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Abstract

Instanton theory provides a simple description of a quantum tunnelling process in terms of an

optimal tunnelling pathway. The theory is rigorously based on quantum mechanics principles and

is derived from a semiclassical approximation to the path-integral formulation. In multidimensional

systems, the optimal tunnelling pathway is generally different from the minimum-energy pathway

and is seen to ‘cut the corner’ around the transition state. A ring-polymer formulation of instanton

theory leads to a practical computational method for applying the theory to describe, simulate and

predict quantum tunnelling effects in complex molecular systems. It can be used to compute either

the rate of a tunnelling process leading to a chemical reaction or the tunnelling splitting pattern

of a molecular cluster. In this review, we introduce a unification of theory’s derivation and discuss

recent improvements to the numerical implementation.
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I. INTRODUCTION

Quantum tunnelling can significantly affect chemical reactivity [1–4] and can enable molec-

ular rearrangements even at low temperatures which would otherwise be forbidden [5].

However the most common theoretical methods for describing chemical reactions, such as

transition-state theory (TST) [6–8], treat the nuclear dynamics using classical principles,

which neglect these important effects [9].

Instanton rate theory has been used to describe tunnelling dynamics in a wide range of

scientific disciplines from subnuclear physics, through condensed-phase quantum dynamics

to cosmology [10–13]. The same theory is also applicable to the study of molecular reactions

and rearrangements [14–17] and can be rigorously derived as a semiclassical approximation to

the exact rate constant [18, 19]. It defines an optimal tunnelling pathway and the quantum

process is assumed to take place predominantly along this path. In this way, the theory

provides an approximate quantum-mechanical generalization of classical TST for describing

thermal rate constants of chemical reactions including the quantum-mechanical effects of

tunnelling and zero-point energy.

Above a certain crossover temperature, no optimal tunnelling pathway can be found. The

process is then well described by shallow tunnelling theory developed by Wigner based on

a parabolic barrier approximation [1, 20]. Below the crossover temperature, the instanton

pathway exists and describes a deep tunnelling process. Instanton theory thus also provides

a simple definition for the onset of this regime.

Instanton rate theory describes incoherent tunnelling, which occurs for instance in a reac-

tion with scattering boundary conditions or for a reaction coupled to a thermal environment.

A related approach exists for describing coherent tunnelling leading to a tunnelling splitting

of the ground state of an isolated molecule or cluster [10]. As these approaches have a similar

derivation and can be implemented using related algorithms, we discuss them both in this

review.
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Recently it has become possible to apply instanton theory to complex molecular systems

using the ring-polymer instanton method [17, 21–24]. This approach locates the optimal

tunnelling pathway on the full potential-energy surface by searching for stationary points

of the discretized action using multidimensional optimization techniques. In large complex

systems, it is practically impossible to simulate exact quantum dynamics but the semiclassi-

cal instanton approach has a good balance between accuracy and efficiency. It has therefore

become popular for studying polyatomic reactions in the gas phase [23, 25, 26] and rear-

rangements of molecules and clusters [22, 27–29]. Due to its remarkable efficiency, it has

even been applied successfully to much larger problems of interest from reactions on surfaces

[30–33] to hydrogen transfers in enzymes [34]. In this way the method has contributed to a

better understanding in various fields including astrochemistry, biochemistry, surface science

and high-resolution spectroscopy. Many more interesting applications will be studied with

this approach in the future.

A molecular process can be described in terms of the shape of the potential-energy surface

(PES) and of the quantum dynamics taking place on it. There are thus two problems to be

solved which both require using approximations and are therefore a source of error in the

final result. The first problem requires computationally expensive electronic-structure calcu-

lations to solve the electronic Schrödinger equation to obtain an ab initio PES. The second

problem can be solved approximately using instanton theory which requires very little com-

putational power in comparison to the electronic-structure calculations. The errors in the

PES typically outweigh those of the instanton approximation as the result is exponentially

dependent on features of the PES such as the barrier height. The main reason for the success

of instanton theory in describing tunnelling in molecular systems is due to its simplicity. One

only needs knowledge of a small part of the PES along a line which describes the optimal

tunnelling pathway through the barrier. Electronic-structure calculations typically have to

find a compromise between accuracy and efficiency and thus the fewer calculations that have

to be performed, the higher the accuracy can be. As the instanton method requires only a

small number of accurate ab initio calculations to be performed, this leads to a good overall

description of the tunnelling process.

The ring-polymer instanton approach is closely related to other path-integral rate theo-

ries, including centroid-based quantum transition-state theory (QTST) [35, 36], ring-polymer

molecular dynamics (RPMD) [37, 38] and the quantum instanton approach [39, 40]. This

4



relationship can be used to explain the success of RPMD in predicting deep-tunnelling rates,

even for asymmetric systems, and shows how to improve the other approaches [21]. It is

particularly important to have a clear understanding of the approximations involved in the

derivation of the instanton approach if it is to be extended to new problems or if it is to be

used as inspiration for obtaining improved path-integral QTSTs.

The steepest-descent approximation used in instanton theory is not valid for systems with

labile modes. This could lead to an error for certain gas-phase reactions if floppy torsional

modes are coupled to the tunnelling motion and renders the instanton method unable to

treat liquids. Eyring TST is limited in a similar way. To describe tunnelling in a fluxional

environment such as liquid water, it is advisable to dispense with instanton theory and use

RPMD instead. On the other hand, for reactions in the gas-phase, in solids or on surfaces,

the simplicity and efficiency of instanton theory makes it the better candidate, especially if

this allows more accurate electronic-structure methods to be used.

In Sec. II a summary of semiclassical mechanics is given and using this we outline a

number of different formulations and derivations of instanton theory in Sec. III. This formal

theoretical derivation is not directly used in the numerical computation of instanton theory

and the working equations used in most practical situations are much simpler and given

in Sec. III C. Aspects important for an efficient numerical implementation are discussed in

Sec. IV and examples given in Sec. V. In Sec. VI and Sec. VII further applications of instanton

theory to electron-transfer reactions and tunnelling splitting calculations are discussed.

II. SEMICLASSICAL APPROXIMATION

The theory of instantons is based on a semiclassical approximation to the path-integral

description of quantum mechanics. Before deriving the instanton expression for the rate

constant, we first introduce semiclassical trajectories which appear as an asymptotic limit

from the path-integral formulation. As the instanton equations involve only imaginary time

trajectories, we will define all our quantities as functions of imaginary time. This leads to a

more convenient formulation for our purpose, but is nonetheless slightly different from those

typically presented in classical-mechanics or path-integral textbooks. The usual equations

are related to ours by t = iτ .
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A. Semiclassical trajectories

We consider a particle of mass m moving in a potential V (x) from position x′ to x′′ in

imaginary-time τ . According to Feynman’s path-integral description of quantum mechanics

[41], the relative probability of this event is |K(τ)|2 where K(τ) is the kernel, expressed in

path-integral notation as

K(τ) =

∫ x(τ)=x′′

x(0)=x′
e−S[x(t)]/~Dx(t), (1)

where t is a dummy variable running from 0 to τ . The Euclidean action is

S[x(t)] =

∫ τ

0

[m
2
|ẋ|2 + V (x)

]
dt, (2)

where ẋ is the rate of change of position with imaginary time. Note that as we are dealing

with imaginary time, the exponent in the kernel is real and negative, which differs from

the real-time expression. This kernel can also be written in Dirac-notation using K(τ) =

〈x′′|e−Ĥτ/~|x′〉, where Ĥ is the Hamiltonian, and can thus also be thought of as an element

of the density matrix at a temperature defined by β ≡ (kBT )−1 = τ/~. This relationship

between temperature and imaginary time is fundamental to many path-integral approaches

including instanton theory.

All these formulae are valid for either a one- or a multidimensional system. In the latter

case, x is a vector of f components and the usual rules of vector calculus apply such that

second derivatives with respect to x are f × f Hessian matrices. Rather than explicitly

dealing with different masses ma for each atom, we assume that the Cartesian coordinates

of atom a, ~Ra, have been mass-weighted to give ~xa =
√

ma
m
~Ra where m can be freely chosen

as a reference mass (typically unity in whatever mass units are being used). We will continue

to use this notation throughout this review.

Performing the path integral analytically is possible only for a limited number of systems

and so in order to obtain a simple and practical formulation in the general case, we employ

a semiclassical approximation. Formally, this approximation is performed by replacing a

given function A(~) by B(~) if the asymptotic relation A(~) ∼ B(~) holds for ~→ 0; this is

equivalent to the statement lim~→0A(~)/B(~) = 1 [42]. An example of this approximation,

which we will make much use of, is also known as the steepest-descent approximation,

∫
e−φ(x)/~ dx ∼

√
2π~

(
∂2φ

∂x2

)− 1
2

e−φ(x)/~, (3)
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where on the right-hand side, x is defined such that ∂φ
∂x

= 0.

The semiclassical approximation of the imaginary-time kernel is [43]

K(τ) ∼
∑

traj.

√
C

(2π~)f
e−S/~, (4)

where S ≡ S(x′, x′′, τ) is the action along a trajectory and the prefactor is defined as the

determinant of the second variation:

C =

∣∣∣∣−
∂2S

∂x′∂x′′

∣∣∣∣ . (5)

Equation (4) is equivalent to the van-Vleck propagator [44] in imaginary time. Rather than

requiring an integral over all possible paths between the end points, this simpler expression

is defined as a sum over imaginary-time classical trajectories. These trajectories are defined

such that the action functional is stationary and thus obey the Euler-Lagrange equation,

d

dt
mẋ =

∂V

∂x
. (6)

The solutions of this equation are similar to standard (real-time) classical trajectories except

that they move according to Newton’s equations of motion in the upside-down potential [45].

As shown in Appendix A, first derivatives of the action have useful relations [43],

∂S

∂x′
= −p′ ∂S

∂x′′
= p′′

∂S

∂τ
= E, (7)

where p′ and p′′ are the initial and final momenta and E = V (x)− 1
2
m|ẋ|2 is the conserved

energy along the trajectory.

Note further that within the semiclassical approximation, we can split a trajectory into

two using K(τ) = Ka(τa)Kb(τb), where τ = τa + τb [43]. The kernels of the two shorter

trajectories are defined as above using Sa ≡ Sa(x
′, x0, τa) and Sb ≡ Sb(x0, x

′′, τb), where the

intermediate point, x0, is defined such that ∂Sa
∂x0

+ ∂Sb
∂x0

= 0, i.e. the momentum should be

continuous. The prefactors are related by

C = CaCb

∣∣∣ ∂2Sa
∂x0∂x0

+ ∂2Sb
∂x0∂x0

∣∣∣
−1
. (8)

The semiclassical approximation for a partition function of a vibrational well (with its
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minimum potential at an energy of 0) is

Z =

∫
K(x, x, β~) dx (9)

∼ C
1
2

∣∣∣∣
∂2S

∂x∂x

∣∣∣∣
− 1

2

(10)

=

f∑

j=1

[2 sinh 1
2
β~ωj]−

1
2 , (11)

where we have used the semiclassical expression for the kernel and then integrated by steepest

descent. Note that S ≡ S(x, x, β~) here. In this case, the classical trajectory is collapsed at

the bottom of the well; i.e. it has the same position at all times. As the semiclassical formulae

depend only on a second-order expansion of the potential around the trajectory, we have

effectively made a harmonic approximation for the vibrational well, for which analytical

expressions for S and its derivatives are known in terms of the normal mode frequencies

ωj (see Appendix B). This result is equal to the partition function of a set of quantum

harmonic oscillators. Note, however, that in general the semiclassical expressions are not

always equivalent to a harmonic approximation and can also describe processes such as

tunnelling through an anharmonic barrier.

B. Discretized path integrals

The path integral lends itself best to numerical calculations in its discretized form. A

path can be discretized into N segments of imaginary-time τN = τ/N , and represented by

‘beads’, xi, each expressing one set of coordinates of the f -dimensional system. Then the

action functional, Eq. (2), becomes the function

SN(x) =
N∑

i=1

m

2τN
|xi − xi−1|2 + τN

[
1
2
V (x0) +

N−1∑

i=1

V (xi) + 1
2
V (xN)

]
, (12)

where x = {x1, . . . , xN−1} are the N − 1 free beads and x0 ≡ x′ and xN ≡ x′′ are the

fixed end points. This can be derived either from finite differences and a trapezium-rule

integration of Eq. (2) or from a Trotter splitting of the Boltzmann operator. The kernel is

[41]

K(τ) =

(
m

2πτN~

)Nf/2 ∫
e−SN (x)/~ dx. (13)
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This and all other formulae in this section tend to the continuous forms given in Sec. II A in

the limit N →∞.

A steepest-descent approximation gives [46]

K(τ) ∼
(

m

2πτN~

)Nf/2√
(2π~)(N−1)f

det∇2SN
e−SN (x̃)/~ (14)

∼
(

m

2πτN~

)f/2
(detJ)−

1
2 e−SN (x̃)/~, (15)

where x̃ is the stationary point of SN(x) and the matrix J = τN
m
∇2SN(x̃) has elements

Jii′ = −δi−1 i′ + 2δii′ − δi+1 i′ + δii′
τ 2N
m
∇2V (x̃i), (16)

for i ∈ {1, . . . , N − 1}. For multidimensional systems, these elements are f × f submatrices

which build up the block matrix J [47]. By comparison with Eq. (4), we see that in the

N →∞ limit,

(detJ)−1 =
(τN
m

)f
C, (17)

which can also be shown directly from the Gelfand-Yaglom formula [46].

This discretization scheme is valid for an open-ended path integral but is also strongly

related to the more familiar ring polymer, which has become a popular simulation technique

in computational chemistry [38, 48–54]. The ring-polymer representation will be discussed

further in Sec. III C.

III. INSTANTON RATE THEORY

Instanton rate theory has been obtained independently by a number of people using different

approaches. The two earliest papers introducing the theory are by Miller in 1975 [14] and by

Coleman in 1977 [10, 55]. Despite being formulated in a different way, Althorpe has proved

that these two approaches give the same result [47]. Later work has also obtained further

formulations, all of which are equivalent [18, 23, 56, 57].

Coleman’s approach is derived with the aim of describing tunnelling in quantum field

theory. It is based on the so-called ‘ImF ’ premise, which assumes that the low-temperature

rate of decay of a metastable state, k, is related to the system’s free energy, F , by k ≈

−(2/~) ImF [55, 58]. This formula is not an exact definition of the rate. In fact, it must
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be modified above a certain crossover temperature and its application at intermediate tem-

peratures is understood simply as an approximate interpolation between known low- and

high-temperature limits [59]. The imaginary part of the free energy can only be defined

at the semiclassical limit using an analytic continuation of a divergent integral [46, 60]. It

is difficult to see how to see how this concept can apply rigorously to chemical reactions,

which are described by Hermitian Hamiltonians and have therefore purely real free energies

[35, 61].

Chemical reaction rates can, however, be rigorously defined using scattering boundary

conditions [62]. This was the basis of Miller’s semiclassical instanton formulation [14]. Here

we follow a similar approach, and by taking asymptotic approximations to the exact quantum

expression we present a unified derivation of instanton rate theory from first principles, and

thus show how the various formulations are related.

A. First-principles derivation

The flux correlation function provides a rigorous definition for the exact rate constant, k, of

a chemical reaction [62]. This gives

kZr =
1

2

∫ ∞

−∞
Tr
[
F̂ e−Ĥ(τ0+it)/~F̂ e−Ĥ(τ1−it)/~

]
dt, (18)

where Zr is the reactant partition function and τ0 + τ1 = β~. The choice of splitting this

factor into τ0 and τ1 does not affect the rate in principle, although this flexibility is important

to obtain the correct instanton formulation. The flux through a dividing surface σ(x) = 0 is

F̂ =
1

2m

(
δ[σ(x̂)]p̂σ + p̂†σδ[σ(x̂)]

)
, (19)

where p̂σ = ∂σ
∂x̂
· p̂ is the momentum normal to the dividing surface. Although the exact

rate is independent of the choice of dividing surface, for simplicity we will assume that it

has been placed in the barrier region. Reactants are defined by σ(x) < 0 and products by

σ(x) > 0.

By taking semiclassical approximations for the time integral and the quantum trace in

Eq. (18), the instanton expression for the rate constant can be found. This derivation of

instanton theory presented here does not rely on the ‘ImF ’ premise and thus has similar-

ities with Miller’s original formulation [14] and the derivation given in Ref. [18]. The new
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derivation presented here is more elegant as it directly approximates the thermal rate rather

than first obtaining the microcanonical rate and thermalizing.

Expanding the trace in position states, we rewrite the exact rate as

kZr =
1

8m2

∫∫∫ ∞

−∞
A(x′, x′′, t) δ[σ(x′)]δ[σ(x′′)] dx′dx′′dt, (20)

where we have defined the function

A(x′, x′′, t) = 〈x′|p̂σ e−Ĥ(τ0+it)/~|x′′〉 〈x′′|p̂σ e−Ĥ(τ1−it)/~|x′〉

+ 〈x′|p̂σ e−Ĥ(τ0+it)/~ p̂†σ|x′′〉 〈x′′|e−Ĥ(τ1−it)/~|x′〉

+ 〈x′|e−Ĥ(τ0+it)/~|x′′〉 〈x′′|p̂σ e−Ĥ(τ1−it)/~ p̂†σ|x′〉

+ 〈x′|e−Ĥ(τ0+it)/~ p̂†σ|x′′〉 〈x′′|e−Ĥ(τ1−it)/~ p̂†σ|x′〉 . (21)

Using p̂ |x〉 = ~
i
∂
∂x
|x〉 and 〈x| p̂ = −~

i
∂
∂x
〈x|, each term in Eq. (21) can be written as

products of the kernels and their derivatives. We can use the semiclassical approximation

to write each kernel in terms of a sum of all the imaginary-time trajectories travelling

from x′ to x′′. As shown in Fig. 1, there are three trajectories which dominate, notated by

µ ∈ {0,−,+}. The first is direct, and the others bounce exactly once. Further trajectories

also exist which bounce at least two times, but as these are longer, the action is larger

and their contribution to the rate exponentially suppressed. They are thus ignored in the

following.

Therefore the semiclassical approximation to Eq. (21) gives

A(x′, x′′, t) ∼
∑

µν

Aµν(x
′, x′′, t), (22)

where the sum over µ and ν is over the three different trajectories {0,−,+}. The individual

terms are given by

Aµν(x
′, x′′, t) =

~2

i2

[
∂Kµ(x′, x′′, τ0 + it)

∂x′σ

∂Kν(x
′′, x′, τ1 − it)

∂x′′σ

− ∂2Kµ(x′, x′′, τ0 + it)

∂x′σ∂x
′′
σ

Kν(x
′′, x′, τ1 − it)

−Kµ(x′, x′′, τ0 + it)
∂2Kν(x

′′, x′, τ1 − it)

∂x′σ∂x
′′
σ

+
∂Kµ(x′, x′′, τ0 + it)

∂x′′σ

∂Kν(x
′′, x′, τ1 − it)

∂x′σ

]
, (23)
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x

V(x) (a)

x

V(x) (b)

x′ x′′x′ x′′ x

V(x)

σ < 0 σ > 0

(c)

FIG. 1. Three possible imaginary-time trajectories starting at x′ and ending at x′′: (a) µ = 0, (b)

µ = −, (c) µ = +. In the derivation, it is assumed that σ(x) > 0 on the right and σ(x) < 0 on the

left.

where ∂
∂xσ

= ∂σ
∂x
· ∂
∂x

.

As expected from the relationship between the momentum operator and the deriva-

tive with respect to positions, within the semiclassical approximation, derivatives of the

kernel return the kernel multiplied by a momentum term. For example, ~∂Kµ(x
′,x′′,t)

∂x′σ
=

−∂Sµ
∂x′σ

Kµ(x′, x′′, t) = s′|p′σ|Kµ(x′, x′′, t), where s′ determines the sign, equal to +1 or −1 de-

pending on whether the trajectory is moving to the right or left. The same relations hold

for derivatives with respect to x′′σ. Using Eq. (7) and Fig. 1, it can be determined that for

µ = ±, s′ = s′′ = ±1 but for µ = 0, s′ = +1 and s′′ = −1.

By noting that many terms cancel, it can be shown that A00 = A0± = A±0 = A±± = 0

and the only terms which are nonzero are

A±∓(x′, x′′, t) = 4|p′σ||p′′σ|K±(x′, x′′, τ0 + it)K∓(x′′, x′, τ1 − it). (24)

Although the functions A+− and A−+ are not identical (as they have stationary points

in different places), their integrals over time are equal. Therefore we could compute the

semiclassical rate in terms only of one of them as

kZr ∼
1

8m2

∫∫∫ ∞

−∞
2A+−(x′, x′′, t) δ[σ(x′)]δ[σ(x′′)] dx′dx′′dt (25)

=

∫∫∫ ∞

−∞

|p′σ||p′′σ|
m2

√
C+

(2π~)f

√
C−

(2π~)f
e−S/~ δ[σ(x′)]δ[σ(x′′)] dx′dx′′dt, (26)
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where S ≡ S+(x′, x′′, τ+ + it) +S−(x′′, x′, τ−− it) is the sum of the action along the specified

trajectories and we have renamed the imaginary time variables τ+ ≡ τ0 ≡ τ and τ− ≡ τ1 ≡

β~− τ .

When performing the integral over time, it is possible to choose the value of τ to make

S stationary such that the integrand is dominated by the region around t = 0. Note that in

general it is not possible to choose value for τ such that the stationary point is at t = 0 for

both A+− and A−+ simultaneously. Exceptions to this rule are if the barrier is symmetric,

when τ0 = τ1 = β~/2 or in the classical, high-temperature, limit when τ0 and τ1 both tend

to 0.

The quantum instanton approach [39] is derived from steepest-descent integrals of the flux

correlation function directly [40]. As we have just shown, this is only a good approximation

for a symmetric barrier, and for this reason, the quantum instanton approach, like a number

of other quantum transition-state theories [63, 64], can give poor approximations for the rate

of tunnelling through an asymmetric barrier [65]. In Sec. III C, we will discuss how quantum

transition-state theory can be formulated to avoid this problem based on an understanding

of instanton theory.

In order to treat multidimensional systems, we consider a transformation of coordinates

from x to (q,Q). The coordinate q is parallel to the trajectory, such that |q̇| = |ẋ|, and

chosen such that q = 0 at the dividing surface. The remaining f − 1 coordinates form an

orthonormal set, Q. The rate formula is seen to be independent of the dividing surface using

|p| = m|q̇|, |pσ| =
∣∣∣∂σ∂q
∣∣∣ |p|, and δ[σ(x)] =

∣∣∣∂σ∂q
∣∣∣
−1
δ(q). The integrals over q coordinates can

then be performed easily due to the delta functions giving

kZr ∼
∫∫∫ ∞

−∞
|q̇′q̇′′|

√
C+C−

(2π~)2f
e−S/~ dQ′dQ′′dt, (27)

where q′ = q′′ = 0.

Equation (27) provides us with an expression for the rate in terms of an integral which

can be simply evaluated by the method of steepest descent. Depending on the order in

which the integrals over coordinates and time are performed, we can obtain the different

expressions for the rate which have previously appeared in the literature. However, all are

formally equivalent.

For consistency, the reactant partition function, Zr, should also be computed using the

steepest-descent approximation, similarly to Eq. (11). As the rate constant is then defined
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as a ratio between two steepest-descent approximations, at least some of the error can be

expected to cancel which will slightly improve the prediction.

The first expression we consider is obtained by integrating over all remaining variables

simultaneously:

kZr ∼ (2π~)−
1
2

√
Σ−Σ+

−Σ
e−S/~, (28)

where we have defined

Σ± = q̇2C± =

∣∣∣∣∣∣

∂2S±
∂Q′∂Q′′

∂2S±
∂Q′∂τ±

∂2S±
∂τ±∂Q′′

∂2S±
∂τ±2

∣∣∣∣∣∣
(29)

Σ =

∣∣∣∣∣∣∣∣∣

∂2S
∂Q′∂Q′

∂2S
∂Q′∂Q′′

∂2S
∂Q′∂τ

∂2S
∂Q′′∂Q′

∂2S
∂Q′′∂Q′′

∂2S
∂Q′′∂τ

∂2S
∂τ∂Q′

∂2S
∂τ∂Q′′

∂2S
∂τ2

∣∣∣∣∣∣∣∣∣
, (30)

and Q′, Q′′ and τ are chosen according to the steepest-descent prescription ∂S
∂Q′

= ∂S
∂Q′′

= 0

and ∂S
∂τ

= 0.

This formulation of instanton theory is written in terms of two trajectories, one bouncing

on the left and one on the right. It is similar to the expression presented in Sec. VI for the

rate of an electron-transfer process [66]. However, other formulations of instanton theory in

the literature have used a single periodic orbit. To show how these can be derived, a few

more steps are necessary.

This time, again starting from Eq. (27), the integral is performed over t and Q′′ simulta-

neously to give

kZr ∼
∫
|q̇′q̇′′|

√
C+C−
(2π~)f

∣∣∣∣∣∣
i2 ∂

2S
∂τ2

i ∂2S
∂τ∂Q′′

i ∂2S
∂Q′′∂τ

∂2S
∂Q′′∂Q′′

∣∣∣∣∣∣

− 1
2

e−S/~ dQ′, (31)

with Q′′ and τ given by the steepest-descent conditions. The two trajectories can be com-

bined into one which bounces both on the left and the right and which we will call the

‘instanton’ trajectory. The chain rule states that ∂S
∂τ

= ∂S
∂q
q̇ and thus the prefactors are

combined as in Eq. (8) to give

Cinst = C−C+|q̇′′|2
∣∣∣∣∣∣

∂2S
∂τ2

∂2S
∂τ∂Q′′

∂2S
∂Q′′∂τ

∂2S
∂Q′′∂Q′′

∣∣∣∣∣∣

−1

. (32)
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Then the rate can be written in terms of the instanton trajectory as

kZr ∼
∫

ImKinst(x, x, β~)|q̇|dQ, (33)

where the variable x′ = (q′,Q′) has been renamed x = (q,Q) and

ImKinst(x, x, β~) =

√
−Cinst

(2π~)f
e−Sinst/~. (34)

Note that C± > 0 and ∂2S
∂τ2

< 0 so that Cinst < 0. For this reason Kinst(x, x, β~) is pure

imaginary, but combines with the factor of i from Eq. (31) such that what appears in Eq. (33)

is purely real. This also implies that the instanton is not a minimum of the action, but a

first-order saddle point.

It is important to note that here only the instanton trajectory is included in the definition

for the semiclassical kernel and there is no sum over other possible trajectories. Other

trajectories also exist which are minima, including ones which bounce only once but these

must not be allowed to contribute as they would dominate the integrand. This problem is

illustrated in Ref. [67]. Our derivation above shows why only the instanton trajectory should

be included—because the others cancel in Eq. (23) to give zero. For this reason no version

of Eq. (33) has been found without using the semiclassical approximation, and hence it has

not been possible to derive an exact imaginary-time path-integral Monte Carlo method for

computing the rate.

Completing the final integral by steepest descent gives

kZr ∼ (2π~)−
1
2 |q̇||Cinst|

1
2

∣∣∣∣
∂2S

∂Q∂Q

∣∣∣∣
− 1

2

e−S/~, (35)

where S ≡ S(x′, x′′, β~) and x′ = x′′ = x such that ∂2S
∂Q∂Q

= ∂2S
∂Q′∂Q′

+ ∂2S
∂Q′∂Q′′

+ ∂2S
∂Q′′∂Q′

+ ∂2S
∂Q′′∂Q′′

.

The steepest-descent approximation is made around a value of Q for which the action is

stationary. This forces the ends of the instanton trajectory to have a continuous momentum

and thus the instanton is a periodic orbit.

This result can be transformed into the instanton theory given by Miller [14] using a

number of Legendre transformations (see Appendix A):

∣∣∣∣
∂2S

∂Q∂Q

∣∣∣∣ =

∣∣∣∣
∂2W

∂Q∂Q

∣∣∣∣
d2W

dE2

(
∂2W

∂E2

)−1
, (36)

15



where

d2W

dE2
=
∂2W

∂E2
− ∂2W

∂E∂x

(
∂2W

∂x∂x

)−1
∂2W

∂x∂E
, (37)

∂
∂x

= ∂
∂x′

+ ∂
∂x′′

, and

Cinst =

∣∣∣∣−
∂2S

∂x′∂x′′

∣∣∣∣ =

(
∂2W

∂E2

)−1
Dinst, (38)

where [68]

Dinst = (−1)f+1

∣∣∣∣∣∣

∂2W
∂x′∂x′′

∂2W
∂x′∂E

∂2W
∂E∂x′′

∂2W
∂E2

∣∣∣∣∣∣
= |q̇|−2

∣∣∣∣−
∂2W

∂Q′∂Q′′

∣∣∣∣ . (39)

Therefore Eq. (35) can be transformed to Miller’s expression [14],

kZr ∼ (2π~2)−
1
2Z‡

(
−dE

dβ

) 1
2

e−S/~, (40)

where −~
(

dE
dβ

)−1
= d2W

dE2 and

Z‡ =

∣∣∣∣−
∂2W

∂Q′∂Q′′

∣∣∣∣
1
2
∣∣∣∣
∂2W

∂Q∂Q

∣∣∣∣
− 1

2

(41)

=

f−1∏

j=1

[2 sinh(uj/2)]−1. (42)

The final step uses a proof given by Gutzwiller [68] to write Z‡ in terms of uj, the nonzero

stability parameters [14].

Equations (35) and (40) provide two expressions for the rate according to the instanton ap-

proximation. They can be evaluated using the numerical methods described in Sec. IV. How-

ever, neither is the most commonly-used formulation which we will introduce in Sec. III C.

B. Connection to the ‘ImF ’ premise

The approach used by Coleman [10] is based on the ‘ImF ’ premise [58], which assumes that

the rate can be written as

kZr ≈
2

β~
ImZ, (43)
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where the total partition function is

Z =

∫
K(x, x, β~) dx. (44)

A steepest-descent evaluation of this integral would be dominated by minima of the action

functional, which as already explained do not correspond to instantons. Within the ‘ImF ’

premise, the imaginary part of the partition function is defined using analytic continuation

around the saddle point, which is the instanton trajectory.

This definition is valid only below the crossover temperature, and takes a slightly dif-

ferent form at higher temperatures to ensure that it matches with the classical rate [59].

There has been some discussion as to whether the ‘ImF ’ premise is valid for describing

finite-temperature chemical reactions [14, 18, 47, 57]. However despite the difference in the

derivation, it can be shown that this formulation is exactly equivalent to Miller’s rate ex-

pression, Eq. (40) [18, 47], and hence to all the expressions given above, which also do not

make use of the ‘ImF ’ premise.

The analytic continuation gives

ImZ ∼ 1

2

∫
ImKinst(x, x, β~) dx, (45)

where the factor of half comes from analytically continuing the function only over half the

complex plane [10]. As before, only the instanton pathway is considered, and not other

trajectories such as those which bounce only once which would ruin the result [67]. The

final integral cannot be performed directly by steepest descent because of the existence of a

zero-frequency mode which describes cyclic permutation of the periodic trajectory. Instead

we change first from x to (q,Q) coordinates and then from q to imaginary-time before

integrating this variable over the period of the trajectory:1

kZr ≈
1

β~

∫ ∫ β~

0

ImKinst(x, x, β~) |q̇| dτ dQ, (46)

which as the integrand is independent of τ , gives a rate expression exactly equivalent to that

from Eq. (33).

We have shown that the ‘ImF ’ premise gives the same formula as the first-principles

instanton derivations given in Sec. III A. Therefore all the instanton expressions are equiva-

lent including that of Miller, of ‘ImF ’ and the new expressions presented in Sec. III A. This

1 Because the instanton folds back on itself, one could say that the integral should only be over half the

period. However, as the instanton can travel around its orbit in two different directions, we account for

this degeneracy here.
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shows that the ‘ImF ’ premise is valid in this case, but does not mean that it is valid in

general for other problems.

C. Ring-polymer discretization

The most common discretization scheme used for representing closed path integrals is that

of the ring polymer [38, 48–54]. Here the path is represented by N beads, xi, each of which is

an image of the f -dimensional system. An alternative scheme (not used here) is to discretize

the path using Fourier coefficients [41, 69, 70].

The ring-polymer potential is given by

UN(x) =
N∑

i=1

m

2β2
N~2
|xi − xi−1|2 +

N∑

i=1

V (xi), (47)

where βN = β/N . This is defined similarly to Eq. (12) but for a cyclic path with N variable

bead positions, x = {x1, . . . , xN}, and no fixed end points but with the equivalence x0 ≡ xN .

The action of a ring-polymer path is given by ~βNUN(x).

The standard ring-polymer instanton rate expression is most easily derived directly from

the ‘ImF ’ premise [21], although it should be noted that we have shown this to be equivalent

to the first-principles derivations. In this representation, the partition function is

Z = Λ−NfN

∫
e−βNUN (x) dx, (48)

where ΛN =
√

2πβN~2
m

.

According to the ‘ImF ’ premise, the rate is proportional to the imaginary part of the par-

tition function which can be obtained by performing a steepest-descent integration around

the saddle point of UN(x), notated x̃. This is the definition of the instanton trajectory

for which βNUN(x̃) = S/~. A second-order normal-mode expansion of the ring-polymer

potential about this point is

UN(x) ≈ UN(x̃) +
∑

k

1
2
mη2kc

2
k. (49)

The frequencies, ηk, are defined as the square root of the eigenvalues of the mass-weighted

ring-polymer Hessian matrix, ∇2UN(x̃)/m and the displacements of the corresponding eigen-

modes are ck.
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There will be one negative eigenvalue and the steepest-descent procedure is modified for

this mode: the absolute value is taken and the integral multiplied by a factor of a half [10].

This gives

ImZ = 1
2
Λ−1N

∏′

k

∣∣∣∣
1

βN~ηk

∣∣∣∣ e−βNUN (x̃)

∫
dc0. (50)

Not only does ∇2UN/m have one negative eigenvalue, but it also has one, η0, which is zero,

corresponding to the permutational mode, c0, which points along ˙̃x. The steepest-descent

integral is not valid for this mode and therefore (as indicated by the prime) the product is

taken over all modes except the zero-frequency mode corresponding to permutation of the

instanton.

The zero-frequency mode has the effect dxi =
√

β2
N~2
BN

˙̃xi dc0 where ˙̃xi ≈ (x̃i − x̃i−1)/βN~

and

BN =
∑

i

|x̃i − x̃i−1|2. (51)

It is normalized such that
∑

i

(
∂xi
∂c0

)2
= 1. Comparison with dxi = ˙̃xi dt shows that the

integral over this mode gives
∫

dc0 =
∫ β~
0

√
BN
β2
N~2 dt = N

√
BN . Finally, using Eq. (43), we

obtain

kZr =
Λ−1N
βN~

√
BN

∏′

k

∣∣∣∣
1

βN~ηk

∣∣∣∣ e−βNUN (x̃). (52)

This is the most commonly used ring-polymer instanton expression [21, 23, 24]. However,

as shown in Sec. III A, this is not the only valid expression and equivalent formulae exist.

It turns out that there can be an advantage in using the alternative formulae as unlike this

‘ImF ’ expression, they do not require building and diagonalizing a large Nf ×Nf matrix.

In order to predict the crossover temperature, we consider a ring polymer collapsed at

the transition state to find out if it is a first-order saddle point. It has eigenvalues of

η2k = 4
β2
N~2 sin2 kπ/N − ω̄2

b for k ∈ {−N/2, . . . , N/2 − 1}, where ω̄b is the imaginary part of

the barrier frequency. For the lowest modes where k � N , this is given approximately by

η2k ≈ 4k2π2

β2~2 − ω̄
2
b and we see that there is only one negative eigenvalue if β~ω̄b < 2π but more

than one if β~ω̄b > 2π. Therefore the crossover temperature is defined as βc = 2π/~ω̄b.

Below the crossover temperature, there must be a first-order saddle point elsewhere which

describes the instanton. This is the onset of deep tunnelling when the instanton cannot
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remain collapsed at the barrier top and must stretch across the barrier. This analysis was

based on a parabolic approximation to the shape of the barrier, and different definitions for

the crossover temperature will be more appropriate for barriers that deviate significantly

from this shape [71]. It is also possible for instantons to exist well above the crossover

temperature [72], as in general the ring-polymer surface can have more than one first-order

saddle point simultaneously.

The instanton approach is strongly connected to other path-integral rate theories, and

in particular to ring-polymer molecular dynamics (RPMD) [37, 38]. The main advantage

of this method over instanton theory is that it is also applicable to studying tunnelling

effects in a liquid environment. The instanton pathway represents an optimized path-integral

configuration describing the reaction whereas most path-integral rate theories are based on

an equation of the form

kZr = A

∫
e−βNUN (x) δ[σN(x)] dx, (53)

with various definitions of the prefactor, A, and constraint σN(x). No steepest-descent

approximation is used for the integrals over x, such that all paths obeying the constraint

σN(x) = 0 contribute. The dominant path is the one which minimizes UN(x) whilst si-

multaneously obeying the constraint. If this dominant path is the same as the instanton,

x̃, then the rate would be proportional to e−βNUN (x̃) = e−S/~ in the same way as with the

instanton expression.

Centroid-based path-integral methods [35, 36] use a constraint of the form σN(x) =

1
N

∑N
i=1(xi − x‡). This approximation often performs well for symmetric barriers, but can

fail spectacularly in asymmetric systems [63]. This is best understood by considering the

dominant path-integral configuration under the centroid constraint. For symmetric systems,

it is equal to the instanton, but this is not true for asymmetric systems [21], even after

variationally optimizing x‡ [73]. Centroid-based methods can therefore make an error in

a part of the formula which is exponentiated and hence exhibit large errors in the rate.

In contrast, the semiclassical instanton method gives good approximations for rates in the

deep-tunnelling regime for both symmetric and asymmetric systems.

Ring-polymer transition-state theory (RPTST) is defined such that the constraint on the

ring polymer ensures that the instanton remains the optimum configuration [21, 67, 74].

Therefore instanton theory is strongly related to a harmonic approximation to RPTST.
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The prefactors of the two approaches are similar but not exactly the same, such that it

is common for RPTST and instanton predictions to be within a factor of 2 of each other

[21]. RPTST can also be derived from first principles without invoking the steepest-descent

approximation by considering the instantaneous quantum flux through a generalized dividing

surface [67, 75].

RPTST can be thought of as a TST approximation to RPMD itself and thus for a well-

chosen dividing surface, the RPTST and RPMD give approximately the same result. This

shows the connection between RPMD and instanton theory which confirms that RPMD is

a valid theory for studying deep-tunnelling in molecular systems. RPMD has a distinct

advantage over RPTST however, as its results are independent of the choice of dividing

surface. This is achieved using real-time ring-polymer trajectories, which have two roles,

one is to correct for a suboptimal choice of dividing surface, σN(x), and the second is to

provide information on classical recrossing dynamics. This makes RPMD a practical method

for the study of tunnelling in liquid environments, for which the optimal dividing surface

is generally unknown. However, for gas-phase reactions or for reactions on surfaces, the

instanton approach is valid and is typically much more efficient than other path-integral

rate theories, allowing larger systems to be studied with accurate ab initio potential-energy

surfaces.

IV. NUMERICAL IMPLEMENTATION

In this section we discuss efficient implementation strategies for the instanton rate theories

presented above. Instanton pathways are imaginary-time classical trajectories and there-

fore solutions of Newton’s equations of motion on an upside-down potential. Historically

the pathways were located computationally using an approach known as ‘shooting’, which

propagates the equations of motion to generate trajectories and searches for initial condi-

tions leading to the required periodic orbit solution [15, 16, 76]. This is a simple procedure

for one-dimensional systems, but quickly becomes practically impossible to perform as the

number of degrees of freedom increases. This is because when searching for an unstable

orbit, the final position at the end of the trajectory changes exponentially fast as the initial

condition is varied.

The disadvantages of the shooting method are clearly outlined in Numerical Recipes [77]
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where the alternative method of ‘relaxation’ is recommend in its stead [69]. In this approach,

the path is discretized into a set of points with the periodic boundary condition implicitly

built in. All points are then optimized simultaneously by an optimization algorithm until

the required solution is found [21, 23, 24]. It turns out that when searching for instantons,

the relaxation method is far superior to the shooting method.

A. Optimization of the instanton

We have introduced the ring-polymer discretization for the instanton pathway above. How-

ever, there is a simple trick which can be used to reduce the computational cost of this

representation [23, 24]. The instanton trajectory is known to fold back on itself in order

to complete its periodic orbit. It is therefore only necessary to locate one half of the tra-

jectory and thus half of the path, x(t) for t ∈ [0, β~/2], is discretized into beads xi for

i ∈ {1, . . . , N/2}, where we are assuming that N is even. The half-ring-polymer potential is

given by

UN/2(x) =

N/2−1∑

i=1

m

2β2
N~2
|xi+1 − xi|2 +

N/2∑

i=1

V (xi). (54)

The solution which describes the instanton trajectory is denoted x̃. Once the positions

of the half-ring-polymer beads are found, it is simple to find the ring-polymer instanton

configuration by symmetry. The action of this instanton is given by S/~ = 2βNUN/2(x̃).

Note that for the fluctuations in Eq. (52), one must construct and diagonalize the full ring-

polymer Hessian as described in Sec. IV B.

According to the variation principle, the first variation of S is zero for a classical tra-

jectory. Also it was shown in Sec. III that the instanton has a single negative eigenvalue.

Thus the instanton can be obtained by searching for first-order saddle points of UN/2(x).

For locating saddle points, standard transition-state optimization algorithms such as quasi-

Newton approaches [78, 79] can be applied. Kästner and coworkers have thoroughly tested

quasi-Newton algorithms and found them to be very efficient at optimizing instantons in a

small number of iterations [24, 80].

However, the problem of optimizing instantons is not exactly equivalent to searching for

saddle points in general. The first derivatives of the half-ring-polymer potential have the
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simple form

∂UN/2(x)

∂x1
=

m

β2
N~2

(x1 − x2) +∇V (x1) (55a)

∂UN/2(x)

∂xi
=

m

β2
N~2

(−xi+1 + 2xi − xi−1) +∇V (xi) (55b)

∂UN/2(x)

∂xN/2
=

m

β2
N~2

(xN/2 − xN/2−1) +∇V (xN/2), (55c)

for i ∈ {2, . . . , N/2 − 1}. This means that, unlike for the general saddle-point search, the

Hessian matrix, H = ∇2UN/2(x), is banded. Also, extra flexibility is offered in the choice

of an algorithm used for converging the number of beads, N .

It is especially important to take the banded nature of the Hessian into account for

systems with a large number of atoms, where the Hessian can be reduced in size from a

square Nf/2×Nf/2 matrix to f + 1 bands of length Nf/2. For a system with 100 atoms

and N = 128, this reduces the memory requirement from 3 GB to 50 MB, thus ensuring

that the computation is feasible on a standard computer. Many of the more sophisticated

quasi-Newton saddle-point optimization algorithms use a procedure known as ‘eigenvector

following’ which requires knowledge of the eigenvectors of the Hessian. Even if the Hessian

is banded, the matrix of eigenvectors is not, and thus the memory requirement becomes once

more too large. However, the simplest quasi-Newton method based on the Newton-Raphson

iteration does not require eigenvectors and can thus take full advantage of the banded nature

of the Hessian.

The Newton-Raphson optimization algorithm takes steps of h defined by solving the linear

equations (H + εI)h = −G, where H = ∇2UN/2(x) is the Hessian and G = ∇UN/2(x)

the gradient. A shift of ε ≈ 0.1Eh/Å
2

is added to the diagonal of H to avoid problems

with zero modes [81]. A maximum step length is defined and the step is scaled down if it

is larger than this. The Hessian need not be very accurate at this stage of the calculation.

Therefore, rather than recomputing the Hessian after each step, the Powell update formula

[82] is used to update the nonzero bands. The algorithm is iterated until the norm of G is

less than a given tolerance.

There is of course a well-known problem with the Newton-Raphson algorithm which is

that it can optimize to any stationary point and not only to first-order saddle points. This

means that the initial guess must be made quite close to the saddle point, which explains

why it is typically not used for standard transition-state searches. However, when optimizing
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instantons, we are often in the situation where we are able to make a good initial guess.

This is because we can first obtain a good approximation using a small number of beads

and interpolate this result to give an initial guess with a larger number of beads. In this

way, the next optimization often converges in fewer than 10 steps and nearly always to the

correct stationary point.

An automatic procedure for obtaining the first initial guess is given by a straight-line

interpolation around the transition state in the direction of the imaginary normal mode

[24]:

xi = x‡ + ∆ cos

(
2πi

N

)
z, (56)

where z is the f -dimensional eigenvector corresponding to the imaginary mode at the tran-

sition state, x‡. The scalar variable ∆ ≈ 0.1 Å is chosen to be smaller than the bond lengths

in the system, but large enough to represent the typical spread of the instanton trajectory.

It can be varied by trial and error until the initial guess is good enough for the optimization

to converge.

The calculations need to be converged with respect to the number of ring-polymer beads

N . This is done by computing the rate with increasingly large values of N , typically doubling

each time, until the rate converges. Rather than starting each optimization from Eq. (56),

the optimized configuration from the previous calculation is used where available. Once an

N -bead path has been optimized, a set of f one-dimensional spline interpolations can be

used to generate an initial guess for a ring polymer with a larger number of beads. A similar

approach can be used to generate approximate Hessians of each bead.

Note that when using the Newton-Raphson algorithm, the beads may collapse at the bar-

rier top, which below the crossover temperature is a higher-order saddle point [21]. Therefore

for the first instanton optimization with a small number of beads, for which no good guess is

available, eigenvector-following algorithms are used. Even if the full matrix of eigenvectors is

built for a system of 100 atoms, this can be easily stored in computer memory with N = 16.

Many such algorithms exist; one which we have used most often and generally found stable

is that of Ref. [79]. In summary, eigenvector-following is used when stability is required, but

Newton-Raphson for efficiency.

A typical work flow is summarized as follows:

1. Optimize the minimum or minima and perform normal-mode analysis.
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2. Optimize the transition state and perform normal-mode analysis.

3. Use Eq. (56) to give an initial guess for an N = 16 configuration.

4. Compute Hessians of each bead. (This can be done approximately.)

5. Optimize N = 16 instanton using eigenvector following, computing gradients at each

iteration, and using the Powell update formula on the ring-polymer Hessian.

6. Double number of beads by interpolation of positions and Hessians to give new guess

configuration.

7. Optimize with Newton-Raphson, computing gradients at each iteration, and using the

Powell update formula on the ring-polymer Hessian.

8. Recompute Hessians for each bead. (This must be done accurately.)

9. Evaluate the fluctuation terms and hence the rate, k.

10. Return to step 7 until the rate converges.

If rates are required at more than one temperature, it is recommended to start with those

closest to the crossover temperature and cool sequentially, again using initial guesses from

the previous optimizations. Following this procedure, the instanton can be located even for

polyatomic reactions of many atoms. A few specific examples are discussed in Sec. V.

B. Fluctuation factors

Once the instanton has been located by the optimization algorithms described in Sec. IV A,

the exponential part of the rate expression is known. What remains to be computed is the

prefactor, which is based on fluctuations around the instanton. We have given a number

of expressions for the instanton rate in Sec. III, which differ in the way the prefactor is

evaluated.

The most commonly-used approach for computing the instanton rate is based on Eq. (52).

In order to evaluate this expression, the full ring-polymer Hessian is built and diagonalized

to find the frequencies, ηk. One of the frequencies should be imaginary, as the instanton is a

saddle point, and one should be zero corresponding to the permutational mode. Depending
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on the symmetries of the Hamiltonian, there may also be other zero frequencies correspond-

ing to translational and rotational modes. These should also be removed from the product

and are treated instead using classical translational and rotational partition functions.

The resulting instanton rate theory can be written in the following form:

k =
1

2πβ~
ZtransZrotZvib

Ztrans
r Zrot

r Zvib
r

e−S/~, (57)

where the reactant partition function, Zr, has been defined in terms of translational, rota-

tional and vibrational contributions from the separated reactant molecules.

Note that this expression is similar to that of Eyring TST if S/~ were replaced by βV ‡,

where V ‡ is the barrier height. In this way, it is possible to define a finite-N version of

Eyring TST which tends to the usual formula in the N → ∞ limit. This is useful for

comparison with the finite-N instanton expression to obtain a tunnelling factor with some

error cancellation. In this case, one should use a collapsed ring-polymer configuration for

both the transition-state geometry as well as the minimum or minima. However, for an

instanton rate calculation, one uses collapsed ring polymers for the reactants only and the

instanton configuration for the partition functions in the numerator.

For a gas-phase reaction, there will be f0 modes corresponding to translations and ro-

tations of the instanton or transition state. There can be 5 or 6 of these depending on

whether the transition state is linear or nonlinear. Their partition functions are defined

using the usual classical expressions as if all the beads in the ring polymer made up a Nf/3-

atom ‘super-molecule’ at reciprocal temperature βN . They are normalized such that for a

collapsed ring polymer, the factors of N cancel to give the usual expression.

The translational partition function for a molecule of total mass M is

Ztrans = N−3
(

NM

2πβN~2

) 3
2

. (58)

For a gas-phase bimolecular reaction, there are two reactant molecules and Ztrans
r is the

product of two expressions of this form.

The moments-of-inertia tensor is given by

I =
N∑

i=1

f/3∑

a=1

ma [(~ri,a · ~ri,a)I− ~ri,a × ~ri,a] , (59)

where ~ri,a is the displacement from the centre of mass of the ring polymer of the ath atom

(with mass ma) of the ith replica, and I the 3×3 identity matrix. The rotational contribution
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to the ring-polymer partition function is then computed using the appropriate formula:2

Zrot = 1 for a single atom, (60a)

Zrot = N−2
2IB
βN~2

for linear configurations, (60b)

Zrot = N−3

√
8π det I

β3
N~6

for nonlinear configurations, (60c)

where IB is the value of the nonzero eigenvalues of I (for linear configurations).

The vibrational contribution of a collapsed ring polymer to the partition function is given

by [46]

Zvib =
∏′

k

[
2 sinh 1

2
β~ω̃k

]−1
, (61)

where ω̃k are the corrected frequencies for finite values of N , as defined in Appendix B. The

prime denotes that only modes with nonzero real frequencies are included in the product.

The vibrational contribution to the instanton partition function is however given by a

different expression, obtained from Eq. (52),

Zvib
inst = N1+f0

√
2πmBN

βN~2
∏′

k

∣∣∣∣
1

βN~ηk

∣∣∣∣ . (62)

This is the most commonly-used ring-polymer instanton approach. However, we have shown

that there are many other equivalent formulations which may have numerical advantages

over this approach.

Few numerical implementations of Eq. (40) have been performed [15, 76] because the

stability parameters for the unstable instanton orbit have been shown exhibit poor numerical

behaviour [83, 84]. This problem is related to the problem of obtaining the monodromy

matrix needed for other semiclassical dynamics methods, for which further approximations

are often necessary to reduce the numerical errors [85].

We next consider the expression Eq. (35). Once translations and rotations are correctly

treated, this can also be expressed as in Eq. (57) using

Zvib
inst = (2π~)−

1
2 |q̇|

∣∣∣∣det ′
∂2S

∂x′∂x′′

∣∣∣∣
1
2
(

det ′
∂2S

∂Q∂Q

)− 1
2

, (63)

2 Note that the symmetry number does not appear here but instead manifests itself in a number of identical

transition states.
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where we use the notation

det ′A =
∏′

eig(A) (64)

to mean that the product is taken over all eigenvalues except those corresponding to trans-

lational and rotational modes. These are instead treated by their partition functions.

In order to identify the translational and rotational modes from the determinant, we can

look for eigenvalues with particular numerical values. For a free particle, Sfree(x
′, x′′, τ) =

m(x′′−x′)2/2τ and therefore ∂2Sfree

∂x′∂x′′
= −m/τ . This means that f0 of the eigenvalues of ∂2S

∂x′∂x′′

will be equal to −m/β~.

For the case of the determinant of ∂2S
∂Q∂Q

, the eigenvalues corresponding to translations

and rotations are seen to be 0 by a similar argument. One can obtain this matrix by rotating

∂2S
∂x∂x

to the (q,Q) coordinate system and projecting out the q direction. However, a simpler

approach is to take the eigenvalues of ∂2S
∂x∂x

directly which are equivalent except that there

is also a further 0 eigenvalue corresponding to the q direction which should be removed.

Formulae for computing derivatives of the action with respect to the end points are given

explicitly in the appendix of Ref. [86]. Using these we can obtain expressions for ∂2S
∂x′∂x′′

as

well as ∂2S
∂x′∂x′

= ∂2S
∂x′′∂x′′

. Note that this algorithm requires solving a set of linear equations

with a banded matrix. We cannot use a Cholesky factorization as the matrix is not positive

definite, but algorithms do exist for solving this using an LU factorization. The speed of the

trajectory at the end point can be obtained using |q̇| = 1
m

∣∣ ∂S
∂x′

∣∣. Alternatively, it is given by

|q̇| =
√

2[V (x′)− E]/m where E = ∂S
∂τ

is the energy of the instanton pathway.

An alternative method for obtaining the determinant of ∂2S
∂x′∂x′′

is to use the multidimen-

sional Gelfand-Yaglom formula [46]:

Ψ1 = 2I + ε2∇2V (x1) (65a)

Ψ2 =
(
2I + ε2∇2V (x2)

)
Ψ1 − I (65b)

Ψk =
(
2I + ε2∇2V (xk)

)
Ψk−1 −Ψk−2 for k ∈ {3, . . . , N − 1}, (65c)

where ε = βN~ and I is the f × f identity matrix. The required eigenvalues can be obtained

using eig
(

∂2S
∂x′∂x′′

)
= (ε eig ΨN−1)

−1. A further option is to evaluate the determinant of the

banded matrix J which is related to the product of eigenvalues by Eq. (17).

The choice of which method to use depends on the system under study. The standard

ring-polymer instanton formula, Eq. (52), has been well tested, and does not seem to exhibit
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numerical problems, even when an ab initio PES is used. The alternative methods will only

become necessary for particularly large systems, where one would like to avoid storing and

diagonalizing the ring-polymer Hessian matrix.

V. APPLICATIONS

The ring-polymer instanton approach has been applied to a number of gas-phase reactions

using both fitted surfaces and on-the-fly calculations for the PES [23, 26, 70, 87–94]. Some

of these calculations have been used to benchmark the instanton approach against more

accurate theories, but others have given new insights into physical chemistry. In this section

we present example calculations on simple systems for which exact benchmark results are

available for comparison.

However, the ring-polymer instanton method is by no means limited to such small gas-

phase reactions and calculations have also been performed in condensed-phase systems with

a larger number of atoms. These include studies of chemical reactions on ice surfaces [32], as

well as hydrogen diffusion on surfaces [30, 33] or in crystals [93]. The effect of tunnelling on

proton transfer in an enzyme-catalysed reaction [34] has been computed, and gave kinetic

isotope effects consistent with experimental observations. In order to study this liquid

system, for which instanton theory is not formally valid, an approximation was made to

freeze the environment at the transition-state geometry. In a similar way, there are also

approaches used to treat amorphous surfaces with a set of different possible configurations

[31].

In certain cases, further work is needed to extend the instanton approach to treat a

new type of tunnelling dynamics, which appears for diffusion over broad-topped barriers

[71]. Extensions are also needed for treating low-temperature bimolecular reactions with

a pre-reactive complex [91, 92]. However, for the majority of the studies carried out, the

largest source of error in the predicted rate is expected to come from the electronic-structure

method, rather than the instanton method itself. For the largest systems, and in particular

in the condensed phase, density-functional theory (DFT) is often the only practical method

available. In this case, due to errors in the barrier heights, quantitative rates cannot always

be trusted, and the results obtained should be considered qualitative for describing which

tunnelling mechanism dominates. Even in these cases, the calculation of kinetic isotope ef-
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fects benefits from much error cancellation and can give better comparison with experiment.

A. Eckart barrier

The standard test case of the Eckart barrier has been used to compare results from many

different approximate rate theories. We have previously derived an analytic result for the

instanton rate on the symmetric Eckart barrier [19], and shown it to be an asymptotic limit

of the exact rate. Here we present a similar derivation for the more general asymmetric

barrier:

V (x) =
A

1 + e−2x/a
+

B

cosh2(x/a)
. (66)

The exact reaction probability can be written [1, 95]

P (E) =
coshα(

√
η +
√
η − γ)− coshα(

√
η −
√
η − γ)

coshα(
√
η +
√
η − γ) + cosh

√
4α2 − π2

, (67)

where η = E/B is the reduced energy, α = π
√

2ma2B/~ is a measure of the width of the

barrier and γ = A/B is the measure of asymmetry.

In the limit α→∞,

P (E) ∼ eα
√
ηeα
√
η−γ

eα(
√
η+
√
η−γ) + e2α

(68)

=
1

1 + eW/~
(69)

∼ e−W/~, (70)

where

W (E) = ~α(2−√η −
√
η − γ). (71)

This can be identified as the same function as the the abbreviated action [1, 95], defined as

the following integral between the turning points x< and x>:

W (E) = 2

∫ x>

x<

√
2m(V (x)− E) dx. (72)

The exact thermal rate is defined by

kZr =
1

2π~

∫ ∞

0

P (E) e−βE dE. (73)
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TABLE I. Tunnelling factors from three different methods: the numerically exact solution, Eq. (73),

the instanton approximation, Eq. (74), and Wigner’s second-order approximation, Eq. (75). The

system is an asymmetric Eckart barrier with A = −18/π, B = 13.5/π, a = 8/
√

3π and ~ = m = 1,

which has a crossover temperature of 2π.

β exact instanton Wigner

8 26 28 4

10 252 232 5

12 4068 3689 7

The asymptotic approximation to the rate is obtained using Eq. (70) and a steepest-descent

integration over energy to give

kZr ∼ (2π~)−
1
2

(
∂2W

∂E2

)− 1
2

e−W/~−βE, (74)

where in the second line, E is defined such that ∂W
∂E

= 0. This is also the expression for the

instanton approximation to the thermal rate, as can be seen by comparison with Eq. (40)

for the case of a one-dimensional system [19].

In Table I, we show how the instanton predictions for the asymmetric Eckart barrier

compare with the exact results. In each case, the tunnelling factor is defined as the ratio of

the rate with classical transition-state theory, kTSTZr = 1
2πβ~e−βV

‡
, where V ‡ is the barrier

height. For comparison, the second-order Wigner approximation [20],

kWigner/kTST = 1 + (β~ω̄b)2/24, (75)

is also given. This approximation is only valid for shallow tunnelling, and thus gives poor

predictions for this low temperature regime. However, the instanton results are consistently

of the correct order of magnitude.

B. H + H2

The simplest thermally activated chemical reaction, H + H2, exhibits a large deviation from

the Arrhenius law and has large kinetic isotope effects due to both tunnelling and zero-point

energy effects [87, 96, 97]. It therefore provides an excellent system for testing the instanton
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TABLE II. Semiclassical instanton (SCI) and exact quantum-mechanical (QM) values of H + H2

and D + D2 rates in cm3/s. The crossover temperatures are 345 K and 244 K for the reactions.

T / K
H + H2 D + D2

SCI QM SCI QM

300 5.2(-16) 3.24(-16) - 4.65(-17)

250 4.3(-17) 3.67(-17) - 3.53(-18)

200 2.2(-18) 2.01(-18) 1.2(-19) 8.92(-20)

150 6.8(-20) 5.1(-22)

approximation, in particular because these rates can be compared with exact benchmark

results, obtained using the log-derivative method [98–100].

In Table II, we compare rates from the instanton approximation [101] with the exact

results [40] for two isotopic variants of this reaction. The BKMP2 potential-energy surface

[102] was used by all three methods. The instanton rates presented are converged with

respect to the number of beads to two significant figures. It was necessary to use 512 beads

at the lowest temperature studied. Note that the instanton rates have been multiplied by

a factor of 2 to account for the fact that the reactant radical can attack either atom of the

diatomic.

The instanton approach is seen to agree within about 20% except for the highest tem-

perature studied in each case for which the rate is overestimated by a larger factor. It

is a well-known effect which causes instanton theory to overestimate the rate near to the

crossover temperature by about a factor of two [19]. This could be corrected by a number of

proposed extensions to the approach [12, 56, 70, 103] including an explicit integration over

microcanonical rates [19]. The related RPMD approach also avoids this problem.

C. H + CH4

The ring-polymer instanton method has been implemented in the Molpro electronic-structure

package [104, 105] which allows the rates to be computed on the fly, without the need for

a fitted analytic potential-energy surface. This has been applied to the H + CH4 reaction

(see Fig. 2) using coupled-cluster methodology, showing how the efficiency of the instanton

method allows the user to systematically converge the tunnelling rate with respect to the
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FIG. 2. Representation of the ring-polymer instanton describing proton tunnelling in the H + CH4

reaction at 200 K. All atoms take part to some extent in the tunnelling process and become

delocalized as they pass through the potential barrier.

TABLE III. Computed rates for H + CH4 in cm3/s. The ab initio semiclassical instanton (SCI)

results are from Ref. 26, the SCI/CBE results from Ref. [101] and MCTDH/CBE results from

Ref. 106.

T / K SCI/ab initio SCI/CBE MCTDH/CBE

300 1.7(-19) 1.8(-19) 8.4(-20)

250 4.8(-21) 4.2(-21) 3.1(-21)

200 1.1(-22) 5.7(-23) -

150 1.8(-24) 4.6(-25) -

level of electronic-structure theory [26].

Testing RCCSD-F12a and RCCSD(T)-F12a with both cc-pVDZ and cc-pVTZ basis sets,

barrier heights were found which varied from 63.21 kJ mol−1 with the most accurate com-

bination to 67.51 kJ mol−1 for the least accurate. This variation in barrier height can cause

more than a 10-fold difference in the predicted rate constant at 200 K, as is easily estimated

from the Arrhenius equation. However, it is not just the barrier height which affects the

quantum rate, but also the barrier shape. For instance, a thinner barrier is more conducive

to tunnelling. It was also found that the tunnelling factor predicted by the lower level of

theory was up to a factor of 4 larger than that predicted by the higher level. At 200 K, the

best estimate of the tunnelling factor is about 700 and it is thus clear that the inclusion of

quantum effects in low-temperature rate calculations cannot be ignored.
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In Table III we compare the instanton rates computed on the fly with a high-quality

RCCSD(T)-F12a/cc-pVTZ electronic structure calculations with rates on the CBE potential

surface [107]. All instanton rates presented are converged with respect to the number of

beads, for which it was necessary to use at least 256 for the lowest temperature. Also given

for comparison are the rates found from exact quantum dynamics on this same surface [106]

obtained using the multiconfigurational time-dependent Hartree method (MCTDH) [108].

First we compare the SCI results with the MCTDH approach on the CBE surface. As

expected, the SCI result overestimates the rate at 300 K by about a factor of 2 as this is

just below the crossover temperature of 327 K, but there is fairly good agreement (∼35%

error) at 250 K. This agreement would be expected to continue to lower temperatures but

unfortunately no MCTDH results are available as the method becomes more computationally

demanding in this regime.

A comparison between the ab initio instanton results and those on the fitted surface

shows good agreement at high temperatures but the error increases as the temperature

drops. Assuming that the ab initio PES is correct, this discrepancy can be assigned to errors

in the fit of the CBE surface. A similar effect on the rate caused by these errors is seen

for MCTDH calculations on using the more accurate WWM surface instead of CBE. These

errors have a larger effect on the low-temperature instantons, which are more delocalized

and sample a larger region around the barrier. In fact at 250 K, the error caused by the fit

is similar in magnitude to that assigned to the instanton approximation.

It is not currently possible to perform exact quantum dynamics in full dimensionality

using on-the-fly ab initio calculations for this system, although some progress has been

made towards this goal [109]. Therefore in order to study such chemical reactions, it is

necessary to make at least one approximation. This application shows that at low temper-

atures the accuracy of the ab initio SCI approach is similar to that of using exact quantum

dynamics approaches with the CBE fitted PES. For systems for which an accurate fitted

potential-energy surface is not available or for which exact quantum dynamics becomes too

expensive, on-the-fly implementations of instanton theory are expected to give the most

reliable estimates of the tunnelling rate.
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VI. ELECTRON-TRANSFER RATES

Chemical reactions involving electron transfer (ET) occur in many different environments,

from redox reactions to photosynthesis and the harvesting of light in solar cells [110]. In the

simplest ET reactions, the charge is transferred from a donor to an acceptor; these entities

can be anything from small solvated ions [111] to large protein complexes [112]. Thus there

are at least two important electronic states involved in the reaction and typically the Born-

Oppenheimer approximation breaks down, making it necessary to consider nonadiabatic

dynamics in order to describe and predict the rate of the process.

The Hamiltonian describing an ET process can be represented in the diabatic represen-

tation as

Ĥ = Ĥ0 |0〉 〈0|+ Ĥ1 |1〉 〈1|+ ∆(|0〉 〈1|+ |1〉 〈0|), (76)

where |0〉 and |1〉 are the electronic states of the reactant and product which are coupled by

∆. Here we will assume that the Condon approximation holds, such that ∆ is a constant.

However, the instanton approach and its classical limit can be easily extended to describe a

coordinate-dependent coupling, ∆(x̂).

The Hamiltonians Ĥ0 and Ĥ1 describe the nuclear degrees of freedom of each electronic

state and are of the form

Ĥn =
|p̂|2

2m
+ Vn(x̂), n ∈ {0, 1}, (77)

where the functions V0(x) and V1(x) describe the reactant and product potential-energy

surfaces.

In many cases, the rate can be considered to be in the golden-rule limit [113], that is

where the coupling, ∆, between the electronic states is assumed to be weak and the ET

itself is the bottleneck to the reaction. Fermi’s golden rule thus provides a formula for

the quantum rate constant of the process. It is obtained from perturbation theory with a

lowest-order expansion in the coupling and gives a rate proportional to ∆2. From the flux-

flux correlation function [62], and expanding the trace in a coordinate-space representation

defines the quantum rate

kZ0 =
∆2

~2

∫∫∫ ∞

−∞
K0(x

′, x′′, β~− τ + it)K1(x
′′, x′, τ − it) dx′dx′′dt, (78)
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where the quantum propagator Kn describes the dynamics for the Hamiltonian Ĥn.

Nonetheless as the exact quantum dynamics are generally not known, approximations to

Fermi’s golden rule have to be made. Several theories have been proposed to tackle this kind

of problem, most famously by Marcus [110, 114–117]. Its simple form and wide range of

applications make Marcus theory a standard approach to treat ET. This theory is derived

by applying a classical transition-state theory approximation to Fermi’s golden rule and

making a number of assumptions about the shapes of the free-energy curves involved.

Quantum nuclear effects are ignored by the standard Marcus theory. These effects al-

low for tunnelling of the nuclear coordinates and are expected to lead to a speed-up of the

rate. One approach for including quantum effects into ET processes is to map the system

onto a harmonic spin-boson model [118] and solve the resulting equations either using semi-

classical approximations or numerically exactly [119–124]. This approach however cannot

take account of anharmonicity, although certain generalized spin-boson systems can still be

studied within these approaches [125] and anharmonic effects treated within a perturbative

approach [126].

A method that promises to overcome these assumptions of Marcus theory is semiclassical

instanton theory which has been extended to describe electron transfer in the nonadiabatic

limit [66, 86]. A semiclassical approximation to Eq. (78) is found by replacing the quantum

propagators by semiclassical propagators, and then by integrating over the end points, x′

and x′′, and over t by steepest descent. This gives the instanton expression for the ET rate,

kZ0 ∼
√

2π~
∆2

~2

√
C0C1

−Σ
e−S/~, (79)

where S = S0(x
′, x′′, β~− τ) + S1(x

′, x′′, τ) and

Σ =

∣∣∣∣∣∣∣∣∣

∂2S
∂x′∂x′

∂2S
∂x′∂x′′

∂2S
∂x′∂τ

∂2S
∂x′′∂x′

∂2S
∂x′′∂x′′

∂2S
∂x′′∂τ

∂2S
∂τ∂x′

∂2S
∂τ∂x′′

∂2S
∂τ2

∣∣∣∣∣∣∣∣∣
. (80)

The standard model for electron-transfer reactions in the condensed phase is the spin-

boson model [12, 118, 126]. The potentials of reactants and products are given by sets of
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shifted harmonic oscillators,

V0(x) =

f∑

j=1

1

2
mω2

j (xj + ξj)
2 (81a)

V1(x) =

f∑

j=1

1

2
mω2

j (xj − ξj)2 − ε, (81b)

and the electronic coupling, ∆, is taken to be a constant.

The rate obtained by the instanton approach for the spin-boson model is [66]

k ∼
√

2π~
∆2

~2

(
−d2S

dτ 2

)− 1
2

e−S/~, (82)

where τ is chosen as the stationary point of the action function

S = −ετ +

f∑

j=1

2mωjξ
2
j

[
1− coshωjτ

tanh β~ωj/2
+ sinhωjτ

]
. (83)

For this system, the instanton rate is equivalent to results obtained by other semiclassical

methods [12, 122, 127] and tends to standard Marcus theory in the high-temperature classical

limit.

The ring-polymer instanton approach [86] approach is applicable in general to multi-

dimensional anharmonic potential-energy surfaces. Only simple numerical algorithms in-

cluding a saddle-point optimization are required to apply the method in practice and it

is therefore computationally inexpensive. The implementation is similar to that described

in Sec. IV, except that the instanton is defined as the saddle point of the discretized ac-

tion, not just with respect to positions of the beads, but also for the value of τ . In the

high-temperature limit, the instanton reduces to the classical rate, which is not necessarily

equivalent to that of Marcus theory. Recent work applied both classical and semiclassical

methods to an asymmetric system-bath model with anharmonic free-energy curves in order

to explore the behaviour of the rates of various approaches with respect to both anharmonic-

ity and tunnelling [128]. It was found that in these cases the rate predicted by the standard

Marcus theory was in error by orders of magnitude but that the instanton approach was

accurate to within 1%.

Applications of the approach are currently limited to model systems because of the inabil-

ity of instanton theory to describe liquid systems, which are typically of particular interest
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for electron-transfer reactions. Nonetheless, a thorough understanding of the instanton ap-

proach may lead to the development of novel nonadiabatic ring-polymer molecular dynamics

methods which can be used to describe electron transfer in solution from atomistic simula-

tions. The development of such methods is underway [129–134].

VII. TUNNELLING SPLITTINGS

So far in this review, the instanton approach has been applied only to the calculation of

rate processes. However, the rate constant is meaningful only if there is a decay into a

continuum of product states [135]. The simplest case where a continuum of product states

exists is that of a reactive scattering event as described in Sec. III. This is an example of

incoherent tunnelling dynamics.

For finite bound-state systems, the energy-level structure is discrete and the concept of

a rate constant formally breaks down. A typical example is given by a double-well system,

for which it is known that the quantum dynamics of a wave function initially localized on

a single well oscillates between one well and the other in a periodic motion. This coherent

tunnelling dynamics cannot be described by an exponential decay, which is the role of the

rate constant.

Note that we sometimes also discuss rates for intramolecular processes in large isolated

molecules at finite temperature. In this case even though there is not a continuum of states,

there are many accessible such that the behaviour, at least on experimental timescales, is

similar to that of the decay process and we can assign a meaningful rate constant. However,

as the temperature decreases towards zero, fewer states become accessible and the dynamics

becomes oscillatory making the rate undefined.

There is however a well-defined quantity of interest for bound, finite systems with de-

generate wells at zero temperature, which is the tunnelling splitting. This occurs when the

degenerate vibrational states of each well interact to give a set of eigenstates closely spaced

in energy. In the basis of localized vibrational states, the Hamiltonian can be written

H =


 E0 −~Ω

−~Ω E0


 , (84)

which has the eigenvalues E0 − ~Ω and E0 + ~Ω and thus the tunnelling splitting is given

by ∆ = 2~Ω. A time-dependent analysis shows that if a particle is initially localized in one
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well, its population oscillates like cos2(Ωt).

Instanton theory can also be used to compute tunnelling splittings in molecules and

clusters within the semiclassical approximation. The derivation of the theory [10, 16] is

different from that used to obtain the reaction rate. However, a similar ring-polymer version

exists for evaluating the tunnelling splittings [22, 27] and the numerical implementation of

the method is similar to that of rate theory.

The derivation starts from the definition of the partition function for the double-well

system in the β →∞ limit, which is Z = 2e−βE0 cosh β~Ω. In the absence of tunnelling the

partition function would simply be Z0 = 2e−βE0 . By computing instanton approximations

to both Z and Z0 and taking their ratio, an expression for Ω can be found. The Taylor

series expression for the ratio is

Z

Z0

=
∞∑

n=0,even

(β~Ω)n

n!
. (85)

A. Instanton theory for tunnelling splittings

To derive the instanton theory, we require expressions for Z and for Z0 within the semi-

classical approximation. An expression for Z0 can easily be obtained using Eq. (11). When

contributions from tunnelling trajectories are also considered, the partition function includes

further contributions to give

Z = Z0 + Z2 + Z4 + . . . , (86)

where Zn is the sum over all closed paths which tunnel through the barrier n times. Note

that n must therefore be even for this double-well system.

In the following, we will assume that the coordinates of the minima of the left and right

well are x< and x> and that they have potential energy 0. As will be shown, any kernel can

be broken up into kernels describing either non-tunnelling paths, K0(τ) ≡ K0(x<, x<, τ) ≡

K0(x>, x>, τ) or single barrier crossings, K1(τ) ≡ K1(x<, x>, τ) ≡ K1(x>, x<, τ), known as

‘kinks’. The former is given by

K0(τ) ∼

√
C0

(2π~)f
. (87)

Next we consider the kernel for a single barrier crossing K1(τ) in the τ →∞ limit. There

is an instanton pathway connecting the end points x< and x> which tunnels once through
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the barrier. It has E = 0 and thus travels infinitesimally slowly near the end points but

relatively quickly through the barrier; this in fact is the source of the name ‘instanton’.

However, the van-Vleck propagator Eq. (4) cannot be directly applied to compute K1(τ)

because the fluctuation factor C tends to infinity. This occurs because one of the eigenvalues

of J tends to zero and corresponds to an eigenvector which is the permutational mode of

the instanton. In this case, the permutation translates the time at which the instanton

rushes through the barrier. In order to use the semiclassical formulae directly we split the

trajectory into two pieces, using τ = τa + τb, to give

K1(x<, x>, τ) =

∫
Ka(x<, x, τa)Kb(x, x>, τb) dx. (88)

The point at which the two trajectories meet is x. For now, we will force this point to be at

a particular position in the barrier at a given imaginary time. We thus introduce a factor

of δ(t(x)− τa) = |q̇|δ(q) into the integrand, to obtain the modified kernel

K ′1(x<, x>, τ) =

∫∫
Ka(x<, x, τa)|q̇|δ(q)Kb(x, x>, τb) dq dQ (89)

∼ Ka(x<, x, τa)|q̇|Kb(x, x>, τb)

√
(2π~)f−1

∇2
QS

, (90)

where ∇2
QS = ∂2Sa

∂Q′′∂Q′′
+ ∂2Sb

∂Q′∂Q′
. Note that this expression is independent of the choice of

where the trajectory is split.

We now consider a trajectory for multiple barrier crossings. This can be broken into

single kinks, e.g. β~ = τ1 + · · ·+ τn with fixed centres at t1, . . . , tn. A representation of such

a trajectory is shown in Fig. 3. These are combined in pairs using the semiclassical integral

(which is dominated by the region of x near to x>):
∫
K ′1(x<, x, τ1)K

′
1(x, x<, τ2) dx ∼ K ′1(τ1)ΞK

′
1(τ2), (91)

where Ξ = (2π~)f/2
∣∣∣∂2S(τ1)∂x′′∂x′′

+ ∂2S(τ2)
∂x′∂x′

∣∣∣
− 1

2
.

For comparison, we similarly break up Z0 into n pieces. The kinks are combined using

the rule
∫
K0(x<, x, τ1)K0(x, x<, τ2) dx ∼ K0(τ1)ΞK0(τ2), (92)

where Ξ is the same as in Eq. (91). This holds in the limit of τ →∞ because then the time

spent in the wells is much longer than the time spent during the barrier crossing.
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0 t1 t2 t3 t4 βh̄

t

x<

0

x>

x

τ1︷ ︸︸ ︷ τ2︷ ︸︸ ︷ τ3︷ ︸︸ ︷ τ4︷ ︸︸ ︷

FIG. 3. A schematic of an n = 4 trajectory. This can be split into four single kinks, each of length

τn and centred around tn.

Thus, when we take the ratio of Zn/Z0, the Ξ factors will cancel leaving only ratios of

kernels, given by

θ = lim
τ→∞

K ′1(τ)

K0(τ)
(93)

=

√
CaCb

(2π~)C0|∇2
QS|
|q̇| e−S/~. (94)

The Zn partition function can then be found by integrating over the position of the centres:

Zn
Z0

∼
∫ β~

0

dt1

∫ β~

t1

dt2 · · ·
∫ β~

tn−1

dtn θ
n (95)

=
(β~θ)n

n!
. (96)

By comparison with Eq. (85), we see that θ is the semiclassical approximation for the tun-

nelling matrix element which we require. This therefore provides the instanton formula for

the tunnelling splitting, using Ω ∼ θ.

B. Ring-polymer instanton theory for tunnelling splittings

The formula for the tunnelling splitting given in the previous section can be computed using

the ring-polymer instanton method directly. However, an alternative derivation for a ring-

polymer instanton method gives a different formula for θ, which we present below. Both

formulations are in principle equivalent, but one may be more numerically stable than the

other in practical applications.
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Using path-integral discretization, Eq. (15), a non-tunnelling kernel is given by

K0(x<, x<, τ) ∼
(

m

2πτN~

)f/2
(detJ0)

− 1
2 , (97)

where J0 is the matrix defined as in Eq. (16) with all beads located at x<.

In order to compute a discretized path-integral version of K1(τ), we consider the instanton

path which tunnels through the barrier. This path, x̃i, defines a matrix J which has a zero

eigenvalue due to the permutational invariance of the instanton. Therefore the semiclassical

van-Vleck formula must be modified to take account of this zero-mode.

We follow a similar procedure to that used in Sec. III C. The zero-mode eigenvector of J

has elements dxi =
√

mτN
Skink

˙̃xi dc0, where

Skink =

∫ τ

0

m|ẋ|2dt =
∑

i

m ˙̃x2i τN , (98)

which is also equal to the action of the instanton as can be shown using the Legendre

transformation described in Appendix A at E = 0. This eigenvector is normalized such that
∑

i

(
∂xi
∂c0

)2
= 1. By comparison with the relation dxi = ˙̃xidt, we see that dc0 =

√
Skink

mτN
dt.

By changing integration variables from c0 to t, and fixing the value of t, we obtain the

modified single-kink kernel:

K ′1(τ) ∼ 1

τN

(
m

2πτN~

)f/2√
Skink

2π~
(det ′J)−

1
2 e−Skink/~, (99)

where the prime indicates that the determinant is equal to the product over the nonzero

eigenvalues only.

In the discretized version, the ratio of kernels is

θ = lim
τ→∞

K ′1(τ)

K0(τ)
(100)

=
1

Φ

√
Skink

2π~
e−Skink/~, (101)

where

Φ = τN

(
det ′J

detJ0

) 1
2

. (102)

As before, the ratio of partition functions can be obtained by an integral over the centres

of each kink. This provides a second method for obtaining θ which is the instanton approx-

imation to Ω, which in turn defines the tunnelling splitting. It is this formulation, rather

than Eq. (94), which has been tried and tested in previous studies [22, 27, 28, 136–139].
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C. Extension to multi-well problems

A potential-energy surface exhibiting a double-well structure has tunnelling pathways pass-

ing from one well to the other and the tunnelling splitting for such a system is given by

∆ = 2~Ω. In order to make a study of the tunnelling splitting in more general molecular

clusters it is necessary to extend the method to treat tunnelling between any number of

wells [27]. The result is that the splitting pattern can be calculated as the eigenvalues of a

Hückel-type matrix, each element of which corresponds to an instanton calculated as before

between two wells.

The zero-point energy E0 for a molecular system with G degenerate wells, between which

tunnelling takes place, splits into a set of G levels, {Eν}, which cannot in general be described

by a single tunnelling splitting ∆. Following this definition, the ratio of partition functions

is

lim
β→∞

Z

Z0

= lim
β→∞

1

G

G∑

ν=1

e−β(Eν−E0). (103)

As in the previous sections, we intend to take the steepest-descent approximation of

the ring-polymer formulation of the partition functions. The low-temperature limit of the

partition function of the tunnelling system, Z, evaluated by the method of steepest descent

can be divided into contributions from each ring-polymer minimum. This set of minima,

or periodic orbits, start and end in the same well but may take any number of kinks and

pass through any number of the other wells on the way as they have an infinite amount of

imaginary time available.

For enumerating these ring polymers, it can be useful to make an analogy with some

standard results of graph theory [140], where the potential wells are depicted by vertices

and kinks by edges. The sequence of kinks and wells visited by the ring-polymer minima

are described by closed walks taken along the edges between the vertices. If we define Zn,ν

as the contribution of the closed paths of n kinks which start and finish at well ν, we may

write

lim
β→∞

Z =
G∑

ν=1

∞∑

n=0

Zn,ν . (104)

We wish to count the total number of different sequences of n kinks, that is, in the

parlance of graph-theory, the number of distinct walks which start and finish at a particular

vertex, This is done using the adjacency matrix A, which is defined such that Aλµ is equal
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to the number of edges between vertices λ and µ. Therefore the elements of the adjacency

matrix, Aλµ, give the number of single-kink pathways which directly connect the wells λ and

µ.3 In the same way, it is seen that
∑G

κ=1AλκAκµ provides the number of sequences of two

kinks which connect the wells λ and µ via any intermediate κ. And indeed (An)λµ is the

number of possible sequences connecting these wells using n kinks [141]. We require only

pathways that start and end in the same well for the partition function and therefore use

the formula (An)νν to count them.

We can then factorize the contribution to Zn,ν made by each n-kink orbit into a product

of n weights θλµ each associated with a different kink in the sequence. The θλµ are defined

analogously to θ in either Eq. (94) or Eq. (101). To obtain the total weight associated with

all the n-kink orbits which contribute to Zn,ν , we define the tunnelling matrix W by

Wλµ = −Aλµθλµ (no sum implied). (105)

It then follows that
Zn,ν
Z0,ν

=
1

n!
[(−β~W )n]νν , (106)

since the adjacency matrix element Aλµ in Wλµ ensures that the quantity [(−β~W )n]νν is

the sum over the weights θλµ associated with all orbits contributing to Zn,ν . We thus obtain

lim
β→∞

Z

Z0

=
1

G

∞∑

n=0

1

n!

G∑

ν=1

[(−β~W )n]νν

=
1

G
tr
[
e−β~W

]
. (107)

Comparison with Eq. (103) reveals that the eigenvalues of ~W give the desired approxima-

tions to the energy splittings Eν − E0.

D. Implementation

Numerical implementation of this method is similar to that of ring-polymer instanton rate

theory, except for the main difference that the instanton pathway is not a saddle point, but

3 When Aλµ > 1, we shall assume that these kinks can be mapped onto one another by symmetry operations.

The treatment could be generalized for systems where more than one kink joined a pair of wells along

pathways unrelated by symmetry. However, it will probably be common that one kink will have a low

action and will dominate, in which case the other higher-action kinks can be neglected.
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the minimum of SN(x), Eq. (12). This function is typically optimized using the L-BFGS

algorithm [142] to define the instanton and the action Skink.

The Hessian, ∇2V (xi), at the geometry of each bead was computed numerically and these

were used to construct the mass-weighted Hessian or fluctuation matrix J of the linear-

polymer. A banded-matrix linear algebra routine was used to compute the eigenvalues of

which only one should be zero. In this case, the translational and rotational modes do not

have zero eigenvalues, because the fixed end points break the symmetry.

Instanton calculations of ground-state tunnelling splittings are defined in the zero-

temperature limit. In practice, the temperature is lowered until convergence is reached.

Note that as the temperature is lowered, more ring-polymer beads are required, although

simple approaches also exist for accelerating convergence of Φ with respect to the number

of beads [137].

To reduce the number of beads needed, one could use larger time steps at the ends of

the pathways [80]. A related approach which enforces the beads to be evenly spaced in

position rather than time is a reformulation of the action in Hamilton-Jacobi form [143].

The difficulty here arises because one needs a penalty function to force the beads to be

evenly spaced. However, the length of the path, and hence the spacing of the beads, is

not known before optimization. Typically the penalty function is defined in terms of the

average spacing of the current iteration and therefore couples all the beads together (rather

than just nearest neighbours) which decreases the efficiency of the minimization algorithm.

A recent algorithm seems to offer a promising alternative [138, 139]. It is based on a

nudged-elastic-band approach [144] and provides a simple optimization algorithm which

keeps the beads evenly spaced. It is also possible to parametrize the pathway using Fourier

coefficients, allowing the points at which the potentials and gradients are evaluated more

flexibly [145, 146].

E. Double-well model

In order to test the accuracy of the approach, numerical calculations [22] were performed on

the one-dimensional double-well system described by the potential-energy surface

V (x) = V0

(
x2

x20
− 1

)2

, (108)
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TABLE IV. Comparison of the instanton tunnelling splittings ∆ (in reduced units) with the exact

quantum splittings for different barrier heights V0 in the model of Eq. (108) (with x0 = 5
√
V0,

~ = m = 1). Note that the harmonic zero-point energy in the potential wells is 0.283 (reduced

units). Data reproduced from Ref. [22].

V0

2 1 0.5 0.25

instanton 4.39(−8) 3.86(−4) 3.04(−2) 2.27(−1)

quantum 4.15(−8) 3.42(−4) 2.25(−2) 1.19(−1)

error 6% 13% 35% 91%

with mass m. The harmonic frequency in the wells is

ωs =

√
∇2V (x0)

m
=

√
8V0
mx20

. (109)

For this particular double-well potential, the zero-temperature kink is known exactly [147]:

x(τ) = ±x0 tanh
ωs

2
(τ − τc), (110)

and the action is

Skink =

∫ x0

−x0

√
2mV (x) dx =

4

3
x0
√

2mV0. (111)

The lowest eigenvalue is of course zero, the next largest is 3ω2
s /4 and the remainder form a

continuum such that

Φ =

√
1

12ω2
s

. (112)

The instanton approximation to the tunnelling splitting is thus given by ∆ ∼ 2~θ, where θ

is defined by Eq. (101).

The exact tunnelling splitting for this system can also be obtained by numerical solution

of the Schrödinger equation. Table IV shows the error implicit in the instanton approach

caused by the steepest-descent approximation for a series of values of the barrier height. It

is seen that for systems with high barriers the instanton method performs much better than

for those with low barriers. This is because, in the latter case, the well is more anharmonic

over a short range and, for example, fluctuations of the linear-polymer collapsed in a well

may even include paths which access the top of the barrier and visit the other well. This
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fluctuation is obviously poorly represented in the steepest-descent approximation. However,

even for the lowest barrier tested, which is lower than the harmonic zero-point energy of the

wells, the instanton splitting is still within a factor of 2 of the exact quantum result.

To go beyond the steepest-descent approximation, it is possible to use path-integral sam-

pling schemes [148]. However, this is of course much less efficient than the instanton approach

and loses the simplicity of interpretation provided by an optimal tunnelling pathway. This

approach will then be expected to be of use only if very high accuracy is required.

F. Molecular tunnelling splittings

Ring-polymer instanton theory has been applied to compute the tunnelling splitting resulting

from hydrogen transfer in molecular systems. Here we consider the two benchmark systems

of malonaldehyde and the formic acid dimer.

Malonaldehyde is known to rearrange via a single hydrogen transfer. A fully-dimensional

PES fitted to CCSD(T) calculations has been constructed by Wang et al. [149]. This PES has

a good balance between accuracy an efficiency and has been used with quantum-dynamics

approaches including diffusion Monte Carlo (DMC) [150] and the MCTDH method, which

in principle give exact numerical results. These calculations give benchmark results for

comparison with the instanton approximation.

The formic acid dimer [151] is the prototypical example of a hydrogen-bonded complex

which exhibits a double hydrogen transfer. It has recently become possible to obtain a

full-dimensional potential-energy surface for the complex fitted to thousands of ab initio

calculations [152]. Although the PES appears to be very accurate, reduced-dimensionality

quantum dynamics calculations made tunnelling splitting predictions a factor of 2 larger

than the observations [152]. Because the double hydrogen transfer leads to a much smaller

tunnelling splitting than for malonaldehyde, the exact quantum dynamics approaches are

no longer easily applicable and have not been performed successfully for this system. The

experimental splitting is therefore used as our benchmark.

A summary of the results obtained by these calculations for the two systems is presented

in Table V. The instanton approximation for the splitting in malonaldehyde is seen to be in

good agreement with the benchmark calculations performed on the same accurate surface,

and hence also with the experimental result. However, when using the less-accurate empirical
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TABLE V. Tunnelling splittings obtained for malonaldehyde and the formic acid dimer from

various theoretical and experimental studies. The potential-energy surface used in the theoretical

calculations is specified.

molecule PES method splitting (cm-1)

H-malonaldehyde empirical [153] instanton [22] 51

Wang et al. [149] instanton [138] 25

MCTDH [154] 23.4

MCTDH [155] 23.8

DMC [149] 21–22

— experiment [156, 157] 21.6

D-malonaldehyde Wang et al. [149] instanton [138] 3.4

DMC [149] 2–3

— experiment [158] 2.9

(HCOOH)2 Qu & Bowman [152] instanton [29] 0.014

4-mode quantum [152] 0.037

— experiment [159, 160] 0.016

PES, the splitting is a factor of 2 too large. In fact, even with ab initio potentials, a similar

error can be seen in the predictions, ranging from 4.5 cm-1 (QCISD) 77 cm-1 (MP2) [146].

This clearly shows how important it is to use an accurate surface for tunnelling splitting

calculations.

The predictions from instanton theory agree with the experimental observations for the

tunnelling splitting of the formic acid dimer within a 20% margin of error. The semiclassical

approximation inherent in the instanton approach is therefore much less than the error

caused by reducing the dimensionality of the model. A systematic study of the dependence

of the tunnelling splitting on the number of degrees of freedom included in the calculation

shows that the results are very sensitive and require almost all modes to be included before

converging [29, 161].

It will always be necessary to make some approximations when simulating molecular

processes and it is in most cases not possible to apply exact quantum dynamics in full

dimensionality to an ab initio surface. These two applications reviewed here show that
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better accuracy is achieved using the full-dimensional semiclassical instanton approach on

an accurate surface than exact quantum dynamics within either a reduced-dimensionality

framework or with less-expensive potential-energy surfaces.

A number of ring-polymer instanton studies have also been made of the tunnelling split-

ting patterns in various water clusters. These calculations made use of the many-body

potential-energy surfaces fitted to thousands of ab initio points [162, 163]. The instanton

approach reproduced known results for the water dimer [27] and octamer [136], but predicts

new pathways in the trimer [27] and hexamer prism [28] which help explain the experimen-

tal splitting patterns. Of particular interest is that these pathways differ greatly from the

minimum-energy pathways. This shows clearly that in certain cases, not only does instan-

ton theory provide accurate quantitative results, but it is necessary to obtain the optimal

tunnelling pathway in order to have a qualitative understanding of the tunnelling process.

VIII. CONCLUSIONS

We have shown that the instanton approximation can be derived from first principles and

that there are a number of equivalent formulae which give the same result but may have

particular advantages or disadvantages when implemented numerically. The ring-polymer

instanton approach has proved itself to be an accurate and efficient method for simulating

tunnelling effects in molecular systems [17]. Two distinct methods exist within this frame-

work, for predicting either rates or tunnelling splittings. Because of its relative simplicity,

compared with other quantum dynamics approaches, the method can be used in conjunction

with expensive electronic-structure methods, leading to accurate predictions for gas-phase

reactions.

Due to the steepest-descent approximation, the errors accrued by the instanton ap-

proach are expected to increase when it is applied to floppy molecules which have strongly-

anharmonic vibrational modes, or strong coupling between vibrational and rotational modes.

However, unless these modes are strongly coupled to the tunnelling coordinate, kinetic iso-

tope effects may still be accurately predicted. The main disadvantage of the instanton

approach is that it is not directly applicable to liquid systems. The reason for this is that

many different but similar transition states exist corresponding to minor rearrangements of

the outer solvation sphere. A more general method is required to study such systems, which
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samples the different instantons, such as ring-polymer molecular dynamics (RPMD) [37, 38].

Nonetheless, a full understanding of the derivation of instanton theory has helped confirm

the validity of RPMD, and may lead to the discovery of novel path-integral rate theories.

Path-integral simulations are becoming a more common theoretical approach for studying

quantum effects in condensed-phase systems. In liquids, this remains the state-of-the art

approach [53, 54], but is potentially unnecessary to study tunnelling in solids or on surfaces

[164–166]. The instanton method is also derived from the theory of path integrals but does

not require a full simulation involving sampling a large number of configurations. Instead

the result is obtained from one single optimal tunnelling pathway and is thus much less

computationally demanding and gives an easily interpretable mechanistic information.

There are a number of extensions of the instanton approach currently under development.

Some suggestions have been given for avoiding the discontinuity at the crossover temperature

[12, 56, 84, 103, 167], one of which involves computing the microcanonical rate and inte-

grating over energy to get the thermal rate [19, 83]. There is a particular need for a reliable

microcanonical theory in the atmospheric and astro-chemistry communities where complex

reaction networks occur in low pressure environments such that the molecules do not react

under a thermal equilibrium conditions. Instead, a master-equation solver is commonly used

to describe the overall reaction progress based on a set of microcanonical reaction rates [168].

Further extensions to treat nonadiabatic reactions have been discussed in this review in

the golden-rule limit only. Some suggestions have been given as to how instanton theory

could be extended to go beyond this limiting case [169] but as they are based on the ‘ImF ’

premise, they do not appear to give a reasonable classical high-temperature limit. Further

work is needed to benchmark these approaches and to apply them to realistic problems.
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Appendix A: Imaginary-time classical mechanics

In this work, we have mostly employed the Lagrangian formulation of imaginary-time clas-

sical mechanics. The alternative Hamilton-Jacobi formulation can be obtained by the Leg-

endre transformation,

S(x′, x′′, τ) = W (x′, x′′, E) + Eτ, (A1)

where W is the abbreviated action, given by an integral along the path

W (x′, x′′, E) =

∫ x′′

x′
p(x,E) dx, (A2)

and |p(x,E)| =
√

2m[V (x)− E]. Therefore the following equations are obtained by differ-

entiation:

E =
∂S

∂τ
τ = −∂W

∂E
(A3)

∂S

∂x′
=
∂W

∂x′
= −p(x′, E)

∂S

∂x′′
=
∂W

∂x′′
= p(x′′, E). (A4)

To transform between the formulations, the following equations hold [46]:

∂2W

∂E2
= −

(
∂2S

∂τ 2

)−1
(A5)

∂2W

∂x′∂E
=

∂2S

∂x′∂τ

(
∂2S

∂τ 2

)−1
(A6)

∂2W

∂x′∂x′′
=

∂2S

∂x′∂x′′
− ∂2S

∂x′∂τ

(
∂2S

∂τ 2

)−1
∂2S

∂τ∂x′′
, (A7)

and their equivalents with any exchange of x′ and x′′. Algorithms for evaluating second

derivatives of S for discretized path integrals are given in the appendix of Ref. [86].

Appendix B: Harmonic oscillator

For the special case of a particle of mass m in a harmonic oscillator potential V (x) =

1
2
mω2(x− x0)2 + ε, the Euclidean action is known to be [41]

S(x′, x′′, τ) =
mω

2 sinhωτ

[
((x′ − x0)2 + (x′′ − x0)2) coshωτ − 2(x′ − x0)(x′′ − x0)

]
+ τε.

(B1)
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Therefore

C =
mω

sinhωτ
. (B2)

When the path is discretized into N segments, the fluctuation factor can be shown to be

[46]

CN =
mω̃

sinh ω̃τ
(B3)

where sinh ω̃τN/2 = ωτN/2.
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2012.1, a package of ab initio programs,” (2012).

[106] G. Schiffel, U. Manthe, and G. Nyman, J. Phys. Chem. A 114, 9617 (2010).

56

http://dx.doi.org/10.1002/anie.201001311
http://dx.doi.org/10.1016/j.cplett.2011.07.073
http://dx.doi.org/10.1002/jcc.21930
http://dx.doi.org/10.1002/chem.201203651
http://dx.doi.org/10.1039/c6fd00096g
http://dx.doi.org/10.1021/acs.jpca.7b10296
http://dx.doi.org/10.1021/acsearthspacechem.7b00052
http://dx.doi.org/10.1039/c6cp06457d
http://dx.doi.org/10.1063/1.5007180
http://dx.doi.org/10.1063/1.4754660
http://dx.doi.org/10.1063/1.4769195
http://dx.doi.org/10.1063/1.4769195
http://dx.doi.org/10.1021/jp4099073
http://dx.doi.org/10.1021/jz201702q
http://dx.doi.org/10.1021/jz201702q
http://dx.doi.org/10.1039/c2cp44364c
http://dx.doi.org/10.1063/1.457428
http://dx.doi.org/10.1016/S0010-4655(00)00167-3
http://dx.doi.org/10.1016/S0010-4655(00)00167-3
http://dx.doi.org/10.1063/1.4996339
http://dx.doi.org/10.1063/1.4996339
http://dx.doi.org/10.1063/1.471430
http://dx.doi.org/10.1063/1.471430
http://dx.doi.org/10.1039/C4CP03235G
http://dx.doi.org/10.1039/C4CP03235G
http://dx.doi.org/ 10.1002/wcms.82
http://dx.doi.org/ 10.1002/wcms.82
http://www.molpro.net
http://www.molpro.net
http://dx.doi.org/10.1021/jp911880u


[107] J. C. Corchado, J. L. Bravo, and J. Espinosa-Garcia, J. Chem. Phys. 130, 184314 (2009).

[108] H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett. 165, 73 (1990).

[109] G. W. Richings, I. Polyak, K. E. Spinlove, G. A. Worth, I. Burghardt, and B. Lasorne, Int.

Rev. Phys. Chem. 34, 269 (2015).

[110] R. A. Marcus, Rev. Mod. Phys. 65, 599 (1993).

[111] R. A. Kuharski, J. S. Bader, D. Chandler, M. Sprik, M. L. Klein, and R. W. Impey, J. Chem.

Phys. 89, 3248 (1988).

[112] J. Blumberger, Phys. Chem. Chem. Phys. 10, 5651 (2008).

[113] D. Chandler, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited

by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998) Chap. 2,

pp. 25–49.

[114] R. A. Marcus, J. Chem. Phys. 24, 966 (1956).

[115] R. A. Marcus, Discuss. Faraday Soc. 29, 21 (1960).

[116] R. A. Marcus, Annu. Rev. Phys. Chem. 15, 155 (1964).

[117] R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).

[118] A. Garg, J. N. Onuchic, and V. Ambegaokar, J. Chem. Phys. 83, 4491 (1985).

[119] J. Ulstrup, Charge Transfer Processes in Condensed Media (Springer-Verlag, Berlin, 1979).

[120] P. Siders and R. A. Marcus, J. Am. Chem. Soc. 103, 741 (1981).

[121] P. Siders and R. A. Marcus, J. Am. Chem. Soc. 103, 748 (1981).

[122] J. S. Bader, R. A. Kuharski, and D. Chandler, J. Chem. Phys. 93, 230 (1990).

[123] M. Topaler and N. Makri, J. Phys. Chem. 100, 4430 (1996).

[124] H. Wang, D. E. Skinner, and M. Thoss, J. Chem. Phys. 125, 174502 (2006).

[125] J. Tang, Chem. Phys. 188, 143 (1994).

[126] J. Tang, Chem. Phys. 179, 105 (1994); A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A.

Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).

[127] P. G. Wolynes, J. Chem. Phys. 87, 6559 (1987).

[128] J. Mattiat and J. O. Richardson, J. Chem. Phys. 148, 102311 (2018), arXiv:1708.06702

[physics.chem-ph].

[129] J. O. Richardson and M. Thoss, J. Chem. Phys. 139, 031102 (2013); J. O. Richardson,

P. Meyer, M.-O. Pleinert, and M. Thoss, Chem. Phys. 482, 124 (2017), arXiv:1609.00644

[physics.chem-ph].

57

http://dx.doi.org/10.1063/1.3132223
http://dx.doi.org/10.1016/0009-2614(90)87014-I
http://dx.doi.org/ 10.1080/0144235X.2015.1051354
http://dx.doi.org/ 10.1080/0144235X.2015.1051354
http://dx.doi.org/10.1103/RevModPhys.65.599
http://dx.doi.org/ 10.1063/1.454929
http://dx.doi.org/ 10.1063/1.454929
http://dx.doi.org/10.1039/b807444e
http://dx.doi.org/10.1063/1.1742723
http://dx.doi.org/10.1039/DF9602900021
http://dx.doi.org/10.1146/annurev.pc.15.100164.001103
http://dx.doi.org/10.1016/0304-4173(85)90014-X
http://dx.doi.org/10.1063/1.449017
http://dx.doi.org/10.1021/ja00394a003
http://dx.doi.org/10.1021/ja00394a004
http://dx.doi.org/10.1063/1.459596
http://dx.doi.org/10.1021/jp951673k
http://dx.doi.org/10.1063/1.2363195
http://dx.doi.org/10.1016/0301-0104(94)00254-1
http://dx.doi.org/10.1016/0301-0104(93)E0346-W
http://dx.doi.org/10.1103/RevModPhys.59.1
http://dx.doi.org/10.1063/1.453440
http://dx.doi.org/10.1063/1.5001116
http://arxiv.org/abs/1708.06702
http://arxiv.org/abs/1708.06702
http://dx.doi.org/10.1063/1.4816124
http://dx.doi.org/10.1016/j.chemphys.2016.09.036
http://arxiv.org/abs/1609.00644
http://arxiv.org/abs/1609.00644


[130] P. Shushkov, R. Li, and J. C. Tully, J. Chem. Phys. 137, 22A549 (2012); P. Shushkov,

J. Chem. Phys. 138, 224102 (2013).

[131] A. R. Menzeleev, N. Ananth, and T. F. Miller, III, J. Chem. Phys. 135, 074106 (2011);

J. S. Kretchmer and T. F. Miller III, J. Chem. Phys. 138, 134109 (2013); A. R. Menzeleev,

F. Bell, and T. F. Miller III, J. Chem. Phys. 140, 064103 (2014).

[132] N. Ananth, J. Chem. Phys. 139, 124102 (2013); J. R. Duke and N. Ananth, Faraday Discuss.

195, 253 (2016); T. J. H. Hele and N. Ananth, Faraday Discuss. 195, 269 (2016); S. Pierre,

J. R. Duke, T. J. Hele, and N. Ananth, J. Chem. Phys. 147, 234103 (2017).

[133] S. N. Chowdhury and P. Huo, J. Chem. Phys. 147, 214109 (2017), arXiv:1706.08403

[physics.chem-ph].

[134] J. E. Lawrence and D. E. Manolopoulos, J. Chem. Phys. 148, 102313 (2018).

[135] R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001).

[136] J. O. Richardson, D. J. Wales, S. C. Althorpe, R. P. McLaughlin, M. R. Viant, O. Shih, and

R. J. Saykally, J. Phys. Chem. A 117, 6960 (2013).

[137] T. Kawatsu and S. Miura, J. Chem. Phys. 141, 024101 (2014); Chem. Phys. Lett. 634, 146

(2015).
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