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Weak solutions of inverse mean curvature flow
for hypersurfaces with boundary

By Thomas Marquardt at Zurich

Abstract. We consider the evolution of hypersurfaces with boundary under inverse
mean curvature flow. The boundary condition is of Neumann type, i.e. the evolving hyper-
surface moves along, but stays perpendicular to, a fixed supporting hypersurface. In this setup,
we prove existence and uniqueness of weak solutions. Furthermore, we indicate the existence
of a monotone quantity which is the analog of the Hawking mass for closed hypersurfaces.

1. Introduction

The evolution of closed hypersurfaces under inverse mean curvature flow (IMCF) was put
forward by Geroch [5] and Jang and Wald [13] as an approach to the proof of the positive mass
theorem. They observed the monotonicity of the Hawking mass under IMCF and showed that
if IMCF remained smooth, this monotonicity could be used to prove the Riemannian Penrose
inequality and thus the positive mass theorem. Unfortunately, IMCF does not remain smooth
in general. However, the Positive Mass Theorem was proved by Schoen and Yau [26] using
a different approach.

Later Gerhardt [4] showed that starting IMCF from a closed, smooth, star-shaped hyper-
surface with strictly positive mean curvature the surface evolves for all time and approaches
a round sphere as time tends to infinity (see also Urbas [33]). For non-star-shaped initial
hypersurfaces singularities may occur in finite time. In order to make sense of the flow in
that situation Huisken and Ilmanen [11, 12] defined weak solutions of IMCF which still keep
the Hawking mass monotone. This enabled them to prove the Riemannian Penrose inequality.
See also Bray [2] for a different approach.

Here we want to consider IMCF in the case where the hypersurfaces possess a boundary
and move along, but stay perpendicular to, a fixed supporting hypersurface. For a short time
this flow admits a classical solution [22]. Moreover, in the special case where the supporting
hypersurface is a convex cone and the initial hypersurface is star-shaped and has strictly pos-
itive mean curvature we proved long-time existence and convergence to a piece of a round
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sphere [23]. The aim of this work is to prove the existence of weak solutions of IMCF for
hypersurfaces with boundary. We use a level set approach along the ideas of Huisken and
Ilmanen together with new barrier constructions and a priori estimates for a family of mixed
Dirichlet–Neumann problems in non-smooth domains.

The article is organized as follows: In Section 2 we introduce the classical formulation
of IMCF and describe the corresponding level set problem and a family of approximating
problems. In Section 3 we derive a priori estimates for solutions of the approximating prob-
lems. This yields existence and uniqueness for solutions of these problems in weighted Hölder
spaces. In Section 4 we define weak solutions of IMCF for hypersurfaces with boundary.
Furthermore, we show that a sequence of solutions of the approximating problems converges
to a weak solution. The main result is summarized in Theorem 4.8. We use Section 5 to discuss
further properties of weak solutions and finish with Section 6 by proving the existence of
a monotone quantity for classical solutions in Proposition 6.1. It is the analog of the Hawking
mass for closed hypersurfaces. The justification of the monotonicity in the weak setting will be
carried out in a forthcoming paper.

Acknowledgement. The author wants to thank Gerhard Huisken for acquainting him
with inverse mean curvature flow and for all the support and valuable discussions during the
time the author spent at the Max Planck Institute for Gravitational Physics in Potsdam.

2. Level-set description and approximation

Let us first consider the classical formulation of inverse mean curvature flow in the case
where the hypersurfaces possess a boundary and move along, but stay perpendicular to a fixed
supporting hypersurface.

Definition 2.1. Let M n be a compact, smooth, n-dimensional manifold with compact,
smooth boundary àM n. Let †n be a C 2;˛-hypersurface in RnC1 without boundary. Further-
more, let us assume that the initial hypersurface is described by an immersionF0 WM n!RnC1

such that M n
0 WD F0.M

n/ has strictly positive mean curvature with respect to the unit normal
vector field � and satisfies

F0.àM n/ D F0.M
n/ \†n; h�; � ı F0i D 0 on àM n

where � is the unit normal vector fields of †n. Given a one-parameter family of immersions
F WM n � Œ0; T /! RnC1, we say thatM n

t WD F.M
n; t /moves under inverse mean curvature

flow if F satisfies 8̂̂̂<̂
ˆ̂:

dF
dt
D

�

H
in M n

� .0; T /;

F.àM n; t / DM n
t \†

n; h�; � ı F i D 0 on àM n
� .0; T /;

F. � ; 0/ D F0 on M n:

(IMCF)

Here � is the unit normal vector field on M n
t which is compatible with that of M n

0 and H is
the scalar mean curvature1) ofM n

t in RnC1. Furthermore, � is chosen to point away fromM n
t ,

i.e. for curves in M n
t ending at p 2 àM n

t with tangent vector v.p/ we have hv; �i.p/ � 0.
1) Note that a classical solution of (IMCF) can only exists as long as H remains strictly positive.
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In order to obtain the level set description we define the set of all points on one side of†n

including †n itself:

� WD ¹x 2 RnC1 j 9  2 C 1.Œ0; 1�;RnC1/W .0/ D .Œ0; 1�/ \†n;

.1/ D x;  0.0/ D ��º [†n:

Furthermore, for a set A � � we define the boundary parts

à�A WD àA n†n and à†A WD àA n à�A:

Now, the aim is to find a function u W �! R such that the hypersurface M n
t is given as the

t -level set of u, i.e. M n
t D à�¹u < tº. The conditions on u are described by the following

degenerate elliptic mixed boundary value problem for u:

(?)

8̂̂̂̂
<̂
ˆ̂̂:

div
�
Du

jDuj

�
D jDuj in �0 WD � nE0;

D�u D 0 on †0 WD à†�0;

u D 0 on à�E0;

where E0 WD ¹u < 0º and à�E0 is supposed to be a C 2;˛-hypersurface which meets †n

orthogonally.

Note that as long as H.M n
t / > 0 we have M n

t D ¹u D tº, jDujuDt j D H.M
n
t / > 0

and (?) is equivalent to (IMCF). The purpose of this paper is to prove the existence and unique-
ness of weak solutions of (?) in the sense of Definition 4.1.

Remark 2.2. (1) ForF0 2 C 2;˛.M n/ there exists a constant T > 0 such that (IMCF)
has a unique solution F 2 C 2C˛;1C

˛
2 .M n� Œ0; T �/\C1.M n� .0; T �/. This also holds

in a Riemannian ambient space [22].

(2) The corresponding Neumann problem for mean curvature flow was first studied by
Stahl [30, 31]. It was followed by the work of Buckland [3] who analyzed the singulari-
ties and by the work of Koeller [14, 15] who proved further regularity results. Recently,
Vulcanov [35] studied a mixed Dirichlet–Neumann boundary value problem for mean
curvature flow.

(3) If†n is a convex cone andM n
0 is a C 2;˛-hypersurface with strictly positive mean curva-

ture which is star-shaped with respect to the center of the cone, then (IMCF) has a unique
solution for all time. Furthermore, after suitable rescaling the hypersurfaces converge
to a piece of a round sphere [23]. For closed hypersurfaces this result goes back to
Gerhardt [4] (see also Urbas [33]).

(4) The definition of weak solutions of IMCF for closed hypersurfaces via elliptic regulariza-
tion of (?) together with a variational approach goes back to Huisken and Ilmanen [11].
They proved the existence and uniqueness of those weak solutions which enabled them
to prove the Riemannian Penrose inequality.

(5) Moser [25] showed that weak solutions in the sense of Huisken–Ilmanen can also be
obtained by regularizing (?) with the help of p-harmonic functions. Later, Kotschwar and
Ni [16] extended this result to Riemannian ambient spaces satisfying a volume growth
condition.
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(6) Another related problem was considered by Hein [10] who proved the existence of weak
solutions similar to those of Huisken–Ilmanen for a parabolic version of the level-set
equation. This approach is also interesting with regard to a numerical treatment of IMCF.

(7) Schulze [27] applied the level-set approach to study flows with speed equal to positive
powers of the mean curvature. In [28], he used this formulation to give a new proof of
the isoperimetric inequality. Currently, Volkmann [34] is using the level-set approach to
study the Neumann problem for flows with speed equal to positive powers of the mean
curvature.

In order to solve (?) we want to consider a family of non-degenerate problems in bounded
domains. It turns out that we also have to deform the given set E0 in order to be able to solve
the non-degenerate problem in the right weighted Hölder spaces.

Definition 2.3. Let E0 � � be relatively open in �. Suppose à�E0 is a C 2;˛-hyper-
surface which meets †n orthogonally. The approximating inner Dirichlet boundary à�E0;" is
defined with the help of the set

E0;" WD E0 n ¹x 2 E0 j dist.x;†n/ < "; dist.x; àE0/ < �".x/º

where

�".x/ WD "
3 exp

�
1 �

�
"

" � dist.x;†n/

�2�
:

Note that �" is arranged such that

(2.1) 0 < D� dist. � ; E0;"/ < 1 on †n \ à�E0;":

To define a family of approximating problems in bounded domains we also have to introduce
an artificial outer Dirichlet boundary. If FL" � � is open and à�FL" is a C 2;˛-hypersurface
such that FL" � E0;" and

(2.2) � 1 < D� dist. � ; FL"/ < 0 on †n \ à�FL" ;

then à�FL" is a suitable outer Dirichlet boundary. Finally, we also regularize the differential
operator by defining

Q"u WD div
�

Dup
"2 C jDuj2

�
�

q
"2 C jDuj2:

Using these notations we can formulate a family of "-regularized level-set problems in bounded
domains: For " > 0 we consider the family of regularized problems8̂̂̂̂

<̂
ˆ̂̂:
Q"u";� D 0 in �" WD FL" nE0;";

D�u
";�
D 0 on †" WD à†�";

u";� D 0 on à�E0;";
u";� D � on à�FL" ;

.?/";�

where � 2 Œ0; L"� and L" > 0.
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�"

à�FL"

&

à�E0;"

& †"
.

���à�FL"

�à�E0;"
�

Figure 1. Domain and boundaries for .?/";� . The dotted line denotes à�E0.

Remark 2.4. The aim is that for "! 0 the sets FL" become larger, à�E0;" deforms
back to à�E0 and L" !1 in order to recover the problem (?) in the limit. The existence of
a solution of .?/";� will depend on the choice of FL" and L" as we will see in the next section.
Furthermore, properties (2.1) and (2.2) ensure the existence of more regular solutions.

3. Existence for the approximating problems

We will prove the existence of solutions u";� of .?/";� in weighted Hölder spaces. In
particular, those solutions will satisfy u";� 2 C 2;˛.�"/ \ C 1;ˇ .�"/ for some ˛; ˇ 2 .0; 1/.
This motivates the following definition:

Definition 3.1. Let ˛; ˇ 2 .0; 1/. A solution of .?/";� with regularity

u";� 2 C 2;˛.�"/ \ C
1;ˇ .�"/

is called admissible. Furthermore, a function u� with that regularity is a subsolution of .?/";�
if the following inequalities hold:

Q"u� � 0 in �";

D�u
�
� 0 on †";

u� � 0 on à�E0;";
u� � � on à�FL" :

Similarly, a function uC which satisfies the reverse inequalities it is called supersolution.

To obtain an estimate for ju";� j we first note that uC� W� � is a supersolution of .?/";�
and thus u";� < � . Unfortunately, constant functions do not serve as a subsolution. If we want
to find a non-constant subsolution u� with the help of the maximum principle, the sign of the
quantity D�u� has to be controlled everywhere on †". To achieve this we restrict to the case
where †n is globally given as the graph of a C 1-function f W RnC1 ! R such that all tangent
lines to graphf in radial directions hit the xnC1-axis above the point x0 WD .0; : : : ; 0;�c0/,
i.e.

(3.1) min
x2RnC1

¹f .x/ � hx;Df .x/iº > �c0

for some c0 > 0 sufficiently large. With the help of this condition we obtain a lower bound.
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Lemma 3.2 (Existence of a subsolution). Let n � 2. Let †n be globally given as the
graph of a C 1-function f W RnC1 ! R such that (3.1) holds. We set

a WD max
à�E0;"

dist. � ; x0/; " <
1

4a
; R WD

1

4"
; 0 � � � L" WD

1

2
ln
�
R

a

�
and define

FL" WD ¹x 2 � j dist.x; x0/ < Rº:

Then an admissible solution u";� of .?/";� satisfies the estimate

u";� .x/ � u�� .x/ WD
1

2
ln
�

dist.x; x0/
a

�
� L" C �:

Proof. To obtain a subsolution of .?/";L" we make the ansatz

u�.x/ WD � ln
�
r.x/

a

�
; L" WD � ln

�
R

a

�
; � > 0; R > 0

where r.x/ WD dist.x; x0/ and � and R will be specified later. In order to apply the maximum
principle2) we note that

u� � 0 on à�E0;",
u� D L" on à�FL" .

Using (3.1) we obtain

D�.x/u
�.x/ D h�.x/;Du�.x/i D

�

r2.x/
h�.x/; x � x0i � 0

for x 2 †". It is left to prove the inequality for the operator Q". We compute

Q".u�/ �
1

r."2r2 C �2/3=2
.��4 C �3 � 2"2r2�2 � "4r4/

provided n � 2. Thus, if we choose � D 1=2, r � R WD 1=4" and " < 1=4a, thenQ".u�/ > 0
and the maximum principle implies u� � u";L" in �". So far we obtained a subsolution
of .?/";�DL" , so we rename u� to u�L" and note that the function u�� WD u

�
L"
� L" C � is

a subsolution of .?/";� .

Note that the estimate u";� � u�� is not very accurate near à�E0;" since it does not imply
that u";� becomes non-negative as " tends to zero. Using subsolutions which are less steep we
can fix this problem.

Lemma 3.3 (Improved lower bound). Let n; a;†n; FL" ; L" be defined as in Lemma 3.2.
If " > 0 is sufficiently small andR is defined asR WD 1=.10"1=64/, then an admissible solution
u";� of .?/";� satisfies

u";� � max¹�"5=4; u�� º:

2) Here and in the following we use a version of the comparison principle for quasilinear elliptic operators
similar to [6, Theorem 10.1].



Marquardt, Weak solutions of IMCF for hypersurfaces with boundary 243

Proof. We define a new subsolution of .?/";� by

v�.x/ WD �u�� .x/ D �

�
1

2
ln
�
r.x/

a

�
� L" C �

�
with r.x/ WD dist.x; x0/. We see that for � 2 Œ0; 1� the function v� D �u� satisfies the right
inequalities at the boundary

v�jà�E0;" � 0; v�jà�FL" � �; D�v
�
j†" � 0:

Similar to the proof of Lemma 3.2 we compute Q".v�/. For n � 2, " > 0 sufficiently small,
� WD "21=16 and r � 1=.10"1=64/ DW R we obtain Q".v�/ � 0. Thus, the maximum principle
implies

u";� .x/ � v�.x/ � �"5=4"1=16.C C jln."1=16/j/ � �"5=4

for " � C�16 where C D C.a;min�" dist. � ; x0//.

Now we estimate the gradient. We start with the estimates on the Dirichlet boundary
parts à�E0;" and à�FL" . On à�FL" we can directly use super- and subsolutions uC� and u��
as barriers.

Lemma 3.4 (Gradient estimate on à�FL"). Assume that there exists an admissible
subsolution u�L" of .?/";L" such that FL" WD ¹u

�
L"
< L"º. Then an admissible solution u";�

of .?/";� satisfies the gradient estimate

0 � D�u
";�
� D�u

�
L"

on à�FL"

where � is the exterior unit normal to à�FL" with respect to the set FL" . Under the hypothesis
of Lemma 3.3 we obtain the more explicit estimate D�u";� � 5"1=64.

Proof. The lower bound follows from the fact that uC� WD � is a supersolution of .?/";�
which coincides with u";� on à�FL" . Similarly, u�� WD u

�
L"
� L" C � is a subsolution of .?/";�

which coincides with u";� on à�FL" . This yields the upper bound. Under the hypothesis of
Lemma 3.3 we obtain an explicit subsolution u�� which yields the estimate

D�u
";�
� 5"1=64:

In order to estimate the gradient on à�E0;" we construct barriers � having a product
structure which involves the distance to à�E0;" and †". In a first step we compute Q".�/
and D�� for this type of barriers.

Lemma 3.5 (Formulas for barriers having a product structure). Let d WD distà�E0;"
and s WD dist†" , and assume that the distance functions are evaluated in a region where they
are C 2. Let f; g 2 C 2.R/. Then a barrier of the form �.x/ WD f .d.x// � g.s.x// satisfies

(3.2) .jf 0gj � jfg0j/2 � jD�j2 � .jf 0gj C jfg0j/2:

The Neumann condition reads

(3.3) D�.x/�.x/j†" D f
0.d.x//j†"g.0/D�.x/d.x/j†" � f .d.x//j†"g

0.0/
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and for the differential operator Q" we obtainq
"2C jD�j2Q"� D f 0g

�
ıij �

f 2g0 2DisDj s

"2 C jD�j2

�
Dijd(3.4)

C fg0
�
ıij �

f 0 2g2DidDjd

"2 C jD�j2

�
Dij s � "

2
� jD�j2

C
f 00g

"2 C jD�j2

�
"2 C f 2g0 2.1 � hDd;Dsi2/

�
C

fg00

"2 C jD�j2

�
"2 C f 0 2g2.1 � hDd;Dsi2/

�
C

2f 0g0

"2 C jD�j2

�
"2hDd;DsiC ff 0gg0.hDd;Dsi2� 1/

�
:

Proof. The formulas follow from a direct calculation using the fact that Ds D ��
and jDd j D 1 D jDsj.

Remark 3.6. Note that in general à�E0;" has to be extended below †n in a small
neighborhood of à�E0 \†n in order to use the distance function in a neighborhood of the
corner. This extension can be constructed to have the same C 2-norm as à�E0;" so the estimates
are independent of this extension.

First, we use the product ansatz to construct a barrier on à�E0;" from below.

Lemma 3.7 (Gradient estimate on à�E0;" from below). Let " > 0 be sufficiently small.
Suppose that à�E0;" and †" are C 2-hypersurfaces. If u";� is an admissible solution of .?/";�
which satisfies u";� � �"1C for some  2 .0; 1/, then the following gradient estimate holds:

D�u
";�
� �2" on à�E0;"

where � is the exterior unit normal to à�E0;" with respect to the set E0;".

Proof. Let d WD distà�E0;" and s WD dist†" . We restrict ourselves to the set

� WD ¹x 2 �" j d.x/ < dmaxº:

The value of dmax > 0 will be determined later. The boundary of � consists of à�E0;", à†�
and a new boundary part in the interior of �" which we call à�1. We make the ansatz

�.x/ WD f .d.x// � g.s.x//

with
f .d/ WD

"

A
.exp.�Ad/ � 1/

and see that f , f 0 and f 00 satisfy

(3.5) �
"

A
� f � 0; �" � f 0 � �

"

2
;

"A

2
� f 00 � "A

where the upper bound on f 0 and the lower bound on f 00 require dmax � ln.2/=A. For g we
choose

g.s/ WD

´
1C exp

�
2 � 2

�
smax
smax�s

�2� for 0 � s < smax;

1 for s � smax;
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and a direct calculation shows that

(3.6) 1 � g � 2; �
4

smax
� g0 � 0; 0 � g00 �

12

s2max
:

The exact values dmax; smax and A will be determined later. We see that � is a negative func-
tion which satisfies the Dirichlet boundary condition � D 0 on à�E0;" since f .0/ D 0. Using
u";� � �"1C we see that

� � �
"

A
.1 � exp.�Admax// � u

";�

on à�1 for " > 0 sufficiently small. Next we want to verify thatD�� � 0 on à†� . By construc-
tion of E0;" we know that (2.1) holds. Thus, there is some C1 > 0 such that D�d � �C1d
on à†� . Furthermore, we note that f .d/ � �"d=2 for dmax � A

�1. Using these estimates
together with (3.3) and (3.5) yields

D�� D 2f
0.d/D�d C

4

dmax
f .d/ � 2"

�
C1 �

1

dmax

�
d � 0

on à†� for dmax �min¹C�11 ; A�1º. Finally, we have to make sure thatQ".�/ � 0. Using (3.4),
(3.5) and (3.6) we obtainq
"2 C jD�j2Q"� � f 0g

�
ıij �

f 2g0 2DisDj s

"2 C jD�j2

�
Dijd

C fg0
�
ıij �

f 0 2g2DidDjd

"2 C jD�j2

�
Dij s � "

2
� jD�j2

C
f 00g

"2 C jD�j2
"2 C

fg00

"2 C jD�j2
."2 C f 0 2g2/ �

2f 0g0

"2 C jD�j2
"2

where the only positive term is the one which involves f 00. If we are further than smax away
from †", the function g � 1, jD�j2 D .f 0/2 and the estimate readsq

"2 C jD�j2Q"� D f 0�d � "2 � .f 0/2 C
"2

"2 C .f 0/2
f 00 � 0

for " � 1 and A � 4.2C n2jD2d j/. Before we continue with the estimate close to†" we have
to estimate jD�j2. We use (3.2), (3.5), (3.6) and Asmax � 24 to see that

1

9
"2 �

�
"

2
�

4"

Asmax

�2
� jD�j2 �

�
2"C

4"

Asmax

�2
� 9"2:

This estimate together with (3.5) and (3.6) allows us to estimateˇ̌̌̌
f 0g

�
ıij �

f 2g0 2DisDj s

"2 C jD�j2

�
�i�j

ˇ̌̌̌
� 4"j�j2

and ˇ̌̌̌
fg0

�
ıij �

f 0 2g2DidDjd

"2 C jD�j2

�
�i�j

ˇ̌̌̌
� 7"j�j2
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where we used again Asmax � 24. Putting everything together we obtain an estimate for Q"�
away from †"q

"2 C jD�j2Q"� �
"

20As2max
..Asmax/

2
� C2.Asmax/ � C2/ � 0

for "� 1, smax � 1,C2 WD 10000.n2jD2d jCn2jD2sjC1/ andAsmax � 2C2. Altogether we see
that � is a subsolution of .?/";� in � for " > 0 sufficiently small and the choice of parameters

smax WD �; A WD
2C2

smax
; dmax WD min¹C�11 ; A�1; �º:

Using the maximum principle we conclude that

D�u
";�
� D�� D f

0.0/gD�d C f .0/g
0D�s D �"g � �2" on à�E0;"

where � is the exterior unit normal to à�E0;" with respect to the set E0;".

In the next step we construct a barrier on à�E0;" from above.

Lemma 3.8 (Gradient estimate on à�E0;" from above). Let " > 0 be sufficiently small.
Suppose that à�E0;" and †" are C 2-hypersurfaces. If u";� is an admissible solution of .?/";� ,
then the following gradient estimate holds:

D�u
";�
� C.n; à�E0; †n/ on à�E0;"

where � is the exterior unit normal to à�E0;" with respect to the set E0;".

Proof. Let d; s; �; �; g be as in the proof of Lemma 3.7. Furthermore, let f .d/ WD Ad
for some A > 0. The exact values dmax; smax and A will be determined later. We see that �
is a positive function which satisfies the Dirichlet boundary condition � D 0 on à�E0;" since
f .0/ D 0. Furthermore, � lies above u";� on à�1 since

� D f .dmax/ � g.s.x// � Admax � u
";�

on à�1 for Admax � � . To verify thatD�� � 0 on à†� we use (3.3) together with the estimate
D�d � �C1d on à†� to obtain

D�� D 2AD�d C
4

dmax
Ad � 2A

�
�C1 C

2

dmax

�
d � 0

on à†� for dmax � 2C
�1
1 . In contrast to Lemma 3.7 we first prove that Q0� � 0. Using (3.4)

and (3.6) we obtain

jD�jQ0� � f 0g

�
ıij �

f 2g0 2DisDj s

jD�j2

�
Dijd C fg

0

�
ıij �

f 0 2g2DidDjd

jD�j2

�
Dij s

� jD�j2 C
fg00

jD�j2
f 0 2g2:

Here the only good term is �jD�j2. In the case that we are far from †" we have g � 1
and jD�j2 D jf 0j2. Therefore, the estimate simplifies and we obtain

jD�jQ0� � f 0�d � jD�j2 � An2jD2d j � A2 � 0
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for A � n2jD2d j. As in Lemma 3.7 we proceed by estimating jD�j2. We use (3.2) and (3.6)
and choose dmax WD smax=8 to compute that

A2

4
� A2

�
1 �

4dmax

smax

�2
� jD�j2 � 4A2

�
1C

2dmax

smax

�2
� 7A2:

This yields ˇ̌̌̌
f 0g

�
ıij �

f 2g0 2DisDj s

jD�j2

�
�i�j

ˇ̌̌̌
� 6Aj�j2

and ˇ̌̌̌
fg0

�
ıij �

f 0 2g2DidDjd

jD�j2

�
�i�j

ˇ̌̌̌
� 9Aj�j2:

Combining these estimates we obtain

jD�jQ0� �
A

4
.1000.n2jD2d j C n2jD2sj C s�1max/ � A/ � 0

for A � 1000.n2jD2d j C n2jD2sj C s�1max/ DW 1000.C3 C s
�1
max/. To summarize, we proved

that � is a supersolution of .?/0;� in � for the parameters

dmax WD min¹2C�11 ; �º; smax WD 8dmax; A� WD 1000.C3 C s
�1
max/C

�

dmax
:

So far, to match increasing boundary values � on à�1 we have to choose steeper functions �.
This means that in the limit "! 0 (L" !1) we loose the gradient estimate. To prevent this
from happening we choose the function � corresponding to � WD 1 and consider the subdomain
Q� WD ¹0 � � < 1º � � . On Q� we define

Q� WD
�

1 � �
:

We see that Q� D 0 on à�E0;" since � D 0 on à�E0;". Furthermore, we obtain the same sign
for D� Q� as for D��. The PDE is also satisfied with the same inequality since

Q0 Q� � Q0� � �
A1

4jD�j
.1000.C3 C s

�1
max/ � A1/ � �

1

12dmax
:

In contrast to � the function Q� is a supersolution of .?/";� on ¹0 � Q� � �º � Q� for arbitrary
large boundary values since the function blows up when it approaches the boundary ¹� D 1º.
Next, we observe that

jQ" Q� �Q0 Q�j �

�
1C

3jD2 Q�j

jD Q�j2

�
" � c1":

Therefore, by continuity we know thatQ" Q� < 0 for " sufficiently small. Thus, Q� is also a super-
solution of .?/";� for " > 0 sufficiently small and arbitrary � . This yields the estimate

D�u � D� Q� D D�� D C.n; àE0; †n/

on à�E0;". Note that we can estimate the C 2-norm of d independently of the approximation
of à�E0 by à�E0;". Thus, the estimate is independent of ".

The remaining boundary part of the domain �" is the Neumann boundary part †". If the
supporting hypersurface is convex, the maximum principle tells us that a maximum of the
gradient cannot occur on †".
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Lemma 3.9 (Gradient estimate on †"). Let †" be a convex C 3-hypersurface. Let u";�

be an admissible solution of .?/";� . Then, jDu";� j cannot attain a maximum on †".

Proof. Let x0 2 †". First, we note that due to the regularity of †" there is a neighbor-
hood of x0 in �" in which u WD u";� is C 3. Let us define v WD jDuj2=2. Let

ai .p/ WD
pip

"2 C jpj2
and aij .p/ WD

àai .p/
àpj

:

We apply the operator .Dju/Dj to Q".u/ defined in .?/";� . Here j runs from 1 to n. This
yields

Lv WD Di .a
ik.Du/Dkv/ �

Djup
"2 C jDuj2

Dj v(3.7)

� Di .a
ik.Du/DjuDkju/� a

ik.Du/D
j
i uDkju�

Djup
"2C jDuj2

DkuDkju

D DjuDj div
�

Dup
"2 C jDuj2

�
�DjuDj

q
"2 C jDuj2 D 0:

Assume that the maximum of v is attained at x0. In a neighborhood of x0 we choose an ortho-
normal frame such that e1; : : : ; en�1 2 Tx0†" and en D �. At x0 we have

D�v D

n�1X
iD1

Deiu

 
Dei .Denu/ �

n�1X
jD1

hDei en; ej iDeju

!

D �

n�1X
i;jD1

†"h.ei ; ej /DeiuDeju � 0

since †" is convex. The signs for D�v and Lv together with the maximum principle imply
that v cannot attain a maximum on †".

Remark 3.10. Using the maximum principle, inequality (3.7) implies that the gradient
of an admissible solution of .?/";� cannot attain a maximum in the interior of �".

All together we obtain the following a priori estimates for juj; jDuj and the weighted
Hölder norm k � k.�1�ˇ/2;˛I�"

which is defined in Definition A.1 in the appendix.

Proposition 3.11. Assume that an admissible subsolution u�L" of .?/";L" exists such
that FL" D ¹u

�
L"
< L"º satisfies condition (2.2). Let u be an admissible solution of .?/";�

such that u � �"1C for some  2 .0; 1/ and that jDuj†" � c1 independently of ". Then, for
" > 0 sufficiently small

�"1C � u � � and jDuj � C.n; à�E0; †n; c1; jDu�L" j/

on �". Furthermore,

kuk
.�1�ˇ/
2;˛;�"

� C.n; "; à�E0;"; †n; L"; jDu�L" j/

for some ˇ D ˇ.D� distE0;" ;D� distFL" / 2 .0; 1/.
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Proof. The estimates for juj and jDuj follow from our previous lemmas in conjunc-
tion with the existence of a subsolution which satisfies u � �"1C . Furthermore, the gradient
estimate tells us that the elliptic equation in .?/";� which is equivalent to

aij .Du/Diju WD
1

"2 C jDuj2

�
ıij �

DiuDju

"2 C jDuj2

�
Diju D 1

can be regarded as a linear, uniformly elliptic equation with bounded coefficients and right-
hand side. Therefore, [17, Chapter 2, Section 6, Theorem 6.1] implies that

Du 2 H
.0/
0;˛.�"/

and thus also
aij .Du/ 2 H

.0/
0;˛.�"/:

Finally, based on conditions (2.1) and (2.2) the linear theory, i.e. Theorem A.3 yields the esti-
mate in H .�1�ˇ/

2;˛ .�"/ for some ˇ D ˇ.D� distE0;" ;D� distFL" / 2 .0; 1/.

In particular, Proposition 3.11 holds in the following situation:

Corollary 3.12. Let n � 2. Let†n be given as the graph of a convex C 3-function which
is asymptotic to a cone in the sense that (3.1) holds. Then, an admissible solution of .?/";�
with " > 0 sufficiently small satisfies the estimates of Proposition 3.11.

Proof. Under these assumptions we constructed a subsolution u�L" in Lemma 3.3 which
satisfies

u�L" � �"
5=4:

Furthermore, the gradient estimate on †" is independent of " since †n is convex. Thus, all
conditions of Proposition 3.11 are satisfied.

Now we can use the a priori estimates to obtain a unique solution of the approximating
problems .?/";� . Furthermore, we can use the uniform estimate of jDu";� j to obtain a converg-
ing subsequence of solutions as " tends to zero.

Proposition 3.13 (Existence for the .?/";� problem). Let " > 0 be sufficiently small.
Under the assumptions of Proposition 3.11 there exists a unique solution u";� 2 H .�1�ˇ/

2;˛ .�"/

of .?/";� for all � 2 Œ0; L"�. Furthermore, there exist sequences ."i /i2N , .L"i /i2N , .�"i /i2N

and .u"i ;L"i /i2N such that for "i ! 0 we have L"i !1,

FL"i nE0;"i ! � nE0 and u"i ;L"i ! u 2 C 0;1loc .� nE0/

locally uniformly.

Proof. Let " > 0 be sufficiently small. We proceed in two steps. First we prove the
existence of solutions for � D 0. In the second step we consider � 2 Œ0; L"�. The equation
Q".u/ D 0 is equivalent to F.u="/ D " with

F.u/ WD
1p

1C jDuj2
div
�

Dup
1C jDuj2

�
:
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Therefore, the function u is a solution of .?/";0 if and only if Ou WD u=" solves8̂<̂
:
F. Ou/ D " in �";

D� Ou D 0 on †";

Ou D 0 on à�E0;" [ à�FL" :

1.?/";0

We consider F as an operator F W A! B where

A WD ¹w 2 H
.�1�ˇ/
2;˛ .�"/ j w D 0 on à�E0;" [ à�FL" ; D�w D 0 on †"º;

B WD H
.1�ˇ/
0;˛ .�"/:

The weighted Hölder spaces H .b/
k;˛.�/ are discussed in Definition A.1. The value for ˇ is the

one from Proposition 3.11. The problem c.?/0 has the solution Ou0 WD 0. Furthermore, the lin-
earization of F around Ou0 is the Laplacian, i.e. DF Ou0 D �. The linear theory guarantees the
global invertibility of DF around Ou0. Thus, the Inverse Function Theorem implies the invert-
ibility of F in a neighborhood of F. Ou0/ D 0 in B . This proves the existence of a unique
solution of 1.?/";0 and thus of .?/";0 for " > 0 sufficiently small.

To prove the existence of solutions of .?/";� let us define the set

I" WD ¹� 2 Œ0; L"� j .?/";� has a unique solution in H .�1�ˇ/
2;˛ .�"/º:

We already know that 0 2 I". If we can show that I" is open and closed, we obtain the desired
result. To show that I" is open we use once more the Inverse Function Theorem. We modify
the spaces A and B to allow other boundary values than zero on à�FL" and define

A WD ¹w 2 H
.�1�ˇ/
2;˛ .�"/ j w D 0 on à�E0;"; D�w D 0 on †"º;

B WD B1 � B2 WD H
.1�ˇ/
0;˛ .�"/ �H

.�1�ˇ/
2;˛ .à�FL"/:

We denote the restriction on à�FL" by

� W A! B2; w 7! �.w/ WD wjà�FL"

and consider the operator

T W A! B; w 7! Tw WD .Q".w/; �.w//:

Its linearization around some u0 2 A is given by DTu0w D .DQ
"
u0
w;�.w// with

DQ"u0w D a
ij .Du0/Dijw C B

k.Du0;D
2u0/Dkw:

Let � 2 I". We linearize T around u0 WD u";� . Here it is crucial that u0 2 C 1;ˇ .�"/ in order to
control the ellipticity. The linear theory, Theorem A.3, implies thatDTu0 is globally invertible.
Therefore, T is invertible in a small neighborhood of T u0 D .0; �/. Thus, I" is open.

In order to prove that I" is closed let us consider a sequence of elements �n 2 I" which
is converging to � . The corresponding sequence of solutions is u";�n . Using the maximum
principle, the a priori estimates of Proposition 3.11 and the Arzelà–Ascoli type result of
Lemma A.2 we obtain a subsequence converging to u";� 2 A. Thus, � 2 I" and I" is closed.

Using the a priori estimates for jDu";L" j which are independent of " we see that u";L" is
uniformly bounded and uniformly equicontinuous on compact subsets. Thus, by Arzelà–Ascoli
there exists a subsequence u"i ;L"i converging to a locally Lipschitz continuous function u.
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In particular, Proposition 3.13 holds in the following situation.

Corollary 3.14. Let n � 2 and let " > 0 be sufficiently small. LetE0; E0;" and .?/";� be
defined as above. Furthermore, let †n be given as the graph of a convex C 3-function which
is asymptotic to a cone in the sense that (3.1) holds. Then the conditions of Theorem 3.13
are satisfied.

Proof. By Corollary 3.12 these assumptions assure that the a priori estimates of Propo-
sition 3.11 hold.

4. Variational characterization of the limit

In the last section, we obtained a function u 2 C 0;1loc .� nE0/ as the limit of solutions u"i
of the approximating problems .?/"i ;L"i . In this section, we follow the ideas of Huisken and
Ilmanen [11] and define weak solutions of (?). We show that the limit u is the unique weak
solution.

Definition 4.1. Let A � � be relatively open in �. For u 2 C 0;1loc .A/ we consider the
functional

JKu W C
0;1
loc .A/! R; v 7! JKu .v/ WD

Z
K

.jDvj C vjDuj/ d�

where ¹u ¤ vº � K and K � A is a compact Caccioppoli set. In the following we omit the
set K and write Ju instead of JKu . The function u 2 C 0;1loc .�/ is called a weak solution of (?)
with initial condition E0 � � if E0 D ¹u < 0º and

Ju.u/ � Ju.v/ for all v 2 C 0;1loc .�0/; ¹u ¤ vº �� �0:

Here�0 WD � nE0. The integration is performed over any setK as above containing ¹u ¤ vº.

We can give an alternative characterization of weak solutions.

Definition 4.2. Let A � �. For u 2 C 0;1loc .A/ we consider the functional

JKu W Ca.A/! R; F 7! JKu .F / WD jà
�
�F \Kj �

Z
F\K

jDuj d�

where K is a compact set such that jà��F \ àKj D 0. Here Ca.A/ denotes the set of all
Caccioppoli sets in A. In the following we omit the set K and write Ju instead of JKu . Let
.Et /t>0 � � be a nested family of relatively open Caccioppoli sets in �. Let u be defined
by Et D ¹u < tº � �. The family .Et /t>0 is called a weak solution of (?) with initial condi-
tion E0 � � if u 2 C 0;1loc .�/ and

Ju.E/ � Ju.F / for all F 2 Ca.� nE0/; E�F �� � nE0

for each t > 0. The integration is performed over set K as above containing E�F .

These two definitions are compatible.
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Lemma 4.3. Let u 2 C 0;1loc .�/ and let E0 � � be relatively open in �. The following
are equivalent:

(�) .¹u < tº/t>0 is a weak solution of (?) with initial condition E0.

(��) u is a weak solution of (?) with initial condition E0.

Proof. See [11, Lemma 1.1 and Lemma 1.2].

The following two results are be needed in the sequel.

Lemma 4.4 (Compactness of weak solutions). Let .Ai /i2N ; A � � be relatively open
in �. Let .ui /i2N � C

0;1
loc .Ai / be a sequence of weak solutions of (?) such that

Ai ! A; ui ! u 2 C 0;1loc .A/

locally uniformly for i !1. If for each compact set K � A and i large enough

esssupK jDui j � C.K/;

then u is a weak solution of (?) in A.

Proof. See [11, Theorem 2.1].

Lemma 4.5 (Uniqueness of weak solutions). Let A � � be relatively open in �. For
a given E0 � �, there exists at most one solution .Et /t>0 � � of (�) such that each Et is
precompact.

Proof. See [11, Theorem 2.2].

Note that the assumption of Et being precompact cannot be dropped: If u 2 C 0;1loc .�/

satisfies (��) and t > 0, then min.u. � /; t/ also satisfies (��). Next, we show that the definition
of weak solutions is compatible with classical solutions.

Lemma 4.6 (Classical) weak). Let .Nt /c�t�d � � be a family of compact surfaces
of positive mean curvature that solve (IMCF) classically. Let u D t on Nt , u < c in the region
bounded by Nc , and Et WD ¹u < tº � �. Then for c < t < d , Et minimizes Ju in Ed nEc .

Proof. Let t 2 .c; d/. We have to show that Et WD ¹u < tº minimizes Ju in Ed nEc ,
i.e.

jà��Et \Kj �
Z
Et\K

jDuj d� � jà��F \Kj �
Z
F\K

jDuj d�

for all F having locally finite perimeter and satisfyingEt�F �� Ed nEc . We choose r; s 2 R
such that c < r < t < s < d and use K WD Es nEr . Then the above inequality reads

jà��Et j �
Z
EtnEr

jDuj d� � jà��F j �
Z
F nEr

jDuj d�:

Let us consider the vector field X WD Du=jDuj which is C 1 away from à�Ec \ à†Ec and
à�Ed \ à†Ed . The Divergence Theorem and the fact that u is a solution of (?) yieldZ

àA
�àA �X ds D

Z
A

div.X/ d� D
Z
A

jDuj d�:
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Furthermore, for any set A � � we haveZ
à†A

�à†A �X ds D
Z
à†A

� �
Du

jDuj
ds D 0:

These two equalities help us to calculate

jà��Et j �
Z
EtnEr

jDuj d� D
Z
à��Et

�à��Et
�X ds �

Z
EtnEr

jDuj d�

�

Z
à��F

�à��F
�X ds �

Z
F nEr

jDuj d�

� jà��F j �
Z
F nEr

jDuj d�:

This shows that Et minimizes Ju in Ed nEc .

Now we are able to prove that the limit u which was obtained in the previous section is
a weak solution of (?) in �0.

Proposition 4.7 (Criterion for existence). Let .ui /i2N � H
.�1�ˇ/
2;˛ .�"i / be a sequence

of solutions of .?/"i ;L"i with

FL"i nE0;"i ! � nE0; ui ! u 2 C 0;1loc .� nE0/

locally uniformly for i !1. If for each compact set K � � nE0 and i large enough

sup
K

jDui j � C.K/;

then u is a weak solution of (?) in �0 WD � nE0 with initial condition E0.

Proof. Let us define

Ui W �"i �R! R; .x; z/ 7! Ui .x; z/ WD ui .x/ � "iz;

U W .� nE0/ �R! R; .x; z/ 7! U.x; z/ WD u.x/:

Then Ui ! U locally uniformly in .� nE0/ �R. For fixed i 2 N we consider the sets

M i
t WD ¹.x; z/ 2 �"i �R j Ui .x; z/ D tº D graph

�
ui

"i
�
t

"i

�
:

Note that these graphs are classical solutions of inverse mean curvature flow one dimension
higher. This can be seen by computing

divRnC2

�
DUi

jDUi j

�
D jDUi j

which is equivalent to (IMCF) since jDUi j D H > 0 (see Remark 2.2). The Neumann condi-
tion is satisfied as well since the normal to †n �R is given by b� D .�; 0/ and

Dy�Ui D D�ui D 0 on à†�"i �R.

Therefore, Lemma 4.6 implies that Ui is a weak solution in .FL"i nE0;"i / �R and thus the
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compactness result, Lemma 4.4 implies that U is a weak solution in .� nE0/ �R. To deduce
that u is a weak solution in �0 WD � nE0 we use the cutoff functions

ˆs W R! R; z 7! ˆs.z/ WD

8̂̂̂̂
<̂
ˆ̂̂:
1 for z 2 Œ0; s�;

ˆ.s/ for z 2 Œ�1; 0�;

ˆ.s � z/ for z 2 Œs; s C 1�;

0 for z 2 R n Œ�1; s C 1�;

where ˆ is chosen such that ˆs 2 C 1.R/ with ˆs.z/ 2 Œ0; 1� and jˆ0s.z/j � 2 for all z 2 R.
As a competitor to U.x; z/ D u.x/ we use

V W �0 �R; .x; z/ 7! V.x; z/ WD ˆs.z/v.x/C .1 �ˆs.z//u.x/

where v 2 L0;1loc .�0/ with ¹u ¤ vº � K and K a compact subset of �0. We compute that

jDx;zV j � ˆsjDxvj C .1 �ˆs/jDxuj C jˆ
0
sjjv � uj:

Since ¹U ¤ V º � K � Œ�1; s C 1� �� �0 �R, we have

JU .U / � JU .V /;

i.e. Z
K�Œ�1;sC1�

ˆs.jDxuj C ujDxuj/ d�.x; z/

�

Z
K�Œ�1;sC1�

.ˆs.jDxvj C vjDxuj/C jˆ
0
sjjv � uj/ d�.x; z/:

This implies

sJu.u/ � .s C 2/Ju.v/C 4

Z
K

jv � uj d�.x/:

Dividing by s and passing s !1 proves that Ju.u/ � Ju.v/. Finally, we extend u negatively
to E0 in order to satisfy E0 D ¹u < 0º.

Finally, we can state and prove our main existence and uniqueness result for weak
solutions of inverse mean curvature flow for hypersurfaces with boundary:

Theorem 4.8 (Existence and uniqueness of weak solutions). Let†n;E0;E0;" and .?/";�
be defined as above. Assume that an admissible subsolution u�L" of problem .?/";L" exists
such that FL" D ¹u

�
L"
< L"º satisfies condition (2.2). Let u be an admissible solution of

problem .?/";� such that u � �"1C for some  2 .0; 1/ and that jDuj†" � c1 independently
of ". Then there exists a weak solution u 2 C 0;1loc .�/ of problem (?) with initial condition E0
such that for all t > 0 the sets Et WD ¹u < tº are the unique precompact minimizers of Ju
in � nE0.

Proof. Proposition 3.13 provides a sequence of solutions .ui /i2N of .?/"i ;L"i which
converges locally uniformly to a function u 2 C 0;1loc .� nE0/. Then Lemma 4.7 implies that u
is a weak solution of (?) in�0 WD � nE0 with initial conditionE0. Finally, Lemma 4.5 shows
that u is the unique weak solution as long as Et remains precompact.
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In particular, Theorem 4.8 holds in the following situation.

Corollary 4.9. Let n � 2 and let " > 0 be sufficiently small. Let E0; E0;" and .?/";� be
defined as above. Furthermore, let †n be given as the graph of a convex C 3-function which
is asymptotic to a cone in the sense that (3.1) holds. Then the conditions of Theorem 4.8 are
satisfied.

Proof. By Corollary 3.14 the assumptions assure that all conditions in Proposition 3.13
are satisfied.

5. Properties of weak solutions

For minimizers of the functional Ju we obtain the following regularity.

Lemma 5.1. Let u 2 C 0;1loc .A/. Let E � � be a minimizer of the functional Ju. Then
à��E is a subset of a C 1;1=2-hypersurface and

Hk.à�E n à��E/ D 0 for all k > n � 8

where à��E is the reduced boundary of E in �.

Proof. Since u 2 C 0;1loc .A/, we see that minimizers of Ju are almost minimal in the sense
that for balls of radius R we have

(5.1) jà��E \ BRj � jà
�
�F \ BRj C C.kDuk1; n/R

nC1

for E�F �� BR. Thus [32, Theorem 1] yields the result. See also [24].

For classical solutions of (IMCF) we have H D jDuj. Now we want to show that this
equality still holds in a weak sense for minimizers of Ju. Recall, that for C 2-submanifoldsM n

of RnC1 with .n � 1/-dimensional C 1-boundary àM n and C 1-vector fields X the following
equality holds: Z

Mn

.divMn X �H� �X/ d� D �
Z
àMn

X � � ds

where � is the inward pointing unit co-normal of àM n (see [29]). Note that if M n and †n met
orthogonally, the right-hand side would vanish for variations X which are tangential along†n.

Definition 5.2. We say that the hypersurface M n possesses a weak mean curvature
in Lp if there exists a vector-valued function H 2 Lploc.M

n;RnC1/ such that

(5.2)
Z
Mn

.divMn X �H �X/ d� D 0

for allX 2 C1c .TM
n/with sptX \ àM n D ;. Furthermore, we say thatM n is weakly ortho-

gonal to †n if condition (5.2) holds for all X 2 C1c .TM
n/ which are tangential along †n,

i.e. X.x/ 2 Tx†n for x 2 †n.
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Lemma 5.3 (Weak mean curvature). Let a; b 2 RC with a < b and let Et WD ¹u < tº
minimize Ju in A WD Eb nEa where u 2 C 0;1loc .A/. Then up to a set of dimension less than or
equal to n � 8,M n

t WD à�Et is aC 1;1=2-hypersurface which possesses a weak mean curvature
in L1 given by

H.x/ D jDu.x/j�.x/ where �.x/ WD
Du.x/

jDu.x/j

for almost every t 2 .a; b/ and almost every x 2M n
t . Furthermore, for those values of t ,M n

t is
orthogonal to †n in the classical sense in any neighborhood of points x 2 à��Et \†

n.

Proof. Let U � RnC1 be open such that U \ A ¤ ;, and let K � U be compact such
that K \M n

t ¤ 0. We consider a family of diffeomorphisms

ˆ W .�1; 1/ � U ! U; .x; s/ 7! ˆ.s; x/ DW ˆs.x/

satisfying

ˆ0 D id; ˆsjUnK D idjUnK ;
àˆ.s; x/
às

ˇ̌̌
sD0
D X.ˆ0.x// D X.x/

where X is a smooth vector field with support in K and tangential to †n if K \†n ¤ ;. Note
that

àˆ�1s .y/

às

ˇ̌̌
sD0
D �X.ˆ�10 .y// D �X.y/:

By Lemma 4.3 the function u minimizes Ju in Eb nEa. Therefore, the first variation of Ju
vanishes. We use the area and co-area formula to compute

0 D
d
ds

ˇ̌̌
sD0

Ju.u ıˆ
�1
s /

D
d
ds

ˇ̌̌
sD0

�Z
U

jDu.x/j � j detDˆs.x/j d�.x/C
Z b

a

Z
Mn
t \ˆs.U /

.u ıˆ�1s /.y/ dHn.y/ dt
�

D

Z b

a

Z
Mn
t \U

.divMn
t
X.x/ �Du.x/ �X.x// dHn.x/ dt:

The Lebesgue Differentiation Theorem implies that the inner integral vanishes for almost
every t 2 .a; b/. Thus, a comparison with (5.2) yields the result. The fact that we obtained (5.2)
for all vector fields which are tangential to †n shows that M n

t is weakly orthogonal to †n.
Combining the fact that Et is almost minimal, i.e. (5.1) with the existence of a weak mean cur-
vature in L1 one can argue as in [8] or [7] and apply the results of [9] to prove the regularity
result of Lemma 5.1 up to the boundary of M n

t . This implies that M n
t meets †n orthogonally

in the classical sense in any neighborhood of points in à��Et \†
n.

Now we come to a geometric characterization of the jumps of the hypersurfaces which
occur under the weak flow.

Definition 5.4. Let A � � be relatively open in�. The set E � � is called a minimiz-
ing hull in A if for all sets F � � and all compact sets K � A containing F nE we have

jà��E \Kj � jà
�
�F \Kj for F � E:
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Furthermore, E is called a strictly minimizing hull in A if E is a minimizing hull in A and in
addition

jà��E \Kj D jà
�
�F \Kj H) E \ A D F \ A:

Let E � � be some measurable set and let A � � be relatively open in �. We consider
the family .E�/�2J of the Lebesgue points of strictly minimizing hulls in A which contain E.
Using this family we define the strictly minimizing hull of E in A as

E 0A WD
\
�2J

E�:

Note that up to a set of measure zero E 0A may be realized by a countable intersection and
therefore E 0A is a strictly minimizing hull and open (compare with [1, Definition 2.1]).

The following lemma provides a description of the jumping time.

Lemma 5.5 (Minimizing hull property). Let u 2 C 0;1loc .�/ satisfy (��). Then:

(1) For t > 0, Et WD ¹u < tº is a minimizing hull in �.

(2) For t � 0, ECt WD int¹u � tº is a strictly minimizing hull in �.

(3) For t � 0, E 0t D E
C
t , provided that ECt is precompact.

(4) For t > 0, jà��Et j D jà
�
�E
C
t j provided that ECt is precompact.

Note that 4/ holds for t D 0 if, and only if, E0 is a minimizing hull.

Proof. See [11, Minimizing Hull Property 1.4].

As for the classical flow the rescaled surface area is constant:

Lemma 5.6 (Exponential growth). Let .Et /t>0 solve (�) with initial condition E0.
As long as Et remains precompact, we have

jà��Et j D ce
t ; c 2 R; t > 0:

If E0 is a minimizing hull, then c D jà��E0j.

Proof. See [11, Lemma 1.6].

6. Outlook: Monotonicity of the Hawking mass

The evolution of closed hypersurfaces under inverse mean curvature flow (IMCF) was
put forward by Geroch [5] and Jang and Wald [13] as an approach to the proof of the Positive
Mass Theorem. They observed the monotonicity of the Hawking mass

mHaw.M
2/ WD

jM 2j1=2

.16�/3=2

�
16� �

Z
M2

H 2 d�
�

under IMCF and showed that if IMCF remained smooth, this monotonicity could be used to
prove the Riemannian Penrose inequality and thus the Positive Mass Theorem. Unfortunately,
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IMCF does not remain smooth in general. However, the Positive Mass Theorem was proved
by Schoen and Yau [26] using a different approach. The big achievement of Huisken and
Ilmanen [11] was to define weak solutions of IMCF which still keep mHaw monotone. This
enabled them to prove the Riemannian Penrose inequality. See also Bray [2] for a different
approach.

In the following we introduce an analog quantity of mHaw. We prove its monotonicity
under classical IMCF for hypersurfaces with boundary. The justification of the monotonicity
in the weak setting will be carried out in a forthcoming paper.

Proposition 6.1. Let †2;M 2
0 � R3 be orientable C 2;˛-surfaces. Suppose àM 2

0 � †
2

such that M 2
0 touches †2 orthogonally. Let .M 2

t /t�0 � R3 be a classical solution of (IMCF)
such that each M 2

t is connected. If †2 is mean-convex, i.e. †
2

H � 0, then the quantity

jM 2
t j
1=2

�
8� �

Z
M2
t

H 2 d�t

�
is monotone increasing in t .

Proof. Note that

àH
àt
D
�H

H 2
�
jAj2

H
�
2jrH j2

H 3
and r�H D �H

†2h.�; �/:

The evolution equation can be found in [11] and the formula for r�H follows from differenti-
ating 0 D � � � in time:

0 D
d
dt
h�; �i D

�
d�
dt
; �

�
C

�
�;

d�
dt

�
D

�
rH

H 2
; �

�
C

�
�;
r��

H

�
:

Furthermore, we use the Gauss equation 2K D H 2 � jAj2 and the Gauss–Bonnet formulaZ
M2

K d� D 2� �
Z
àM2

kg ds D 2� �
Z
àM2

†2h.�; �/ ds:

Here kg is the geodesic curvature of the boundary curve. It can be expressed as the second
fundamental form of †2 in direction � 2 TM 2 \ T†2 where j� j D 1. Putting everything
together we obtain

d
dt

Z
M2
t

H 2 d�t D
Z
M2
t

�
H 2
C 2H

�
�H

H 2
�
2jrH j2

H 3
�
jAj2

H

��
d�t

D

Z
M2
t

�
H 2
� 2jAj2 � 2

jrH j2

H 2

�
d�t C 2

Z
àM2

t

H�1r�H dst

�

Z
M2
t

�
2K �

H 2

2

�
d�t � 2

Z
àM2

t

†2h.�; �/ dst

�
1

2

�
8� �

Z
M2
t

H 2 d�t

�
� 2

Z
àM2

t

†2H dst :

Using the exponential growth of jM 2
t j proven in Lemma 5.6 and the fact that †2 is mean-

convex yields the desired monotonicity.
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In case that †2 is convex we obtain

d
dt

Z
M2
t

H 2 d�t � 0:

This does not require the Gauss–Bonnet formula and is therefore valid in all dimensions. Note
that Proposition 6.1 still holds if we replace R3 by a Riemannian 3-manifold with positive
scalar curvature.

A. Linear mixed Dirichlet–Neumann problems

Definition A.1. Let � � Rn be a bounded Lipschitz domain. We denote by † a rela-
tively open part of à� and write � D à� n†. Let � be the outward pointing unit normal to �
on †. We consider the following mixed Dirichlet–Neumann boundary value problem:

(A.1)

8̂<̂
:
Lu WD aijDijuC b

kDku D f in �;

�kDku D 0 on †;

u D v on �;

whereL is assumed to be uniformly elliptic and†; � are supposed to be subsets ofC 2;˛-hyper-
surfaces. Since the domain might have corners, we introduce weighted Hölder spaces to allow
for less regular solutions. For ı > 0 sufficiently small we define

�ı WD ¹x 2 � j dist.x; à� n†/ > ıº:

Using the classical Hölder norms k � kk;˛I� as they appear in [17] we define

kuk
.b/

k;˛I�
WD sup

ı>0

ıbCkC˛kukk;˛I�ı ; H
.b/

k;˛
.�/ WD ¹u j kuk

.b/

k;˛I�
<1º

for k 2 N; ˛ 2 .0; 1/ and b > �k � ˛.

These norms have the following useful properties.

Lemma A.2. Let k1; k2; k; l 2 N and ˛; ˇ 2 .0; 1/. If k C ˛ � l C ˇ, then

H
.�l�ˇ/

k;˛
.�/ � C l;ˇ .�/ \ C k;˛.�/:

Let k1C˛ � b > 0. If .un/n2N �H
.�b/

k1;˛
.�/ is bounded, then there is a subsequence .unk /k2N

such that

unk

H
.�b0/

k2;ˇ
.�/

�������! u .k !1/

for 0 < b0 < b, 0 < k2 C ˇ < k1 C ˛ and k2 C ˇ � b0.

Proof. See [18, Section 1] and the introduction of [19].

Now we can state the existence and regularity result for mixed elliptic boundary value
problems which is due to Lieberman [20, 21].
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Theorem A.3. Let †; � be subsets of C 2;˛-hypersurfaces. Let � � Rn be a bounded
Lipschitz domain with boundary à� D � [† where � and † are relatively open in à�.
Assume that aij is uniformly continuous in � and that L is uniformly elliptic. Furthermore,
assume that for all x 2 V WD � \† the boundary parts � and † enclose the domain at an
angle 0 < �.x/ � �max <

�
2

. Then there exists some ˇ.�max/ 2 .0; 1/ such that if

aij 2 H
.0/
0;˛.�/; bi 2 H

.1�ˇ/
0;˛ .�/; f 2 H

.1�ˇ/
0;˛ .�/; v 2 C 1;ˇ .�/;

then there exists a unique solution u 2 C 0.�/ \ C 2.� [†/ of (A.1). Furthermore, each such
solution of (A.1) satisfies the estimate

kuk
.�1�ˇ/
2;˛I� � C.kf k

.1�ˇ/
0;˛I� C kvk1;ˇ I�/:

Proof. The existence and uniqueness result can be found in [20, Theorem 2]. The reg-
ularity result is a variant of [21, Theorem 4]. It relies on a modification of the height estimate
[21, Lemma 3.3]. This modification is necessary in order to match with the definition of the
weighted norm which is used in [20].
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