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PROJECTIONS FOR FUTURE RADIOCARBON CONTENT IN DISSOLVED
INORGANIC CARBON IN HARDWATER LAKES: A RETROSPECTIVE APPROACH

Thomas M Blattmann1* •Martin Wessels2 •Cameron P McIntyre1,3 • Timothy I Eglinton1

1Geological Institute, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland.
2ISF Langenargen, Germany.
3Laboratory of Ion Beam Physics, ETH Zürich, Switzerland; current address: SUERC Glasgow, United Kingdom.

ABSTRACT. Inland water bodies contain significant amounts of carbon in the form of dissolved inorganic carbon
(DIC) derived from a mixture of modern atmospheric and pre-aged sources, which needs to be considered in
radiocarbon-based dating and natural isotope tracer studies. While reservoir effects in hardwater lakes are generally
considered to be constant through time, a comparison of recent and historical DI14C data from 2013 and 1969 for
Lake Constance reveals that this is not a valid assumption. We hypothesize that changes in atmospheric carbon
contributions to lake water DIC have taken place due to anthropogenically forced eutrophication in the 20th century.
A return to more oligotrophic conditions in the lake led to reoxygenation and enhanced terrigenous organic matter
remineralization, contributing to lake water DIC. Such comparisons using DI14C measurements from different points
in time enable nonlinear changes in lake water DIC source and signature to be disentangled from concurrent anthro-
pogenically induced changes in atmospheric 14C. In the future, coeval changes in lake dynamics due to climate change
are expected to further perturb these balances. Depending on the scenario, Lake Constance DI14C is projected to
decrease from the 2013 measured value of 0.856Fm to 0.54–0.62Fm by the end of the century.

KEYWORDS: carbon cycle, DIC, Lake Constance, reservoir effect, Suess Effect.

INTRODUCTION

By the end of this century, the radiocarbon (14C) content of CO2 in the atmosphere is projected
to decline and reach a 14C age equivalent of 2000 years before present following business-
as-usual emissions of fossil fuels (Graven 2015). This marked decline will be followed by
reductions in 14C content of carbon reservoirs exchanging with the atmosphere, including
biospheric, lacustrine, and oceanic pools. This decline in 14C isotopic composition is known as
the Suess Effect after Hans Suess, who became the first to observe this effect in 1955 (Suess
1955). Beginning in the 1950s, nuclear weapons testing introduced bomb-derived 14C into the
atmosphere nearly doubling its content within the course of a decade (Broecker and Walton
1959a; Levin and Kromer 2004). This perturbation in atmospheric 14C has propagated through
Earth surface reservoirs in communication with the atmosphere at varying rates (Graven 2015).

In addition to carbon sourced from the atmosphere, water bodies located in areas of limestone
and karst receive carbonate ions sourced from the chemical weathering of calcareous bedrock in
the catchment:

CaCO3 +CO2 +H2O = Ca2+ + 2HCO -
3 (1)

2CaCO3 +H2SO4 = 2Ca2+ +SO2 -
4 + 2HCO -

3 (2)

Carbonate rocks are typically of ancient geological origin, giving rise to contributions of
14C-dead carbon to dissolved inorganic carbon (DIC) pools (e.g., Z. Liu et al. 2017; Ishikawa
et al. 2015). DI14C stemming from limestone weathering depends on the reaction stoichiometry
with carbonic (reaction 1) and sulfuric acid (reaction 2) giving rise to half modern and
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completely dead signatures, respectively. In contrast, silicate weathering delivers DIC sourced
exclusively from atmospheric or soil pools, which are a source of modern carbon:

2KAlSi3O8 + 2CO2 + 3H2O=Al2Si2O5 OHð Þ4 + 4SiO2 + 2K + + 2HCO -
3 (3)

Hardwater lakes are most affected by the effect of 14C-depleted DIC stemming from limestone
weathering (Keaveney and Reimer 2012) with the consequence of aquatic organisms assuming
the DI14C isotopic composition of the water body from which the carbon is sourced (Broecker
and Walton 1959b). In total, the 14C content of lake water DIC depends on the DIC inputs
(river runoff, groundwater discharge, atmospheric input) and outputs (river outflow, ground-
water leakage, degassing to the atmosphere, fixation by photosynthesis and calcification, and
radioactive decay) (Yu et al. 2007). The resulting reservoir effect needs to be taken into account
for assessing the age of aquatic materials (e.g. shells, organic matter) and for tracing pathways
of carbon in food webs and in the environment (Guillemette et al. 2017).

In the post-industrial era, hardwater lakes will be impacted by the residual bomb-spike, as well
as contributions from anthropogenic emissions of 14C-depleted CO2 that are superimposed on
an already 14C-depleted reservoir due to limestone weathering. Here we present a case study
from Lake Constance (Figure 1) examining changes in 14C isotopic composition of lake water
DIC over time. We present results from samples collected in 2013 and combine these with
historical data from 1969 and discuss how changes in atmospheric carbon contributions to DIC
are modulated over time. A prediction for DI14C content is made for Lake Constance in the
year 2100, which may apply similarly to other hardwater lakes and rivers.

STUDY SITE AND METHODS

Lake Constance, the second-largest perialpine lake in central Europe, formed after the
Last Glacial Maximum in the wake of retreating glaciers (Wessels 1998). Lake Constance is
composed of two basins—the Upper Lake Constance and Lower Lake Constance basins.
Upper Lake Constance, the subject of this investigation, covers an area of 472 km2, holds
47.6 km3 of water with a maximum depth of 251m as documented by the Internationale
Gewässerschutzkommission für den Bodensee (IGKB 2009, 2016). The watershed encompasses
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Figure 1 (a) Map of Lake Constance (IGKB 2016) showing sampling locations for this study near the township of
Utwil (filled circle) and adjacent to the townships of Sipplingen and Lindau (open circles) from Kölle (1969). Part (b)
shows water column parameters recorded during sample collection on August 14, 2013. The upper 20m of the water
column are characterized by primary productivity with a peak in chlorophyll and oxygen concentrations between 8
and 12m. Water temperature decreases steadily with depth until 40m, below which it remains relatively constant.
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an area of 11,438 km2, of which 6119 km2 is drained by the Alpine Rhine (IGKB 2009),
which delivers 62% of the water flux (Gilfedder et al. 2010). Total annual water influx is
12.02 km3, giving water a theoretical residence time of 4–5 years in the lake (Gilfedder et al.
2010). Lake Constance is subject to annual cycles of water column stratification and
mixing, which are driven by changes in temperature, leading to episodes of bottom water
oxygen replenishment (Bäuerle et al. 1998). Thermal destratification does not proceed to
completion every year and is increasingly affected by rising lake temperatures (Bäuerle et al.
1998; IGKB 2015). The widespread occurrence of limestone in the catchment makes
Lake Constance a typical hardwater lake with calcite precipitation tied to seasonal primary
productivity (Wessels 1998).

The sampling location FG (47°35′59′′N, 9°21′29′′E) located offshore of the township of Utwil
is described in IGKB (2009). In brief, location FG is characterized by sediment supply pre-
dominantly of autochthonous origin and is a reference location for lake primary productivity
(Fuentes et al. 2013a). A depth profile of water samples was collected on 14.08.2013 from
location FG using a Hydro-Bios (Kiel, Germany) Niskin rosette sampler. Additionally, a CTD
probe (conductivity, temperature, and depth) equipped with sensors for turbidity, oxygen, and
chlorophyll (Sea & Sun Technologies) was used for the characterization of the water column.
Data were collected at 2Hz and was continuously lowered at about 0.5m/s, collecting about
400 values for the 100m profile collected at location FG. Water samples were collected in 1-L
glass bottles, poisoned with 100 µL saturated HgCl2 solution, and sealed with Apiezon
N-greased ground joint glass stoppers (Blattmann et al. 2013). Water samples were stored at
room temperature in the dark until 14C analysis of dissolved inorganic carbon (DI14C). 40mL
of each water sample was transferred to a 60mL glass vial sealed by Teflon-coated silicon
septum cap. The headspace was purged with helium for 2–4min at 100mL/min. Samples were
acidified with orthophosphoric acid and purged for 8min (assessed as optimal for maximizing
CO2 yields; Blattmann et al. 2013). Purged CO2 was captured, quantified, and graphitized using
an AGE 3 system (Wacker et al. 2010), and then analyzed using aMICADAS accelerator mass
spectrometry (AMS) system (Synal et al. 2007) at the Laboratory of Ion Beam Physics at ETH
Zurich. A duplicate of one water sample reproduced 14C content within instrumental error (i.e.,
±0.002Fm)

Kölle (1969) reports Lake Constance DI14C adjacent to the towns Sipplingen (47°47′52′′N, 9°5′
44′′E) and Lindau (47°32′46′′N, 9°40′53′′E). These DI14C data were converted from their
reported Bq/kgC units to fraction modern (Fm) units following Stenström et al. (2011; equation
42). For surface and deep waters, –8‰ for δ13CDIC is adopted for fractionation correcting the
14C concentration data reported by Kölle (1969). Lake Constance waters below the photic zone
(i.e. greater than 20m of water depth) display steady δ13CDIC values centered around –8‰,
irrespective of season (Hirschfeld 2003). Surface water δ13CDIC is variable depending on the
season, however given that samples were collected on April 17, 1969, we assume that the spring
primary productivity bloom, which leads to an increase in surface water δ13CDIC (Hollander
and McKenzie 1991; Hirschfeld 2003), had not yet initiated. This assumption is supported by
monthly timeseries records from Lake Constance that show that by April 15, 1969, (1)
temperatures of surface waters had not warmed above their winter values of 5°C and (2) surface
water phosphate concentrations remained steady, indicating low algal growth. Given these
historical constraints, some uncertainty remains in fractionation correction of data reported by
Kölle (1969) and so the results encompass the spread from a sensitivity analysis allowing
δ13CDIC values to vary in the range –8± 3‰. The ±3‰ amplitude covers seasonality-induced
changes in δ13CDIC observed in Lake Constance (Hirschfeld 2003).
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RESULTS AND DISCUSSION

Lake Constance DIC Fluxes

Figure 2 provides an overview of theDIC cycle of LakeConstance. Based on the lake volume, which
varies between 47.2–48.2km3 (Bäuerle et al. 1998) and lake water DIC concentrations (IGKB 1976;
Hirschfeld 2003; this study), Lake Constance contains between 1380 and 1450GgC in the form of
DIC. The rivers deliver 350–380GgC/yr of DIC and the Rhine releases 300–350GgC/yr based on
long-term average river fluxes (Gilfedder et al. 2010) and riverine DIC concentrations (Hirschfeld
2003). Based on a range of possible rainwater DIC concentrations (Górka et al. 2011), precipitation
(Gilfedder et al. 2010) introduces 0.3–3GgC of DIC annually. Within the lake, the sedimentation of
lacustrine calcite and organicmatter remove between 10–40GgC/yr from theDICpool (Stabel 1986;
Straile 1998). DIC from groundwater and water contributions from overland flow are loosely
constrained. Based on the flux (Gilfedder et al. 2010) and an assumed DIC concentration equal to
that of riverine sources (Hirschfeld 2003), an estimated flux of 10GgC/yr into Lake Constance is
proposed. On average, Lake Constance receives an average of 3.70Tg of total sediment sourced
from its terrestrial catchment annually (Gilfedder et al. 2010). Assuming an organic carbon content
of 1% of soil and plant debris origin, this would amount to 40GgC of pedogenic origin entering
Lake Constance annually. Terrestrial organic matter constitutes a source of lacustrine DIC if
remineralized in the lake. This variable DIC source is discussed further in the following sections.
Based on the maximum and minimum DIC input and output scenarios, the amount of carbon
evading the lake along the air–water interface is constrained within the range of –20 to
+130GgC/yr (with positive values representing the net release of carbon dioxide to the atmo-
sphere). The corresponding water surface area normalized rates of carbon dioxide release range
from –0.1 gC/m2/day to 0.7 gC/m2/day (with positive values representing the net release of carbon
dioxide to the atmosphere), which is within the typical range of carbon dioxide fluxes along air–
water interfaces of lakes (Cole et al. 1994; Huotari et al. 2011).

Figure 2 Model overview of DIC sources and fluxes in the Lake Constance system. The size of the DIC pool in Lake
Constance varies within 1380–1450GgC. River inflow and outflow constitute the largest DIC source and sink respectively.
Further DIC inputs include overland and groundwater contributions and direct contributions from rainwater into the lake.
Additional sinks of DIC include the sedimentation of calcite and organic matter formed in the lake. Furthermore, carbon
dioxide evades from lake water into the atmosphere and may either be positive (net CO2 flux from the water to the
atmosphere) or negative, ranging from a total net flux of –20 to+130GgC/yr. Terrestrial organic matter is subject to
partial remineralization within the lake, with organic matter remineralization efficiency depending on water column oxygen
content. The different DIC sources are characterized by varying proportions of atmospheric and petrogenic carbon.
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Assessing Atmospheric Carbon Contribution

At location FG, water column-suspended DIC collected at six different depths averaged
0.856± 0.005Fm, with most measured values within error of one another and no clear trend
in the water column (see Table 1). Data collected by Kölle (1969), converted to Fm values, show
surface waters that are higher by 0.06 and 0.11Fm units for Sipplingen and Lindau,
respectively.

In a simplified scheme, we can consider that DIC originates from petrogenic (i.e., limestone-
derived) and from atmospheric sources, which can be described with the binary mixing model in
Equation 4:

FmDIC = 1 - xð Þ�Fmpetro + x�Fmatm (4)

where x represents the relative contribution of atmospheric-derived carbon. In this case, carbon
derived from the weathering of ancient limestone is characterized by a 14C-dead isotopic
composition as the limestone formations in the Lake Constance catchment are millions of years
old (Hsü 1995) and thus characterized by a 14C isotopic composition of Fmpetro= 0. The pro-
portion of atmospherically derived carbon in lacustrine DIC integrates over all contributions of
DIC from gas exchange along the air–water interface, degradation of soil organic matter,
rainwater inputs, groundwater and overland flow inputs, and riverine inputs, which in turn
integrate over atmospheric and petrogenic contributions from chemical weathering of rocks
and air–water gas exchange along the transport path. Given the lowDIC residence time in Lake
Constance (4–5 years), loss of 14C by radioactive decay is considered negligible.

14C isotopic composition for atmospheric carbon dioxide was 1.54 and 1.02Fm in the years
1969 and 2013, respectively (Levin and Kromer 2004; Graven 2015), primarily reflecting the
temporal proximity to the bomb peak in atmospheric 14C. Based on isotope mass balance
calculations of the minimum and maximum measured DI14C concentrations, the contribution

Table 1 14C isotopic composition of DIC from Lake Constance.

Location

Collection
date
(d.mo.yr)

Water
depth (m)

DIC
concentration
(µgC/mL)

DI14C
(Fm)

Fm
absolute
error (± ) Source

FG 14.08.2013 1 26 0.858 0.002 This study
FG 14.08.2013 5 26 0.853 0.002 This study
FG 14.08.2013 10 28 0.851 0.002 This study
FG 14.08.2013 15 28 0.855 0.002 This study
FG 14.08.2013 20 30 0.856 0.002 This study
FG 14.08.2013 50 32 0.864 0.002 This study
Sipplingen 17.04.1969 Surface — 1.26

(1.26–1.27)*
— Kölle (1969)

Sipplingen 17.04.1969 40 — 1.20
(1.19–1.21)*

— Kölle (1969)

Lindau 17.04.1969 Surface — 1.25
(1.24–1.26)*

— Kölle (1969)

Lindau 17.04.1969 40 — 1.14
(1.13–1.14)*

— Kölle (1969)

*Units in parentheses are ranges of DI14C values generated assuming –5 and –11‰ for the 13C-based fractionation
correction of data reported by Kölle (1969).
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of atmosphere-derived carbon to Lake Constance corresponds to 83–85% in 2013. In 1969, the
atmospheric proportion contributing to lake water DIC lies between 73 and 82% when, in
addition to considering the extreme DI14C endpoints of Lindau (40m) and Sipplingen surface
waters, the 13C-based fractionation-based sensitivity analysis is applied. Given these two
constraints, it suggests a modest but significant increase in atmospheric carbon contributions
to Lake Constance DIC over the four decades between the two sample collection times.

Mechanisms for Changes in DI14C over Time

There are various factors that may lead to changes in the 14C isotopic composition of lake water DIC
with time. The alkalinity of thewater and the bedrock of the catchment exert first order control on the
DI14C value (Keaveney and Reimer 2012). Depending on the stoichiometry of the bedrock weath-
ering reaction, the carbon may entirely be sourced from the atmosphere (Equation 3), from equal
proportions of atmospheric and ancient bedrock sources (Equation 1), or entirely from ancient
carbonate (Equation 2). Changes in weathering behavior of bedrock could thus lead to changes in
DI14C. Another source of change may come from the intensity of gas exchange between air and
water. Greater exchange would lead to DI14C approaching an atmospheric 14C content. This may in
turn also be related to lake water circulation controlling water mass exposure to the air–water
interface. The replacement and vertical mixing of deep waters is expected to change with future
changes in climate and precipitation (Fink et al. 2016). Similar to vertical mixing, the export of
organic remains from photosynthetic organisms into deep waters and their subsequent degradation
offers another pathway bywhich surfacewaterDIC can contribute to deepwaterDIC (Schwalb et al.
2013). A further source of carbon that may influence DI14C within the lake is that resulting from the
degradation of allochthonous organic matter introduced to the lake by riverine or atmospheric
transport. Allochthonous organic matter and products formed from its degradation are utilized by
aquatic microorganisms and thus this carbon can propagate through the lacustrine food web before
finding its way into the lacustrine DIC reservoir (Fuentes et al. 2013b). Oxidation of allochthonous
organic matter and intermediate degradation products such as methane (Bussmann et al. 2013) will
contribute more directly to lake water DIC. Soil organic matter, constituting an important compo-
nent of allochthonous organic carbon supplied to Lake Constance by rivers (Fuentes et al. 2013a), is
characterized by relatively modern 14C isotopic compositions (van der Voort et al. 2016). Increased
degradation of soil organic matter within Lake Constance sediments may thus to lead to an increase
in atmospheric carbon contribution to water column DIC, and vice versa.

The most striking difference between Lake Constance in 2013 and 1969 is its nutrient state, as
echoed by changes in lake ecology (Wessels et al. 1999). Due to anthropogenic activity, Lake
Constance successively increased its nutrient state transitioning from oligotrophic to mesotrophic
in 1939, and with advanced eutrophication beginning in the mid 1950s. Eutrophication continued
until 1979/1980 when phosphorous concentrations reached their peak (Wessels et al. 1999).
During this time of intensified lacustrine primary productivity, lacustrine and terrestrial organic
matter sourced from the catchment was subject to enhanced preservation in the lake sediments,
particularly along the margins, due to reduced water column oxygen conditions which even
reached an anoxic, sulfidic state (Müller 1966). In the newfound oligotrophic state of the lake with
oxic bottom waters, terrestrial organic carbon provides an important substrate for microbes,
which provides a source of carbon for benthic organisms (Sobek et al. 2009; Fuentes et al. 2013b),
allowing soil carbon to act as a vector for transferring atmospheric carbon into lake water DIC.
Based on the historically documented changes in the carbon cycle of Lake Constance, we hypo-
thesize that the inhibition of soil organic matter degradation led to a decreased transformation of
14C-enriched soil carbon into DIC, which in turn indirectly results in a net reduction in the
atmospheric carbon contribution to the DIC pool. The amount of soil organic carbon entering
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Lake Constance corresponds to about 3% of the size of the total Lake Constance DIC pool (see
Figure 2). With a 4- to 5-year residence time for DIC in the lake, integrated over the course of a
few years, diminished soil organic carbon degradation and the corresponding decreased con-
tribution to the aquatic DIC pool can account for the lower atmospheric carbon contributions to
the DIC pool in the late 1960s. Thus, changes in the remineralization behavior of allochthonous
soil organic carbon due to eutrophication may influence lacustrine DI14C inventories.

Other superimposed effects can introduce additional influence on DI14C. The utilization of DIC
by photosynthetic organisms can lead to higher uptake of atmospheric CO2 leading to higher
DI14C signatures (Kempe 1982; Li et al. 2017). In the case of Lake Constance, 14C data reveals
that atmospheric carbon contributions in the eutrophic waters of 1969 were lower than today.
This is contrary to what would be expected in a freshwater system with elevated primary pro-
ductivity, and suggests that—despite eutrophication—direct assimilation of atmospheric CO2

into lake water DIC was significantly outweighed by the effects of reduced remineralization of
soil organic carbon. Other mechanisms for changing DI14C cannot be wholly excluded based on
the available data. Given however the pervasive changes introduced by eutrophication in various
aspects of the Lake Constance carbon cycle and ecosystem (Müller 1966, 1997; Güde et al. 1998;
Wessels et al. 1999), and little reason to assume large changes in the other mechanisms, this
hypothesis provides a realistic explanation aligned with historically documented changes.

Projections for Past and Future DI14C

Based on the above line of reasoning, we propose an estimate of DI14C for a pre-eutrophication,
pre-industrial, and pre-bomb Lake Constance. In pre-industrial Lake Constance, prior to the
earliest signs of eutrophication in 1870–1880 (Müller 1997), the oligotrophic state of today likely
best characterizes the DI14C lake as it oncemay have been.We thus project the pre-anthropogenic
Lake Constance DIC atmospheric contribution to be around 83–85%, corresponding to an Fm
value of 0.83–0.85 for lake water DI14C. Besides eutrophication, another difference between Lake
Constance today and in the 19th century was the change in circulation induced by the channeli-
zation of the Rhine (Wasmund 1928), which may have had additional effects on lake-atmosphere
CO2 exchange. Furthermore, changes in land use, deforestation, fertilizer usage, and erosion
(Güde et al. 1998) introduce additional uncertainty and may lead to error in our projection.

Based on the estimates of 83–85% atmospheric carbon contributing to Lake Constance DIC, we
expect that in the year 2100, following the predictions byGraven (2015) with a “business-as-usual”
fossil fuel emission scenario (RCP 8.5, Fmatmosphere= 0.73), a DI14C signature of 0.61–0.62Fm is
predicted. However, concurrent to depletion in atmospheric 14C, lake water temperatures are
experiencing an observable increase, and this increase is projected to continue (IGKB 2015,
O’Reilly et al. 2015). The resulting increase in water column stratification will decrease exchange
between atmospheric and deep water DIC pools, but, more significantly, also lead to depletion in
bottom water oxygen concentrations. This may create a situation similar to the 1960s, which saw
as little as 74% atmospheric contributions. If this scenario were to be realized then, DI14C may
reach 0.54Fm by the end of the century. The projection range for Lake Constance DI14C,
0.54–0.62Fm, for the year 2100 corresponds to a reservoir age of 3800–5000 Libby 14C years
before present. Globally, DI14C from other hardwater lakes and rivers will likely follow a similar
trend. Based on these projections, assuming linear changes, and taking the 85% and 74%
atmospheric contribution scenarios, the difference to 2013measured values would exceed 0.02Fm
units within 8 and 6 years, respectively, rendering it possible to track such changes well beyond
margins of analytical uncertainty within the course of a single decade. Larger lakes with relatively
little DIC sourced from carbonate weathering and influence from terrestrial organic carbon, e.g.,
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Lake Superior (Zigah et al. 2012), will likely show a DI14C trajectory more tightly coupled to
atmospheric 14C content both in terms of absolute 14C/12C ratio and rate of change. Similarly,
lakes situated in endorheic basins may exhibit DI14C values mirroring atmospheric values due to
extensive air-water gas exchange, as found for several Chinese lakes (T. Liu et al. 2017). Lakes
exhibiting limitedmixing characteristics might show lagged and muted responses, e.g., meromictic
lakes such as Lac Pavin, France (Albéric et al. 2013). Additionally, lake geometry (surface area to
volume ratio), and changes thereof, control gas exchange with the atmosphere and can lead to
additional changes in the reservoir effect over time periods of millennia to centuries (e.g.,
Schleinsee, Germany; Geyh et al. 1998).

Deviations from these DI14C projections fromLake Constance exposed by future measurements,
will shed light on processes we have not considered or underestimated here, or further carbon
cycle perturbations. Deviations from these forecasts may reflect additional changes in lake
hydrology, chemical weathering of rocks in the catchment or other changes in DIC source. In
coming decades, Lake Constance and lakes globally are likely to undergo significant hydrological
change due to modification of precipitation patterns, runoff, vertical mixing, and other processes
linked to climate change (Battin et al. 2009; Tranvik et al. 2009; Fink et al. 2016). With ongoing
rising water temperatures observed for Lake Constance (IGKB 2015) and for lakes globally
(O’Reilly et al. 2015), it is becoming increasingly important to understand how these changes will
affect lakes as carbon sinks, ecosystems, and as a water resource for humans.

SUMMARY AND OUTLOOK

Future work on Lake Constance and other water bodies will need to consider the impact of
changing DI14C to assign end-member 14C values to aquatic primary productivity for the
purpose of both natural isotope tracing and 14C dating studies. Bomb-derived carbon as well as
the continued release of fossil fuel-derived CO2 are set to continue the isotopic perturbation of
carbon reservoirs including the hydrosphere (Graven 2015). Changes in DIC sources include
supply of terrestrial organic carbon to lakes and its degradation behavior, with the latter
coupled to lake water oxygen content. Additional changes to DIC source may stem from
changes in carbonate and silicate rock weathering as well as changes in air-water gas exchange.
Coeval changes in climate and anthropogenic impacts will lead to a variety of superimposed
effects modulating DI14C in terrestrial water bodies. Time-series monitoring of 14C in lake
water DIC and other carbon reservoirs provide important constraints on the origin and tra-
jectories of change in carbon cycle processes.
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