1 fit to the α-young data
which results in a χ2-value that is not all that much larger than the
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Local DM density from SDSS-SEGUE G-dwarfs 1681

χ2-value for the n = 1 fit. However, n = 0.1 seems rather unphysical
as its value is more or less constant for all z and then makes a sudden
dive to zero close to z = 0, to fulfil the requirement σ Rz = 0 for
z = 0, as seen in Fig. 2. Hence, we conclude that the used prior
range 0.1 < n < 3 is generous enough to allow sufficient freedom
in fitting the σ Rz data.

For the A prior range we use 0 ≤ A ≤ 400 km2 s−2 pc−1, where the
lower limit comes from the requirement that σ Rz ≤ 0. The largest
A value in the fits of Fig. 2 is A = 279.5 km2 s−2 pc−1, which is
for the fit to the α-old data for n = 0.1, i.e. the lower edge of
our prior range on n. As seen in Fig. 2, the σ Rz data is well fitted
by the n = 1 lines; these fits result in the A values A = 93.7 and
A = 219.8 km2 s−2 pc−1 for the α-young and α-old data, respec-
tively, i.e. again well below A = 400. Hence, we conclude that the
upper limit of A ≤ 400 km2 s−2 pc−1 is sufficiently generous. Finally,
as discussed in Section 6.1.2, the A and n prior ranges presented
here do not constrain the posterior A and n distributions.

4 MO D E L L I N G TH E BA RYO N I C SU R FAC E
DE NSITY CONTRIBU TION

A crucial part of determining the local DM density is to model
the contribution to the surface density from ordinary matter, i.e.
baryons. The motions of the tracer stars are dictated by the total
potential, and are agnostic as to whether the potential is generated
by baryons or DM. Thus, we must have a reliable baryon census to
detect the extra contribution from DM. Differences in their distribu-
tions will help us distinguish the two: baryonic mass is concentrated
close to the midplane, while DM extends high above (here we make
the simplifying assumption that it is constant in z). Bahcall (1984)
and Garbari, Read & Lake (2011) noted that one must go approxi-
mately three times the baryon disc scaleheight above the midplane
(∼600 pc) to break the DM-baryon degeneracy. Also note that the
tracer population and the baryon distribution are treated as separate
elements in our analysis, e.g. the data from B15 is not used to inform
the baryon mass distribution model.

The baryonic budget of the Milky Way can be subdivided into
gas and stars. The gas of the Milky Way is dominated by hydrogen,
and so the gas component is generally referred to as hydrogen. To
account for the presence of heavier elements such as helium 4, the
mass of the hydrogen atom is increased during the conversion from
number density to mass density. This process is known as the helium
correction. Following McKee, Parravano & Hollenbach (2015), we
assume the mass in non-hydrogen elements is 40 per cent of that in
hydrogen, thus increasing the effective hydrogen atom mass by a
factor of 1.4, i.e. mH,eff = 1.4 × mH = 2.34 × 10−27 kg. The gas
component is further divided into molecular gas H2, atomic gas H I,
and ionized gas H II.

The stellar component of the Milky Way can be divided into
visible stars and stellar remnants. The former consists of main-
sequence (MS) stars, giants, and M-dwarfs, while the latter is made
up of white dwarfs (WDs), brown dwarfs (BDs), neutron stars, and
black holes.

The vertical distribution of each of the gas and stellar compo-
nents can be described by a functional form fitted to data, with a
given number of parameters and associated uncertainties. For in-
stance, M-dwarfs can be described by the sum of a sech2 and an
exp distribution, which could be thought of as thin and thick disc
components, respectively. A recent reanalysis of observed baryon
data was presented in McKee et al. (2015), which we will follow
closely. In Figs 3 and 4, we plot respectively the densities and sur-

Figure 3. The density profiles of the different baryonic components; dashed
lines are gas and solid lines are stellar components, with the solid black line
being the total baryonic density (stars + gas). The main-sequence stars are
labelled with MS, followed by their visual magnitude range. The MS and
Dwarf lines refer only to their thin disc components, while the thick disc
components are combined into the red line labelled Thick disc. The main-
sequence stars with MV < 4 are thought to be too young to have a thick disc
component, and thus do not contribute to the Thick disc line. The dotted
vertical lines mark the borders of the region of the data we use. For this plot
parameters are mainly the same as in McKee et al. (2015), with differences
detailed in Section 4. The MS: 4 to 5 categories include giants, and Dwarfs
= M dwarfs + brown dwarfs + WD + NS + BH.

Figure 4. The surface density profiles for the baryonic density profiles
shown in Fig. 3, with the same colour coding. The solid pink line is the total
surface density for our simplified baryonic model discussed in Section 4
and the black line is the profile of the total surface density, i.e. the sum
of all the baryonic components. As seen in the figure, the pink line very
well mimics the black line within the region of interest between the dotted
horizontal lines where we have data. Additionally, there is some freedom
in the total baryonic surface density (i.e. at z → ∞) in the implementation
of our baryonic model, which allows the pink line to fit the black line even
better.

face densities of the baryonic components, with profiles derived
using data from Zheng et al. (2001), Flynn et al. (2006), and McKee
et al. (2015).

A complete model with a full functional form for each of the
components would have several tens of parameters, making it com-
putationally expensive. Fortunately for this analysis, we can use a
much simpler model due to the fact that the σ 2

z value at some height
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Table 1. Compilation of baryon surface density values and uncertainties
used in this work, and their respective sources. M15 denotes McKee et al.
(2015), while S17 refers to this work (e.g. our own derivations or rederiva-
tions). For the visible stars uncertainty, we take the 15 per cent error quoted
by McKee et al. (2015) in the text as opposed to the 10 per cent apparently
used in equation (36) of that work.

Component �∞M� pc−2 ± (per cent) ±(M� pc−2)

Visible stars 27.0 (M15) 15 per cent (M15,
text)

→ 4.05

White dwarfs 4.7 (S17) 17 per cent (M15) → 0.80
Brown dwarfs 1.2 (M15) 30 per cent (M15) → 0.36
Neutron stars 0.2 (M15) 30 per cent (M15) → 0.06
Black holes 0.1 (M15) 30 per cent (M15) → 0.03
Stellar sum 33.2 5.30
H2 0.95 (S17) 30 per cent (M15) → 0.29
HI 10.9 (M15) 20 per cent (S17) → 2.18
HII 1.8 (M15) 17 per cent (S17) → 0.31
Gas sum 13.65 2.78
Total baryon 46.85 13 per cent ← 5.98

z = zi as calculated in equation (8) only depends on the surface den-
sity �(z) profile for values at or above zi. Thus, the only components
that require a full profile are those with significant contributions to
the mass density above z−, where our data lie. The surface densities
of all other components can be modelled as a constant surface den-
sity component. This can be thought of as placing all the density of
these components at z = 0.

Our model thus consists of one variable for the total baryon sur-
face density, and then variables describing the surface density and
vertical profile of the subcomponents with significant contributions
beyond z−. The surface densities of these significant subcompo-
nents are subtracted from the total baryon surface density, and the
remainder is taken to be the constant component below z− made up
of the components with insignificant contributions above z−.

From the density profiles shown in Fig. 3, we can see which
components play a significant role above z−. These are the thin
disc dwarf component (green solid line covering M dwarfs, white
dwarfs, brown dwarfs, neutron stars, and black holes); the joint
thick disc component, consisting of the thick disc components of
MS stars with MV > 4 (including giants) and dwarfs (red solid line);
and the H II gas component (purple dashed line). MS stars with
MV < 4 are considered too young to have a thick disc component.
Thus, our baryon model is the sum of these three components, plus
a constant surface density component representing the sum of all
other components.

In Fig. 4, we plot the surface densities of many of these baryonic
components. The complete unsimplified profile is shown in black
and is a summation of all other lines, except the pink line which is
our simplified model. While diverging from the complete profile at
low z, our simplified model converges completely with it by z = z−,
illustrating the validity of our simplified model.

4.1 Surface density values

For the exact profiles of our baryon components we draw heavily
from McKee et al. (2015), but include information from several
other sources. A summary of the surface density values and uncer-
tainties we take is given in Table 1. For the total surface density we
have �∞

baryon = 46.95 M� pc−2 ± 13 per cent, compared to the value
from McKee et al. (2015) of �∞

baryon = 47.1 M� pc−2 ± 7 per cent.

The slight difference in the absolute numbers and uncertainties
results from different calculations and roundings in the gas compo-
nents and the white dwarf component, which we will discuss below.
For the total surface mass density, we take a flat prior in the range
[46.95 − 13 per cent, 46.95 + 13 per cent].

4.1.1 White dwarf surface density

The local white dwarf density has been measured as 4.9 × 10−3

WD pc−3 by Sion et al. (2009), and 6.0 × 10−3 WD pc−3 by Reid
(2005). Sion et al. (2009) also estimate the local number density of
single (i.e. not in binary systems) white dwarfs to be 3.3 × 10−3 WD
pc−3. There is however a tension between the high fraction of binary
systems among MS stars and the low number of binaries of white
dwarfs, which are the end products of most MS stars. Katz, Dong &
Kushnir (2014) point out that the number of observed bright WDs
with an MS companion is about the same as the number of bright
single WDs, while the number of faint WDs with companions is
much less than the observed faint single WDs. In Katz et al. (2014),
they estimate that about 60 per cent of the WDs are in binary system;
using the density of single WDs above from Sion et al. (2009), this
gives a WD number density of 8.25 × 10−3 WD pc−3. Using the
Holberg et al. (2008) mean value of the WD mass of 0.665 M�,
we arrive at a local WD mass density of ρWD = 0.0055 M� pc−3.
McKee et al. (2015) estimate the number density of white dwarfs by
looking at the historical star formation rate and initial mass function
(IMF), from which they arrive at a local WD number density of
about 8.45 × 10−3 WD pc−3, and thus a local mass density of
ρWD = 0.0057M� pc−3 when they take the same value for the
mean WD mass as we do. To convert to a total surface density, we
take a scaleheight of h = 430 pc, as listed in table 1 of McKee et al.
(2015), to arrive at �∞

WD = 2ρWDhWD = 4.7 M� pc−2. McKee et al.
(2015) on the other hand use hWD = 434 pc (as they list in the text
of their paper), to arrive at �∞

WD = 4.9 M� pc−2. We take the same
percentage uncertainty on our surface density value as McKee et al.
(2015).

4.1.2 Molecular gas H2 surface density

The slight difference in H2 surface density is due to a recalculation
of the McKee et al. (2015) results that have been rounded to two
decimal places rather than one.

4.1.3 Atomic gas H I surface density

For the uncertainty on H I surface density, McKee et al. (2015)
assumes 20 per cent for the Cold Neutral Medium (CNM) compo-
nent, and for the two Warm Neutral Medium (WNM) components
assume 10 per cent working from the Heiles, Stark & Kulkarni
(1981) stray radiation correction. The CNM has a surface den-
sity of 6.21 M� pc−2, while the combined WNM has a combined
surface density of 4.65 M� pc−2. The errors are assumed to be
dependent and so are added linearly, producing a combined uncer-
tainty of 15 per cent. However, McKee et al. (2015) earlier stated
that the fiducial Heiles model (Heiles et al. 1981) for optically thin
H I (which includes the WNM) is accurate to within 20 per cent.
Given this potential ambiguity, we decided to take 20 per cent as the
uncertainty for all H I components.

Marasco et al. (2017) recently presented a new determination
of the H I surface density of �∞

HI = 4.5 ± 0.7 M� pc−2, or �∞
HI =

6.3 ± 1.0 M� pc−2 when including the 1.4 helium correction factor.
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If this figure is correct, the total baryon surface density would
be lowered by ∼10 per cent. Using the two-dimensional posterior
from Fig. 9 as a guide, we estimate that this would raise the ρdm

determination by ∼17 per cent.

4.1.4 Ionized gas HII surface density

For the H II ionized gas surface density uncertainty we return to the
several of the works cited by McKee et al. (2015). The ionized gas
consists mainly of warm photoionized gas at temperature ∼104 K
and hot collisionally ionized gas at ∼105−106 K, where the latter
only gives a small contribution in our region of interest and is hence
not treated here (Gaensler et al. 2008; McKee et al. 2015). The
photoionized gas in the Solar vicinity is dominated by a diffuse
thick disc and the Gum Nebula; the latter is estimated to contribute
about 0.11 M� pc−2 (McKee et al. 2015) to the total surface density.
Here, we will treat the Gum Nebula contribution as localized to the
disc plane.

The scaleheight of the diffuse thick disc of ionized gas has in
more recent work been found to have a larger scaleheight than
previously believed, for example, in Gaensler et al. (2008) they
find a scaleheight of 1830+120

−250 pc. The recent review by Schnitzeler
(2012) finds that the best fit is achieved by an exponential thick
disc with a scaleheight of 1590 kpc and a column number density
perpendicular to the plane of 24.4 ± 4.2 cm−3 pc, which corresponds
to a surface number density of 1.5 ± 0.26 × 1020 cm−2. Hence, we
arrive at a surface density of 1.7 M� pc−2 for the H II diffuse thick
disc, and 1.8 M� pc−2 when including the Gum Nebula; the former
is used in the H II profile in Figs 3 and 4, and the latter is used for
the total baryonic surface density (at z → ∞). The surface number
density uncertainty corresponds to an error of 17 per cent, higher
than the 6 per cent quoted in table 2 of McKee et al. (2015). In the
face of this discrepancy, we err on the conservative side and take
17 per cent as our uncertainty on the H II surface density.

4.1.5 Combination of surface density uncertainties

In deriving the combined uncertainties on the baryon surface densi-
ties, we make the assumptions that the gas component uncertainties
are dependent with each other, the stellar component uncertainties
are likewise dependent on each other, but the total gas uncertainty
is independent from the total stellar uncertainty. This means that
within each category (gas and stars) the errors are added linearly,
but the addition of gas uncertainty to stellar uncertainty is done in
quadrature. We make these assumptions because it is unclear that
the gas component uncertainties are independent, and similarly the
stellar component uncertainties, thus leading to the conservative
assumption that they are indeed correlated.

4.2 Vertical profile modelling

As mentioned earlier, the H II gas modelling is complicated by the
presence of the Gum Nebula. The profile we take is an exponen-
tial with a scaleheight of 1.59 kpc, and the surface density used
to normalize this profile is �∞

HII = 1.7 M� pc−2 (e.g. without the
contribution of the Gum Nebula; see above).

The two stellar surface density profiles we model are the thin
disc component of the dwarfs, and a profile that sums the thick
disc components of the MS stars and the dwarfs. Each of these
populations will have thick and thin disc components; here, the
vertical profile of the MS thin disc component is not modelled,

and the thick disc vertical profiles of the MS stars and dwarfs are
modelled jointly. The procedure is to first construct a vertical profile
featuring a thin and thick disc, but no MS-dwarf partition. Then,
we calculate the fraction of dwarfs in the thick disc, and the same
for the MS stars. The sum of the surface densities of MS and dwarf
thick disc components is then used as the surface density for the
total thick disc vertical profile.

The total density profile for a population featuring a thick disc
can initially be described by

ρ(z) = ρ0

[
(1 − β)sech2

(
z

h1

)
+ β exp

(
− z

h2

)]
, (14)

where ρ0 is the density of stars at z = 0, h2 > h1, and the β parameter
is the proportion of ρ0 attributed to the thick disc (i.e. β ∈ [0, 1]).
Integrating equation (14) to infinity gives the surface density, i.e.

� = 2
∫ ∞

0
ρ dz = 2ρ0[(1 − β)h1 + βh2] = 2ρ0heff,tot, (15)

where

heff,tot ≡ �

2ρ0
= (1 − β)h1 + βh2, (16)

is the effective scaleheight for the total distribution.
From equation (16), one sees that for a given value of heff,tot it

is possible to either have a thick disc with a large scaleheight, h2,
and small contribution to the local density at the disc plane β; or
a thick disc with a small h2 and a large β. For M dwarfs, Zheng
et al. (2001) have quite large β and small h2, while Flynn et al.
(2006) model all thick discs with a small β and large h2. There
is no a priori reason why these thick disc components should be
modelled differently, and both models seem reasonable for all stars.
To encompass this freedom, we expand the thick disc model to a
sum of two thick discs: one with a slightly smaller scaleheight h2

and one with a larger scaleheight h3. The density profile of a stellar
component with a thick disc is hence modelled as

ρ(z) = ρ0

[
(1 − β)sech2

(
z

h1

)
+ β(1 − x) exp

(
− z

h2

)

+ βx exp

(
− z

h3

)]
, (17)

where the first term is the thin disc component, ρ0 is again the local
density at z = 0, and x is the relative contribution of the two thick
disc components to ρ0, i.e. a positive number that cannot be greater
than one. We can assign the thick disc an effective scaleheight,
heff,thick = (1 − x)h2 + xh3, so that we can still make use of relation
(16):

heff,tot = (1 − β)h1 + βheff,thick, (18)

which then gives

β = heff,tot − h1

heff,thick − h1
. (19)

For the modelling of thick disc, we require a hierarchy of scale-
heights: h1 < heff,tot < h2 < h3; from the expression for heff,thick

one then gets that h2 ≤ heff,thick ≤ h3, which in turn automatically
implies that 0 < β < 1. This model of the thick disc is much less
constrictive than that of McKee et al. (2015), and so better reflects
the uncertainty present in the literature.

0The scaleheight for the dwarf thin disc component (we
do not model the MS thin disc component) is set to
h1 = 332 pc ± 10 per cent, drawing from Zheng et al. (2001).
The parameters we set for these two thick disc components are
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h2 = 609 pc ± 20 per cent taken from Zheng et al. (2001) [assuming
the Colour–Magnitude Relation (CMR) 1 option from that paper],
h3 = 1000 pc ± 20 per cent from table 2 of Flynn et al. (2006) [com-
bining ρ(z = 0) = 0.0035M� pc−3 and � = 7.0M� pc−2 to yield
h = �/2ρ = 1000 pc], and heff,tot = 400 pc ± 5 per cent (McKee et al.
2015) (relevant for only the dwarf population). We have increased
the uncertainties on the numbers from Zheng et al. (2001) in an at-
tempt to encompass uncertainties arising from different CMRs. The
size of the uncertainties are set so they do not overlap and violate
the scaleheight hierarchy described above. The value of x is taken
from a flat prior between 0 and 1.

The total surface density of the thick disc described here is a
combination of the thick disc components of the dwarfs and MS
stars. We thus need to first calculate the partitioning of each com-
ponent into thick and thin pieces, using the β parameter. The βdwarf

parameter is calculated as per equation (19), yielding

�∞
dwarf,thick = �∞

dwarf βdwarf
heff,thick

heff,tot
. (20)

The choice of h parameters above yields 0.018 ≤ βdwarf ≤
0.64, and the total surface density of dwarfs is taken to be
�dwarf = 23.7 M� pc−2 ± 20 per cent, where 17.3 M� pc−2 comes
from M dwarfs and the rest is from the stellar remnants (McKee
et al. 2015).

The portioning of the MS star surface density uses βMS, thick taken
from a flat prior between 0 and 0.3. Thus,

�∞
MS, thick = 2 heff,tot ρ0,MS, thick, (21)

where

ρ0, MS, thick = ρ0,MS βMS. (22)

The density at z = 0 is ρ0,MS = 0.0107 M� pc−3 (MS stars with
4 < MV < 8 plus giants, McKee et al. 2015). This number is taken
without uncertainty as it is actually ρ0, MS, thick which is used for the
baryon modelling, and this has sufficient freedom coming from the
βMS parameter.

4.3 Contribution to σ 2
z by a potentially undetected baryonic

thick disc

In modelling the baryonic mass distribution, there is always a risk
that we miss some low-density baryonic component that has a very
large scaleheight and hence might still be important at high z where
we have less data. Such a baryonic thick disc component is typically
expected to have a shape of the form ρ(z) = ρ(0)e−z/� where � is
its scaleheight. As before, our tracer stars are well approximated by
ν(z) ∝ e−z/h; the contribution to the tracer velocity dispersion from
this unrecognized baryonic thick disc component then becomes

σ 2
z (z)

2πGh
= h

h + �
�(∞) + �

h + �
�(z). (23)

The density contribution outside the point of investigation looks
the same to σ 2

z as a surface density component confined to the
disc plane. The contribution from �(∞) in equation (23) is small
compared to the contribution from �(z); both because h/(h + �) �
�/(h + �) since a thick disc per definition has a large scaleheight �

� h, and because the total surface density of a neglected baryonic
component is expected to be smaller than, e.g. �b0 of equation
(10). Hence, the importance of an unrecognized baryonic thick disc
is mainly evaluated by its contribution to the total surface density at
the z region where we have stellar tracer data, which is also a region

Figure 5. The tilt-free simplified modelling of equation (24) (solid lines),
fitted to and plotted with σ 2

z data divided by 2πGh for the α-young (blue,
lower) and α-old (red, upper) populations. Here, we assume that the tracer
densities for the two populations each consist of a single exponential with
scaleheight hyoung = 253 pc and hold = 665 pc for the α-young and α-old
populations, respectively, which are the fits of B15. As seen in the plot,
the two populations do not prefer the same values on ρdm and �∞

baryon, and
neither of the solid line fits agree with the total baryonic surface density of
Section 4: �∞

baryon = 46.85 M� pc−2 ± 13 per cent. However, the approxi-
mation that all the baryonic mass is inside the innermost bin is not entirely
true, especially for the α-young data. If we take this into account and allow
the fit to overshoot the low z data points we can, for the α-young data,
instead make the blue dashed fit which has a slightly lower DM density than
the blue solid line and a baryon surface density in agreement with the result
of Section4. We cannot, however, play the same trick with the α-old data
and this gives a slight tension, further discussed in the text. Also, recall that
the α-old data is affected more by the tilt term than the α-young data.

where we expect to have the baryonic contributions decently under
control.

5 R ESULTS

5.1 Simplified analytic analysis

To gain some intuition on the analysis, we investigate the simplified
case where all baryons are inside z−, i.e. in equation (10) set �b1(z)
→ 0. As we see in Fig. 4, this approximation is not very far from
the truth. For this simplified case where we also disregard the tilt
term, we then get

σ 2
z (z)

2πGh
= �∞

baryon + 2ρdmh + 2ρdmz for z > z−, (24)

where �∞
baryon is the total baryonic surface density at infinity. In equa-

tion (24), the slope of σ 2
z (z)/(2πGh) is directly determined by ρdm.

Hence, when neglecting the tilt term, the slopes of σ 2
z (z)/(2πGh)

should be the same for the two tracer populations since they both
probe the same matter density distribution; this observation is true
independent of baryonic mass distribution. After measuring the
slope, i.e. measuring ρdm, �∞

baryon can then be determined by look-
ing at σ 2

z (z → 0)/(2πGh).
We can then fit this simplified model by eye to the α-young

and α-old σ 2
z (z) data from B15 used throughout this paper.

In Fig. 5, we plot these fits (solid blue and red for α-young
and α-old, respectively), scaling σ 2

z (z) by (2πGh)−1 to match
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with equation (24), assuming scaleheights of hyoung = 253 pc
and hold = 665 pc. These fits show that in the simplified anal-
ysis, the α-young and α-old populations prefer different val-
ues for baryonic surface density and DM density: the α-young
population prefers ρdm = 0.02 M� pc−3 = 0.76 GeV cm−3 and
�∞

baryon = 28 M� pc−2, while α-old prefers a lower DM density of
ρdm = 0.005 M� pc−3 = 0.19 GeV cm−3 and a higher baryon sur-
face density of �∞

baryon = 80 M� pc−2. The preferred baryon surface
densities of both populations, but particularly the α-old population,
are outside the range we derive from baryon census measurements
of �∞

baryon = 46.95 M� pc−2 ± 13 per cent (see Section 4).
The approximation that all baryon density is confined to the

midplane at z = 0, i.e. below the range of the data, is especially
stretched for the lower data points of the α-young population. We
can investigate the impact of this assumption by neglecting the lower
three data points from the fit. This produces the dashed blue line in
Fig. 5, and results in a preferred baryon surface density of �∞

baryon =
41 M� pc−2, in agreement with the figure we derive in Section 4,
and a DM density of ρdm = 0.0145 M� pc−3 = 0.55 GeV cm−3.
Given the higher starting point of the α-old data, confining the
baryons to the midplane is a more valid assumption, and so this
assumption is unlikely to be the cause of the discrepancy between
the α-old preferred �∞

baryon and the baryon census derived result.
The analysis presented in section 3 of B15 is similar to this

simplified analysis, but with the baryons modelled using a fixed
vertical shape and a variable midplane density, rather than the vari-
able total baryon surface density as we do. The B15 analysis reaches
qualitatively similar results as our simplified analysis, with the α-
old population preferring lower DM and higher baryon densities,
and α-young preferring higher DM and lower baryon densities.
Quantitatively, the B15 α-old result gives a baryon surface density
of �∞

baryon = 98 M� pc−2 ± 13 per cent, even further beyond the
range derived from the baryon census of section 4 than our simpli-
fied α-old analysis, while their α-young result prefers an eminently
reasonable value of �∞

baryon = 49 M� pc−2 ± 13 per cent.
We must also investigate the impact of the tilt term on this ex-

ample. The tilt term contribution is expected to be more important
for the α-old population than for the α-young population. The tilt
term is expected to be zero at z = 0, and increase in magnitude with
increasing z. This is a similar behaviour to the DM surface density
�dm = ρdmz, and so the tilt term can easily change the derived DM
density, either increasing or decreasing it depending on the radial
behaviour of the tilt term. Thus, the tilt term could, if large enough,
make the two populations in Fig. 5 agree on the DM density. How-
ever, as the tilt term is zero at z = 0 and generally smaller at small
z, it would be more difficult for it to account for the discrepancy in
preferred �∞

baryon between α-young and α-old, given that the baryons
are confined to z = 0 in our example, or at least heavily concentrated
at low-z in reality. The discrepancy between the α-young and α-old
populations is discussed further in Section 6.1.

5.2 Full MULTINEST analysis

Here, we now present the results of five different analyses using
the full MULTINEST analysis: α-young only, with and without tilt; α-
old only, with and without tilt; and a combined α-young and α-old
analysis with tilt. The results of these analyses are summarized in
Table 2, which gives the values for the median, and 95 per cent and
68 per cent credible region bounds on the marginalized posterior for
ρdm. The plots shown in Figs 6, 7, and 8 display the z-profiles of
a number of quantities. Data points and uncertainties are marked

as blue points and error bars, while the light grey bands, dark grey
bands, and red lines indicate the 95 per cent limits, 68 per cent limits,
and median values of the posterior distribution. For the baryon
distribution plots, the dotted green lines show the limits of the prior
range of the baryonic model.

When fitting only the α-young data, shown in Fig. 6, the model
manages to fit the data well despite not taking the tilt term into
account, something seen earlier in the simplified analysis of Sec-
tion 5.1. This result is as expected since the α-young data set con-
sists of a colder stellar population which is more confined to the
disc plane, where we do not expect the tilt term to have a large
impact as discussed at the end of Section 3.3.2 and e.g. B15. As
per expectation, the inclusion of the tilt term in the analysis of the
α-young data only has a minor impact on the recovered DM density:
without tilt the median ρdm = 0.013 M� pc−3 = 0.48 GeV cm−3,
while with tilt it is ρdm = 0.012 M� pc−3 = 0.46 GeV cm−3. Inclu-
sion of the tilt term mainly results in a widening of the error bands,
as can be seen by comparing the with tilt and without tilt results of
Fig. 6.

The tilt term is expected to be more important for the analysis
of the α-old data. This is an older hotter stellar population which
reaches further above the disc plane. In Fig. 7, we see that for the
analysis of the α-old data without tilt, the fit to the σ z data is not
very good: the recovered σ z model increases more quickly with
z than the data points. We also see the baryon surface density is
concentrated against the upper end of the prior imposed by baryon
observations, reflecting the preference the α-old data displayed for
high baryon surface density in our earlier simplified analysis (Sec-
tion 5.1). This tension in the data when neglecting the tilt term
results in an overly constrained recovered DM density, as seen in
Fig. 7. For this analysis, the median of the marginalized DM density
posterior is ρdm = 0.012 M� pc−3 = 0.46 GeV cm−3.

Including the tilt term in the analysis of the α-old data results in a
somewhat better fit to the σ z data; this is however accomplished by
using a high value on the tilt parameter n, giving a rather steep fit
to the σ Rz data, as seen in Fig. 7. The recovered DM density for the
analysis of the α-old data has a more reasonably sized credible re-
gion, but one that has moved significantly upwards: the median DM
density for this analysis is ρdm = 0.019 M� pc−3 = 0.73 GeV cm−3,
and the 95 per cent CRs of the with tilt and without tilt analyses do
not overlap. Furthermore, the 95 per cent CRs of the α-young and
α-old analyses with tilt do not overlap.

We can also perform a combined fit to both the α-young and α-
old populations, using common DM and baryon distributions, but
with separate tracer density and tilt profiles for each population.
This joint analysis, including the tilt term, is shown in Fig. 8. This
joint analysis results in a DM density CR which is compatible with
the α-young results (with and without tilt) at the 68 per cent level,
and compatible at the 95 per cent level with the α-old without tilt
result. The 95 per cent CRs of the joint and α-old ’with tilt’ analysis
do not overlap.

The ’with tilt’ analyses of the α-young and α-old populations
are incompatible at the 95 per cent level or above, and yet the joint
analysis, which includes tilt, favours the α-young population. The
tendency of the α-old data to favour higher baryon surface densities
persists in the joint analysis, most likely causing the reduced ρdm

result of the joint analysis compared to the α-young with tilt result.
Due to the poorness of the fit to the σ z data for the two-population

joint analysis, shown in Fig. 8, and concerns with the α-old data
which will be discussed in Section 6.1, for our final result we will
instead use the results of the α-young ’with tilt’ analysis, as shown
in Fig. 6. We emphasize that this choice does not have an outsized
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Table 2. Summary of results for the credible region (CR) of the marginalized posterior for ρdm, for separate α-young and α-old analyses (with tilt and without),
and for a combined α-young and α-old analysis. The most reliable result is from the α-young with tilt analysis, shown in bold face.

α-young α-old Combined analysis
Tilt No tilt Tilt No tilt Tilt

95 per cent CR
upper

GeV cm−3 0.59 0.57 0.85 0.51 0.48

M� pc−3 0.016 0.015 0.022 0.013 0.013
68 per cent CR
upper

GeV cm−3 0.53 0.53 0.79 0.48 0.44

M� pc−3 0.014 0.014 0.021 0.013 0.012
Median GeV cm−3 0.46 0.48 0.73 0.46 0.40

M� pc−3 0.012 0.013 0.019 0.012 0.011
68 per cent CR
lower

GeV cm−3 0.37 0.42 0.68 0.44 0.37

M� pc−3 0.0098 0.011 0.018 0.012 0.0098
95 per cent CR
lower

GeV cm−3 0.30 0.35 0.60 0.42 0.34

M� pc−3 0.0078 0.0092 0.016 0.011 0.0091

impact on the reported DM density as the ρdm CR of the joint
analysis is contained with that of the α-young ’with tilt’ analysis.

Any comparison of these results with those of B15 is complicated
by the greater sophistication of our baryon model. The analyses
of B15 had a fixed vertical profile with magnitude scaled by the
midplane density. In contrast, we have a multicomponent baryon
model with flexibility in its vertical profile. B15 uses the discrepant
ρdm values from their ’no tilt’ analyses to argue for the importance
and necessity of the tilt term. The similarity in ρdm of our ’no
tilt’ analysis results should not suggest the contrary – the heavy
concentration of the baryon density against the upper edge of the
prior and poor σ z fit in the α-old case suggests issues are still present
in our analysis and/or the data. Including the tilt somewhat lessens
this concentration and improves the σ z fit, but pulls the local DM
density up.

5.3 Degeneracy between the DM density and the baryonic
surface density

The motions of the tracer stars are dictated by the total distribution
of mass in the Galaxy, and are insensitive to the difference between
baryons and DM. Thus, there is a degeneracy between the baryons
and the DM, and when comparing the local DM density results from
different groups one should also take into account their values on
the baryonic surface density. Fig.9 shows the result of an analysis
including tilt of the α-young data, but with a prior range on the total
baryonic surface density that has been taken to be large enough
to cover all ranges of DM densities and baryonic surface densities
compatible with the α-young tracer data (i.e. allow a full error ellipse
to form as opposed to having a hard cut-off). The red posterior
ellipses of Fig. 9 clearly show the tracer data degeneracy between
baryonic surface density and DM density. Included in Fig. 9 are
also published results from other authors, clearly showing that these
results also follow a similar degeneracy between baryonic surface
density and DM density. Hence, the apparent discrepancies between
the results of different groups are not significant if this degeneracy
between baryons and DM is taken into account.

5.4 Taking into account the rotation curve term: R

So far in our analysis, we have not taken into account the rotation
curve term R from equation (6). As in Silverwood et al. (2016), the

rotation curve term from equation (6) can be written as

R = 1

R

∂V 2
c

∂R
= 2Vc

R

∂Vc

∂R
= 2(B2 − A2), (25)

where A and B are the Oorts constants (e.g. Binney & Tremaine
2008).

As in Silverwood et al. (2016), we define an effective density
ρeff(z), which incorporates the effective shift in density caused by
the rotation curve term, e.g.

∂2	

∂z2
= 4πGρeff (z), (26)

where

ρeff = ρ(z) − 1

4πGR

∂V 2
c

∂R
. (27)

From equations (25) and (27), this effective density then relates
to the true density ρ(z) via

ρ(z) = ρeff (z) + B2 − A2

2πG
. (28)

Bovy et al. (2012) present measurements of the Milky Way’s rota-
tion curve using APOGEE data, and assuming the circular velocity
to locally be a power-law function of R they find

B2 − A2

2πG
= 0.0002+0.0002

−0.0025 M� pc−3 (29)

= 0.0076+0.0076
−0.095 GeV cm−3, (30)

and thus the true density is related to the effective density by

ρ = ρeff + 0.0002+0.0002
−0.0025 M� pc−3 (31)

= ρeff + 0.0076+0.0076
−0.095 GeV cm−3. (32)

Hence, the expected contribution from the rotation curve term is
indeed quite small, an order of magnitude less than the statistical
uncertainty for, e.g. the α-young analysis.

6 D ISCUSSION

6.1 The discrepancy between α-young and α-old populations

As noted earlier in Section 5.2, the ρDM posteriors derived from the
α-old and α-young populations with tilt are discrepant to beyond
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Local DM density from SDSS-SEGUE G-dwarfs 1687

Figure 6. Results of analysing the α-young data from B15, with and without taking the tilt term into account. The blue points are the data from B15 to which
the model is fitted. Dark and light grey shaded regions show the 68 per cent and 95 per cent credible regions, respectively; the red lines show the median values.
Green dotted lines show the prior range of the baryonic model. The resulting DM density is 0.46 GeV cm−3 (68 per cent CR: [0.37, 0.53] GeV cm−3, 95 per cent
CR: [0.30, 0.59] GeV cm−3) or 0.012 M� pc−3 (68 per cent CR: [0.0098, 0.014] M� pc−3, 95 per cent CR: [0.0078, 0.016] M� pc−3) when taking the tilt
term into account, and 0.48 GeV cm−3 (68 per cent CR: [0.42, 0.53] GeV cm−3, 95 per cent CR: [0.35, 0.57] GeV cm−3) or 0.013 M� pc−3 (68 per cent CR:
[0.011, 0.014] M� pc−3, 95 per cent CR: [0.0092, 0.015] M� pc−3) when not taking tilt into account.
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1688 S. Sivertsson et al.

Figure 7. Results of the analysis of the α-old data from B15, with and without taking the tilt term into account in the analysis. The lines, points, and
shaded regions are as in Fig. 6. The resulting DM density is 0.73 GeV cm−3 (68 per cent CR: [0.68, 0.79] GeV cm−3, 95 per cent CR: [0.60, 0.85] GeV cm−3)
or 0.019 M� pc−3 (68 per cent CR: [0.018, 0.021] M� pc−3, 95 per cent CR: [0.016, 0.022] M� pc−3) when taking the tilt term into account, and 0.46
GeV cm−3 (68 per cent CR: [0.44, 0.48] GeV cm−3, 95 per cent CR: [0.42, 0.51] GeV cm−3) or 0.012 M� pc−3 (68 per cent CR: [0.012, 0.013] M� pc−3,
95 per cent CR: [0.011, 0.013] M� pc−3) when not taking tilt into account. Note how large impact the inclusion of the tilt term has on the recovered DM
density, presumably a result of the poor fit to the σ z data for the analysis neglecting tilt. Also note that the fit to the σRz data is not excellent for the analysis
including the tilt term.
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Local DM density from SDSS-SEGUE G-dwarfs 1689

Figure 8. Result of a combined analysis of data for the α-young and α-old populations from B15, tilt modelling included. The convention is the same as in
Figs 6 and 7. The resulting DM density is 0.40 GeV cm−3 (68 per cent CR: [0.37, 0.44] GeV cm−3, 95 per cent CR: [0.34, 0.48] GeV cm−3) or 0.011 M� pc−3

(68 per cent CR: [0.0098, 0.012] M� pc−3, 95 per cent CR: [0.0091, 0.013] M� pc−3). Note how much more similar the resulting DM density is to the ’with
tilt’ fit to the α-young data (Fig. 6), than to that of the α-old data (Fig. 7).

the 95 per cent CR. The 95 per cent CR of the ρDM posterior from
the combined analysis is within the 95 per cent CR of the α-young
population, but not that of the α-old population.

In discussing these discrepancies, we first look at the immediate
data as it is before us in the plots, and how it leads to the diver-
gent ρdm results. We will then discuss the root physical causes of
the discrepancies such as incomplete modelling of the tilt term,
a non-flat rotation curve term, or the presence of disequilibria in
the disc.

6.1.1 From ν, σ z , and σ Rz to discrepant ρdm

This discrepancy between the two populations was evi-
dent even in the simplified analysis presented in Sec-
tion 5.1. While the α-young population preferred ranges of
ρDM = 0.02 M� pc−3 = 0.76 GeV cm−3 and �∞

baryon = 28 M� pc−2

(or ρDM = 0.0145 M� pc−3 = 0.55 GeV cm−3 and �∞
baryon =

41 M� pc−2 when neglecting the lower three data points), the α-
old population preferred a much lower DM density and a much
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1690 S. Sivertsson et al.

Figure 9. Two-dimensional marginalized posterior for the local DM den-
sity and the baryonic surface density (red and maroon shaded regions),
illustrating the degeneracy between the two. This posterior is the product of
a MULTINESTrun with significantly expanded baryon surface density priors,
so as to better show the degeneracy and its relation with previous local DM
results, plotted as points and error bars. The normal baryon surface density
priors used for all other runs throughout this paper are shown by the ver-
tical dotted lines (cf. Section 4). The input model for the two-dimensional
marginalized posterior includes tilt, and the input data is that of the α-young
population. Shown in green are the median points and 1σ error bars for the
α-young with tilt analysis (the main result of this paper), and also the α-old
with tilt analysis for comparison. Neglecting the tilt term would result in the
red ellipses appearing with the same orientation and major axes, but with
contracted minor axes. Plotted are also recent results from other authors; for
those marked with † or ‡, the baryonic surface density refers to the bary-
onic surface density inside |z| = 1 kpc and |z| = 1.1 kpc, respectively. The
baryonic surface density outside |z| = 1.1 kpc is 3.3 M� pc−2 in McKee
et al. (2015), and 5.5 M� pc−2 at |z| > 1 kpc in Bovy & Tremaine (2012).
For our baryon model, the baryonic surface density outside |z| = 1.0 kpc is
8.2 M� pc−2, and outside |z| = 1.1 kpc is 7.3 M� pc−2. Legend from top
to bottom refers to Bienaymé et al. (2014), Zhang et al. (2013), Xia et al.
(2016), McKee et al. (2015), Garbari et al. (2012), Bovy & Tremaine (2012),
Bovy & Rix (2013), and Smith, Whiteoak & Evans (2012).

higher baryon density, ρDM = 0.005 M� pc−3 = 0.19 GeV cm−3

and �∞
baryon = 80 M� pc−2, respectively. The α-old baryon surface

density in this case is almost double the number derived in Section 4.
In this simplified case, all baryonic matter was concentrated in the

midplane, and the y-intercept of the best-fitting line was a measure
of the baryonic surface density. Thus, we can see that the source of
this tension is that the σ 2

z data for the α-old population are flatter
than expected, i.e. one would expect the velocities of the α-old
tracer stars to be more strongly dependent on z. For the α-old data,
the value of σ z rises by merely 12 per cent between the lowest and
highest z data points. For comparison, the value of σ z for the α-
young data rises with 23 per cent over a significantly shorter range
in z.

In the full MULTINEST analysis, the α-old population again prefers
higher baryon surface densities, as seen in Fig. 7, where the posterior
baryon distributions are straining against the upper edge of the
prior (dashed green line). The posterior baryon distributions of the
α-young population shown in Fig. 6 are well centred in the prior
range however, and while not as extreme as the α-old only case, the
posterior baryon surface density for the combined analysis is still

very close to the upper edge of the prior, as seen in Fig. 8. In contrast
to the simplified analysis of Section 5.1, the ρdm posterior for the
α-old is roughly consistent with the α-young data when neglecting
tilt, but is higher than the α-young result when including tilt. We
will now take a closer look at the tilt term and how it could impact
this discrepancy.

6.1.2 The role of tilt in the α-young–α-olddiscrepancy

In Silverwood et al. (2016), we illustrated the necessity of including
the tilt term in determinations of ρdm, especially for populations with
larger scaleheights. One potential addendum to that conclusion is
that while including the tilt term is necessary, we do not yet have
the necessary data to properly model and calculate it.

Here, we model the tilt term with three parameters, A, n, and k,
as introduced in Section 3.3 and specifically equation (11). When
analysing the posterior distributions of the tilt terms A and n, we find
that their distributions are nicely peaked and confined well within
their prior ranges. This is because the A and n parameters are used to
model σ Rz(z), which is fit to data from B15. Hence, these parameters
are constrained by data, and as anticipated in Section 3.3.3, their
prior ranges are generous enough to not impact our results.

In contrast, the tilt parameter k, which encodes information about
the radial variation of ν and σ Rz, is not constrained by the data as
B15 has ν and σ Rz data only at the Solar radius. Thus, we have
to enforce a prior on this parameter, as discussed in Section 3.3.2.
The k tilt parameter enters through K ≡ (1/R� − k), which in turn
is a proportionality constant in calculating σ 2

z,T (see equation 13),
making K a gauge on the size and sign of the tilt term. For the
analysis of the α-young data only, the posterior k distribution is
more or less flat within its prior ranges. On the other hand, the
α-old data have some tension in them which appears to drive the
k posterior distribution towards one of the edges of the prior. This
calls into question the reliability of the tilt model and prior for the
α-old population, and hence also the reliability of the resulting ρdm

posterior.
To adequately address this issue, we need radial information on

ν and σ Rz from the same stellar data set as used to derive the other
quantities used in the analysis. With this, we can properly model
the tilt term and fit it to real data in a consistent manner, as opposed
to imposing a prior from a potentially ill-suited external source.
The upcoming second data release of Gaia holds the promise of
providing such information.

6.1.3 The role of disequilibria

Determinations of ρdm made so far, including this analysis, have
assumed that the disc is in dynamical equilibrium, and thus all
time derivatives disappear. However, there is evidence that there
are time-dependent disequilibria which break this assumption (see
e.g. Widrow et al. 2012; Carlin et al. 2013; Gómez et al. 2013;
Williams et al. 2013; Widrow et al. 2014; Antoja et al. 2017). At
the very least, the Milky Way has spiral arms, which would break
not only dynamical equilibrium but also axisymmetry at the Solar
position. Also note that both our method and the derivation of the
input data from B15 assume symmetry about z = 0, an assumption
broken by many examples of disequilibria, adding another avenue
for disequilibria to enter and impact our analysis.

Additionally, these disequilibria could have different impacts on
different stellar populations. For instance, stars with higher scale-
heights have longer crossing times and so longer equilibration times
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(Binney & Tremaine 2008), and thus such populations could still be
exhibiting the effects of a long past perturbative event, while those
with lower scaleheights and shorter crossing/equilibration times had
returned to equilibrium.

Recently Banik, Widrow & Dodelson (2017) investigated the im-
pact of such disequilibria on determinations of the local DM density
and demonstrated that if present, neglecting them could results in a
25 per cent error on the recovered ρdm value. Interestingly, they also
concluded that a sign of such disequilibria could be different stel-
lar populations yielding divergent ρdm figures, which has occurred
with our analysis. They also note however that this effect would be
difficult to disentangle from other effects such as the tilt term.

6.1.4 The role of the rotation curve term

Finally, our analysis also assumes that the rotation curve is locally
flat, and thus the rotation curve term in equation (6) is zero. If this
assumption does not hold, then this can manifest as a systematic
shift in the local DM density. In Section 5.4, we estimate that the size
of this shift is small, using results from the APOGEE survey (Bovy
et al. 2012). However, this estimation (from which we justified
our assumption of the locally flat rotation curve) is made based on
observations from within a few hundred parsecs of the midplane.
At larger heights above the disc, the rotation curve may become
increasingly non-flat, contributing to the discrepancy between the
α-old and α-young populations. This should be investigated with
upcoming Gaia data.

6.1.5 The role of observational uncertainties

The α-old population reaches to a higher z above the disc plane (and
so further from the Sun), and thus is more susceptible to distance
errors and contamination from halo stars. While B15 took great care
to exclude interlopers, it is possible that errors in this process have
biased the high-z results and contributed to the discrepancy.

Additionally, there is the possibility of problems with the metal-
licity cuts made to extract the α-young and α-old populations. Our
results concur with Hessman (2015), who previously noted the in-
consistency of the two populations, but was unable to reconcile the
two with the inclusion of tilt. Instead, they argued that the stars in
each sample were insufficiently homogenous for a simple kinematic
analysis to be used. Populations with different velocity dispersions
could be contaminating the samples, increasing or decreasing the
slope of the σ z data points. With Gaia we will have a much larger
number of stars at our disposal, allowing for smaller metallicity
bins and a reduction of any possible cross-contaminations between
populations.

6.2 Comparison of ρdm from α-young and α-old results

From the previous section investigating the discrepancy between the
α-young and α-old results, we can see that the problems identified
weigh most heavily upon the α-old population. The tilt term has a
greater impact on the α-old population, as witnessed by the differ-
ence in ρdm results when neglecting or including tilt (see Table 2).
Thus, it also experiences a greater impact from our assumptions
and priors on the tilt term. In contrast, the α-young result changes
very little when the tilt term is included or neglected, and is less
dependent on the tilt model and its assumptions. Furthermore, while
the α-young k posterior is largely flat within its prior boundaries,

the α-old k posterior is heavily biased towards the edge of its prior,
hinting at an underlying tension in the model.

Populations with lower scaleheights have shorter equilibration
times, and so if there are disequilibria present in the disc from past
perturbative events it is likely they will have less impact on the
α-young result than the α-old result.

The assumption of a flat rotation curve has been made based on
local populations, and thus lower scaleheights. Thus, this assump-
tion is more valid for the α-young population than for the α-old
population which has a higher scaleheight.

Finally, the problems of halo contamination and distance errors
are more acute for the α-old population compared to the α-young
population.

Thus, with these points in mind we can conclude that the most
trustworthy results are those derived from the α-young popula-
tion. Given that the posteriors for the tilt terms A and n are driven
by the data, and the posterior for k is flat within its data-derived
prior, we also conclude that the best ρdm result is that derived
from the α-young with tilt, namely ρdm = 0.46+0.07

−0.08 GeV cm−3 =
0.012+0.002

−0.002 M� pc−3 (68 per cent uncertainty limits).

7 C O N C L U S I O N S

In this work, we have applied the integrated Jeans equation method
first presented in Silverwood et al. (2016) to SDSS-SEGUE G-dwarf
data from Büdenbender et al. (2015) in order to determine the local
DM density. This quantity is of vital importance to interpreting
results, be they positive or negative, from a wide range of DM
detection experiments.

The analysis featured a multicomponent baryon model, given in
Section 4, and included detailed modelling of the tilt term describing
the radial–vertical coupling of the stellar motions, discussed in Sec-
tion 3.3. From the SDSS-SEGUE data, Büdenbender et al. (2015)
extracted two populations based on metallicity, named α-young and
α-old. The former has a lower scaleheight and can be considered to
populate the canonical ‘thin disc’, while the latter has a higher scale-
height and so populates the canonical ‘thick disc’. These two pop-
ulations were analysed separately, with and without the modelling
of tilt, and also together with tilt modelling, sharing a common DM
and baryon mass models but separate tracer density, vertical velocity
dispersions, and tilt models. These analyses, summarized in Table 2,
showed a discrepancy in derived ρdm between the two populations,
the cause of which was discussed in Section 6.1. The impacts of all
the underlying causes considered fall most heavily upon the α-old
population, while the α-young results remain robust. Thus, we con-
clude from the analysis of the α-young data with tilt that the local
DM density is ρdm = 0.46+0.07

−0.08 GeV cm−3 = 0.012+0.002
−0.002 M� pc−3

(68 per cent uncertainty limits).
This result is built upon the assumption of dynamical equilibrium.

However, there is evidence of disequilibria present in the disc, as
discussed in Section 6.1.3. Theoretical estimates from Banik et al.
(2017) suggest that such disequilibria, if ignored, could bias the
local DM density estimates by 25 per cent. In future work, we will
investigate disequilibria further and incorporate them into our de-
terminations of the local DM density.

Along with the rest of the astronomical and astrometric commu-
nity, we await the new insights available now with the recent release
of Gaia Data Release 2 in April 2018. The priorities for this upcom-
ing data set in regard to the local DM density will be to derive ν, σ z,
and σ Rz data not just at the Solar radius R� but also at radii inside
and outside this radius. This will allow us to self-consistently model
and fit the tilt term to data, and also potentially to apply our method
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to other regions of the Galaxy and determine the DM density there.
A measurement of the slope of the rotation curve above and below
the disc will also be important to determine the rotation curve term
in the Poisson equation (equation6). Also, given the degeneracy
between the baryon surface density and ρdm illustrated in Fig. 9 and
discussed in Section 5.3, it will be necessary to supplement Gaia
data with further observations aimed at mapping the local baryon
distribution more accurately. We note that a great deal of the dis-
agreement between previous ρdm measurements can be attributed
to differences in their respective baryon surface densities. This is
illustrated in Fig. 9, where the many ρdm determinations lie along
the same ρdm– �baryon band defined by our posterior ellipses (red
and crimson). While Gaia data will no doubt improve the mass dis-
tribution of visible stars, a sizeable fraction of the baryon density
uncertainty arises from gas, a component beyond the reach of Gaia.
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A P P E N D I X A : PR I O R R A N G E O N T I LT
PA RAMETERS k0 A N D k1

As we do not have data on how σ Rz behaves with R for our tracer
stars, one way to see if our assumptions are reasonable is by looking
at the result from other stellar catalogues. In Binney et al. (2014),
they parametrize σ 1, σ 2, and θ as functions of R and z and then fit to
Radial Velocity Experiment (RAVE) data. Here, σ 1 and σ 2 are the
semimajor and semiminor axes, respectively, of the velocity ellipse
in the R, z-plane; θ denotes the angle between semimajor axis and
the Galactic plane. For more details, see Binney et al. (2014). From
the result of Binney et al. (2014), we can derive σ Rz through

σRz = (σ 2
1 − σ 2

3 ) sin(θ ) cos(θ ). (A1)

For the hot dwarf population of Binney et al. (2014), the resulting
σ Rz(R�, z) and −∂σRz

∂R
(R�, z) are shown in Fig. A1. From our k1

modelling in Section 3.3, we have that

k1 = −1

σRz(R�, z)

∂σRz

∂R
(R�, z). (A2)

Hence, Fig.A1 immediately shows that for this data set we have 0 ≤
k1 ≤ 1 kpc−1, i.e. within our k1 prior range as stated in Section 3.3.2:
−1 ≤ k1 ≤ 1 kpc−1.

From Fig. A1, we see that the shape of σ Rz for the hot dwarfs of
Binney et al. (2014) does not match the σ Rz shape of the tracer stars
from B15 that we use. Note however that both σ Rz functions are
well fitted by functions of the form Azn. From Fig. A1, we see that
σ Rz carries the same sign as z, as predicted in Section 3.3, and that
the shapes of the green solid and black dashed lines are very similar.
The latter observation supports the assumption in Section 3.3 that
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Figure A1. σRz (green solid line) and −∂σRz/∂R (black dashed line) as
functions of z at R = R�. For hot dwarfs from Binney et al. (2014).

k1, as given in equation (A2), is reasonably constant for all relevant
z values.4

Another source of information on the nature of the σ Rz depen-
dence on R is by looking at evolved N-body mock data. One such

mock data set is described in Garbari et al. (2011), whose evolution
takes into account the formation of a bar and spiral arms, and their
effects on the distribution functions. We have extracted σ Rz as a
function of R for different values of z and azimuthal angle φ for the
evolved mocks from Garbari et al. (2011). From the extracted σ Rz

plots (not shown), we find that σ Rz from Garbari et al. (2011) is a
much more flat function of R, i.e. corresponds to a much smaller
value on k1, than was the case for σ Rz from Binney et al. (2014).
Due to statistical noise, it is not possible to reliably extract the small
value on the σ Rz slope, and hence the value on k1, from the Garbari
et al. (2011) mock data; we however conclude that the mock data
support our notion that k1 is expected to have a sufficiently small
value, which is in agreement also with the Binney et al. (2014)
result.

4The z region of practical interest to us, i.e. the region of σRz data, is z =
515 to 1247 pc for the α-young population, and z = 634 to 2266 pc for the
α-old population. Over these regions, the value of k1 increases with z by
42 per cent for the α-young data range, and by 37 per cent for the α-old data
range.

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 478, 1677–1693 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/478/2/1677/4980949 by ETH
 Zurich user on 19 Septem

ber 2023


