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Abstract

Endoscopic capsule robots are an emerging and exciting non-invasive medical device
technology for comfortable inspection of the gastrointestinal tract organs, enabling
additional therapeutic operations such as biopsy, targeted drug delivery, and surgical
treatment. Unlike current passive capsule endoscopes used in hospitals, endoscopic
capsule robots are actively steerable medical devices, which allow access to body
regions, which were impossible to reach with standard hand-held endoscopes be-
fore. Biopsy, targeted drug delivery, and surgical treatment require fast and reliable
feedback about robotic position and map representation, ideally with submillimeter
precision. Thus, accurate and robust real-time localization and mapping are of sig-
nificant importance for actively steerable endoscopic capsule robots. This disserta-
tion mainly focuses on novel three-dimensional mapping and localization techniques
for endoscopic capsule robots, which among other approaches, make heavy use of
computer vision, deep learning and sensor fusion techniques. Unlike static hand-
engineered algorithms existing in literature, the presented methods in this disserta-
tion allow the medical device system to dynamically continue learning via streamed
data from successive procedures and to adapt to the environmental variations among
different patient organs using transfer learning and re-tuning techniques. Detailed
quantitative and qualitative evaluations performed on oiled, non-rigid porcine stom-
achs and realistic soft surgical EsophagoGastroDuodenoscopy simulator show that
proposed frameworks outperform state-of-the-art localization and mapping methods
for both hand-held and capsule endoscopes.
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Abstract

Anders als die aktuell in Krankenhäusern verwendeten passiven Kapsel-Endoskope
sind endoskopische Kapsel-Roboter aktiv steuerbare Geräte, die es ermöglichen
Körperregionen zu erreichen, die bisher mit den standardmäßigen Handheld-Endosko-
pen nicht erreicht werden konnten. Biopsie, gezielte Wirkstoffzufuhr und chirur-
gische Behandlungen verlangen schnelle und zuverlässige Angaben über die Po-
sition des Roboters sowie die dazu gehörige Kartendarstellungen (Mapping), am
besten mit einer Sub-Millimeter-Genauigkeit. Daher sind eine akkurate und solide
Echtzeit-Lokalisierung und –Mapping von entscheidender Bedeutung für den Ein-
satz von Kapsel-Robotern in der Endoskopie. Diese Dissertation behandelt im
wesentlichen neue dreidimensionale Mapping- und Lokalisierungstechniken für en-
doskopische Kap- sel-Roboter, die neben anderen Ansätzen vor allem Techniken
wie Computer Vision, Deep Learning und Sensor-Fusion einsetzen. Anders als die
statischen, handprogrammierten Algorithmen in der Literatur, erlauben die Metho-
den in dieser Dissertation dem System dynamisch weiter zu lernen durch gestreamte
Daten von sukzessiven Vorgängen und sich an die variierende Organumgebung bei
verschiedenen Patienten anzupassen. Detaillierte quantitative und qualitative Ex-
perimenten und Analysen an eingeölten echte Schweinemägen und einem realistischer
Softsimulator zeigen, dass die entwickelten Methoden die bisherigen Lokalisierungs-
und Mapping-Methoden inder Literatur sowohl für Handheld-Endoskope als auch
für Kapsel-Endoskope ubertreffen.
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Introduction

Untethered medical robots of millimetric scale and below attract growing attention
providing unprecedented direct access to the human body which is expected to have
a great impact on health care and bioengineering applications in near future. Espe-
cially in the past decade, advances in microsensors, microelectronics, computational
power and algorithms have enabled miniaturized and low-cost devices in a variety of
high impact applications. Following these advances, untethered, pill-size and swal-
lowable capsule endoscopes with on-board cameras and wireless image transmission
device have been developed and used in hospitals for screening the gastrointestinal
(GI) tract and diagnoses of diseases such as the inflammatory bowel disease, the
ulcerative colitis, and the colorectal cancer.

Unlike standard endoscopy, endoscopic capsule robots are non-invasive, painless, and
more appropriate to be employed for prolonged screening purposes. Moreover, they
can access difficult body parts that were not possible to reach before with standard
endoscopy (e.g. small intestines). Such advantages make pill-size capsule endoscopes
a significant alternative screening method over standard endoscopy. However, cur-
rent capsule endoscopes used in hospitals are passive devices locomoted by peristaltic
motions of the inner organs. Control over the capsule’s position, orientation, and
functions would give the doctor a more precise access to targeted body parts and
more intuitive (and less error-prone) diagnosis opportunity. Active motion control
is, on the other hand, heavily dependent on the precise and reliable real-time pose
estimation and mapping capability, which makes robot localization and mapping
key functions for a successful endoscopic capsule robot operation. Many challenges
posed by the GI tract such as self-repetitive texture, non-rigid organ deformations,
random peristaltic motions, viscosity, specularities caused by the organ fluids, lack
of distinctive feature points, low accuracy and small size onboard sensors equipped
on the capsule robot are challenges to count on. Figure 1 demonstrates an active
endoscopic capsule robot operation scenario, where the doctor performs the medical
operation in real-time using the medical workstation and a joystick to maneuver the
capsule robot. Electromagnetic coils based actuation unit below the patient table
receives commands from the controller unit to exert forces and torques on the cap-
sule robot. A 2D-Hall sensor array, placed on top of the patient’s stomach, streams
out the real-time position and orientation information of the robot.

This cumulative dissertation consists of following papers:

viii



Figure 1: Demonstration of the active endoscopic capsule robot operation.

• A novel medical simultaneous localization and mapping (SLAM) technique
which makes use of GPU accelerated non-rigid frame-to-model fusion, joint
volumetric-photometric pose estimation and dense model-to-model loop clo-
sure techniques. Note that the presented method is only vision-based and does
not need any extra sensor;

• A fully dense, non-rigidly deformable, strictly real-time, intraoperative map
fusion approach for actively controlled endoscopic capsule robot applications,
which combines benefits of magnetic and vision-based localization, with non-
rigid deformations based frame-to-model map fusion;

• A supervised deep monocular visual odometry (VO) method for endoscopic
capsule robots based on recurrent convolutional neural networks (RCNNs),
where convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) are used for feature extraction and inference of dynamics across the
frames, respectively;

• An unsupervised deep localization and depth estimation approach for endo-
scopic capsule robots consisting of two simultaneously trained sub-networks,
the first one assigned for depth estimation via encoder-decoder strategy, and
the second assigned to regress the camera pose in 6-DoF. The model observes
sequences of monocular images and aims to interpret them to estimate the cam-
era motion and depth information in an end-to-end and unsupervised fashion
directly from input pixels;

• A sequence-to-sequence deep sensor fusion approach for endoscopic capsule
robot localization which has several important novelties and advantages over
existing sensor fusion approaches: sensor data does not need to be synchro-
nized, the method is agnostic to sensor type and dimensionality, and the neural
network training procedure automatically performs the eye-in-hand calibration
for each sensor, including those with reduced (less than 6 dimensional) infor-
mation;

• A novel multi-sensor fusion algorithm based on switching state space models
with particle filtering using the endoscopic capsule robot dynamics modelled

ix



by recurrent neural networks (RNNs), which can handle sensor faults and
non-linear motion models;

• A comprehensive medical 3D reconstruction method for endoscopic capsule
robots, which is built in a modular fashion including preprocessing, keyframe
selection, sparse-then-dense alignment-based pose estimation, bundle fusion,
and shading-based 3D reconstruction;

• A comprehensive review of the current advances in biomedical untethered mo-
bile milli- and microrobots with an emphasis on the potential impacts of such
devices in the near future and existing and emerging challenges associated with
medical operations performed via such minituarized robotic technologies.
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Abstract
Since the development of capsule endoscopy technology, medical device companies and research groups have made signifi-
cant progress to turn passive capsule endoscopes into robotic active capsule endoscopes. However, the use of robotic capsules 
in endoscopy still has some challenges. One such challenge is the precise localization of the actively controlled robot in 
real-time. In this paper, we propose a non-rigid map fusion based direct simultaneous localization and mapping method for 
endoscopic capsule robots. The proposed method achieves high accuracy for extensive evaluations of pose estimation and 
map reconstruction performed on a non-rigid, realistic surgical EsophagoGastroDuodenoscopy Simulator and outperforms 
state-of-the art methods.

Keywords  Endoscopic capsule robot · Dense direct medical SLAM · Non-rigid frame-to-model fusion

1  Introduction

In the past decade, advances in microsensors and microelec-
tronics have enabled small, low cost devices in a variety of 
high impact applications. Following these advances, unteth-
ered pill-size, swallowable capsule endoscopes with an on-
board camera and wireless image transmission device have 
been developed and used in hospitals for screening the gas-
trointestinal (GI) tract and diagnosing diseases such as the 
inflammatory bowel disease, the ulcerative colitis, and the 

colorectal cancer. Unlike standard endoscopy, endoscopic 
capsule robots are non-invasive, painless, and more appro-
priate to be employed for long-duration screening purposes. 
Moreover, they can access difficult body parts that were not 
possible to reach before with standard endoscopy (e.g., 
small intestines). Such advantages make pill-size capsule 
endoscopes a significant alternative screening method over 
standard endoscopy (Liao et al. 2010; Nakamura et al. 2008; 
Pan and Wang 2012; Than et al. 2012). However, current 
capsule endoscopes used in hospitals are passive devices 
controlled by peristaltic motions of the inner organs. The 
control over capsule’s position, orientation, and functions 
would give the doctor a more precise reachability of targeted 
body parts and more intuitive and correct diagnosis opportu-
nity. Several groups have recently proposed active, remotely 
controllable robotic capsule endoscope prototypes equipped 
with additional functionalities, such as local drug delivery, 
biopsy, and other medical functions (Sitti et al. 2015; Yim 
et al. 2013; Carpi et al. 2011; Keller et al. 2012; Mahoney 
et al. 2013; Yim et al. 2014). An active motion control is, on 
the other hand, heavily dependent on a precise and reliable 
real-time pose estimation capability, which makes the robot 
localization and mapping the key capability for a successful 
endoscopic capsule robot operation. Localization methods 
such as (Fluckiger and Nelson 2007; Rubin et al. 2006; Kim 
et al. 2008; Son et al. 2016) have the common drawback that 
they require extra sensors and hardware to be integrated to 
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the robotic capsule system. Such extra sensors have their 
own drawbacks and limitations if it comes to their applica-
tion in small-scale medical devices, e.g. space limitations, 
cost aspects, design incompatibilities, biocompatibility 
issues, and most importantly the interference of the sensors 
with the activation system of the capsule robot.

As a solution of these issues, vision-based localization 
and mapping methods (vSLAM) have attracted the atten-
tion for small-scale medical devices. With their low cost 
and small size, cameras are frequently used in localization 
applications where weight and power consumption are limit-
ing factors, such as in the case of small-scale robots. How-
ever, many challenges posed by the GI tract and low quality 
cameras of the endoscopic capsule robots cause further dif-
ficulties in front of a vSLAM technique to be applied in a 
medical operation. Self-repetitiveness of the GI tract texture, 
non-rigid organ deformations, heavy reflections caused by 
the organ fluids, and lack of distinctive feature points on the 
GI tract tissue are further challenges in front of a reliable 
robotic operation. Moreover, the low frame rate and limited 
resolution of the current capsule camera systems also restrict 
the applicability of computer vision methods inside the GI 
tract. Especially feature tracking based visual localization 
methods have poor performance in the abdomen region com-
pared to outdoor or indoor large scale environments where 
unique features can be found easier.

Figure 1 gives an overview of a modern vSLAM approach 
with its key components. A modern vSLAM method is 
expected to be equipped with reliable pose estimation and 
map reconstruction modules that is not affected by non-
rigid deformations, sudden frame-to-frame movements, 
blur, noise, illumination changes, occlusions and large 
depth variations. Moreover, dynamic structure of the GI 
tract organs with heavy peristaltic motions require more 
than a static map; reconstructed parts of the map must be 
updated continuously as the organ structure changes during 
endoscopic operation. Besides, a failure recovery procedure 
relocalizing the robot after unexpected drifts is a further 
demand on a modern vSLAM system. The intra-operative 
3D reconstruction of the explored inner organ simultane-
ous to tracking capsule robot position in real-time provides 
key information for the next generation actively controllable 
endoscopic robots which will be equipped with function-
alities such as disease detection, local drug delivery and 
biopsy. Feature- based SLAM methods have been applied 
on endoscopic type of videos in the past decades (Mountney 
and Yang 2009; Casado et al. 2014; Stoyanov et al. 2010; 
Mountney and Yang 2010; Mountney et al. 2006; Qian et al. 
2013; Mahmoud et al. 2016). However, besides sparse unre-
alistic map reconstruction, all of these methods suffer from 
heavy drifts and inaccurate pose estimations once low tex-
ture areas are entered. With that motivation, we developed a 
direct medical vSLAM method which shows high accuracy 

in terms of map reconstruction and pose estimation inside 
GI tract.

2 � Method

In that section, we first summarize the contributions of our 
paper and give details of the proposed method.

2.1 � Contributions of the method

Inspired from large-scale RGB Depth SLAM approaches 
(Whelan et al. 2015; Newcombe et al. 2011), the proposed 
method is to the best of our knowledge the first fully dense, 
direct medical SLAM approach using GPU accelerated non-
rigid frame-to-model fusion, joint volumetric-photometric 
pose estimation and dense model-to-model loop closure 
techniques. Figure 2 depicts the system architecture dia-
gram and below the key steps of the proposed framework 
are summarized:

•	 Create depth image from RGB image based on shading;
•	 Divide visited organ parts into active and inactive areas. 

Only active areas are used for pose tracking and map 
fusion. Areas that do not appear in the scene for a certain 
period of time are assigned as inactive and not used in the 
estimation.

•	 For every new frame, search for its intersection with the 
active model and fuse them;

Fig. 1   Components of a modern vSLAM
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•	 In case there exists an intersection of the active model 
with inactive model within the current frame, fuse the 
intersecting parts using loop closure and reactivate cor-
responding inactive parts.

The contributions of the approach described in this paper 
include:

•	 A vSLAM approach able to deal with specularities typi-
cally occurring in images of inner organs tissues;

•	 A direct vSLAM method able to handle non-rigid struc-
tures, including performing their non-sparse 3D recon-
struction;

•	 A direct vSLAM approach jointly minimizing photomet-
ric-geometric constraints, including depth;

2.2 � Preprocessing and depth image creation

The framework starts with a preprocessing module that sup-
presses specularities caused by inner organ fluids. Reflection 
detection is done by combining the gradient map of the input 
image with the peak values detected by an adaptive thresh-
old. Once specularities detected, suppression is performed 
by inpainting. Next, GPU accelerated version of Tsai-Shah 
shading method is applied to create depth images. This 
method uses linear approximations to extract depth image 
from RGB input iteratively estimating slant, tilt and albedo 
values. For further details, the reader is referred to the origi-
nal paper (Ping-Sing and Shah 1994). Figure 3 demonstrates 
examples of input RGB images, images after reflection sup-
pression and depth images acquired by Tsai-Shah shading 
method.

Fig. 2   Overview of the pro-
posed medical SLAM method

Fig. 3   Reflection suppression 
and shading-based depth image 
creation
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2.3 � Joint photometric and geometric pose 
estimation from a splattered surfel prediction

The input for pose estimation is the RGB image  and the 
depth image  . We combine photometric and geometric 
pose estimation techniques. The camera pose of the endo-
scopic capsule robot is described by a transformation matrix 
�t:

Given the depth image  , the 3D back-projection of a point 
� is defined as �(�,) = K−1 ud(u), where K is the cam-
era intrinsics matrix and u is the homogeneous form of u. 
Geometric pose estimation is performed by minimizing the 
energy cost function Eicp between the current depth image 
l

t
 and the active depth model ̂a

t−1
:

where �k
t
 is the back-projection of the k-th vertex in l

t
 , �k 

and �k are the corresponding vertex and normal from the 
previous frame. Thus, � is the estimated transformation from 
the previous to current robot pose and exp (𝜉) is the exponen-
tial mapping function from Lie algebra ��3 to Lie group ��3 . 
Analogously, the photometric pose � between the current 
RGB image  l

t
 and active RGB model ̂a

t−1
 is estimated by 

minimizing photometric energy cost function:

The energy minimization function for joint photometric-
geometric pose estimation is defined by:

which is minimized using Gauss–Newton non-linear least-
squares optimization.

2.4 � Scene representation, deformation graph 
and loop closure

Due to strict real-time concerns of the approach, we use 
surfel-based scene reconstruction. Each surfel has a position, 
normal, color, weight, radius, initialization timestamp and 
last updated timestamp. We also define a deformation graph 
consisting of a set of nodes and edges to detect non-rigid 
deformations throughout the frame sequence. Each node n 
has a timestamp n

t0
 , a position n

g
∈ ℝ

3 and a set of neigh-

boring nodes  (n). The directed edges of the graph are 
neighbors of each node. A graph is connected up to a neigh-
bor count k such that ∀n, | (n)| = k . Each node also stores 

(1)�t =

[

�t �t
0 0 0 1

]

∈ ��3.

(2)Eicp =
∑

k

((�k − exp (𝜉)��t
k
) ⋅ �k)2

(3)Ergb =
∑

�∈�

(

I(�, l
t
) − I(𝜋(� exp(𝜉)��(�,l

t
)), ̂a

t−1
)
)2

(4)Etrack = Eicp + wrgbErgb,

an affine transformation in the form of a 3 × 3 matrix n
�

 and 
a 3 × 1 vector n

�
 . When deforming a surface, the n

�
 and n

�
 

parameters of each node are optimized according to surface 
constraints. In order to apply a deformation graph to the 
surface, each surfel s identifies a set of influencing nodes 
in the graph (s,) . The deformed position of a surfel is 
given by:

while the deformed normal of a surfel is given by:

where wn(s) is a scalar representing the influence of n on 
surfel s , summing to a total of 1 when n = k:

Here, dmax is the Euclidean distance to the k + 1-nearest node 
of Ms.

To ensure a globally consistent surface reconstruction, 
the framework closes loops with the existing map as those 
areas are revisited. This loop closure is performed by fus-
ing reactivated parts of the inactive model into the active 
model and simultaneously deactivating surfels which have 
not appeared for a period of time.

3 � Experiments and results

We evaluate the performance of our system both quanti-
tatively and qualitatively in terms of trajectory estimation, 
surface reconstruction and computational performance.

3.1 � Dataset and equipment

Figure 4 shows our experimental setup as a visual refer-
ence. We created our own endoscopic capsule robot dataset 
with ground truth. To make sure that our dataset is general 
and does not lead to overfitting, three different endoscopic 
cameras were used to capture the endoscopic videos. We 
mounted endoscopic cameras on our magnetically activated 
soft capsule endoscope (MASCE) systems as seen in Fig. 6. 
The videos were recorded from an oiled non-rigid, surgical 
stomach model Koken LM103—EDG (EsophagoGastroDu-
odenoscopy) Simulator. Some sample frames are shown in 
Fig. 5. To obtain 6-DoF localization ground truth, an Opti-
Track motion tracking system consisting of eight infrared 
cameras and a tracking software was utilized. A total of 15 
minutes of stomach videos was recorded containing over 
10,000 frames. Finally, we scanned the open surgical stom-
ach model using a 3D Artec Space Spider image scanner. 

(5)
̂s

�
= 𝜙(s) =

∑

n∈(s
,)

w
n(s)[n

�
(s

�
− n

�
) + n

�
+ n

�
]

(6)̂s
�
=

∑

n∈(s,)

wn(s)n−1T

�
s

�
,

(7)wn(s) = (1 − ||s
�
− n

�
||2∕dmax)

2.
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This scan served as the ground truth for the quantitative 
evaluations of the 3D map reconstruction module.

3.2 � Trajectory estimation

Table 1 demonstrates the results of the trajectory estimation 
for 7 different trajectories. The characteristics of the trajec-
tories are as follows:

•	 Trajectory 1 is an uncomplicated path with slow incre-
mental translations and rotations.

•	 Trajectory 2 follows a comprehensive scan of the stom-
ach with many local loop closures.

•	 Trajectory 3 contains an extensive scan of the stomach 
with more complicated local loop closures.

•	 Trajectory 4 consists of more challenging motions 
including faster rotational and translational movements.

•	 Trajectory 5 consists of very loopy and complex motions.
•	 Trajectory 6 is the same as trajectory 5 but included 

added synthetic noise to allow checking the robustness 
of the system against noise.

•	 Before capturing trajectory 7, we added more paraffin 
oil into the simulator tissue to have stronger reflections. 
Similarly to trajectory 6, trajectory 7 consists of very 
loopy and complex motions including very fast rotations, 
translations and drifting.

Qualitative tracking results of the proposed direct medical 
SLAM compared to ORB SLAM and to ground truth are 
shown in Fig. 7. It is clearly observable that direct medi-
cal SLAM stays close to the ground truth except for minor 
deviations in loopy sections, whereas ORB SLAM has major 

Fig. 4   Experimental setup

Fig. 5   Sample images from our 
dataset
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deviations in many sections of the trajectories. For the quan-
titative analysis, we measured the root-mean-square of the 
Euclidean distances between the estimated camera poses and 
the ground truth. As seen in Table 1, the system performs 
very robustly and tracking accurately in all of the trajecto-
ries, not being affected by sudden movements, blur, noise or 
strong spectral reflections. Figure 9a, b represent rotational 
and translational RMSE results for different pose estimation 
strategies including frame-to-model alignment, photometric 
alignment, frame-to-frame alignment and ORB SLAM as a 
state-of-the art method. Results indicate that frame-to-model 
alignment clearly outperforms frame-to-frame alignment, 
photometric alignment and ORB SLAM. Besides, joint 
volumetric-photometric alignment outperforms photomet-
ric alignment indicating the significance of depth informa-
tion for pose estimation. Figure 10a, b represent rotational 

and translational RMSE as a function of ICP weight in joint 
photometric-volumetric alignment (see Eq. 4). Both RMSEs 
decrease with higher ICP weights, reaching a minimum at 
� = 87% and � = 85% , respectively.

3.3 � Surface estimation

We scanned the non-rigid EGD (Esophagogastroduodenos-
copy) simulator to obtain the ground truth 3D data. Recon-
structed 3D surface and ground truth 3D data were aligned 
using iterative closest point algorithm (ICP). RMSE for the 
reconstructed surface was calculated using the absolute tra-
jectory (ATE) RMSE measuring the root-mean-square of 
the Euclidean distances between estimated depth values 
and the corresponding ground truth values. RMSE results 
in Table 2 show that even in very challenging trajectories 
with 4–7 sudden movements, strong noise and reflections, 
our system is capable of providing a reliable and accurate 
3D surface reconstruction. A sample 3D reconstruction pro-
cedure is shown in Fig. 8 for visual reference.

3.4 � Computational performance

To analyze the computational performance of the system, 
we observed the average frame processing time across tra-
jectories 1–4. The test platform was a desktop PC with an 
Intel Xeon E5-1660v3- CPU at 3.00, 8 cores, 32 GB of RAM 
and an NVIDIA Quadro K1200 GPU with 4 GB of memory. 
The execution time of the system depended on the number 
of surfels in the map, with an overall average of 48 ms per 
frame scaling to a peak average of 53 ms implying a worst 
case processing frequency of 18 Hz.

3.5 � Comparison with ORB SLAM

We compared the proposed method with ORB SLAM using 
our endoscopic capsule dataset. We chose ORB SLAM due 
to its state-of-the-art performance in various tasks, publicly 
available code and its recent use in endoscopic applications. 
We make the following observations after a detailed theo-
retical and practical evaluation of the differences between 
the proposed medical SLAM and ORB SLAM:

•	 ORB SLAM is based on feature matching while direct 
medical SLAM uses joint photometric- geometric pose 
estimation. In our evaluation, we observed that for endo-
scopic images, direct pose estimation is advantageous as 
compared to feature-based methods because specularity, 
noise and presence of fewer robustly identifiable features 
reduce the matching accuracy across frames.

Fig. 6   Photo of the endoscopic capsule robot prototype used in the 
experiments

Table 1   Trajectory lengths and RMSE results in meters for different 
endoscopic cameras

Trajectory 
ID

POTENSIC MISUMI AWAIBA LENGTH

1 0.015 0.019 0.020 0.414
2 0.018 0.020 0.023 0.513
3 0.017 0.021 0.025 0.432
4 0.032 0.037 0.042 0.478
5 0.035 0.039 0.045 0.462
6 0.038 0.043 0.048 0.481
7 0.041 0.044 0.049 0.468
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•	 Direct medical SLAM needs a good initialization for 
pose estimation to avoid local minima while ORB SLAM 
does not require initialization.

•	 Direct medical SLAM employs a frame-to-model align-
ment strategy, which is robust to unexpected severe drifts 
inside GI tract. ORB SLAM on the other hand, performs 
frame-to-frame alignment and may have difficulties 
recovering from such drifts.

•	 Direct medical SLAM is computationally heavy while 
ORB SLAM can run on standard CPU in real-time. 
However, modern GPUs can be used to accelerate direct 
medical SLAM to near real-time as well.

•	 Direct medical SLAM tolerates larger motions between 
successive frames, while ORB SLAM expects smaller 
motions. However, we observed that both methods fail 
for very large inter-frame motion that leads to small over-
lap between successive frames.

•	 ORB SLAM’s reconstruction is in the form of a sparse 
point cloud of the scanned inner organ, whereas direct 

medical SLAM creates a dense and high quality 3D map 
of the organ.

•	 Qualitative and quantitative comparisons depicted in 
Figs. 7, 9a, b indicate large deviations of ORB SLAM 
from ground truth, whereas our method is able to stay 
close to the ground truth even in loopy parts of the tra-
jectories.

4 � Conclusion

In this paper, we presented a direct and dense visual 
SLAM method for endoscopic capsule robots. Our system 
makes use of surfel-based dense data fusion in combina-
tion with frame-to-model tracking and non-rigid deforma-
tion. Experimental results suggest the effectiveness of the 
proposed system, both quantitatively and qualitatively, in 
occasionally looping endoscopic capsule robot trajectories 
and comprehensive inner organ scanning tasks. In future, 

Fig. 7   Sample trajectories estimated by the proposed method, ORB SLAM and ground truth
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Fig. 8   Frame-by-frame 3D reconstruction of the soft stomach simulator surface by the proposed medical SLAM method

Fig. 9   RMSE results for frame-to-model alignment (frame2model), photometric alignment (rgb-only) and frame-to-frame alignment (frame-
2frame)
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we aim to extend our work into stereo capsule endoscopy 
applications to achieve even more accurate localization and 
mapping.
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Magnetic-Visual Sensor Fusion-based Dense 3D Reconstruction and
Localization for Endoscopic Capsule Robots

Mehmet Turan1, Yasin Almalioglu2, Evin Pinar Ornek3, Helder Araujo4, Mehmet Fatih Yanik 5, and Metin Sitti6

Abstract— Reliable and real-time 3D reconstruction and
localization functionality is a crucial prerequisite for the nav-
igation of actively controlled capsule endoscopic robots as an
emerging, minimally invasive diagnostic and therapeutic tech-
nology for use in the gastrointestinal (GI) tract. In this study,
we propose a fully dense, non-rigidly deformable, strictly real-
time, intraoperative map fusion approach for actively controlled
endoscopic capsule robot applications which combines mag-
netic and vision-based localization, with non-rigid deformations
based frame-to-model map fusion. The performance of the
proposed method is demonstrated using four different ex-vivo
porcine stomach models. Across different trajectories of varying
speed and complexity, and four different endoscopic cameras,
the root mean square surface reconstruction errors 1.58 to 2.17
cm.

I. INTRODUCTION

Gastrointestinal diseases are the primary diagnosis for
about 28 million patient visits per year in the United
States[1]. In many cases, endoscopy is an effective diagnostic
and therapeutic tool, and as a result about 7 million upper and
11.5 million lower endoscopies are carried out each year in
the U.S. [2]. Wireless capsule endoscopy (WCE), introduced
in 2000 by Given Imaging Ltd., has revolutionized patient
care by enabling inspection of regions of the GI tract that are
inaccessible with traditional endoscopes, and also by reduc-
ing the pain associated with traditional endoscopy [3]. Going
beyond passive inspection, researchers are striving to create
capsules that perform active locomotion and intervention [4].
With the integration of further functionalities, e.g. remote
control, biopsy, and embedded therapeutic modules, WCE
can become a key technology for GI diagnosis and treatment
in near future.

Several research groups have recently proposed active,
remotely controllable robotic capsule endoscope prototypes
equipped with additional operational functionalities, such as
highly localized drug delivery, biopsy, and other medical
functions [5]–[15]. To facilitate effective navigation and

1Mehmet Turan is with the Physical Intelligence Department, Max Planck
Institute for Intelligent Systems, Germany turan@is.mpg.de

2Yasin Almalioglu is with the Computer Science Department, University
of Oxford, Oxford, UK yasin.almalioglu@cs.ox.ac.uk

3Evin Pinar Ornek is with the Informatics Department, Technical Uni-
versity of Muenich, Germany evin.oernek@tum.de
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5M. Fatih Yanik is with the Department of Information Technology and
Electrical Engineering, Zurich, Switzerland yanik@ethz.ch

6Metin Sitti is with the Physical Intelligence Department, Max Planck
Institute for Intelligent Systems, Germany sitti@is.mpg.de

Fig. 1: System overview including 5-DoF magnetic local-
ization, 6-DoF visual joint photometric-geometric frame-to-
model pose optimization, inter-sensor calibration, particle
filtering based sensor fusion, non-rigid deformations based
frame-to-model map fusion.

intervention, the robot must be accurately localized and
must also accurately perceive the surrouding tissues. Three-
dimensional intraoperative SLAM algorithms will therefore
be an indispensable component of future active capsule
systems. Several localization methods have been proposed
for robotic capsule endoscopes such as fluoroscopy [16], ul-
trasonic imaging [17], positron emission tomography (PET)
[16], magnetic resonance imaging (MRI) [16], radio trans-
mitter based techniques, and magnetic field-based techniques
[18]. It has been proposed that combinations of sensors,
such as RF range estimation and visual odometry, may
improve the estimation accuracy [19]. Morover, solutions
that incorporate vision are attractive because a camera is
already present on capsule endoscopes, and vision algorithms
have been widely applied for robotic localization and map
reconstruction.

Feature-based SLAM methods have been applied on endo-
scopic type of image sequences in the past e.g [6], [8]–[11],
[20]–[23]. As improvements to accomodate the flexibility of
the GI tract, [24] suggested a motion compensation model
to deal with peristaltic motions, whereas [25] proposed a
learning algorithm to deal with them. [26] adapted paral-
lel tracking and mapping techniques to a stereo-endoscope
to obtain reconstructed 3D maps that were denser when
compared to monoscopic camera methods. [27] has applied
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Fig. 2: Demonstration of the active endoscopic capsule robot operation using MASCE (Magnetically actuated soft capsule
endoscope) designed for disease detection, drug delivery and biopsy-like operations in the upper GI-tract. MASCE is
composed of a RGB camera, a permanent magnet, an empty space for drug chamber and a biopsy tool. Electromagnetic coils
based actuation unit below the patient table excerts forces and torques to execute the desired motion. Medician operates the
screening, drug delivery and biosy processes in real-time using the live video stream onto the medical workstation and the
controller joystick to manevour the endoscopic capsule to the desired position/orientation and to execute desired therapeutic
actions such as drug release and biopsy. Actuation system of the MASCE: The magnet exerts magnetic force and torque
on the capsule in response to a controlled external magnetic field. The magnetic torque and forces are used to actuate the
capsule robot and to release drug. Magnetic fields from the electromagnets generate the magnetic force and torque on the
magnet inside MASCE so that the robot moves inside the workspace. Sixty-four three-axis magnetic sensors are placed on
the top, and nine electromagnets are placed in the bottom.

ORB features to track the camera and proposed a method to
densify the reconstructed 3D map, but pose estimation and
map reconstruction are still not accurate enough. All of these
methods can fail to produce accurate results in cases of low
texture areas, motion blur, specular highlights, and sensor
noise – all of which are typically present during endoscopy.
In this paper, we propose that a non-rigidly deformable
RGB Depth fusion method, which combines magnetic lo-
calization and visual pose estimation using particle filtering,
can provide real-time, accurate localization and mapping for
endoscopic capsule robots. We demonstrate the system in
four different ex-vivo porcine stomachs by measuring its
performance in terms of both surface mapping and capsule
localization accuracy.

II. SYSTEM OVERVIEW AND ANALYSIS

The system architecture of the method is depicted in
Figure 1. Alternating between localization and mapping, our
approach performs frame-to-model 3D map reconstruction
in real-time. Below we summarize key steps of the proposed
system:
• Estimate 3D position of the endoscopic capsule robot

pose using magnetic localization system;
• Estimate 3D rotation of the endoscopic capsule robot

pose using visual joint photometric-geometric frame-to-
model pose optimization;

• Perform offline inter-sensor calibration between mag-
netic hall sensor array and capsule camera system;

• Fuse magnetic position and visual rotation information
using particle filtering and 6-DoF rigid body motion
model;

• Perform non-rigid frame-to-model map registration
making use of hybrid magneto-visual pose estimation
and deformation constraints defined by the graph equa-
tions;

• In case there exists an intersection of the active model
with the inactive model within the current frame, fuse
intersecting regions and deform the entire model non-
rigidly.

III. METHOD

A. Magnetic Localization System

Our 5-DoF magnetic localization system is designed
for the position and orientation estimation of untethered
mesoscale magnetic robots [18]. The system uses an external
magnetic sensor system and electromagnets for the localiza-
tion of the magnetic capsule robot. A 2D-Hall-effect sensor
array measures the component of the magnetic field from
the permanent magnet inside the capsule robot at several
locations outside of the robotic workspace. Additionally, a
computer-controlled magnetic coil array consisting of nine
electromagnets generates the magnetic field for actuation.
The core idea of our localization technique is the separation
of the capsule’s magnetic field component from the actuator’s
magnetic field component. For that purpose, the actuator’s
magnetic field is subtracted from the magnetic field data



Fig. 3: Illustration of the experimental setup. MASCE is a magnetically actuated robotic capsule endoscope prototype which
has a ringmagnet on the body. An electromagnetic coil array consisting of nine coils is used for the actuation of the MASCE.
An opened and oiled porcine stomach simulator is used to represent human stomach. Artec 3D scanner is used for ground
truth map estimation. OptiTrack system consisting of eight infrared cameras is employed for the ground truth pose estimation.

which is acquired by a Hall-effect sensor array. As a further
step, second-order directional differentiation is applied to
reduce the localization error. The magnetic localization sys-
tem estimates a 5-DoF pose, which includes 3D translation
and rotation about two axes. (From the magnetic localization
information, our system only uses the 3D position parameters
and the scale information).

B. Visual Localization

We propose the use of a direct surfel map fusion method
for actively controllable endoscopic capsule robots. The core
algorithm is inspired by and modified from the ElasticFusion
method originally described by Whelan et al. [28], which
uses a dense map and non-rigid model deformation to
account for changing environments. It performs joint volu-
metric and photometric alignment, frame-to-model predictive
tracking, and dense model-to-model loop closure with non-
rigid space deformation. Prior to using endoscopic video with
such a method, the images must first be prepared.

1) Multi-scale vessel enhancement and depth image cre-
ation: Endoscopic images have mostly homogeneous and
poorly textured areas. To prepare the camera frames for
input into the ElasticFusion pipeline, our framework starts
with a vessel enhancement operation inspired from [29]. Our
approach enhances blood vessels by analyzing the multiscale
second order local structure of an image. First, we extract
the Hessian matrix :

H =

[
Ixx Ixy
Iyx Iyy

]
(1)

where I is the input image, and Ixx, Ixy, Iyx, Iyy the second
order derivatives, respectively. Secondly, eigenvalues |λ1| ≤
|λ2| and principal directions u1, u2 of the Hessian matrix are
extracted. The eigenvalues and principal directions are then
ordered and analyzed to decide whether the region belongs
to a vessel. To identify vessels in different scales and sizes,
multiple scales are created by convolving the input image
and the final output is taken as the maximum of the vessel
filtered image across all scales. Figure 4 shows input RGB
images, vessel detection and vessel enhancement results for
four different frames.

To create depth from input RGB data, we implemented
a real-time version of the perspective shape from shading

under realistic conditions [30] by reformulating the com-
plex inverse problem into a highly parallelized non-linear
optimization problem, which we solve efficiently using GPU
programming and a Gauss-Newton solver. Figure 4 shows
samples of input RGB images and depth images created from
them.

2) Joint photometric-geometric pose estimation: The
vision-based localization system operates on the principle
of optimizing both relative photometric and geometric pose
errors between consecutive frames. The camera pose of the
endoscopic capsule robot is described by a transformation
matrix Pt :

Pt =

[
Rt tt

01×3 1

]
∈ SE3. (2)

Given the depth image D , the 3D back-projection of a
point u is defined as p(u,D) = K−1ud(u), where K is the
camera intrinsics matrix and u is the homogeneous form of u.
Geometric pose estimation is performed by minimizing the
energy cost function Eicp between the current depth frame,
D l

t , and the active depth model, D̂a
t−1:

Eicp = ∑
k
((vk− exp(ξ̂ )Tvt

k) ·nk)2 (3)

where vk
t is the back-projection of the k-th vertex in D l

t ,
vk and nk are the corresponding vertex and normal from
the previous frame. T is the estimated transformation from
the previous to the current robot pose and exp(ξ̂ ) is the
exponential mapping function from Lie algebra se3 to Lie
group SE3, which represents small changes The photometric
pose ξ between the current surfel-based reconstructed RGB
image C l

t and the active RGB model Ĉ a
t−1 is determined by

minimizing the photometric energy cost function:

Ergb = ∑
u∈Ω

(
I(u,C l

t )− I(π(Kexp(ξ̂ )Tp(u,D l
t )), Ĉ

a
t−1)

)2

(4)
where as above T is the estimated transformation from
previous to the current camera pose.

The joint photometric-geometric pose optimization is de-
fined by the cost function:

Etrack = Eicp +wrgbErgb, (5)



Fig. 4: For a given RGB frame, we extract the Hessian matrix
and derive its eigenvalues and principal directions to detect
the vessel. We convolve the input frame and final output to
create multiple scale representations to identify the different
vessels. After enhancement of vessel detected frame, we use
shape from shading to create depth map. Qualitative results
for sample frames are illustrated in the figure. Here, the
dataset of our samples are collected in our experimental setup
from an ex-vivo real pig stomach.

with wrgb = 0.13, which was determined experimentally for
our datasets. For the minimization of this cost function in
real-time, the Gauss-Newton method is employed. At each
iteration of the method, the transformation T is updated
as T→ exp(ξ̂ )T. For scene reconstruction, we use surfels.
Each surfel has a position, normal, color, weight, radius,
initialization timestamp and last updated timestamp. We also
define a deformation graph consisting of a set of nodes and
edges to detect non-rigid deformations throughout the frame
sequence. Each node G n has a timestamp G n

t0 , a position G n
g ∈

R3 and a set of neighboring nodes N (G n). The directed
edges of the graph are neighbors of each node. A graph is
connected up to a neighbor count k such that ∀n, |N (G n)|=
k. Each node also stores an affine transformation in the
form of a 3× 3 matrix G n

R and a 3× 1 vector G n
t . When

deforming a surface, the G n
R and G n

t parameters of each node
are optimized according to surface constraints. In order to
apply a deformation graph to the surface, each surfel M s

identifies a set of influencing nodes in the graph I (M s,G ).
The deformed position of a surfel is given by:

M̂ s
p = φ(M s)= ∑

n∈I (M s,G )

wn(M s)[G n
R(M

s
p−G n

g )+G n
g +G n

t ]

(6)
while the deformed normal of a surfel is given by:

M̂ s
p = ∑

n∈I (M s,G )

wn(M s)G n−1T

R M s
n , (7)

where wn(M s) is a scalar representing the influence of G n

on surfel M s, summing to a total of 1 when n = k:

wn(M s) = (1−||M s
p−G n

g ||2/dmax)
2. (8)

Here, dmax is the Euclidean distance to the k+1-nearest node
of Ms.

To ensure a globally consistent surface reconstruction, the
framework closes loops with the existing map as those areas
are revisited. This loop closure is performed by fusing reac-
tivated parts of the inactive model into the active model and
simultaneously deactivating surfels which have not appeared
for a period of time.

C. Particle Filtering based Magneto-Visual Sensor Fusion

We developed a particle filtering based sensor fusion
method for endoscopic capsule robots which provides ro-
bustness against sensor failure through the introduction of
latent variables characterizing the sensor’s reliability as either
normal or failing, which are estimated along with the system
state. The method is inspired by and modifed from [31]. As
motion model, we use a rigid motion model (3D rotation and
3D translation) assuming constant velocity which is fairly
obeyed during incremental motions of magnetically actuated
endoscopic capsule robots. The proposed fusion approach
estimates the 3D translation using the measurements from the
magnetic sensor, which include the scale factor, and the 3D
rotation using visual information provided by the monocular
endoscopic capsule camera.

The state xt composes the 6-DoF pose for the capsule
robot, which is assumed to propagate in time according to a
transition model:

xt = f (xt−1,vt) (9)

where f is a non-linear state transition function and vt
is white noise. t is the index of a time sequence, t ∈
{1,2,3, ...}. Observations of the pose are produced by n
sensors zk,t(k = 1, ...,n) in general, where the probability
distribution p(zk,t |xt) is known for each sensor. We estimate
the 6-DoF pose states relying on latent (hidden) variables by
using the Bayesian filtering approach. The hidden variables
of sensor states are denoted as sk,t , which we call switch
variables, where sk,t ∈ {0, ...,dk} for k = 1, ...,n. dk is the
number of possible observation models, e.g., failure and
nominal sensor states. The observation model for zk,t can
be described as:

zk,t = hk,sk,t ,t(xt)+wk,sk,t ,t (10)

where hk,sk,t ,t(xt) is the non-linear observation function and
wk,sk,t ,t is the observation noise. The latent variable of the
switch parameter sk,t is defined to be 0 if the sensor is in a
failure state, which means that observation zk,t is statistically
independent of xt , and 1 if the sensor k is in its nominal state
of work. The prior probability for the switch parameter sk,t
being in a given state j, is denoted as αk, j,t and it is the
probability for each sensor to be in a given state:

Pr(sk,t = j) = αk, j,t , 0≤ j ≤ dk (11)

where αk, j,t ≥ 0 and ∑dk
j=0 αk, j,t = 1 with a Markov evo-

lution property. The objective posterior density function
p(x0:t ,s1:t ,α0:t |z1:t) and the marginal posterior probability
p(xt |z1:t) , in general, cannot be determined in a closed form
due to its complex shape. However, sequential Monte Carlo



(a) Translational error (b) Rotational error

(c) Depth error (d) Trajectory error

Fig. 5: Figure (a) and Figure (b) demonstrates translational and rotational errors of x, y, z axes for our proposed method.
The translational motion of 5 mm results in around 0.5 mm drift on average for x,y,z, whereas a 5 degree rotational motion
results in 0.5 degree error maximum. The absolute depth error results for magnetic localization, visual localization and our
method is illustrated in (c). It can be observed that our method outperforms the others in depth estimation for different
trajectory lengths. In (d), we compare the trajectory errors of magnetic localization, visual localization, ORB SLAM, LSD
SLAM and our method. For each of different trajectory lengths, our method outperforms the localization methods that use
only visual or magnetic sensors and SLAM methods. For example, in a trajectory with 20 cm, our method estimates with
a 1.25 cm error, whereas the error of magnetic localization is 1.6, visual localization is 2.1, ORB SLAM is 2.6, and LSD
SLAM is 3.

methods (particle filters) provide a numerical approximation
of the posterior density function with a set of samples (par-
ticles) weighted by the kinematics and observation models.

Sensor Failure Detection and Handling: The proposed
multi-sensor fusion approach is able to detect the sensor
failure periods and to handle the failures, accordingly. As
seen in Fig. 6, the posterior probabilities of the switch
parameters sk,t and the minimum mean square error (MMSE)
estimates of αk,t indicate an accurate detection of sensor fail-
ure states. Visual localization failed between seconds 14-36
due to very fast frame-to-frame motions and magnetic sensor
failed between seconds 57-76 due to increased distance of
the ringmagnet to the sensor array. Once a sensor failure is
detected, the approach stops to use this sensor information
until the failure state ends and uses prior information and
rigid body motion model to predict the misssing information.
Thanks to this switching option ability, MMSE is kept low
during sensor failure as seen in Figure 6. In our sensor failure

model, we do not make a Markovian assumption for the
switch variable sk,t but we do for its prior αk,t , resulting
in a priori dependent on the past trajectory sections, which
is more likely for the incremental endoscopic capsule robot
motions. The model thus introduces a memory over the past
sensor states rather than simply considering the last state. The
length of the memory is tuned by the hyper-parameters σα

k,t ,
leading to a long memory for large values and vice-versa.
This is of particular interest when considering sensor fail-
ures. Our system detects automatically failure states. Hence,
the confidence in the vision sensor decreases when visual
localization fails recently due to occlusions, fast-frame-to
frame changes etc. On the other hand, the confidence in
magnetic sensor decreases if the magnetic localization fails
due to noise interferences from environment and/or if the
ringmagnet has a big distance to the magnetic sensor array.



Fig. 6: The minimum mean square error (MMSE) of αk,t for endoscopic RGB camera (left) and for magnetic localization
system (right). The switch parameter, sk,t , and the confidence parameter αk,t reflect the failure times accurately: Visual
localization fails between 39− 68 seconds and magnetic localization fails between 78− 92 seconds. Both failures are
detected confidentially.

D. Relative pose of magnetic and visual localization systems

To relate the magnetic actuation and localization system
(which is seen in Fig. 2) with the proposed vision system,
the relative pose has to be estimated. The relative pose can
be estimated using rigid motion from the capsule and the
constraint of the rigid transformation between the magnetic
sensor coordinate system and the camera coordinate system
(as in eye-in-hand calibration). The vision system measures
the pose of the camera, and the magnetic localization system
measures the 5D pose of the magnet on the MASCE. The
transformation between the coordinate frames attached to
the ringmagnet and to the camera origin must be known,
because the particle filter assumes that the two systems
make measurements on the same system state, which in
this case is a single rigid body pose associated with the
capsule. In this case the magnetic system provides a 5-
DoF pose while the vision system yields a 6-DoF pose.
To estimate the relative pose we assumed a value for the
missing rotational DoF in the magnetic sensor data and
used an approach based on the method described in [32].
Several motions were performed, and using the estimates
of the relative pose (between consecutive positions), the
rigid transformation between the two coordinate systems was
estimated. The use of several motions allowed the estimation
of the uncertainty in the parameters.

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of our system both quan-
titatively and qualitatively in terms of surface reconstruc-
tion, trajectory estimation and computational performance.
Figure 3 illustrates our experimental setup. Four different
endoscopic cameras were used to capture endoscopic capsule
videos which were mounted on our magnetically activated
soft capsule endoscope (MASCE) systems. The dataset was
recorded on four different open non-rigid porcine stomach.
Ground truth 3D reconstructions of stomachs were acquired
by scanning with a high-quality 3D scanner Artec Space

Spider. These 3D scans served as the gold standard for the
evaluations of the 3D map reconstruction. To obtain the
ground truth for 6-DoF camera pose, an OptiTrack motion
tracking system consisting of eight infrared cameras was
utilized. A total of 15 minutes of stomach videos were
recorded containing over 10K frames. Some sample frames
of the dataset are shown in Fig. 4 for visual reference.

A. Surface reconstruction and trajectory estimation

For the duration of the pose and map reconstruction
evaluations, we have only utilized sequences where the
Bayesian filtering algorithm confirmed that camera and mag-
netic sensor remained in the nominal sensor state. We used
the map benchmarking technique proposed by [33] for the
evaluation of the map reconstruction and ATE [34] for tra-
jectory comparisons. Since iterative closest point algorithm
(ICP) is a non-convex procedure highly dependent on a
good initialization, we first manually align reference and
estimated point cloud by picking six corresponding point
pairs between both point clouds. Using these six manually
picked corresponding point pairs, the transformation matrix
is estimated which minimizes square sum difference between
aligned and reference cloud. As a next step, ICP is applied
between manually aligned cloud pair to fine-tune the align-
ment. The termination criteria for ICP iterations is an RMSE
difference of 0.001 cm between consecutive iterations. We
use Euclidean distances between aligned and reference cloud
points to calculate the RMSE for depth. Surface reconstruc-
tion errors are compared with the magnetic localization-
based and visual localization-based surface reconstruction
errors in Fig. 5c. Results indicate that the proposed method
reconstructs 3D organ surface very precisely outperforming
both methods. Table I shows the reconstruction error metrics
for full trajectory lengths and four different porcine stomachs
including mean, median, standard deviation, minimum and
maximum error. Sample 3D reconstructed maps for different
lengths of frame sequences (10, 100, 300, 500 frames) are
shown in Fig. 7, for visual reference.



(a) 10 frames (b) 100 frames

(c) 300 frames (d) 500 frames

Fig. 7: Reconstructed 3D map of a porcine non-rigid stomach simulator for total number of 10, 100, 300 and 500 frames,
respectively. The illustrations are complementary to surface reconstruction errors given in Fig. 5d. It is observable that the
proposed method reconstructs 3D organ surface precisely .

Figures 5a and 5b demonstrate absolute translational and
rotational errors for our method, magnetic sensor-based lo-
calization and vision-based localization. Observation shows
that proposed hybrid approach outperforms both sensor types
clearly in terms of translational and rotational motion esti-
mation. A translational motion of 5 mm results in a drift
of around 0.5 mm on average for x,y,z axes, whereas a
5 degree rotational motion results in a maximum error of
0.5 degree. Figure 5 shows the absolute trajectory errors
acquired by our method, compared to ORB SLAM [34],
LSD SLAM [35], magnetic sensor-based and visual sensor-

based localization. Results again indicate, that the proposed
hybrid method outperforms other methods. For example, in
a trajectory of 20 cm length, our method estimates with
an error of 1.25 cm, whereas magnetic localization, visual
localization, ORB and LSD SLAM estimate with an error of
1.6 cm, 2.1 cm, 2.6 cm, and 3 cm, respectively.

B. Computational Performance

To analyze the computational performance of the system,
we observed the average frame processing time across the
videos. The test platform was a desktop PC with an Intel



TABLE I: Reconstruction results for different stomach se-
quences.

Error (cm) St0 St1 St2 St3
Mean 1.81 1.97 1.58 2.17

Median 1.69 1.55 1.38 1.98
Std. 1.94 2.67 1.73 2.32
Min 0.00 0.00 0.00 0.00
Max 3.4 4.2 3.1 4.5

Xeon E5-1660v3-CPU at 3.00 GHz, 8 cores, 32GB of RAM
and an NVIDIA Quadro K1200 GPU with 4GB of memory.
The execution time of the system is depended on the number
of surfels in the map, with an overall average of 45 ms per
frame scaling to a peak average of 52 ms implying a worst
case processing frequency of 19 Hz.

V. CONCLUSION

In this paper, we have presented a magnetic-RGB Depth
fusion based 3D reconstruction and localization method for
endoscopic capsule robots. Our system makes use of surfel-
based dense reconstruction in combination with particle filter
based fusion of magnetic and visual localization information
and sensor failure detection. The proposed system is able
to produce a highly accurate 3D map of the explored inner
organ tissue and is able to stay close to the ground truth
endoscopic capsule robot trajectory even for challenging
robot trajectories. In the future, in vivo testing is required
to validate the accuracy and robustness of the approach in
the challenging conditions of the GI tract. We also intend to
extend our work into stereo capsule endoscopy applications
to achieve even more accurate localization and mapping. In
addition, an improved estimation of the relative pose between
the coordinate systems of the sensors may result in improved
accuracy.
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and M. Sitti, “Six degree-of-freedom localization of endoscopic
capsule robots using recurrent neural networks embedded into a
convolutional neural network,” CoRR, vol. abs/1705.06196, 2017.
[Online]. Available: http://arxiv.org/abs/1705.06196

[15] M. Turan, Y. Almalioglu, H. Araújo, E. Konukoglu, and M. Sitti,
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a b s t r a c t 

Ingestible wireless capsule endoscopy is an emerging minimally invasive diagnostic technology for in- 

spection of the GI tract and diagnosis of a wide range of diseases and pathologies. Medical de- 

vice companies and many research groups have recently made substantial progresses in convert- 

ing passive capsule endoscopes to active capsule robots, enabling more accurate, precise, and intu- 

itive detection of the location and size of the diseased areas. Since a reliable real time pose es- 

timation functionality is crucial for actively controlled endoscopic capsule robots, in this study, we 

propose a monocular visual odometry (VO) method for endoscopic capsule robot operations. Our 

method lies on the application of the deep recurrent convolutional neural networks (RCNNs) for the 

visual odometry task, where convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs) are used for the feature extraction and inference of dynamics across the frames, respec- 

tively. Detailed analyses and evaluations made on a real pig stomach dataset proves that our system 

achieves high translational and rotational accuracies for different types of endoscopic capsule robot 

trajectories. 

© 2017 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Following the advances in material science in last decades, un- 

tethered pill-size, swallowable capsule endoscopes with an on- 

board camera and wireless image transmission device have been 

developed and used in hospitals for screening the gastrointesti- 

nal tract and diagnosing diseases such as the inflammatory bowel 

disease, the ulcerative colitis and the colorectal cancer. Unlike 

standard endoscopy, endoscopic capsule robots are non-invasive, 

painless and more appropriate to be employed for long duration 

screening purposes. Moreover, they can access difficult body parts 

that were not possible to reach before with standard endoscopy 

(e.g., small intestines). Such advantages make pill-size capsule en- 

doscopes a significant alternative screening method over standard 

endoscopy [1–5] . However, current capsule endoscopes used in 
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hospitals are passive devices controlled by peristaltic motions of 

the inner organs. The control over capsule’s position, orientation, 

and functions would give the doctor a more precise reachability of 

targeted body parts and more intuitive and correct diagnosis op- 

portunity [6–10] . Therefore, several groups have recently proposed 

active, remotely controllable robotic capsule endoscope prototypes 

equipped with additional functionalities such as local drug deliv- 

ery, biopsy and other medical functions [2,11–19] . However, an ac- 

tive motion control needs feedback from a precise and reliable real 

time pose estimation functionality. In last decade, several localiza- 

tion methods [4,20–23] were proposed to calculate the 3D posi- 

tion and orientation of the endoscopic capsule robot such as fluo- 

roscopy [4] , ultrasonic imaging [20–23] , positron emission tomog- 

raphy (PET) [4,23] , magnetic resonance imaging (MRI) [4] , radio 

transmitter based techniques and magnetic field based techniques 

[16] . The common drawback of these localization methods is that 

they require extra sensors and hardware design. Such extra sensors 

have their own deficiencies and limitations if it comes to their ap- 

plication in small scale medical devices such as space limitations, 

cost aspects, design incompatibilities, biocompatibility issue and 

the interference of sensors with activation system of the device. 

https://doi.org/10.1016/j.neucom.2017.10.014 
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Fig. 1. Traditional visual odometry pipeline. 

As a solution of these issues, a trend of visual odometry meth- 

ods have attracted the attention for the localization of such small 

scale medical devices. A classic visual odometry pipeline typically 

consisting of camera calibration, feature detection, feature match- 

ing, outliers rejection (e.g. RANSAC), motion estimation, scale es- 

timation and global optimization (bundle adjustment) is depicted 

in Fig. 1 . Although some state-of-the-art algorithms based on this 

traditional pipeline have been applied for the visual odometry task 

of the hand-held endoscopes in the past decades, their main defi- 

ciency is tracking failures in low textured areas. In last years, deep 

learning (DL) techniques have been dominating many computer vi- 

sion related tasks with some promising result, e.g. object detection, 

object recognition, classification problems etc. Contrary to these 

high-level computer vision tasks, VO is mainly working on motion 

dynamics and relations across sequence of images, which can be 

defined as a sequential learning problem. With that motivation, we 

propose a novel monocular VO algorithm based on deep recurrent 

convolutional neural networks (RCNNs). Since it is designed in an 

end-to-end fashion, it does not need any module from the classic 

VO pipeline to be integrated. The main contributions of our paper 

are as follows: 

• To the best of our knowledge, this is the first monocular VO ap- 

proach through deep learning techniques developed for the en- 

doscopic capsule robot and hand-held standard endoscope lo- 

calization. 

• Neither prior knowledge nor parameter tuning is needed to re- 

cover the absolute trajectory scale contrary to monocular tradi- 

tional VO approach. 

• A novel RCNN architecture is introduced which can successfully 

model sequential dependence and complex motion dynamics 

across endoscopic video frames. 

• A real pig stomach dataset and a synthetic human simulator 

dataset with 6-DoF ground truth pose labels and 3D scan are 

recorded, which we are considering to publish for the sake of 

other researchers in that area. 

The proposed method solves several issues faced by typical vi- 

sual odometry pipelines, e.g. the need to establish a frame-to- 

frame feature correspondence, vignetting, motion blur, specularity 

or low signal-to-noise ratio (SNR). We think that DL based en- 

doscopic VO approach is more suitable for such challenge areas 

since the operation environment (GI tract) has similar organ tissue 

patterns among different patients which can be learned by a so- 

phisticated machine learning approach easily. Even the dynamics 

of common artefacts such as vignetting, motion blur and specular- 

ity across frame sequences could be learned and used for a better 

pose estimation. 

As the outline of this paper, Section 2 introduces the proposed 

RCNN based localization method in detail. Section 3 presents our 

dataset and the experimental setup. Section 4 shows our exper- 

imental results, we achieved for 6-DoF localization of the endo- 

scopic capsule robot. Section 5 gives future directions. 

2. System overview and analysis 

Our architecture makes use of inception modules for feature ex- 

traction and RNN for sequential modelling of motion dynamics to 

regress the robot’s orientation and position in real time (5.3 ms 

per frame). It takes two consecutive endoscopic RGB Depth frames 

each with timestamp and regresses the 6-DoF pose of the robot 

without need of any extra sensor. For the depth image creation 

from RGB input images, we used shape from shading (SfS) tech- 

nique of Tsai and Shah, which is based on the following assump- 

tions [24] : 

• The object surface is Lambertian; 

• The light comes from a single point light source; 

• The surface has no self-shaded areas. 

For more details of the Tsai–Shah SfS method, the reader is re- 

ferred to the original paper of the authors. In past couple of years, 

some powerful CNN architectures, such as GoogleNet [25] , VGG16 

[26] , ResNet50 [27] have been developed and evaluated for var- 

ious high level computer vision tasks, e.g. object detection, ob- 

ject recognition and classification [25,28–30] . One major drawback 

of CNN architectures is the fact that they only analyse just-in- 

moment information, whereas VO is rather dependent on the cor- 

relative information across frames. Unlike traditional feed-forward 

artificial neural networks, RCNN can use its internal memory to 

process arbitrarily long sequences by its directed cycles between 

the hidden units. Therefore, we think that RCNN architectures are 

more suitable than CNN architectures for VO tasks. The proposed 

deep EndoVO (endoscopic visual odometry) approach works as fol- 

lows: 

Algorithm 1 Deep EndoVO. 

1: Take two consecutive input RGB images. 

2: Create the depth images from RGB images using Tsai–Shah SfS 

method. 

3: Subtract mean RGB Depth value of the training set from the 

RGB Depth images. 

4: Stack the preprocessed RGB Depth frame pair to form a tensor. 

5: Serve the tensor into the stack of inception modules to create 

the feature vector. 

6: Feed the feature representation into the RNN layers. 

7: Estimate the 6-DoF relative pose. 

The proposed DL network consists of three inception layers and 

two LSTM layers concatenated sequentially. The inception layers, 

imitating visual cortex of human beings, are basically extracting 

multi-level features; i.e, features of different sizes such as small 

details, middle-size or larger features (see Fig. 3 b). The final incep- 

tion layer passes the feature representation into the RNN modules 

(see Fig. 3 a). RNNs are very suitable for modelling the dependen- 

cies across image sequences and for creating a temporal motion 

model since it has a memory of hidden states over time and has 

directed cycles among hidden units, enabling the current hidden 

state to be a function of arbitrary sequences of inputs (see Fig. 3 a). 
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Fig. 2. Experimental overview. 

Fig. 3. The structure of the LSTM and inception layers of the proposed model is shown. 

Thus, using RNN, the pose estimation of the current frame benefits 

from information encapsulated in previous frames [32,33] . Given a 

set of inception features x k at time k , RNN updates at time step k, 

W denote corresponding weight matrices of the hidden units, b the 

bias vector, and H an element-wise hyperbolic tangent based acti- 

vation function. Long short-term memory (LSTM) is more suitable 

than RNN to exploit longer trajectories since it avoids the vanishing 

gradient problem of RNN resulting in a higher capacity of learning 

long-term relations among the sequences by introducing memory 

gates such as input, forget and output gates and hidden units of 

several blocks. The input gate controls the amount of new infor- 

mation flowing into the current state, the forget gate adjusts the 

amount of existing information that remains in the memory and 

the output gate decides which part of the information triggers the 

activations. The folded LSTM and its unfolded version over time 

are shown in Fig. 3 a along with the internal structure of a LSTM 

memory cell. It can be seen that unfolded LSTMs correspond to 

timestamps. Given the input vector x k at time k , the output vector 

h k −1 and the cell state vector c k −1 of the previous LSTM unit, the 

LSTM updates at time step k according to the following equations, 

where σ is sigmoid non-linearity, tanh is hyperbolic tangent non- 

linearity, W terms denote corresponding weight matrices, b terms 

denote bias vectors, i k , f k , g k , c k and o k are input gate, forget gate, 

input modulation gate, the cell state and output gate at time k , re- 

spectively [31] : 

f k = σ (W f · [ x k , h k −1 ] + b f ) i k = σ (W i · [ x k , h k −1 ] + b i ) 

g k = tanh (W g · [ x k , h k −1 ] + b g ) c k = f k � c k −1 + i k � g k 

o k = σ (W o | cdot[ x k , h k −1 ] + b o ) h k = o k � tanh (c k ) 
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Fig. 4. Architecture of the proposed RCNN based monocular VO system. 

Although the LSTM is prone to vanishing gradient problem 

of RNN and is capable to detect the long-term dependencies, its 

learning capacity can be increased further by stacking multiple 

LSTM layers vertically. Thus, our deep RNN consists of two LSTM 

layers with the output sequence of the first one forming the in- 

put sequence of the second one each containing 10 0 0 hidden units, 

as illustrated in Fig. 4 . The proposed system, which learns transla- 

tional and rotational motions simultaneously to regress the 6-DoF 

pose, is trained on Euclidean loss using Adam optimization method 

with the following objective loss function: 

loss (I) = ‖ ̂

 x − x ‖ 2 + β‖ ̂

 q − q ‖ 2 (1) 

where x is the translation vector and q is the rotation vector. The 

pseudo-code to calculate the loss value is given in Algorithm 2 . In 

our loss function, a balance β must be kept between the orien- 

tation and translation loss values which are highly coupled each 

other as they are learned from the same model weights. Exper- 

imental results show that the optimal β is given by the ratio be- 

tween the loss values of predicted positions and orientations at the 

end of training session [30] . 

Algorithm 2 Pseudo code to calculate the loss over the network. 

1: procedure CalculateLoss 

2: loss ← 0 

3: for layer in layers do 

4: for top, loss _ weight in layer.tops, layer.loss _ weights do 

5: loss ← loss + loss _ weight × sum (top) 

The back-propagation algorithm is used to calculate the gradi- 

ents of RCNN weights, which are passed to the Adam optimization 

method to compute adaptive learning rates for each parameter em- 

ploying the first-order gradient-based optimization of the stochas- 

tic objective function. In addition to saving exponentially decaying 

average of past squared gradients, v t , Adam optimization keeps ex- 

ponentially decaying average of past gradients, m t that is similar to 

momentum. The update equations are given as 

(m t ) i = β1 (m t−1 ) i + (1 − β1 )(∇L (W t )) i (2) 

(v t ) i = β2 (v t−1 ) i + (1 − β2 )(∇L (W t )) 
2 
i (3) 

(W t+1 ) i = (W t ) i − α

√ 

1 − (β2 ) 
t 
i 

1 − (β1 ) 
t 
i 

(m t ) i √ 

(v t ) i + ε 
(4) 

We used default values proposed by [34] for the parameters β1 , 

β1 and ε: β1 = 0 . 9 , β2 = 0 . 999 and ε = 10 −8 . 

3. Dataset 

This section demonstrates the experimental setup of the pro- 

posed study, introduces our magnetically actuated soft capsule 

endoscopes (MASCE) and explains how the training and testing 

datasets were recorded. 

3.1. Magnetically actuated soft capsule endoscopes (MASCE) 

Our capsule prototype is a magnetically actuated soft capsule 

endoscope (MASCE) designed for disease detection, drug delivery 
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Fig. 5. MASCE design features and actuation unit. 

(a) Sample frames recorded on a real pig stomach (b) Sample frames recorded on EGD simulator

Fig. 6. Sample frames from the datasets used in the experiments. 

Table 1 

Endoscopic camera specifications used for the experiments. 

(a) Awaiba Naneye Endoscopic Camera (b) Misumi-V3506-2ES Camera 

Resolution 250 × 250 pixel Resolution 400 × 400 pixel 

Footprint 2.2 × 1.0 × 1.7 mm Diameter 8.2 mm 

Pixel size 3 × 3 μm 

2 Pixel size 5.55 × 5.55 μm 

2 

Frame rate 44 fps Frame rate 30 fps 

(c) Misumi-V3506-2ES Camera (d) Potensic Mini Camera 

Resolution 640 × 480 pixel Resolution 1280 × 720 pixel 

Diameter 8.6 mm Diameter 8.8 mm 

Pixel size 6.0 × 6.0 μm 

2 Pixel size 10.0 × 10.0 μm 

2 

Frame rate 30 fps Frame rate 30 fps 

and biopsy operations in the upper gastrointestinal tract. The pro- 

totype is composed of a RGB camera, a permanent magnet, a fine- 

needle and a drug chamber (see Fig. 5 for visual reference). The 

magnet exerts magnetic force and torque to the robot in response 

to a controlled external magnetic field [19] . The magnetic torque 

and forces are used to actuate the capsule robot and to release 

drug and deliver the needle through the hole in the bottom of 

the capsule. Magnetic fields from the electromagnets generate the 

magnetic force and torque on the magnet inside MASCE so that the 

robot moves inside the workspace. Sixty-four three-axis magnetic 

sensors are placed on the top, and nine electromagnets are placed 

in the bottom [19] . 

3.2. Training dataset 

We created two groups of training datasets. The first train- 

ing dataset was recorded on five different real pig stomachs (see 

Fig. 2 ), whereby the second dataset which was only used for train- 

ing purposes, was captured using a non-rigid open GI tract model 

EGD (esophagus gastro duodenoscopy) surgical simulator LM-103 

(see Fig. 2 ). To ensure that our algorithm is not tuned to a spe- 

cific camera model, four different commercial endoscopic cameras 

were employed, specifications of which are shown in Table 1 , ac- 

cordingly. For each pig stomach-camera combination, 20 0 0 frames 

were acquired which makes for four cameras and five pig stom- 

achs 40 , 0 0 0 frames, in total. Sample real pig stomach frames are 

shown in Fig. 6 a for visual reference. As a second training dataset, 

for each of four cameras, we captured 10 , 0 0 0 frames on an EGD 

human stomach simulator making 40 , 0 0 0 frames, in total. Sample 

synthetic training frames are shown in Fig. 6 b for visual reference. 

During video recording, Optitrack motion tracking system consist- 

ing of eight Prime-13 cameras and a tracking software was utilized 

to obtain 6-DoF localization ground truth data in a sub-millimeter 

precision (see Fig. 2 ) which was used as a gold standard for the 

evaluations of the pose estimation accuracy. 

3.3. Testing dataset 

We created a testing dataset recorded using five different real 

pig stomachs, which were not used for the training section. For 

each pig stomach-camera combination, 20 0 0 frames are acquired 

making 40 , 0 0 0 frames, in total. We did not capture any synthetic 

dataset for the testing session since it is less realistic due to ob- 

vious patterns of such artificial simulators. For all of the video 

records, again Optitrack motion tracking system was utilized to ob- 

tain 6-DoF localization ground truth. 

4. Evaluations and results 

Architecture was trained using Caffe library and NVIDIA 

Tesla K40 GPU. Using back-propagation-through-time method, the 

weights of hidden units were trained for up to 200 epochs with an 

initial learning rate of 0.001. Overfitting meaning that the noise or 

random fluctuations in the training data are picked up and learned 

as concepts by the model, whereas these concepts do not apply 

to a new data and negatively affect the ability of the model to 

make generalizations, was prevented using dropout and early stop- 

ping techniques (see Fig. 10 ). Dropout regularization technique in- 

troduced by [35] is an extremely effective and simple method to 

avoid overfitting. It samples a part of the whole network and up- 

dates its parameters based on the input data. Early stopping is an- 

other widely used technique to prevent overfitting of a complex 

neural network architecture which was optimized by a gradient- 

based method. The approach is executed by splitting the dataset 

into a training and a validation set to evaluate the generalization 

capability of the model. 
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(a) Change in the loss values for a good fitting (b) Change in the loss values for overfitting

Fig. 7. The decrease in the training and validation loss values. In overfitting case, the training loss gets smaller than the validation loss. However, the loss values are balanced 

for a good fit. 

(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3 (d) Trajectory 4

Fig. 8. Sample ground truth trajectories and estimated trajectories predicted by the DL based VO models. As seen, deep EndoVO is the closest to the ground truth trajectories. 

The scale is calculated and maintained correctly by the models. 

For the testing sessions, only real pig stomach recordings were 

used to ensure real world conditions. Additionally, we strictly 

avoided to use any frame from the training session for the testing 

session. Two separate experiments were conducted, whereas train- 

ing session of the first experiment was performed using only the 

synthetic training dataset (see Fig. 7 b) which we call simEndoVO 

and training session of the second experiment was performed 

using frames from both synthetic and real pig stomach dataset 

(see Fig. 7 b and a) which we call realEndoVO. The performance of 

the simEndoVO and realEndoVO approaches were analysed using 

averaged root mean square errors (RMSEs) for translational and 

rotational motions. For various trajectories with different complex- 

ity levels of motions, including uncomplicated paths with slow 

incremental translations and rotations, comprehensive scans with 

many local loop closures and complex paths with sharp rotational 

and translational movements, we performed testings on both 

simEndoVO and realEndoVO comparing them with GoogLeNet 

and ResNet50 architectures which were modified to regress 6-DoF 

pose values by removing softmax layer and integrating a fully- 

connected (FC) layer and an affine regressor layer. The average 

translational and rotational RMSEs for simEndoVO, realEndoVO, 

GoogLeNet and ResNet50 networks against different path lengths 

are shown in Fig. 9 , respectively. The results depicted indicate, that 

realEndoVO clearly outperforms GoogLeNet and ResNet50, whereas 

simEndoVO slightly outperforms them. We presume that the effec- 

tive use of LSTM in EndoVO architecture enabled learning motion 

dynamics across frame sequences, which is not feasible by archi- 

tectures working with the principle of just-in-moment information 

processing; i.e. GoogleNet and ResNet50. The results in Fig. 9 also 

indicate that the training procedure including both simulator and 

real dataset was more informative than training only with simu- 

lator dataset. On the other hand, the accuracies achieved by the 

modified GoogLeNet are slightly better than accuracies achieved by 

the modified ResNet50, proving the superiority of inception layers 

over residual networks for feature extraction related tasks. Derived 

from RMSEs calculated, the rotational motion parameters seem 

to be more prone to overfitting compared to translational motion 

parameters (see Fig. 10 for visual reference). The reason for that 

observation could be the fact that inner organ scanning procedures 

generally contain more translational motions than rotational mo- 
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(a) Trajectory length vs translation error (b) Trajectory length vs totation error

Fig. 9. Deep EndoVO outperforms both of the other models in terms of translational and rotational position estimation. 

(a) Training good fitting (b) Training overfitting

(c) Test good fitting (d) Test overfitting

Fig. 10. The affect of good fitting and overfitting. The first and the second rows show over-fitted and well-fitted models, respectively. As seen in subfigures, the model learns 

the details and noise in the training data to an undesired extent that it negatively impacts the performance of the model on the test data. 

tions resulting in a better learning for translations. As the length 

of the trajectory increases, both the translational and rotational 

error of all the proposed models significantly decrease (see Fig. 9 ). 

Some sample ground truth and estimated trajectories for real- 

EndoVO, GoogLeNet and ResNet50 are shown in Fig. 8 for visual 

reference. As seen in these sample trajectories, realEndoVO is able 

to stay close to the ground truth pose values for even sharp crispy 

motions, contrary to realEndoVO; GoogLeNet and ResNet50 path 

estimations which deviate drastically from the ground truth path 

values. Even for very fast and challenge paths such as Fig. 8 a and 

c, the deviations of realEndoVO from the ground truth still remain 

in an acceptable range for medical operations. In addition to that, 

it is clearly seen that all of the three evaluated neural network 

architectures are able to estimate the scale very accurately without 

using any prior information or post alignment techniques con- 

trary to traditional VO. Solving the scale ambiguity for monocular 

camera based VO makes our proposed DL based method more ben- 

eficial than traditional VO approach. As opposed to the traditional 

VO pipeline (see Fig. 1 ), the DL-based VO do not require any ex- 

plicit feature extraction, matching, outlier detection or multi-scale 

bundle adjustment-like parameter tuning requiring operations, 

which can be seen as further benefits of the proposed approach. 

4.1. Comparisons of deep EndoVO with state-of-the-art SLAM 

methods 

In this subsection, we compare the performance of the pro- 

posed deep EndoVO with two of the widely used state-of-the-art 

SLAM methods; i.e. large-scale direct monocular SLAM (LSD SLAM) 

[36] and the oriented fast and rotated brief SLAM (ORB SLAM) 
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(a) Trajectory length vs translation error (b) Trajectory length vs rotation error

Fig. 11. Deep EndoVO outperforms the state-of-the-art SLAM methods ORB SLAM and LSD SLAM in both the translation and orientation estimation. 

(a) Trajectory 1
(b) Trajectory 2

(c) Trajectory 3
(d) Trajectory 4

Fig. 12. The ground truth and the trajectory plots acquired via deep EndoVO, LSD SLAM and ORB SLAM. Deep EndoVO is the closest to the ground truth trajectories compared 

to the state-of-the-art SLAM methods. 

[37] . LSD SLAM is a direct image alignment-based method which 

optimizes the geometry using all of the image intensities. In ad- 

dition to higher accuracy and robustness particularly in environ- 

ments with little key points, this provides substantially more in- 

formation about the geometry of the environment, which can be 

very valuable for medical robot applications, as well. ORB SLAM 

on the other hand, relies on feature point extraction and track- 

ing to estimate camera pose and 3D map the environment. Even 

though it gives very promising results for feature-rich areas, its 

main deficiency appears once the robot enters poorly featured ar- 

eas. Tracking failures are commonly observable for poorly featured 

GI tract tissues making ORB SLAM less proper for our case. We be- 

lieve that our deep EndoVO architectures makes an optimal use 

of both direct and feature point information to estimate the pose. 

The average translational and rotational RMSEs for simEndoVO, 

realEndoVO, LSD SLAM and ORB SLAM, shown in Fig. 11 indi- 

cate that both simEndoVO and realEndoVO clearly outperform LSD 

SLAM and ORB SLAM in terms of pose accuracy. Sample trajectory 

estimations shown in Fig. 12 visualize clearly that the tracking ca- 

pability of the proposed deep EndoVO is much more robust and 

reliable compared to LSD SLAM and ORB SLAM. In many parts of 

the trajectories, ORB SLAM and LSD SLAM deviate from the ground 

truth trajectory drastically, whereas deep EndoVO is still able to 

stay close to the ground truth values even for most challenge tra- 

jectory sections (see Fig. 12 b and c). 

5. Conclusion 

In this study, we presented, to the best of our knowledge, the 

first deep VO method for endoscopic capsule robot and standard 

hand-held endoscope operations. The proposed system is able to 

achieve simultaneous representation learning and sequential mod- 
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elling of motion dynamics across frames by concatenating the in- 

ception modules with RNN layers. Many issues faced by traditional 

VO techniques such as feature correspondence establishment in 

low textured areas, high reflections, motion blur and low image 

quality are handled by the proposed deep EndoVO successfully. 

Since it is trained in an end-to-end manner, there is no need to 

carefully fine-tune the parameters of the system. As a future step, 

we consider to combine deep EndoVO with some functionalities 

from the traditional VO pipelines such as RANSAC for outlier de- 

tection and bundle fusion for globally consistent pose estimation 

etc to avoid drifts. Moreover, we consider to develop a stereo ver- 

sion of the proposed deep EndoVO approach. 
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Unsupervised Odometry and Depth Learning for Endoscopic Capsule
Robots

Mehmet Turan1, Evin Pinar Ornek2, Nail Ibrahimli 2, Can Giracoglu2, Yasin Almalioglu3,
Mehmet Fatih Yanik 4, and Metin Sitti5

Abstract— In the last decade, many medical companies and
research groups have tried to convert passive capsule endo-
scopes as an emerging and minimally invasive diagnostic tech-
nology into actively steerable endoscopic capsule robots which
will provide more intuitive disease detection, targeted drug
delivery and biopsy-like operations in the gastrointestinal(GI)
tract. In this study, we introduce a fully unsupervised, real-
time odometry and depth learner for monocular endoscopic
capsule robots. We establish the supervision by warping view
sequences and assigning the re-projection minimization to the
loss function, which we adopt in multi-view pose estimation and
single-view depth estimation network. Detailed quantitative and
qualitative analyses of the proposed framework performed on
non-rigidly deformable ex-vivo porcine stomach datasets proves
the effectiveness of the method in terms of motion estimation
and depth recovery.

I. INTRODUCTION

Advancements in various fields of science and technology
in the last decade has opened new pathways for non-
invasive examination of patient’s body and detailed inves-
tigation about diseases. Hospitals are using innovative ways
to provide accurate data from inside of the human body. As
an emerging example, various diseases such as colorectal
cancer and inflamatory bowel disease are diagnosed by the
usage of swallowable capsule endoscopes, which are non-
invasive, painless, suitable to be used for long duration
screening purposes which can access difficult body parts
(e.g.,small intestines) better than standard endoscopy. Such
benefits make swallowable, non-tethered capsule endoscopes
an exciting alternative over standard endoscopy [1], [2].

Current capsule endoscope technology employed in GI
tract monitoring and disease detection consists of passive
devices which are locomated by random peristaltic motions.
The doctor would have an easier access to fine-scale body
parts and could make more intuitive and correct diagnosis in
case of a precise and reliable control over the position of the
capsule. Many research groups attempted to build remotely
controllable active endoscopic capsule robot systems with
additional functionalities such as local drug delivery, biopsy
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(a) Training: Unlabeled image sequences

(b) Testing: Pose and depth prediction

Fig. 1: Unsupervised training approach consists of two sep-
arate neural networks, one for depth prediction and another
one for multi-view pose estimation. It requires unlabeled
image sequences from different temporal points to establish a
supervision basis. Models produce pose estimation between
two views from different perspectives parameterized as 6-
DoF motion, and depth prediction as a disparity map for a
given view.

and other medical functions [2]–[19], which are, on the other
hand, heavily dependent on a real-time and precise pose
estimation capability.

In this work, we propose a novel real-time localization
and depth estimation approach for endoscopic capsule robots
which mimic the remarkable ego-motion estimation and
scene reconstruction capabilities of human beings by training
an unsupervised deep neural network. The proposed network
consists of two simultaneously trained sub networks, the
first one assigned for depth estimation via encoder-decoder
strategy, the second assigned to regress the camera pose in
6-DoF. The model observes sequences of monocular images
and aims to interpret them to estimate executed camera
motion in 6-DoF and the depth map of the observed scene as
shown in Fig. 1. Our framework estimates the camera motion
and depth information in an end-to-end and unsupervised
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Fig. 2: Demonstration of the active endoscopic capsule robot
operation using MASCE (Magnetically actuated soft capsule
endoscope) designed for disease detection, drug delivery
and biopsy-like operations in the upper GI-tract. MASCE is
composed of a RGB camera, a permanent magnet, an empty
space for drug chamber and a biopsy tool. Electromagnetic
coils based actuation unit below the patient table exerts forces
and torques to execute the desired motion. Doctor operates
the screening, drug delivery and biopsy processes in real-time
using the live video stream onto the medical workstation and
the controller joystick to maneuver the endoscopic capsule
to the desired position/orientation and to execute desired
therapeutic actions such as drug release and biopsy.

fashion directly from input pixels. Training is performed
using only unlabeled monocular frames in a similar way to
prior works such as [20]–[22].

We formulate the entire pose estimation and map recon-
struction pipeline for endoscopic capsule robots as a consis-
tent and systematic learning concept which can improve its
performance every day by collecting streamed data belonging
to numerous patients undertaken to endoscopic capsule robot
and standard endoscopy investigations in hospitals over the
world. This way, we want to mimic and transfer a continuous
learning functionality from medical doctors into medical
robots domain, where experience and adaptation to unex-
pected novel situations can be much more critical to real-
world scenarios.

To summarize, main contributions of our paper are as
follows:
• To best of our knowledge, this is the first unsupervised

odometry and depth estimation approach for both the
endoscopic capsule robots and hand-held standard en-
doscopes.

• Since the network learns in a fully unsupervised manner,
no ground truth pose and/or depth values are required
to train the neural network.

• Neither prior knowledge nor parameter tuning is needed
to recover the trajectory and depth, contrary to tra-
ditional visual odometry(VO) and deep learning(DL)
based supervised odometry approaches.

• We simultaneously train a reliability mask which identi-
fies pixels distorted by camera occlusions, non-rigid or-

Fig. 3: Illustration of the experimental setup. MASCE is a
magnetically actuated robotic capsule endoscope prototype
which has a ringmagnet on the body. An electromagnetic
coil array consisting of nine coils is used for the actuation
of the MASCE. The ringmagnet exerts magnetic force and
torque on the capsule in response to the external magnetic
field provide by the electromagnetic coil array. Magnetic
torque and forces are also used to release drug, as well.
OptiTrack system consisting of eight infrared cameras is
employed for the ground truth pose estimation. An opened
and oiled porcine stomach simulator is used to represent
human stomach.

gan deformations and/or non-Lambertian surface. Such
a mask is very crucial for vision based methods applied
on endoscopic type of images since occlusions, non-
rigid deformations and specularities violating Lamber-
tian surface properties commonly occur in endoscopic
types of images.

Evaluations we made on non-rigidly deformable porcine
stomach videos prove the success of our depth estimation
and localization approach. As the outline of this paper, the
previous work in endoscopic capsule odometry is discussed
in Section II. Section III introduces the proposed method
with its mathematical background in detail and the unsuper-
vised DL architecture. Section IV shows our experimental
quantitative and qualitative results achieved for 6-DoF local-
ization and depth recovery. Finally, Section V mentions some
bottlenecks and gives future directions for our project. Our
code will be made available at https://github.com/mpi/deep-
unsupervised-endovo.

II. BACKGROUND

In the last decade, several localization methods [23]–[27]
were proposed to calculate the 3D position and orientation
of the endoscopic capsule robot such as fluoroscopy [23],



Fig. 4: Training input consists of sequential images from dif-
ferent perspectives, which are noted by < It−1, It , It+1 >. Af-
ter view synthesis creates the supervision baseline, PoseNet
is trained to estimate relative motion change between <
It−1, It > and < It , It+1 >, whereas DispNet learns to predict
depth for the target image < It >.

ultrasonic imaging [24]–[27], positron emission tomography
(PET) [23], [27], magnetic resonance imaging (MRI) [23],
radio transmitter based techniques and magnetic field based
techniques. The common drawback of these localization
methods is that they require extra sensors and hardware
design. Such extra sensors have their own drawbacks and
limitations if it comes to their application in small scale med-
ical devices such as space limitations, cost aspects, design
incompatibilities, biocompatibility issues and the interference
of the sensors with the activation system of the device.

As a solution of these issues, a trend of VO methods have
attracted the attention for endoscopic capsule localization.
A classic VO pipeline typically consists of many hand-
engineered parts such as camera calibration, feature detec-
tion, feature matching, outliers rejection (e.g. RANSAC),
motion estimation, scale estimation and global optimization
(bundle adjustment). Although some state-of-the-art algo-
rithms based on this traditional pipeline have been developed
and proposed for endoscopic VO task in the past decades,
their main deficiencies such as tracking failures in low
textured areas, sensor occlusion issues, lack of handling
non-rigid organ deformation still remain. In last couple of
years, DL techniques have been dominating many computer
vision related tasks with numerous promising result, e.g.
object detection, object recognition, classification problems
etc. Contrary to these high-level computer vision tasks, VO
is mainly working on motion dynamics and relations across
sequence of images, which can be defined as a sequential
learning problem.

Our proposed method solves several issues faced by typi-
cal VO pipelines, e.g the need to establish a frame-to-frame
feature correspondence, vignetting artefacts, motion blur,
specularity or low signal-to-noise ratio (SNR). We think that

DL based endoscopic VO approach is more suitable for such
challenge areas since the operation environment(GI tract) has
similar organ tissue patterns among different patients which
can be learned by a sophisticated machine learning approach
easily. Even the dynamics of common artefacts such as
non-rigidness, sensor occlusions, vignetting, motion blur and
specularity across frame sequences could be learned and
used for a better pose estimation, whereas our unsupervised
odometry learning method additionally solves the common
problem of missing labels on medical datasets from inner
body operations [4], [6].

III. METHOD

Different from supervised VO learning [2], [4], [6], where
camera poses and/or depth ground truths are required to
train the neural network, the core idea underlying our un-
supervised pose and depth prediction method is to make
use of the view synthesis constraint as the supervision
metric, which forces the neural network to synthesize target
image from multiple source images acquired from different
camera poses. This synthesis is performed using estimated
depth image, estimated target camera pose values in 6-DoF
and nearby color values from source images. In addition,
a reliability mask is trained to detect sensor occlusions,
non-rigid deformations of the soft organ tissue and lack of
textures inside the explored organ.

A. View synthesis as supervision metric

To provide a supervision to the neural network, view syn-
thesis is accomplished by training with consecutive images.
As input, we take a sequence of 3 consecutive frames, and
choose the middle frame as a target frame. Sequences are
denoted by < It−1, It , It+1 > where It is the target view and
rest of images are source views Is =< It−1, It+1 >, which are
used to render the target image (see Fig. 4). The objective
function of the view synthesis is:

Lvs = ∑
s

∑
p
|It(p)− Îs(p)| (1)

where p is pixel coordinate, and Îs is the source view Is
warped to the target view making use of the estimated depth
image D̂t and 4×4 camera transformation matrix T̂t→s [29].
Let pt represent the homogeneous pixel coordinates in the
target view, and K be the camera intrinsics matrix.

pt is projected coordinate on the source view and ps is
acquired by:

ps ∼ KT̂t→sD̂t(pt)K−1 pt (2)

Note that the value of ps is not discrete. To find the ex-
pected intensity value at that position, bilinear interpolation
among four discrete neighbors of ps is used [30]:

Îs(pt) = Is(ps) = ∑
i∈{top,bottom}, j∈{le f t,right}

wi jIs(pi j
s ) (3)

Let wi j be the proximity value between projected and
neighboring pixels summing up to one and Îs be the estimated
mean intensity for projected pixel ps.



Fig. 5: The proposed neural network architecture for pose/reliability/depth map estimation. The width and height of illustrated
blocks reflect the spatial dimensions of layers and output channels which are based on an encoder-decoder design. (a) Single-
view depth prediction model is adopted by DispNet [28]. ReLu activations follow the middle convolution layers. Kernel
size for first four layers are 7, 7, 5, 5 respectively, and rest of the layers have kernel size 3. (b) Pose/reliability estimation
network is motivated by SFM-Learner [21] model and it has decoder-encoder design, as well. The encoder part has five
feature extraction layers which are shared for both pose and reliability mask estimation. The pose results are gathered after
the encoder network, which has 6∗ (N−1) output channels for 6-DoF motion parameters. The encoder part is followed by
a decoder, which has 5 deconvolutional layers, consisting ReLU activations in between.

View synthesis approach assumes that camera sensor is not
occluded, non-rigid deformations are avoided and explored
organ surface obeys Lambertian surface rules enabling pho-
tometric error minimization between target and source views.
These assumptions are frequently violated in endoscopic type
of videos:

1) Sensor occlusions occur often due to peristaltic organ
motions.

2) Inner organs have in general a non-rigid structure
meaning deformations cannot be completely avoided.

3) Organ fluids cause specularities which violate the
Lambertian surface rules.

To overcome these, we trained a soft reliability mask which
labels each target-source pixel pair as reliable to be used for
view-synthesis or believed to violate assumptions because of
being affected by occlusions, non-rigid deformations and/or
specularities. Incorporating the soft-reliability mask Ês, the
view synthesis equation is updated as:

Lvs = ∑
<It−1,It+1>∈S

∑
p

Ês(p)|It(p)− Îs(p)| . (4)

Minimizing this energy function without regularizer will
force mask to be zero across the whole image domain.
To overcome this problem and obtain a reasonable mask,
a regularization term is to use which describes the prior
knowledge about reliability mask. Hence, let Lreg(Ê l

s) be
the regularization term that minimizes the cross-entropy
loss and prevents trivial solutions. Finally, since gradients
are derived from differences between four neighbors and
corresponding pixel intensities of source and target frames, a
smoothness loss L l

smooth is needed. The multiscale pyramid
and smoothness loss for gradients are extracted from larger
spatial regions. This leads to the following energy function:

L f inal = ∑
l

L l
vs +λsL

l
smooth +λe ∑

s
Lreg(Ê l

s) (5)

Here, s indexes source images, l indexes images from
different scales, λs is the regularization weight for depth
smoothness, and λe is the weight for reliability mask.

B. Network architecture

As mentioned earlier, our problem is estimating odometry
in a textureless scene by using only sequenced RGB frames
as input. Since classical methods fail to cope with this prob-
lem, we use DL methods where we get our motivation from
recent works [31] and [21] which propose improvements by
autoencoder based architectures. Our overall DL model as
shown in Fig. 5 consists of two end-to-end frameworks.

The first architecture is employed to predict single-view
depths by creating disparity map outputs. The encoder-
decoder convolutional layers are followed by a prediction
layer, whose outputs are constrained by 1/(α ∗ sigmoid(x)+
β ) with α = 10 and β = 0.1 to ensure that predictions occur
in a desirable interval.

The second network tries to estimate relative pose, param-
eterized by SE(3) motions between views, and the reliability
mask. The encoder part for pose estimation and reliability
mask are same, where they share weights in the first five
feature extractor convolutional layers and divide into two
tracks afterwards. Pose is estimated by encoder’s 6∗ (N−1)
channels, as translation and rotation parameters. The decoder
part consists of five deconvolutional layers and generates
multiscale mask predictions. There are four output channels
for each prediction layer, and each two of them predict the
reliability for input source-target pairs by softmax normal-
ization.

Both networks are trained and optimized jointly. On the
other hand, both networks can be tested and evaluated
independently. Testing and training pipelines are illustrated
in Fig. 1.



(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3 (d) Trajectory 4

Fig. 6: Sample trajectories comparing the unsupervised learning method with ORB SLAM, EndoVO and OptiTrack ground
truth in millimetric scale. Deep EndoVO shows the best odometry estimations, whereas ORB SLAM fails to track some
fine-scale motions. Tracking performance of unsupervised odometry lies inbetween of ORB SLAM and Deep EndoVO;
many fine-scale motions are successfully caught in detail, however there is still a certain amount of drift.

IV. EVALUATION AND RESULTS

A. Dataset and Transfer learning

We used transfer learning to have an initialization for
neural network weights since we lack huge amounts of
labeled data. For pretraining, DL model proposed by Zhou
et al. [21] is employed. The model is implemented with
publicly available Tensorflow framework and pretrained with
the KITTI dataset. Batch normalization is used for all of the
layers except the outputs. Adam optimization is chosen to
increase the convergence rate, with β1 = 0.9, β2 = 0.999,
learning rate of 0.1 and mini-batch size of 8. We used the
model which was trained with 50K images and converged
after 150K iterations. The model requires sequential images
with size 128 x 416. On top of the model pretrained by
a KITTI dataset, we fine-tuned the architecture with our
domain data from endoscopic capsule robot by employing a
GeForce GTX 1070 model GPU. Our dataset was collected
in an experimental setup for an ex-vivo parcine stomach
shown in Fig. 3 and it contains 12K frames with ground truth
odometry obtained by OptiTrack visual tracking system. In
this experiment, we fix the length of input image sequences
into three frames. We used 10K frames for training, 1K for

cross validation and 1K for evaluation and testing.

B. Pose estimation and Odometry benchmark

Our pose estimation network is tested with 1K frames.
The network outputs the pose predictions as 6-DoF motion
(Euclidean coordinates for translation and rotation) between
sequences. Ground truth data was established with the Op-
tiTrack mechanism. Some examples from odometry outputs
can be seen in Fig. 6. Here, we illustrate only short sequences
qualitatively. It can be seen that the main trajectory results
successfully differentiate the major displacements with a
minor amount of drift.

We compare our ego-motion estimation method with
monocular ORB-SLAM [32], Deep EndoVO [2], LSD
SLAM [33] using Absolute Trajectory Error (ATE) [32]
for the alignment with the ground truth. As shown in Fig.
6 and error bars in Fig. 7a, 7b, our method outperforms
ORB SLAM and LSD SLAM which are state-of-the art
widely used SLAM methods. Because of the geometric and
photometric properties of scenes, these methods fail to find
and match proper keypoints. Magnetic localization also out-
performs ORB-SLAM and LSD-SLAM, because magnetic
localization does not depend on textural geometry of the



(a) Translational error results (b) Rotational error results

Fig. 7: Translational (a) and rotational (b) error results for ORB SLAM, LSD SLAM, Deep EndoVO, magnetic localization
and our proposed supervised method. It is clear that in both rotational and translational motions, our unsupervised odometry
outperforms ORB SLAM, LSD SLAM and magnetic localization, whereas Deep EndoVO shows best performance. For
example, for trajectory length of 10 cm, Deep EndoVO and our method results in a translational error less than 1 cm, and
others are slightly above 1 cm. In terms of rotational motion, a 5 degree change has an effect of less than 1 degree in Deep
EndoVO and our method, however rest of the methods are closer to 1 degree. Translational results indicate that the proposed
method shows robustness for increasing trajectory lengths and remains close to the ground truth trajectory. The trajectory
length increase from 10 cm to 50 cm results a change of more than 4 cm in both ORB SLAM and LSD SLAM methods,
whereas our error increases around 1 cm.

Fig. 8: Sample disparity map estimations from ex-vivo
porcine stomach dataset. Even though depth estimations
lack fine-scale details in low textured areas, major depth
differences were successfully caught.

scene. Even though the proposed method is unsupervised, its
translational and rotational accuracies are comparable with
Deep EndoVO approach which is a supervised odometry
learning method.

C. Depth Estimation

The neural network model creates depth estimation as a
disparity map for a given view. Some estimation results can
be seen in Fig. 8. It is clear that major depth differences are
captured by the network. However, since stomach surface is
non-Lambertian and the light source is attached to camera, it
becomes more challenging to reproduce a robust algorithm.
In the disparity map output of the network, it is observable
that there are minor errors at some low textured regions or
on high gradient parts such as sharp edges. However, our
improvement on overall depth estimation with fine-tuning
can be seen in Fig. 9.

V. CONCLUSIONS
In this paper we applied unsupervised DL method for

estimating VO and depth for endoscopic capsule robot
videos. Even though our method performs comparably well

(a) Without fine-
tuning (KITTI)

(b) Original image (c) After transfer
learning

Fig. 9: Disparity map outputs before and after fine-tuning on
top of KITTI. (a) shows the estimation without fine-tuning.
Since there is no object in front of the camera in KITTI
images, the resulting disparity maps have a dark region in the
center. Moreover, the disparity map has a poor quality. After
transfer learning and training with porcine stomach dataset
in addition to KITTI images, the quality of the disparity map
drastically increases and the dark hole in the center of the
image dissapears (c).

to supervised EndoVO method and outperforms existing state
of the arts SLAM algorithms ORB and LSD SLAM, some
playroom for the improvements of the method still remains:

• Accuracy of the results can be improved by increasing
sequence size of inputs. As well, additional training data
generated by augmentation techniques could improve
the performance of the method for cases where non-
rigid deformations, occlusions and heavy specularities
exist.

• Since our capsule robot also uses rolling shutter camera,
instead using KITTI dataset captured by global shutter
camera, we could also incorporate Cityscapes dataset
captured by rolling shutter camera.

• The quality of estimated depth maps can be improved by
combining the depth output of our method with shading
based depth estimation. In that way, a more realistic
and therapeutically relevant 3D reconstruction of the



explored inner organ could be achieved.
• The dependency of the proposed method on the cam-

era intrinsics matrix makes it rather impractical to be
used for random videos streaming from hospitals with
unknown calibration matrix.

• It would be interesting to extend our network to perform
further tasks such as tissue segmentation and disease
detection.
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and M. Sitti, “Six degree-of-freedom localization of endoscopic
capsule robots using recurrent neural networks embedded into a
convolutional neural network,” CoRR, vol. abs/1705.06196, 2017.
[Online]. Available: http://arxiv.org/abs/1705.06196

[19] M. Turan, Y. Almalioglu, H. Araújo, E. Konukoglu, and M. Sitti,
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Endo-VMFuseNet: A Deep Visual-Magnetic Sensor Fusion Approach
for Endoscopic Capsule Robots
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Abstract— In the last decade, researchers and medical device
companies have made major advances towards transforming
passive capsule endoscopes into active medical robots. One
of the major challenges is to endow capsule robots with
accurate perception of the environment inside the human body,
which will provide necessary information and enable improved
medical procedures. We extend the success of deep learning
approaches from various research fields to the problem of
sensor fusion for endoscopic capsule robots in the case of
asynchronous and asymmetric sensor data without any need of
calibration between sensors. The results performed on real pig
stomach datasets show that our method achieves high precision
for both translational and rotational movements and contains
various advantages over traditional sensor fusion techniques.

I. INTRODUCTION

A fundamental requirement for medical mobile robots is
the ability to accurately localize the robot during the medical
operation. External and internal sensor systems, which are
used to determine position and orientation coordinates of
the robot, compete for on-board space and may interference
with the actuation system of the capsule robot, leading to
inaccuracies in terms of pose estimation [1]–[4]. Moreover,
different sensors used in medical milliscale robot localization
have their own particular strengths and weaknesses, which
makes sensor data fusion an attractive solution. Monocular
visual-magnetic odometry approaches, for example, have
received considerable attention in the medical robotic sensor
fusion literature [2], [5]–[9]. Fig. 1 shows a traditional sensor
fusion pipeline for a camera and an additional external
sensor, which in general use Kalman filter variations and
particle filters for the fusion task. However, these methods
suffer from inaccurate pose estimations, and they also re-
quire strict calibration and synchronization between sensors.
Moreover, it is hard to find a probability density function
which exactly describes the signal-to-noise ratio (SNR) of
the sensors, yet the precision of the pose estimation heavily
depends on the accuracy of the predicted noise model. In the
last years, deep learning (DL) techniques have shown great
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Fig. 1: Classical sensor fusion pipeline

promise in many computer vision related tasks, e.g., object
detection, object recognition, classification problems, etc [4],
[10]. Inspired by the recent success of deep-learning models
for processing raw, high-dimensional data, we propose in this
paper a sequence-to-sequence deep sensor fusion approach
for endoscopic capsule robot localization which has several
important advantages:

• No spatial and temporal calibration is required between
the sensors;

• The method is agnostic to sensor type and dimension-
ality;

• The neural network training procedure automatically
learns the eye-in-hand calibration for each sensor.

We demonstrate that our proposed neural network-based
fusion method can successfully fuse 6-degree-of-freedom
(DoF) and 5-DoF sensor data and clearly outperforms Ex-
tended Kalman Filter (EKF)-based sensor fusion, which ad-
ditionally requires spatial and temporal calibration between
sensors.

This paper is organized as follows: Section II gives a
survey of sensor fusion techniques for endoscopic capsule
robot localization. Section III explains our method in detail.
Section IV introduces the experimental setup and dataset
used for the experiments. Section V shows the qualitative
and quantitative results for our method compared with the
endoscopic visual odometry approach and magnetic localiza-
tion. And finally, we conclude with future directions.



II. RELATED WORK

Localization techniques for endoscopic capsule robots can
be categorized into three main groups: electromagnetic wave-
based techniques; magnetic field strength-based techniques
and hybrid techniques [11].

Many different electromagnetic wave-based techniques
have been developed, including received signal strength
(RSS), time of flight and difference of arrival (ToF and
TDoA), angle of arrival (AoA), and RF identification
(RFID)-based methods [1], [12]–[15]. The advantage of elec-
tromagnetic wave-based techniques is that these techniques
are not affected by the quasi-static magnetic field that is
used for actuation. In contrast, magnetic field strength-based
localization techniques must compensate for the actuation
field. On the other hand, the disadvantage of electromagnetic
wave-based techniques is that high-frequency electromag-
netic waves are attenuated more by the human body than
quasi-static magnetic fields.

In magnetic localization systems, the magnetic field gen-
erator and magnetic sensor system are the essential com-
ponents. The magnetic field generator can be designed in
different ways: a permanent magnet, an embedded secondary
coil, or a tri-axial magnetoresistive sensor. Magnetic sensors
located outside the human body detect the magnetic flux den-
sity in order to estimate the location of the capsule (e.g., [6],
[16], [17]). The first advantage of magnetic field strength-
based localization techniques is that they can be coupled
with magnetic locomotion systems using magnetic levitation,
magnetic steering, and remote magnetic manipulation. The
second advantage is that low frequency magnetic fields are
not attenuated by the human body. On the other hand, the
disadvantage is possible interference from the environment,
which requires additional hardware for handling the local-
ization problem.

The third group of localization techniques, the hybrid
techniques, utilize the integration of different sources such
as magnetic sensors, RF sensors, and RGB sensors. The
integration of data from different sources can produce higher
quality, more reliable data. Therefore, hybrid localization
techniques are promising for building accurate and robust
systems. These techniques include the fusion of RF elec-
tromagnetic signal, video, and magnetic sensor data with a
Kalman filter. The first group of hybrid techniques fuses RF
and video signal [18], [19]. In the second group, RF signal
and magnetic data are fused for the localization of the capsule
robot [18], [20], [21]. In the third group of hybrid techniques,
video and magnetic data are fused for the localization of the
capsule robot [22].

As alternatives, there are methods which utilize computed
tomography (CT), X-rays, MRI or γ rays [23], and ultrasound
sensing [24]. However, each of these techniques has some
drawbacks: radiation hazards should be avoided if possible,
MRI devices are expensive and introduce additional restric-
tions on the capsule design, and ultrasound imagers capture
only planar images that might not intersect the capsule robot.

III. DEEP SENSOR FUSION FOR UNCALIBRATED,
UNSYNCHRONIZED, AND ASYMMETRIC DATA

We propose an end-to-end deep sensor fusion tech-
nique consisting of multi-rate Long Short-Term Memories
(LSTMs) for frequency adjustment and a core LSTM unit.
Our deep fusion architecture is inspired and modified from
[25]. The main advantage of our fusion technique is that
it eliminates the need for the separate calibration and syn-
chronization steps of traditional sensor fusion pipelines. Our
sensor fusion pipeline is shown in Fig. 2. An endoscopic
visual odometry (EVO) approach is applied for 6-DoF visual
localization [7], whereas a 2D array (8x8) of mono-axial
Hall-effect sensors is used for 5-DoF magnetic localization.
Multi-rate LSTMs process 50 Hz data coming from magnetic
sensors, converting it to 30 Hz data, the same data rate
of the monocular camera, whereas the core LSTM unit
fuses 6-DoF visual odometry-based pose information and
5-DoF magnetic-sensor-based localization information. To
summarize, our main contributions are as follows:

• We present, to the best of our knowledge, the first deep
learning-based sensor fusion method for endoscopic
capsule robot localization.

• Our method automatically handles the calibration and
synchronization between sensors through pipeline struc-
ture and neural network training.

The input to the network is the 6-DoF localization data
acquired by the EVO approach and the 5-DoF magnetic
localization data from a 2D Hall effect sensor array [26].
The output of the network is a 6-DoF vector, describing
relative rigid body motion of the endoscopic capsule robot
from frame-to-frame.

A. Endoscopic Visual Odometry

In this subsection, we will introduce briefly our endoscopic
visual odometry approach. For every input RGB image, its
depth image is created using the perspective shape-from-
shading algorithm by [2], [27]. For the pose estimation from
RGB and depth images, an energy-minimization-based tech-
nique is developed containing both optical flow (OF) based
sparse feature correspondence and dense pose alignment
based on volumetric and photometric energy minimization
[28]–[30].

The coarse global alignment based on optical flow serves
as the initialization of the dense alignment, which uses GPU
hardware acceleration to incorporate all of the available
information provided by the input image in an interactive-rate
system. Such a dense alignment approach is very helpful for
pose estimation in low textured areas, where sparse methods
are prone to fail. Taking into account the complete sequence
of the previous frame history, the sparse alignment module
attempts to establish OF correspondences between an input
frame and the previous frames to provide a coarse initial
global pose optimization, whereas the dense optimization



Fig. 2: Deep learning architecture of Endo-VMFuseNet.

stage serves for a fine-scale refinement. Additionally, OF-
based global optimization allows for continuous loop-closure
and re-localization. Such a re-localization capability is essen-
tial to recover from tracking failures in case of unexpected
drifts inside the GI-tract. Inspired from the pose estimation
strategies proposed by [28]–[30], the energy minimization
equation of our coarse-then-fine approach is as follows:

X = (Ro, to, ...,R|S|, t|S|)
T (1)

Ealign(X) = ωsparseEsparse(X)+ωdenseEdense(X) (2)

for |S| frames, where ωsparse and ωdense are weights assigned
to sparse and dense matching terms, and Esparse(X) and
Edense(X) are the sparse and dense matching terms, respec-
tively, such that:

Esparse(X) =
|S|

∑
(i=1)

|S|

∑
(j=1)

∑
(k,1) ∈ C(i,j)

||τiPi,k− τ jPj,k||2 (3)

Here, Pi, k is the kth detected feature point in the ith frame.
C(i, j) is the set of all pairwise correspondences between
the ith and the jth frame. The Euclidean distance over all
the detected feature matches is minimized once the best
rigid transformation, τi, is found. Dense pose estimation is
described as follows [28]–[30]:

Edense(τ) = ωphotoEphoto(τ)+ωgeoEgeo(τ) (4)

whereas,

Ephoto(X) = ∑
(i,j)∈E

|Ii|

∑
k=0
||Ii(ω(di,k))− I j(ω(τ−1

j τidi,k))||22 (5)

and,

Egeo(X)= ∑
(i,j)∈E

|Di|

∑
k=0

[nT
i,k(di,k−τ

−1
i τ jω

−1(D j(ω(τ−1
j τidi,k))))]

2

(6)
with τi being rigid camera transformation, Pi,k the kth de-
tected feature point in ith frame, ni,k is the normal of the kth

pixel in the ith input frame, di,k is the 3D position associated
with the kth pixel of the ith depth frame, C(i, j) being the set
of pairwise correspondences between the ith and jth frame.
The set of rigid camera transforms is denoted as τ , the
function ω is the perspective projection, D is the depth of
the input frame, and I is the gradient of the luminance of
frame’s color.

B. Magnetic Localization System

Fig. 3: Photo and schematic of our magnetic localization
system using an array of hall-effect sensors externally.



Our magnetic localization technique [31] is able to mea-
sure 5-DoF absolute pose values for an untethered meso-
scale magnetic robot. As shown in Fig. 3, the system consists
of a magnetic sensor system for localization and electromag-
nets for actuation of the magnetic capsule robot. A Hall-
effect sensor array measures magnetic field at several loca-
tions from the magnetic capsule robot, whereas a computer-
controlled electromagnetic coil array provides actuator’s
magnetic field. The core idea of our localization technique is
separation of capsule’s magnetic field from actuator’s known
magnetic field, which is realized by subtracting actuator’s
magnetic field component from the measured magnetic data.
Finally, noise effects are reduced by second-order directional
differentiation. For curious readers, further details of the
magnetic localization technique can be found in [31].

C. Deep learning based Sensor Fusion

Recurrent Neural Networks (RNNs) are suitable for mod-
elling the dependencies across data sequences and for cre-
ating a temporal motion model thanks to its memory of
hidden states over time. This allows the pose estimation for
the current time to benefit from the prior information of
past sensor data in a similar way to the way that statistical
filters use prior distributions to estimate posterior ones. To
address the vanishing and exploding gradients that are the
most common challenges in designing and training RNNs,
a particular form of RNN, which is called LSTM, was
introduced by [32]. The information flow through LSTM is
shown in Fig. 4. The LSTM model has a memory cell ct
that encodes the knowledge that is observed up to time step
t. Gates control the behaviour of the cell. They are the layers
that are multiplicatively applied, and can keep or discard a
value from the gated layer. Three gates are used in the LSTM,
which control whether to forget the current cell value in the
forget gate, if it should read its input in the input gate and
whether to output the new cell value in the output gate. �
is the element-wise multiplication with a gate value, σ(·) is
the sigmoid non-linearity and f is the forget gate.

Our deep RNN model is constructed by concatenating the
core-LSTM on top of two multi-rate LSTMs with inputs from
the EVO and the magnetic localization system as illustrated
in Fig. 2. Each LSTM layer has 200 hidden states. The
system learns translational and rotational movements simul-
taneously. To regress the 6-DoF pose, we trained the RNN
architecture on Euclidean loss using the Adam optimization
method with the following objective loss function:

loss(I) = ‖x̂−x‖2 +β‖q̂−q‖2 (7)

where x is the translation vector and q is the Euler vector for
a rotation. A balance β must be kept between the orientation
and translation loss values which are highly coupled as they
are learned from the same model weights [33]. Experimental
results showed that the optimal β was given by the ratio
between expected error of position and orientation at the end
of training session.

The back-propagation algorithm is used to determine the
gradients of RNN weights. These gradients are passed into

Fig. 4: Information flow through the hidden units of the
LSTM.

the Adam optimization method which is a stochastic gradient
descent algorithm based on estimation of first and second-
order moments. The moments of the gradient are calculated
using exponential moving average in addition to exponen-
tially decaying average of past gradients, which also corrects
the bias.

IV. EXPERIMENTAL SETUP

A. Magnetically Actuated Soft Capsule Endoscopes

Our capsule prototype is a magnetically actuated soft
capsule endoscope (MASCE) which is designed to be used
in the upper gastrointestinal tract for disease detection, drug
delivery, and biopsy operations. The prototype is composed
of an RGB camera, a permanent magnet, and a drug chamber
(see Fig. 5 for visual reference). The magnet produces force
and torque in response to a controlled external magnetic
field, which are used to actuate the capsule robot and
to release drugs in specifically targeted locations. A 2D

Fig. 5: An overview of the experimental setup



Fig. 6: Sample images from real pig stomach dataset

magnetic sensor array is placed on top of the workspace and
electromagnets are placed at the bottom of the workspace,
with the patient located in between. Magnetic fields from
the electromagnets generate the magnetic force and torque
on the ring magnet around MASCE so that the robot moves
inside the workspace. The coordinate system in Fig. 3 shows
the origin and orientation of the workspace.

B. Dataset

The dataset was recorded on five different real pig stom-
achs (Fig. 5). In order to ensure that our algorithm is not
tuned to a specific camera model, four different commercial
endoscopic cameras were employed. For each pig stomach
and camera combination, 3000 frames were acquired, which
makes 60000 frames for four cameras and five pig stomachs
in total. The endoscopic capsule robot was actuated using
magnetic actuation system. 40000 frames were used for
training the RNNs, whereas the remaining 20000 frames
were used for evaluation. Sample real pig stomach frames
are shown in Fig. 6 for visual reference. During video
recording, an Optitrack motion tracking system consisting
of eight Prime-13 cameras and the manufacturer’s tracking
software was utilized to obtain 6-DoF localization ground-
truth-data with sub-millimetre accuracy (see Fig. 5) which
was used as a gold standard for the evaluations of the
pose estimation accuracy. The tracking system consistently
produces positional error less than 0.3 mm and rotational
error less than 0.05◦.

V. RESULTS AND DISCUSSION

The RNN architecture was trained using the Caffe li-
brary on an NVIDIA Tesla K80 GPU. Using the back-
propagation-through-time method, the weights of the hidden
units were trained for up to 200 epochs with an initial
learning rate of 0.001. Overfitting,which would make the
resulting pose estimator inapplicable in other scenarios, was
prevented using dropout and early stopping techniques. The
dropout regularization technique, which samples a part of
the whole network and updates its parameters based on
the input data [34], is an extremely effective and simple
method to avoid overfitting. Early stopping is another widely
used technique to prevent overfitting of a complex neural
network architecture optimized by a gradient-based method.
We strictly avoided the use of any image frames from the
training session for the testing session.

The performance of the deep Endo-VMFuseNet approach
was analysed using averaged root mean square error (RMSE)
estimation for translational and rotational motions. For tra-
jectories of various complexity, such as uncomplicated paths
with slow incremental translations and rotations, and com-
prehensive scans with many local loop closures and com-
plex paths with fast rotational and translational movements,
we performed tests on deep Endo-VMFuseNet comparing
with EVO localization and magnetic localization. The av-
erage translational and rotational RMSEs for deep Endo-
VMFuseNet, EVO localization, magnetic localization and
EKF-based sensor fusion against different path lengths are
shown in Fig. 8, respectively. A spatial and temporal calibra-
tion between the camera and magnetic sensor is performed
before EKF-based sensor fusion. The results indicate that
deep Endo-VMFuseNet clearly outperforms EKF-based sen-
sor fusion for both translational and rotational localization,
whereas both sensor fusion methods perform better than
visual and magnetic localization. We presume that the ef-
fective use of the LSTM architecture in Endo-VMFuseNet
architecture enabled learning from asynchronous and uncal-
ibrated sensor array. The results also indicate that Endo-
VMFuseNet is capable of handling asynchronous data (50
Hz magnetic data and 30 Hz visual data), by interpreting the
localization information from the current magnetic data and
previous visual and magnetic localization information saved
by internal hidden memory of LSTM units. Moreover, we can
conclude that Endo-VMFuseNet is also able to handle asym-
metric sensor data, i.e the missing 6th degree of magnetic
localization by making use of existing 6-DoF EVO and 5-
DoF magnetic sensor information from current and previous
frames. Some sample ground-truth and estimated trajecto-
ries for Endo-VMFuseNet, EVO localization and magnetic
localization are shown in Fig. 7d for visual reference. As
seen in sample trajectories, Endo-VMFuseNet is able to stay
close to the ground-truth pose values for even complex, fast
rotational and translational motions, where both EVO and
magnetic localization by themselves clearly deviate from the
ground-truth trajectory. Thus, we can conclude that Endo-
VMFuseNet makes effective use of both sensor data streams.

VI. CONCLUSIONS

In this study, we presented, to the best of our knowledge,
the first sensor fusion method based on deep learning for
endoscopic capsule robots. The proposed fusion architecture
is able to achieve simultaneous learning and sequential
modelling of motion dynamics across sensor streams by
concatenating the core LSTM with two multi-rate LSTMs.
Many issues faced by traditional sensor fusion techniques
such as external calibration of sensors, synchronization be-
tween sensors and issue of unsensed degrees of freedom in
one or more sensors are successfully handled by deep Endo-
VMFuseNet. Since it is trained in an end-to-end manner,
there is no need to carefully hand-tune the parameters of the
system.



(a) Trajectory 1 (b) Trajectory 2

(c) Trajectory 3 (d) Trajectory 4

Fig. 7: Sample ground-truth trajectories and estimated trajectories predicted by the DL-based sensor fusion approach. As
seen, deep Endo-VMFuseNet is the closest to the ground truth trajectories.

(a) Trajectory length vs translation error (b) Trajectory length vs rotation error

Fig. 8: Deep Endo-VMFuseNet outperforms both of the other models in terms of translational and rotational position
estimation.
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EndoSensorFusion: Particle Filtering-Based Multi-sensory Data Fusion
with Switching State-Space Model for Endoscopic Capsule Robots

Mehmet Turan1, Yasin Almalioglu2, Hunter Gilbert3, Helder Araujo4, Taylan Cemgil5, and Metin Sitti6

Abstract— A reliable, real time, multi-sensor fusion function-
ality is crucial for localization of actively controlled capsule
endoscopy robots, which are an emerging, minimally invasive
diagnostic and therapeutic technology for the gastrointestinal
(GI) tract. In this study, we propose a novel multi-sensor fusion
approach based on a particle filter that incorporates an on-
line estimation of sensor reliability and a non-linear kinematic
model learned by a recurrent neural network. Our method
sequentially estimates the true robot pose from noisy pose
observations delivered by multiple sensors. We experimentally
test the method using 5 degree-of-freedom (5-DoF) absolute pose
measurement by a magnetic localization system and a 6-DoF
relative pose measurement by visual odometry. In addition, the
proposed method is capable of detecting and handling sensor
failures by ignoring corrupted data, providing the robustness
expected of a medical device. Detailed analyses and evaluations
are presented using ex vivo experiments on a porcine stomach
model, proving that our system achieves high translational and
rotational accuracies for different types of endoscopic capsule
robot trajectories.

I. INTRODUCTION

Milli-scale, untethered, mobile robots have the potential
to make a major impact on healthcare. Swallowable capsule
endoscopes with an on-board camera and wireless image
transmission device have been commercialized and used
in hospitals (FDA approved) since 2001. These devices
have enabled access to regions of the GI tract that were
impossible to access before, and have reduced discomfort and
sedation-related loss of work [1]–[3]. However, with systems
that are commercially available today, capsule endoscopy
cannot provide precise (centimeter- to millimeter-accurate)
localization of diseased areas, and active, wireless control
remains a highly active area of research. Several groups
have recently proposed remotely controllable robotic capsule
endoscopes that are equipped with additional functionalities,
such as localized drug delivery, biopsy and other medical
functions [4]–[8]. Accurate and robust localization would not
only provide better diagnostic information in passive devices,
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but would also improve the reliability and safety of active
control strategies like remote magnetic actuation.

In the last decade, many different approaches have been
developed for real-time endoscopic capsule robot localiza-
tion, including received signal strength (RSS), time of flight
and time difference of arrival (ToF and TDoA), angle of
arrival (AoA), and radiofrequency identification (RFID)-
based methods [4], [9]. Recently, it has also been shown that
the permanent magnets which are added to capsule robots to
facilitate remote magnetic actuation can be simultaneously
used for precise localization [10]. This strategy has a clear
advantage for miniaturization: the permanent magnet pro-
vides two essential functions rather than one.

Hybrid techniques based on the combination of different
measurements can improve both the accuracy and the re-
liability of the location measurement system. Sensor fusion
techniques have been applied to wireless capsule endoscopes,
and several combinations of sensor types have been investi-
gated. Most of the techniques that have been demonstrated
for data fusion have been based on Kalman filtering. The first
subgroup of hybrid techniques fuses radio frequency (RF)
signals and video for localization of the capsule robot [11].
Geng et al. assert that using RF signals and video data can
result in millimetric accuracy, whereas previous techniques
were able to achieve only a few centimeters accuracy.

In the second group, RF signal and magnetic localization
are fused to locate the capsule robot [12], [13]. In these
studies, a localization method that has high accuracy for
simultaneous position and orientation estimation has been
investigated. In the third group of hybrid techniques, video-
based tracking and magnetic localization are fused [14].
In [14], the authors introduced a technique that combines
ultrasound imaging and magnetic field-based localization.

Although some of these state-of-the-art sensor fusion tech-
niques have achieved remarkable accuracy for the tracking
and localization task of a capsule robot, they are not able to
detect and autonomously handle sensor faults, and addition-
ally several techniques using RF localization require complex
signal corrections to account for attenuation and propagation
of RF signals inside human body tissues. In addition, most
previous models use relatively simple dynamic models for
the capsule, whereas performance would be greatly improved
by a more accurate model of the system. Although most of
the existing techniques have been based on Kalman filters,
these filters typically work best for linear systems, whereas
the dynamics of capsule robots are generally nonlinear.
Lastly, previously demonstrated methods generate inaccurate
estimations in cases where noise from the environment and



the actuation system interferes with one or more components
of the localization system.

In this paper, we propose a novel multi-sensor fusion
algorithm for capsule robots, which is based on a switching
state space model and particle filtering. The dynamic model
of the endoscopic capsule robot is based on Recurrent Neural
Networks (RNNs). The resulting method naturally handles
both nonlinear motion models and sensor faults. The main
contributions of our paper are as follows:
• To the best of our knowledge, this is the first multi-

sensor data fusion approach that combines a switching
observation model, a particle filter approach, and a
recurrent neural network developed for the endoscopic
capsule robot and hand-held endoscope localization.

• We propose a sensor failure detection system for endo-
scopic capsule robots based on probabilistic graphical
models with efficient proposal distributions applied onto
the particle filtering. The approach can be generalized
to any number of sensors and any mobile robotic
platforms.

• No manual formulation is required to determine a prob-
ability density function that describes the motion dy-
namics, contrary to traditional particle filter and Kalman
filter based methods.

The paper is organized as follows. Section II introduces
the sensor fusion algorithms and the RNN-based dynamic
model. Section III describes the experiments used to verify
the proposed methods for a wireless capsule endoscope in
an ex vivo porcine model. Section IV includes the results
and discussion of the experiments, and section VI concludes
with future directions.

II. SENSOR FUSION AND MODELING APPROACH

The particle filter is a Bayesian filtering method that
computes the posterior probability density functions (pdf)
of sequentially obtained state vectors xt ∈ X , which are
suggested by (complete or partial) sensor measurements. For
the capsule robot, the state xt is composed of the 6-DoF pose,
which is assumed to propagate in time according to a general
model:

xt = f (xt−1,yt−1,vt)

yt = g(xt−1,yt−1)
(1)

where f is a non-linear state transition function and vt is
white noise distributed. The function g encodes the transition
of a hidden state yt . t is the index of a time sequence, i.e. t ∈
{1,2,3, ...}. In general, the hidden state yt might represent,
at a minimum, the rigid body velocity. However, it could
also include other dynamic factors like acceleration or jerk,
and may also be used to represent environmental state.

6-DoF pose state estimation with a high precision is a
complex problem, which often requires multi-sensor input
or sequential observations. In our capsule, we have two
sensor systems, one being a 5-DoF magnetic sensor array
and the other one being an endoscopic monocular RGB
camera (these subsystems are described later). Generally

Fig. 1: The overall switching state-space model. The double
circles denote observable variables and the gray circles
denote hyper-parameters.

speaking, observations of the pose are produced by n sensors
zk,t(k = 1, ...,n), where the probability distribution p(zk,t |xt)
is known for each sensor.

A. The Sequential Bayesian Model and Problem Statement

We estimate the 6-DoF pose states, which rely on latent
(hidden) variables, by using the Bayesian filtering approach.
The probabilistic graphical model that shows the relations
between all of the variables is shown in Fig. 1. The hidden
variables of sensor states are denoted as sk,t , which we call
switch variables, where sk,t ∈ {0, ...,dk} for k = 1, ...,n. dk is
the number of possible observation models, e.g., failure and
nominal sensor states. The observation model for zk,t can be
described as:

zk,t = hk,sk,t ,t(xt)+wk,sk,t ,t (2)

where hk,sk,t ,t(xt) is the non-linear observation function and
wk,sk,t ,t is the observation noise. The latent variable of the
switch parameter sk,t is defined to be 0 if the sensor is in a
failure state, which means that observation zk,t is independent
of xt , and 1 if the sensor k is in its nominal state of work.
The prior probability for the switch parameter sk,t being in
a given state j, is denoted as αk, j,t and it is the probability
for each sensor to be in a given state:

Pr(sk,t = j) = αk, j,t , 0≤ j ≤ dk (3)

where αk, j,t ≥ 0 and ∑
dk
j=0 αk, j,t = 1 with a Markov evolution

model. The objective posterior pdf p(x0:t ,s1:t ,α0:t |z1:t) and
the marginal posterior probability p(xt |z1:t) , in general,
cannot be determined in a closed form due to their complex
shapes. However, sequential Monte Carlo methods (particle
filters) provide a numerical approximation of the posterior
pdf with a set of samples (particles) weighted by the kine-
matics and observation models.

B. Proposal Distributions

In this section, we formulate the optimal proposal distri-
butions in terms of minimizing the variance of the weights



and effective approximations, in cases where sampling from
the optimal distributions is not feasible. The particles are ex-
tended from time t−1 to time t according to the importance
distribution denoted by q(·).
• q(xt | x(i)t−1,σ

w
t
(i), ŝ(i)t ,zt) is approximated by an un-

scented Kalman filter (UKF) step for particle i:

x̂(i)t|t = x̂(i)t|t−1 +
n

∑
k=1

ŝ(i)k,tK
(i)
k,t ν̂

(i)
k,t

where x̂(i)t|t−1 = f (x(i)t−1), n is the number of sensors, ν̂
(i)
k,t

is the residual, and K(i)
k,t is the Kalman gain sequentially

obtained by UKF. Finally,

q(xt | x(i)t−1,σ
w
t
(i), ŝ(i)t ,zt) = N (xt ; x̂(i)t|t ,P

(i)
t|t )

where the error covariance matrix, Pi
t|t is obtained by

the UKF step with the process noise of σw
t
(i).

• In switching state-space models, the switch parameters
with self-adaptive prior are more efficient than a fixed
prior approach [15], [16]. The optimal proposal distri-
bution for switch variable that represents the state of a
sensor is given by

Pr(sk,t |x
(i)
t−1,α

(i)
k,t−1,zk,t) =

α
(i)
k,sk,t ,t−1 p(zk,t |sk,t ,x

(i)
t−1)

∑
dk
j=0 α

(i)
k,sk,t ,t−1 p(zk,t | j,x

(i)
t−1)

(4)
which is approximated by applying UKF to pdfs
p(zk,t | j,x

(i)
t−1) for j = 0, ...,dk

p(zk,t | j,x
(i)
t−1)'N (hk, j,t(x̂

(i)
t|t−1),S

(i)
k, j,t) (5)

where x̂(i)t|t−1 = f (x(i)t−1) is the state prediction and S(i)k, j,t is
the approximated innovation covariance matrix approx-
imated by UKF. Hence, the proposal distribution for the
switch parameter sk,t is given by

q
(
sk,t |x

(i)
t−1,α

(i)
k,t−1,zk,t

)
∝ α

(i)
k,sk,t−1N (hk,sk,t−1(x̂

(i)
t|t−1),S

(i)
k,sk,t

)
(6)

• The optimal proposal distribution for the hyperparame-
ter σα

k,t−1 is calculated in closed form as

q
(

log(σα
k,t)|α

(i)
k,t ,α

(i)
k,t−1,σ

α(i)
k,t−1

)

=

D
(

α
(i)
k,t ;σα

k,tα
(i)
k,t−1

)
D
(

α
(i)
k,t ;σα

k,t−1α
(i)
k,t−1

)
×N

(
log(σα

k,t); log(σα(i)
k,t−1),λ

α

)
.

(7)

We generate samples from the distribution with the
Adaptive Rejection Sampling (ARS) method because
direct sampling is not feasible [17]. Using ARS, the
need for locating the supremum diminishes because the

Fig. 2: Example ARS sampling result for log(σk,t). The
piecewise hull and the generated samples are shown.

Fig. 3: Information flow through the units of the LSTM [18]

distribution is log-concave. Another advantage of ARS
is that it uses recently acquired information to update
the envelope and squeezing functions, which reduces
the need to evaluate the distribution after each rejection
step. Fig. 2 shows an ARS sampling result indicating
the effectiveness of the applied sampling method for the
proposal distribution. It can be seen in Fig. 2 that a tight
piecewise hull has converged to the target distribution
after rejection steps, and interior knots are regenerated
in the vicinity of the expected values.

• Considering that the Dirichlet distribution is conjugate
to the multinomial distribution, the optimal proposal
distribution for the confidence parameter αk,t can be
reformulated in closed form as a Dirichlet distribution
with a decreasing variance parameter for failure sensor
states.

C. RNN-based Kinematics Model

Existing sensor fusion methods based on traditional parti-
cle filter and Kalman filter approaches have their limitations



Fig. 4: Experimental setup

when applied to nonlinear dynamic systems. The Kalman
filter and extended Kalman filter assume that the underlying
dynamic process is well-modeled by linear equations or that
these equations can be linearised without a major loss of
fidelity. On the other hand, particle filters accommodate
a wide variety of dynamic models, allowing for highly
complex dynamics in the state variables.

In the last few years, deep learning (DL) techniques have
provided solutions to many computer vision and machine
learning tasks. Contrary to these high-level tasks, multi-
sensory data fusion is mainly concerned with motion dy-
namics and the relations across sequences of pose obser-
vations obtained from sensors, which can be formulated
as a sequential learning problem. Unlike traditional feed-
forward artificial neural networks, RNNs are very suitable
for modelling the dependencies across time sequences and
for creating a temporal motion model since they have a
memory of hidden states over time and have directed cycles
among hidden units, enabling the current hidden state to be
a function of arbitrary sequences of inputs. Thus, using an
RNN, the pose estimation of the current time step benefits
from information encapsulated in previous time steps and is
suitable to formulate the state transition functions f and g
in Equation 1. A particle filter tracks the 6-DoF pose of the
capsule robot using the transition function modelled by the
LSTM network. To train the LSTM, the inputs are 6-DoF
poses (states) at time step t−1, and output labels are 6-DoF
poses at time t. In that way, the LSTM learns the dynamic
model of the capsule robot.

Long Short-Term Memory (LSTM) is a suitable imple-
mentation of RNN to exploit longer trajectories since it
avoids the vanishing gradient problem of RNN, resulting in
a higher capacity of learning long-term relations among the
sequences by introducing memory gates such as input, forget
and output gates, and hidden units of several blocks. The
information flow of the LSTM is shown in Fig.3. The input
gate controls the amount of new information flowing into the

current state, the forget gate adjusts the amount of existing
information that remains in the memory, and the output gate
decides which part of the information triggers the activations.
Given the input vector xk at time k, the output vector hk−1
and the cell state vector ck−1 of the previous LSTM unit,
the LSTM updates at time step k according to the following
equations:

fk = σ(Wf · [xk,hk−1]+b f ) (8)
ik = σ(Wi · [xk,hk−1]+bi) (9)
gk = tanh(Wg · [xk,hk−1]+bg) (10)
ck = fk� ck−1 + ik�gk (11)
ok = σ(Wo · [xk,hk−1]+bo) (12)
hk = ok� tanh(ck) (13)

where σ is sigmoid non-linearity, tanh is hyperbolic tangent
non-linearity, W terms denote corresponding weight matri-
ces, b terms denote bias vectors, ik, fk, gk, ck and ok are input
gate, forget gate, input modulation gate, the cell state and
output gate at time k, respectively, and � is the Hadamard
product [19].

III. EXPERIMENTAL SETUP AND DATASET

A. Magnetically Actuated Soft Capsule Endoscopes (MA-
SCE)

Our capsule prototype is a magnetically actuated soft
capsule endoscope (MASCE) designed for disease detection,
drug delivery and biopsy operations in the upper GI-tract.
The prototype is composed of an RGB camera, a permanent
magnet, an empty space for drug chamber and a biopsy
tool (see Figs. 4 and 5 for visual reference). The magnet
exerts magnetic force and torque to the robot in response
to a controlled external magnetic field [5]. The magnetic
torque and forces are used to actuate the capsule robot and
to release drugs. Magnetic fields from the electromagnets
generate the magnetic force and torque on the magnet inside
the MASCE so that the robot moves inside the workspace.
Sixty-four three-axis magnetic sensors are placed at the top
of the workspace, and nine electromagnets are placed at the
bottom [5].

B. Magnetic Localization System

Our 5-DoF magnetic localization system is designed for
the position and orientation estimation of untethered meso-
scale magnetic robots [10]. The system uses an external
magnetic sensor system and electromagnets for the localiza-
tion of the magnetic capsule robot. A 2D-Hall-effect sensor
array measures the component of the magnetic field from
the permanent magnet inside the capsule robot at several
locations outside of the robotic workspace. The core idea of
our localization technique is separation of capsule’s magnetic
field from actuator’s magnetic field. For that purpose, the
part of the magnetic field due to the actuators is subtracted
from the magnetic field data which is acquired by Hall-
effect sensor array. As a further step, second-order directional
differentiation is applied to reduce the localization error [10].



Fig. 5: Actuation system of the MASCE [5], [20]–[23]

C. Monocular Visual Odometry

The visual odometry is performed by minimization of a
multi-objective cost function, which includes terms that mea-
sure photometric and volumetric correlation. For every input
RGB image, we create its depth image using the source code
of the perspective shape-from-shading under realistic lighting
conditions project [24]. Once the depth map is obtained, the
framework uses both RGB and depth map information to
jointly estimate camera pose. An energy minimization-based
pose estimation technique is applied containing both sparse
optical flow (OF) based correspondence establishment, and
dense volumetric and photometric alignment [25]. Inspired
from the pose estimation strategies proposed by [25], for a
parameter vector

X = (Ro, to, ...,R|S|, t|S|)
T (14)

for |S| frames, the alignment problem is defined as a vari-
ational non-linear least squares minimization problem with
the following objective, consisting of the OF based pixel
correspondences and dense jointly photometric-geometric
constraints [25]. Outliers after OF estimation are eliminated
using motion bounds criteria, which removes pixels with
a very large displacement and motion vectors too different
from neighbouring pixels. The energy minimization equation
is as follows:

Ealign(X) = ωsparseEsparse(X)+ωdenseEdense(X) (15)

where ωsparse and ωdense are weights assigned to sparse and
dense matching terms and Esparse (X) and Edense(X) are the
sparse and dense matching terms, respectively. The sparse
matching term is

Esparse(X) =
|S|

∑
i=1

|S|

∑
j=1

∑
(k,1) ∈ C(i,j)

||τiPi,k− τ jPj,k||2 (16)

Here, Pi, k is the kth detected feature point in the i-th frame.
C(i, j) is the set of all pairwise correspondences between
the i-th and the j-th frame. The Euclidean distance over
all the detected feature matches is minimized once the best

rigid transformation τi is found. Dense pose estimation is
described as follows [25]:

Edense(τ) = ωphotoEphoto(τ)+ωgeoEgeo(τ) (17)

where,

Ephoto(X) = ∑
(i,j) ∈ E

|Ii|

∑
k=0
||Ii(ω(di,k))− I j(ω(τ -1

j τidi,k))||22 (18)

and,

Egeo(X) = ∑
(i,j) ∈ E

|Di|

∑
k=0

[nT
i,k(di,k− τ

-1
i τ jω

-1(D j(ω(τ -1
j τidi,k))))]

2

(19)
with τi being the rigid camera transformation, Pi,k the kth

detected inlier point in ith frame, and C(i, j) being the set
of pairwise correspondences between the ith and jth frame.
In Equation 15, ωdense is linearly increased; this allows the
sparse term to first find a good global structure, which is
then refined with the dense term (coarse-to-fine alignment
[26]). Using Gauss-Newton optimization, we find the best
pose parameters X which minimizes the proposed highly
non-linear least squares objective.

D. Dataset

We created our own dataset, which was recorded on five
different real pig stomachs. To ensure that our algorithm is
not tuned to a specific camera model, four different com-
mercial endoscopic cameras were employed. For each pig
stomach-camera combination, 2,000 frames were acquired
which makes for four cameras, five pig stomachs, and a
total of 40,000 frames. Sample images from the dataset are
shown in Fig. 6 for visual reference. An Optitrack motion
tracking system consisting of eight Prime-13 cameras and
the manufacturer’s tracking software was utilized to obtain
6-DoF pose measurements (see Fig. 4) as a ground truth for
the evaluations of the pose estimation accuracy. The capsule
robot was moved via the magnetic actuation system, with an
effort to obtain a large range of poses, during which data
was simultaneously recorded from the magnetic localization
system, the on-board video camera, and the Optitrack system.
We divided our dataset into two groups. A first group
consisting of 30,000 frames was used for RNN training
purposes, whereas the remaining 10,000 frames were used
for testing.

E. LSTM Training

The training data is divided into pose sequences of length
50, which are passed into the LSTM module with the
expectation that it predicts the next 6-DoF pose value, i.e.
the 51st pose measurement, which was used to compute the
cost function for training. The LSTM module was trained
using the Keras library with GPU programming and the
Theano back-end. Using the back-propagation-through-time
method, the weights of hidden units were trained for up to
200 epochs with an initial learning rate of 0.001. Overfitting
was prevented using dropout and early stopping techniques.
The dropout regularization technique, introduced in [27], is



Fig. 6: Sample frames from the dataset used in the experi-
ments.

an extremely effective and simple method to avoid overfit-
ting. It samples a part of the whole network and updates
its parameters based on the input data. Early stopping is
another widely used technique to prevent overfitting of a
complex neural network architecture which was optimized
by a gradient-based method.

IV. RESULTS AND DISCUSSION

The performance of the proposed multi-sensor fusion
approach was analysed by examining posterior probabilities
of the switch parameters sk,t (see Fig. 8), the minimum
mean square error (MMSE) estimates of αk,t (see Fig. 8) and
evolution of the hyper-parameter σα

k,t (see Fig. 9) using 200
particles which is determined experimentally. The computa-
tional time required to update the state is 26 ms on average.
For various trajectories with different complexity of motion,
including uncomplicated paths with slow incremental trans-
lations and rotations, comprehensive scans with many local
loop closures and complex paths with sharp rotational and
translational movements, we analysed both the localization
accuracy and the fault detection performance of our multi-
sensor fusion approach (see Figs. 7 and 10). Additionally, we
compared the rotational and translational motion estimation
accuracy of the multi-sensor fusion approach with the visual
localization and magnetic localization (see Fig. 10) using
RMSE.

The results in Fig. 8 indicate that the sensor states are
accurately estimated. Visual localization failed because of
very fast frame-to-frame motions between 14-36 seconds
and magnetic sensor failed due to the increased distance of
the ring magnet to the sensor array between 57-76 seconds.
Both failures are detected successfully, and the MMSE is
kept low, thanks to the switching option ability from one
observation model to another in case of a sensor failure. In
our model, we do not make a Markovian assumption for the
switch variable sk,t but we do for its prior αk,t , resulting in
a priori dependence on the past trajectory sections, which
is more likely for the incremental endoscopic capsule robot
motions. Our model thus introduces a memory over the
past sensor states rather than simply considering the last
state. The length of the memory is tuned by the hyper-
parameters σα

k,t , leading to a long memory for large values
and vice-versa. This is of particular interest when considering
sensor failures. Our system is designed to automatically

(a) Trajectory 1

(b) Trajectory 2

(c) Trajectory 3

(d) Trajectory 4

Fig. 7: Sample trajectories comparing the multi-sensor fusion
result with ground truth and sensor data.



Fig. 8: Top figures: Posterior probability of sk,t parameter for endoscopic RGB camera (left) and for magnetic localization
system (right). Bottom figures: The minimum mean square error (MMSE) of αk,t for endoscopic RGB camera (left) and for
magnetic localization system (right). The switch parameter, sk,t , and the confidence parameter αk,t reflect the failure times
accurately: Visual localization fails between 14-36 seconds and magnetic sensor fails between 57-76 seconds. Both failures
are detected confidentially.

Fig. 9: Evolution of the σα
k,t parameter for the sensors. σα

k,t
does not tend to increase during sensor failure periods.

detect failure states. For example, the confidence in the RGB
sensor decreases when visual localization fails recently due
to occlusions, fast-frame-to frame changes etc. On the other
hand, the confidence in the magnetic sensor decreases if the
magnetic localization fails due to magnetic interference from
the environment or if the ring magnet has a big distance to
the magnetic sensor array.

The results depicted in Figs. 7 indicate that the proposed
fusion technique clearly outperforms either the magnetic or
visual localization approaches, in terms of both translational
and rotational pose estimation accuracy. The multi-sensor

Fig. 10: Translational (top) and rotational (bottom) RMSEs
for multi-sensor fusion, visual localization and magnetic
localization.



fusion approach is able to stay close to the ground truth pose
despite sensor failures. Even for very fast and challenging
paths that can be seen in Fig. 7c and 7d, the deviations of
the sensor fusion approach from the ground-truth still remain
in an acceptable range for medical operations. We presume
that the effective use of switching observations and particle
filtering with non-linear motion estimation using LSTM
enabled learning the motion dynamics very effectively, but
this was not explicitly examined.

V. FUTURE CLINICAL APPLICATIONS OF ACTIVELY
CONTROLLED CAPSULE ROBOT

Capsule endoscopy is primarily utilized to monitor GI
tract organs esophagus, stomach, bowels and colon. How-
ever, current capsule endoscopy technology is actuated by
passive peristaltic motions of the GI tract, which is non-
optimal for disease diagnosis and also prevents any type
of targeted therapeutic intervention. Recent advances in that
field have enabled active manipulation and other therapeutic
functionalities such as drug delivery, biopsy operations etc.
We envision that the proposed tracking technique would
facilitate these advanced functionalities by providing both
enhanced situational awareness for the remote operator and
more accurate feedback to the magnetic control system.

VI. CONCLUSIONS
In this study, we have presented, to the best of our

knowledge, the first particle filter-based multi-sensor data
fusion approach with sensor failure detection and observation
switching capability for endoscopic capsule robot localiza-
tion. An LSTM architecture was used for non-linear motion
model estimation of the capsule robot. The proposed system
results in sub-millimetric accuracy for position measurement
and sub-degree scale accuracy for orientation measurement.
Moreover, it clearly outperforms vison- or magnetic-based
tracking alone. As a future step, we plan to integrate a deep
learning based noise-variance modelling functionality into
our approach to eliminate sensor noise more effectively.
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Abstract
Despite significant progress achieved in the last decade to convert passive capsule endoscopes to actively controllable robots,
robotic capsule endoscopy still has some challenges. In particular, a fully dense three-dimensional (3D) map reconstruction
of the explored organ remains an unsolved problem. Such a dense map would help doctors detect the locations and sizes of
the diseased areas more reliably, resulting in more accurate diagnoses. In this study, we propose a comprehensive medical 3D
reconstruction method for endoscopic capsule robots, which is built in a modular fashion including preprocessing, keyframe
selection, sparse-then-dense alignment-based pose estimation, bundle fusion, and shading-based 3D reconstruction. A detailed
quantitative analysis is performed using a non-rigid esophagus gastroduodenoscopy simulator, four different endoscopic
cameras, a magnetically activated soft capsule robot, a sub-millimeter precise optical motion tracker, and a fine-scale 3D
optical scanner, whereas qualitative ex-vivo experiments are performed on a porcine pig stomach. To the best of our knowledge,
this study is the first complete endoscopic 3D map reconstruction approach containing all of the necessary functionalities for
a therapeutically relevant 3D map reconstruction.

Keywords Endoscopic capsule robots · 3D map reconstruction · Sparse-then-dense feature tracking

1 Introduction

Many diseases necessitate access to the internal anatomy of
the patient for diagnosis and treatment. Since direct access to
most anatomic regions of interest is traumatic, and sometimes
impossible, endoscopic cameras have become a common
method for viewing the anatomical structure. In particular,
capsule endoscopy has emerged as a promising new tech-
nology for minimally invasive diagnosis and treatment of
gastrointestinal (GI) tract diseases. The low invasiveness
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and high potential of this technology have led to substan-
tial investment in their development by both academic and
industrial research groups, such that it may soon be feasi-
ble to produce a robotic capsule endoscope with most of the
functionality of current flexible endoscopes.

Although robotic capsule endoscopy has high potential of
diagnostic and therapeutic capabilities, it continues to face
many challenges. In particular, there is no broadly accepted
approach for generating a comprehensive and therapeutically
relevant 3D map of the organ being investigated. This prob-
lem is made more severe by the fact that such a map may
require a precise localization method for the endoscope, and
such a method will itself require a map of the organ, a clas-
sic chicken-and-egg problem [1]. The repetitive texture, lack
of distinctive features, and specular reflections characteristic
of the GI tract exacerbate this difficulty, and the non-rigid
deformations introduced by peristaltic motions further com-
plicate the reconstruction task [2]. Finally, the small size of
endoscopic camera systems implies a number of limitations,
such as restricted fields of view (FOV), low signal-to-noise
ratio, and low frame rate; all of which degrade image quality
[3]. These issues, to name a few, make accurate and precise
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localization and reconstruction a difficult problem and can
render navigation and control counterintuitive [4].

Despite these challenges, accurate and robust three-
dimensional (3D) mapping of patient-specific anatomy
remains a difficult goal. Such a map would provide doctors
with a reliable measure of the size and location of a diseased
area, thus allowing more intuitive and accurate diagnoses. In
addition, should next-generation medical devices be actively
controlled, a map would dramatically improve the doctors
control in diagnostic, prognostic, and therapeutic operations
[5]. As such, considerable energy has been devoted to adapt
computer vision techniques to the problem of in vivo 3D
reconstruction of tissue surface geometry.

Two primary approaches have been pursued as work-
arounds for the challenges mentioned previously. First,
tomographic intra-operative imaging modalities, such as
ultrasound (US), intra-operative computed tomography (CT),
and interventional magnetic resonance imaging (iMRI),
have been investigated for capturing detailed information of
patient-specific tissue geometry [5]. However, surgical and
diagnostic operations pose significant technological chal-
lenges and costs for the use of such devices, due to the need
to acquire a high signal-to-noise ratio (SNR) without imped-
iment to the doctor. Another proposal has been to equip
endoscopes with alternative sensor systems in the hope of
providing additional information; however, these alternative
systems have other restrictions that limit their use within the
body.

This paper proposes a complete pipeline for 3D visual
map reconstruction using only RGB camera images, with
no additional sensor information. The pipeline is arranged
in a modular form and includes a preprocessing module for
removal of specular reflections, vignetting and radial lens
distortions, a keyframe selection module, a pose estima-
tion and image stitching module for registration of images,
and a shape-from-shading (SfS) module for reconstruction
of 3D structures. We provide both qualitative and quantita-
tive analysis of pose estimation and 3D map reconstruction
accuracy using a porcine pig stomach, an esophagus gastro-
duodenoscopy simulator, four different endoscopic camera
models, an optical motion tracker, and a 3D optical scan-
ner. In sum, our method proposes a substantial contribution
toward a more general, therapeutically relevant, and exten-
sive use of the information that capsule endoscopes may
provide.

2 Literature survey

Several studies in the literature have discussed 3D map
reconstruction for standard hand-held and passive capsule
endoscopes [6–13], etc. These methods may be broken into
four major classes, i.e.,

– stereoscopy
– shape from shading (SfS)
– structured light (SL)
– time of flight (ToF)

Structured light and time-of-flightmethods require additional
sensors, with a concomitant increase in cost and space; as
such, they are not covered in this paper. Stereo-based meth-
ods use the parallax observed when viewing a scene from
two distinct viewpoints to obtain an estimate of the distance
from observer to object under observation. Typically, such
algorithms have four stages in computing the disparity map
[14]: cost computation, cost aggregation, disparity computa-
tion and optimization, and disparity refinement.

With multiple algorithms reported per year, computa-
tional stereo depth perception has become an extremely
researched field. The first work reporting stereoscopic depth
reconstruction in endoscopic images was the work done
by [6], which implemented a dense computational stereo
algorithm. Later, Hager et al. developed a semi-global opti-
mization [7], which was used to register the depth map
acquired during surgery to preoperative models [8]. Stoy-
anov et al. used local optimization to propagate disparity
information around feature-matched seed points, and it has
also been reported to perform well for endoscopic images.
This method was able to handle highlights, occlusions, and
noisy regions. Similar to stereo vision, another method that
employs epipolar geometry and feature extraction is also
proposed in [15]. This work flow starts with camera calibra-
tion, and it relies on SIFT extraction and feature description.
Finally, the main algorithm calculates the 3D spatial point
location using extrinsic parameters, which is calculated from
matched features in consecutive frames. Although this sys-
tem exploits the advantage of sparse 3D reconstruction, the
strongdependencyon feature extraction causes performance-
related issues for endoscopic type of imaging. Despite the
variety of algorithms and simplicity of implementation, com-
putational stereo techniques are affected by several important
disadvantages. To begin with, stereo reconstruction algo-
rithms generally require two cameras, since the triangulation
needs a known baseline between viewpoints. Further, the
accuracy of triangulation decreases with distance from the
cameras due to the shrinkage of relative baseline between
camera centers and reconstructed points. Most endoscopic
capsule robots have only one camera, and in those that
have more, the diameter of endoscope inherently bounds the
baseline. As such, stereo techniques have yet to find wide
application in endoscopy.

Due to the difficulty in obtaining stereo-compatible hard-
ware, efforts have been made to adapt passive monocular
three-dimensional reconstruction techniques to endoscopic
images. These techniques have been focused on research in
computer vision for decades and have the distinct advan-
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tage of not requiring extra hardware equipment in addition
to existing endoscopic devices. Two main methods have
emerged as useful in the field of endoscopic images: shape
frommotion (SfM) and shape from shading (SfS). SfS,which
has been studied since the 1970s [16], has demonstrated some
suitability for endoscopic image reconstruction. Its primary
assumption is that there is a single light source on the scene,
of which the intensity and pose relative to the camera are
known. Both assumptions are mostly fulfilled in endoscopy
[11–13]. Furthermore, the transfer function of the camera can
be included in the algorithm to additionally refine estimates
[17]. Additional assumptions are that the object reflects light
obeying lambertian model and that the object surface has a
constant albedo. If these assumptions hold to a degree and the
equation parameters are known, SfS can use the brightness of
a pixel to estimate the angle between cameras depth axis and
the shape normal at that pixel. This has been demonstrated
to be effective in recovering details, although global shape
recovery often fails.

Both methods have been demonstrated to have disadvan-
tages: SfS often fails in the presence of uncertain information,
e.g., bleeding, reflections, noise artifacts, and occlusions; fea-
ture tracking-based SfM methods tend to fail in the presence
of poorly textured areas and occlusions.

Therefore, many state-of-the-art works are mainly based
on the combination of these two techniques: In [18], a
pipeline for 3D reconstruction of endoscopy imaging using
SfS and SfM techniques is presented. In this work, the
pipeline starts with basic preprocessing steps and focuses
on 3D map reconstruction, which is independent of light
source position and illumination. Finally, the framework ends
with frame-to-frame feature matching to solve the scaling
issue of monocular images. This paper proposes interesting
methods for the difficult task of reconstruction. However,
enhanced preprocessing and especially less dependency on
feature extraction andmatching are still needed. In the recent
work of [19], SfS and SfM are fused together to reach a bet-
ter 3D map accuracy. With SFM, a sparse point cloud is
obtained and a dense version of this cloud is generated by
means of SFS. For better performance of SFS, they also pro-
pose a refined reflectance model. One notable idea based
on SfS and SfM fusion is proposed in [20]. This method-
ology first reconstructs a sparse 3D map using SfM and
iteratively refines the final reconstruction using SfS. The
approach does not directly address the difficulties caused by
the ill-posed illumination and specular reflectance, although
the proposed geometric fusion tries to eliminate such issues.
And the strong reliance on the establishment of feature cor-
respondence remains unsolved. Attempts to solve the latter
problem with template-matching techniques have had some
success, but tend to be computationally very complex which
makes it unsuitable for real-time performance. In [21], only
SFS is used for reconstruction and 2D features are pre-

ferred for estimating the transformation. Similarly, [22] and
[23] combine SFM and SFS for 3D reconstruction without
any preprocessing and with the Lambertian surface assump-
tion. In [24], machine learning algorithms are applied for
3D reconstruction. Basically, training is completed with an
artificial dataset and real endoscopy images are used for
test data. Another state-of-the-art pipeline is proposed in
[25], which presents a workflow combining RGB camera
and inertial measurement sensors (IMU). Besides improved
results, this hardware makes the overall flow more com-
plex and costly. Moreover, IMU sensors occupy extra place
and they are not accurate enough. In addition, they inter-
fere with the magnetic actuation systems which makes them
unsuitable for the next generation of actively controllable
endoscopic capsule robots. The main common issue remain-
ing for 3D reconstruction of endoscopic-type datasets is the
visual complexity of these images. The challenges which
we mentioned in the abstract and introduction affect the
performance of standard computer vision algorithms. In par-
ticular, the proposed method must be robust to specular
view-dependent highlights, noise, peristalticmovements, and
focus-dependent changes in calibration parameters. Unfortu-
nately, a quantitativemeasure of algorithm robustness has not
been suggested in the literature until today, despite its clear
value for the evaluation of algorithmic dependability and pre-
cision.Moreover, all of thementionedmethods in that section
were developed and evaluated on only one specific camera
model, which makes it impossible to justify the robustness of
the framework in the case of different camera choices with
limited specifications such as lower resolution and image
quality.

Our paper proposes a full pipeline consisting of cam-
era calibration, reflection detection and suppression, radial
undistortion, de-vignetting, keyframe selection, pose estima-
tion, frame stitching, and SfS to reconstruct a therapeutically
relevant 3D map of the organ under observation. Both syn-
thetic and real pig stomachs are used for evaluation. Among
other contributions, an extensive quantitative analysis has
been proposed and performed to demonstrate the influence
of pipeline modules on the accuracy and robustness of the
estimated camera pose and reconstructed 3D map. To our
knowledge, this is the first such comprehensive quantitative
analysis to be enacted in endoscopic type of image process-
ing.

3 Method

This section represents the proposed framework in more
depth. Preprocessing steps, keyframe selection, pose estima-
tion, frame stitching, and SfS module will be discussed in
detail.
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3.1 Preprocessing

The proposed modular endoscopic 3D map reconstruction
framework starts with a preprocessing module which per-
forms intrinsic camera calibration, reflection detection and
suppression, radial distortion correction, and de-vignetting.
Specular reflections are a common problem causing inac-
curate depth estimation and map reconstruction. Therefore,
eliminating specular artifacts is a fundamental endoscopic
image preprocessing step to ensure lambertian surface prop-
erties and increase the quality of the 3D map. On the other
hand, specularities can deliver useful information for pose
estimation, especially orientation information. For the reflec-
tion detection task, we propose an original method which
determines the reflection regions bymaking use of geometric
and photometric information. To determine the locations of
the reflection areas, the gradient map of the input gray-scale
image is created and a morphological closing operation is
applied to fill the gaps inside reflection-distorted areas. For
the closing operation, we used OPENCV function close(). In
parallel, a photometric method applies adaptive threshold-
ing determined by the mean and standard deviation of the
gray-scale image I to identify the specular regions:

MaskIllu =

{
0, I < μI + σI

1, otherwise
(1)

where μI and σI are the mean and standard deviation of the
intensity levels of the gray-scale image I . The pixel-wise
combination of both detection strategies leads to a robust
reflection detection approach. Once specular reflection pix-
els are detected, the inpainting method proposed by [26] is
applied to suppress the saturated pixels by replacing the spec-

ularity by an intensity value derived from a combination of
neighboring pixel values.

As a next step, the Brown-Conrady [27] undistortion tech-
nique is applied to handle the radial distortions. Vignetting,
referring to an inhomogeneous illumination distribution rel-
ative to the image center, primarily caused by camera lens
imperfections and light source limitations, is handled by
applying a radial gradient symmetry enforcement-based
method (Fig. 1). Our framework applies the vignetting cor-
rection approach proposed by [28] which de-vignettes the
image by enforcing the symmetry of the radial gradient
from center to boundaries. An example of input image and
vignetting-corrected output image can be seen in Fig. 1.
De-vignetting is demonstrated in Fig. 2, where it is clearly
observable that the intensity levels of de-vignetted image
have a more homogeneous pattern.

3.2 Keyframe selection

Endoscopic videos generally contain thousands of highly
overlapping frames (more than %75 overlap) due to slow
endoscopic capsule movement during organ exploration. A
subset of the most relevant keyframes has to be chosen auto-
matically. The minimum amount of key frames required
to recover the entire stomach surface with approximately
%50 overlapping area between keyframes is around 300
frames. Thus, at least every tenth frame could be selected
as a keyframe. However, since the endoscopic capsule robot
motion is not constant during organ exploration, it is not
a good practice to blindly assign keyframes with a con-
stant interval. We developed an adaptive keyframe selection
method based on Farneback optical flow (OF) estimation
between frame pairs. Farneback OF is chosen due to its

Fig. 1 Preprocessing pipeline: reflection removal, radial undistortion, de-vignetting
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Fig. 2 Demonstration of the de-vignetting process

improved performance relative to other optical flow meth-
ods applied to our dataset. We add the magnitudes of optical
flow values for each frame pair and normalize the sum by
total image resolution. If the normalized sumdoes not exceed
a predefined threshold τ = 30 pixels, the overlap between
reference keyframe and keyframe candidate is accepted as
being high (more than %70 overlap). In that case, candidate
frame fails and the algorithm goes to the next frame. The loop
starts again and runs until a keyframe is found. The key frame
selection procedure and termination criteria are represented
in algorithm 1:

Algorithm 1 Keyframe selection algorithm
1: Extract Farneback optical flowbetween reference keyframe and can-

didate keyframe.
2: Sum the magnitude values of the optical flow vectors for each pixel

pair.
3: Normalize the sum by total pixel number.
4: If the normalized sum is less than predefined threshold τ = 30

pixels, go to the next frame; else identify the frame as a keyframe
and go tho the first step.

5: If fifteen frames failed to fulfill the key frame conditions, and still
τ = 30 pixels could not be exceeded, assign the frame with highest
τ value among these fifteen frames as a key frame and go to the first
step.

3.3 Keyframe stitching

A state-of-the-art image stitching pipeline contains several
stages:

– Feature detection, which detects features in input image
pair.

– Feature matching, which matches features between input
images.

– Homography estimation, which estimates extrinsic cam-
era parameters between the image pairs.

– Bundle adjustment, which is a postprocessing step to cor-
rect drifts in a global manner.

– Imagewarping,whichwarps the images onto a composit-
ing surface.

– Gain compensation, which normalizes the brightness and
contrast of all images.

– Blending, which blends pixels along the stitch seam to
reduce the visibility of seams.

Stitching algorithms fall broadly into two categories:
direct alignment-based methods and feature-based methods.
Direct alignment-basedmethods attempt tomatch every pixel
between the frame pair using iterative optimization tech-
niques. These methods have the benefit of using all the
available data which is a good practice for low-textured
images such as endoscopic type of images. However, direct
methods require a good initialization so that they do not con-
verge into local minima. Moreover, they are very susceptible
to varying brightness conditions. Feature-based methods, on
the other hand, first find unique feature points such as cor-
ners and try to match them. These methods do not require an
initialization, but the features are not easy to detect in low-
textured images and detected features can be susceptible to
illumination changes, scale changes caused by zoom-in and
out and viewpoint changes.Our keyframe stitching technique
makes use of both alignmentmethods in a coarse-to-fine fash-
ion combining Farneback OF-based coarse alignment with
patch-wise fine alignment. Farneback OF delivers the ini-
tial 2D motion estimation, whereas the SSD-based energy
minimization applied to circular regions of interest with a
radius of 15pixels around each inlier point refines this estima-
tion. Patch-wise fine alignment estimates the parameters of
affine transformation by minimizing an intensity difference-
based energy cost function. The affine transformation maps
an image I1 onto the reference image I2, where x ′ , y′ repre-
sent the transformed and x , y the original pixel coordinates,
and a1, a2, a3, a4, tx , ty the parameters of affine transfor-
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mation matrix A, respectively. We define a cost function
measuring the pixel intensity similarity between the image
pair (Eq. 4), which is supposed to be minimized by the cor-
responding affine transformation parameters.

⎛
⎝x2
y2
1

⎞
⎠ =

⎛
⎝a1 a2 tx
a3 a4 ty
0 0 1

⎞
⎠ ·

⎛
⎝x1
y1
1

⎞
⎠ (2)

Since the cost function has to ignore the pixels lying outside
the circular patches defined around inlier points, a weighting
function w(x, y) is defined:

ω(x, y) =
{
0, i f (x − xc)2 + (y − yc)2 ≥ r2

1, i f (x − xc)2 + (y − yc)2 < r2
(3)

where xc and yc are the coordinates of inlier point and r the
radius of the circular image region around this inlier point
center. The resulting cost function has a bias toward smaller
overlapping solutions; thus a normalization of it by the over-
lapping area is necessary, resulting in the mean squared pixel
error (MSE):

eMSE(A)=
∑

i ω(xi , yi )ω(x ′
i , y

′
i )(I2(x

′
i , y

′
i ) − I1(xi , yi ))2∑

i ω(xi , yi )ω(x ′
i , y

′
i )

.

(4)

The affine transformation matrix A is iteratively determined
by the image transformation that minimizes eMSE using
Gaussian–Newton optimization. CUDA library was utilized
to achieve better performance and reduce execution time of
GN Optimization through parallelism. The system architec-
ture diagram of the proposed frame stitching algorithm is
demonstrated in Fig. 3.

The termination criteria of the Gaussian–Newton opti-
mization were defined by a threshold τ = e−9, whereas the
optimization stops when the eMSE drops below the thresh-
old τ or maximum number of iterations have already been
reached. Once the optimization has converged and the affine
transformation parameters are estimated, bundle adjustment
is performed to correct drifts for all the camera parameters
jointly and to minimize the accumulative errors. At the next
step, all keyframes Ii are transformed into the coordinate
system of the anchor keyframe IA. In areas where several
keyframes overlap, corresponding image pixels often do not

Fig. 3 Image stitching flowchart

Fig. 4 Multi-band blending flowchart
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Fig. 5 Demonstration of the keyframe stitching process for the non-rigid esophagus gastroduodenoscopy simulator (left) and real pig stomach
(right)

have the same intensity due to illumination changes, scale
changes, and intensity level variations. Multi-band blending
method is applied to overcome these issues. The overview
of multi-blending approach is shown in Fig. 4. For further
details, the reader is referred to the original work of [29].
Algorithm 2 summarizes the steps of keyframe stitching
module. Results of the stitching process for the real pig stom-
ach and nonrigid simulator are shown in Fig. 5.

Algorithm 2 Proposed endoscopic keyframe stitching mod-
ule
1: Identify the next keyframe.
2: Match pixels between the reference keyframe and the identified next

keyframe using optical flow estimation.
3: Use RANSAC to detect inlier points.
4: Use optical flow vectors between inlier matches as initialization for

the GN optimization.
5: Define circular regions around each inlier point.
6: Calculate the intensity difference-based energy cost function.
7: Execute iterative Gaussian–Newton optimization (GN) to minimize

the energy cost function.
8: Perform GPU-based multi-core bundle adjustment to globally opti-

mize all of the camera poses jointly [30].
9: Perform frame warping.
10: Perform gain compensation [31].
11: Perform multi-band blending.

3.4 Deep learning and frame stitching

A major drawback of our frame stitching module is the need
for an extensive engineering and implementation effort. To
overcome these issues, we investigated the applicability of
deep learning techniques to the endoscopic capsule robot
pose estimation [2]. Deep learning (DL) has been drawing
the attention of the machine learning research community
over the last decade. Much of its success roots on having
made available models and technologies capable of achiev-
ing ground-breaking performances in a variety of traditional
fields of application of machine learning, such as machine
vision and natural language processing. Admittedly, some

of the DL flagships, like NLP and image processing, have
their implications in medical fields, e.g., in extracting infor-
mation from the images taken from patients’ records to find
anomalous patterns and detect diseases. With that motiva-
tion, we are trying to extend the application ofDL technology
into endoscopic capsule robot localization. The core idea of
our DL-based method is the use of deep recurrent convolu-
tional neural networks (RCNNs) for the pose estimation task,
where convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) are used for the feature extraction
and inference of dynamics across the frames, respectively
[2]. Using this pretrained neural network, we are able to
achieve pose estimation accuracies comparable our sparse-
then-dense pose alignment [2]. Thus, as a future step, we
might consider to integrate DL-based pose estimation into
our frame stitching module to decrease the complexity of
our stitching method and relax the extensive engineering
and implementation efforts required in this study. Since DL-
based pose estimation is out of scope of this paper, the reader
is referred to the original paper [2] for further details.

3.5 Endo-VMFusenet and frame stitching

Even though the proposed sparse-then-dense alignment-
based visual pose estimation achieves very promising results
for endoscopic capsule robot localization, it fails in case of
very fast frame-to-frame motions. This is a common issue of
any vision-based odometry algorithm. If the overlap between
consecutive frames becomes less than a certain percentage,
any vision-based pose estimation approach fails. It can even
occur that due to drifts of endoscopic capsule robot, the over-
lap area between frame pairs decreases drastically, which can
even be zero in some cases. To overcome this issue, we devel-
oped a supervised sensor fusion approach based on an end-
to-end trainable deep neural network consisting of multi-rate
long short-term memories (LSTMs) for frequency adjust-
ment between sensors and a core LSTM unit for fusion of the
adjusted sensor information. Detailed evaluations indicate
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that our pretrained DL-based sensor fusion network detects
whether visual odometry fails and instantaneouslymakes use
of magnetic localization until visual odometry path again
recovers. The same applies if magnetic sensor-based local-
ization fails. Additionally,monocular cameras sufferwith the
absence of real depth informationwhich causes anymeasure-
mentsmade by them to be recoverable only up to a scale. This
condition is known as scale ambiguity. Another contribution
of our DL-based sensor fusion approach is the accurate scale
estimation by using absolute position information obtained
by themagnetic localization system. In that way, doctors will
have a 3D map of exactly same size of the explored inner
organ, which will not only help the exact estimation of the
diseased region size, but also enable biopsy-like treatments
or local drug delivery onto the diseased region. Since it is out
of scope, for further details of our DL-based sensor fusion
approach, the reader is referred to our paper [4].

3.6 Depth image creation

Once the final mosaic image is obtained, the next module
creates its depth image using the SfS technique of Tsai and
Shah [32]. Tsai–Shah SfS method is based on the following
assumptions:

– The object surface is lambertian.
– The light comes from a single-point light source.
– The surface has no self-shaded areas.

Lambertian surface assumption is not obeyed by raw endo-
scopic images due to the specular reflections inside the
organs.Weaddressed this problem through the reflection sup-
pression technique previously described. Subsequently, the
above assumptions allow the image intensities to be modeled
by

I (x, y) = ρ(x, y, z) · cos�i , (5)

where I is the intensity value, p is the albedo (reflecting
power of surface), and theta is the angle between surface
normal N and light source direction S. With this equation,
the gray values of an image I are related only to albedo and
angle theta. Using these assumptions, the above equation can
be rewritten as follows:

I (x, y) = ρ · N .S, (6)

where (.) is the dot product, N is the unit normal vector of the
surface, and S is the incidence direction of the source light.
These may be expressed respectively as

N = (−p(x, y),−q(x, y), 1)

(p2 + q2 + 1)(1/2)
(7)

S = (cos τ · sin σ, sin τ · sin σ, cos σ) (8)

where (τ ) and (σ ) are the slant and tilt angles, respectively,
and p and q are the x and y gradients of the surface Z :

p(x, y) = ∂Z(x, y)

∂x
(9)

q(x, y) = ∂Z(x, y)

∂ y
. (10)

The final function then takes the form

I (x, y)

= ρ · (cos σ + p(x, y) · cos τ · sin σ + q(x, y) · sin τ · sin σ)

((p(x, y))2 + (q(x, y))2 + 1)(1/2)

= R(px,y, qx,y). (11)

Solving this equation for p and q essentially corresponds to
the general problem of SfS. The approximations and solu-
tions for p and q yield the reconstructed surface map Z . The
necessary parameters are tilt, slant, and albedo, and can be
estimated as proposed in [33]. The unknown parameters of
the 3D reconstruction are the horizontal and vertical gradi-
ents of the surface Z , p, and q.With discrete approximations,
they can be written as follows:

p(x, y) = Z(x, y) − Z(x − 1, y) (12)

q(x, y) = Z(x, y) − Z(x, y − 1), (13)

where Z(x, y) is the depth value of each pixel. From these
approximations, the reflectance function R(px,y, qx,y) can be
expressed as

R(Z(x, y) − Z(x − 1, y), Z(x, y) − Z(x, y − 1)). (14)

Using equations 12, 13, and 14, the reflectance equation may
also be written as

f (Z(x, y), Z(x, y − 1), Z(x − 1, y), I (x, y))

= I (x, y) − R(Z(x, y) − Z(x − 1, y),

Z(x, y) − Z(x, y − 1)) = 0. (15)

Tsai and Shah proposes a linear approximation using a first-
order Taylor series expansion for function f and for depth
map Zn−1, where Zn−1 is the recovered depthmap after n−1
iterations. The final equation is

Zn(x, y) = Z (n−1)(x, y) − f (Z (n−1)(x, y))
d( f (Z (n−1)(x,y))

d(Z(x,y))

, (16)

where f is a predefined function, constrained by

d f (Z (n−1)(x, y))

dZ(x, y)
(1 + i2x + i2y)) (17)
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and

ix = cos τ · sin σ

cos σ
(18)

iy = sin τ · sin σ

cos σ
. (19)

The nth depth map Zn is calculated by using the estimated
slant, tilt, and albedo values.

4 Evaluation

We evaluate the performance of our system both quanti-
tatively and qualitatively in terms of pose estimation and
surface reconstruction. We also report the computational
complexity of the proposed framework.

4.1 Dataset

We created our own dataset from a real pig stomach and from
a non-rigid open GI tract model EGD (esophagus gastroduo-
denoscopy) surgical simulator LM-103 (Figs. 6, 7). The EGD
surgical simulator was used for quantitative analyses, and the
real pig stomach for qualitative evaluations. Synthetic stom-
ach fluid was applied to the surface of the EGD simulator
to imitate the mucosa layer of the inner tissue. To ensure
that our algorithm is not tuned to a specific camera model,
four different commercially available endoscopic cameras
were employed for the video capture varying in their reso-
lution, pixel size, depth of focus, and image quality. A total
of 17010 endoscopic frames were acquired by these four
camera models which were mounted on our robotic magnet-
ically actuated soft capsule endoscope prototype (MASCE)
(Fig. 8, [34,35]). The first sub-dataset, consisting of 4230
frames, was acquired with an Awaiba NanEye camera (Table

Fig. 6 Non-rigid esophagus gastroduodenoscopy simulator dataset overview for different endoscopic cameras

Fig. 7 Real pig stomach dataset overview for different endoscopic cameras
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Fig. 8 Robotic magnetically actuated soft capsule endoscopes
(MASCE) [34,35]

Table 1 Awaiba Naneye monocular endoscopic camera

Resolution 250 × 250 pixel

Footprint 2.2 × 1.0 × 1.7 mm

Pixel size 3 × 3µm2

Pixel depth 10 bit

Frame rate 44 fps

1). The second sub-dataset, consisting of 4340 frames, was
acquired by theMisumi V3506-2ES endoscopic camera with
the specification shown in Table 2. The third sub-dataset
of 4320 frames was obtained by the Misumi V5506-2ES
endoscopic camera with the specification shown in Table 3.
Finally, the fourth sub-dataset of 4120 frames was obtained
by the Potensic mini camera with the specification shown
in Table 4. We scanned the open stomach simulator using
the 3D Artec Space Spider image scanner and used this
3D scan as the ground truth for the 3D map reconstruction
framework (Fig. 9). Even though our focus and ultimate goal
is an accurate and therapeutically relevant 3D map recon-
struction, we also evaluated the pose estimation accuracy
of the proposed framework quantitatively since a precise
pose estimation is a prerequisite for an accurate 3D map-
ping. Thus, an Optitrack motion-tracking system consisting
of eight Prime-13 cameras and a tracking software was uti-
lized to obtain a 6-DoF localization ground truth data of the
endoscopic capsule motion with a sub-millimeter precision
(Fig. 9).

4.2 Trajectory estimation

To evaluate the pose estimation performance, we tested our
system on different trajectories of various difficulty levels.
The absolute trajectory (ATE) root-mean-square error metric

Table 2 Misumi-V3506-2ES monocular camera

Resolution 400 × 400 pixel

Diameter 8.2mm

Pixel size 5.55 × 5.55µm2

Pixel depth 10 bit

Frame rate 30 fps

Table 3 Misumi-V5506-2ES
monocular camera Resolution 640 × 480 pixel

Diameter 8.6mm

Pixel size 6.0 × 6.0µm2

Pixel depth 10 bit

Frame rate 30 fps

Table 4 Potensic monocular mini camera

Resolution 1280 × 720 pixel

Diameter 8.8mm

Pixel size 10.0 × 10.0µm2

Pixel depth 10 bit

Frame rate 30 fps

(RMSE) is used for quantitative pose accuracy evaluations.
The absolute trajectory (ATE) root-mean-square error met-
ric measures the root-mean-square of Euclidean distances
between the estimated endoscopic capsule robot poses and
the ground truth poses estimated by the motion capture sys-
tem. Table 5 shows the results of the trajectory estimation for
six different trajectories. Trajectory 1 is an uncomplicated
path with very slow incremental translations and rotations.
Trajectory 2 follows a comprehensive scan of the stom-
ach with many local loop closures. Trajectory 3 contains
an extensive scan of the stomach with more complicated
local loop closures. Trajectory 4 consists of more challenge
motions including fast rotational and translational frame-to-
frame motions. Trajectory 5 is the same of trajectory 4, but
included synthetic noise to evaluate the robustness of sys-
tem against noise effects. Before capturing trajectory 6, we
added more synthetic stomach oil into the simulator tissue to
have heavier reflection conditions. Similar to the trajectory
5, trajectory 6 consists of very loopy and complex motions.
As seen in Table 5, the system performs very robust and
accurate in terms of trajectory tracking in all of the chal-
lenge datasets. Tracking accuracy is only decreased for very
fast frame-to-framemovements, motion blur, noise, or heavy
spectral reflections occurring frequently in last trajectories
especially.

RMSE results for pose estimation before and after appli-
cation of reflection suppression, de-vignetting, and radial
undistortion were evaluated and compared to quantitatively
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Fig. 9 Schematics of the experimental setup for 3D visual map reconstruction: a real pig stomach, an esophagus gastroduodenoscopy simulator
for surgical training, 3D image scanner, Optitrack system, endoscopic camera, and active robotic capsule endoscope

Table 5 Comparison of ATE RMSE for different trajectories and cam-
eras

Length in cm Potensic Misumi-I Misumi-II Awaiba

Traj 1 123.5 4.10 4.23 4.17 6.93

Traj 2 132.4 4.14 4.45 4.32 7.12

Traj 3 124.6 5.23 5.54 5.43 7.42

Traj 4 128.2 5.53 5.67 5.47 7.51

Traj 5 128.2 6.32 5.45 5.32 8.32

Traj 6 123.1 7.73 6.72 6.51 8.73

analyze their effects in terms of pose estimation accuracy.
Results shown in Table 6 for Misumi camera-II indicate that
reflection suppression leads to a decrease in pose estimation
performance. This decrease might be related to the fact that
such saturated peak values contain orientation information.
Thus, in consideration of pose estimation, reflection suppres-
sion should be avoided.On the other hand, radial undistortion
and de-vignetting operations both increase pose estimation
accuracy of the framework as expected.

4.3 Surface reconstruction

We evaluated the surface reconstruction accuracy of our
system on the same dataset that we used for the trajec-

Table 6 Comparison of ATE RMSE for MISUMI-II camera and dif-
ferent combinations of preprocessing operations

RS NRS RS+RUD RS+RUD+DV

Traj 1 5.45 4.12 4.01 4.03

Traj 2 6.44 4.23 4.07 4.04

Traj 3 6.57 5.13 4.97 4.98

Traj 4 7.55 5.34 5.16 5.08

Traj 5 8.43 5.43 5.14 5.02

Traj 6 8.69 5.64 5.25 5.12

NPRNo preprocessing applied,RS reflection suppression applied,RUD
radial undistortion applied, DV de-vignetting applied

Table 7 Comparison of surface reconstruction accuracy results on the
evaluated datasets

Depth Potensic Misumi-I Misumi-II Awaiba

Traj 1 63.42 2.82 2.32 2.14 3.42

Traj 2 63.45 2.56 2.45 2.16 4.14

Traj 3 63.41 3.16 2.76 2.45 4.45

Quantities shown are the mean distances from each point to the nearest
surface in the ground truth 3D model in cm

tory estimation framework as well. We scanned the open
non-rigid esophago-gastroduodenoscopy (EGD) simulator to
obtain the ground truth 3D data using a highly accurate com-
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Fig. 10 Qualitative 3D reconstructed map results for different cameras [(real pig stomach (left), synthetic human stomach (right)]

Table 8 Comparison of ATE
RMSE for different trajectories
and combinations of
preprocessing operations on the
evaluated dataset

NPR RSM RSPM RSPM+RUD RSPM+RUD+DV

Traj 1 5.45 3.65 3.42 2.02 2.14

Traj 2 6.44 3.91 3.71 2.08 2.16

Traj 3 6.54 4.23 3.94 2.27 2.45

Traj 4 7.25 4.53 4.14 3.02 3.14

Traj 5 8.35 4.95 4.63 3.34 3.52

Traj 6 8.95 5.55 5.14 3.55 3.82

Quantities shown are the mean distances from each point to the nearest surface in the ground truth 3D model
in cm
NPR No preprocessing applied, RSPM reflection suppression applied for both pose estimation and map
reconstruction, RSM reflection suppression applied only for map reconstruction, RUD radial undistortion
applied, DV de-vignetting applied, MISUMI-II camera were used

mercial 3D scanner (Artec 3D Space Spider). The final 3D
map of the stomach model obtained by the proposed frame-
work and the ground truth scan were aligned using iterative
closest point algorithm (ICP). The absolute depth (ADE)
RMSE was used to evaluate the performance of map recon-
struction approach, whichmeasured the root-mean-square of
Euclidean distances between estimated depth values and the
corresponding ground truth depth values. A lowest RMSE of
2.14 cm (Table 7) proves that our system can achieve very
high map accuracies. Even in more challenge trajectories
such as trajectory 3, our system is still capable of providing
an acceptable 3D map of the explored inner organ tissue.
Three-dimensional reconstructed maps of real pig stomach
and synthetic human stomach are represented in Fig. 10 for
visual reference.

To evaluate the contributions of each preprocessing mod-
ule on the map reconstruction accuracy, we tested the
approach with leave-one out strategy leaving one module
each time.As shown in Table 8, each preprocessing operation
has a certain influence on the RMSE results. One important
observation is that even though pose accuracy increases with

existence of reflection points, these saturated pixels have neg-
ative influence on the map accuracy, as expected. Therefore,
disabling reflection suppression during pose estimation and
enabling it for map reconstruction are the best option to fol-
low.

4.4 Computational performance

To analyze the computational performance of the proposed
framework, we determined the average frame pair process-
ing time across the trajectory sequences. The test platform
was a desktop PC with an Intel Xeon E5-1660v3-CPU at
3.00, 8 cores, 32GB of RAM, and an NVIDIA Quadro
K1200GPUwith 4GBofmemory. Three-dimensional recon-
struction of 100 frames took 80.54 s to process, whereas
processing of 200 frames took 180.83 s, and processing of
300 frames 290.12 s, respectively. That indicates an average
frame pair processing time of 919.15 ms, implying that our
pipeline needs to be accelerated using more effective parallel
computing andGPUpower in order to reach real-time perfor-
mance. To achieve this, we developed a RGB-Depth SLAM
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method, which is capable of capturing comprehensive and
globally dense surfel-based maps of the inner organs in real
time, by using joint photometric–volumetric pose alignment,
dense frame-to-model camera tracking, and frequent model
refinement through non-rigid surface deformations [1]. The
execution time of the RGB-Depth SLAM is dependent on
the number of surfels in the map, with an overall average
of 48 ms per frame scaling to a peak average of 53 ms,
implying a worst case processing frequency of 18 Hz. Even
though RGB-Depth SLAM is much faster than our sparse-
then-dense alignment-based 3D reconstruction method, the
map quality decreases due to the use of surfel elements.
Moreover, the joint photometric–volumetric pose alignment
is prone to converge into local minima in low-textured areas.
For further details of our RGB Depth SLAM method, the
reader is referred to our paper [1].

4.5 Conclusion

In this study, we proposed a therapeutically relevant and very
detailed 3D map reconstruction approach for endoscopic
capsule robots consisting of preprocessing, key frame selec-
tion, a sparse-then-dense pose estimation, frame stitching,
and shading-based 3D reconstruction. Detailed quantitative
and qualitative evaluations show that the proposed system
achieves sub-millimeter precision for both 3D map recon-
struction and pose estimation. In future, we aim to achieve
real-time operation for the proposed framework so that it
can be used for active navigation of the robot during endo-
scopic operations, as well. Moreover, we plan to incorporate
magnetic localization and scale estimation module into our
method to develop even more robust endoscopic reconstruc-
tion tools.
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Biomedical Applications
of Untethered Mobile
Milli/Microrobots
This paper reviews the current advances in biomedical untethered mobile

millirobots and microrobots.

By Metin Sitti, Fellow IEEE, Hakan Ceylan, Wenqi Hu, Student Member IEEE,

Joshua Giltinan, Student Member IEEE, Mehmet Turan,

Sehyuk Yim, Student Member IEEE, and Eric Diller, Member IEEE

ABSTRACT | Untethered robots miniaturized to the length

scale of millimeter and below attract growing attention for the

prospect of transforming many aspects of health care and

bioengineering. As the robot size goes down to the order of a

single cell, previously inaccessible body sites would become

available for high-resolution in situ and in vivo manipulations.

This unprecedented direct access would enable an extensive

range of minimally invasive medical operations. Here, we pro-

vide a comprehensive review of the current advances in biome

dical untethered mobile milli/microrobots. We put a special

emphasis on the potential impacts of biomedical microrobots

in the near future. Finally, we discuss the existing challenges

and emerging concepts associated with designing such a

miniaturized robot for operation inside a biological environ-

ment for biomedical applications.

KEYWORDS | Biomedical engineering; medical robots; micro-

robots; minimally invasive surgery

I . INTRODUCTION

One of the highest potential scientific and societal impacts

of small-scale (millimeter and submillimeter size) unteth-

ered mobile robots would be their healthcare and bioen-

gineering applications. As an alternative to existing tethered

medical devices such as flexible endoscopes and catheters,
mobile medical milli/microrobots could access complex and

small regions of the human body such as gastrointestinal

(GI), brain, spinal cord, blood capillaries, and inside the eye

while being minimally invasive and could even enable

access to unprecedented submillimeter size regions inside

the human body, which have not been possible to access

currently with any medical device technology [1], [2].

As an alternative to tethered flexible endoscopes used
in the GI tract, untethered pill-size, swallowable capsule

endoscopes with an on-board camera and wireless image

transmission device have been commercialized and used in

hospitals (FDA approved) since 2001, which has enabled

access to regions of the GI tract that were impossible to

access before, and has reduced the discomfort and sedation

related work loss issues [3]–[7]. However, capsule endo-

scopy is limited to passive monitoring of the GI tract via
optical imaging as clinicians have no control over the cap-

sule’s position, orientation, and functions. Several groups

have been proposing active, robotic capsule endoscopes

within the last decade where such devices could be re-

motely controlled to achieve active imaging and have other

medical functions [8]–[13]. In bioengineering, mobile

microrobots, due to their ability to manipulate individual

biological microentities with high precision repeatedly,
could be used as a new scientific study or prototyping tool

for tissue engineering (e.g., assembling and controlling the

building blocks of regenerated tissues) and cellular biology
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such as single cell studies by manipulating single non-
motile or motile cells.

Reported small-scale biomedical robot sizes use range

from tens of micrometers to several centimeters. We can

classify such different length scale miniature robots as

millirobots and microrobots. We define a mobile micro-

robot as a mobile robotic system where its untethered

mobile component has all dimensions less than 1 mm and

larger than 1 �m and its mechanics is dominated by mi-
croscale physical forces and effects. Thus, for microrobots,

bulk forces such as inertial forces and buoyancy are

negligible or comparable to surface area and perimeter

related forces such as surface tension, adhesion, viscous

forces, friction, and drag. In millirobots, their untethered

mobile components have all dimensions less than palm

size and larger than 1 mm and macroscale forces such as

bulk forces dominate their mechanics. On-board compo-
nents for milli/microrobots must have overall sizes much

smaller than the given robot overall size. Therefore, all on-

board robot components such as mechanisms, tools, actua-

tors, sensors, power source, electronics, computation, and

wireless communication must be miniaturized down to

micron scale. Moreover, for milli/microrobots, such com-

ponents need to be fabricated by micro/nanofabrication

methods, which are different from conventional macro-
scale machining techniques.

There are two main approaches of designing, building,

and controlling mobile medical small-scale robots:

• On-board approach: Similar to a typical macroscale

mobile robot, the untethered, self-contained and

self-propelled miniature robot has all on-board

components to operate autonomously or with a

remote control.
• Off-board approach: The mobile, untethered compo-

nent of the milli/microrobotic system is externally

(off-board) actuated, sensed, controlled, or powered.

Since various commercial on-board components exist

for millirobots, on-board approach is possible for milliro-

bots while such components are not readily available for

microrobots. Thus, most of the current mobile micro-

robotics studies in literature have been using the off-board
approach, and therefore our microrobotics definition also

covers such studies.

In addition to the on-board and off-board approaches,

milli/microrobots can be also classified as synthetic and

biohybrid. In the former case, the milli/microrobot is made

of fully synthetic materials such as polymers, magnetic

materials, silicon, composites, elastomers, and metals,

while the latter is made of both biological and synthetic
materials. biohybrid milli/microrobots are typically inte-

grated with muscle cells such as cardiomyocytes or micro-

organisms such as bacteria, algae, spermatozoids, and

protozoa, and powered by the chemical energy inside the

cell or in the environment [14]. They harvest the efficient

and robust propulsion, sensing, and control capabilities of

biological cells or tissues. Such cells could propel the robot

in a given physiologically compatible environment, and
sense environmental stimuli to control the robot motion by

diverse mechanisms such as chemotaxis, magnetotaxis,

galvanotaxis, phototaxis, thermotaxis, and aerotaxis.

Advances in and increased use of microelectromechani-

cal systems (MEMS) since the 1990s have driven the devel-

opment of untethered milli/microrobots. MEMS fabrication

methods allow for precise features to be made from a wide

range of materials, which can be useful for functionalized
microrobots. There has been a surge in microrobotics work

in the past few years, and the field is relatively new and is

growing fast [1], [15]. Fig. 1 presents an overview of a few of

the new microrobotic technologies, which have been pub-

lished, along with their approximate overall size scale.

The first miniature machines were conceived by

Feynman in his lecture on ‘‘There’s Plenty of Room at the

Bottom’’ in 1959. In popular culture, the field of milli/
microrobotics is familiar to many due to the 1966 sci-fi

movie Fantastic Voyage, and later the 1987 movie Inner-

space. In these films, miniaturized submarine crews are

injected inside the human body and perform noninvasive

surgery. The first studies in untethered robots using

principles which would develop into milli/microrobot ac-

tuation principles were only made recently, such as a

magnetic stereotaxis system [16] to guide a tiny permanent
magnet inside the human body and a magnetically driven

screw which moved through tissue [20]. At the millimeter

and centimeter size scale, advances in such millirobots

have brought crawling, flying, and swimming devices with

increased interest over the last decade. While many de-

velopments in millirobots are not directly relevant to bio-

medical applications, the technologies developed can be

used in biomedical millirobots. One major milestone was
the creation of centimeter-scale crawling robot with on-

board power and computation in 1999 [51]. Micromecha-

nical flying insect robots were first introduced in 2000 [19].

A solar powered crawling robot was introduced in 2004

[21]. Centimeter-scale compliant running robots with on-

board power, actuation, and control were advanced with

compliant mechanisms in 2008 [26]. Free flight (but with

off-board power delivered via wires) mechanical insect-
inspired robot was demonstrated in 2013 [46]. The first

capsule endoscopes for medical use were used clinically in

2001 under FDA approval. Additional milestones for

capsule endoscopy has been the introduction of a crawling

mechanism [52] and the introduction of on-board drug

delivery mechanism [53].

At the submillimeter scale, other significant milestone

studies in untethered microrobotics include a study on
bacteria-inspired swimming propulsion [54], bacteria-

propelled beads [23], [55], steerable electrostatic crawling

microrobots [30], catalytic self-propelled microtubular

swimmers [24], laser-powered microwalkers [31], magnet-

ic resonance imaging (MRI) device-driven magnetic beads

[29], and magnetically driven millimeter-scale nickel ro-

bots [56]. These first studies have been followed by other
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novel actuation methods such as helical propulsion [34],

[57], stick-slip crawling microrobots [33], magnetotactic

bacteria swarms as microrobots [58], optically driven

bubble microrobots [39], and microrobots driven directly

by the transfer of momentum from a directed laser spot

[43], among others. Figs. 2 and 3 shows a number of the

existing approaches to microrobot mobility in the literature
for motion in two-dimensions (2D) and three-dimensions

(3D). Most of these methods belong to the off-board

(remote) microrobot actuation and control approach, and

will be discussed in detail later. It is immediately clear that

actual microrobots do not resemble the devices shrunk

down in popular microrobotics depictions.

In this review paper, first, existing and potential bio-

medical applications of mobile millirobots and micro-

robots are described including a brief case study in each

application category, if available. Next, challenges and

emerging concepts in miniaturized biomedical robots are

presented. Finally, Section IV provides the conclusions

and future directions. The material covered in the paper is

outlined in schematic form in Fig. 4.

II . CURRENT AND POTENTIAL
BIOMEDICAL APPLICATIONS
OF MILLI/MICROROBOTS

A. Active Visual Imaging for Disease Diagnosis
Active visual (optical) imaging such as endoscopic and

laparoscopic techniques is one of the most significant

Fig. 1. Approximate timeline showing the emerging new milli/microrobot systems with their given overall size scale as significant milestones.

(a) Implantable tiny permanent magnet steered by external electromagnetic coils [16]. (b) Alice 1 cm3 walking robot [17]. (c) In-pipe inspection

crawling robot [18]. (d) Micromechanical flying insect robot [19]. (e) Screw-type surgical millirobot [20]. (f) Solar powered walking robot [21].

(g) Cardiac surface crawling medical robot [22]. (h) Bacteria-driven biohybrid microrobots [23]. (i) biohybrid magnetic microswimmer [24].

(j) Water strider robot [25]. (k) Hexapedal compliant walking robot [26]. (l) 12-legged crawling capsule robot [27]. (m) Snake-like medical robot

[28]. (n) Magnetic bead driven by a Magnetic Resonance Imaging device in pig artery [29]. (o) MEMS electrostatic microrobot [30]. (p) Thermal

laser-driven microrobot [31]. (q) Magnetically controlled bacteria [32]. (r) Crawling magnetic microrobot [33]. (s) Magnetic microswimmer

inspired by bacterial flagella [34], [35]. (t) Flexible capsule endoscope with drug delivery mechanism [36]. (u) Programmable self-assembly of

microrobots [37]. (v) Independent control of microrobot teams [38]. (w) Bubble microrobot [39]. (x) 3D magnetic microrobot control [40].

(y) Sperm-driven biohybrid microrobot [41]. (z) Catalytic microtubular [42]. (aa) Light-sail microrobot [43]. (ab) Bacteria swarms as

microrobotic manipulation systems [44]. (ac) Swarm of mini-crawlers [45]. (ad) Free flight of micromechanical insect [46]. (ae) Undulating

soft swimmer [47]. (af) Untethered pick-and-place microgripper [48]. (ag) Cell-laden gel assembling microrobot [49]. (ah) Multiflagellated

swimmer [50].
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methods to diagnose diseases. While flexible endoscopes

and catheters provide visual disease diagnosis currently,

they can be invasive and are only for short duration screen-
ing purposes. For minimally invasive and implantable

(long-duration) visual imaging and accessing small spaces
that were not possible to reach before (e.g., small intes-

tines), existing pill-size capsule endoscopes have been

becoming a significant alternative [4], [7], [75], [76]. Such

commercial pill-size capsule cameras have an on-board ca-

mera, a wireless transmission device, and a battery to just

take images and send them to an external recording device.

Turning such passive imaging devices into capsule milli-

robots would enable untethered active imaging of hard-to-
access areas minimally invasively and for long durations.

Therefore, many groups have been proposing robotic cap-

sule millirobots for active imaging using different ap-

proaches. Using an on-board actuation approach, miniature

motors based on leg or fin mechanisms were used to propel

capsule robots inside the GI tract in a controlled manner.

Through off-board actuation approach, many groups used

remote magnetic actuation to stop, propel, or navigate
capsule millirobots in the GI tract [77]. The former ap-

proach does not require bulky external devices for actua-

tion while motors consume too much power compared to

imaging, which reduces the imaging duration from hours to

several minutes. However, external actuation or power

transfer does not have such issue while they require bulky

equipment around the patient, which would limit her/his

motion capability and could be more expensive.
During active imaging, it is important to know the ex-

act 3D location (and orientation) of the millirobot to ena-

ble more localized diagnosis and new advanced methods

such as 3D visual mapping of the GI tract such as stomach

by combining the 3D position information with the 2D

camera images. For the localization of millirobots inside

the GI tract, as the first approach, medical imaging devices

such as fluoroscopy, which uses low-dose X-rays to image
the capsule region at 1–2 frames per second [77] ultrasonic

imaging [77]–[80], positron emission tomography (PET)

[77], [81] and magnetic resonance imaging (MRI) [77]. As

Fig. 3. Some existing off-board and on-board approaches to mobile

milli/microrobot actuation and control in 3D. (a) Chemically propelled

designs include the microtubular jet microrobot [42] and the

electro-osmotic swimmer [68]. (b) Swimming milli/microrobots in-

clude the colloidal magnetic swimmer [24], the magnetic thin-film

helical swimmer [69], the micron-scale magnetic helix fabricated by

glancing angle deposition [35], the microhelix microrobot with

cargo carrying cage, fabricated by direct laser writing [70] and the

microhelix microrobot with magnetic head, fabricated as thin-film and

rolled using residual stress [34]. (c) Milli/microrobots pulled in 3D

using magnetic field gradients include the nickel microrobot capable of

five-degrees-of-freedom (DOF) motion in 3D using the OctoMag

system [40] and the MRI-powered and imaged magnetic

bead [71]. (d) Cell-actuated biohybrid approaches include the

artificially-magnetotactic bacteria [72], the cardiomyocyte driven

microswimmers [73], the chemotactic steering of bacteria-propelled

microbeads [74], sperm-driven and magnetically steered microrobots

[41], and the magnetotactic bacteria swarm manipulating microscale

bricks [44].

Fig. 4. Applications and challenges for biomedical milli/microrobots.

Fig. 2. Some existing off-board approaches to mobile microrobot

actuation and control in 2D. (a) Magnetically driven crawling

robots include the Mag-�Bot [33], the Mag-Mite magnetic crawling

microrobot [59], the magnetic microtransporter [60], rolling magnetic

microrobot [61], the diamagnetically-levitating mm-scale robot [62],

the self-assembled surface swimmer [63], and the magnetic thin-film

microrobot [64]. (b) Thermally driven microrobots include the

laser-activated crawling microrobot [31], microlight sailboat [43], and

the optically controlled bubble microrobot [39]. (c) Electrically driven

microrobots include the electrostatic scratch-drive microrobot [65]

and the electrostatic microbiorobot [60]. Other microrobots which

operate in 2D include the piezoelectric-magnetic microrobot MagPieR

[66] and the electrowetting droplet microrobot [67].
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an alternative approach, a radio transmitter has been
placed on the commercial passive capsule endoscopes, and

by placing multiple receiver antennas around the patient,

an average position error of approximately 38 mm has

been realized [77]. Moreover, by placing a small magnet

inside the millirobot, hall-effect sensor arrays outside the

patient have been used to localize the device [77], [82].

However, for magnetically actuated capsule robots, hall-

effect sensor-based methods get more challenging due to
the interference of the magnetic field from the actuating

external magnet or electromagnetic coils and the magnet

on the capsule robot on the sensor. Several studies ad-

dressed this problem and could still enable 3D localization

using hall-effect sensors on the capsule [83] or outside the

patient’s body [84]. Also, magnetically actuated soft cap-

sule robots with a hall-effect sensor could be localized using

the shape change information of the capsule due to the
external magnet position [85].

As an example, capsule millirobot, magnetically ac-

tuated soft capsule endoscope (MASCE) with an integrated

CMOS camera (see Fig. 5 and Table 1) was proposed to

actively image stomach type of 3D surfaces using remote

magnetic control [53]. Soft design of the capsule body

enabled safe operation (i.e., no damage to the tissue due to

high stresses), extra degree-of-freedom actuation, and
shape changing capability. After swallowing the MASCE

and reaching to stomach in several seconds, an external

magnet was used to roll it inside stomach for navigation and

position control via the two tiny permanent magnets

embedded inside it. Several localization methods [84], [85]

were proposed to know the 3D position and 2D orientation

of the robot precisely during imaging. Inside a surgical

phantom stomach model, the feasibility of active imaging
using such millirobot was demonstrated in vitro.

Since the currently available smallest CMOS camera

with its lens from Awaiba GmbH with reasonable resolu-

tion (62,500-pixels) is 1 mm� 1 mm� 1 mm current ac-

tive imaging functions are only [86] available for milliscale

medical robots. Future lower resolution smaller cameras

with integrated lighting and lens could enable mobile

microrobots to actively image new smaller spaces inside

the human body such as bile duct, spinal cord fluid, and

brain lobes.

B. Mobile In Situ Sensing for Disease Diagnosis and
Health Monitoring

Current passive biomedical sensors can be implanted

inside or located outside the human body for continuous

monitoring of a patient’s or healthy person’s health condi-

tion. Such sensors could measure or detect glucose, pH,
temperature, oxygen, viral or bacterial activity, body mo-

tion (inertia), balance, blood pressure, respiration, muscle

activity, neural activity, pulse rate, etc., in situ to diagnose

and inform any abnormal medical condition or pathological

activity. Adding remote or on-board mobility and control

capability to such sensors by having them on medical milli/

microrobots could enable a future mobile medical sensor

network inside the human body for active health monitor-
ing. Thus, various mobile sensors could be concurrently

deployed with the purpose of patrolling inside the different

body parts in a minimally invasive manner. Such important

biomedical application of milli/microrobots (other than

visual monitoring as given in Section II-A) has not been

explored much yet. As a preliminary study, Ergeneman et al.
[87] proposed a magnetically controlled untethered mag-

netic microrobot that could achieve optical oxygen sensing
for intraocular measurements inside the eye.

C. Targeted Therapy
Targeted therapy is able to enrich the local concentra-

tion of therapeutics such as drugs, mRNA, genes, radioac-

tive seeds, imaging contrast agents, stem cells, and proteins

in a specific targeted region inside the body while maintain-

ing minimal side effects in the rest of the body. Moreover,

controlling the release kinetics can also modulate the con-

centration of the drug at the therapeutic window, and

thereby prolonging the effect of single dose administration.
Mobile milli/microrobots can release such therapeutic bio-

logical and chemical substances in a specific target location

in precise and controlled amounts so that potential side

effects are minimized and stronger amounts of the sub-

stances could be delivered for faster and better recovery.

As the main targeted therapy application, small-scale

mobile robots have been used for targeted drug delivery in

Fig. 5. (a) Photograph of the prototype (left picture) of an example

magnetically actuated capsule millirobot for active imaging inside

stomach. A CMOS camera and LED lighting were integrated to the

soft capsule robot, which can axially deform due to external magnetic

actuation control. (b) An active imaging example (right picture)

snapshot of the surgical stomach model from the CMOS camera

during its active orientation control by an external magnet.

Table 1 Specifications of the Example Magnetically Actuated Soft Capsule

Millirobot Shown in Fig. 5
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the GI tract, blood vessels, etc. At the millimeter scale,
active capsule endoscopes have been used to deliver drugs

in the GI tract using passive or active drug release methods

[8]. Typical drug delivery capsules use a remotely con-

trolled triggering to move a mechanism that could eject the

drug actively for one time in a controlled amount into the

target location. Triggering of the drug release mechanism

can be achieved by visible light, near-infrared light, ultra-

sound, or magnetic fields [88]. Also, the Joule electrical
heating of a shape memory alloy wire could be used to

trigger a drug mechanism [89]. A piston mechanism in a

capsule robot was moved by a micromotor based actuation

method [90] and by a remotely triggered ignition of the

propellant based microthruster [91] for single-use ejection

of drugs. An axial compression of a magnetically actuated

soft capsule millirobot also enabled controlled ejection of

liquid drugs for multiple times inside stomach [53], [92].
Moreover, the same soft capsule robot could change into a

spherical like shape inside stomach so that it could stay

there for a long time to deliver drugs by passive diffusion

[36] as a semi-implantable drug delivery platform. After

the drug delivery operation was over, the capsule was

taken out by changing back its shape from a spherical

shape to a cylindrical one, which enables its disposal

naturally by peristalsis. As a specific example, Fig. 6 shows
the active ejection of a liquid drug from the soft capsule

robot using remote magnetic actuation control.

At the micron scale, there have been some preliminary

studies to use untethered mobile microrobots to deliver

drugs or other agents in the vascular system and eye [93]. In

relatively larger human arteries with a dimension from 4 to

25 mm with a blood flow velocity from 100 to 400 mm/s,

milliscale robots can be pulled or pushed around using
magnetic field gradients [94]. Martel et al. proposed the

magnetic resonance navigation to actuate a 1.5 mm diam-

eter spherical magnet in swine carotid artery [29]. And the

similar system was later used by Pouponneau et al. to de-

liver doxorubicin through rabbit hepatic artery [95]. In

contrast to the system actuated by the spherical permanent

magnet, this magnetic navigation system has larger switch-

ing rate enabling a closed-loop control [94].
To be able to access to the vessels smaller than arte-

rioles (G 150 �m), rotating magnetic microswimmers with

a helical tail, inspired by flagella swimming of bacteria,

were proposed for efficient swimming locomotion in low
Reynolds number [35], [50], [57]. Such microswimmers

can be coated with drugs and deliver them in a target

location using passive diffusion [96] or potentially by an

active release mechanism. Moreover, several studies pro-

posed biohybrid microrobots where bacteria attached to a

cargo such as drug particles or molecules transported the

cargo to a desired location [14], [93] by remote control or

bacterial sensing of the environment. Here, bacteria be-
have as on-board microactuators using the chemical energy

inside the cell or in the environment and also as on-board

microsensors detecting chemical, pH, oxygen, and tem-

perature gradients in the environment [17]. A magneto-

tactic unipolar MC-1 bacterium could transport up to 70

sub-200 nm diameter liposomes, which encapsulate drugs,

without a significant impact to the bacteria’s swimming

velocity using the remote magnetic steering control [97].
Also, Carlsen et al. [98] used many chemotactic bacteria to

transport potential drug microparticles with embedded

superparamagnetic nanoparticles while using remote mag-

netic fields to control the motion direction of the micro-

particles to reach to targeted regions before releasing the

potential drug cargo. Swimming speed of such bacteria-

propelled microparticles with 6 �m diameter was up to

7.3 �m/s under homogenous G 10 mT magnetic fields.
Such biohybrid microrobots could be manufactured in

large numbers cost effectively and fast, which could enable

future targeted drug delivery applications using microrobot

swarms (see Fig. 7).

D. Minimally Invasive Surgery
In addition to diagnostic and therapeutic applications

of milli/microrobots, next level of their medical use could
be minimally invasive surgery inside the body. Such surgi-

cal operations or functions could be opening clogged

vessels or other channels, cauterization, hyperthermia, bi-

opsy, occlusion, electrical stimulation, injection, cutting,

drilling, biomaterial removal, or addition at a given target,

etc. Only several of these potential applications have been

studied before. Many groups proposed integrated biopsy

tools for capsule millirobots to collect tissue samples for
further disease diagnosis. Kong et al. designed a rotational

biopsy device designed to scratch the epithelial tissue [99].

Park et al. proposed a spring-driven biopsy microdevice

with microspikes [100], [101]. Simi et al. created a biopsy

capsule with a rotational razor that can be activated by a

magnetic torsion spring mechanism [102]. These prelim-

inary biopsy capsules have common drawbacks of inaccu-

rate targeting of a certain area and inability of conducting
biopsy for multiple times. On the other hand, in their soft

capsule millirobot, Yim et al. [12] could release hundreds

of untethered microgrippers that could grab tissue stochas-

tically by self-folding due to the increased body temper-

ature, and retrieve the microgrippers with their grabbed

tissues inside stomach ex vivo for further genetic analysis.

Next, inside the eye, Ullrich et al. tried to puncture a blood

Fig. 6. Active drug delivery demonstration of a soft capsule millirobot

(see Table 1 for its specifications) inside stomach. (a)–(c) Time

snapshots of the drug diffusion during the active compression of

the drug chamber with the remote magnetic actuation [92].
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vessel close to the retina using the rotational motion of a

magnetic millirobot with a sharp tip [103]. Yu et al. [104]

and Miloro et al. [105] proposed magnetic millirobots that
could be spun remotely by remote rotating magnetic fields

to potentially open clogs in blood vessels. In overall, there

are only few preliminary minimally invasive surgery

studies, which could be extended significantly with many

new potential applications inside the circulatory system,

brain, spinal cord, and other organs.

E. Tissue Engineering
Many diseases could be treated by precisely delivering

the differentiated stem cells and regenerating tissues at the

pathological sites [106]. Preliminary research has been

done by Kim et al. who designed a cage shape microrobot

which is fabricated by stereolithography of negative tone
photoresist [107]. Coating the developed polymer struc-

tures with Ni/Ti bilayer rendered the microrobot steerable

by the magnetic field. By coating the microrobot further

with poly-L-lysine, the author could culture human

embryonic kidney cell (HEK293) in 3D inside the

microrobot, showing the possibility of using it as bio-

scaffold to support tissue regeneration [2]. Alternatively,

artificial tissues can also be constructed in vitro first and
then replace its malfunction in vivo counterparts, and

thereby provide a new source for medical transplantation

[108]–[110]. One way to achieve artificial tissues is by

arranging microscale hydrogels (microgel) laden with

different cells into predefined geometries [111]–[113]. For

example, Tasoglu et al. [114] functionalized microgel with

radical solution in a high magnetic gradient to make it

paramagnetic. This enables microgels to be self-assembled

into desired shapes under the influence of a uniform

magnetic field. After the assembly, the magnetization of
microgel could be disabled by vitamin E, so that the free

radicals could be eliminated to ensure the proliferation of

cells throughout the hydrogel scaffold [114].

As a more general way, the microrobot can also directly

manipulate the non-functionalized microgels into desired

geometry. For example, Tasoglu et al. [49] used a crawling

magnetic microrobot ð750 � 750 � 225 �m3Þ to push

cell laden microgels made of either polyethylene glycol
dimethacrylate (PEGDMA) or gelatin methacrylate

(GelMA). As shown in Fig. 8(b), the assembly on the

upper layer was aided by a microfabricated ramp to elevate

the microrobot. In contrast to the conventional manipula-

tion by optical tweezers [115] and dielectrophoresis force

[116], this microrobotic approach distinguishes itself by

minimally relying on the property of the microobjects.

Thus, many different materials could be transported and
integrated into tissue construct [49]. This is especially

helpful in testing various combinations of different mate-

rials to figure out the optimal solution for constructing a

specific tissue.

However, it has to be noticed that the microfabricated

ramp used could limit the maximum layers of the assem-

bly. To interface microrobot with the conventional tissue

culturing dish with flat bottom, the microrobot has to pick
up and drop the microgel on top of each other. Diller et al.
addressed this by reshaping the magnetic microrobot into a

gripper, as shown in Fig. 8(c) [48]. The microgripper jaw

was remotely controlled by the magnetic field to clamp and

Fig. 7. Conceptual sketch of a bacteria-propelled biohybrid microrobot swarm, as a dense stochastic network, transporting and

delivering drugs on targeted regions inside the stagnant fluid regions of the human body.
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release the microgel. In another work by Giltinan et al.
[117], the microobject was picked up by the capillary force

on a microbubble nested in the cavity of the magnetic

microrobot, as shown in Fig. 8(d). Increasing the pressure

inside the working environment could retract the bubble

and release the microgel.

As a specific example, a top-down view of the

microrobot manipulating microgel into a stack is shown

in Fig. 9(a)–(f). Here, the force required to peel off a
silicon substrate using magnetic torque was used as the

metric of effectiveness for the capillary gripping magnetic

microrobot. While many variables can affect the force

required to peel the bubble from the test substrate,

Fig. 9(h) shows the peel off forces when the bubble height,

measured before the experiment, is less than 0, indicating

the bubble is in the cavity, and when the bubble height is

approximately 35 �m for a cavity radius of 75�m. The
minimum peel off force average of 0.6�N and maximum

peel off force of 14.9�N indicate a switching ratio of

approximately 25 : 1. The peel off force minimization was

aided by surface contact minimizing features, shown on an

example microrobot in Fig. 9(g).

F. Cell Manipulation
The biomedical analysis of single cells can differentiate

genetic, metabolic and behavior heterogeneity, which

pushes the microbiology research to an unprecedented re-

solution [118], [119]. The single cell manipulation is con-

ventionally done by a micromanipulator, which is a

microscale end effector connected to macroscale actuator.

This design restricts its access to open channels such as a

petri dish [120]. In contrast, untethered microrobots can

Fig. 8. 3D assembly of cell-laden microgels by different microrobots.

(a) Magnetic crawling microrobot [49]. The microgel is pushed

by the microrobot to the desired position. A microfabricated

ramp is used to elevate the microrobot to higher layer of the tissue

constructs. (b) Magnetic microgripper [48]. The jaw is opened

and closed by external magnetic field to pick up and release the

microobject. (c) Magnetic microrobot with bubble capillary gripper

[117]. Changing the pressure inside the working environment can

extend and retract the bubble to pick up and release the

microobject. (d) Magnetic coil system for

microrobot control.
Fig. 9. (a)–(f) Capillary gripping microrobot manipulating hydrogels

into a stack as shown from the top-down view. (a) The microrobot

position is given by the red cross and the desired position is given

by the blue cross. microrobot position control is achieved by a

PID controller used to determine the applied magnetic force. The

hydrogels are the three circular disks (diameter � 350 �m) and the

microrobot is a capillary gripping microrobot with a side dimension of

150�m. (b) The microrobot is directed above the hydrogel and the

bubble is drawn out of the cavity by a negative applied pressure in the

microrobot workspace. The microrobot is then lowered onto the

hydrogel. (c) The microrobot with the hydrogel positions itself over the

center hydrogel and comes into contact. (d) The microrobot detaches

from the stack of two hydrogels. (e), (f) The process is repeated

for the left hydrogel, resulting in a three-hydrogel stack. Scale bar

is 1 mm. (g) Example magnetic microrobot with a cavity for

bubble-based capillary gripping. The four cones ensure surface contact

is minimized when releasing parts. (h) Peel off force versus the average

bubble height. The peel off force is calculated as the equivalent

force acting on the center of the microrobot due to the applied

magnetic torque. The magnetic torque is calculated from the applied

uniform magnetic field and the known magnetization of the

microrobot. The bubble height is measured from the cavity opening

to the highest point of the bubble when it is not in contact

with the test substrate. The height of 0 indicates the bubble is

completely inside the cavity and there should be no capillary

attachment force and is considered to be in the ‘‘release’’ state.

Any positive non-zero bubble height will be considered the ‘‘pick’’

state. On a test silicon substrate, the best current work shows an

attachment switching ratio of peel off force in the ‘‘pick’’ state

to the peel off force in the ‘‘release’’ state of 25 : 1.
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manipulate cells in enclosed spaces such as microfluidic or

other biological chips. Up till now, many different single

cell manipulation tasks have been realized by untethered
microrobots and are summarized in Table 2. Among these

manipulations, microtransportation is the most common

operation. Through microtransportation, either single cell

can be isolated from its culture for later analysis [4] or

drugs can be precisely delivered to a cell network to mod-

ulate the intracellular communication [121]. Moreover,

random distributed cells can also be re-arranged into de-

sired spatial geometry for the research such as observation
of the cancer cell progression [122].

While manipulation of immotile cell is relative easy,

manipulation of flagellated bacteria is much more chal-

lenging, which is conventionally done by optical tweezers

with the cell threaten by photo damage [131], [132]. To

address this, Ye and Sitti used the rotational flows around

the rotating magnetic microparticle to selectively trap

S. marcescens bacterium [124]. The authors showed that a
uniform magnetic field smaller than 3.5 mT was enough to

drive the microparticle and translate it with at a speed up

to 100 �m/s.

Besides microtransportation, several other cell manip-

ulations could be achieved by untethered microrobots. For

example, a microrobot with force sensor was designed by

Kawahara et al. to mechanically stimulate and investigate

the P. Laevis response [128]. In the future, such sensor
could be used to distinguish abnormal cell by its mechani-

cal properties [133]. Furthermore, Hagiwara et al. pro-

posed a magnetically driven microtools that was able to

orient, position and cut single cell [126]. These functions

were used to enucleate the oocyte [127]. The authors ar-
gued that this method was significantly faster than the

conventional mechanical micromanipulators and also

caused less damage to the oocyte.

As the next approach, the cellular level manipulation

capabilities of the untethered microrobot could be further

strengthened to realize more applications as envisioned in

Fig. 10. Control method, either on-board or off-board,

could be introduced to render the microrobot to be a
complete autonomous agent. In this case, a large number

of microrobots could be released into the biomedical

sample to finish predefined applications such as detecting

circulating tumor cells [134] and systematically probing

the cellular communication [135].

III . CHALLENGES AND EMERGING
CONCEPTS IN MINIATURIZED
BIOMEDICAL ROBOTS

To enable high-impact biomedical applications of minia-
turized mobile robots, many fundamental challenges need

to be addressed. As the functional robot size goes down to

the millimeter scale and below, design, fabrication, and

control of these systems require design principles which

greatly differ from that of macro scale robotics. Moreover,

medical activities inside the human body will require

additional tasks such as feedback from the environment

Table 2 Single Cell Manipulation Studies Conducted by Untethered Microrobots
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and communication with the operator. In this section, we

discuss the challenges associated with miniaturization of

untethered biomedical robots from their initial design to

the preclinical testing steps. We also provide a future

outlook toward a solution in light of the recent advances

addressing some of these challenges.

A. Design and Modeling
How can we design a mobile milli/microrobot for a

specific biomedical task to achieve optimal operational
performance, such as the shortest operation duration,

minimum power consumption, and largest area coverage,

while constrained by software, hardware, manufacturing,

motion, control, lifetime, and safety? Given that biological

environments are remarkably crowded, the design of phy-

sically and chemically, robust, and flexible milli/micro-

robots is of paramount importance. Such a design requires

an integrated strategy where components, locomotion
principles, materials, and power sources are considered

altogether for functioning via a real-time closed-loop

control system (Fig. 11).

These design problems can be addressed in many differ-

ent perspectives. One primary design variable is the number

of milli/microrobots: a single multitasking robot versus a

team [48], [59], [122], [136] or a swarm [137] of robots with

parallel and distributed functions. Considering the potential
size of a human tissue or organ, a single microrobot would be

insufficient for enough theranostic effect in a given

operation, while a microrobot team functioning in a

concerted manner could significantly amplify the expected

throughput. In the multi-robot perspective, each individual

robot could be either identical (i.e., homogeneous) with the

same functions or different (i.e., heterogeneous) with

varying functionality [48]. The team could move determin-

istically or stochastically using on-board or off-board

(remote) actuation methods [48], [136], [138]–[140]. As

locomotion, they could swim, crawl, roll, spin, or hop [30],

Fig. 10. Conceptual figure/illustration showing all potential applications of microrobotic cell manipulation.

Fig. 11. Visionary design of a soft, modular microrobot with

spatio-selective functionalization. Each functional component is

assembled on a main board. The main board further serves as a large

depot for therapeutics to launch controlled release at the site of action.

A closed-loop autonomous locomotion (e.g., a biohybrid design)

couples environmental signals to motility. Targeting units enable

reaching and localization at the intended body site. MRI contrast

agents loaded on the microrobot enables visualization as well

as manual steering on demand. Gold nanorods enable plasmonic

heating to decompose a tumor tissue.
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[33], [50], [61], [136], [138], [141]. They could have integ-
rated micro/nano-sensors, microactuators, and other com-

ponents such as microcontrollers, power source, wireless

communication, etc. [39], [49], [142]–[145].

Programming individual components to spontaneously

assemble into fully equipped multifunctional microrobots is

a promising design strategy (Fig. 11) [146]. Reprogrammable

self-assembly of small components into larger, complex

structures is a universal route of material fabrication by
biological organisms [147]. Individual components, called

building blocks, carry the necessary information for struc-

tural integration/disintegration as well as specific biological

functions. Despite the complexity of the final ensemble,

reprogrammable assembly is a simple and robust strategy for

rapid adaptation of the organism to dynamic changes in the

environment. Such level of intelligence in biological systems

provides a powerful source of inspiration for making
similarly complex, synthetic designs, which should be

functionally capable of multitasking and autonomously

responding to changes in the environmental conditions.

Modular assembly of individual micro and nanocomponents

could therefore enable flexible customization of optimally

working milli/microrobots, which could be manufactured in

large quantities in a feasible and reliable way. However, the

reprogrammable material concept is still at its infancy, and
there is a need for thoroughly understanding and controlling

assembly and related processes using simple and robust

strategies. A major challenge in macroscopic self-assembly is

coding information in individual building blocks. Recent

work has addressed this issue by designing self-assembling

soft building blocks in various size and shapes [49], [114],

[148]–[151]. For example, colloidal patchy particles, which

can form directional and programmable interactions in 3D,
are among the state-of-the-art examples [152]. By spatio-

selective surface modification of individual building blocks,

which range in 0.1 to a few micrometers, anisotropic and

heterogeneous configuration could inspire similar robot

designs based on the self- assembly concept (Fig. 11). In this

regard, a similar approach would be useful for larger, i.e.,

10�m–1 mm, building blocks for manufacturing a micro-

robot. On the other hand, increased particle size creates
many non-specific interaction sites, leading to the loss of the

directionality and destabilized structural coherence. To this

end, high fidelity directional bonding among the building

blocks with high overall assembly yield remain as the major

challenges to solve. One alternative to this would be remotely

picking and then placing individual building blocks to as-

semble into 2D and 3D structures by the aid of a human

operator [49], [114]. However, with this way, interactions
between the individual building blocks usually remain weak,

which does not support the overall structural integrity and

the ensemble tends to fall apart. To surmount this, a

secondary covalent cross-linking step is needed [49]. On the

other hand, covalent cross-linking is an irreversible process

that completely eliminates the intrinsic reprogrammable

nature of the final ensemble. Therefore, another future task

is to provide bonding stability while maintaining the dynamic
nature of the self-assembly and ensure bonding directionality

for building prescribed manufacturing of microrobots.

At the system level, real-time interactions and feedback

among individual components of a milli/microrobot are

essential for proper functioning. For an ideally autono-

mous microrobot, continuous sensing of the surrounding

environment needs to be functionally coupled to mobility,

cargo release, powering, and other operational compo-
nents. Therefore, novel sensing mechanisms that modulate

robot behavior would conditionally be able to activate

operations. For example, sensing the location of a tumor

site and subsequent taxis of microrobots to that location is

crucial for carrying out a noninvasive medical operation.

However, the major challenge of continuous sensing in the

living environment is the unreliable biological signals that

might cause false positive or false negatives, thereby lead-
ing to unintended microrobot activations. To surmount

this problem, molecular logic gates sensing for multiple

markers on a conditional basis would enable more accurate

operational evaluations by milli/microrobots [153], [154].

In overall, there are alternative design approaches and va-

riables one needs to select correctly for a given application.

After developing approximate models of such milli/

microrobot systems, rigorous numerical design optimiza-
tion methods using evolutionary algorithms need to be

developed as a significant future challenge.

B. Materials and Fabrication
Robots designed to be operating at the small scale is

essentially a materials science problem because intelli-

gence of such robots would mainly come from their physi-

cal material, structure, mechanism, and design properties.
For any material coming into contact with biological fluids

need to be resistant to corrosion, as highly saline aqueous

environment could easily cause leaching hazardous pro-

ducts from robots as well as causing irreversible robotic

malfunctions. Mechanical resilience and durability of

milli/microrobots are also highly critical, particularly in

large vessels and load-bearing tissues. Inside arteries, for

example, high blood flow rate and shear forces can easily
disintegrate tiny robots or prevent their motion control [2].

One bioinspired solution toward overcoming that issue

might be recapitulation of erythrocyte deformability in

milli/microrobots. Erythrocytes can change shape under

applied stress without undergoing plastic deformation.

There has already been an ongoing effort for developing

injectable, shape memory polymers for tissue engineering

applications [155], [156]. These materials can be com-
pressed under large mechanical force and then completely

recover repeatedly. Such a design could greatly help robust

locomotion in blood vessels with changing diameter. For

multicomponent systems, surface bonds should also be

stable as these interconnections sites are the weakest points

under mechanical stress. On top of all of these, robots

interacting with biological tissues or working inside the
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human body must be biocompatible while most of the

existing microrobots are made of materials that are not

biocompatible. In most biomedical applications, it is

crucial to also have novel materials that are soft,
biodegradable, multi-functional, smart, and compatible

to existing micro and nanofabrication processes. On the

other hand, current robot materials are typically rigid,

non-biodegradable, and have single function. Creating

milli/microrobots from such novel materials require many

custom and novel micro/nanoscale fabrication and

prototyping tools in 2D and 3D that could be based on

optical lithography, two-photon stereo-lithography, self-
folding thin-films, micro/nanomachining, micro/nano-

imprinting, and micro/nanomolding [49], [138], [151],

[157], [158]. Finally, it is crucial to manufacture these

robots in large numbers for their potential medical use

(Fig. 12). Robot mass-production at the micro/nanoscale

is integral for their future commercial applications using

roll-to-roll, directed self-assembly, and programmable

self-folding methods.

C. Functionality
In the millimeter scale, although active imaging is

possible with current capsule millirobots, this function is

primarily used for post-procedure diagnosis. In the future,

it is imperative to go beyond this to advanced image

processing for diagnosis of visually undetectable disease

[159], to map the 3D environment of the given organ using

visual simultaneous localization and mapping (SLAM)

[160] or optical flow based advanced motion detection

algorithms to predict the capsule motion precisely [161],
and to propose new active focusing and 3D illumination

methods to improve the imaging quality and diagnosis

precision [162].

On the micron scale, the only practically available site for

microrobot functionalization is its surface. Porous soft mate-

rials can also allow cargo encapsulation inside their 3D body.

This would be a very useful strategy as it allows higher
amount of cargo loading compared to 2D surface. There has

been extensive experience over drug encapsulation and re-

lease for targeted therapy and controlled-release applica-

tions, which might be directly transferred to microrobotic

applications [163]–[165]. For this purpose, a whole micro-

robot can be fabricated as a big cargo depot, which will sig-

nificantly prolong the impact of single dose administration.

In accordance with the special medical requirement,
microrobot surface can be modified with operational micro-

tools enabling the sensing of disease diagnosis, therapeutic

functions, e.g., targeted drug or gene delivery, and surgical

functions, e.g., cauterization and clearing clogged blood ves-

sels. In this sense, mechanical microgrippers could be pro-

mising microtools for ablation and biopsy as well as drug/

gene delivery [48], [117]. Similar microtools for drilling and

heating local tissue sites could profoundly improve non-
invasive surgical operations, particularly for removing tumor

in deep tissue sites. High throughput or organized operations

could find pervasive use in biomedicine. A typical example of

microrobot swarms piece-by-piece building tissue scaffolds

could revolutionize tissue engineering.

D. Mobility
For the capsule robots, there have been many 2D and

3D locomotion methods proposed. However, there are still

many open challenges such as increasing the locomotion

precision and speed for accurate and shorter operations,
minimizing the power consumption during locomotion,

increased safety for not damaging any tissue or not creating

any negative reaction from the body, and robust operation

Fig. 12. Conceptual sketch of a large number of microrobots made of smart materials that can be remotely actuated and

controlled inside the human body with a user interface to achieve different biomedical functions.
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against the relative organ motion such as respiration, heart
beating, and peristalsis. Also, every person with different

age, gender, and race has a different scale and property of

biological tissues. Therefore, the given locomotion method

could be adapted to such variations robustly.

Possible locomotion modes of untethered biomedical

microrobots are swimming in 3D liquid environment and

walking, crawling, sliding, spinning, hopping, and rolling

on 2D surfaces. Using such locomotion modes, microrobots
should be able to navigate in hard-to-reach regions of the

human body with high degree of mobility i.e., 6-DOF

actuation and high steering capability [166], speed

(achieving the tasks in reasonable durations for realistic

clinical use), range of motion, penetration depth (i.e.,

reaching to the deep regions of the body), precision, and

autonomy in teams or large numbers. Depending on its

given task, a microrobot can have either or both 3D and 2D
mobility to reach a specific site inside body. In body sites

with low velocity or stagnant fluid flows, swimming and

remote directing would be more efficient and faster,

whereas in solid tissues or organs, 2D mobility might be the

best option to penetrate into deep regions. To this end,

autonomously switchable locomotion modes by sensing the

body environment are significant challenges. Even so,

minimum interaction with solid tissue surface would be
desirable to avoid potential irritation and injury-related

side effects. Speed control of a mobile microrobot is

another critical factor for timely achievement of a given

medical task. Synthetic micropropellers harvesting energy

from a local source are far from providing a useful

locomotion speed even in the unrestricted liquid environ-

ment, i.e., without the limitation of a solid tissue barrier. To

the best of our knowledge, no micropropeller system has
been demonstrated that can move against the blood stream

in large vessels due to high-speed blood flow. Despite the

fact that biological microorganisms can reach faster speed

than synthetic and biomimetic micropropellers, none of

the available sources (either natural or synthetic) has

inspired for a practically useful speed for biomedical

applications. For example, average swimming speed of a

flagellum-carrying E. coli is 30 �m s�1 inside water [167]. A
biohybrid design involving remote mobilization of magne-

totactic bacteria was demonstrated to reach a maximum

swimming speed of 200 �m s�1 [137].

Speed control is important for reaching to target site

and completing the medical operation. In order to speed

up in low Reynolds number, forces acting on the

microrobot should be higher. Therefore, there is room

for novel micromotor designs that will elevate the
efficiency of harvesting local energy source by increasing

the micromotor speed. For remotely controlled micro-

robots, the remote actuation torque or field gradient can

simply be tuned to adjust speed [34] while there is a

maximum speed limit in magnetic microrobots due to the

roll-off behavior depending on the rotational drag proper-

ties of the robot.

E. Powering
One of the most significant bottlenecks of untethered

mobile milli/microrobots is powering their mobility,

sensing, communication, tools, and computation for long

enough durations required for a given medical task. Cap-

sule millirobots are powered by silver-oxide coin batteries

inside the capsule shell that provide for approximately from

1 min to 8 hours of operation; for example, on-board ac-

tuated capsule can last for 1 min when they are actuated all
the time, and just on-board imaging and data transfer can

last up to 8 hours or so. There is always need for high power

density power sources for longer operation durations. On

the other hand, minimizing the energy consumption for

sensing, locomotion, data transfer, and computation would

help such grand challenge. As an alternative solution,

wireless power transmission techniques such as inductive

powering and radio frequency, microwave radiation, and
piezoelectric ultrasound systems are promising options be-

cause they are off-board providing space for other modules

on the capsule and increasing the operation duration [101].

However, when you scale down the capsule robot size

significantly or increase the distance of the device from the

power transmitter, such wireless power transfer efficiency

goes down exponentially, reducing the provided average

power numbers to approximately 1–20 mW.
On the micron scale, especially mobility requires signi-

ficant amount of power as the motion at low Reynolds

numbers could be significantly affected by the viscous drag

on the robot body. Moreover, high mechanical power is

needed for stable mobility control inside pulsating blood

flow. At the sub-millimeter scale, storing, harvesting, and

transmitting power is not feasible in the conventional sense

we are used to in our macroscopic world. Therefore, a signi-
ficant effort has been concentrated on various power sources,

including remote magnetic, electrical, acoustic, and optical

actuation and self-powering, including self-electrophoresis,

self-diffusiophoresis, and self-thermophoresis, for microro-

bot locomotion [24], [168]–[173].

Biological systems have adapted to living in this size

domain by storing energy in the form of chemical energy,

which is then converted to mechanical motion, sensing,
communication and reproduction. Similarly, autonomous

microrobots should be powered by available local chemical

energy inside the human body. To this end, a proof-of-

concept gold-platinum bimetallic nanorod was de-

monstrated to autonomously move via self-electrophoresis

in the presence of 2–3 vol.% H2O2 as the fuel [172]. Tran-

slating this technology to the micrometer scale, platinum

nanoparticle catalyzed generation of oxygen gas drove mo-
tion of polymer stomatocytes at as low as 0.3 vol.% H2O2.

Similar conceptual designs were shown to be operational in

other liquids containing N,N-dimethyl hydrazine or meth-

anol, though, none of which is close to a biologically relevant

environment [174], [175]. To overcome this, a strategy that

harnesses locally available sources is crucial. Mano and

Heller’s strategy of reacting glucose and oxygen was
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promising to drive locomotion, though it is only operational
at water-oxygen interface and requires high oxygen pres-

sures. Recently, enzyme-powered micropumps have been

shown to be viable source of motion in biologically relevant

conditions [176].

Energy conversion efficiency is another concept that

has so far received little attention. Energy conversion effi-

ciency of microrobots can be described as the ratio of the

mechanical power output to the overall work done to drive
the motion. The efficiency of the synthetic micro and

nano-propellers remain around 1%, significantly lower

than macroscopic motors [167]. This might be a limiting

step for the overall success of robotic operations.

Altogether, despite some solid progress in self-

powering methods for microrobots harvesting the envi-

ronmental liquids and flows and for sub-millimeter scale

robots are still primitive and not directly applicable inside
biological environment. It is therefore a great challenge to

achieve remote or autonomous microrobot actuation for

long durations in a wide range of mobility and inside deep

regions of the human body. Maximizing the power effi-

ciency and minimizing the power consumption of micro-

robotic systems are crucial for long-term medical

operations, which could be enabled by optimal design of

microrobot’s mobility, sensing, and control methods.

F. Robot Localization
Determining the location and orientation of a medical

robot in 3D is crucial for precise and safe motion control

inside the human body. Many successful localization

methods are available for millirobots [77], [78], [81]–[85],

while localization of micron scale medical robots is a great

challenge due to their much smaller size [94]. Thus, it is
better to design such microrobot systems as swarms and

facilitate stronger collective imaging signal [137]. Medical

imaging systems such as MRI [71], [137], fluoroscopy

[177], PET [178], NIR [179], and ultrasound [178] are

possible candidates for microrobot localization. Under

these systems, the localization could be registered with the

medical images to plan and achieve medical tasks safely. At

last, having multi-modal localization methods could enable
more precise and safer medical operations [179], [180].

Even very early attempts towards precise localization of

inside body will have profound impact in the field.

G. Communication
While many commercial transceivers are available for

capsule millirobots, no one has tackled yet the challenge of

wireless communication with microrobots inside the
human body or communication among large number of

microrobots, which could be crucial for data or informa-

tion transfer from the robots to the doctor and vice versa

and microrobot control and coordination. Magnetic actua-

tion was proposed as a promising wireless strategy for co-

operative [59], [70], [136] and distributed [48], [136]

microrobotic tasks. However, effectiveness of distributed

operations via magnetic actuation drastically diminishes
with increase in the number of microrobots in the team.

Further, magnetic actuation is an open-loop controller,

lacking of autonomous decision-making based on real-time

sensing of changes in the environment and state of indi-

vidual microrobots. In this regard, principles that govern

the social behaviors of biological microorganisms could be a

valuable source of inspiration to address control and coor-

dination of microrobot swarms. Microscopic species
exhibit collective behaviors in response to environmental

stimuli, which are sensed and transmitted among individ-

ual species by physical interactions and/or chemical

secretions [181], [182]. Dictyostelium discoideum is a well-

known example of such microorganisms, which, upon self-

organization into a hierarchical colony with up to 105

residents, can reconfigure itself and migrate as a single

unit [183]. Quorum sensing is another cell-to-cell commu-
nication process used in bacteria for sharing information

among the population and eliciting a collective reaction

[184]. An intriguing property of quorum sensing is that the

population density is monitored in real-time by the whole

colony and a communal response is elicited as a result [184].

This strategy is particularly inspirational for developing a

population density-driven switch for microrobot operation

inside body. microrobots gathering inside a specific body site
and operating only after their population reaches a particular

size would be a highly effective strategy.

H. Safety
It is mandatory to guarantee the safety of biomedical

milli/microrobots while they are deployed, operated, ex-

tracted inside, and removed out of the human body. Such

safety is only possible by designing and selecting proper
materials and methods for fabrication, actuation, and pow-

ering from the very beginning of the system design and

integration. Therefore, any robotic component, remote mag-

netic or other autonomous actuation or sensing methods

should be within the FDA limits so that they don’t cause any

discomfort, damage, or pain to the patients; synthetic

microrobots should be made of biocompatible and biode-

gradable soft materials; biohybrid (e.g., muscle-cell- or
bacteria- actuated) microrobots should not be pathogenic or

not create any immunological negative response. Immuno-

genicity concerns of muscle-cell-actuated microrobots could

be successfully evaded by producing functional cells from

patient-derived induced pluripotent stem cells (iPSC) [185].

On the other hand, during microrobot fabrication, biohybrid

constructs are highly prone to microbial contamination,

which should be given a special emphasis [186], [187].
Bacteria-propelled micro robots must be sterilized from any

sort of pathogenicity. One safest way is genetically engi-

neering these organisms, so that their proliferation and

hazardous by-products are eliminated [188], [189].

While the magnetic strength of the microrobot itself

will not present an issue, the magnetic fields used to ac-

tuate the microrobot need to be considered [190]. The
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FDA currently classifies devices with static fields less than
8 T to be of nonsignificant risk. Current medical trials have

shown fields upwards of 9.4 T to be safe, not affecting vital

signs or cognitive ability [191]. A DC field of 16 T was

shown to levitate a frog and other objects due to the weak

diamagnetic properties of living tissue, with no observable

negative effects [192]. Blood, which is electrically conduc-

tive, moving through a static field will generate a back

electromotive force (EMF). A field of 10 T is calculated to
reduce blood volume flow by 5% due to the effects of the

induced voltage, possibly hazardous to susceptible patients

[193]. The resulting current is expected to generate the

upper limit of safe static fields [190]. However, the fring-

ing fields at the end of an MRI device or solenoid can lead

to large spatial magnetic gradients. A time-varying magne-

tic field or moving conductor will generate an induced

current. The spatial magnetic gradient is used to push or
pull magnetic microrobots. These spatial gradients will not

harm the patient, however any movement will turn these

gradients into time-varying magnetic gradients. On the

other hand, if the magnetic microrobot is being precisely

controlled, the spatial gradients will change with the

control of the microrobot, causing time-varying gradients.

Spatial gradients are reported for the patient accessible

volume of MRI machines to reach several Tesla per meter,
but are typically found outside the central bore and the

procedures to measure the maximum possible spatial gra-

dient are not well defined [194].

As discussed in Section III-F, there are several possible

localization techniques, some of which may pose a risk to

the patient. Using MRI to localize the medical microrobot

has the same considerations as those above for actuating

the microrobot. Imaging techniques based on ionizing ra-
diation, such as fluoroscopy and positron emission tomo-

graphy are only used when necessary. Fluoroscopy is

limited by a patient dose to 88 mGy per minute by the

FDA, and can even pose hazards to the operators [191].

Limitations on PET are already set for staff preparing the

tracer nucleotide as well as during patient care. Exposure

of 10–30 mSv have been reported for patients, and patients

which underwent the procedure showed a higher inci-
dence of cancer [195]. Ultrasonic radiation, while gener-

ally considered safe, is able to heat tissue and induce

cavitation of gas bubbles. The FDA has set limits for beam

intensity dependent on the frequency, pulse length, and

number of pulses, ranging upwards to 2 W/cm2 for pulsed-

averaged intensities [196].

I. Preclinical Assessment Models
For gaining mechanistic insight into behaviors of mi-

niaturized robots in a complex living environment, realis-

tic in vitro medical models/phantoms or freshly acquired

organs or tissues are essential. For cargo delivery and con-

trolled release applications, existing tissue engineering

models could be adapted for proof-of-concept investiga-

tions. In this regard, organ-on-chip technologies could be a

valuable platform as the clinical and physiological mimetic
of human body environment [197]. In addition to such

in vitro testing, it would be crucial to have in vivo small

animal proof-of-concept tests to show the preclinical feasi-

bility of the proposed novel concepts.

IV. CONCLUSION

Small-scale untethered mobile robots have a promising
future in healthcare and bioengineering applications [198].

They are unrivalled for accessing into small, highly con-

fined and delicate body sites, where conventional medical

devices fall short without an invasive intervention. Recon-

figurable and modular designs of these robots could also

allow for carrying out multiple tasks such as theranostic,

i.e., both diagnostic and therapeutic, strategies. Notwith-

standing, mobility, powering, and localization are the car-
dinal challenges that significantly limit the transition of

viable robotic designs from in vitro to preclinical stage. An

ideal self-powered microrobot that can be actuated auto-

nomously, targeting a specific location to carry out a prog-

rammed function by real-time reporting to an outside

operator would truly trigger a paradigm shift in clinical

practice. Besides, individual robots that can form swarm-

like assemblies for parallel and distributed operations
would dramatically amplify their expected clinical out-

come. Design and fabrication of miniaturized robots,

particularly at the submillimeter scale, require a funda-

mentally different strategy than the existing macroscale

manufacturing. Because surface-surface interactions pre-

dominate inertial forces, design and manufacturing at this

size domain requires an interdisciplinary effort, particu-

larly the involvement of robotic researchers, chemists,
biomedical engineers, and materials scientists. Overall,

even the currently presented primitive examples of unteth-

ered mobile milli/microrobots have opened new avenues

in biomedical applications paving the way for minimally

invasive and cost-effective strategies, thereby leading to

fast recovery and increased quality of life of patients. h
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CONCLUSION

This dissertation introduces many novel ideas for endoscopic capsule robot localiza-
tion and mapping task, making use of deep learning, sensor fusion and direct SLAM
techniques. To summarize, following frameworks are proposed:

• A dense and direct medical SLAM approach which makes use of GPU ac-
celerated non-rigid frame-to-model fusion, joint volumetric-photometric pose
estimation and dense model-to-model loop closure techniques;

• A fully dense, non-rigidly deformable, strictly real-time, intraoperative map
fusion approach for actively controlled endoscopic capsule robot applications,
which combines benefits of magnetic and vision-based localization, with non-
rigid deformations based frame-to-model map fusion;

• A supervised deep monocular visual odometry (VO) method for endoscopic
capsule robots based on recurrent convolutional neural networks (RCNNs);

• An unsupervised deep localization and depth estimation approach for endo-
scopic capsule robots consisting of two simultaneously trained sub-networks,
the first one assigned for depth estimation via encoder-decoder strategy, and
the second assigned to regress the camera pose in 6-DoF;

• A sequence-to-sequence deep sensor fusion approach which does not need any
spatial or temporal synchronization between sensors;

• A novel multi-sensor fusion algorithm on switching state space models with
particle filtering using robot dynamics modelled by recurrent neural networks
(RNNs), which can handle sensor faults and non-linear motion models;

• A comprehensive medical 3D reconstruction method, which is built in a mod-
ular fashion including preprocessing, keyframe selection, sparse-then-dense
alignment-based pose estimation, bundle fusion, and shading-based 3D recon-
struction;

• A comprehensive review of the current advances in biomedical untethered mo-
bile milli- and microrobots with an emphasis on the potential impacts of such
devices in the near future and existing and emerging challenges associated with
medical operations performed via such minituarized robotic technologies.

The presented methods are showing high accuracy camera pose and 3D mapping
performances on the qualitative and quantitative analyses performed on deformable
porcine stomachs and realistic surgical EsophagoGastroDuodenoscopy simulator. In
future, in-vivo testings on real human patients are required to validate the accuracy
and robustness of the methods in real GI tract and under real medical operation



conditions. We also intend to extend our work into stereo capsule endoscopy appli-
cations to achieve even more accurate localization and mapping results. Moreover,
we intend to incorporate a robot operating system platform (ROS), disease/lesions
detection, segmentation algorithms and nearest frontier based exploration capabili-
ties into the platform to transform our actively controllable endoscopic capsule robot
into an intelligent medical robot system which autonomously explores and detects
lesions inside the GI tract and performs drug delivery and biopsy-like interventions
with submillimeter precision.

Despite the success of the proposed ideas in this dissertation, there are still several
open challenges for deep learning based endoscopic capsule robot applications such
as:

• Large datasets of labeled medical datasets are not generally available due to
privacy issues and underrepresentation of rare conditions; e.g. diseases and
abnormalities. Synthetically-generated medical data with an accurate forward
model for the capsule imaging system and anatomically-realistic model of the
organ could be used for the training purposes.

• A spatial and temporal control of the capsule illumination source would lead to
better robot localization, mapping, lesion detection and recognition. The pro-
jection of a known and spatially and temporally varying texture (and color),
would facilitate the detection of lesions (which respond differently to different
wavelengths) as would facilitate the extraction of image data given the projec-
tion of texture. Varying textures for different areas of the visual field may also
facilitate detection and estimation of shape (photometric shape and motion).

• Low resolution and low camera framerates (3-5 fps) of state-of-the art capsule
endoscopy videos are still limiting factors for computer vision related tasks
such as disease detection, topography estimation and visual odometry. Thus,
to enhance the resolution of the capsule endoscopy videos, a super-resolution
generative adversarial network might be trained. Moreover, low frame rate
endoscopic videos could be interpolated via inter-frame generative adversarial
networks to upscale the framerate.

• Detection of lesions in the small bowel is specially difficult given its length, ho-
mogeneous texture, and absence of visual references. In addition, the medical
alternatives to performing small bowel exams are very difficult and complex.
The use of capsule endoscopy is therefore specially important. Capsule-based
detection and localization of lesions is both more difficult and important in
the case of the small bowel. New robust methods and techniques are required,
which can take advantage of actively controlled capsules.

• Most capsule endoscopy manufacturers have multi-camera versions of capsules.
Motion control of such multi-cam capsules can advantageously use the infor-
mation provided by the several cameras. Such a multi-camera based visual
feedback would increase the control accuracy of the endoscopic capsule robot.
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