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Abstract: A search for dark matter is conducted in events with large missing transverse

momentum and a hadronically decaying, Lorentz-boosted top quark. This study is per-

formed using proton-proton collisions at a center-of-mass energy of 13 TeV, in data recorded

by the CMS detector in 2016 at the LHC, corresponding to an integrated luminosity of

36 fb−1. New substructure techniques, including the novel use of energy correlation func-

tions, are utilized to identify the decay products of the top quark. With no significant

deviations observed from predictions of the standard model, limits are placed on the pro-

duction of new heavy bosons coupling to dark matter particles. For a scenario with purely

vector-like or purely axial-vector-like flavor changing neutral currents, mediator masses

between 0.20 and 1.75 TeV are excluded at 95% confidence level, given a sufficiently small

dark matter mass. Scalar resonances decaying into a top quark and a dark matter fermion

are excluded for masses below 3.4 TeV, assuming a dark matter mass of 100 GeV.
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1 Introduction

The existence of dark matter (DM) can be inferred through astrophysical observations

of its gravitational interactions [1–3]. The nature of DM has remained elusive, although

it is widely believed that it may have a particle physics origin. Multiple models of new

physics predict the existence of weakly interacting, neutral, massive particles that provide

excellent sources of DM candidates. Searches for DM are often carried out through direct

searches for interactions between cosmic DM particles and detectors (e.g., via nuclear

recoil [4]), or for particles produced in the annihilation or decay of relic DM particles [5].

The CERN LHC presents a unique opportunity to produce DM particles as well as study

them. In this paper, we describe a search for events where DM particles are produced in

association with a top quark (hereafter called “monotop”), originally proposed in ref. [6].

The associated production of a top quark and invisible particles is heavily suppressed in

the standard model (SM). Therefore, this signature can be used to probe the production of

DM particles via a flavor-violating mechanism, which most DM models do not consider [2].
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Searches for the monotop final state have been carried out by the CDF experiment [7] at

the Fermilab Tevatron, and by the CMS [8] and ATLAS [9] experiments at the CERN

LHC at
√
s = 8 TeV. The present search utilizes 13 TeV data accumulated by the CMS

experiment in 2016, corresponding to an integrated luminosity of 36 fb−1. To improve the

sensitivity of the analysis compared to previous work, we employ new techniques for the

reconstruction and identification of highly Lorentz-boosted top quarks.

In this search, we consider events with a top quark that decays to a bottom quark and

a W boson, where the W boson decays to two light quarks. The three quarks evolve into

jets of hadrons. This decay channel has the largest branching fraction (67%) and is fully

reconstructable. Jets from highly Lorentz-boosted top quarks are distinguished from other

types of hadronic signatures by means of a novel jet substructure discriminant, described

in section 3.

We interpret the results in terms of two monotop production mechanisms, example

Feynman diagrams for which are shown in figure 1. One model involves a flavor-changing

neutral current (FCNC), where a top quark is produced in association with a vector boson

that has flavor-changing couplings to quarks and can decay to a pair of DM particles. This

is referred to in this paper as the “nonresonant” mode. In a simplified model approach, the

interaction terms of the effective Lagrangian [6, 10, 11] describing nonresonant monotop

production are given by:

Lint = Vµχγ
µ(gVχ + gAχ γ5)χ+ quγ

µ(gVu + gAu γ5)quVµ + qdγ
µ(gVd + gAd γ5)qdVµ + h.c., (1.1)

where “h.c.” refers to the Hermitian conjugate of the preceding terms in the Lagrangian.

The heavy mediator is denoted V, and χ is the DM particle, assumed to be a Dirac fermion.

The couplings gVχ and gAχ are respectively the vector- and axial vector-couplings between

χ and V. In the quark-V interaction terms, it is understood that qu and qd represent

three generations of up- and down-type quarks, respectively. Correspondingly, gVu and gAu
are 3× 3 flavor matrices that determine the vector- and axial vector-couplings between V

and u, c, and top quarks. It is through the off-diagonal elements of these matrices that

monotop production becomes possible. To preserve SU(2)L symmetry, analogous down-

type couplings gVd and gAd must be introduced, and the following must be satisfied [6]:

gVu − gAu = gVd − gAd . (1.2)

By choice, we assume gVu = gVd ≡ gVq , and gAu = gAd ≡ gAq , both satisfying the above con-

straint. Moreover, to focus specifically on monotop production, the only nonzero elements

of gVq and gAq are assumed to be those between the first and third generations.

The second model contains a colored, charged scalar φ that decays to a top quark

and a DM fermion ψ [11]. In this “resonant” model the interaction terms of the effective

Lagrangian are given by:

Lint = φd
C
i [(aq)ij + (bq)ijγ5]dj + φt[aψ + bψγ

5]ψ + h.c. (1.3)

The Lagrangian includes interactions between the scalar resonance φ and down-type quarks

di, controlled by the couplings aq (scalar) and bq (pseudoscalar). Similarly, the couplings

– 2 –
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Figure 1. Example Feynman diagrams of monotop production via a flavor-changing neutral current

V (left) and a charged, heavy scalar resonance φ (right).

aψ and bψ allow for the decay of φ to a top quark and a DM fermion ψ. We assume

aq = bq = 0.1 and aψ = bψ = 0.2. A detailed motivation of these conventions is given in

ref. [11]. Signal model kinematic distributions are presented in figures 14–15 in appendix A.

2 The CMS detector, particle reconstruction, and event simulation

The CMS detector, described in detail in ref. [12], is a multipurpose apparatus designed to

study high-transverse momentum (pT) processes in proton-proton and heavy-ion collisions.

A superconducting solenoid occupies its central region, providing a magnetic field of 3.8 T

parallel to the beam direction. Charged particle trajectories are measured using silicon

pixel and strip trackers that cover a pseudorapidity region of |η| < 2.5. A lead tungstate

(PbWO4) crystal electromagnetic calorimeter (ECAL) and a brass and scintillator hadron

calorimeter (HCAL) surround the tracking volume and extend to |η| < 3. The steel and

quartz-fiber forward Cherenkov hadron calorimeter extends the coverage to |η| < 5. The

muon system consists of gas-ionization detectors embedded in the steel flux-return yoke

outside the solenoid and covers |η| < 2.4. The return yoke carries a 2 T return field from

the solenoid. The first level of the CMS trigger system is designed to select events in less

than 4µs, using information from the calorimeters and muon detectors. The high-level

trigger-processor farm reduces the event rate to several hundred Hz.

The particle-flow (PF) event algorithm [13] reconstructs and identifies each individual

particle through an optimized combination of information from the different elements of the

CMS detector. The energy of a photon is obtained directly from the ECAL measurement,

corrected for effects from neglecting signals close to the detector noise level (often termed

zero-suppression). The energy of an electron is determined from a combination of the

electron momentum at the primary interaction vertex as determined by the tracker, the

energy of the corresponding ECAL cluster, and the energy sum of all photons spatially

compatible with originating from the electron track. The energy of a muon is obtained from

the curvature of the corresponding track. The energy of a charged hadron is determined

from a combination of its momentum measured in the tracker and the matching ECAL and

HCAL energy deposits, corrected for zero-suppression effects and for the response function

of the calorimeters to hadronic showers. Finally, the energy of a neutral hadron is obtained

from the corresponding corrected ECAL and HCAL energy.

– 3 –
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The DM signal is generated by Monte Carlo (MC) simulation using MadGraph5 amc@nlo

v2.4.3 [14]. Events for the nonresonant production are calculated at next-to-leading order

(NLO) in quantum chromodynamics (QCD) perturbation theory. Masses for the mediator

V of mV > 200 GeV are considered in order to provide an SM-like top quark width, i.e., to

avoid decays of the top quark into a u quark plus an on-shell (for mV < mt) or off-shell (for

mt ≈ mV − ΓV) mediator V, where ΓV is the width of V. The resonant mode is generated

at leading order (LO) accuracy.

To model the expectations from SM backgrounds, the tt and single top quark back-

grounds are generated at NLO in QCD using powheg v2 [15–17]. Predictions for ZZ, WZ,

or WW (i.e., diboson) production are obtained at LO with pythia 8.205 [18]. Events with

multiple jets produced through the strong interaction (referred to as QCD multijet events)

are simulated at LO using MadGraph5 amc@nlo v2.3.3. Simulated samples of Z+jets,

W+jets, and γ+jets processes are generated at LO using MadGraph5 amc@nlo v2.3.3,

which matches jets from the matrix element calculations to parton shower jets using the

MLM prescription [19]. The samples are corrected by weighting the pT of the respective

boson with NLO QCD K-factors obtained from large samples of events generated with

MadGraph5 amc@nlo and the FxFx merging technique [20]. The samples are further

corrected by applying NLO electroweak K-factors obtained from calculations [21–23] that

depend on boson pT.

All samples produced using MadGraph5 amc@nlo or powheg are interfaced

with pythia 8.212 for parton showering, hadronization, and fragmentation, using the

CUETP8M1 [24, 25] underlying-event tune. The appropriate LO or NLO NNPDF3.0

sets [26] are used for the parametrization of the parton distribution functions (PDF) re-

quired in all these simulations. The propagation of all final state particles through the

CMS detector are simulated with Geant4 [27]. To model the impact of particles from

additional proton-proton interactions in an event (pileup), the number of simulated inter-

actions is adjusted to match the distribution observed in the data [28].

3 Hadronically decaying top quark identification

For top quark pT > 250 GeV, the decay products are expected to be contained within a

distance of ∆R = 1.5 relative to the top quark, where ∆R =
√

(∆η)2 + (∆φ)2, and ∆η and

∆φ are, respectively, the differences in pseudorapidities and azimuthal angles, where ∆φ

is measured in radians. The final state particles of the hadronization of a light quark or

gluon are reconstructed as a jet. A standard jet-clustering algorithm at CMS is the anti-kT
algorithm [29] with a distance parameter of 0.4 (AK4). If a hadronically decaying top quark

is highly Lorentz-boosted, reconstructing the three daughter quarks separately becomes

difficult, as the resulting jets tend to overlap in the detector. Accordingly, to identify such

signatures, we define CA15 jets as objects that are clustered from PF candidates using the

Cambridge-Aachen algorithm [30] with a distance parameter of 1.5. To reduce the impact

of particles arising from pileup, weights calculated with the pileup per particle identification

(PUPPI) algorithm [31] are applied to the PF candidates. Calibrations derived from data

are then applied to correct the absolute scale of the jet energy [32]. The CA15 jets must
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pass the selection criteria pT > 250 GeV and |η| < 2.4. To be identified as arising from top

quark decays, jets must have a mass within a specified interval containing the top quark

mass, have a high likelihood of containing a bottom quark, and exhibit certain substructure

characteristics. Such jets are referred to as “t-tagged” jets hereafter.

The “soft drop” (SD) [33] grooming method is used to remove soft and wide-angle

radiation produced within jets through initial state radiation or through the underlying

event. Removing such radiation, the SD algorithm defines a subset of the CA15 jet’s

constituents, which are further grouped into subjets of the CA15 jet. The grooming is

done using the SD parameters zcut = 0.15 and β = 1 (for their definition, see ref. [33]),

chosen to optimize the resolution in the mass of the groomed jet mSD. Hereafter, when the

SD algorithm is referred to, these parameters are used. We require t-tagged jets to satisfy

110 < mSD < 210 GeV to be compatible with the expectations of a top quark.

To identify the b quark in the CA15 jet expected from a top quark decay, we use the

combined secondary vertex (CSVv2) algorithm [34, 35]. The b tagging criterion is then

defined by requiring at least one subjet to have a CSVv2 score higher than a specified

threshold. The chosen threshold corresponds to correctly identifying a bottom jet with a

probability of 80%, and misidentifying a light-flavor jet with a probability of 10%.

3.1 Substructure

Three classes of substructure observables are employed to distinguish top quark jets from

the hadronization products of single light quarks or gluons (hereafter referred to as “q/g

jets”). These observables serve as inputs to a boosted decision tree (BDT) [36], which is

used as the final discriminator.

The N -subjettiness variable (τN ) [37] tests the compatibility of a jet with the hypoth-

esis that it is composed of N prongs. For top quark decays, a three-pronged topology

is expected, while q/g jets may have fewer prongs. This makes the ratio τ3/τ2 a robust

variable for top quark identification. In this study, the N -subjettiness is computed af-

ter jet constituents have been removed using SD grooming, which reduces the pT- and

mass-dependence of τ3/τ2.

The HEPTopTaggerV2 uses the mass drop and filtering algorithms [38] to construct

subjets within the CA15 jet. The algorithm then chooses the three subjets that are most

compatible with top quark decay kinematics. The HEPTopTaggerV2 defines a discrim-

inating variable frec, which quantifies the difference between the reconstructed W boson

and top quark masses and their expected values:

frec = min
i,j

∣∣∣∣mij/m123

mW/mt
− 1

∣∣∣∣ , (3.1)

where i, j range over the three chosen subjets, mij is the mass of subjets i and j, and m123

is the mass of all three subjets.

Finally, energy correlation functions (ECF) ae
(α)
N are considered, which are sensitive to

correlations among the constituents of the jet [39, 40]. They are N -point correlation func-

tions of the constituents’ momenta, weighted by the angular separation of the constituents

– 5 –
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in η and φ. For a jet containing Np particles, an ECF is defined as

ae
(α)
N =

∑
1≤i1<i2<···<iN≤Np

 ∏
1≤k≤N

pikT
pJT

 a∏
m=1

[
(m)

min
{

∆Rij ,ik

∣∣∣1 ≤ j < k ≤ N
}]α

, (3.2)

where i1, . . . , iN range over the jet constituents. The symbols pJT and pikT are, respectively,

the pT of the jet and the constituent ik. The notation min(m)X refers to the mth smallest

element of the set X. We denote the distance ∆R between constituents ij and ik as ∆Rij ,ik .

The parameters N and a must be positive integers, and α must be positive.

Discriminating substructure variables are constructed using ratios of these functions:

ae
(α)
N(

be
(β)
M

)x , where M ≤ N and x =
aα

bβ
. (3.3)

In eq. (3.3), the six adjustable parameters are N , a, α, M , b, and β. The value of x is

chosen to make the ratio dimensionless. As with N -subjettiness, SD grooming is applied

to the jet prior to computing the ECFs.

The following 11 ratios of ECFs are found useful for discriminating top quark jets from

q/g jets:

1e
(2)
2(

1
e
(1)
2

)2 , 1e(4)3

2e
(2)
3

,
3e

(1)
3(

1
e
(4)
3

)3/4 , 3e
(1)
3(

2
e
(2)
3

)3/4 , 3e
(2)
3(

3
e
(4)
3

)1/2 ,
1e

(4)
4(

1
e
(2)
3

)2 , 1e
(2)
4(

1
e
(1)
3

)2 , 2e
(1/2)
4(

1
e
(1/2)
3

)2 , 2e
(1)
4(

1
e
(1)
3

)2 , 2e
(1)
4(

2
e
(1/2)
3

)2 , 2e
(2)
4(

1
e
(2)
3

)2 .
(3.4)

The final tagger is constructed by training a BDT using these thirteen variables (τ3/τ2, frec,

and the ECF ratios) as inputs. Figure 2 shows the BDT response and its performance in

discriminating top quark jets from q/g jets. At 50% signal efficiency, the BDT background

acceptance is 4.7%, compared to 6.9% for groomed τ3/τ2, which is commonly used for t

tagging. The distributions in BDT output and mSD in MC and data are shown in figure 3,

using control data enriched either in genuine top quark jets from tt production or in q/g

jets. The selection of these control data is described in section 5.1. In all distributions, a

slight disagreement between data and simulation is observed. This is accounted for by the

use of data-driven estimates and scale factors, as described in section 5.

4 Event selection

4.1 Signal topology selection

To search for monotop production, events are selected with two characteristic signatures:

a large missing transverse momentum arising from DM candidates and a high-pT CA15 jet

from the decay of a top quark. Events in the signal region (SR) are selected by a logical

“or” of triggers with different minimum thresholds (90, 100, 110, or 120 GeV) for both

pmiss
T,trig and Hmiss

T,trig. In the trigger, pmiss
T,trig is defined by the magnitude of the vectorial pT

– 6 –
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Figure 2. Performance of BDT tagging of top quark and q/g jets. The left figure shows the

BDT output in both types of jets. The right figure shows the rate of misidentifying a q/g jet as a

function of the efficiency of selecting top jets. In both figures, the pT spectra of jets are weighted

to be uniform, and the mSD is required to be in the range of 110–210 GeV.

sum of all PF particles at the trigger level, and Hmiss
T,trig by the magnitude of the similar

sum of all AK4 jets with pT > 20 GeV and |η| < 5.2. Muons are not included in these

calculations. Additional requirements are imposed on the energy depositions of the jets

used to compute Hmiss
T,trig to remove events resulting from instrumental effects.

In addition to CA15 jets, this search also utilizes jets clustered using the AK4 algo-

rithm. These will hereafter be referred to as “AK4 jets” and must have pT > 30 GeV and

satisfy |η| < 4.7. The momenta of AK4 jets are corrected to account for mismeasurement

of jet energy and for discrepancies between data and simulation [32].

The main observable in this analysis is pmiss
T , defined as the magnitude of the sum ~pmiss

T

of pT vectors of all final state particles reconstructed using the PF algorithm. Corrections to

the momenta of AK4 jets reconstructed in the event are propagated to the pmiss
T calculation.

A selected event is required to have pmiss
T > 250 GeV. The contribution from events with a

large misreconstructed pmiss
T value is reduced by removing events with beam halo particles,

noise, or misreconstructed tracks. For events passing the analysis selection, the efficiency

of the triggers is found to be greater than 99%.

To search for events with one hadronically decaying top quark and large pmiss
T , we

require the presence of exactly one CA15 jet in the event. The CA15 jet must pass the

mass and b tagging requirements described in section 3. To account for discrepancies in

b tagging between data and simulation, additional corrections are applied to simulated

events. The BDT described in section 3 is used to split the SR into two categories. In the

less restricted or “loose” category, the CA15 jet is required to have a BDT score greater

than 0.1 and less than 0.45, while the “tight” category requires a minimum BDT score of

0.45. These values were chosen to optimize the sensitivity of the search.
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Figure 3. Comparison of the BDT response (upper) and mSD (lower) in data and in simulation,

in samples enriched in top-quark jets (left) and q/g jets (right). The lower panel of each plot shows

the ratio of the observed data to the SM prediction in each bin. The shaded bands represent the

statistical uncertainties in the simulation.

4.2 Background rejection

Monotop events with hadronically decaying top quarks are characterized by the signatures

described in section 4.1. Several SM processes can mimic these characteristics. Events

involving pair production of top quarks, in which one top quark decays to `νb and the

other to qq′b, can have large pmiss
T and a CA15 jet. Likewise, events with W → `ν and
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Z → νν can be characterized by large pmiss
T , and jets produced in association with the

vector bosons can pass the t tagging selection.

To suppress these and other backgrounds, events are vetoed if they contain at least

one well-identified and isolated electron, muon, tau lepton, or photon, passing the criteria

described in the following paragraphs.

An electron or muon must have pT > 10 GeV. In the case of electrons, additional

criteria are imposed on the ECAL energy deposition, based on the distribution of energy

in the shower and the presence of a nearby track [41]. To define an isolated electron, we

compute the sum of the energies of the PF particles (charged and neutral hadrons and

photons) within a cone of ∆R < 0.3 around the electron direction. If this sum is less than

17.5% (15.9%) of the electron energy for electrons with |η| < 1.479 (1.479 < |η| < 2.5), the

electron is considered isolated. In the case of muons, a track must be consistent with the

energy depositions in the muon detectors. An isolated muon is defined by setting an energy

fraction ceiling of 20% in a cone of ∆R < 0.4. The tau leptons that decay to hadrons plus

ντ are required to have pT > 18 GeV and are identified from jets that contain a subset of

particles with a mass consistent with the decay products of a hadronically decaying tau

lepton. An additional set of identification and isolation criteria is applied to tau lepton

candidates [13]. Photons must have pT > 15 GeV and satisfy criteria on the distribution of

energy depositions in the ECAL, to distinguish them from electrons or jets. Furthermore,

to avoid misidentifying an electron as a photon, the ECAL deposition of a photon candidate

must not be near a track.

We define an isolated jet to be an AK4 jet that has ∆R > 1.5 relative to the CA15

jet. Since isolated jets are only used to identify b jets, an isolated jet is further required

to satisfy |η| < 2.4 and to lie within the tracker acceptance. To reduce the tt background,

an event is rejected if there is an isolated jet that is likely to arise from the hadronization

of a bottom quark. The b jets are identified using the same CSVv2 algorithm and working

point used to identify b quarks inside a CA15 jet. As in the case of tagging CA15 jets,

simulated events are corrected for discrepancies in the modeling of isolated jet b tagging.

To reduce the background from QCD multijet events in which large pmiss
T arises from the

mismeasurement of jet momenta, the minimum azimuthal angle between the ~pmiss
T direction

and any AK4 jet has to be larger than 0.5 rad.

5 Signal estimation

A fit to the pmiss
T distribution in the SR is performed to search for the DM signal. After

applying the selection described in section 4, the dominant predicted backgrounds are tt,

Z(νν)+jets, and W(`ν)+jets. The contributions from these SM processes are estimated

using constraints from a simultaneous fit of seven control regions (CR), to be introduced

in section 5.1. The CRs are designed to target dimuon, dielectron, single-photon, single-

muon, or single-electron events, with requirements on the substructure and the mass of the

CA15 jet that are the same as in the SR.

In the CRs, the distribution of the backgrounds in pT of recoiling jets (precoilT ) is used

to model the pmiss
T distribution in the SRs. The recoil precoilT is defined by removing leptons
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or photons (depending on the CR) from the pmiss
T calculation. The primary backgrounds

in the SR are constrained by defining transfer factors from the CRs to the SR in bins of

precoilT . Additional information on the transfer factors and their theoretical and experimental

uncertainties is given in sections 5.2 and 5.3. Each CR is split into loose and tight categories,

using the same BDT criteria as the SR categories. Each loose (tight) CR is used to

constrain the target background only in the loose (tight) category of the SR. Single top

quark, diboson, and QCD multijet backgrounds are not constrained by the CR fit and are

estimated using MC simulation.

A binned likelihood fit is performed simultaneously to the precoilT distributions in all

signal and control regions. The predictions from the CRs are translated to the SR through

transfer factors that correlate corresponding bins across all regions. These transfer factors

can vary within their uncertainties, as described in section 5.3.

5.1 Control regions

To estimate the contribution from Z(νν)+jets in the SR, we use CRs enriched in dimuon,

dielectron, and photon events.

Dimuon events are selected employing the same pmiss
T,trig triggers used in the SR, since

these triggers do not include muons in the pmiss
T,trig calculation. Events are required to have

two well-identified oppositely charged muons that form an invariant mass between 60 and

120 GeV. At least one of the two muons must have pT > 20 GeV and pass tight identification

and isolation requirements. Events in the dimuon region must also pass almost all of the

other selection requirements imposed on the events in the SR, wherein precoilT is substituted

for pmiss
T . To increase the number of events in the dimuon CR, the requirement for having

a CA15 jet b tag is not imposed.

Dielectron events are selected using single-electron triggers, which have a pT threshold

of 27 GeV. Two well-identified oppositely charged electrons are required, and they must

form an invariant mass between 60 and 120 GeV. To reach plateau efficiency with respect

to the electron pT, at least one of the two electrons must have pT > 40 GeV and satisfy

tight identification and isolation requirements. All selection criteria applied in the dimuon

CR are also applied in the dielectron CR.

The γ+jets control sample is constructed using events with at least one high-pT photon.

A single-photon trigger with a pT threshold of 165 GeV is used to record these events. The

event selection requires the photon to have a pT greater than 175 GeV in order to ensure

that the trigger is fully efficient. The photon candidate is required to pass identification

and isolation criteria, and must be reconstructed in the ECAL barrel (|η| < 1.44) to obtain

a purity of 95% [42]. As in the dilepton regions, the CA15 jet b tag requirement is not

applied in the photon region.

Background events can enter the signal selection because of the loss of a single lepton,

primarily from W(`ν)+jets and lepton+jets tt events. To estimate these backgrounds,

four single lepton control samples are used, defined by selecting electrons or muons and

by requiring or vetoing b-tagged jets. The b-tagged single lepton CRs are enhanced in tt

events, while the b-vetoed single lepton CRs target W(`ν)+jets events.
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Region Primary backgrounds Ne Nµ Nγ N iso
b-tag CA15 jet b-tag

W→ {`}ν,

Signal Z→ νν, 0 0 0 0 1

tt→ {b}qq′ + b{`}ν

Targeted contributions

Single-e (b-tagged) tt→ bqq′ + beν 1 0 0 1 1

Single-µ (b-tagged) tt→ bqq′ + bµν 0 1 0 1 1

Single-e (b-vetoed) W → eν 1 0 0 0 0

Single-µ (b-vetoed) W→ µν 0 1 0 0 0

Dielectron Z→ ee 2 0 0 0 —

Dimuon Z→ µµ 0 2 0 0 —

Photon γ 0 0 1 0 —

Table 1. Summary of the selection criteria used in the SR and CRs. Symbols {b} and {`} refer

to cases where the b quark or lepton are not identified. The symbols Ne, Nµ, and Nγ refer to the

number of selected electrons, muons, and photons, respectively. The number of b-tagged isolated

jets is denoted with N iso
b-tag.

Single-muon events are selected using the pmiss
T,trig trigger. The muon candidate in

these events is required to have pT > 20 GeV, and pass tight identification and isola-

tion requirements. With the exception of b tagging, all other selection requirements

used for signal events are imposed, using precoilT instead of pmiss
T . In addition, to sup-

press QCD multijet events in which a jet passes the muon identification criteria and the

pmiss
T is mismeasured, the transverse mass (mT) is required to be less than 160 GeV, where

mT =
√

2pmiss
T p`T(1− cos ∆φ(~pmiss

T , ~p `T)). In the b-tagged single-muon CR, we require the

CA15 jet to be b-tagged as in the SR, and we further require exactly one b-tagged isolated

jet. In the b-vetoed single-muon CR, the b tagging requirements are reversed, so that the

CA15 jet is not b-tagged and there are no b-tagged isolated jets.

The single-electron CRs are defined in a fashion similar to the single-muon CRs. Events

are selected using the single-electron trigger, and the pT of the electron is required to be

greater than 40 GeV. An additional requirement of pmiss
T > 50 GeV is imposed on single-

electron events to suppress the multijet background.

A summary of the selection criteria for the SR and for all of the CRs is given in table 1.

To account for discrepancies between data and simulation in efficiencies for identifying

electrons, muons, and photons, correction factors are applied to simulated events in CRs

where they are selected.

5.2 Transfer factors

The dominant SM process in each CR is used to estimate at least one background in the SR.

Each constraint is encoded through a transfer factor T , which is the ratio of the predicted
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yield of the targeted process in the SR and its predicted yield in the CR. This factor is

defined as a function of precoilT and is estimated using simulation. If the CR X is used to

estimate the process Y in the SR, then the number of events predicted in bin i of the CR

is NX
i = µYi /T

X
i , where µYi is the free parameter of the likelihood representing the number

of events from process Y observed in bin i of the SR.

The tt and W+jets backgrounds in the SR are estimated using data in the correspond-

ing subsample of the single lepton CRs. Transfer factors (T b` and T `) are obtained from

simulations that take into account the effect of lepton acceptances and efficiencies, the b

tagging efficiency, and, for the single-electron control sample, the additional pmiss
T require-

ment. These transfer factors explicitly include hadronically decaying τ leptons that fail

the identification criteria, which account for roughly 20%–80% of the total W+jets back-

ground in the high-recoil region. Because of a large tt contamination in the tight W+jets

CR, an additional transfer factor is imposed between the tt predictions in the b-tagged

and b-vetoed single lepton CRs. This provides an estimate of the tt contribution in both

the SR and the W+jets CRs from the b-tagged CR.

The Z(νν)+jets background prediction in the SR is determined from the dimuon and

dielectron CRs through transfer factors (T ``). They are obtained from simulation and

account for the difference in the branching fractions of Z → νν and Z→ `` decays and the

impacts of lepton acceptance and selection efficiencies. As the branching fraction of the Z

boson to electrons and muons is approximately a factor of three smaller than to neutrinos,

the resulting constraint on the Z(νν)+jets background from the dilepton CRs is limited by

the statistical uncertainty in the dilepton control samples at large values of precoilT .

The γ+jets CR is also used to constrain the Z(νν)+jets background prediction via a

transfer factor T γ , which accounts for the difference in cross section and the acceptance

and efficiency of identifying photon events. This production mode is similar to that of

Z(νν)+jets, providing thereby a constraint from data on the shape of the predicted Z

pT spectrum. Since the production cross section for γ+jets events is roughly twice that

for Z(νν)+jets events, the addition of this CR to constrain the Z(νν)+jets background

prediction reduces the effect of the limited statistical power of the dilepton events. However,

additional theoretical systematic uncertainties are introduced in the extrapolation from this

CR to the SR.

A further constraint on the Z(νν)+jets background is given by W+jets events in the

single lepton b-vetoed CRs via TW/Z transfer factors. Additional theoretical uncertainties

are included for covering the extrapolation from W(`ν)+jets to Z(νν)+jets events.

5.3 Systematic uncertainties

The precoilT spectra of the processes considered are determined through a binned maximum-

likelihood fit, performed simultaneously across all fourteen CRs and two SRs. Systematic

uncertainties are treated as nuisance parameters θ that are constrained in the fit.

Uncertainties associated with the transfer factors TX as a function of precoilT are each

modeled with a Gaussian prior distribution. They include theoretical uncertainties in the

ratio of γ and Z differential cross sections and in the ratio of W and Z differential cross

sections, coming from the choice of the renormalization and factorization scales. We also
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account for variations of TX due to the PDF uncertainties, following the NNPDF3.0 pre-

scription [26]. We consider uncertainties on TX associated with the electroweak corrections

to γ, Z, and W processes, due to higher-order electroweak effects [21, 23, 43–48]. Each of

the uncertainties from renormalizaton and factorization scales, PDF, and electroweak ef-

fects is correlated among bins of pmiss
T , but is not correlated among different processes.

Finally, uncertainties in the efficiencies of b tagging AK4 jets and subjets are propagated

as uncertainties on TX .

The uncertainties detailed in the following only affect the normalizations of the respec-

tive processes and are given a log-normal prior distribution.

An uncertainty of 21% in the heavy-flavor fraction in W+jets events is computed using

CMS measurements of inclusive W+jets [49] and W+heavy-flavor [49, 50] production. This

is propagated to each of the SRs and the CRs by scaling up and down the heavy-flavor

fractions in the prediction by one standard deviation. These W+heavy-flavor uncertainties

are correlated among all regions in the fit. A similar method is used for the Z+heavy-flavor

fraction uncertainty (22%) using measurements of Z+jets production at CMS [51, 52]. This

uncertainty is also correlated among all regions, but is uncorrelated with the W+heavy-

flavor uncertainty. The magnitudes of these W/Z+heavy-flavor uncertainties are different

for each region (depending on b tagging requirements) and range from 3 to 4% of the

nominal W/Z+jets prediction.

Additional uncertainties are included to account for the differences between data and

simulation in the CA15 jet mSD and BDT distributions. To derive the uncertainty for

top quark jets, the efficiency of the mass window and BDT selection is measured in data

using the mass spectrum of CA15 jets observed in a CR that is enriched in tt events,

where one top quark decays to a muon and jets. Then, variations due to the parton

shower algorithm, higher-order corrections, and experimental effects are propagated to the

efficiency measurement. This is done for the loose and tight categories independently. The

final uncertainty for tagging CA15 jets from a top quark decay is found to be 6% in both

categories. Similarly, the uncertainty in mistagging a q/g jet is measured by computing

the efficiency in a Z(µµ)+jets selection. The mistag uncertainty is 7%. The CRs used to

compute these efficiencies and uncertainties are those shown in figure 3. The uncertainties

corresponding to the mSD and BDT distributions are only applied to the signal and minor-

background predictions. The same selection is applied in the SR and CRs for the data-

driven backgrounds (Z+jets, W+jets, tt), and so these uncertainties cancel in the transfer

factors TX .

Uncertainties in selection efficiencies amount to 1% per selected muon, electron, or

photon, and the uncertainty in the τ lepton veto is 3%. These uncertainties are correlated

across all precoilT bins. A systematic uncertainty of 20% is ascribed to the single top quark

background prediction [53], which is correlated among the SR and the leptonic CRs. An

uncertainty of 20% is assigned to the diboson production cross section [54, 55], and is

correlated across all channels.

The QCD multijet background is estimated from MC simulation in all regions except

for the γ+jets CR, where the prediction is obtained from a jet-to-photon misidentification

probability measured in an independent control sample of events in data. An uncertainty
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of 100% is used for the overall QCD multijet yield. This uncertainty is estimated using

a sample enriched in QCD multijet events, obtained by requiring the minimum azimuthal

angle between ~pmiss
T and the AK4 jet directions to be less than 0.1 rad.

For processes estimated from MC simulation, pmiss
T uncertainties are obtained directly

from simulation and propagated to precoilT following the standard CMS method [56], which

includes the application of uncertainties in jet energy corrections applied to AK4 jets and

pmiss
T [32]. The uncertainty in pmiss

T is used again as an uncertainty in the normalization in

the final fit.

A systematic uncertainty of 2.5% [28] in the integrated luminosity is included for all

processes that are estimated using MC simulation.

The impact of statistical uncertainties on the predictions for simulation-driven back-

grounds is negligible. For the transfer factors TX , which are obtained from simulation and

used to derive a data-driven estimate of the main backgrounds, we introduce additional

nuisance parameters corresponding to bin-by-bin statistical uncertainties.

We further consider uncertainties in the signal cross sections, estimated by observing

the effect of varying the renormalization and factorization scales by factors of 0.5 and

2.0, and of the PDF uncertainties. To that end, an uncertainty of 10% is assigned to the

nonresonant signal cross sections. The corresponding uncertainties in the resonant signal

cross sections vary from 10% to 32% as a function of the mass of the scalar mediator.

Unlike other uncertainties, these are not propagated as nuisance parameters, but rather

treated as uncertainties in the inclusive signal cross section.

6 Results

Figures 4–7 show the results of the simultaneous fit in all fourteen control regions and

two signal regions. The distributions observed in all CRs agree with predictions. Figure 8

shows the distribution in pmiss
T in the signal region under the background-only hypothesis.

Data are found to be in agreement with the SM prediction. The fit does not require any

nuisance parameter to vary more than 1.2 standard deviations from its initial value.

The results of the search are first interpreted in terms of the simplified model for

monotop production via an FCNC. Expected and observed limits at 95% confidence level

(CL) are set using the asymptotic approximation [57] of the CLs criterion [58, 59] with a

profile likelihood ratio as the test statistic, in which systematic uncertainties are modeled

as nuisance parameters. Figure 9 shows the exclusion as a function of the mediator mass

mV and DM particle mass mχ, assuming gVq = 0.25, gVχ = 1, and gAq = gAχ = 0. At

mχ < 100 GeV, we observe that the result is roughly independent of mχ, and the range

0.2 < mV < 1.75 TeV is excluded. This can be compared to an expected exclusion of

0.2 < mV < 1.78 TeV. At very high mχ (i.e., 2mχ � mV), the parameter space is not

excluded because the available phase space for the decay to DM decreases in this region.

Figure 10 shows an analogous result, obtained with the assumptions gAq = 0.25, gAχ = 1,

and gVq = gVχ = 0. At mχ ∼ 1 GeV, the result in the axial case is very similar to the

vector case. An exclusion of 0.2 < mV < 1.75 TeV is obtained for the FCNCs, compared
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Figure 4. Comparison between data and SM predictions in the dilepton control regions before

and after performing the simultaneous fit to the different control regions and signal region. Each

bin shows the event yields divided by the width of the bin. The upper row of figures corresponds

to the dielectron control region, and the lower row to the dimuon control region. The left (right)

column of figures corresponds to the loose (tight) category of the control regions. The blue solid line

represents the sum of the SM contributions normalized to their fitted yields. The red dashed line

represents the sum of the SM contributions normalized to the prediction. The stacked histograms

show the individual fitted SM contributions. The lower panel of each figure shows the ratio of data

to fitted prediction. The gray band on the ratio indicates the one standard deviation uncertainty

on the prediction after propagating all the systematic uncertainties and their correlations in the fit.
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Figure 5. Comparison between data and SM predictions in the photon control regions before

and after performing the simultaneous fit to the different control regions and signal region. Each

bin shows the event yields divided by the width of the bin. The left (right) figure corresponds to

the loose (tight) category of the control region. The blue solid line represents the sum of the SM

contributions normalized to their fitted yields. The red dashed line represents the sum of the SM

contributions normalized to the prediction. The stacked histograms show the individual fitted SM

contributions. The lower panel of each figure shows the ratio of data to fitted prediction. The

gray band on the ratio indicates the one standard deviation uncertainty on the prediction after

propagating all the systematic uncertainties and their correlations in the fit.

to an expected exclusion of 0.2 < mV < 1.78 TeV. However, as mχ approaches the off-shell

region, the shape of the exclusion is modified owing to the coupling structure.

In addition to considering the dependence on the DM and mediator masses, limits

are calculated as a function of the couplings between DM and the mediator, and between

quarks and the mediator. We fix mχ = 1 GeV and show the 95% CL exclusion in the planes

spanned by the couplings and mV, assuming vector- (figure 11) and axial-only couplings

(figure 12). Very little difference is observed between the two coupling schemes. At low

mediator and DM masses, coupling combinations as small as gV,Aχ = 0.05, gV,Aq = 0.25 and

gV,Aχ = 1, gV,Aq = 0.05 are excluded. Figure 20 in appendix A shows the maximum excluded

mV as a function of gVχ and gVq .

Figure 13 shows the results in the resonant model interpretation. The DM mass is fixed

at mψ = 100 GeV, and the couplings are assumed to be aq = bq = 0.1 and aψ = bψ = 0.2.

Scalars with mass 1.5 < mφ < 3.4 TeV are excluded at 95% CL.

A summary of the importance of the systematic uncertainties is presented in table 2.

To allow for reinterpretation of the data in the context of signal models not considered in

this paper, we provide the results of fitting data in the CRs and propagating the prediction

to the SRs in appendix A (figure 16–19 and tables 3–4).
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Figure 6. Comparison between data and SM predictions in the b-vetoed single lepton control

regions before and after performing the simultaneous fit to the different control regions and signal

region. Each bin shows the event yields divided by the width of the bin. The upper row of figures

corresponds to the single electron b-vetoed control region, and lower row to the single muon b-vetoed

control region. The left (right) column of figures corresponds to the loose (tight) category of the

control regions. The blue solid line represents the sum of the SM contributions normalized to their

fitted yields. The red dashed line represents the sum of the SM contributions normalized to the

prediction. The stacked histograms show the individual fitted SM contributions. The lower panel of

each figure shows the ratio of data to fitted prediction. The gray band on the ratio indicates the one

standard deviation uncertainty on the prediction after propagating all the systematic uncertainties

and their correlations in the fit.
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Figure 7. Comparison between data and SM predictions in the b-tagged single lepton control

regions before and after performing the simultaneous fit to the different control regions and signal

region. Each bin shows the event yields divided by the width of the bin. The upper row of figures

corresponds to the single electron b-tagged control region, and lower row to the single muon b-

tagged control region. The left (right) column of figures corresponds to the loose (tight) category of

the control regions. The blue solid line represents the sum of the SM contributions normalized to

their fitted yields. The red dashed line represents the sum of the SM contributions normalized to the

prediction. The stacked histograms show the individual fitted SM contributions. The lower panel of

each figure shows the ratio of data to fitted prediction. The gray band on the ratio indicates the one

standard deviation uncertainty on the prediction after propagating all the systematic uncertainties

and their correlations in the fit.
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Figure 8. Distribution of pmiss
T from SM backgrounds and data in the signal region after simulta-

neously fitting the signal region and all control regions. Each bin shows the event yields divided by

the width of the bin. The left (right) figure corresponds to the loose (tight) category of the signal

region. The stacked histograms show the individual fitted SM background contributions. The blue

solid line represents the sum of the SM background contributions normalized to their fitted yields.

The red dashed line represents the sum of the SM background contributions normalized to the pre-

diction. The lower panel of each figure shows the ratio of data to fitted prediction. The gray band

on the ratio indicates the one standard deviation uncertainty on the prediction after propagating

all the systematic uncertainties and their correlations in the fit.

7 Summary

A search is reported for dark matter events with large transverse momentum imbalance and

a hadronically decaying top quark. New t tagging techniques are presented and utilized to

identify jets from the Lorentz-boosted top quark. The data are found to be in agreement

with the standard model prediction for the expected background. Results are interpreted

in terms of limits on the production cross section of dark matter (DM) particles via a

flavor-changing neutral current interaction or via the decay of a colored scalar resonance.

Other experimental searches [60] probe the production of DM via neutral currents,

under the assumption that flavor is conserved. This analysis augments these searches by

considering DM production in scenarios that violate flavor conservation. Assuming mχ =

1 GeV, gVu = 0.25, and gVχ = 1, spin-1 mediators with masses 0.2 < mV < 1.75 TeV in the

FCNC model are excluded at the 95% confidence level. Scalar resonances decaying to DM

and a top quark are excluded in the range 1.5 < mφ < 3.4 TeV, assuming mψ = 100 GeV.

Acknowledgments

We thank Benjamin Fuks for his help in devising the signal models used in the interpreta-

tions of the results.

– 19 –



J
H
E
P
0
6
(
2
0
1
8
)
0
2
7

Figure 9. Results for the FCNC interpretation presented in the two-dimensional plane spanned by

the mediator and DM masses. The mediator is assumed to have purely vector couplings to quarks

and DM particles. The observed exclusion range (gold solid line) is shown. The gold dashed lines

show the cases in which the predicted cross section is shifted by the assigned theoretical uncertainty.

The expected exclusion range is indicated by a black solid line, demonstrating the search sensitivity

of the analysis. The experimental uncertainties are shown in black dashed lines.
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Figure 10. Results for the FCNC interpretation presented in the two-dimensional plane spanned

by the mediator and DM masses. The mediator is assumed to have purely axial couplings to quarks

and DM particles. The observed exclusion range (gold solid line) is shown. The gold dashed lines

show the cases in which the predicted cross section is shifted by the assigned theoretical uncertainty.

The expected exclusion range is indicated by a black solid line, demonstrating the search sensitivity

of the analysis. The experimental uncertainties are shown in black dashed lines.
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Figure 11. Results for the FCNC interpretation presented in the two-dimensional plane spanned

by the mediator mass and the coupling between the mediator and DM (upper) or quarks (lower).

The mediator is assumed to have purely vector couplings. The observed exclusion range (gold solid

line) is shown. The gold dashed lines show the cases in which the predicted cross section is shifted

by the assigned theoretical uncertainty. The expected exclusion range is indicated by a black solid

line, demonstrating the search sensitivity of the analysis. The experimental uncertainties are shown

in black dashed lines.
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Figure 12. Results for the FCNC interpretation presented in the two-dimensional plane spanned

by the mediator mass and the coupling between the mediator and DM (upper) or quarks (lower).

The mediator is assumed to have purely axial couplings. The observed exclusion range (gold solid

line) is shown. The gold dashed lines show the cases in which the predicted cross section is shifted

by the assigned theoretical uncertainty. The expected exclusion range is indicated by a black solid

line, demonstrating the search sensitivity of the analysis. The experimental uncertainties are shown

in black dashed lines.
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A Supplementary material

Sources of uncertainty Change in expected limit (%)

Statistical uncertainty in simulation 3.6

CA15 subjet b tagging 1.4

V+jets renorm./fact. scales and PDF 1.1

Lepton identification 0.7

V+jets electroweak corrections 0.3

V+HF fraction 0.3

AK4 b tagging < 0.1

Other sources 0.8

Table 2. Importance of groups of systematic uncertainties, as measured by the sensitivity of this

search to a benchmark FCNC model (mV = 2.25 TeV,mχ = 1 GeV). The importance is assessed

by evaluating the relative change of the expected 95% CL limit after removing each group of

uncertainties. “Other sources” includes all uncertainties not considered elsewhere in the table.
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FCNC monotop production mechanism, both at leading-order (LO) and next-to-leading order

(NLO) accuracy in QCD, assuming couplings of gVq = 0.25 and gVχ = 1 and masses of 1.75 TeV

and 1 GeV for V and the fermionic DM particle χ, respectively. Shaded bands around the central

predictions correspond to independent variations of the nominal factorization and renormalization

scale HT/2 by factors of 2 and 1/2. While the NLO case exhibits a softer spectrum for pVT than the

LO computation, which should result in a relatively softer pmiss
T , the inclusive cross section increases

by about 25% (from 24.8 fb at LO to 31.4 fb at NLO).
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Figure 16. Distribution of pmiss
T from SM backgrounds and data in the loose category of the signal

region after fitting the control regions only. Each bin shows the event yields divided by the width

of the bin. The stacked histograms show the individual SM background distributions after the fit is

performed. The lower panel of the figure shows the ratio of data to fitted prediction. The gray band

on the ratio indicates the one standard deviation uncertainty on the prediction after propagating

all the systematic uncertainties and their correlations in the fit.
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Figure 17. Distribution of pmiss
T from SM backgrounds and data in the tight category of the signal

region after fitting the control regions only. Each bin shows the event yields divided by the width

of the bin. The stacked histograms show the individual SM background distributions after the fit is

performed. The lower panel of the figure shows the ratio of data to fitted prediction. The gray band

on the ratio indicates the one standard deviation uncertainty on the prediction after propagating

all the systematic uncertainties and their correlations in the fit.
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Figure 18. Correlations between background predictions in each of the bins of the loose signal

region, after performing the fit in only the control regions.

pmiss
T [GeV] Z+jets tt W+jets Minor backgrounds Observed Total backgrounds

250–280 269.8± 5.6± 18.0 148.8± 7.1± 7.9 170.3± 3.6± 17.6 21.0± 0.3± 4.1 673 609.9± 9.8± 26.7

280–310 226.1± 5.3± 15.0 98.5± 5.3± 7.3 127.2± 3.0± 12.9 20.2± 0.3± 3.9 482 471.9± 8.1± 21.5

310–350 178.4± 4.5± 12.9 69.1± 4.5± 5.3 88.2± 2.2± 8.9 14.5± 0.2± 2.8 358 350.2± 6.8± 16.8

350–400 111.9± 3.3± 8.3 32.4± 3.2± 3.0 47.1± 1.4± 5.8 7.9± 0.1± 1.5 225 199.3± 4.8± 10.7

400–450 55.3± 2.3± 4.4 13.8± 1.7± 2.1 17.6± 0.7± 2.3 2.6± 0.0± 0.5 107 89.4± 2.9± 5.4

450–600 57.9± 2.6± 4.2 7.6± 1.3± 1.5 18.1± 0.8± 2.0 3.5± 0.1± 0.7 100 87.2± 3.0± 4.9

600–1000 12.0± 1.0± 1.2 2.2± 0.9± 0.8 2.6± 0.2± 0.4 1.4± 0.0± 0.3 19 18.3± 1.4± 1.5

Table 3. Predicted SM backgrounds and yields in data in each bin of the loose signal region, after

performing the fit in the control regions only. “Minor backgrounds” refers to the diboson, single t,

and QCD multijet backgrounds. The uncertainties are reported as statistical (driven by the data

in the CRs), followed by systematic.

pmiss
T [GeV] Z+jets tt W+jets Minor backgrounds Observed Total backgrounds

250–280 224.4± 5.7± 16.9 435.9± 10.5± 18.8 130.4± 3.3± 15.1 42.9± 0.8± 9.1 972 833.6± 12.4± 30.9

280–310 193.4± 5.8± 16.0 293.5± 8.6± 13.7 94.2± 2.8± 11.5 37.6± 0.6± 7.2 671 618.6± 10.8± 25.0

310–350 149.2± 4.0± 11.0 199.1± 6.8± 9.7 60.6± 1.6± 7.2 31.7± 0.5± 6.4 480 440.6± 8.1± 17.6

350–400 106.1± 4.0± 8.1 104.1± 4.6± 5.3 48.2± 1.8± 5.7 19.9± 0.3± 3.8 286 278.2± 6.3± 11.9

400–450 50.2± 2.5± 4.8 38.6± 2.6± 3.5 18.9± 0.9± 2.7 7.5± 0.1± 1.4 121 115.2± 3.7± 6.7

450–600 49.5± 2.4± 4.8 27.5± 2.1± 2.8 12.6± 0.6± 1.9 8.8± 0.1± 1.7 108 98.5± 3.3± 6.1

600–1000 13.0± 1.3± 1.1 2.4± 0.5± 0.7 2.5± 0.2± 0.3 1.2± 0.0± 0.3 20 19.2± 1.4± 1.4

Table 4. Predicted SM backgrounds and yields in data in each bin of the tight signal region, after

performing the fit in the control regions only. “Minor backgrounds” refers to the diboson, single t,

and QCD multijet backgrounds. The uncertainties are reported as statistical (driven by the data

in the CRs), followed by systematic.
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Figure 19. Correlations between background predictions in each of the bins of the tight signal

region, after performing the fit in only the control regions.
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[18] T. Sjöstrand et al., An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015)

159 [arXiv:1410.3012] [INSPIRE].

[19] J. Alwall et al., Comparative study of various algorithms for the merging of parton showers

and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473

[arXiv:0706.2569] [INSPIRE].

[20] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061

[arXiv:1209.6215] [INSPIRE].

[21] J.H. Kuhn, A. Kulesza, S. Pozzorini and M. Schulze, Electroweak corrections to hadronic

photon production at large transverse momenta, JHEP 03 (2006) 059 [hep-ph/0508253]

[INSPIRE].

[22] S. Kallweit, J.M. Lindert, S. Pozzorini, M. Schönherr and P. Maierhöfer, NLO QCD + EW
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IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour,

S. Ghosh, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, I. Kucher, C. Leloup,

E. Locci, M. Machet, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov
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Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut
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Italy

A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,14, M.E. Dinardoa,b,

S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b, S. Malvezzia,

R.A. Manzonia,b, D. Menascea, L. Moronia, M. Paganonia,b, K. Pauwelsa,b, D. Pedrinia,

S. Pigazzinia,b,29, S. Ragazzia,b, T. Tabarelli de Fatisa,b
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Trento c, Trento, Italy

P. Azzia, N. Bacchettaa, L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, A. Car-

valho Antunes De Oliveiraa,b, P. Checchiaa, M. Dall’Ossoa,b, P. De Castro Manzanoa,

T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa,

P. Lujan, M. Margonia,b, A.T. Meneguzzoa,b, N. Pozzobona,b, P. Ronchesea,b, R. Rossina,b,

F. Simonettoa,b, E. Torassaa, M. Zanettia,b, P. Zottoa,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
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L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia, C. Cecchia,b, D. Ciangottinia,b, L. Fanòa,b,
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A. Morelos Pineda

University of Auckland, Auckland, New Zealand

D. Krofcheck

University of Canterbury, Christchurch, New Zealand

P.H. Butler

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib,

M. Waqas

National Centre for Nuclear Research, Swierk, Poland

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki,
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3: Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

4: Also at Universidade Estadual de Campinas, Campinas, Brazil

5: Also at Universidade Federal de Pelotas, Pelotas, Brazil
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28: Also at Università degli Studi di Siena, Siena, Italy

29: Also at INFN Sezione di Milano-Bicocca; Università di Milano-Bicocca, Milano, Italy
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