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Abstract: A search is presented for single production of heavy vector-like quarks (B) that

decay to a Higgs boson and a b quark, with the Higgs boson decaying to a highly boosted

bb̄ pair reconstructed as a single collimated jet. The analysis is based on data collected

by the CMS experiment in proton-proton collisions at
√
s = 13 TeV, corresponding to an

integrated luminosity of 35.9 fb−1. The data are consistent with background expectations,

and upper limits at 95% confidence level on the product of the B quark cross section and

the branching fraction are obtained in the range 1.28–0.07 pb, for a narrow B quark with

a mass between 700 and 1800 GeV. The production of B quarks with widths of 10, 20 and

30% of the resonance mass is also considered, and the sensitivities obtained are similar to

those achieved in the narrow width case. This is the first search at the CERN LHC for

the single production of a B quark through its fully hadronic decay channel, and the first

study considering finite resonance widths of the B quark.
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1 Introduction

With the discovery of the Higgs boson (H) by the ATLAS [1] and CMS [2, 3] experiments

at the CERN LHC, the standard model (SM) of particle physics has now been completely

confirmed. However, the SM does not address, for example, problems related to the nature

of the electroweak symmetry breaking and the hierarchy between the electroweak and the

Planck mass scales. Several extensions of the SM address such issues through the intro-

duction of new particles that allow the cancellation of loop corrections to the mass of the

Higgs boson [4]. Supersymmetric theories propose bosonic partners of the top quark to

address the hierarchy problem; other models such as Little Higgs or Composite Higgs boson

models [5–8] overcome the hierarchy problem by introducing heavy fermionic resonances

called vector-like quarks (VLQs) [4, 9–11]. The vector-like nature of these quarks does

not exclude their having a fundamental mass, in contrast to chiral fermions, which acquire

mass via electroweak symmetry breaking in the SM. The VLQs are therefore not excluded

by present searches, unlike a fourth generation of SM quarks that is ruled out by elec-

troweak precision measurements [12, 13], and by the measured properties of the SM Higgs

boson [14–16]. Previous searches for VLQs have been performed by the ATLAS [17–22] and

CMS [23–29] experiments in proton-proton collisions recorded at centre-of-mass energies

of 7, 8, and 13 TeV.

We present a search for electroweak production of single vector-like B quarks with

electrical charge −1/3 e, with e the proton charge, that decay to a bottom (b) quark

and a Higgs boson. The search uses pp events collected by the CMS experiment at a

centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb−1.
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We study the fully hadronic final state with the Higgs boson decaying to a pair of b quarks.

Figure 1 illustrates the electroweak production of a B quark in association with a b and a

light-flavour quark, typically emitted into the forward region of the detector.

The B decay channel considered in this analysis is B→ Hb. However, the B quark can

also decay into Zb, Wt, and possibly into lighter states predicted in models beyond the SM

that have model-dependent branching fractions. Our results are interpreted assuming that

the B quark belongs to a singlet or doublet representation and that it decays exclusively

to SM particles. The singlet branching fractions of the B quark into Hb, Zb, and Wt are

B ≈ 25, 25, and 50%, and the doublet branching fractions are 50, 50, and 0%, and all

depend on the vector-like quark mass mB.

Previous CMS searches for vector-like B quarks relied on the assumption of a decay

width that is narrow compared to the experimental resolution. The present analysis, in

addition to searching for B quarks with narrow decay widths, also explores the possibility

that B quarks have a non-negligible width, with values up to 30% of the resonance mass. In

comparison, the experimental resolution in the reconstructed B mass, defined as the ratio

between the root-mean-square width of the peak and its mean position, ranges between 8

and 15%, depending on the mass hypothesis. In addition to broadening the width of the

observed signal, the intrinsic width of the resonance would modify the kinematic distribu-

tions of the final state, thus changing the selection efficiency. These effects are taken into

account in this analysis.

The cross section for single production of a B quark depends on mB and its electroweak

couplings to SM particles. The kinematic distributions depend only on the total width of

the B quark. The benchmark model in this analysis assumes a weak coupling of the B quark

to the Z boson and b quark. Because of the mixing between B and the SM bottom quark

in models where B is a singlet or part of a doublet, the BbZ electroweak coupling has

a predominant chirality, respectively, right- or left-handed. The coupling chirality can

potentially affect the kinematic distributions. We explicitly checked and found that these

effects are negligible for the channel discussed in this work, and our results can therefore

be interpreted in both singlet and doublet models.

2 The CMS detector and particle reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing a magnetic field of 3.8 T. A silicon pixel and strip tracker, a lead

tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron

calorimeter (HCAL), each composed of a barrel and two end sections, reside within the

solenoid. Forward calorimeters extend the pseudorapidity (η) coverage provided by the

barrel and end detectors. Muons are measured in gas-ionization detectors embedded in

the steel flux-return yoke outside the solenoid. A more detailed description of the CMS

detector, together with a definition of the coordinate system and kinematic variables, can

be found in ref. [30].

Events of interest are selected using a two-tiered trigger system [31]. The first level,

composed of specialized hardware processors, uses information from the calorimeters and
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Figure 1. The leading-order Feynman diagram for the production of a single vector-like B quark

in association with a b quark and light-flavour quark, and its decay to a Higgs boson and a b quark.

muon detectors to select events at a rate of ≈100 kHz within a time interval of less than 4 µs.

The second level, known as the high-level trigger (HLT), consists of a farm of processors

running a version of the full event-reconstruction software optimized for fast processing

that reduces the event rate to ≈1 kHz before data storage.

Event reconstruction is based on the CMS particle-flow (PF) algorithm [32], which

reconstructs and identifies each individual particle through an optimized combination of

information from the various elements of the CMS detector. The energy of electrons is

defined through the combination of the electron momentum at the primary interaction

vertex determined in the tracker, the energy of the corresponding ECAL cluster, and the

energy sum of all bremsstrahlung photons spatially compatible with originating from the

electron track from the primary pp collision vertex. The energy of muons is obtained from

the curvature of the corresponding track. The reconstructed energy of charged hadrons

is extracted from the reconstructed tracks in the tracker and their matching energy de-

positions in ECAL and HCAL. Energy depositions are corrected for ignoring calorimeter

readouts that are close to threshold (zero suppression) and for the response function of

calorimeters to hadronic showers. Finally, the energy of neutral hadrons is obtained from

the corresponding corrected ECAL and HCAL energies.

Jets are reconstructed by clustering PF candidates using the anti-kT algorithm [33].

Prior to clustering, the charged-hadron subtraction algorithm [34] is applied to the event

to reduce the effects of pileup (i.e. additional pp collisions occurring within the same or

neighbouring LHC bunch crossings).

This algorithm discards charged hadrons not originating from the primary vertex,

which is defined as the reconstructed vertex with the largest value of summed p2T of charged

hadrons contributing to jets. The jets are clustered using the jet finding algorithm [33, 35],

which defines the associated missing transverse momentum taken as the negative of the

vector sum of the pT of those jets. We consider jets with different distance parameter of
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∆R =
√

(∆y)2 + (∆φ)2 = 0.4 or 0.8, with y the rapidity, referred to as AK4 and AK8

jets, respectively.

The residual pileup contamination from neutral hadrons is subtracted, assuming that it

is proportional to the event energy density and the jet area, estimated using the FastJet

package [35]. Jet momenta are determined from the vectorial sum of all the individual

PF particles in the jet. The energy scale calibrations obtained from Monte Carlo (MC)

simulation are applied to correct the four-momenta of jets. Residual corrections, accounting

for remaining discrepancies between jet response in data and in simulated events, are

applied to the former. The jet energy resolution for simulated jets is degraded slightly to

reproduce the resolution in data. The AK4 jet candidates are required to have pT > 30 GeV

and |η| < 4, and to satisfy a stringent set of identification criteria designed to reject spurious

detector and reconstruction effects [36]. The jets with |η| > 2.4 are referred to as forward

jets. The AK8 jets, used to identify and reconstruct Higgs boson candidates, are selected

to have pT > 300 GeV and |η| < 2.4.

A multivariate b tagging algorithm (CSVv2) [37] is used to identify central jets (with

|η| < 2.4) arising from the hadronization of b quarks. Parameters are chosen for the

CSVv2 discriminant such that the tagging efficiency for b quark jets is ≈70% while the

identification probability averaged over the jet kinematics in tt events is ≈1% for light

flavour jets with pT > 30 GeV.

The Higgs boson candidates are identified using the heavy-flavour content of the AK8

jet. A pruning algorithm [38] is applied that uses the Cambridge-Aachen (CA) algo-

rithm [39] to recluster each AK8 jet starting from all its original constituents and to

discard soft and wide-angle radiation inside the jet in each step of the iterative procedure.

The procedure defines a pruned-jet mass, computed from the sum of the four-momenta

of the constituents that have not been removed by the pruning algorithm, which achieves

a better mass resolution. The pruned mass of the jet is then used as a discriminant to

reject quark and gluon jets and to select Higgs bosons, by requiring its mass to be within

the window of 105–135 GeV. Two subjets are obtained using the soft drop declustering

algorithm [40, 41], and these are required to pass the same CSVv2 discriminant threshold

used for the AK4 jets.

3 Modelling and simulation

The production and decay of high mass B → Hb, with H → bb, provides a signature

with multiple jets rich in heavy-flavour content, and characterized by a highly boosted

Higgs boson. The dominant background in this search is from SM events comprised of jets

produced through the strong quantum chromodynamic (QCD) interaction, referred to as

multijet events. Additional contributions arise from tt events, and minor backgrounds are

associated with the production of W or Z bosons in association with jets.

Simulated events are used throughout the analysis to define selection strategy and to

determine the expected sensitivity to vector-like quarks. The background from multijet

events is estimated using data in control regions. Simulation is also used to cross-check the

multijet background prediction and to evaluate its validity. The contributions from other
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backgrounds, such as tt events and W or Z boson production in association with jets, are

estimated through MC simulation.

Multijet events, as well as electroweak backgrounds from virtual or on-mass shell

Z or γ+jets and W+jets production, are simulated at leading order (LO) using the

MadGraph5 amc@nlo 2.2.2 generator [42], interfaced to pythia 8.2 [43] with the

CUETP8M1 [44, 45] underlying-event tune for parton-shower simulation and evolution.

The background tt events are generated using powheg v2 at next-to-leading order

(NLO) [46–49], also interfaced to pythia. The mass of the top quark is set to 172.5 GeV,

and the cross section is calculated at next-to-next-to-leading order (NNLO) in perturba-

tive QCD using a next-to-next-to-leading-logarithmic (NNLL) soft-gluon approximation

(NNLO+NNLL) in the Top++ 2.0 program [50]. The cross sections for Z or γ+jets and

W+jets processes are calculated at NNLO using the fewz MC program [51].

The B → Hb → bbb events are simulated at LO, modelled using the universal

FeynRules output [52, 53] and the MC generator MadGraph5 amc@nlo, interfaced

to pythia 8 for parton-shower simulation. Several mass hypotheses are considered for

signals in the range 700 < mB < 1800 GeV, in steps of 100 GeV for total decay widths

of 1 GeV, representing the narrow-width categories. Signal events for B quarks with large

widths (10, 20, or 30% of the mass hypothesis) are also generated in the same mass range.

All B quarks are generated with left-handed chirality, but the effect on the kinematic dis-

tributions of only considering one chirality is found to be negligible. Interference between

the signal and the SM background is negligible.

Simulations using LO and NLO calculations, respectively, use the LO and

NLO NNPDF3.0 [54] sets of parton distribution functions (PDFs). All signal and back-

ground events are processed using geant 4 [55] to provide a full simulation of the CMS

detector. The generated events are also reweighted to account for the dependence of the

reconstruction efficiency on the number of pileup interactions in the collisions.

4 Interpretation framework

The total cross section for the single production and decay of a B quark with final state X

can be written as:

σ(C1, C2,mB,ΓB, X) = C2
1 C

2
2 σ̂AW(mB,ΓB), (4.1)

where C1 and C2 are the production and decay couplings corresponding to the interactions

through which a B quark is produced and decays, and σ̂AW is the reduced cross section for a

resonance of arbitrary width (AW). This width can be written as ΓB = Γ(Ci,mB,mdecays),

as it depends on the B quark mass, on the masses of all its decay products, and on its

couplings to all decay channels, Ci.

Equation (4.1) is valid in all width regimes. However, when ΓB/mB approaches zero,

it is possible to factorize production and decay and to write the cross section as:

σ(C1, C2,mB,ΓB) = σprod(C1,mB)BB→X = C2
1 σ̂NWA(mB)BB→X, (4.2)
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where C1 is the B production coupling, and information for the parameters C2 and ΓB are

included in the branching fraction for the specific B quark decay, in this case BB→X, while

σ̂NWA(mB) is the reduced cross section in the narrow-width approximation (NWA).

Our assumptions have the B quark decaying into Hb, Zb, and Wt with branching

fractions that are specified in the model. The couplings of the B quark to SM bosons

and quarks can be parametrized as: cZ = e/(2cwswκZ), cW = e/(
√

2swκW), and cH =

(mBκH)/v, where e is the electric charge of the proton, v = 246 GeV is the vacuum-

expectation value for the field of the Higgs boson, cw and sw are the cosine and sine of the

weak mixing angle θW, and κ is a coupling strength that can be fixed to obtain the desired

width. Numerically, e/(2cwsw) = 0.370, and cW = e/(
√

2sw) = 0.458. For the process

under consideration, we can set C1 ≡ cZ and C2 ≡ cH.

The κ values can be related to the mixing angle between the vector-like B quark and the

b quark [56], and correspond to left- and right-handed couplings, which are the dominant

chiralities for a singlet or part of a doublet B quark, respectively. For small values of κ,

corresponding to the NWA regime, the following relations hold to excellent approximation:

for a B singlet κZ ≈ κH ≈ κW ≈ κ, while for a (T,B) doublet (where T is a vector-like quark

with electrical charge 2/3) with no vector-like top quark Yukawa coupling, κZ ≈ κH ≈ κ,

and κW = 0. By imposing these relations among the κ values, and fixing the ΓB/mB ratio

to 1%, κ is ≈0.1 in the whole range of explored masses. Table 1 provides the values for

σ̂NWA and the physical cross sections in the NWA for the pp→ Bbq process. The CTEQ6L

PDF set [57] is used in this calculation.

To interpret the results in a model-independent way, the mechanism through which

the B quarks achieve large widths is not specified, and ΓB is considered as a free parameter.

The relations among the κX (with X = W, Z, H), corresponding to the NWA limit (κZ =

κH = κW = κ), are imposed for the large-width regime. With this assumption, the total

width ΓB is always proportional to κ2, and therefore κ can be chosen to obtain a specific

ΓB/mB ratio. However, with the assumption relaxed, in a simplified model, new physics

can be invoked to generate the required couplings.

Table 2 reports the cross sections integrated over the phase space of q and b, the

particles produced in association with the B quark (see figure 1), for fixed values of ΓB/mB,

with configurations of κ corresponding to singlet (σS) and doublet (σD) representations.

Given the yields for a doublet in the Zb and Hb decay modes, these couplings at fixed

width are larger than for singlets, and as a consequence σD > σS.

5 Event selection

This analysis searches for a Higgs boson and a bottom quark arising from the decay of

a B quark, and the decay of the Higgs boson into a pair of b quarks. An additional

light-flavour quark, resulting from the production mechanism and produced in the forward

direction (see figure 1), is also present. For values of mB much larger than the Higgs boson

mass, the decay products of the B quark are expected to have large pT. The two b quarks

originating from the Higgs boson tend therefore to emerge very close to each other in η-φ

space, resulting in a single large jet.
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Singlet model Doublet model

mB (GeV) σ̂NWA ( pb) κ BB→Wt BB→Zb BB→Hb σNWA ( pb) κ BB→Zb BB→Hb σNWA ( pb)

700 31.30 +28%
−20% 0.18 0.466 0.271 0.263 0.1631 0.25 0.499 0.501 0.5720

800 21.50 +29%
−21% 0.16 0.474 0.276 0.260 0.0830 0.22 0.499 0.501 0.3003

900 15.10 +30%
−21% 0.14 0.489 0.263 0.258 0.0451 0.19 0.500 0.500 0.1666

1000 10.80 +31%
−23% 0.13 0.483 0.261 0.256 0.0257 0.17 0.500 0.500 0.0962

1100 7.85 +32%
−22% 0.11 0.486 0.259 0.255 0.0153 0.16 0.500 0.500 0.0580

1200 5.77 +33%
−23% 0.10 0.489 0.257 0.254 0.0094 0.15 0.500 0.500 0.0358

1300 4.29 +34%
−23% 0.10 0.490 0.256 0.254 0.0059 0.13 0.500 0.500 0.0227

1400 3.23 +34%
−23% 0.09 0.492 0.255 0.253 0.0038 0.12 0.500 0.500 0.0147

1500 2.45 +35%
−25% 0.08 0.493 0.254 0.253 0.0025 0.12 0.500 0.500 0.0097

1600 1.86 +36%
−24% 0.08 0.494 0.254 0.252 0.0017 0.11 0.500 0.500 0.0065

1700 1.44 +37%
−24% 0.07 0.494 0.254 0.252 0.0011 0.10 0.500 0.500 0.0044

1800 1.11 +37%
−25% 0.07 0.495 0.253 0.252 0.0008 0.10 0.500 0.500 0.0031

Table 1. Cross sections for pp → Bbq, with the ratio ΓB/mB fixed to 1% (NWA). The couplings

and branching fractions in simplified models are calculated using the equations in the text. The

uncertainties in the production cross sections correspond to the halving and doubling of the QCD

renormalization and factorization scales.

ΓB/mB = 10% ΓB/mB = 20% ΓB/mB = 30%

mB (GeV) σ̃AW( pb) σS( fb) (κ) σD( fb) (κ) σ̃AW( pb) σS( fb) (κ) σD( fb) (κ) σ̃AW( pb) σS( fb) (κ) σD( fb) (κ)

700 3.01 400 (0.588) 1378 (0.8010) 1.43 759 (0.832) 2616 (1.130) 0.899 1074 (1.020) 3703 (1.390)

800 2.10 203 (0.508) 726 (0.699) 1.00 386 (0.719) 1377 (0.9880) 0.634 552 (0.880) 1968 (1.210)

900 1.51 111 (0.448) 406 (0.619) 0.719 212 (0.633) 775 (0.876) 0.454 301 (0.776) 1101 (1.070)

1000 1.09 63.7 (0.401) 237 (0.556) 0.523 122 (0.567) 453 (0.787) 0.331 174 (0.694) 647 (0.964)

1100 0.807 38.2 (0.363) 144 (0.505) 0.386 73.2 (0.513) 276 (0.714) 0.246 105 (0.628) 394 (0.875)

1200 0.601 23.6 (0.331) 89.7 (0.463) 0.290 45.5 (0.468) 173 (0.654) 0.185 65.2 (0.574) 248 (0.801)

1300 0.451 14.9 (0.305) 57.1 (0.427) 0.220 29.0 (0.431) 111 (0.603) 0.141 41.9 (0.528) 160 (0.739)

1400 0.342 9.70 (0.283) 37.2 (0.396) 0.167 18.9 (0.400) 72.9 (0.560) 0.108 27.5 (0.489) 106 (0.686)

1500 0.262 6.42 (0.263) 24.9 (0.369) 0.129 12.6 (0.372) 48.9 (0.522) 0.0836 18.4 (0.456) 71.3 (0.640)

1600 0.203 4.34 (0.246) 16.9 (0.346) 0.101 8.61 (0.349) 33.5 (0.489) 0.0651 12.5 (0.427) 48.7 (0.599)

1700 0.158 2.99 (0.232) 11.6 (0.326) 0.0788 5.94 (0.328) 23.2 (0.460) 0.0514 8.71 (0.401) 34.0 (0.564)

1800 0.124 2.08 (0.219) 8.13 (0.307) 0.0621 4.16 (0.309) 16.3 (0.435) 0.0408 6.14 (0.379) 24.0 (0.532)

Table 2. Cross sections for pp→ Bbq for three values of the ΓB/mB ratio. The conditions assume

that singlets and doublets have κW = κZ = κH ≡ κ, κW = 0 and κZ = κH ≡ κ, respectively. For

each ΓB/mB, we provide the values of σ̃AW and of the physical cross sections for both the singlet

and doublet models, σS and σD respectively. The uncertainties in the production cross sections

correspond to the halving and doubling of the QCD renormalization and factorization scales. The

values of κ are listed in the parentheses.
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Figure 2. The b-tagged subjet multiplicity of AK8 jets in events passing preselection criteria.

The lower panel shows the ratio of data to the MC background prediction. The normalization of

the contributions from signals at mB = 1 and 1.8 TeV is multiplied by a factor of 500. Background

events are normalized to data. Only the statistical uncertainties are taken into consideration here,

and they are too small to be visible.

The data are collected through an online selection (trigger) based on jet activity HT,

defined as the scalar pT sum of all AK4 jets with pT > 30 GeV and |η| < 3. The jet activity

threshold for this trigger is 900 GeV. Collisions containing at least one jet reconstructed

through the HLT system with pT > 450 GeV are also selected, to increase the HLT effi-

ciency. At the analysis level, HT is recalculated using AK4 jets with pT > 50 GeV and

|η| < 2.4, and HT > 950 GeV is required. This offline selection corresponds to a trigger

efficiency in excess of 87%.

Events are preselected if they contain three or more AK4 jets with pT > 30 GeV and

|η| < 4, among which there must be at least one b-tagged jet with |η| < 2.4. A veto

is applied to events with one or more leptons to ensure that the selection criteria do not

overlap with those used for searches for the B quark in leptonic final states. Selected events

are further required to have at least one large Higgs-tagged AK8 jet, fulfilling the Higgs

boson tagging requirements as described in section 2. The Higgs boson tagging efficiency

is 10–20%, depending on the value of mB. Figure 2 compares to data the b-tagged subjet

multiplicity expected for simulated background and for signal processes.

The B quark is reconstructed from the Higgs jet candidate along with a nonoverlapping

b-tagged jet. The b quark from B quark decay is usually highly energetic (pT > 200 GeV),

thus the b jet with the highest pT is chosen, and this reduces significantly the combina-

torial background. Furthermore, to reduce overlaps with the decay products of the Higgs

boson, a condition is applied on the distance between the two objects in (η, φ), requiring

∆R(b,H) > 1.2.
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Figure 3. Multiplicity of forward jets before event categorization. The normalization of the signal

contributions is multiplied by a factor of 500. All the contributions to background are obtained

from Monte Carlo simulation and are normalized to data. The lower panel shows the ratio of data

to background. We show only the statistical uncertainties.

To further reduce the multijet background and the contamination from gluon-like jets,

HT is required to be in excess of 950 GeV for smaller mass values of 700 < mB < 1500 GeV,

while for 1500 < mB < 1800 GeV, a trigger with a threshold of HT > 1250 GeV is chosen.

In what follows, we refer to the former as the “low-mass analysis” and to the latter as the

“high-mass analysis”.

The signal to background discrimination is enhanced by exploiting the distinctive pres-

ence of a forward jet. Events are therefore separated into categories based on the forward-jet

multiplicity. A high-purity category is obtained by requiring at least one forward jet. A

second category that contains a large fraction of events from both signal and background,

is defined requiring no forward jets. The forward-jet multiplicity expected for background

and signal events after preselection is compared to data in figure 3. After all the selections

are implemented, we reach signal efficiencies ranging from 2% or less at low masses, to

larger values at larger mB, as a result of the optimization of the analysis for highly-boosted

topologies. The disagreement between data and simulation at large forward-jet multiplic-

ities does not affect the analysis, as the background contribution in the signal region is

estimated from data. Moreover, the effect on the measurement is negligible since the ma-

jority of vector-like B quark events contain less than 2 forward jets, for which the simulated

and observed yields are consistent after preselection.

6 Signal extraction

A potential signal would manifest itself as a localized excess over the expected background

in the spectrum of the reconstructed mass mbH. A binned maximum likelihood fit is
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performed to the mbH distribution to extract a signal, exploiting the characteristic structure

of the reconstructed B quark mass spectrum.

Multijet events constitute the dominant source of background in this search. An ad-

ditional contribution of 5–7% arises from tt events. To reduce the dependence of the

maximum-likelihood fit on the modelling of the multijet background in simulation, the

contribution from this background is obtained from data. The procedure we use to esti-

mate the yield of such events in the signal region is referred to as the “ABCD method”

(discussed below), but its dependence on mbH is taken from a background-enriched con-

trol region in data. A minor contribution (≈1%) to the background arises from other SM

sources, such as Z+jets and W+jets events. Both tt events and these minor backgrounds

are estimated from simulation. The normalization of multijet events in the signal region is

estimated using three data control regions, enriched in background events. These regions,

in addition to the one enriched in signal events, are sampled in a two-dimensional phase

space defined by two variables: the b-tagged subjet multiplicity of the Higgs jet and its

reconstructed mass, mJ. From a check on the simulation, the number of b-tagged subjets

is not correlated with mJ. The four regions used to define the ABCD method are: (i)

region A, with two b-tagged subjets, and 105 < mJ < 135 GeV, (ii) region B, with two

b-tagged subjets, and 75 < mJ < 105 GeV or mJ > 135 GeV, (iii) region C, with one

b-tagged subjet, and 105 < mJ < 135 GeV, and (iv) region D, with one b-tagged subjet,

and 75 < mJ < 105 GeV or >135 GeV.

Region A is the signal region, defined by the selection criteria described in the previous

section. The multijet background yield in the signal region is obtained from regions B, C,

and D, which are background enriched. Assuming that the b-tagged subjet multiplicity

and the Higgs boson mass are uncorrelated, the number of background events in the four

regions follows the relationship:

NA/NC = NB/ND, (6.1)

where NA, NB, NC, and ND are the yields in regions A, B, C, and D, respectively. Thus,

the number of background events in the signal region A is given by:

NA = NCNB/ND, (6.2)

after subtracting the tt contribution predicted in the MC simulation. The contributions

from Z+jets and W+jets backgrounds are not subtracted as they are negligible.

The mB distribution of the multijet background in the signal region is estimated from

the mbH distribution in region C, since the reconstructed mbH spectrum is not expected to

be correlated with the b jet multiplicity. The compatibility of the distributions in regions

A and C is verified using simulated multijet events, and cross-checked in data.

In addition, the method is validated using a signal-depleted region from sidebands

at large mass. Here, two regions (A’ and C’) are defined, similar to A and C in the

mass region 135 < mJ < 165 GeV. Two control regions (B’ and D’) are defined requiring

75 < mJ < 105 GeV or mJ > 165 GeV, respectively, with 2 or 1 b-tagged subjets. The

background distribution estimated in region A’, using the method described above, agrees
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with the observed data in region A’. The systematic uncertainty in the normalization of the

multijet background is taken to be equal to the observed difference between the predicted

and the measured yields in region A’. It amounts to 10% in the high purity category, and

5% in the category with no forward jets.

7 Systematic uncertainties

The systematic effect of each source of uncertainty is evaluated by propagating the un-

certainty in the input parameters to the reconstructed B quark mass distribution and to

the event yield. Then, the uncertainties in the event yield and in the mbH distribution for

signal and background processes are taken into account as “nuisance” parameters that are

integrated over in the statistical process of inferring the resultant parameters.

The statistical uncertainties in the background estimate of multijet production from

control samples in data are propagated to mbH in the signal region by changing the observed

event yields in regions B and D, up and down by one standard deviation, and recalculating

the expected distribution in the signal region. As the expected multijet distribution in

mbH is estimated from region C, its statistical uncertainty in this region is considered in the

signal extraction. In addition to the normalization, this uncertainty affects the distribution

of the background mbH in the signal region. Therefore, a systematic uncertainty in the

estimated shape of this distribution, arising from the limited number of events in the

observed mbH spectrum in region C, was derived by allowing the content of each bin to

fluctuate independently according to Poisson statistics.

An additional systematic uncertainty in the estimated multijet background is obtained

from the difference between the observed and predicted yields in the check, in the validation

step that uses large-mass sideband regions, described in section 6, and corresponds to

≈ 5–10%.

The systematic uncertainties from the limited number of simulated events and back-

ground estimates from simulation are also included by fluctuating each bin of the mbH dis-

tribution independently, according to Poisson statistics.

Additional systematic uncertainties in simulated signal and background distributions

originate from the corrections applied to rescale simulated distributions to data. Other

such uncertainties are listed below. An uncertainty of 2.5% [58] in the measured integrated

luminosity is used just to account for the total event yields.

The corrections to account for the difference between the b tagging efficiency measured

in data and in simulation are changed up and down by their uncertainties in both AK4 jets

and subjets. The reconstructed four-momenta of the AK4 and AK8 jets are also shifted by

±1 standard deviation in the jet energy scale and resolution, and propagated to mbH. In

addition, the pruned mass scale and resolution of the Higgs-tagged jet are changed within

their uncertainties, affecting the mbH spectrum by 0.5–5.5%.

All simulated events are weighted to match the distribution of pileup interactions.

The corresponding uncertainty is obtained by changing the total inelastic cross section

by ±4.6%, which is used to calculate the pileup distribution in data. Scale factors are

applied to account for differences between the trigger efficiency measured in data and in
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Source Effect

Luminosity 2.5%

b tagging efficiency 0–9%

Misidentification efficiency 0–2%

Pileup modelling 0–12%

Trigger <0.5%

PDF 1.0–4.5%

µR and µF 15–25%

Jet energy scale 1–7%

Jet energy resolution 1.0–1.5%

Jet mass scale 0–5%

Jet mass resolution 0–4%

MC Statistical accuracy 1–4%

Mismodelling of forward jets 0.5/2.0%

Background estimation 5–10%

Table 3. Summary of systematic uncertainties in background events. The quantification of the

effects quoted in the table reflects the uncertainties in the event yields. All uncertainties are

considered in the simulated background events, except the one on background estimation that

affects only the data-based estimate of the multijet process. All the systematic uncertainties apply

to both categories of forward-jet multiplicity, except for the case of the modelling of the forward

jets, where the first entry corresponds to the category with no forward jets, and the second entry

to the category with at least one jet in the forward region.

simulated events, with the uncertainties in the scale factors applied as a function of HT and

propagated to the mbH distribution.

An additional uncertainty is applied to the simulated signal and backgrounds to ac-

count for discrepancies in the modelling of the forward jet multiplicity. The magnitude of

this effect is obtained by considering the difference between the event yield in data and in

MC, and results in an uncertainty of 0.5% for the category with no forward jets, and 2.0%

for the category with at least one jet in the forward region.

The uncertainties from the choice of factorization and renormalization scales, µF and

µR, are taken into account by halving and doubling the nominal values and using the com-

bination of µF and µR leading to the maximal change. The resulting uncertainty in signal

acceptance is as small as 1.3%, depending on the mass hypothesis. Larger effects (15–25%)

are observed in the overall normalization and acceptance in simulated backgrounds. In ad-

dition, the uncertainty from the choice of PDF is estimated by reweighting the simulated

signal and background events using the NNPDF3.0 [59–61] set of eigenvectors.

A summary of the systematic uncertainties considered in this analysis, along with their

effect when propagated to the reconstructed B mass, is presented in table 3.
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8 Results

A binned maximum likelihood fit is performed to the mbH distribution in figure 4, where the

dominant multijet background is estimated from data, as discussed in section 6. The fitted

mbH distributions are presented in figure 5, while the expected yields are listed in table 4 for

the backgrounds, and for two signal hypotheses (mbH = 1000 and 1800 GeV), together with

their observed yields. The observed distributions are consistent with the background-only

hypothesis in all the categories. Upper limits are set therefore on the product of the cross

section and branching fraction of a B quark decaying to Hb, produced in association with

another b quark and a light-flavoured quark, as a function of mbH. Exclusion limits at 95%

confidence level (CL) are calculated using a modified frequentist approach and a profile

likelihood ratio as test statistic, in an asymptotic approximation [62–64]. The combination

of the two forward-jet multiplicity-based categories increases the sensitivity of the analysis

by up to 20% relative to that obtained when only requiring at least one jet in the |η| > 2.4

region of the detector.

Systematic uncertainties described in section 7 are treated as nuisance parameters

affecting the rate of the expected mbH distribution. Both the uncertainties affecting the

normalization, modelled using log-normal priors, and uncertainties in distributions are

included in the fit [65].

The observed and expected combined upper limits from the two categories are given in

figure 6. Assuming a narrow width, values of σ B(Hb) between 0.07–1.28 pb are excluded at

the 95% confidence level, for masses in the range 700–1800 GeV. Upper limits are compared

with the predictions calculated at NLO [53] for both singlet and doublet B quark models,

assuming narrow widths and B(Hb) ≈ 25%. Figure 6 also shows the observed and expected

upper limits on the product of the cross section and branching fraction for B quarks with

intrinsic widths fixed to ΓB/mB = 10, 20, and 30%. Sensitivities similar to those for

negligible widths are observed for exclusion limits that lie between 0.08 and 1.97, 0.11 and

1.32, and 0.10 and 1.22 pb, respectively, for the 10, 20, and 30% ΓB/mB values.

9 Summary

A search has been presented for electroweak production of vector-like B quarks with charge

−1/3 e, decaying to a bottom quark and a Higgs boson (H). The analysis uses a data

sample corresponding to an integrated luminosity of 35.9 fb−1, collected in pp collisions at√
s = 13 TeV.

No significant deviations are observed relative to the standard model prediction, and

upper limits are placed on the product of the cross section and the branching fraction of

the B quark.

Expected and observed limits at 95% confidence level vary from 1.20 to 0.07 pb and

from 1.28 to 0.07 pb, respectively, for B quark masses in the range considered, which extends

from 700 to 1800 GeV. The search is performed under the hypothesis of a singlet or doublet

B quark of narrow width decaying to Hb with a branching fraction of approximately 25%.

The possibility of having non-negligible resonant widths is also studied. Limits obtained
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Figure 4. Distribution in the reconstructed B quark mass, after applying all selections to events

with no forward jets (left) and to events with at least one forward jet (right), compared to the

background distributions estimated before fitting. The upper and lower plots refer to the low-

and high-mass mB analyses, respectively. The expectations for signal MC events are given by

the blue histogram lines. The different background contributions are indicated by the colour-filled

histograms, and are obtained from Monte Carlo simulation, except for the multijets component,

which is derived from data. The grey-hatched error band shows total uncertainties in the background

expectation. The ratios of observations to background expectations are given in the lower panels,

together with the total uncertainties prior to fitting, indicated by the grey-hatched band.
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Figure 5. Distribution in the reconstructed B quark mass after applying all selections to events

with no forward jets (left) and to events with at least one forward jet (right), compared to the

background distributions estimated after fitting. The upper and lower plots refer to the low-

and high-mB analyses, respectively. The expectations for signal MC events are given by the blue

lines. The different background contributions are indicated by the colour-filled histograms, and are

obtained from Monte Carlo simulation, except for the multijets component, which is derived from

data. The grey-hatched error band shows total uncertainties in the background expectation. The

ratios of the observations to background expectations are given in the lower panels, together with

the total uncertainties after fitting, indicated by the grey-hatched band.
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Category Source 700 < mB < 1500 GeV 1500 < mB < 1800 GeV

No forward jets

tt 394± 46 117± 18

W+jets 29± 13 10.5± 4.3

Z+jets 43± 15 23± 23

Multijets 5416± 60 1612± 24

Total background 5882± 42 1762± 26

Observed in data 5886± 77 1753± 42

Expected signal 7.3± 0.3 0.27± 0.01

>0 forward jets

tt 163± 20 58± 17

W+jets 11.5± 4.2 4.3± 1.4

Z+jets 2+10
−2 —

Multijets 1938± 23 549± 10

Total background 2115± 21 612± 15

Observed in data 2107± 46 608± 25

Expected signal 11.5± 0.3 0.51± 0.01

Table 4. Observed and expected fitted number of events in the signal ranges of 700 < mB < 1500

and 1500 < mB < 1800 GeV, and expected signal at mB = 1000 and 1800 GeV. The multijet

background is obtained from data, while the yields for the other sources of background are obtained

from MC simulation. The combined statistical and systematic uncertainties correspond to the

quadrature of the statistical and systematic uncertainties.

on the production of B quarks with widths of 10, 20, and 30% of the resonance mass

are comparable to those found for the narrow-width approximation. This search extends

existing knowledge on vector-like quarks, by interpreting the results in a new theoretical

framework with non-negligible resonance widths, and investigating the final state with a

bottom quark and a Higgs boson for the first time.
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Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Univer-
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P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique

des Particules, CNRS/IN2P3, Villeurbanne, France

S. Gadrat

– 24 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
1
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T. Lenz, K. Lipka, W. Lohmann19, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer,

M. Missiroli, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari, D. Pitzl, A. Raspereza,

M. Savitskyi, P. Saxena, R. Shevchenko, N. Stefaniuk, G.P. Van Onsem, R. Walsh, Y. Wen,

K. Wichmann, C. Wissing, O. Zenaiev

University of Hamburg, Hamburg, Germany

R. Aggleton, S. Bein, V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez,

J. Haller, A. Hinzmann, M. Hoffmann, A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk,

S. Kurz, D. Marconi, M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo16, T. Peiffer,

A. Perieanu, C. Scharf, P. Schleper, A. Schmidt, S. Schumann, J. Schwandt, J. Sonneveld,

H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, H. Tholen, D. Troendle, E. Usai,
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G. Abbiendia, C. Battilanaa,b, D. Bonacorsia,b, L. Borgonovia,b, S. Braibant-Giacomellia,b,

R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa, S.S. Chhibraa,b,

G. Codispotia,b, M. Cuffiania,b, G.M. Dallavallea, F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,

P. Giacomellia, C. Grandia, L. Guiduccia,b, F. Iemmi, S. Marcellinia, G. Masettia,

A. Montanaria, F.L. Navarriaa,b, A. Perrottaa, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b,

N. Tosia

INFN Sezione di Catania a, Università di Catania b, Catania, Italy
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INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy,
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