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A B S T R A C T

Microfluidic high-throughput experimentation has attracted significant re-
search effort in recent years. While a multitude of traditional chemical and
biological assays have been transferred to microfluidic platforms, not many
advanced control schemes have been implemented to date.

This thesis presents several key techniques, allowing for the control of
both single-phase and two-phase flow in microfluidic channels by applying
active and passive control schemes and advanced control algorithms.

Droplet synchronization is frequently required in multi-step droplet-
based assays, as it enables controlled ordering of multiple types of droplets.
We present a novel, passive microfluidic architecture, which allows for
droplet ordering and synchronization with unprecedented precision. We
have further applied the presented architecture to study osmotic transfer
between droplets in motion and found that inter-droplet transfer rates are
increased by larger flow velocities.

While many high-throughput techniques allow for the manipulation and
screening of microfluidic droplets at high frequencies, individual droplets
can typically not be identified. Therefore, we have developed an active
strategy for the production of large droplet populations, labeled using flu-
orescent dyes. Due to the active approach the developed strategy is flex-
ible in regard to the type of fluorophore, the type of detector and the
number of labeled droplets. The presented droplet barcoding system was
further used to produce more than two thousand unique, fluorescently-
labeled droplets. We further present a long-term droplet storage system to
aid droplet storage during high-throughput experimentation, allowing for
low-loss storage and retrieval of microfluidic droplets.

Recent advances in neural network-based control algorithms have shown
human-level performance in a variety of environments, such as games.
Therefore, we have applied two state-of-the-art reinforcement learning al-
gorithms to two microfluidic environments. We could show that super-
human performance is attainable in microfluidic environments, highlight-
ing the utility of novel control algorithms for automatic high-throughput
microfluidic experimentation.

Finally, we have employed a neural network-based classifier to perform
real-time sorting of analytes flowing through microfluidic channels. Us-
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ing the presented sorting system we have successfully separated cells and
microbeads.
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Z U S A M M E N FA S S U N G

Mikrofluidische Hochdurchsatz-Experimente haben in den letzten Jahren
erhebliche Forschungsbemühungen ausgelöst. Während eine Vielzahl tra-
ditioneller chemischer und biologischer Assays auf mikrofluidische Platt-
formen übertragen wurden, sind nur wenige fortgeschrittene Kontrollsys-
teme implementiert worden.

Diese Arbeit stellt einige Schlüsseltechniken vor, die es ermöglichen,
Flüsse in mikrofluidischen Kanälen durch Anwendung aktiver und passi-
ver Kontrollschemata, sowie fortschrittlicher Kontrollalgorithmen zu steu-
ern.

Die Synchronisation von mikrofluidischen Tröpfchen wird häufig benö-
tigt in mehrstufigen Assays, da sie eine kontrollierte Anordnung mehrerer
verschiedenen Tröpfchenarten ermöglicht. Wir präsentieren eine neuarti-
ge, passive mikrofluidische Architektur, welche die Tröpfchenanordnung
und -synchronisation mit bisher unerreichter Präzision ermöglicht. Zudem
haben wir die vorgestellte Architektur angewendet, um den osmotischen
Transfer zwischen Tröpfchen in Bewegung zu untersuchen und fanden her-
aus, dass die Übertragungsraten zwischen den Tröpfchen durch größere
Strömungsgeschwindigkeiten erhöht werden.

Während viele Hochdurchsatztechniken die Manipulation und das Scree-
ning mikrofluidischer Tröpfchen mit hohen Frequenzen ermöglichen, kön-
nen einzelne Tröpfchen typischerweise nicht identifiziert werden. Daher
entwickelten wir eine aktive Strategie für die Produktion von Tröpfchen,
mittels Markierung durch Fluoreszenzfarbstoffen. Aufgrund des aktiven
Ansatzes ist die entwickelte Strategie flexibel hinsichtlich der Art des Fluo-
rophors, der Art des Detektors und der Anzahl der markierten Tröpfchen.
Das vorgestellte System wurde zudem verwendet, um Tausende von ein-
zigartigen fluoreszenzmarkierten Tröpfchen zu erzeugen. Darüber hinaus
präsentieren wir ein Langzeit-Tröpfchenspeichersystem zur Unterstützung
der Tröpfchenspeicherung während eines Hochdurchsatz-Experiments, das
eine verlustarme Speicherung und Wiedergewinnung von mikrofluidischen
Tröpfchen ermöglicht.

Jüngste Fortschritte mittels neuronalen netzwerkbasierten Steueralgo-
rithmen haben gezeigt, dass Algorithmen Menschen übertreffen koennen
in einer Vielzahl von Umgebungen, wie zum Beispiel Spielen. Daher haben
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wir zwei Steuerungsalgorithmen auf zwei mikrofluidische Umgebungen
angewendet. Wir konnten zeigen, dass die Algorithmen besser Resultate
erzielen als Menschen in mikrofluidischen Umgebungen, was den Nut-
zen neuer Steuerungsalgorithmen für automatische Hochdurchsatz-Mikro-
fluidik-Experimente unterstreicht.

Schließlich haben wir einen Klassifikator basierend auf einem neurona-
len Netzwerk verwendet, um eine Echtzeit-Sortierung von Analyten durch-
zuführen, die durch mikrofluidische Kanäle fliessen. Mit dem vorgestellten
Sortiersystem haben wir erfolgreich Zellen und Mikropartikel getrennt.
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1
I N T R O D U C T I O N

The concept of miniaturization has proved to be a dominant paradigm in
almost all areas of science and technology over the past half century. Most
notably, the semiconductor revolution (catalyzed by Jack Kilby’s demon-
stration of the integrated circuit in 1958) has in large parts been driven
by a continual reduction in both the size and cost of electronic compo-
nents (2, 3), which have in turn engendered enormous increases in com-
puting power. Indeed, transistor sizes have decreased by a factor of 10

5

over the past 60 years, with contemporary integrated circuits containing
more than 10

9 transistors per cm2. Significantly, and in addition to the im-
mediate improvements in computational power and cost, such reductions
in component size and density also enable entirely new modes of opera-
tion and areas of application (3).

In a similar manner, the development of microfluidic technologies over
the past 25 years has attempted to transfer related and additional benefits
of miniaturization to the fields of chemical and biological experimentation.
The rapid acceptance of microfluidic technologies has largely been driven
by concomitant advances in the fields of genomics, nanotechnology, pro-
teomics, drug discovery, single-cell analysis, high-throughput screening,
and diagnostics, with an identified need to perform rapid measurements
on small sample volumes (4). However, at a more fundamental level, micro-
fluidic research has been accelerated by the fact that physical processes can
be more easily controlled (in space and time) when instrumental dimen-
sions are reduced to the micron scale. The relevance of such a technology
set is significant and is characterized by various features that accompany
system miniaturization. Such features include the ability to process small
volumes of fluid, enhanced analytical performance, reduced instrumental
footprints, high analytical throughput, facile integration of functional com-
ponents within monolithic substrates and the capacity to exploit atypical
fluid behavior to control chemical and biological entities (5, 6).

Unsurprisingly, the efficient manipulation of fluids on femtoliter to nano-
liter scales is a non-trivial undertaking. As such, a diversity of dedicated
methods has been developed to allow the performance of basic processes,

Parts of this chapter have been published in (1).

1



2 introduction

such as fluidic pumping, sample preparation, aliquoting, dilution, con-
centration, mixing, incubation, and isolation (7). Despite the substantial
progress made in this direction, many inherent characteristics of micro-
fluidic systems can be advantageous under certain circumstances but in-
jurious in others. This is the case for continuous flow microfluidic plat-
forms, which leverage the direct scale dependencies of heat and mass
transfer while maintaining a high degree of operational and structural
simplicity (6). Despite their obvious attractions, continuous-flow formats
frequently become less attractive and/or impractical due to issues such as
Taylor dispersion, solute surface interactions, cross-contamination, and the
need for excessive reagent volumes or relatively long channels (8). Accord-
ingly, alternative methods of fluid manipulation are required if the true
potential of system miniaturization is to be fulfilled.

To this end, recent years have seen significant interest in the develop-
ment and application of droplet-based (or segmented-flow) microfluidic
systems for chemical and biological experimentation. In basic terms, drop-
let-based microfluidic systems generate, manipulate, and process discrete
drop-lets contained within an immiscible carrier fluid. They leverage im-
miscibility to create discrete and isolated volumes that reside and move
within a continuous flow. Significantly, these platforms allow for the pro-
duction of monodisperse droplets at rates in excess of tens of kilohertz
and provide for independent control over each droplet in terms of its size,
location, and chemical makeup. Critically, the use of droplets in complex
chemical and biological processing leverages the ability to perform a range
of integrated unit operations in high throughput. Such operations include
droplet generation, merging/fusion, sorting, splitting, dilution, storage,
and sampling (9, 10). Based on these compelling characteristics, it is un-
surprising that droplet-based microfluidic systems are increasingly being
used as environments in which to perform a range of biological and chem-
ical assays in an efficient, integrated, and rapid manner.

1.1 functional components and unit operations

1.1.1 Droplet Generation

Femtoliter- to nanoliter-volume droplets can be generated in a variety of
ways within microfluidic systems, but it is important to note that passive
strategies for droplet generation have proved to be remarkably straight-
forward in their implementation and effective in their ability to generate
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large numbers of user-defined droplets (11). Put simply, passive strategies
leverage geometric control of microfluidic intersections to transform arbi-
trary volumes of fluid into multiple, uniform, and sub-nanoliter droplets
at megahertz rates. The most widely adopted microfluidic constructs for
droplet production are the T-junction (or crossflow structure) (12), the
flow-focusing geometry (13), and the co-flow structure (14) (see Figure 1.1
a–c), although refinements of these basic components have also been re-
ported (15, 16). As noted by Collins and co-workers (11), the basic mech-
anism governing the operation of each of these geometries involves the
creation of an interface between two co-flowing and immiscible fluids and
the self-segregation of one of the fluids into (discrete) droplets that are
surrounded by the other (continuous) fluid; the identities of the discrete
phase (that forms the droplets) and the continuous phase (that surrounds
the droplets) being defined by the surface energies of the two fluids with
respect to the channel surface.

The earliest reported use of a capillary-based system for the formation
of monodisperse droplet populations was presented by Weitz and cowork-
ers in 2000 (14). Specifically, a co-flow of two immiscible phases within a
tapered capillary was used to generate droplets (when streamwise forces
exceed interfacial tension), whose size is dependent on the capillary tip
diameter, continuous phase velocity, extrusion rate, and the viscosities of
the two phases. Soon after, Quake and colleagues (12) reported the rapid
generation of droplets using a crossflow geometry. Here, immiscible fluid
streams meet at an angle (normally 90

◦) to each other, with the fluid of
one phase being sheared by a second immiscible phase flowing from the
orthogonal channel. Again, droplet size could be controlled by altering the
relative flow rates of the two immiscible phases. Finally, the flow-focusing
geometry introduced by Anna et al. (13) in 2003 involves the acceleration
of concentric but immiscible flows upstream of a small orifice. Such accel-
eration causes a narrowing (due to pressure and viscous stresses) of the
inner fluid thread, which then breaks inside or downstream of the orifice.
Significantly, flow-focusing formats provide for control of both droplet size
and generation rate over extremely wide ranges.

Despite an overwhelming reliance on droplet generators based around
crossflow structures, flow-focusing geometries, or the co-flow schemes,
other passive methods for droplet generation are highly effective under
certain circumstances. These include extrusion over a continuous phase-
flooded terrace and step (17) and the use of channel height variations
to subject immiscible interfaces to gradients of confinement (without the
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Figure 1.1: Droplet formation and manipulation (scale bar - 100 µm). The first
three panels illustrate common geometries for the production of
monodisperse droplets. The (a) cross-flow or T-junction geometry
relies on the two fluids meeting perpendicularly, whereas (b) the
flow-focusing geometry involves concentric acceleration of immisci-
ble fluids through a small orifice. Finally, (c) a tapered capillary can
be inserted into a larger channel, which yields a flow-focusing–like
geometry. Droplet manipulation methods are necessary for the trans-
lation of complex assays to a microfluidic format. (d,e) Splitting and
merging droplets can be achieved by controlling channel geometries.
(f) Pico-injection can be used to actively inject a user-defined vol-
ume into a passing droplet and is typically triggered using an elec-
trical field. (g) Droplets can be sorted by deflection through a vari-
ety of forces; here, dielectrophoretic sorting at high frequencies is
shown. (h) Space-efficient incubation of droplets requires removal of
the carrier fluid prior to storage, yielding a tightly packed droplet
configuration. (i) Low-error passive synchronization of two types of
droplets into an alternating configuration can be achieved by self-
ordering droplets. (j) Serial dilutions of droplets can be achieved by
repeatedly merging and resplitting buffer droplets with a stationary
mother droplet.
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need for flow of the external phase) (18). Both approaches are notewor-
thy, due to their simplicity of operation and ability to robustly produce
large populations of monodisperse droplets. Finally, the ability to gener-
ate sub-picoliter-volume droplets at megahertz frequencies has significant
implications for high-throughput single molecule experimentation. To this
end, Shim and coworkers (19) recently presented the use of a constricted
flow-focusing geometry to enhance flow velocities during droplet forma-
tion (without generating high internal pressures), and via a tip-streaming
mechanism in dripping mode, they were able to generate <10 fL-volume
droplets at rates well in excess of 10

6 per second. Droplet production rates
of several megahertz were also attained by Mittal et al. (20), who used a
highly parallelized passive step–emulsification method.

1.1.2 Droplet Storage and Payload Retention

One key feature of droplet-based microfluidic systems is the facility to
generate extremely large populations of isolated droplets in very short
times. Such parallelization and automation of fluid handling, combined
with the ability to control the chemical/biological payload of individual
droplets, make the platform appealing for many biotechnology and large-
scale screening applications. As previously noted, droplets are produced
in a manner that ensures envelopment by the carrier fluid and separation
from both the microchannel surface and adjacent droplets. Accordingly, re-
actions or assays occurring within droplets can be monitored (through as-
sessment of temporal concentration changes) by following droplets as they
move downstream, for example using wide-field imaging methods (21).
Such an approach requires that the reaction kinetics are sufficiently rapid
to ensure that any reactions are essentially complete before the droplet
under investigation has exited the microfluidic device. In many situations,
however, the time scale of the assay or screen is excessively long, and thus
droplets need to be stored in a static fashion over periods ranging from
hours to weeks (22, 23). Under these conditions, it is critical to ensure that
droplet integrity is maintained (i.e. droplets should not merge or split) and
that analytes within droplets remain encapsulated and are not transported
to the continuous phase or adjacent droplets. Stabilization of droplets is
typically achieved using surfactants, which preserve the emulsion and in-
hibit droplet coalescence by stabilizing the interface between the immisci-
ble phases. Surfactant molecules are normally mixed into the continuous
phase, and upon contact with the discrete phase self-arrange at the inter-
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face. As discussed by Baret (24), surfactant choice is intimately linked to
the chemical nature of the phases used and the surface of the containing
microchannel.

Due to the need for emulsion stability in a wide range of chemical and
biological systems, many surfactants have been developed and used in
droplet-based assays. For example, aqueous droplets dispersed in hydro-
carbon oils can be efficiently stabilized using commercially available sur-
factants such as Span80 (12) or Tween20 (25). Nevertheless, due to the
widespread adoption of fluorinated oils as carrier fluids (due to their ex-
cellent biocompatibility, high gas permeability, and poor solvent capacity
for organic compounds) in droplet-based microfluidics (26), fluorosurfac-
tants (perfluoropolyethers containing hydrophilic head groups) offer ex-
ceptional long-term stabilization of droplets. In this respect, Weitz and
coworkers (23) have reported a novel class of fluorosurfactants synthesized
by coupling oligomeric-perfluorinated polyethers with polyethyleneglycol.
Such block copolymer surfactants have been shown to be highly effective
in stabilizing water-in-oil emulsions during droplet formation and incuba-
tion, and have been used for in vitro translation and single-cell analysis
experiments. More recently, the same group reported the synthesis and
characterization of polyglycerol-based triblock surfactants (with tailored
side chains), which exhibited lower critical micellar concentrations and ef-
ficient operation in cell encapsulation and in vitro gene expression stud-
ies (27).

As previously noted, an equally important aspect of droplet stability is
the capacity of droplets to effectively retain their contents over long periods
of time. Molecular retention is to a lesser or greater extent compromised
by mass transport effects through the continuous phase, which leads to
cross talk between droplets and the equalization of their contents over time.
This is especially problematic during storage, when droplets are in close
proximity for long periods of time. Although surfactants are extremely ef-
fective in stabilizing droplets and indispensable in preventing coalescence,
they play a fundamental role in driving cross-talk effects (through micelle
formation and molecular interactions between their amphiphilic groups
and the molecules contained in the droplets) (28). Crucially, it was recently
shown that the surfactant concentration within the continuous phase posi-
tively correlates with the permeability of the continuous phase (28). Other
parameters that are shown to correlate with droplet permeability include
inter-droplet distance and flow of the continuous phase around station-
ary droplets (29). Both studies demonstrate that transport is limited by
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surfactant-mediated transfer of components through the continuous phase,
which occurs more rapidly for closely spaced droplets or under flow con-
ditions (see Figure 1.2 a).

Solid particles can also be used to stabilize emulsions. Pickering emul-
sions (in which surfactants are replaced by nanoparticles such as colloidal
silica) are interesting formulations because they are simple in their con-
struction and yield droplets with a high resistance to coalescence. In re-
cent years, such systems have been used to emulsify microfluidic droplets,
minimizing leakage, whilst maintaining droplet stability (30). For exam-
ple, fluorinated silica nanoparticles are highly efficient at generating Pick-
ering emulsions when using fluorinated oil carrier fluids (30). Neverthe-
less, it must also be remembered that the inherent stability of Pickering
emulsions can also lead to experimental challenges, as nanoparticles are
strongly adsorbed at the liquid–liquid interface and thus impede droplet
manipulations (such as splitting and fusion).

Finally, as previously noted, many droplet-based experiments require
the incubation or storage of droplets over extended time periods. High
droplet densities during storage are normally achieved by partial removal
of the continuous phase, resulting in tightly packed droplet configurations
(see Figure 1.2 b). Such an approach ensures that large droplet populations
may be assayed, but adversely affects both emulsion stability and droplet
cross talk (29). Droplets can be incubated in extended channels or tubing,
but despite ensuring droplet integrity and minimal cross talk, such tech-
niques do not scale well due to increasing hydrodynamic pressure (31).

Alternatively, droplets can be stored at the interface between the contin-
uous phase and a third immiscible phase (see Figure 1.2 c). This prevents
evaporation of droplets over time by shielding them from ambient air, but
it does significantly hinder the retrieval of all droplets due to their strong
adherence to this interface. To mitigate such shortcomings, mesofluidic
storage chambers can be used for the efficient storage of large droplet pop-
ulations. This approach, as exemplified by work described in this thesis,
allows the facile storage and retrieval of droplets (see Figure 1.2 d), with
minimal droplet merging or splitting during filling and reinjection. Specifi-
cally, a three-dimensional–printed glass hybrid device can be used to store
the emulsion. During deposition, droplets rise to the top of a glass vial due
to buoyancy, with retrieval being enabled by turning the device upside-
down and applying pressure to the outlet. This simple protocol combined
with the lack of a fluid interface enables retrieval of more than 99 % of
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Figure 1.2: Droplet leakage and storage. (a) Gruner et al. (29) reported the trans-
fer of fluorophores between stationary droplets ultimately resulting
in homogenous droplet populations. (b) Space-efficient storage of
droplets requires the removal of the carrier liquid. The resulting
tightly packed emulsion exhibits enhanced contact between droplets,
which in turn increases the likelihood of inter-droplet transfer of ana-
lytes. (c) Traditionally, droplets are stored in tubes and capped with a
third immiscible fluid to prevent evaporation. Nevertheless, droplets
adhering to this fluid interface are typically lost during retrieval. (d)
A simple three-dimensional–printed glass hybrid droplet storage de-
vice, which allows for very high droplet retrieval efficiencies. During
storage, droplets rise to the top of a silanized glass vial due to buoy-
ancy. Retrieval simply involves turning the device upside-down and
applying pressure to the outlet. This simple protocol ensures that
droplet losses are <0.5 % and can be used for the storage of small
and large droplet populations in a reliable manner.
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collected droplets. It should be noted that a more detailed description of
this work is provided in Chapter 3.

1.1.3 Droplet Manipulations

The efficient transferal of chemical and biological workflows to droplet-
based microfluidic formats requires the development of a toolbox of unit
operations that mirror their macroscale counterparts. Components should
perform a given task in a (preferably) passive/automated manner and be
readily integrated with other functions that suit the requirements of a spe-
cific biological experiment. Such functional components are likely to in-
clude modules for droplet generation, fusion, splitting, sorting, payload
mixing, analysis, and dilution, incubation, storage and reinjection. Fortu-
nately, over the past decade, numerous microfluidic components have been
developed for such tasks and are now available to the experimentalist. A
selection of these functional components is shown in Figure 1.1 d–j.

Aliquoting or droplet sampling is commonly performed by splitting a
droplet under study into two or more daughter droplets. Controlling the
size of daughter droplets can be achieved directly and passively by form-
ing constricted (non-relaxed) droplets through variations in channel geom-
etry (32). In this respect, the use of T-junctions or isolated obstacles within
the flow path can be used to generate shear forces that overcome surface
tension and lead to droplet breakup. Importantly, such geometry-mediated
breakup allows the creation of segmented flows with controllable droplet
volumes and volume fractions. Conversely, the fusion or merging of two
droplets is a fundamental process, affording operations such as reaction
initiation/termination, droplet dilution/concentration and reagent dosing.
Numerous techniques for merging droplets within segmented flows have
been reported. These are either active [involving the use of electric fields (33)]
or passive [leveraging the surface properties or geometry of the flow chan-
nel (34)] in nature, but most commonly involve bringing droplets into close
contact, with subsequent destabilization of the interface between them. El-
egant examples of passive droplet merging include the use of channel ex-
pansions to destabilize droplet pairs (34) and the exploitation of differences
in hydrodynamic resistance of the continuous phase and the surface ten-
sion of the discrete phase (through the use of pillar arrays) to controllably
merge multiple droplets on millisecond time scales (35). It should also be
noted that active approaches for droplet fusion have been realized using
a range of external stimuli, including thermocapillary forces (36) and elec-
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tric fields (37), and provide a degree of dynamic control not available to
passive methods.

Efficient droplet merging typically requires the efficient synchroniza-
tion of droplets of interest, which in turn ensures the correct alignment
of droplets entering the merging structure. In the simplest scenario, two
types of droplets should be arranged in an alternating configuration prior
to merging. This can be achieved through active control (requiring the inte-
gration of control algorithms and architectures) or the use of (passive) geo-
metrical variations. That said, previously reported passive ordering struc-
tures have exhibited limited synchronization capabilities when droplets en-
ter the structure at significantly different frequencies (38). To address this
limitation, we have thus developed a novel (and passive) synchronization
structure that allows for robust and accurate synchronization across a wide
range of droplet frequencies and flow rates (39). This study is presented in
Chapter 2.

As previously noted, the dilution or concentration of droplet contents
can also be initiated through controlled droplet merging. For example,
Niu et al. (40) reported a simple and elegant method for the creation of
droplet concentration gradients by leveraging water–oil hydrodynamic in-
teractions. Specifically, through a series of droplet merging, mixing, and
resplitting operations, a nanoliter-volume mother droplet may be com-
bined with a series of smaller buffer droplets to generate a sequence of
daughter droplets defining a digital concentration gradient. The addition
of reagents to a droplet can be achieved either by droplet coalescence (us-
ing the aforementioned methods) or by injecting reagents directly into pre-
formed droplets (a process commonly termed pico-injection) (41). Pico-
injection works in a similar fashion to electrically mediated droplet fu-
sion (42), whereby a pressurized microchannel is used to inject a user-
defined volume of reagent into a moving droplet. Put simply, when a
droplet passes the pico-injector, electrodes opposite the channel contain-
ing the reagent are energized. This destabilizes water–oil interfaces and
allows reagent to enter the droplet (since the pico-injector is maintained at
a high pressure). As the droplet moves downstream, it remains connected
to the orifice by a narrow bridge of fluid, which eventually breaks and de-
taches the newly formed droplet. Critically, control of electrode switching
allows selective injection of reagent into droplets at kilohertz rates.

Finally, the ability to sort and collect droplets based on their content is a
key component of many biochemical assays. Sorting can be achieved pas-
sively based on parameters, such as droplet size (43) or deformability (44),



1.2 probing small volumes : detection in droplets 11

but normally requires the rapid assessment of the droplet phenotype fol-
lowed by the active triggering of the sorting process (45, 46). Sorting strate-
gies typically force passively flowing droplets to switch streamlines using
an external perturbation, such as a dielectrophoretic force (45), thermocap-
illarity (36), valves (47) or surface acoustic waves (48). By integrating a
gapped channel divider, recent refinements in electrophoretic-based sort-
ing strategies have demonstrated efficient droplet sorting at frequencies
up to 30 kilohertz (49). Such an innovation is enormously significant, be-
cause at such high frequencies, sorting is no longer the rate-determining
step in the analytical process. Accurate sorting at high frequencies, as pre-
sented in (49), forms an integral part of our barcoding strategies described
in Chapter 3.

1.2 probing small volumes : detection in droplets

Basic requirements of any chemical or biological experiment include the
identification and quantitation of relevant species within the assay volume.
Detection within the picoliter volumes that characterize microfluidic-based
droplets is especially challenging due to the paucity of sample present,
and the fact that under normal circumstances, large numbers of droplets
are moving at appreciable velocities through the system. Moreover, the
study of dynamic processes imposes additional constraints on the detec-
tion method, typically requiring multiple measurements of a given droplet
over a period of time that may range from a few milliseconds to hundreds
of hours. Unsurprisingly, and due to their nondestructive nature, high sen-
sitivities, fast response times and simple integration with chip-based sys-
tems, optical methods are by far the most commonly used methods for
detection in microfluidic formats.

1.2.1 Fluorescence

A cursory survey of the literature confirms that (laser-induced) fluores-
cence methods are, by a large margin, the most utilized optical detec-
tion techniques in droplet-based (and continuous flow) microfluidics. The
exquisite sensitivity and selectivity of both time-integrated and time-re-
solved emission spectroscopy are ideally suited to the non-invasive prob-
ing of the picoliter volumes and low-analyte concentrations representative
of such droplets. Moreover, the ability to perform fluorescence measure-
ments on sub-millisecond time scales means that extremely large numbers
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of droplets (produced at kilohertz frequencies and moving at linear veloc-
ities in excess of 1 m/s) can be probed in an efficient and sensitive man-
ner (50). The wide diversity of commercially available fluorescent probes,
biological assays based on emissive reporters and the ability to perform
multiplexed (single point or imaged based) detection, make fluorescence
an ideal detection technique in many applications. As noted, fluorescence
detection is well suited for the extraction of kinetic data. This now well-
accepted approach was exemplified by Bringer et al. (51), who used time-
integrated fluorescence measurements in a single digital polymerase chain
reaction (PCR) experiment to simultaneously determine 16 separate nu-
cleic acid targets.

The parallel detection of multiple fluorophore populations can also be
realized by aligning multiple optical fibers perpendicular to a microfluidic
channel (52). Using such a strategy, Cole et al. (52) presented a scheme for
multicolour detection of moving droplets by integrating spatially offset op-
tical fibers and a single photodetector. As droplets transitted the excitation
regions, fluorescent bursts, separated by the time taken to move between
excitation regions, could be generated and used to perform multicolour
detection without the need for spectral filtering of the emission. More com-
plex assays involving fluorescence resonance energy transfer (FRET) (53) or
fluorescence lifetime imaging (FLIM) (54) are now routinely used to screen
rapid dynamic processes occurring within picoliter-volume droplets. Sig-
nificantly, FRET allows the distance between sites on macromolecules to be
estimated by utilizing dipole–dipole interactions between an excited elec-
tronic state of a donor fluorophore and the ground state of a proximate ac-
ceptor chromophore, with the rate of energy transfer being directly related
to the donor–acceptor separation (53). In this respect, Srisa-Art and cowork-
ers (55) successfully employed FRET to study the binding kinetics between
streptavidin and biotin within microfluidic droplets on millisecond time
scales. Additionally, FLIM allows the extraction of fluorescence lifetimes
with high spatial resolution and provides an absolute measurement of
molecular concentrations, which when compared to time-integrated sig-
nals (intensities), is far less susceptible to artifacts, such as non-uniform
illumination, scattered light, and excitation intensity variations. Unsurpris-
ingly, FLIM has been used to characterize mixing dynamics in microfluidic
droplets on microsecond time scales (56) and is facilitated by the highly
controlled and reproducible nature of droplet flows. Interestingly, a com-
bination of FRET and FLIM has also been successfully used to quantify
molecular binding in microfluidic droplets, leading to significant reduc-
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tions in both sample volumes and assay times when compared to bulk
measurements (57).

1.2.2 Droplet Barcoding

The ability to identify a single droplet within a large population is central
to many of the applications described herein. For relatively small popu-
lations, this can be achieved by ordering droplets in a linear fashion (58),
trapping droplets at specific positions (59) or by labeling droplets with
identifiable probes (barcodes) (60). Sequential ordering can directly be
achieved by storing droplets inside an extended channel segment or length
of tubing. Such an arrangement allows droplets to be re-read and identi-
fied according to their position relative to the sequence termini (58). Se-
quential ordering, however, does not scale to large droplet populations, as
associated backpressures increase rapidly with the flow path (39). In a sim-
ilar manner, immobilization of droplets in stationary traps (within larger
chambers) does permit the repeated analysis of individual droplets (59,
61, 62), but again, it is limited to a few thousand traps at most. Due to
these limitations, several techniques that enable the labeling ( or barcod-
ing) of individual droplets have been reported in recent years. The most
common and straightforward method uses the coencapsulation of multiple
fluorophores (leveraging variations in the relative flow rates of the input
streams) to spectrally encode droplets and generate uniquely identifiable
signatures (63, 64). However, most studies to date have only managed to
produce limited numbers (< 100) of discrete barcodes and typically gener-
ate an unacceptably large number of duplicates (63, 64). Conversely, sev-
eral recent studies have employed nucleic acid barcodes to label up several
million droplets (60). Nevertheless, it should be noted that these methods
exclusively work with assays where the readout is based on nucleic acids
sequence analysis. Furthermore, it is also noted that nucleic acid sequenc-
ing is a destructive process (60, 65, 66).

To address the limitations associated with barcoding large droplet popu-
lations, we recently developed a programmable system able to generate
large populations of droplets, with each droplet containing a uniquely
identifiable barcode. This is achieved by combining the generation of pop-
ulations of labelled droplets (containing varying concentrations of fluores-
cent dyes) with a barcode reading/sorting technique that captures unique
droplets as soon as they are produced. Proof-of-principle experiments have
successfully demonstrated the generation of droplet populations contain-
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ing over two thousand droplets with unique fluorescent barcodes using
only two fluorophores. A detailed description of the approach and associ-
ated studies is presented in Chapter 3.

1.3 neural network based control

Traditional microfluidic experiments often require extensive manual inter-
vention to maintain operational stability over the extended timescales as-
sociated with large-scale experimentation. Accordingly, there is a need for
purpose-built control algorithms that enable real-time processing of large
amounts of experimental data. In this respect, recent advances in machine
learning, and specifically the development of algorithms based on artificial
neural networks (or ANNs) (67), represent general purpose tools, which
can readily be applied to a variety of microfluidic control problems. Such
algorithms should ideally allow the performance of high-throughput inde-
pendent experimentation through the efficient control of the microfluidic
environment, based on real-time observations.

ANNs are algorithms inspired by biological neural networks, where
activation of series of interconnected neurons defines a recognizable lin-
ear pathway (67). Typically, ANNs are made up of a collection of con-
nected units (artificial neurons), where connections between neurons are
weighted. Thus, when an artificial neuron is activated (receives a non-zero,
scalar signal) it will propagate the received signal to all connected neu-
rons downstream. The weighted connections will amplify or dampen the
corresponding signal during propagation. In a standard configuration, the
artificial neurons are organized into layers, with data travelling from an
input layer, through a series of hidden layers, to an output layer. The data
read back from the output layer corresponds to the desired result and is
mainly dependent on the weights of the ANN. Correct results are typi-
cally achieved by gradually adjusting the weights within the ANN using
a dataset of known input and output signals. The weights of the connec-
tions between artificial neurons are then successively adapted to ensure
the correct output signals, often via a process called back-propagation (68).
Due to their generalized formulation, ANNs have been used for a diver-
sity of data transformation tasks, including image pattern recognition (69),
speech synthesis (70) and machine translation (71).

When first developed in the 1950s, ANNs consisted of a few hundred ar-
tificial neurons (67). Nowadays, modern ANNs contain millions of artificial
neurons and neuronal connections, enabling them to be effectively used
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in a range of complex scenarios (69). Such an increase in complexity has
been possible through improved network topologies (connection schemes),
network training strategies and utilization of the vastly increased compu-
tational power of modern computers. Indeed, most recently, the inherent
parallel processing power of graphical processing units (or GPUs) has been
harnessed by ANNs to excellent effect, due to the ability to perform ex-
tremely fast matrix operations (72). To this end, we have used supervised
image classification techniques to achieve the rapid and on-line sorting
of micron-sized objects within microfluidic devices. Specifically, this was
achieved by initially training an ANN to classify various cell types and
beads offline. The trained ANN was then used to perform online sorting
of such objects at rates of up to 20 hertz. Critically, such an approach pro-
vides for greater flexibility and lower operational costs than traditional
fluorescence activated cell sorting (FACS) techniques, due to the ability
to interpret images rather than one-dimensional data. These studies are
described in detail in Chapter 5.

In contrast to supervised learning methods, where an algorithm im-
proves its prediction based on a known dataset, algorithms based on unsu-
pervised learning (73) or reinforcement learning (RL) (74) have been devel-
oped to master situations, where there is no dataset of known input-output
pairs. Instead, RL-based algorithms repeatedly interact with an environ-
ment and incrementally improve performance in the process. Thus, RL
differs from supervised learning in that the “correct” answer to an input
is not known initially, with learning being achieved by iteratively improv-
ing the correctness of the result based on a scalar reward signal obtained
from the environment. For example, a RL-based algorithm for temperature
control might receive positive reinforcement if the correct temperature is
maintained, and will learn over time how to manipulate the system to
maximize such positive rewards.

Recently, many-layered ANNs have been combined with reinforcement
learning (for example Deep Q-network, DQN) to interpret high-dimension-
ality data (such as visual inputs) and deduce optimal actions to perform
in the observed environment (75). Significantly, it was shown that DQN
can surpass human performance in a variety of games, including Atari
games (76) and Go (77) (see Figure 1.3).

Nevertheless, only few applications of reinforcement learning in non-
simulated environments have been shown thus far, mainly due to diffi-
culties obtaining input data and exerting tight control over the environ-
ment. Examples of reinforcement learning in non-simulated environments
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Figure 1.3: Training curves tracking DQN average score when playing Space In-
vaders, a game for the Atari 2600 video game platform (75). Each
point is the average score achieved per episode. Human testers
scored on average 1692 points. It can be seen that the agent increases
performance during training and eventually reaches human-level
performance.
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include the control of robotic arms (78) as well as the control of building
air conditioning systems (79). To this end, we have utilized reinforcement
learning to achieve automated, on-line microfluidic experimentation. Our
algorithm is provided with bright-field observations of a microfluidic de-
vice obtained through an optical microscope. The algorithm can control
the flow rates of input flows with a view to influencing the microfluidic
environment exclusively. By using such an approach, we demonstrate the
optimization of various flow control problems, involving both segmented
and laminar flows, and highlight the general-purpose applicability of the
presented architecture. These studies, as well as an extended introduction
to ANNs and machine learning in general are described in Chapter 4.

1.4 conclusions

Since the first proof-of-concept experiments (12–14), droplet-based micro-
fluidic technologies have become an increasingly important and powerful
tool in chemical and biological experimentation. Significantly, a large vari-
ety of droplet-based platforms and tools are now being used in a routine
manner by researchers from a wide range of scientific disciplines. Despite
this growing popularity, droplet-based techniques have found a more lim-
ited application in the study of dynamic systems, primarily due to the
lack of appropriate methodologies to label and identify large numbers of
individual droplets and the difficulties associated with controlling micro-
fluidic systems at sufficiently high frequencies to enable responsive high-
throughput experimentation.

That said, the studies and innovations described herein clearly suggest
that a diversity of methods are now available for the generation, manipula-
tion, and detection of droplets. Moreover, these core technologies are being
increasingly applied to the study of chemical and biological processes that
were hitherto inaccessible, with some remarkable successes being reported
in the fields of single-cell sequencing (60, 65, 66) and synthetic biology.
Nonetheless, many challenges (and indeed opportunities) await as droplet-
based microfluidic systems transition from proof-of-concept platforms to
integrated and commercialized instruments.





2
PA S S I V E S Y N C H R O N I Z AT I O N O F M I C R O F L U I D I C
D R O P L E T S

2.1 introduction

Enclosing droplets (that contain reagents for an assay or reaction) within
an immiscible carrier fluid allows for precise control of the reactive pro-
cess in both time and space. Under certain circumstances, each droplet
may be considered to be an isolated reaction vessel (12) separated from
the other droplets (and the walls of the microfluidic channel) by the carrier
fluid, greatly reducing cross-contamination between samples (62). Typical
microfluidic architectures for droplet generation produce droplets having
volumes in the picoliter to nanoliter range and at generation frequencies
well in excess of 1 kilohertz (51, 80). Several chip-based architectures for
the formation of highly monodisperse droplets have been demonstrated
and refined over recent years. These include T-junctions (where droplet for-
mation is induced by a pressure drop) (12, 81), V-junctions (that support
a wider combination of droplet sizes, spacings and generation frequen-
cies) (15) and flow-focusing junctions (where droplet formation is induced
by capillary number related instabilities) (32). All of these strategies ex-
ploit shear forces present at the interface between two immiscible phases
to split a continuous fluid flow into separate droplets without the require-
ment for any external forces such as magnetic, ultrasound or electrical
fields (82). Typically, droplet size, shape and formation rates can be con-
trolled by factors such as input flow rates, interfacial surface tension and
the viscosities of the two immiscible phases used. Other important factors
include the channel geometry and channel surface properties. Finally, and
of paramount importance, it is noted that surfactants are almost always
used to stabilize droplets subsequent to formation (23, 83).

In recent years there has been significant interest in performing com-
plex biological assays using droplet-based microfluidic systems (9, 10, 84,
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85). Such assays almost always require the sequential performance of de-
fined unit operations (84). For example, droplets may be split (86, 87),
trapped (88), diluted (41) and incubated (89) over extended periods of
time (23, 89–92). Sorting of droplets based on content (45, 82, 93, 94) or
morphology (95) can be realized using a range of strategies, and droplet
merging (an essential step in the implementation of almost any assay) can
be achieved both passively and actively (35, 96–98). Moreover, it is also
important to note that effective methods for pairing droplets in a sequen-
tial (A-B) fashion are very useful when probing inter-droplet transfer (99),
contacting droplets using shift registers (100) or initiating cell fusion (101).

The functional components described above have been used in a wide
range of applications, including the assessment of ultra-fast reactions (102),
large-scale single-cell genomics (66), long-term manipulation and screen-
ing of microbial populations (103), creation of a droplet populations with
combinatorial chemical probes (104) as well as self-assembly of droplets
into complex three-dimensional structures (105). In all these studies, the
combination of individual toolbox functions to create a process or assay
requires precise control over the spatial and temporal ordering of individ-
ual droplets to ensure the correct workflow and maintain experimental
reproducibility. In this respect, droplet synchronization can be achieved
using a range of active architectures, where each droplet is addressed and
manipulated on an individual basis. For example, dosing reagents into
droplets can be achieved using pico-injectors (41) or on-chip mechanical
valving (106). Active dosing can be performed at high speeds but requires
both complex control architecture and in-line process monitoring (41, 106).
Conversely, passive droplet synchronization methods provide the experi-
menter with control over droplet ordering whilst requiring minimal exter-
nal control. The simplest mode of passive synchronization arranges two
types of droplets into an alternating sequence prior to a droplet merg-
ing architecture (106–109). In such a system it is crucial to minimize syn-
chronization errors so as to ensure a constant composition of the merged
droplet stream.

Streams of alternating (A-B) droplets have previously been produced us-
ing coupled droplet formation schemes. For example, combined T-junctions
can be used to form droplets in parallel (110–113). Interestingly, Frenz and
co-workers utilized a similar approach to form A-B droplet streams with
error rates as low as 1 in a million droplets (114). A related approach de-
scribed by Hong et al. coupled two droplet forming junctions using a pas-
sive pressure oscillator to achieve a similar level of synchronization (108).
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Finally, step emulsification can also be used to form streams of alternat-
ing droplets (115). In step emulsification the dispersed phase is injected
through a small channel into a higher channel filled with the continuous
phase. When two step-emulsification junctions are placed in close proxim-
ity and are fluidically close-coupled the interplay leads to the formation of
A-B droplet streams (18). Although a number of approaches for forming
A-B droplet streams have been reported, the operation of more than two
droplet forming junctions in parallel usually leads to large disparities in
both droplet size and formation frequency (81, 116). Accordingly, previous
approaches based on controlling droplet formation have been limited in
terms of the maximal distance between the point of droplet formation and
the point of merging, and thus do not allow subsequent merging events to
be performed in a controllable manner.

Given that droplet merging is only one of a series of operations that may
need to be performed within an assay, the inability to couple pre-formed
droplets in a high-throughput manner is a significant drawback. Conse-
quently, an optimal droplet synchronization architecture should be able
to process pre-formed droplets, such that droplet formation is handled
independently from downstream operations. Several studies have shown
synchronization of pre-formed droplets or bubbles. For example Prakash
and Gershenfeld (see Figure 2.1) demonstrated the removal of timing er-
rors between two streams of gas bubbles using a fluidic ladder (38, 117).
In this case, a bubble traversing the ladder is slowed down by diversion
of the oil flow through the alternate path. When two bubbles are present
simultaneously, there is a net flow from the channel containing the leading
bubble to the one containing the lagging bubble, creating a velocity gradi-
ent that disappears as the bubbles synchronize. This elegant concept has
been adapted for use with droplets, but it was found that accurate syn-
chronization requires precise control over both droplet size and formation
rate (110).

If droplets are formed using a relatively low oil fraction, spontaneous
pattern formation can be observed (33). Several studies have used varia-
tions of such self-ordering behavior to create specific droplet configura-
tions. For example A-B patterns have been formed using a single T-junction
or multiple T-junctions in parallel (81). Step emulsification of two droplet-
forming phases into a single channel can also be used to create a densely-
packed “zig-zag” arrangement (115). Further, oil removal from a stream
of pre-formed droplets leading to a more densely packed droplet stream
can be achieved using a simple pillar array (35). Finally, Surenjav and co-
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Figure 2.1: Bubble synchronization as shown by Prakash and coworkers (38)
(scale bar - 100 µm). Initially, droplets enter the synchronization
structure (from the left) with a significant timing error. During pas-
sage, the ladder-like synchronization structure diverts continuous
phase from the channel containing the leading bubble to the chan-
nel with the lagging bubble due to an inbalance of hydrodynamic
resistance (31). This allows the lagging bubble to catch up during
passage, resulting in a synchronized bubble pair exiting the struc-
ture. Using this synchronization principle, timing errors of up to 10

ms could be restored over a span of 40 ms.
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authors have shown that different patterns can be formed and manipulated
by varying both the channel geometry and droplet size (118).

In practice the frequency of droplet formation will fluctuate over time
due to pressure and flow rate instabilities. Such fluctuations increase over
longer time scales, primarily due to droplets “catching up” with each other,
which leads to groups of droplets traveling together rather than as a regu-
lar, dispersed stream. It is therefore essential that a low-error droplet syn-
chronizer be able to compensate for variations in both droplet frequency
and size. Indeed, without such a buffering operation, synchronization ef-
ficiency will be directly dependent on the formation frequency. Leverag-
ing the fact that smaller droplets travel at higher speeds than larger ones,
Mazutis and co-workers merged two streams of heterogeneous droplets us-
ing a zig-zag channel and locally lowered surfactant concentrations, which
triggered the droplet merging process through interface destabilization (90).
This approach could be used to synchronize droplets even if an excess of
smaller droplets is present. Nevertheless, such an approach is limited to
droplets of different size and only the smaller droplets can be present in
excess.

To address the aforementioned inadequacies we present herein, a struc-
ture for the continuous and passive synchronization of pre-formed droplets
with very low error rates. Our approach involves densely packing two
types of droplets and co-injecting them into a channel to form an ordered
A-B alternate pattern. This pattern is then rearranged into a single stream
of alternating droplets. The high error-tolerance results as a consequence
of a buffer structure that allows the removal of excess droplets during the
packing process.

2.2 experimental methods

2.2.1 Microfluidic Device Fabrication

Microfluidic devices were fabricated using conventional soft lithographic
methods in polydimethylsiloxane (PDMS) (119). Initially, microfluidic ge-
ometries were designed using AutoCAD 2014 (Autodesk GmbH, Munich,
Germany) and subsequently printed onto high-resolution film masks (Mi-
cro Lithography Services Ltd, Chelmsford, UK). In a cleanroom environ-
ment, a silicon waver (Si-Mat, Kaufering, Germany) was spin-coated with
a layer of SU-8 2050 photoresist (MicroChem, Westborough, USA) and
subsequently exposed using a collimated UV source. After development
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using SU-8 developer (MicroChem, Westborough, USA), the fabricated
master mold was characterized using a confocal 3D laser scanning micro-
scope (VK-X, Keyence, Neu-Isenburg, Germany). The Sylgard 184 PDMS
base and curing agent (Dow Corning, Midland, USA) were mixed at a
ratio of 10:1 wt/wt, degassed and decanted onto the master mold. The en-
tire structure was subsequently cured in the oven at 70

◦C for at least
8 hours and then separated by peeling. After punching inlet and outlet
ports through the structured PDMS layer, the PDMS was bonded to an-
other flat PDMS substrate using oxygen plasma and incubated on a hot
plate at 95

◦C for at least 2 hours to complete the bonding process. Fi-
nally, a hydrophobic surface treatment solution, 5 % v/v 1H-1H-2H-2H-
perfluorooctyltrichlorosilane (PFOS; abcr GmbH, Karlsruhe, Germany) in
isopropyl alcohol (Sigma-Aldrich, Buchs, Switzerland), was applied for
one minute to ensure hydrophobicity of the channel surface.

2.2.2 Synchronization Performance

A mixture of FC-40 (3M, St. Paul, USA) and 4 % wt/wt EA-surfactant (Rain-
Dance Technologies, Billerica, USA) was used as the continuous phase
for all experiments in this chapter. Ink (Waterman, Paris, France) diluted
with deionized water (10 % v/v) was used to form the dispersed phase.
neMESYS low pressure dosing modules (Cetoni GmbH, Korbussen, Ger-
many) were used to pump fluids using 1 mL gastight syringes (Hamilton
Bonaduz AG, Bonaduz, Switzerland).

A MotionPro Y5 Compact Digital Camera (IDT, Hitchin, United King-
dom) was used to image the passage of droplets through the microfluidic
system at 200 frames per second (fps). A time series of the average pixel in-
tensity in a defined region of interest was extracted from the image data us-
ing ImageJ (National Institutes of Health, Bethesda, USA) and further pro-
cessed using custom-written Python scripts (Python Software Foundation,
Beaverton, USA). Specifically, a threshold to differentiate between different
colored droplets was selected manually and packet lengths calculated from
the time between transits over this threshold value. Using a histogram of
packet lengths, the number of droplets per packet was then mapped to
packet length. Synchronization performance (defined as the percentage of
error-free alternating droplets) was determined by iterating over all pack-
ets in a series and counting the number of packets where both the packet
itself and the next packet consist of a single droplet.
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2.2.3 Inter-droplet Osmotic Transfer

Inter-droplet transfer experiments were performed using a device adapted
from the long-term device (see Figure 2.10). Specifically, we reduced the
distance between separate sections of the meandering channel, to increase
the number of droplets visible within one field of view. Osmosis experi-
ments quantified transfer between droplets containing distilled water and
droplets containing aqueous solutions with varying concentrations of NaCl
(Sigma-Aldrich, Buchs, Switzerland). Proton transfer was quantified using
aqueous droplets containing HCl (Sigma-Aldrich, Buchs, Switzerland) at
pH 0.5 and droplets containing 100 µM Fluorescein (Sigma-Aldrich, Buchs,
Switzerland) solution. Transfer rates were quantified from videos, cap-
tured during operation of the device using the aforementioned high-speed
camera at 16 hertz. Finally, we used custom Python scripts to extract radii
and fluorescence intensity from the raw data and subsequently visualizing
the results.

2.3 synchronization device development

The initial synchronization device design was based on the synchroniza-
tion principles introduced by Prakash and co-workers, where ladder-like
connections between two parallel channels are used to resolve timing er-
rors between bubbles flowing along these channels (38). As previously
noted, in such a structure the leading bubble (or droplet) is slowed down
relative to a following bubble, since its presence in the microfluidic chan-
nel increases the hydrodynamic resistance within that channel (31). The
increase in hydrodynamic resistance results in the diversion of a portion
of the continuous phase into the neighboring channel, thereby reducing
the velocity of the leading bubble. By design, diversion of the continuous
phase is only possible while one bubble moves ahead of the other. As soon
as both bubbles occupy the same channel segment, hydrodynamic resis-
tance is equalized and both bubbles will move at the same velocity. Fig-
ure 2.2 a illustrates a schematic of the initial device design, with the image
in Figure 2.2 b showing the device during operation, where two droplet
streams are separated (and connected) by a ladder-like array. The geom-
etry consists of two parallel channels of 50 µm diameter and connecting
channels of 30 µm width and was operated using 50 µm diameter droplets.
Channel dimensions were chosen to prevent droplets from transiting be-
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Figure 2.2: Synchronization architecture, based on the synchronization princi-
ple shown in (117) (scale bar - 100 µm). Two parallel main channels
of 50 µm width are used to synchronized droplets entering the ge-
ometry. The smaller, ladder like connections (30 µm diameter) be-
tween the droplet-containing channels allow continuous phase to
be diverted along the hydrodynamic pressure gradient between the
two main channels. This allows lagging droplets to “catch-up” by
slowing down the leading droplet, thereby reducing timing errors
between droplet pairs. (A) Schematic of the synchronization device.
(B) Image of the device during operation. It proofed challenging to
achieve sufficiently large inter-droplet spacings without the introduc-
tion of additional continuous phase.

tween the two main channels while still allowing for sufficient transfer of
continuous phase between the channels.

Unfortunately, we could not achieve proper droplet synchronization us-
ing this approach. If a large number of droplets are contained within the
synchronization structure at the same time (see Figure 2.2 b) synchro-
nization efficiency is significantly diminished. Specifically, we could not
achieve a low enough droplet production frequency using standard flow-
focussing junctions. In general terms, diversion of continuous phase (re-
quired for the synchronization of a droplet pair) negatively affects tim-
ing errors between adjacent droplet pairs. To mitigate this effect, droplets
should enter the synchronization geometry in a sufficiently spaced manner.
Therefore, to handle decreased inter-droplet distances larger synchroniza-
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tion structures are required, which complicates microfluidic experimenta-
tion through increased hydrodynamic resistance and compounding fabri-
cation errors in long channels. Moreover, we found that the synchroniza-
tion efficiency was highly dependent on the frequency that droplets enter
the synchronization structure, since the ladder rectifies timing errors but
does not discard excess droplets. This is particularly problematic in cases
when two different types of droplets are synchronized (the most likely
situation in biological assays), and requires that both droplet types be pro-
duced or re-injected into the structure at precisely equal rates.

To enable synchronization of droplets entering the structure at unequal
rates, we included a droplet overflow channel. Figure 2.3 highlights a sub-
set of various buffering and overflow structures that were tested within
the current work. Specifically, control over droplet flow is achieved by uti-
lizing a filter (or pillar-array) that is able to retain the majority of droplets
while allowing a large fraction of the continuous phase to pass through
unhindered. Moreover, addition of a droplet buffer region allows efficient
droplet trapping, filling up the chamber before the overflow is required.
Accordingly, we were able to capture a large proportion of droplets using
the buffer structure, whilst passively discarding excess droplets through
the overflow channel in a controlled manner. This simple approach means
that droplets enter the synchronization architecture at a constant rate. Crit-
ically, the combination of the buffer and the overflow channel allows the
architecture to compensate for large differences in droplet production fre-
quencies.

Figure 2.3 a highlights the initial droplet capture chamber design. We
use a pillar array to retain droplets while letting the continuous phase
pass through unhindered to achieve a packed droplet configuration. In
the initial design, droplets entering the main chamber encounter a circu-
lar pillar, which retains droplets at the center of the chamber, increasing
local droplet concentration. Crucially, the distance between the pillar ar-
ray and the chamber wall was chosen to be one droplet diameter (100

µm) to achieve maximum capture efficiency. While the structure captured
a sufficient share of droplets (exceeding 60 %) we could observe significant
droplet splitting at the pillar array. Specifically at the end of the circular
pillar array structure we could observe an accumulation of droplets due to
its orientation perpendicular to the droplet flow direction. This resulted in
droplets being pushed through the gaps of the pillar array and splitting
in the process. To reduce splitting at the perpendicular pillar array we de-
signed a pillar array with decreased curvature (see Figure 2.3 b). While
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Figure 2.3 (previous page): Droplet buffer and overflow structure design (scale
bars - 200 µm). Droplets (flowing left to right) are
captured from the incoming stream using a pillar ar-
ray. This optimally results in a completely filled cap-
ture region before any droplets are discarded. Once
the droplet buffer is filled, additional droplets are dis-
carded at the top of the buffer region. (A) As droplets
enter the main chamber they encounter a circular pil-
lar array. The design was scaled based on an over-
flow channel (between the pillar array and the cham-
ber wall) of exactly one droplet diameter (100 µm).
It could be observed that the structure captures suf-
ficient droplets. However, the end of the circular pil-
lar array is almost perpendicular to the flow direction.
This lead to droplet accumulation at the pillar array
and frequent droplet splitting. (B) Capture chamber
with a reduced pillar array curvature. While this de-
sign eliminated excess droplet splitting it also exhib-
ited insufficient droplet capture efficiency.(C) Experi-
mental design for a minimal footprint capture cham-
ber using straight pillar arrays for capture. While
this chamber design exhibited similarly low capture
rates (below 50 %) we chose to improve on this de-
sign due to the elimination of droplet splitting. (D)
Device design showing improved capture efficiency
while preventing droplet splitting at the pillar array.
(E) Selected capture geometry, allowing for densely
packed droplet configurations at the chamber en-
trance while preventing any merging or splitting at
the outer droplet capturing pillar arrays.
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we could indeed observe reduced droplet splitting at the pillar array the
design exhibited insufficient droplet capture efficiency (below 30 %).

To completely eliminate droplet splitting at the pillar array we success-
fully tested straight pillar arrays (see Figure 2.3 c). While this device ex-
hibited no droplet splitting we could still not achieve sufficient droplet
capture efficiency. However, using successive designs (see Figure 2.3 d,e)
we found that capture efficiency could be significantly increased by en-
larging the capture chamber size. The final design (Figure 2.3 e) was able
to achieve packed droplet configurations continuously while showing no
droplet splitting at the straight pillar array.

During testing of previous device designs it became evident that the
gaps between capture chambers allow a significant number of droplets to
pass between the two chambers, thereby limiting achievable synchroniza-
tion efficiencies. Further, an experimental design with a reduced number
of gaps (see Figure 2.3 b) indicated that a separation between both cham-
bers did not have negative effects on the flow balance if reasonably similar
flow rates are used for both droplet generators. Accordingly, we used sub-
sequent designs to systematically reduce the number of gaps between the
two capture chambers (3, 2, 1 and zero gaps for devices shown in Figure 2.4
a-d respectively). As a result, the design shown in Figure 2.4 d was adopted
for further use, since elimination of all gaps did not significantly impact
the ability to compensate for flow rate differences, whilst completely pre-
venting transfer of droplets between the two capture chambers.

The device shown in Figure 2.4 d could be used to achieve tightly packed
droplet configurations. However, the synchronization principle as reported
by (38) requires large spacings between droplets to achieve efficient syn-
chronization. Sufficient spacing in turn requires additional microfluidic
channels and extensive flow balancing. Accordingly, we chose to eliminate
the ladder-like structure altogether and utilize geometric self-ordering of
droplets. The resulting device (see Figure 2.5) exhibited exceptional syn-
chronization efficiency, and could not be further improved on in subse-
quent iterations.

2.4 low-error synchronization device

Figure 2.5 a shows a schematic of the final passive microfluidic droplet syn-
chronization structure. The primary components include two flow-focusing
droplet generators and the synchronization architecture (see Figure 2.5 b),
which consists of a packing chamber, a co-injection channel and a constric-
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Figure 2.4: Variation of the number of gaps between the droplet capture cham-
bers (scale bars - 200 µm). Gaps between the chambers were hypothe-
sized to aid in balancing flow rates through the retention of droplets,
whilst allowing the flow of the continuous phase. In reality, droplets
were often observed to pass through or get stuck in these gaps (as
seen in panel B). Accordingly, the chamber design without any gaps,
shown in panel D, was adopted for future experiments.

tion that moves synchronized droplets into an alternating order. As dis-
cusse above, we also included a path for droplets to exit the packing cham-
ber when the chamber becomes completely full (overflow mode). Such
an overflow capability reduces the impact of any errors in the upstream
droplet formation process and ensures stable droplet co-injection into the
common channel. It should also be noted that the two “Out 2” channels
were only recombined to aid device fabrication and we have successfully
operated devices with distinct outlets, allowing for independent control
of back-pressure. Figure 2.5 c presents an image of the synchronization
architecture in operation.

Figure 2.6 shows a series of images that follows a set of four droplets
as they pass through the synchronization architecture. After removal of
most of the spacer oil (upstream of the field of view), each input channel is
constricted so that droplets are forced to move in a single file. This results
in the droplets fully occupying the main synchronization channel in a zig-
zag configuration. If the width of this channel is further reduced, the two
rows of droplets collapse into a single file of alternating droplets. To in-
vestigate the performance of the synchronization architecture, we assessed
the synchronization efficiency for a variety of droplet sizes and total flow
rates.
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Figure 2.5: Architecture of the final synchronization device (scale bar - 1 mm).
(A) The complete device includes two independent flow-focusing
junctions for droplet formation and a droplet synchronization cham-
ber. (B) Schematic of the droplet synchronization chamber. Droplets
are able to exit readily through the 75 µm gaps between the pillars
within the overflow section. Droplets are further compacted in the
packing section, through drainage of the continuous phase. Droplets
are then alternately injected into a common channel that narrows to
push the droplets forward. (C) Image of the microfluidic device in
operation.
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Figure 2.6: A series of images extracted from a high-speed video showing a set
of droplets moving through the synchronization architecture (scale
bar - 600 µm). Droplets are passively ordered into an A-B alternating
pattern when they are injected into the common channel (after 400

ms). When this channel is constricted, so as to only allow a single
file of droplets (after 1600 ms), the two rows of droplets are impelled
into an A-B sequential order.
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2.5 results and discussion

2.5.1 Synchronization Performance Characterization

Figure 2.7 a reports the droplet synchronization efficiency of the final de-
vice for a range of droplet sizes, with Figure 2.7 b illustrating the vari-
ability in synchronization performance across all data points (N = 3, with
an average of 2000 synchronized droplets per experiment). Inspection of
Figure 2.7 a indicates that the current device performs optimally within a
defined region of phase space, perfectly synchronizing two equally-sized
droplet populations with a diameter of 126 µm. Since the synchronization
channel has a width of 220 µm, optimal droplet diameters represent 57 %
of this width, with two rows of droplets fully occupying the main channel
in a side-by-side arrangement. Additionally, variability data provided in
Figure 2.7 b confirm that quoted synchronization efficiencies could be ob-
tained repeatedly and reliably. Finally, it can be seen that synchronization
performance (as well as reliability) falls dramatically when both droplets
have a diameter smaller than 107 µm (49 %).

The key concept behind the presented architecture is the co-injection
of densely packed droplets into a common channel. Since droplets are
deformed prior to entering the common channel, a significant increase in
hydrodynamic resistance is generated through Laplace pressure build-up.
This pressure increase leads to a delay of the following droplet, favouring
the passage of droplets entering from the other channel. We hypothesize,
that this results in droplets being injected into the common channel in an
alternating fashion. After injection, these droplets rearrange into an A-B
alternate pattern through minimization of surface area. Once a stable A-
B alternate conformation is achieved, droplets can be collapsed into an
alternating order through a reduction in the channel width.

Given the need to pack droplets in an A-B configuration, it is appar-
ent that the performance of the synchronization architecture depends on
both device geometry and droplet size. It is to be expected that the opti-
mal diameter of synchronized droplets should be marginally larger than
half the width of the common channel, due to the need to densely pack
two rows of droplets into this channel. Data in Figure 2.7 confirms that
optimal synchronization could indeed be achieved using equally sized
droplets with a diameter of 126 µm, which is 57 % of the width of the 220

µm common channel). Additionally, reliable synchronization could also
be achieved with droplets of different sizes (with up to a 15 % difference
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Figure 2.7: (A) Dependence of synchronization performance (quantifying the
percentage of correctly synchronized droplets) on droplet diameter.
Each tabulated value represents the mean synchronization perfor-
mance from three independent experiments. Darker shadings corre-
spond to improved synchronization performance. Optimal synchro-
nization was achieved when two droplet types of equal size (126 µm
diameter) were synchronized. This corresponds to a droplet diame-
ter of around 57 % of the total channel width. The reported value
of 100.00 % synchronization performance is rounded to two decimal
places from a measured value of 99.997 %. (B) Standard deviation of
the measured synchronization performance. Darker shadings corre-
spond to a lower standard deviation.
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Figure 2.8: Synchronization of droplets with diameters of up to 150 µm (scale
bar - 300 µm). Application of vacuum to the output allows for more
accurate and faster synchronization. The device shown is a directly
scaled up version of the previously described design.

from the optimal diameter) as long as the sum of both droplet diameters is
slightly larger than the channel diameter. Significantly, rearrangement of
the ordered droplets allows the synchronizing architecture to compensate
for variations in droplet size. Although the presented synchronization ar-
chitecture was optimized for a set range of droplet diameters, it is noted
that larger droplets were more challenging to synchronize using the cur-
rent architecture due to droplet splitting at the pillar array during the pack-
ing phase. Nevertheless, modifications to the pillar array dimensions have
been shown to be successful in allowing the synchronization of droplets
with diameters up to 150 µm (see Figure 2.8).

Another key factor in ensuring reliable droplet synchronization is the
ability to allow for droplet overflow, which acts to compensate for poten-
tial variations in droplet generation frequency. It was observed that under
optimal conditions the device synchronizes approximately 17 % of incom-
ing droplets, with 83 % of droplets being discarded. However, these rates
were determined after densely packing the synchronization chambers with
droplets and initial capture rates (for empty) are significantly higher. Fi-
nally, it should be noted that overflow droplets exit the device unaltered
and can simply be collected, reintroduced and synchronized at a later time.

The balance of back-pressures between the two outlets proved to be es-
sential in achieving high accuracy synchronization. For example, an in-
crease in the back-pressure in the synchronization channel (“Out 1”) due
to an additional droplet unit operation (such as merging or incubation)
must be compensated either by applying negative pressure on “Out 1” or
increasing the back-pressure on “Out 2”. Analogously, the back-pressure
within the two channels leading to “Out 2” should be kept identical. Ac-
cordingly, separation of these two channels to independent outlets allows
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for independent control of back-pressure, which will improve the synchro-
nization performance, especially when operating with a high disparity in
the droplet formation frequencies.

The long-term stability of the synchronization architecture was studied
under the identified optimal conditions (i.e. with both droplets having a di-
ameter of 126 µm). Over a period of 45 minutes, 47871 alternating droplets
were produced with an error rate of less than 0.02 %. Synchronization
of equal-sized droplets entering the synchronization chamber at different
flow rates was additionally evaluated to investigate the possibility of com-
pensating for errors in droplet formation frequency. Synchronization was
further characterized for conditions where the input droplet flow rates
are markedly different. Figure 2.9 a shows that efficient synchronization
is highly dependent on the maintenance of equal flow rates. As soon as
the ratio of total flow rates between the two flow-focusing junctions devi-
ates from unity, there is a sharp decline in synchronization performance.
Figure 2.9 b shows the variation of the droplet synchronization frequency
with the total flow rate through the synchronizer. As expected, the number
of synchronized droplets increases with higher flow-rates. In the current
study, we were able to achieve synchronization rates in excess of 31 hertz.
In general, it was found that under optimal conditions, droplets could be
synchronized at rates between 8.8 hertz and 31 hertz whilst maintaining
a synchronization error below 1 %. It was also observed that synchroniza-
tion rates could be increased if negative pressure was applied to the “Out
1” channel, although this unsurprisingly required the modification of the
flow conditions. We hypothesize that higher synchronization rates could
be achievable using higher flow rates than those investigated, although
at the expense of increased error rates. In general, the dense packing of
synchronized droplets required for an efficient synchronization operation
depends on several factors including device geometry (i.e. the spacing and
size of the pillars in the packing section), the back-pressure balance (“Out
1” vs. “Out 2”) and the volumetric flow rate ratios during droplet forma-
tion. Spacing between densely packed, synchronized droplets could fur-
ther be increased using an additional spacer oil inlet after synchronization,
which produces a stream of AB droplets exhibiting uniform distances.

Although all results presented in the current study were obtained us-
ing a surfactant concentration of 4 %, concentrations as low as 1 % are
sufficient to prevent spontaneous droplet fusion within the device. This
reduction further facilitates down-stream merging of droplets, since most
passive fusion methods require low surfactant concentrations. Neverthe-
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Figure 2.9: (A) Dependence of synchronization performance on droplet size dif-
ference (N > 500 for each datapoint). A synchronization efficiency
above 95 % is only achieved if the two synchronized droplet types
enter the chamber at equal flow rates. (B) Dependence of the synchro-
nization rate on total flow rate, showing that throughput increases
as a function of flow rate.
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Figure 2.10: Long-term stability of synchronized droplet configuration. Applica-
tion of a vacuum to the outlet channel allows droplets to stay in
an alternate configuration for extended time periods, even when in
motion. The image shows stable contact between droplets over 200

seconds along a 19 centimeter microfluidic channel.

less, many passive merging strategies do not provide the sufficiently low
error rates to be useful in combination with the presented method (90). Ac-
cordingly, it is suggested that electrowetting would act as an ideal method
for initiating droplet fusion through the continuous operation of electrode
potentials. We further found that synchronized droplets can be kept in
an alternate configuration over extended distances if vacuum is applied
to the elongated output 1 channel, lowering the back-pressure and thereby
stabilizing droplet synchronization (see Figure 2.10). This feature offers the
possibility of studying inter-droplet transfer within flowing environments.

To showcase the modularity of the developed structure, we combined
the synchronization architecture with a randomization geometry, which
allowed the production of a droplet populations of highly controlled com-
position (1:1), while still producing droplets in a semi-random order (see
Figure 2.11). This was achieved successfully by including delay chambers
with various shapes which add a random delay to each droplet due to
varying path lengths through the randomization chamber.

Finally, streams of synchronized droplets could further be re-split into
the constituent droplet streams (see Figure 2.12), a process previously re-
ported by Surenjav and co-workers (118). This operation allows the pro-
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Figure 2.11: Randomizing the order of synchronized droplets. The random-
ization chambers apply a random delay to the passing droplets
through the provision of several possible paths (of varying length)
within the chamber. This results in a randomly ordered droplet pop-
ulation with a known distribution of droplet types (1:1). (A) Sym-
metrical, oval randomization chambers. (B) Drop-shaped random-
ization chambers.

duction of two streams containing an equal number of droplets, thereby
discretizing the number of droplets within a channel and ensuring equal
droplet frequencies.

We believe the presented microfluidic structure constitutes an interest-
ing and high-efficiency tool for synchronizing droplets because of its in-
herently low error rate and ability to synchronize pre-formed droplets.
We have demonstrated that the presented architecture is able to compen-
sate for variations between the two synchronized streams in both droplet
size and frequency. This architecture is therefore exceptionally useful for
droplet merging and timing restoration, which are key operations in many
biological and chemical assays.

2.5.2 Quantification of Inter-droplet Osmotic Transfer

To increase the storage density of droplets and decrease back-pressure in
microfluidic channels, most of the continuous phase is removed from an
emulsion, resulting in tightly packed droplet configurations. It has pre-
viously been shown that cross-talk will occur between such stationary
droplets, leading to a homogenization of droplet contents over time (29).
Furthermore, even though two immiscible phases are used for droplet for-
mation, extensive interaction between the continuous and the dispersed
phase has been reported (28). For example, extensive transfer of fluores-
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Figure 2.12: Splitting of a stream of droplets in an A-B alternate configuration
into its constituent droplet populations (scale bar - 220 µm). Di-
rection of flow is from left to right. The split generates a uniform
flow of metered droplets through the individual channels, each side-
channel containing an equal amount of droplets.

cein molecules between droplets through the continuous phase has been
shown for aqueous droplets in fluorinated oils (28, 29). Gruner and co-
workers have further found that transfer speeds increase with increased
surfactant concentrations, indicating an extensive involvement of the sur-
factant in the transfer process (29).

Water mass transfer due to osmosis between two droplets is dependent
on a number of factors, including the concentration gradient, the contact
area, the contact time, the type of surfactant used, as well as the permeabil-
ity of the interface between two droplets (29, 120). Osmosis can be used to
alter droplet volumes (resulting in the concentration or dilution of the con-
tained analyte) without coalescence or injection, and has previously been
used to study crystallization in nL-volume droplets (120), label-free sort-
ing of droplets containing cells (121) and in the determination of droplet
interface characteristics (110). Using the presented synchronization archi-
tecture, we are able to produce tightly packed droplet populations, with
a highly controlled and reproducible interface area between all adjacent
droplets (see Figure 2.13). This allows for the stable monitoring of gradual
changes in volume and fluorescence intensity via high-speed microscopy.

To prove principle, we quantified the concentration gradient dependence
of osmotic transfer between water droplets in a fluorinated oil, stabilized
using EA-surfactant (23). Figure 2.13 a shows such an experiment, where
water is gradually transfered along the osmotic gradient, resulting in a sig-
nificant difference in diameter after prolonged contact. Our microfluidic
architecture allows for the continuous monitoring of droplets in contact
over periods up to 180 seconds, only limited by the available field of view.
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Figure 2.13: Studying inter-droplet transfer in flow. Ordered droplets are flow-
ing from left to right through 220 µm diameter channels. (A) Os-
motic transfer of water from the diluted droplet into the osmoti-
cally active droplet (darker periphery, 4 M NaCl), resulting in a sig-
nificant size imbalance. (B) pH-based fluorescein quenching. H3O+

ions are transfered into a droplet containing a fluorescein solution,
which quenches fluorescence activity (122).

Using automatic image processing we were able to quantify osmotic trans-
fer between up to 5 droplet pairs per second. We were able to continu-
ously increase the volume of osmotically active droplets by a factor of up
to 1.9 within 130 seconds (see Figure 2.14). We could not observe a de-
crease in the volume change rate which would indicate the equilibration
of the concentration gradient. We hypothesize that equilibrium could not
be reached due to the relatively large osmotic gradient employed (distilled
water and up to 4M NaCl concentration respectively). To our knowledge
there is no previous study exploring osmotic transfer between droplets
in flow. However,compared to previous measurements of osmotic trans-
fer through static droplet interface bilayers (DIBs) we could observe an
increased rate of volume change (123).

The fluorescence intensity of fluorescein is highly dependent on the
pH of the fluorescein solution (122). Fluorescence emission can thus be
reduced by lowering the pH of the solution. We could therefore use the de-
veloped droplet synchronization architecture to determine the rate of H3O+

transfer between droplets through quantification of fluorescein quenching
(see Figure 2.13 b). Results in Figure 2.15 show a decrease in fluorescence
emission of droplets containing fluorescein (100 µM) upon prolonged con-
tact with an acidic droplet (at pH 0.5).
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Figure 2.14: Droplet area variations due to osmosis. Osmosis is achieved by ar-
ranging two separate types of droplets in a “zig-zag” formation
(see Figure 2.13 a) and monitoring droplet size change. Data shows
mean droplet diameter and one standard deviation. At least 500

droplets were measured per data point. High salinity droplets in
contact with droplets containing deionized water resulted in trans-
fer of water in the direction of the osmotic gradient. This in turn
lead to an increase in the observable droplet area over time. It is
evident that an increased sodium chloride concentration in the os-
motically active droplet results in an increased rate of osmosis. The
plot shows the mean droplet diameter, experimental variation, as
well as a second-order polynomial fit of the droplet area as a func-
tion of time.
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Since previous studies have shown that surfactants play a key role in me-
diating inter-droplet transfer (29), we hypothesized that droplet movement
can increase osmotic transfer by enhancing surfactant exchange between
adjacent droplets. We also expected the increased mixing within moving
droplets (124) to further support osmotic transfer by reducing depletion
zones along the surface of the droplets. Therefore we measured fluores-
cein quenching across a wide range of flow velocities (see Figure 2.15).
We found that droplets emitted identical fluorescence intensities after a de-
fined contact distance, regardless of flow velocity. Our results thus indicate
that inter-droplet transfer rates are directly proportional to flow velocities
and larger flow rates lead to increased H3O+ transfer in densely packed
droplet configurations.

Therefore, using the presented system we could show that inter-droplet
transfer can be used to control the pH of a droplet in flow (allowing for
passive quenching of pH-sensitive reactions in droplets), as well as ad-
justing droplet size, without the necessity of droplet merging. We could
also show that the inter-droplet droplet barrier is highly permeable to
both charged and neutral species. We believe the results highlight the
importance of investigating inter-droplet transfer as it has a significant
impact on a large variety of droplet microfluidic assays. Additionally, the
observed increased transfer rates at higher flow velocities suggest that low-
perturbation droplet storage systems are an essential for long-term droplet
incubation (see Chapter 3).

2.6 conclusion

Herein, we have demonstrated a passive microfluidic architecture able to
perform high efficiency droplet synchronization using pre-formed droplets.
Using this architecture, we are able to synchronize in excess of 45000

droplets in 45 minutes with an error rate below 0.02 %. We have further
evaluated the synchronization performance of the device when synchro-
nizing droplets of variable size and have established that excellent synchro-
nization (with efficiencies in excess of 90 %) can be achieved over a broad
droplet size range. We have also shown that droplet synchronization rates
of up to 33 hertz are possible, whilst maintaining a synchronization perfor-
mance in excess of 99 %. Although synchronization efficiencies could be
further improved through optimization of device geometry, we believe that
the achieved error rate is sufficiently low for the successful incorporation
in a range of multi-step assays.
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Figure 2.15: Transfer of H3O+ ions into fluorescein-containing droplets from low
pH droplets (see Figure 2.13 b) results in the quenching of fluores-
cence signal intensity. Fluorescein quenching through H3O+ trans-
fer between droplets at various flow velocities was measured (at
least 500 droplets per flow velocity and channel position). We could
observe that droplets exhibited similar fluorescence activity at a
fixed channel position, regardless of flow velocity. We thus find that
larger flow velocities lead to increased transfer rates. Therefore, we
suggest that inter-droplet osmotic transfer of H3O+ ions in densely
packed droplet configurations is directly proportional to the flow
velocity.
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To highlight the applicability of the presented architecture we have suc-
cessfully used the presented method to quantify osmotic inter-droplet trans-
fer in flow. We could observe that inter-droplet transfer between tightly
packed droplets is highly dependent on the flow velocity of the emulsion.
Thus our results highlight that low-perturbation droplet storage, requiring
minimal motion during the storage process, is paramount to successful
long-term incubation (see Chapter 3).

Whilst many novel microfluidic techniques employ active control schemes,
we believe that the proposed system highlights the power and simplicity of
passive microfluidic control. That said, as with many other passive droplet
unit operations, the presented synchronization architecture is highly engi-
neered to perform only a specific task, whereas microfluidic systems using
active control are often more flexible. Accordingly, we believe that the in-
formed microfluidic experimenter should carefully weigh the benefits of
active and passive control schemes before choosing a mode of experimen-
tation.
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L A R G E - S C A L E A C T I V E D R O P L E T B A R C O D I N G

3.1 introduction

In recent years numerous biological and chemical assays have been trans-
ferred to droplet-based microfluidic formats due to a range of key advan-
tages, including reduced reagent and sample consumption, improved con-
trol over thermal and mass transport and high analytical throughput (1).
Due to the simplicity in compartmentalizing reagents within droplets sur-
rounded by an immiscible carrier fluid, droplet-based assay platforms can
are able to produce large number of experimental repeats in a few millisec-
onds. This in turn, enhances statistical robustness (and precision) and re-
duces experimental error when compared to bulk measurements (1). That
said, although most droplet-based microfluidic workflows are effective in
assaying and interrogating individual droplets, they cannot reliably track
large numbers of individual droplets as a function of time and are there-
fore limited to quantifying population averages instead of individual time
courses. A number of literature studies have shown that the ability to mea-
sure and probe individual analytes (such as cells) over time is often crucial,
with many chemical and biological systems exhibiting fundamentally dif-
ferent dynamics when analyzed on the single-cell level as opposed to the
population or ensemble average level (125). For example, Elowitz and co-
workers proposed a system to differentiate intrinsic noise from extrinsic
noise in the process of gene expression. Here, the ability to perform mea-
surements on a single-cell level was critical in establishing a quantitative
foundation for modeling noise in genetic networks, with population aver-
aged measurements being insufficient (125).

3.1.1 Droplet Barcoding

In droplet-based microfluidic platforms, the precise identification of in-
dividual droplets within a large population allows the experimenter to

Michael Lütolf has contributed to droplet storage chamber development.
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repeatedly assay droplets. Importantly, accurate droplet identification en-
ables the subsequent correlation of separate measurements (of the same
droplet) obtained at different time points, and thus allows reconstruction
of the temporal signal for each droplet in the population. Put simply, such
droplet identification enables high-throughput microfluidic experimenta-
tion, where droplets may be repeatedly assayed and processed within
complex chemical and biological workflows. Examples of high-throughput
and high-efficiency assays employing droplet barcoding include expres-
sion profiling of individual cells (65) and the analysis of enzyme kinet-
ics (126). However, it should be noted that the precise identification and
manipulation of individual droplets within a large population remains
enormously challenging, as positioning strategies (such as sequential or-
dering and use of trap arrays) become unrealistic when dealing with very
large numbers of droplets (above 1000 droplets) due to unacceptably high
back-pressures within the microfluidic device (31). Accordingly, several
techniques for “labelling” individual droplets have been reported in re-
cent years, all relying on encapsulation of a labelling agent within individ-
ual droplets. The subsequent readout of such labelling agents provides a
direct method of identifying a droplet regardless of its spatial location. Un-
surprisingly, the unique signal of the encapsulated labelling agent is often
referred to as a “barcode”. Several droplet barcoding strategies have been
reported in the literature and rely on the use of particles (127–130), nucleic
acids (60, 66) or fluorescent dyes (63, 64, 131, 132) as labelling agents.

Particle-based barcoding methods involve the synthesis of unique parti-
cles, which can then be encapsulated into droplets (see Figure 3.1 a,b). For
example, single-color particles that rely on bright-field observation of par-
ticle shape for droplet identification have been proposed (127). Typically,
such particles are synthesized using microscale lithographic techniques,
such as stop-flow lithography (133). Although, adept at the construction
of complex particle geometries, stop-flow lithographic methods are diffi-
cult to scale up, since new photomask templates are normally required
to fabricate novel particle shapes. In contrast, fluorescent particles can be
manufactured using combinatorial synthesis principles, by forming many
combinations from a small number of fluorescent dyes, enabling the fab-
rication of multiple individual barcodes in a facile process. For example,
Bong and co-workers have recently reported the synthesis of fluorescent
particles that incorporate up to four separate fluorescent dyes within a
single particle using stop-flow lithography (128). Further, a recent study
by Nguyen and co-workers has reported a system allowing for the pro-
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duction of over one thousand uniquely barcoded fluorescent microparti-
cles made from five different Lanthanide precursor solutions (130). Addi-
tionally, unique optical patterns can be transferred into fluorescently-dyed
particles using spatially selective photobleaching (129). However, besides
their complex synthesis, many particle-based barcoding strategies require
image-based read-out (via bright-field or fluorescence measurements) and
extensive image post-processing to determine particle identity, which can
be challenging to implement in real-time assays. Moreover, as highlighted
in the presented studies, it has been challenging to scale particle-based
barcoding strategies beyond one thousand unique particles.

Recently, nucleic acids have been extensively used for the identification
of droplets (60, 66). Such techniques have allowed the creation of very high
numbers of distinct barcodes, due to the relative ease of synthesizing large
numbers of unique nucleic acid sequences via randomized processes. Typ-
ically, unique nucleic acid barcode sequences are introduced into a droplet
along with a biological analyte. Variants of this method incorporate specific
carriers for barcode sequences, such as hydrogel spheres (see Figure 3.1
c) (66), or directly dissolve the barcode sequence within the aqueous phase
(see Figure 3.1 d) (60). Before the barcode can be read back, the biological
sample (cell) is typically lysed, and target sequences are conjugated with
the barcode sequence in the droplet. Finally, the emulsion is broken, and all
nucleic acids are sequenced. Subsequently, target sequences are correlated
with their droplet of origin through the conjugated (and specific) barcode
sequence. For example, Lan and co-workers have barcoded a population
of 10

7 droplets using this technique (60). Despite its high-throughput na-
ture, nucleic acid-based barcoding methods do not allow time-course mea-
surements, since droplets can only be identified at a single time, due to
the destructive nature of the readout process (i.e. breakage of the droplet
emulsion for subsequent nucleic acid sequencing). Further, the technique
is currently limited to the detection and quantification of nucleic acids ex-
clusively.

Several studies have used co-encapsulation of multiple fluorescent dyes
for barcoding, where variations in the relative concentrations of several
dyes allow the formation of a fluorescent signature, which can be used
as a barcode (63, 64, 131, 132) (see Figure 3.2). Due to the accessibility of
rapid, sensitive and non-destructive fluorescence detection methods, flu-
orescent barcodes, encapsulated within microfluidic droplets can be mea-
sured repeatedly and on a sub-millisecond timescale. For example, in an
early study, Neils and co-workers employed passive on-chip dilution and
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Figure 3.1: Particle and nucleic-acid based barcoding methods. (A) Particle-
based barcodes presented by Bong and co-workers (scale bar - 50

µm) (128). Barcodes are fabricated using stop-flow lithography from
precursor solutions containing various fluorescent dyes (133). Varia-
tion in the order and type of dye within the fabricated particle al-
lows for image-based identification. (B) Microbeads formed by poly-
merizing microfluidic droplets containing varying concentrations of
Lanthanides (scale bar - 500 µm) (130). (C) DNA-based droplet bar-
coding as presented by Klein and co-workers (66). Hydrogel spheres
are barcoded using a random DNA library (a hydrogel barcoding
process is shown) and subsequently co-encapsulated with a single
cell in a droplet. After lysis, the cellular DNA is bound to the bar-
code DNA and all droplets are sequenced. This technique can yield
single-cell genomic information for large cell populations, but the
barcode readout process is destructive. (D) A similar approach to (C)
uses DNA templates directly dissolved within a droplet as opposed
to fixed inside a hydrogel sphere (60). This technique allowed Lan
and coworkers to generate several million unique nucleic acid-based
barcodes.
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mixing to create 16 distinct combinations from two fluorescent dyes in con-
tinuous flow (131) (see Figure 3.2 b). Although this study did not involve
the generation of barcoded droplets, the use of laminar flows to create
unique optical signals is facile. That said, scaling up this strategy to gen-
erate larger numbers of color combinations dramatically increases device
size and complexity due to the passive mixing scheme employed. In a more
recent study, Lin and colleagues produced 10 different barcoded droplets
using a parallel emulsification approach (64) (see Figure 3.2 a).

Double emulsions are “emulsions of emulsions”, where droplets contain
one or more types of smaller dispersed droplets, and thus require the use
of three separate immiscible phases (134). Zhao et al. have reported the
generation of barcoded double emulsions (132), where five distinct pho-
tonic crystal oil solutions are used to form the inner phase. Varying num-
bers of photonic crystal droplets are then injected into an aqueous droplet,
which in turn is encapsulated within a hexadecane solution. Despite the
fact that this strategy theoretically allows the production of more than of
10

4 unique barcodes, fabrication remains challenging and indeed the study
only reported the creation of five distinguishable barcodes. Accordingly, it
is fair to say that most studies have only managed to produce limited
numbers of individual barcodes (e.g. 10 in (63)) and typically generate an
unacceptably large number of duplicate barcodes (e.g. 1500 in (63)).

Based on an analysis of literature barcoding methods, it can be con-
cluded that an optimal droplet barcoding strategy enables the produc-
tion of large quantities of distinguishable barcodes. Furthermore, each pro-
duced barcode should be unique, as duplicate barcodes limit down-stream
applications, by prohibiting definite identification of individual barcoded
droplets. Finally, the barcoding strategy should allow for non-destructive
read-out, enabling multiple measurements in complex workflows.

3.1.2 Droplet Storage

In addition to efficient droplet barcoding, high-efficiency droplet storage
and retrieval forms an integral part of any successful barcoding strategy,
particularly when performing experiments over extended time periods. In
recent years, two common methods have emerged for facile long-term stor-
age of microfluidic droplets. In the first, basic laboratory tubing is used to
store droplets (see Figure 3.3 a). The main advantages of this approach
are the lack a complex chip-to-world interface, and the ability to surround
droplets by large amounts of carrier fluid during storage. Due to the wide
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Figure 3.2: Dye-based barcoding methods. (A) Dye-based fluorescent barcodes,
produced using on-chip dilution (63). The histogram shows 10

clearly separated droplet populations containing varying concen-
trations of a single fluorescent dye. Similar to other on-chip dilu-
tion barcoding strategies, this approach produces a relatively small
number of unique barcodes (10) and a high number of repeat struc-
tures (>500). (B) Schematic of an on-chip mixing array producing 16

unique fluorescent signatures from two fluorescent dyes (131). The
study highlights the utility of combinatorial mixing but only pro-
duces 16 different color combinations.
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Figure 3.3: Traditional droplet storage methods. (A) Illustration of droplets
stored in tubing. Such a storage method allows for storage of an
appreciable but not excessive number of droplets. Droplet retrieval
can be challenging due to droplet buoyancy and tubing length. (B)
Droplet storage within a container sealed by an immiscible fluid.
This is a popular method for droplet storage due to its simplicity.
However, due to buoyancy droplets may adhere to the interface be-
tween the continuous phase and the sealant, greatly complicating
retrieval and leading to the loss of a large number of droplets.

range of tubing materials available, the user can choose the optimal mate-
rial for the investigated droplet system, with inert materials such as PTFE
being popular choices.

However, there are a series of practical disadvantages to storing droplets
in tubing. Retrieving droplets stored in tubing requires pumping of the
tubing contents and use of excess amounts of continuous phase. Further-
more, in a typical two-phase droplet system, the densities of the phases
are not matched. As a result, simply pumping continuous phase into the
storage tubing may not be sufficient to retrieve droplets, as the buoyancy
retains droplets inside the tubing. This can be mitigated by rearranging
the tubing such that the outlet is at the highest point but may also require
altering the microfluidic design to enable side-access to the device. Higher
expulsion flow rates or smaller tubing diameters can also be used, but both
options increase stress on the droplets, which in the worst case will result
in droplet merging or splitting. Additionally, storing large droplet popu-
lations in tubing requires long tubing sections, which further dilutes the
emulsion during retrieval.

Microfluidic droplets can also be stored in a container by simply cov-
ering the emulsion with a third immiscible phase (see Figure 3.3 b). This
prevents droplet evaporation, since the third phase effectively seals the
continuous phase from contact with the atmosphere. The primary advan-
tages of this storage method are ease of setup and scalability, since droplets
can be stored in an open container with the simple addition of a sealing
fluid. However, since the most stable aqueous droplet systems frequently
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use fluorinated oils, droplets will normally rise to the surface due to buoy-
ancy and are therefore captured at the interface between the continuous
phase and the sealing liquid. During droplet retrieval, droplets trapped at
this interface are commonly discarded, as they cannot be retrieved with-
out polluting the emulsion with the sealant phase. The resulting loss of
droplets must therefore be factored in during experimental planning and
is only feasible if the droplet population contains large numbers of dupli-
cate droplets.

To mitigate the above challenges, we herein develop a droplet storage
system which combines the advantages of both traditional methods. Our
storage strategy relies on the use of a glass/polymer hybrid device, made
using additive manufacturing methods. The device geometry allows for
two different modes of operation, namely droplet storage and droplet re-
trieval. Switching between modes is performed by physically flipping the
device and reversing the flow direction. The presented storage system al-
lows for easy handling with minimal human interaction. As previously
shown in Chapter 2, such low-perturbation droplet storage systems are cru-
cial as inter-droplet transfer is increased at higher flow velocities. Further-
more, the developed droplet storage system enables the long-term storage
of large droplet populations whilst preventing droplet merging or splitting
during incubation. Finally, and most crucially for droplet barcoding, the de-
veloped storage method enables the near perfect retrieval of all droplets.

3.1.3 Active Sorting Barcoding

Herein, we present a novel barcoding strategy (see Figure 3.4), which in-
corporates the automatic and scalable formation of barcoded microfluidic
droplets and is based on the controlled co-encapsulation of multiple fluo-
rescent dyes. Droplets of uniform size (and containing a specific barcode)
are formed by controlling the relative flow rates of separate fluorophore so-
lutions prior to droplet formation. Using a field-programmable gate array-
based (FPGA) data processing algorithm and a dielectrophoresis-based
sorting scheme (49), we demonstrate the automatic detection of droplets
containing a specific barcode and subsequently use active sorting to collect
and isolate the corresponding droplet. Barcoded droplets are subsequently
stored in the droplet storage unit to prevent merging and loss of droplets.
The sorting algorithm identifies regions of missing barcodes and automat-
ically adjusts the flow rates of the fluorescent dyes to produce novel bar-
codes. Significantly, this ensures rapid and maximal coverage of the full dy-
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namic range of the detector. The presented system allows the production
of more than 2000 unique barcodes from only two fluorophores. Accord-
ingly, the proposed droplet barcoding system is highly flexible regarding
the number of barcodes produced, fluorophore types, fluorophore concen-
trations and can be tuned to incorporate various detectors with differing
resolutions.

3.2 barcoding system development

The proposed strategy aims to generate a large number of droplets, each
containing a unique fluorescent barcode (see Figure 3.4). In contrast to
previously published barcoding methods that use combinations of fluo-
rescent dyes, we aim to ensure that each barcode exists only once within
the droplet population. Since we are using water-in-oil emulsions, we are
able to produce a unique fluorescence signature by varying the concen-
trations of water-soluble fluorescent dyes incorporated into each droplet.
Fluorescent dye concentration variations are produced by combining mul-
tiple aqueous pure-dye precursor solutions within a microfluidic channel
(see Figure 3.4 a). Subsequently, droplets are formed from this multi-dye
solution using a standard flow focusing geometry (13) (see Figure 3.4 b).
Such an approach allows the straightforward variation of the chemical pay-
load by changing the flow rates of the constituent solutions. Accordingly,
large numbers of unique (fluorescent) barcodes can be produced from a
relatively small number of precursor solutions by applying user-defined
flow profiles, thereby varying the fluorophore concentration in the formed
droplets.

However, due to the rapid droplet formation rates, typical to micro-
fluidic droplet formation, and the comparatively slow response time of
the syringe pumps used to control flows, the observable difference in flu-
orescence intensity between adjacent droplets is typically below the limit
of detection of a PMT. Furthermore, small-scale fluctuations in the aque-
ous flow rate arise from a variety of fluidic phenomena. For example, sy-
ringe pumps introduce flow rate oscillations due to step-wise rather than
continuous plunger movement. Additionally, the elasticity of the tubing,
pressure wave propagation in the tubing and competitive flow prior to
droplet formation will produce further fluctuations. When combined, all
of these effects can introduce sufficient flow rate noise for adjacent droplets
to contain identical fluorophore concentrations. Therefore, fluctuating flu-
orescence gradients during droplet formation are likely to preclude iden-
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Figure 3.4: Droplet barcoding strategy. (A) Syringe pumps are used to pump
multiple dye solutions, buffer and oil (continuous phase) into a
microfluidic device (see Figure 3.6 a for a schematic of the device
used in current experiments). (B) Dye and buffer solutions are mixed
on-chip and droplets are formed at a flow focusing geometry. Chang-
ing the relative flow rates of the aqueous phases results in a popula-
tion of droplets containing varying amounts of fluorescent dyes, but
also leads to the formation of multiple duplicate droplets. (C) Time-
integrated fluorescence is measured as each droplet passes through
a laser light sheet using multiple photomultiplier tubes (PMTs). Sub-
sequently, dye concentrations within each droplet are quantified by
integrating over the fluorescence intensity signal obtained. (D) The
measured fluorescence signature is compared with a database of pre-
viously obtained barcodes. (E) If a novel barcode is identified, the
corresponding droplet is removed from the main stream using high-
speed dielectrophoretic droplet sorting. (F) Sorted droplets contain-
ing unique barcodes are stored in the droplet storage chamber. (G)
Regions in the barcode phase space with numerous missing droplet
barcodes are identified and the corresponding pump flow rates are
estimated. (H) The barcoding algorithm attempts to produce novel
droplet barcodes by adjusting the flow rates of the constituent dyes
and buffer.
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Figure 3.5: Droplet discretization step. The production of identifiable droplet
barcodes requires discretizing the droplet fluorescence signals. Co-
encapsulation of various fluorescent dyes typically results in a con-
tinuous distribution of fluorescence intensities. Such continuous
droplet populations must be discretized prior to experimentation,
such that a detector is able to discern differences between individual
droplets. The resulting discretized droplet population is character-
ized by a non-continuous histogram.

tification of unique droplets based on their “theoretical” barcode due to
a large number of duplicate barcodes in the resulting droplet popula-
tion. This effect is further exacerbated during long-term storage by droplet
leakage (Chapter 2) and photo-bleaching effects. Accordingly, successful
barcoding strategies based on fluorescent dyes typically require a high-
confidence discretization step (see Figure 3.5). This step ideally separates
the fluorescence signatures of the droplet population into sufficiently dif-
ferent intensities, enabling the definite assignment of each droplet without
duplicate assignments. Several passive approaches have been developed
to discretize barcodes, including the generation of pre-defined mixtures
through on-chip dilution (131) or the direct production of larger but dis-
tinct droplets at slower rates (15). However, these methods yield relatively
few specific barcodes and cannot guarantee the absence of duplicate fluo-
rescence signatures within the final droplet population.

To address the aforementioned limitations, we propose a method that
achieves discretization by active sorting. Initially we produce droplets con-
taining color gradients by varying the volumetric flow rates of the delivery
pumps. Subsequently, the fluorescence signature of each droplet is mea-
sured using one PMT per fluorophore (see Figure 3.4 c). By default, all
formed droplets are discarded. However, if the detected barcode is novel
and unique, it is sorted into a separate collection outlet (see Figure 3.4 d,e).
We can therefore ensure that each sorted droplet is unique and sufficiently
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different from all “similar” barcodes given a specific detector resolution.
This greatly simplifies subsequent error-free barcode identification.

Several additional operational benefits arise when using a sorting-based
barcoding strategy. First, disparately-sized droplets, such as droplets formed
during the flow equilibration phase, can be easily discarded. Furthermore,
the user knows which barcodes have been collected, and is thus is able to
selectively generate novel barcodes (see Figure 3.4 g,h). In the following
sections we highlight key aspects of our barcoding strategy, including flow
profile generation, barcode readout, sorting logic and low-loss storage of
droplets in 3D-printed storage chambers.

3.2.1 FPGA-based Barcode Generation

In the described system, the fluorescence intensity of a droplet is mea-
sured using a PMT at a sampling rate of 120 kilohertz. After each sample
or measurement, signal processing is used to determine the signature of
the passing droplet. A critical aspect of the strategy, is that a sorting signal
is triggered as soon as a desired droplet is detected. Due to the inherently
strict time requirements, a FPGA-based (135) detection and sorting algo-
rithm was developed using LabView.

When compared to traditional computer programming, algorithms im-
plemented using FPGAs are not executed using a general-purpose proces-
sor, e.g. the central processing unit of a computer. Instead, FPGA-based
algorithms are directly implemented on a FPGA chip by routing various
types of logical gates together. Accordingly, an FPGA program should be
compiled into a logic circuit diagram, which can then be realized on the
FPGA chip. This provides significant advantage for low-latency applica-
tions, since input data is directly fed into the circuit and output signals
are directly retrieved from the chip. In contrast, transferring real-time data
into a CPU typically requires many steps (and thus significantly increases
runtime) since there are several abstraction layers in between, for example
a USB port and the CPU. Furthermore, the CPU also handles a number of
other processes simultaneously, such as running the operating system.

Additionally, and due to its low-level implementation, an FPGA can typ-
ically guarantee a fixed execution time for each program, which eliminates
unexpected delays (or lags) during algorithm execution (135). However,
FPGAs do possess some undesirable features, even when programmed in
a high-level language such as LabView. First, since algorithms must be
compiled into logic gate circuits, many convenient standard tools avail-
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able in general programming languages, such as variable-sized array data
structures, are inaccessible when programming an FPGA. This typically
increases program complexity, which increases development time. Further-
more, as all FPGA-based algorithms are constructed by connecting logical
components on an FPGA chip, the resources available for implementation
are inherently limited. For example, the current application requires track-
ing all previously collected barcodes, which is immensely challenging with
the limited memory available (216 kilobyte block RAM in our case). De-
spite such drawbacks, an FPGA-based approach is well-suited to our bar-
coding strategy, as we require low-latency and real-time signal processing
with only limited computational complexity.

In a first step, the proposed FPGA-based algorithm measures PMT volt-
ages, corresponding to fluorescence intensities (see Figure 3.4 c). Analysis
of these signals over time allows the algorithm to determine whether a
droplet is currently passing through the detection volume, with the ma-
jority of signal processing step taking place after a droplet has completed
passage through the detector. Next, each possible fluorescent signature is
assigned a fixed number (for example 50 % intensity of fluorophore 1 and
30 % of fluorophore 2 corresponds to barcode number 17). Crucially, such
a conversion into continuous decimal indices allows a maximal number of
barcodes to be stored in the limited memory of the FPGA device, as each
barcode is stored as a simple Boolean (True/False) in a large database. To
check whether a barcode has previously been sorted, the algorithm sim-
ply checks if the value at the specific index in the database is set to true.
Accordingly, using the recorded fluorescence signature, the algorithm can
subsequently decide whether the fluorescence footprint represents a novel
barcode or whether it is too similar to a previously detected fluorescence
signature (see Figure 3.4 d). Finally, if a novel barcode is confirmed, a
sorting signal is triggered (see Figure 3.4 e), the droplet is sorted to the col-
lection outlet (see Figure 3.4 f), and the corresponding entry in the barcode
database is updated.

Our microfluidic device (see Figure 3.6 a) uses the basic sorting princi-
ple presented by Sciambi and co-workers (49). This, in principle, enables
precise electrophoretic droplet sorting at rates exceeding 30 kilohertz (see
Figure 3.6 b highlighting the sorting principle reported in (49)). For sorting,
we algorithmically generate a square wave signal (at 1000 hertz), which is
amplified to 1000 V using a high voltage amplifier. Channels filled with a
concentrated salt solution (2M NaCl) serve as electrodes relaying the sort-
ing signal from the amplifier to the sorting junction. Crucially, the sorting
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architecture contains a gapped divider along the center line of the channel.
This divider separates the two possible sorting outlets but is only half the
height of the microfluidic channel. Due to this partial separation, droplets
require only minimal deviation from the default stream line to be sorted
into the collection outlet. Moreover, the gap in the divider allows for ex-
change of continuous phase between sorting channels, further stabilizing
the sorting operation.

Using the developed FPGA software, we were able to achieve exquisite
control over the final barcoded droplet population. Several parameters
were introduced to allow flexible configuration of the barcoding algorithm.
The experimenter can adjust the number of fluorescent dyes used, as well
as the number of barcodes requested for each fluorescent dye. Further, the
developed software allows for an adjustable precision of the requested bar-
codes. This is crucial, since the PMTs output a continuous fluorescence
intensity signal, and a flexible precision allows the experimenter to tune
the allowed deviation of the measured fluorescence intensity from the pre-
determined barcode fluorescence intensity. However, too high precision re-
sults in an excessive amount of discarded barcodes, extending experiment
runtimes.

Once the allowed barcode regions have been properly defined, a barcod-
ing experiment consists of sorting exactly one droplet per barcode region.
After sorting the first droplet, exhibiting the desired characteristic of a re-
gion, the region is locked and no further droplets with similar fluorescence
intensities are collected, thus resulting in a droplet population containing
only unique fluorescence signatures.

3.2.2 Flow Rate Feedback Algorithm

Using the described barcoding algorithm, droplet production is completely
independent from droplet sorting, thus allowing for separate optimization
of both processes. Initially, we considered producing droplets in a separate
step and sorting droplets that had been reinjected into the microfluidic de-
vice. Ultimately, we chose to incorporate both processes on a single micro-
fluidic device, since this enables both automatic and integrated flow rate
control. During the droplet barcoding process, the primary goal is to pro-
duce a maximum number of droplets of the same size and having unique
fluorescence signatures. Accordingly, the volumetric flow rate of the contin-
uous as well as the (total) volumetric flow rate of the dispersed phase are
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Figure 3.6: Microfluidic device design and high-speed droplet sorting. (A)
Schematic of the microfluidic device used for droplet barcoding.
Droplets are formed from the continuous phase (inlet 1) and a mix-
ture of various aqueous phases (inlets 2) using a flow focusing ge-
ometry. Prior to sorting, droplets are further spaced by introduction
of additional continuous phase (inlet 3). The droplet barcode is mea-
sured, and droplets sorted prior to exiting the device through two
separate outlets (4). (B) Droplet sorting principle shown in (49). The
fluorescence originating from droplets entering from the left-hand
side are detected using a laser sheet. A high-frequency and high-
voltage signal is used to move desired droplets into a separate collec-
tion channel. A gapped divider between the outlet channels (which
spans half the channel height) means that only a very small droplet
deflection is required to sort a droplet.
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kept constant, with variations in the composition of the dispersed phase
controlling the fluorescence signature.

When producing single-color barcodes, a dye solution is combined with
an aqueous buffer solution. Similarly, multi-color barcodes are formed by
altering the flow rate of multiple dye solutions as well as adapting the flow
rate of the buffer solution. Three pre-programmed flow profile strategies
were tested for their ability to produce all possible combinations of dye
concentrations.

Figure 3.7 shows examples of the pre-programmed flow profiles tested
in this study. A ramping strategy involved systematically producing all
possible combinations of flow rates by varying the flow rates of constituent
fluorescent dye solutions (see Figure 3.7 a). In contrast, Figure 3.7 b shows
a “random” flow profile, where the volumetric flow rates of both dyes are
randomly increased or decreased at each time step. Finally, Figure 3.7 c
highlights a “semi-random” strategy where combinations of colors were se-
lected from all permutations of desired dye concentrations without replace-
ment, in a sense representing a combination of the strategies highlighted
in Figure 3.7 a and b. Whilst these flow profiles should (theoretically) pro-
duce all possible color combinations, we found that each pre-programmed
flow profile missed a significant number of possible barcodes (Figure 3.8).
We hypothesize, that the pre-determined flow profiles do not directly cor-
respond to the fluorescence intensity measured due to a variety of fluidic
complications, such as the flexibility of the PDMS chip and tubing used,
as well as the pinch flow regime present at the mixing junction. Thus, we
chose to implement a direct feedback mechanism connecting the barcode
sorting mechanism and the droplet-forming pumps, to actively increase
the probability of generating novel color combinations.

Figure 3.8 shows droplet barcodes produced using the flow profile high-
lighted in Figure 3.7 a. It can be observed that a large number of possi-
ble color combinations were not obtainable. Accordingly, we chose to im-
plement an advanced feedback algorithm, which directly adjusts the flow
rates of the droplet producing pumps based on all previously identified
droplets.

Initially, the real-time flow rate feedback algorithm determines the low-
est occupancy region in the phase space diagram using a two-dimensional
binning process (identifying empty regions in Figure 3.8). This effectively
identifies dye concentrations with the highest chance of generating a novel
(yet to be fabricated) barcode. Next, the flow rates are estimated so that
they produce the desired dye concentration based on previous flow rates.



3.2 barcoding system development 63

Figure 3.7: Droplet formation flow profiles. All flow profiles involve the varia-
tion of the flow rates of two fluorescent dye solutions and the control
of buffer flow rates (red) to maintain a constant total flow rate. (A) A
step-wise flow profile. While one dye solution is ramped upwards in
a step-wise fashion (green) the other color fluctuates quickly (blue).
(B) Both colors are varied using a random walk strategy, resulting in
a random flow profile. (C) A semi-random flow profile, obtained by
randomly choosing flow rates from a fixed set without replacement.
This ensures that all possible combinations will be produced eventu-
ally, while the paths between set points are random due to randomly
selecting the order of set points.

If the desired droplet is not found (due to an incorrect flow rate estimate),
the flow rates are gradually adjusted with a view to producing droplets
exhibiting the desired fluorescence intensity. In a next step, artificial noise
is added to the flow rates, which enables production of droplets with sim-
ilar barcodes. Using such an algorithm, droplets with novel fluorescence
signatures can be selectively produced. Finally, these steps are repeated
ad infinitum or until stopped by the experimenter, increasing phase space
coverage to well above 95 % within 20 minutes (Figure 3.14).

3.2.3 Droplet Storage Chamber Design

Since the developed droplet barcoding strategy produces droplets with
unique fluorescence signatures, each droplet lost means the loss of a bar-
code. To prevent excessive droplet loss, it was therefore crucial to develop
a high-performance droplet storage strategy, that allows stable and long-
term storage of barcoded droplets and low-loss droplet retrieval. Impor-
tantly, the developed device should allow for complete retrieval of stored
droplets whilst preventing droplet merging or splitting. Finally, the en-
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Figure 3.8: Droplet barcode collection using pre-defined flow profiles. The scat-
ter plot shows the measured color (fluorescent intensity) of each
unique droplet collected using a step-wise flow profile (see Fig-
ure 3.7 a). Each possible barcode is represented with a green area,
and the barcode density (blue overlay) is calculated using gaussian
kernels. Furthermore, the shading of data points highlights the or-
der in which they were collected (with darker barcodes being col-
lected later). The employed flow-profile strategy produces only a
small share of all attainable barcodes.
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tire system should require minimal operator interaction and no additional
fluid to seal the droplets from ambient air.

The initial storage system was designed to store droplets in inverted plas-
tic vials due to their availability and excellent chemical compatibility. How-
ever, reliably interfacing microfluidic devices with polymer vials proved
challenging. Therefore, using additive manufacturing (3D-printing), we
fabricated a connector that facilitates interfacing the storage vial with a
microfluidic device (Figure 3.9 a). Additive manufacturing allows for facile
and rapid prototyping, and the use of a multi-jet modeling 3D-printer
(ProJet 3510 HD, 3D Systems, Rockhill, USA) provided for a feature res-
olution below 100 µm. The tubing which delivers the droplets from the
microfluidic device into the storage system is directly connected to the 3D-
printed connector (Figure 3.9 a). A plastic vial is then placed upside-down
over the hollow pillar in the center of the square reservoir. This vial is held
in place and sealed by firmly pressing it onto the 3D-printed collar at the
bottom of the pillar. This fixation method was adopted since no additional
adhesive is required, and replacement of the storage vial between separate
storage cycles is facile.

Prior to operation, the assembled droplet storage system is primed by
injecting continuous phase through the connected tubing, and filling up
the storage vial and main reservoir. The emulsion is then pumped into the
connector block. This emulsion descends through the printed channel in
the connector block and enters the hollow pillar from the bottom. Once
droplets reach the top of the pillar, they enter the inverted plastic vial. Due
to buoyancy, droplets remain at the top of the vial, with the displaced con-
tinuous phase being continuously released into the main reservoir through
the channels at the bottom of the vial. Droplets may be retrieved by revers-
ing the flow of the continuous phase through the same tubing, and since
droplets are located near the entrance of the hollow channel (at the top
of the pillar) they are readily aspirated and rapidly returned to the micro-
fluidic device.

To minimize use of excessive amounts of continuous phase in the stor-
age reservoir, we produced the improved design shown in Figure 3.9 b,
where the reservoir is replaced by a long section of tubing. This design has
the additional benefit that negative pressure is now not needed to retrieve
droplets, with retrieval being possible by application of positive pressure
from the oil outlet. However, due to frequent fracturing of the interface be-
tween the 3D-printed connector block and the plastic vial, we chose to test
a completely 3D-printed storage chamber (see Figure 3.9 c). This device in-
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Figure 3.9 (previous page): Droplet storage chamber designs. (A) An inverted
plastic vial is placed over a pillar in the center of
the chamber and the complete reservoir is filled with
continuous phase. The storage chamber is connected
to the microfluidic device using a screw connector.
Droplets can be deposited by introducing them into
the primed storage chamber, and moving them up
through the hollow pillar to the top of the vial. Re-
trieval is performed by reversing the flow (through the
application of negative pressure). (B) Storage cham-
ber design that eliminates the need for excessive vol-
umes of continuous phase and an open container.
Here, excess continuous phase is released through a
secondary access port. (C) A fully 3D-printed storage
chamber. This device does not require any assembly
but the removal of excess support material in the man-
ufacturing process remains challenging. (D) A bullet-
shaped storage chamber that increases storage size
and retrieval efficiency due to droplets rising to the
top of the chamber. (E,F) Three-way storage cham-
ber designs, that allow separation of excess continu-
ous phase through a third access port. Droplets are re-
tained in the storage chamber due to buoyancy. (G-H)
Chamber designs using device inversion for droplet
retrieval. A glass vial is glued into the round slot at
the bottom of the device (Figure 3.10 illustrates an as-
sembled device). Furthermore, screw connectors were
replaced by metal connectors to limit vibrations dur-
ing setup. (I) A variant of the inversion device, involv-
ing minimal internal volume and screw connectors. (J)
An array of the final droplet storage device, used for
parallel experimentation.
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corporates a printed storage chamber that closely resembles the plastic vial
used during initial experiments. Devices containing a bullet-shaped stor-
age chamber were also assessed to increase the amount of emulsion stored
(see Figure 3.9 d). However, it was found that droplet retrieval required
excessive continuous phase flows and thus yielded sparse (or highly di-
luted) emulsions. To increase droplet concentrations, a three-way design
based on a buoyancy filter (which simultaneously stores the droplets and
discards excess continuous phase for recycling) was also assessed (see Fig-
ure 3.9 e-f). Such a design typically retains droplets through buoyancy, dis-
carding excess continuous phase, and allows for retrieval of concentrated
emulsions.

The additive manufacturing process employed in the current experi-
ments involves filling hollow spaces with a paraffin-based resin (of propri-
etary composition), which must be melted and removed after completion
of the printing process. Removal of the filler resin becomes increasingly
challenging as the size of access ports reduces, with increased amounts of
resin remaining trapped inside the printed structure. Thus, after extensive
experimentation, we reverted to the use of hybrid devices instead of fully
3D-printed chambers, with a glass vial being used instead of a plastic vial
due to its chemical inertness.

Additionally, it was found that storage systems using a pillar often do
not allow retrieval of all droplets if flow rates are too low, since the distance
between the top of the pillar and the storage vial could not be reduced suf-
ficiently. Accordingly, we removed this pillar from subsequent designs and
used an adhesive to attach the glass vial to the 3D-printed connector piece.
Crucially, we also introduced the use of an inverted storage vial, where
droplets are stored in an upright chamber and rise to the top of the stor-
age vial through buoyancy. Droplet retrieval is subsequently performed
by inverting the storage structure and applying a small positive pressure
on the outlet (see Figure 3.9 g-i). Additionally, metal pins (glued to the
3D-printed connector piece) were used instead of screw connectors, since
vibrations caused by the connection process induced unacceptably large
amounts of droplet merging. Due to excellent droplet storage and retrieval
performance, we fine-tuned the internal structure of the connector block
(Figure 3.9 g-i) and began producing arrays containing multiple but sepa-
rate storage modules within a single device (Figure 3.9 j).

Figure 3.10 presents the working principle of the developed droplet stor-
age chamber. Initially, the upright device is used to store an emulsion (Fig-
ure 3.10 a). When droplets enter the glass vial through the right inlet, they
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Figure 3.10: Droplet storage via device inversion. (A) During storage, an emul-
sion is introduced into the device from the right inlet. Due to buoy-
ancy, droplets rise to the top of the storage vial, while excess oil
drains through the oil outlet. (B) Droplets can easily be retrieved
and pushed back into the microfluidic device by inverting the stor-
age chamber and reversing the flow of the oil outlet.

float upwards due to buoyancy, with excess oil draining through the out-
let. Crucially, displacement due to lateral flow of the continuous phase is
smaller than vertical displacement due to droplet buoyancy, allowing com-
plete capture of droplets in the storage vial. To retrieve droplets, the stor-
age system is simply flipped upside-down. At this point, droplets enter the
connector block again, due to buoyancy. Once a small flow of continuous
phase is introduced to the outlet, droplets are pushed back into the micro-
fluidic device through the same tubing through which they were delivered,
requiring no additional fluidic connections.

3.3 materials and methods

3.3.1 Experimental Setup

Microfluidic devices were manufactured according to standard soft litho-
graphic techniques, which are described in more detail in Chapter 2 (119).
Microfluidic droplet sorting devices were modelled after the device shown
in (49) (see Figure 3.6 a). Channel height was 50 µm. We used multiple
inlets to deliver several fluorophore and buffer solutions and employed
on-chip mixing to produce the desired droplet composition prior to flow-
focusing.
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Droplets contents were excited using both a 488-nm laser and a 640-nm
laser (Laserage-4; Omicron, Rodgau, Germany). A combined laser beam
was shaped into a light sheet, approximately 5 µm thick, using a cylindri-
cal lens (LJ1558RM f = 300 mm; Thorlabs, Newton NJ, USA) and aligned
perpendicular to the microfluidic channel. An inverted microscope (Nikon
Ti-E; Nikon AG, Egg, Switzerland) with a 20X objective (Nikon GmbH,
Egg, Switzerland) was used for all experiments, as both excitation and de-
tection can be performed from the underside. This configuration provides
easy access to the microfluidic device from the top, facilitating connections
to the syringe pumps and the signal amplifier. Fluorescence emission was
collected and separated from the excitation light using a dichroic mirror
(AT DC 505; AHF, Tübingen, Germany) and quantified using two pho-
tomultiplier tubes (H10722-20; Hamamatsu, Solothurn, Switzerland). We
additionally employed a bright-field high-speed camera (Phantom Miro
M310, VRI, Wayne, USA) to observe the microfluidic flows during experi-
mentation.

Droplets were formed at a flow-focusing junction by co-flowing an aque-
ous dispersed phase with a fluorinated continuous phase (HFE 7500; 3M,
Rüschlikon, Schweiz) as the continuous phase. Additionally, the contin-
uous phase contained 0.5 % wt/wt of a PEG-block co-polymer (23) (008-
Fluorosurfactant; RAN Biotech, Beverly, MA) to stabilize the resulting emul-
sion. In initial experiments, we used a 100 µM solution of fluorescein
(Sigma-Aldrich, Buchs, Switzerland) to monitor droplets. Subsequently,
PBS buffer (Sigma-Aldrich, Buchs, Switzerland) solutions containing 100

µM CF647 or CF488 (Sigma-Aldrich, Buchs, Switzerland) were used as pre-
cursor dye solutions for barcoding experiments. All fluids were pumped
using Nemesys low-pressure syringe pumps (Cetoni GMBH, Korbussen,
Germany) and 1 ml glass syringes (Gastight 1001, Hamilton, Bonaduz,
Switzerland). Pumps were connected to the microfluidic device using PTFE
tubing (Adtech Polymer Engineering Ltd., Stroud, UK).

3.3.2 Software

The PMT voltage (an analog signal corresponding to the fluorescence sig-
nal) was recorded using a multifunction FPGA module (PCIe-7842R, Na-
tional Instruments, Ennetbaden, Switzerland). The FPGA module was pro-
grammed using LabView 2014 (National Instruments, Ennetbaden, Switzer-
land). The connected workstation ran a separate control and monitoring
application, also programmed in LabView. All signal processing and sort-
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ing decisions are made by the FPGA module independently, with only
observations and results being reported to the monitoring application. As
the experimenter exclusively interacts with the monitoring application it
also relays parameter changes (e.g. during calibration) to the FPGA device,
albeit not in real-time (but with a 1-3 seconds delay). The square sorting
signal is generated by the FPGA module and amplified 1000 times using a
high-frequency and high-voltage amplifier (623B; Trek, Lockport, USA).

3.3.3 Barcoding Experiments

Before barcoding, the microfluidic device, as well as the droplet storage
chamber were flushed with continuous phase (HFE 7500; 3M, Rüschlikon,
Schweiz). Subsequently the dead-end electrode channels were filled with a
2 M aqueous NaCl (Sigma-Aldrich, Buchs, Switzerland) solution by apply-
ing pressure to the solution. Due to the applied pressure, air initially oc-
cupying the electrode channel diffuses through the thin PDMS membrane
separating the electrode channel from the main channel. After the electrode
channels are filled with the electrode solution, the amplifier is connected to
the syringe containing the electrode solution using clamp connectors. All
dispersed phases were connected and pumped into the device until stable
droplet formation was achieved. The electrophoretic sorting signal consists
of a square wave with the following adjustable parameters: square wave
amplitude (500 V - 2000 V), square wave frequency (5 - 200 kilohertz), num-
ber of square pulses (1 - 50) and delay of the sorting pulses (10 µs – 5000

µs). Whilst most sorting parameters can be fixed between experiments, the
sorting delay must be calibrated separately and prior (approximately 1

millisecond) to each experiment. For delay calibration, a flip-flop sorting
algorithm, which detects all droplets and sorts out every second droplet
it encounters, is used. High-speed observations, are used to subsequently
adjust the delay, such that the sorting signal is correctly timed to exclu-
sively sort single droplets, while not influencing the path of preceding or
following droplets.

The detected barcoding signal is directly correlated to the laser power
and PMT amplification voltage and thus must be calibrated prior to each
experiment. To this end, we produced droplets containing the maximum
dye concentrations of both dyes, and subsequently tuned the maximum
signal intensity to cover the full range of the detectors. Next, barcodes were
generated and sorted using our automatic algorithm. Generated barcodes
were stored in the developed droplet storage device. Finally, we employed
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custom Python scripts to post-process and visualize data produced during
barcoding, allowing for confirmation of the number of unique barcodes
produced. We could further produce kernel-density estimates using Gaus-
sian kernels to identify regions in the barcode phase space which were
poorly occupied (as observed in Figure 3.8). During barcode generation,
the developed feedback algorithm was used to selectively produce novel
fluorescent signatures.

3.3.4 3D-printed Storage Chamber

3D-printed devices were manufactured using a multi-jet modeling (MJM)
3D-printer (ProJet 3510 HD; 3D Systems, Rockhill, USA) from a propri-
etary substrate (Visijet M3 Black; 3D Systems, Rockhill, USA) with excel-
lent strength and flexibility properties. During the printing process, hollow
spaces are filled using a paraffin-like proprietary substance (3D Systems,
Rockhill, USA), to allow for the construction of roof-like structures over
hollow spaces.

We employed a multi-step protocol to remove the paraffin support struc-
ture after 3D-printing. Initially 3D-printed devices were placed in an oven
at 70

◦C overnight. This leads to the melting and evacuation of significant
amounts of paraffin wax. Subsequently, channels were cleaned using high
pressure steam, which allowed for removal of most of the paraffin trapped
in the siphon-like channels. Next, interior surfaces of the printed devices
were cleaned by sonication (FB15053; Thermo Fisher Scientific, Reinach,
Switzerland) in fresh aqueous 2 % wt/wt sodium dodecyl sulfate (Sigma-
Aldrich, Buchs, Switzerland) solution at 50

◦C for 40 minutes and subse-
quently drying using pressurized air. The remaining surfactant solution
was removed by sonicating devices twice for 15 minutes using distilled
water. Finally, a glass vial (200 µL conical glass insert; BGB Analytik, Böck-
ten, Germany) and steel connector pins (OD: 0.25 mm, ID: 0.13 mm; New
England Small Tube Corporation, Litchfield, USA) were attached to the
clean structure using a two-component epoxy adhesive (Araldite Standard;
Huntsman Advanced Materials, Basel, Switzerland).

Storage performance of the 3D-printed droplet storage chambers was
determined both quantitatively and qualitatively. The resolution of the 3D-
printed materials was assessed by observing printed devices using a stere-
oscope (SMZ1500; Nikon GmbH, Egg, Switzerland). Storage performance
was assessed by observing droplets as they exit the storage chamber under
the stereoscope, after a 2-hour incubation period. This allowed for the de-
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Figure 3.11: Determination of droplet diameters using ImageJ (scale bar - 200

µm). (A) Droplets exiting the droplet storage chamber were de-
posited on a glass slide and imaged using a stereoscope. (B) Raw
images were processed using ImageJ to quantify droplet diameters.
Retrieval rates of stored droplets were quantified by counting a pre-
cise number of droplets into the droplet storage chamber using the
droplet sorting architecture. After incubation for 2 hours, droplets
were re-introduced into the device and counted.

tection of droplet merging or splitting events, through the observation of
differently sized droplets. Image processing was performed using ImageJ
(Figure 3.11) (136).

3.4 results and discussion

3.4.1 3D-printed Storage Chamber

During initial assessment of the additive manufacturing resolution, we
concluded that channel diameters down to 200 µm and channel lengths
of up to 5 centimeters could be manufactured in a reproducible fashion.
Figure 3.12 presents magnified images of droplet storage chambers made
using the multi-jet modeling printer, captured using a stereoscope. We
further quantified droplet merging and splitting after 2 hours of storage,
by measuring droplet radii from images captured using a stereoscope (as
shown in Figure 3.11). Using such an approach, it was found that on aver-
age 0.5 % of droplets showed a different diameter (resulting from droplet
merging or splitting) upon retrieval.

Droplet retrieval rates were quantified using separate storage and re-
trieval sequences with intermediary incubation periods of two hours. Us-
ing this strategy, we could demonstrate that the droplet storage chamber
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Figure 3.12: Assessment of additive manufacturing resolution. Magnified im-
ages of the finished 3D-printed devices were obtained using a stere-
oscope and served as exemplary resolution checks of the employed
additive manufacturing process. Results indicate that channels of
less than 200 µm diameter can be manufactured in a reproducible
fashion. All scale bars are 1 mm in length.

allows for droplet retrieval rates exceeding 99 %, with experiments indi-
cating that only 0.44 % ± 0.69 % (N=4) of all stored droplets cannot be re-
trieved. Such excellent retrieval rates highlight the potential of 3D-printing
as a manufacturing tool in microfluidics. Indeed, additive manufacturing
methods enable the rapid prototyping of complex structures in an auto-
mated fashion.

That said, 3D-printing technologies still possess limitations, and thus
should be applied with caution. The resolution achieved by most commer-
cially available 3D-printers is insufficient to fabricate microfluidic chan-
nels, which typically have cross-sectional dimension below 100 µm. More-
over, additive manufacturing methods can only be applied to a select num-
ber of substrate materials. Whilst a variety of polymers and metals have
been used for 3D-printing purposes, there remains a need for more special-
ized materials, such as transparent or elastomeric materials. Furthermore,
many 3D-printable materials are proprietary mixtures, with exact chemical
compositions and material properties being undisclosed. Nevertheless, the
current study confirms that 3D-printing allows for the rapid prototyping
of complex structures (such as siphons and chambers) on sub-millimeter
scales, unrivalled by traditional fabrication techniques. Accordingly, we
recommend the integration of 3D-printing methods into the traditional
microfluidic workflow, particularly when used to interface microfluidic de-
vices with peripheral devices (the chip-to-world interface).
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3.4.2 Single-color Barcodes

Initial droplet barcoding experiments were performed using a single-dye
system. Droplets with different fluorescence intensities were produced by
mixing a single fluorescent dye with a PBS buffer solution on-chip, prior
to droplet formation. Figure 3.13 shows data from two barcoding experi-
ments, where each measurement (dot) in the scatter plot corresponds to
the fluorescence intensity of a single droplet passing through the detec-
tion volume. Regions in the phase space, corresponding to the unique bar-
codes, are marked as green areas, with identified and sorted droplets being
shown as red dots. The average fluorescence intensity of droplets shows pe-
riodic oscillation due to varying dye concentrations. The one-dimensional
barcoding system was also used to develop standard procedures for the
calibration of the excitation source power, signal amplification in the detec-
tor and droplet sorting parameters (see Experimental Methods).

Figure 3.13 a highlights an experiment, where only two separate bar-
coded droplets are requested by the user. Accordingly, the two desired
phase space regions in the attainable fluorescence intensity range are max-
imally separated. Since only two different fluorescent signatures are re-
quired, these regions can be made relatively wide (approximately 0.4 V
width), whilst still allowing for proper identification of droplets. Due to the
rapid droplet generation frequency relative to the change in color, we were
able to observe approximately 200 separate droplets during one pass of a
region and around 500 droplets between separate regions. The first droplet
entering a region is sorted into the collection outlet (marked in red), with
all subsequent droplets being ignored until the next region is reached. We
thus conclude that the developed barcoding system can reliably identify
and sort novel fluorescent signatures from a stream of droplets in real-
time.

The proposed barcoding system easily scales to multiple barcodes per
fluorescent dye. Indeed, Figure 3.13 b shows the results for a barcoding
experiment identifying up to 34 individual barcodes. Due to the high num-
ber of barcodes compared with the experiment shown in Figure 3.13 a, the
width of the barcode regions is reduced significantly. Due to this reduced
width and the steep flow rate gradient, a single barcode is “missed” dur-
ing the first pass (approximately droplet number 5100). However, a droplet
with the required fluorescent signature is found and sorted during the sec-
ond pass (approximately droplet number 9000). Therefore, at a droplet gen-
eration frequency of approximately 500 Hz all requested barcodes could
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Figure 3.13: Single-color barcoded droplet populations. (A) A barcoding exper-
iment that sorts two separate barcoded droplets. Droplets contain-
ing varying concentrations of a fluorescent dye are produced using
gradient flow profiles. The scatter plot shows fluorescence intensi-
ties of subsequent droplets (small blue dots). Green areas highlight
the desired fluorescence intensities of all requested barcodes. The
first droplet exhibiting the desired fluorescence properties is sorted
from the droplet stream and diverted to a separate outlet (red circles
highlight successful sorting events). As can be seen the developed
barcoding algorithm correctly sorts the first droplet arising in each
area and ignores subsequent identical barcodes. (B) Larger scale
single-color barcoding experiment identifying 34 separate barcodes.
Interestingly, due to the resolution of the colored droplet popula-
tion not all barcodes could be identified during the first passage,
with the missing barcode being sorted during a subsequent pass.
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be identified and sorted in less than 20 seconds. Such performance con-
firms the high-throughput capabilities of the developed droplet barcoding
system, especially when compared to typical experiment setup times of
approximately 30 minutes.

Since the widths of desired phase space regions are independently ad-
justable, it is apparent that such widths should be minimized. This results
in more precise droplet barcodes at the cost of only marginally increased
experiment times. However, the maximal number of barcodes per color
will be limited by detector resolution. Indeed, in our experiments we found
that scaling beyond 50 barcodes does not allow for precise barcode identifi-
cation due to diminishing intensity differences between adjacent barcodes.
In addition, it should be noted that the recorded fluorescence intensity gra-
dient does not directly correspond to the linear flow profile of the pumps.
Particularly, the plateaus at the top and bottom of the fluorescence gradi-
ent and the rapid change in between are in stark contrast to the linear flow
profile run on the syringe pumps. We believe that this discrepancy arises
due to the inherent flexibility of the PDMS device and tubing used and the
pinched flow regime present at the mixing junction. However, in our sys-
tem such fluctuations do not influence barcode quality as the production of
barcodes and the subsequent droplet-sorting logic are completely indepen-
dent. Nevertheless, a tighter coupling between flow profiles and measured
fluorescence intensity could be beneficial in improving barcoding speed
and allowing for faster production of barcoded droplet populations.

3.4.3 Two-color Barcodes

As the number of possible barcodes identifiable by a single detector is lim-
ited, scale up of the number of unique barcodes using a single fluorescent
dye is challenging. However, the use of combinations of multiple dyes en-
capsulated in droplets exponentially increases the number of accessible
barcodes. Since it is comparatively easy to add another fluorescent dye
and another detector into our system, this approach is well suited for the
generation of large numbers of barcodes. At a general level, the number of
possible barcodes is given by the number of variations with repetition, i.e.

nbarcodes =
ncolors

∏
i=1

codesi

where codesi corresponds to the number of barcodes that are attainable
using colori given the corresponding point detector resolution.
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We found that the use of more than one fluorescent dye required the
implementation of a more complex flow profile strategy. Accordingly, we
employed a flow rate feedback algorithm that allows for dynamic adjust-
ments to pump flow rates (see Flow Profile Strategies section). Figure 3.14

highlights a large-scale experiment designed to collect the maximum num-
ber of unique barcodes using two fluorescent dyes. Each axis corresponds
to the fluorescence intensity of a single detector and each data point cor-
responds to a collected barcode. The color of the data points represents
the time, when the barcode was identified and sorted (darker points were
collected later during the experiment). We further used Gaussian kernel
density estimates to highlight regions with high barcode occupancy (blue
overlay) and low barcode occupancy (white overlay). To simplify visualiza-
tion, the plot omits non-sorted droplets and only shows sorted droplets.
Compared to single-color experiments (Figure 3.14, allowed regions in the
two-dimensional barcoding experiments are now constrained to two di-
mensions (shown as green areas). Due to the required separation, these
allowed phase space regions are arranged on a regular grid.

Similar to single-color barcodes (Figure 3.13), one can observe that the
sorted barcodes typically occur along the border of the respective region,
as only the first droplet "entering" the region is sorted. We aimed at col-
lecting 47 and 48 different levels of fluorescence intensity per detector re-
spectively, resulting in a theoretical maximum of 2256 possible barcodes
and managed to collect 2205 (97.7 %) out of all possible barcodes in less
than 25 minutes. Given the presented data, it is evident that the largest
region of missing barcodes theoretically contains high concentrations of
both dyes. We expect, that these missing barcodes could be produced and
collected by tuning the buffer flow and lowering the maximum fluores-
cence at which barcodes are collected. Moreover, we believe that this ef-
fect is likely to stem from the slight overlap of the emission spectra of the
dyes, and the number of accessible barcodes could potentially be increased
by using fluorophores with more clearly separated spectra (137). We also
found, that peripheral barcodes were identified later (identified by darker
data points), when compared to central barcodes within the phase space
diagram. This strongly suggests that the developed feedback algorithm
works well, correctly identifying peripheral regions with missing barcodes
and successfully producing the required flow rates at later times during
barcode generation.

To highlight the robustness of the developed barcoding system, we re-
peated the experiment shown in Figure 3.14 three times, plotting the frac-
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Figure 3.14: Large-scale droplet barcoding. Barcodes are produced using two
fluorescent dyes and the presented barcoding strategy. Each possi-
ble fluorescent signature is represented with a green square, and
is well separated from adjacent barcodes. Data points indicate suc-
cessfully identified and sorted barcodes. The color of the data points
indicates when the barcode was found (darker droplets were found
later), highlighting initially missing regions and allowing us to
judge the performance of the flow rate feedback algorithm. A ker-
nel density estimate (blue overlay) is used to identify high density
regions. By employing the developed flow rate feedback algorithm,
we could increase the share of barcodes produced to 97.7 % of all
possible barcodes (2205 out of 2256 barcodes collected during the
highlighted experiment). Missing barcodes are predominantly as-
sociated with high concentrations of both fluorescent dyes. We hy-
pothesize that this effect could be mitigated by further fine-tuning
of detection intensities and barcoding bins, as well as using fluores-
cent dyes with more clearly separated emission spectra (137).
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Figure 3.15: Droplet barcoding reproducibility. Variation of the number of bar-
codes collected as a function of time for three separate experimental
repeats of the experiment shown in Figure 3.14. It is observed that
barcode collection is an asymptotic process with more than 50 %
of possible barcodes being collected within the first 4 minutes of ex-
periment time (highlighted in Figure). Furthermore, all experiments
identify at least 90 % of obtainable barcodes within a period of 20

minutes.
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tion of barcodes collected as a function of time (Figure 3.15). For each ex-
periment, the number of barcodes collected over time shows the expected
asymptotic profile of a semi-random collection process, with collection fre-
quency decreasing proportionally to the number of remaining barcodes.
It is further observed that 50 % of barcodes are typically collected within
the first 4 minutes of an experiment (highlighted in Figure 3.15). We hy-
pothesize that step wise increases in the number of barcodes stem from
the employed flow rate feedback algorithm, which successfully identifies
regions with missing barcodes, resulting in a temporary surge in the pro-
duction of novel barcodes.

3.5 conclusion

The studies presented in this chapter have successfully described the de-
sign and implementation of a droplet barcoding strategy, able produce,
code and store more than 2200 droplets, while maintaining flexibility with
respect to fluorophore type and barcode number. To our knowledge, the
formed droplet library defines the largest number of fluorescently bar-
coded droplets yet reported. Based on these initial experiments, we hy-
pothesize that increasing the number of distinct dyes to four will enable
the production of more than one million unique droplet barcodes (32

4 =
1048576). This in turn, will permit repeated readout of large droplet popu-
lations and facilitate key experiments, such as single-cell tracking.

Furthermore, the 3D-printed droplet storage device developed in this
study was shown to enable long-term droplet storage, whilst ensuring near
loss-free droplet retrieval. We believe the ability to incubate droplet popu-
lation in a reproducible fashion, will greatly facilitates the implementation
of biological assays based on droplet-based microfluidic technology. Since
the long incubation periods required for the cultivation of many biological
samples leads to lower experiment throughput, the low-loss nature of the
developed droplet storage device will directly enable the increased collec-
tion of experimental results per cultivation effort spent.

While microfluidic geometries should still be fabricated using conven-
tional and soft lithographic techniques, we found that additive manufactur-
ing is well-suited to the fabrication of larger structures on the millifluidic
or mesofluidic scale. 3D-printed devices have great potential, particularly
at the chip-lab interface as connectors, gaskets or incubation chambers.
Indeed, since currently there exists no standard format for microfluidic
devices, additive manufacturing also allows the experimenter to adjust de-



82 large-scale active droplet barcoding

signs and produce interfaces that are customized to a specific application.
Accordingly, we propose that even though improvements in resolution and
material choice are needed, additive manufacturing shows great potential
as a component tool in microfluidic research.

Whilst the proposed barcoding system relies on existing sorting architec-
tures, we were only able to achieve the presented results by incorporating
improved decision-making processes. Even though active microfluidic de-
vices typically increase experiment complexity, this tradeoff is often justi-
fied, as passive devices require a large number of design iterations due to
a general lack of simulation tools. Therefore, we assume that despite their
complexity, other active microfluidic techniques, such as droplet screen-
ing or long-term reaction monitoring, could greatly profit from improved
control algorithms.

In conclusion, the developed methodology has the potential to greatly in-
crease the number of biological and chemical assays that can be performed
using droplet-based microfluidic strategies, by enabling the repeated scan-
ning of large droplet populations with single droplet resolution. When
scaled-up, this general approach will allow the use of droplet-based mi-
crofluidics in chemical/biological assays that are currently only feasible
using inferior microtiter plate technologies. Finally, we believe that this
study highlights the benefits of using “smarter” control algorithms in con-
junction with existing experimental formats.



4
R E I N F O R C E M E N T L E A R N I N G F O R M I C R O F L U I D I C
C O N T R O L

4.1 introduction

In recent years high-throughput screening (HTS) or more generally high-
throughput experimentation (HTE) has attracted significant interest in the
chemical and biological sciences due to the increased availability of large
compound libraries (138). HTE allows for rapid screening and evaluation
of such molecular libraries. Indeed, HTS technologies are the driving force
behind many novel medical diagnostic assays, such as single-cell sequenc-
ing, which depends on a high-speed screening capability to analyze large
numbers of cells within a reasonable time frame.

Unsurprisingly, microfluidic technologies have emerged as a powerful
tool in a range of high-throughput screening assays (139, 140) because the
miniaturization of functional operations and analytical processes is almost
always accompanied by a number of inherent advantages when compared
to the corresponding macroscale process. Such advantages include signifi-
cant reductions in sample and reagent consumption, decreased assay costs
and high analytical throughput (1). Additionally, the high surface area-to-
volume ratios typical in microfluidic environments ensure that both heat
and mass transfer rates are enhanced, allowing for unrivalled control over
the chemical or biological environment.

Although a range of high-throughput chemical and biological screens
have been realized using microfluidic techniques, workflows that incorpo-
rate ad hoc decision making at high speed and over extended time peri-
ods have proved to be immensely challenging to implement. Due to the
speed with which results are evaluated during HTS experiments, real-time
processing capabilities are often limited to simple thresholding operations
(such as sorting droplets based on fluorescence intensity) (141). For ex-
ample, in Chapter 3 we show a droplet barcoding strategy that is based
on sorting droplets at around 500 hertz but requires implementation using
FPGA modules to achieve sufficient processing speeds. More complex deci-
sion processes on microfluidic devices, involving image-based cell sorting
for example, have thus not been shown to date.

83
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The proportional–integral–derivative (PID) controller (142) and its vari-
ants have been extensively used to control reaction conditions within micro-
fluidic devices. For example, PID controllers have been used to good effect
in controlling temperature within nL-volume chambers during on-chip
PCR (143) or improving the process of droplet generation within elec-
trowetting devices (144). That said, PIDs are quite limited in their general
applicability. In simple terms, a PID controller looks at a “set-point” (de-
fined by the user) and compares it with the actual value of the process
variable. This is effective in maintaining “homeostasis”, but less useful
when exploring complex environments (or parameter spaces). Further, due
to their one-dimensional nature it is a non-trivial process to extend their
use to multi-dimensional input and output data, without exploiting mul-
tiple separate PID controllers in a parallel fashion. Finally, PIDs assume a
symmetric environment, which is frequently not the case, for example a
temperature controller may heat the system but might not have the ability
to actively force the system to cool down other than waiting. Such unsym-
metrical environments therefore require additional controller tuning (such
as over-dampening) to ensure consistent performance (142). In contrast,
the use of an adaptable control algorithm allows the experimenter to per-
form a variety of assays using the same equipment and algorithm. In this
respect, machine learning methods constitute a promising approach to de-
veloping flexible control algorithms, as they “explore” algorithms able to
adapt to novel challenges and make predictions purely based on experi-
mental data (75).

4.1.1 Machine Learning

In simple terms, machine learning describes a class of algorithms that en-
able computers to improve their ability to perform a given task (i.e. learn)
without being explicitly programmed (145). Although, originally concep-
tualized in the late 1950s (67), it is only in the last few years that the
field of machine learning has received enormous research attention. This
is primarily due to improved access to and availability of computational
resources, which has in turn generated practical results (146). Neverthe-
less, the current generation of algorithms largely focus on achieving high
performance of specific tasks while general artificial intelligence (high per-
formance across a wide variety of problems) remains elusive (147). Accord-
ingly, state-of-the-art results typically only manage to exceed human-level
performance in a narrow problem domain, often related to pattern match-
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ing (148, 149). Indeed, machine learning algorithms have for example been
shown to excel at recognizing objects in images (148) or translating text
between languages (149).

Machine learning algorithms can be broadly sub-divided in two separate
categories, namely, those that incorporate supervised learning or unsuper-
vised learning strategies (150). The vast majority of recent studies in the
field have been obtained using supervised learning approaches (or vari-
ants thereof). In simple terms, a supervised learning algorithm attempts
to understand a problem domain using a dataset of known inputs and as-
sociated outputs. Through this dataset, the algorithm learns to map input
data to expected output data. Importantly, if the training dataset repre-
sents a sufficiently large proportion of the problem space, the algorithm
will be able to make “educated guesses” regarding the output of novel
inputs within the same problem space. Additionally, several variants of su-
pervised learning have been developed for tasks where only partial input
data are available (151, 152). Semi-supervised learning algorithms aim to
produce an estimate, when some of the output data is missing but com-
plete input data is available (151). On the other hand, in reinforcement
learning (152), training data only becomes available after interaction with
an environment. Therefore, the environment produces the target data on-
line (during the training phase).

In contrast, unsupervised learning algorithms aim to find underlying
structure in input data without any target output data being available. As
such, an unsupervised algorithm can for example cluster similar images
without any previous knowledge of the sorting criteria, by attempting to
find the maximal separation between images. If a meaningful underlying
pattern is found for a given input dataset, the pattern can subsequently
be used to simplify novel input data. For example, an image might be
simplified as a linear combination of a small set of component images
using unsupervised learning (153).

An important distinction should also be made between the processes
of altering and retraining an algorithm. Whereas a machine learning algo-
rithm is typically designed to perform well within a specific problem do-
main, it can be further specialized in its scope based by training (using a
specific training dataset). Accordingly, a given algorithm can be re-trained
and adapted to a different problem using a novel training dataset, assum-
ing that the problems are sufficiently similar in nature. As an example, im-
age classification algorithms that are able to recognize cells within images,
could be “retrained” to recognize animals without requiring any algorith-
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mic changes. However, the algorithm will most likely be poorly suited to
the analysis of videos of cells flowing through a microfluidic channel, be-
cause it will not capture the temporal relationship between video frames.
Therefore, a novel (altered) algorithm is only required if the problem do-
main is sufficiently different.

4.1.2 Artificial Neural Networks

First developed in the 1940s (154), artificial neural networks (ANNs) are a
class of algorithms inspired by (biological) neural networks found in ani-
mal brains. Such systems are made up of a collection of connected units
(termed artificial neurons), where connections between units are weighted.
When signals (scalar values) are propagated between neurons through
these weighted connections, the signal value is either amplified or damp-
ened based on the weight of the connection. Typically, neurons in ANNs
are organized into multiple layers, with data travelling linearly from an
input layer through a series of hidden layers and being read back from an
output layer.

Figure 4.1 a shows a simple example of an ANN; in this case a multi-
layer perceptron containing a single hidden layer (67). Each neuron in the
input layer receives a scalar input; for example, the gray-scale value of a
single pixel within an image. During evaluation, the input values are prop-
agated through several weighted connections to the neurons in the hidden
layer. Each neuron in the hidden layer aggregates the signal from all in-
coming connections: In a first step, the total activation of the neuron (total
input signal) is calculated using the sum of all weighted input connections.
Next, an optional transformation function (activation function) is applied
to the total value (see Figure 4.1 b). The activation function typically sup-
presses signal noise and in turn allows the ANN to converge to a more
stable solution. Popular activation functions include simple thresholding
using a binary step function (see Figure 4.1 b), sigmoidal functions or more
complex functions such as the rectified linear unit (ReLU) (155). The final
activation value of the artificial neuron is then propagated to the next layer
of neurons. This process is repeated for each neuron in each layer until a
scalar value for the neurons in the output layer is generated. Thus, given
constant weights, an ANN produces a deterministic output vector for each
possible input vector.

During training and evaluation of an ANN, the network topology and
other hyper-parameters (such as the type of activation function) are kept
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Figure 4.1 (previous page): Artificial neural network. (A) Topology of a simple ar-
tificial neural network (ANN). Circles represent arti-
ficial neurons, with arrows representing the weighted
connections between such neurons. ANNs, such as the
one shown, can be used to transform an input vec-
tor into an output vector based on the connections
between neurons. Each neuron in the input layer re-
ceives a scalar input value, such as a single pixel of
a grayscale image. These values are then propagated
to the next layer through the weighted connections
(arrows). In the shown example, each input neuron
is connected to each neuron in the hidden layer. Neu-
rons of the hidden layer subsequently aggregate all in-
put values and further process and propagate the sig-
nal to the neurons in the output layer. The final output
for a given input can then be obtained from the neu-
ron in the output layer. An example output could be
the probability that an image contains a certain object.
It should be noted that the example shown represents
one of the simplest possible artificial neural networks,
with typical ANNs containing many layers with mil-
lions of neurons and more complex connection topolo-
gies. (B) An example operation of an artificial neuron.
Initially the neuron sums all weighted input signals
from connected upstream neurons. Often an activa-
tion function is applied to this aggregate signal, such
as a simple thresholding operation. Finally, the com-
puted scalar signal is propagated down-stream to all
connected neurons.
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constant. Accordingly, an ANN can conceptually be modeled as a black
box function, which maps input data to output data on the basis of the
weights of the connections between neurons. To learn correct outputs, su-
pervised ANNs typically use a dataset containing known input-output
data pairs. The weights of the connections between artificial neurons are
then successively adapted to achieve the best output signal using an opti-
mization algorithm, such as backpropagation (156). During backpropaga-
tion, an output vector is first calculated based on a given input vector and
the current set of weights. Next a loss function is applied. This yields a
scalar that quantifies the divergence between the predicted output value
and the known, true, output value. The gradient of this loss function is
then calculated for each connection in the network, essentially quantify-
ing how much each connection contributes to the final divergence. Finally,
each weight is adjusted along its gradient, using gradient descent opti-
mization. Thus, each connection within the ANN attempts to find a local
minimum for its weight, such that it contributes as little as possible to the
final prediction error. To achieve the highest accuracy output, it is crucial
to alter the involved weights using small and incremental steps. Accord-
ingly, an ANN often requires many training passes (typically millions of
example frames) before it is fully optimized (see Figure 1.3 from (75)). Dur-
ing the training process, the structure contained in the training dataset is
gradually transferred into the weights of the ANN. It should therefore be
noted that the trained ANN is truly a black box, since the final weights
are not interpretable anymore. For example, it is rarely possible to observe
the value of a single neuron in a hidden layer and interpret its meaning or
significance in the complete decision process.

Dramatic increases in computational power as well as insights into how
many-layered (“deep”) artificial neural networks can be trained, has led
to a recent surge in the use of neural-networks in machine learning ap-
plications (147). Whilst a complete survey of recent advances in ANNs is
beyond the scope of this chapter, we would like to highlight two develop-
ments that have proved critical in the interpretation of visual data, namely
graphics processor unit (GPU)-based training (146) and convolutional neu-
ral networks (157).

Although the theoretical basis of many ANN-based models was intro-
duced and developed in the 1980s and early 1990s, computational limita-
tions prevented the implementation and training of large ANNs, made up
of millions of artificial neurons and connections (for example 6.8 million
optimizable parameters in (158)). To circumvent such limitations, software



90 reinforcement learning for microfluidic control

developments in the early 2000s began to allow the use of GPUs in training
and running artificial networks (146). GPUs were originally designed to
rapidly manipulate memory to accelerate the creation of images in a frame
buffer intended for output to a display. This operation involves the use of
an algorithm that performs a relatively simple calculation for each pixel
on a screen, in parallel, and at high frequencies (typically above 60 hertz
for modern computers). GPUs were therefore optimized to perform many
simple calculations in parallel, in contrast to the central processing unit
(CPU), which can perform single but complex operations in series. Since
most operations during ANN training and inference are easily paralleliz-
able, GPUs proved an ideal computational medium, allowing for speed
increases of several orders of magnitude (146). Unsurprisingly, to this day
most ANNs are trained and evaluated using either a GPU or custom hard-
ware (159).

The second important milestone in the interpretation of visual data us-
ing ANNs relates to the development of convolutional neural networks or
CNNs (157). CNNs employ a specific connection scheme between artificial
neuron layers, mimicking the network topology found in the animal visual
cortex. Simple perceptrons (see Figure 4.1) connect each artificial neuron
with each neuron in the following layer (to yield fully connected layers).
The core assumption for CNNs is that pixels in close proximity are more
related with respect to the output than pixels at larger separations. This
is almost always true for visual data, since pixels close to each other are
more likely to belong to the same object, whereas distant pixels will more
likely be part of two separate objects.

Figure 4.2 shows a schematic of two layers in an ANN, connected via a
convolutional connection scheme. An example neuron in the hidden layer
is connected to a set of neurons in the input layer (the so-called receptive
field). The neuron to the left of the example neuron typically employs an
identical receptive field shifted one position to the left, with receptive fields
of two neighboring neurons typically overlapping. Additionally, multiple
neurons are used to learn separate representation of the same receptive
field (visualized as a stack of neurons in Figure 4.2). A CNN typically
consists of multiple convolutional layers in series, allowing the ANN to
interpret the image using an increasing field of view. For example, if each
neuron in the first convolutional layer interprets a 3x3 receptive field in
the input image and each neuron in the second convolutional layer inter-
prets a 3x3 receptive field of the first convolutional layer, then each second
layer neuron can indirectly observe a 5x5 (due to overlap) receptive field



4.1 introduction 91

Figure 4.2: Schematic of the operation of a single convolutional neural layer. In
contrast to the fully connected ANN shown in Figure 4.1 (layer 1), a
convolutional neural network architecture only connects local neigh-
boring neurons. Numbers indicate the size of the exemplary input
matrix. Each neuron in the hidden blue layer is connected to a set
of input neurons in the red layer. Each neuron in the blue layer thus
has a specific field of view, illustrated in the schematic as a cone. The
neuron thus receives input values from all neurons within the cone
(shown as a selection of the neurons in the input layer). Multiple neu-
rons typically share the same field of view (represented as a stack of
neurons in the blue layer). Neighboring neurons (in the blue layer)
will also have an equally sized receptive field but all positions in the
input layer are shifted by one neuron. A convolutional ANN archi-
tecture generally works well if two adjacent input values are more
closely related than two distant input values, which holds true for
most visual observations.

in the original input layer. CNNs have several distinct advantages over
fully connected layers, most notably they are shift-invariant and are thus
able to give the same interpretation for images which are rotated or trans-
lated (160). Overall, CNNs have achieved state-of-the-art results in many
applications, particularly for computer vision, where CNNs have been suc-
cessfully used to categorize images into 1000 separate categories (such as
“paintbrush” or “zebra”) with very low error rates (5 %) (148).
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4.1.3 Reinforcement Learning

Reinforcement learning (RL) describes a class of supervised machine learn-
ing algorithm inspired by behavioral psychology and is concerned with
how a control algorithm (frequently called an agent) repeatedly interacts
with an environment and iteratively maximizes a reward signal obtained
from the environment (152). In simple terms, the agent observes the envi-
ronment and performs an action in the environment based on its observa-
tion. The environment is then updated based on the action, and a scalar re-
ward signal (“score”), representing in some way the quality of the action is
returned (see Figure 4.3 for an example of a microfluidic RL environment).
The general formulation of the problem allows application to a variety of
environments, including robot control (161), visual navigation (162), net-
work routing (163) and playing computer games (75).

As an example, consider a self-driving car that is controlled using rein-
forcement learning. The test environment for the self-driving car is a race
track, where the car has to complete laps without deviating from the track.
During each “step” the car will observe the environment using sensors
such as cameras and radar. Based on these observations the RL algorithm
in the car decides which action to take, such as “steer straight”, “move to
the left” or “move to the right”. The chosen action is executed, which re-
sults in the car progressing along the test track in some way. Based on the
driving performance of the car in the environment (for example, whether
it has successfully stayed on the street), a reward for the calculated action
is determined. In the example, the reward could represent whether the car
has crashed (negative reward) or whether it has completed a full lap (pos-
itive reward). Over time, the RL algorithm learns to choose actions that
increase the future reward, such that after training, the car stays on the
test track more often, and thus receives higher rewards. Accordingly, at
the core of an RL algorithm is a function which determines the optimal
next action based on a set of observations. Improving this function directly
correlates to performance improvements within the problem domain.

It should also be noted that the reward calculation within RL is entirely
defined by the experimenter. This enables alterations in the objective of
the algorithm because novel tasks can often be represented as a novel rule
set with associated rewards. In our example, if we would like to re-train
an off-road, self-driving car we could simply give a negative reward for
staying on the road. The primary disadvantage of such flexibility relates
to the required algorithmic fine-tuning, since there is no fixed set of rules
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Figure 4.3: Framing of a microfluidic reinforcement learning experiment. Rein-
forcement learning is a variant of machine learning, which allows
a controller to interact with an environment and continuously im-
prove its “performance”. Initially, an observation of the environment
is made. In the studies described herein, we observe a microfluidic
environment using a camera connected to a microscope. A reward
is then calculated from the observation using classical image pro-
cessing. Normally, a higher reward tells the agent that the previous
action has been a good choice given the current environment. Based
on the camera observation, the agent then selects an optimal action
to perform next. In our microfluidic environment, the actions are
alterations of the flow rates of constituent flow streams. Crucially,
the agent improves its performance by choosing better actions for a
certain observation, which results in an overall higher reward signal.
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for reward design. This is especially problematic because empirically small
changes in the reward calculation can result in big performance changes.

Another key challenge for RL is the fact that goal situations in challeng-
ing environments are often non-trivial to achieve as they require complex
sequences of actions, with a positive reward signal only being obtained at
the end of such a sequence of actions (reward sparsity). For example, in
a chess game the ultimate reward is obtained by winning the game, but
many preceding actions are required to win a particular game. Thus, a
successful RL strategy often judges the quality of a specific action based
on a long-term future reward and not simply immediate benefits.

Q-learning is a RL technique, which maintains an estimator function (Q-
function) for the future reward in an environment based on the current
state of the environment (164). This Q-function allows the agent to predict
the expected reward if a given action is performed in the current state. The
agent typically chooses the action with the highest expected future reward.
The Q-function is continuously updated and improved after each action,
when the real reward is received. As the quality of the estimator function
increases, so does the performance of the agent in the environment. Addi-
tionally, the choice of Q-function is independent from the algorithm, which
gives this method great flexibility (75, 165).

To date, only a small number of applications of RL in non-simulated
environments have been shown, since these environments introduce ad-
ditional challenges, such as obtaining systematic input data and exerting
tight control over the environment. However, previous examples of RL in
non-simulated environments include robotic arms grasping objects (78),
where a RL algorithm observes the spatial relationship between the grip-
per and objects in the scene, and learns hand-eye coordination, resulting
in successful grasps. Another study has shown advanced building climate
control (79), achieving reduced energy costs for room temperature control
through the use of RL control algorithms. While simulated environments
exhibit a clear correlation between executed actions and observed results,
non-simulated environments are often less predictable. Therefore, a delay
has to be applied after an action is executed, artificially limiting the in-
teraction frequency of the algorithm, to increase the correlation between
cause and effect. Furthermore, resetting the environment to a precise state
is often non-trivial in non-simulated environments, and prohibits the use
of several recent advances in RL algorithms, such as multiple parallel en-
vironments (166).
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4.1.4 Deep Q-learning

One driver for the recent surge in RL-based activities has been the success-
ful combination of RL-based learning with deep artificial neural networks.
One such implementation, Deep Q-network (DQN, see Figure 4.4) (75),
uses Q-learning in combination with a CNN to estimate future expected
reward (Q-function) directly from image data. The current visual observa-
tion of the environment is fed into the neural network, which transforms
the data and outputs an expected reward for every possible action. Sub-
sequently, the action with the highest expected reward is performed and
the real reward is obtained. Finally, the real reward is used to update the
weights within the neural network, thus improving the prediction in future
rounds. DQN and its variants (76, 166) have recently and notably achieved
human-like performance in several game environments, including ATARI
computer games (see Figure 1.3) (75) or the Chinese strategy game, Go (77).

However, a major drawback of ANN-based RL methods are the extended
training times (due to slow updates to the weights of the underlying neu-
ral network) required to prevent model over-fitting. This means, that DQN
methods need to revisit a successful situation many times during training
to fully incorporate the knowledge in the underlying model. Additionally,
a prolonged exploration phase is required, during which the algorithm
mixes random actions with predicted actions to properly explore the en-
tire environment and prevent being caught in local optima. One strategy
to accelerate the learning process involves the simultaneous use of multi-
ple asynchronous agents operating separate environments (166). However,
this process is challenging in non-simulated environments, as multiple in-
dependent experimental setups must be operated in parallel.

4.1.5 Model-free Episodic Controller

Recently, a more data-efficient RL algorithm has been proposed, namely
the Model-Free Episodic Controller (MFEC) (165). Analogous in many
ways to hippocampal learning (167), the algorithm stores a table of ob-
servations with their associated reward values. The optimal action for a
novel observation is then deduced by estimating the reward from previous
but closely-related observations. To find such closely related observations,
nearest neighbor (168) or similar techniques are most commonly used. As
its name suggests, the MFEC does not attempt to build a model of the
environment, unlike the ANN in DQN. Instead, the MFEC simply chooses
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Figure 4.4: ANN used for RL in Atari 2800 games [see (75)]. The schematic high-
lights the neural network architecture used for DQN. This neural
network represents the core part of the agent (see Figure 4.3) and
attempts to choose an optimal action based on the current observa-
tion. Initially, a visual observation (84 x 84 pixels, because it is small
enough for efficient neural network computation) is fed into three
consecutive convolutional layers, which interpret the information
contained in the input frame. Next, a fully connected layer is used to
consolidate the extracted information. Finally, an output layer con-
taining a single neuron for each possible action is connected to the
last hidden layer. Thus, the ANN judges the future reward for each
action given an input frame and typically the single action showing
the maximum reward is picked and executed in the next step.
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the action which has historically seen the largest reward. Since picking an
action is essentially a table-lookup, a single and high-reward situation can
readily be exploited, leading to greatly reduced training times when com-
pared to DQN. MFEC can thus repeat high-reward sequences of actions,
even if a sequence has only been visited a single time. However, due to the
simple choice of the previous maximum reward, MFEC methods are likely
to show decreased performance in highly stochastic environments. Fur-
thermore, as the experiment proceeds the model-free controller requires
a large amount of memory to store all previous observations. In general,
training times for the MFEC are reduced but at the cost of suboptimal peak
performance when compared to DQN.

4.1.6 Reinforcement Learning in Simulated Environments

We used VizDoom, a port of the popular 1994 video game DOOM, to test
algorithm performance during initial development (169). DOOM is a 3D
first person shooter, where the player must navigate a maze-like world and
defeat enemies using a variety of weapons. The VizDoom suite is itself
based on ZDoom (170), an open source DOOM clone adapted for easy use
in visual reinforcement learning experiments. Playing the original game
would prove extremely challenging for an algorithm due to sparse rewards.
Accordingly, VizDoom offers the possibility of creating custom scenarios
specifically adapted to reinforcement learning. Each scenario aims to pro-
vide a consistent 3D environment combined with a set of challenges to be
learned by a particular reinforcement learning-based algorithm. Crucially,
VizDoom scenarios include pre-defined rewards based on the algorithm’s
performance in the scenario. Figure 4.5 presents an example view of the
training scenario used during algorithm development (see Section “Mate-
rials and Methods: Algorithm Tests using VizDoom”) for a more extensive
description).

Testing the algorithm in a simulated environment has several key advan-
tages over immediate use in a non-simulated environment. A simulated en-
vironment can be setup and reset using simple commands, allowing for an
infinite number of unsupervised test runs. In contrast, a fully automatic
setup procedure is simply impossible for the microfluidic environments
to be investigated. Additionally, a simulated environment will run at the
maximal speed of the available computational hardware, unhindered by
interactions with the physical world. Using the VizDoom environment, we
were able to test algorithm performance at up to 500 frames per second,
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Figure 4.5: VizDoom simulated test environment. This image shows the sim-
ulated test environment used during algorithm development. The
agent spawns in the center of a room and can perform one of only
three possible actions: move left, move right or shoot. A stationary
enemy is spawned at a random position along the back wall of the
room. The challenge in this simple scenario involves aligning the
player with the enemy and then shooting to eliminate the enemy.
A positive reward is given for hitting the enemy, which also resets
the episode. Negative rewards are given for wasting ammunition
and time. We chose this scenario to evaluate initial algorithm per-
formance, since it allowed algorithm testing at rates exceeding 500

frames per second.
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which represents as rate two orders of magnitude larger than accessible
within the microfluidic environment. This decreased iteration time proved
invaluable, especially during initial software development. Rapid testing
procedures further allowed for a relatively quick assessment of the long-
term behaviour of the learning algorithms.

As with most artificial neural network systems, the algorithms used in
the current studies depend on a large parameter set, including network
topology, learning speed and interaction with the environment. The com-
bination of automatic setup and fast runtimes allowed the testing of many
hyper-parameter sets and ensured optimal algorithmic performance before
any non-simulated experiments were run. VizDoom also constitutes a de-
terministic environment, where identical actions lead to an identical game
state. We used this property to test whether algorithm implementation is
deterministic. Finally, it is important to note that running the same algo-
rithm in simulated and physical environments serves to proof its general
applicability.

4.1.7 Microfluidic Reinforcement Learning

The application of RL to high-throughput experimentation in microfluidic
environments can help mitigate several traditional drawbacks. First, inher-
ent variations in the fabrication process often lead to significant perfor-
mance differences between “identical” microfluidic devices. The use of RL
can in principle ensure consistent operation (between different devices)
despite fabrication defects, reducing the need for manual intervention and
ensuring experiment consistency. Furthermore, temporal variations in the
microfluidic environment (such as surface fouling or substrate swelling)
often prohibit consistent long-term microfluidic experimentation. This is
particularly problematic when using polydimethysiloxane (PDMS) as the
substrate material, due to the adsorption of hydrophobic molecules onto
the substrate (119). In such situations, application of RL can be used to
maintain stable flow conditions over extended time periods.

Even though many detection methods have been adapted to and inte-
grated with microfluidic environments (1), optical bright field microscopy
remains one of the simplest and most commonly available detection meth-
ods. That said, the rapid interpretation of raw visual data and subsequent
interaction with a microfluidic environment is traditionally only feasible
using purpose-built, and thus inflexible algorithms. Accordingly, RL has
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great potential for inclusion into complex microfluidic assays, since it al-
lows for automated but general decision-making based on visual data.

In the current study we decided to use reinforcement learning to nav-
igate fluidic control problems. The two challenges involved controlling
the size of a water-in-oil droplet formed at a flow focusing geometry and
positioning a laminar interface between two miscible flows within a mi-
crochannel. In both cases the algorithm is used to control the volumetric
flow rates of piston-based pumps that deliver fluids into a microfluidic de-
vice. Significantly, all decisions are solely based on visual observations of
the microfluidic device using a standard microscope. In both experiments,
the control algorithm maximizes a scalar reward, calculated independently
for each frame using classical image processing. Even though the reward
signal is calculated from the same frame used by the controller, this is not
strictly necessary, and the reward could be calculated independently (e.g.
from observations obtained at a different position along the microfluidic
channel).

Limitations on training speed are less problematic if an environment
can be queried at high speed. This is typically the case for simulated envi-
ronments, but microfluidic environments cannot be controlled at arbitrary
rates, due to a range of physical limitations, including the delay between
altering a flow rate and the flow rate within the microchannel actually
changing and available camera frame rates. Given that the obtained re-
wards are arbitrarily scaled, we chose to compare the control algorithms
to a human tester and a random agent performing the same task.

To the best of our knowledge this study represents the first example of
reinforcement learning in a microfluidic environment. We believe the abil-
ity for intelligent control in dynamic environments, such as those within
microfluidic devices, will enable more reproducible and long-term micro-
fluidic experimentation. Since the examined situations represent two ba-
sic, but fundamentally different fluidic challenges, we note that this study
serves as proof-of-concept for the wider applicability of machine learning
to microfluidic research and high-throughput screening in the chemical
and biological sciences.
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4.2 materials and methods

4.2.1 Investigate Fluidic Environments

We are considering two fundamentally different fluidic challenges for the
RL algorithms to solve. In a single-phase laminar flow environment the
control algorithms are adjusting the flow rates of two differently colored
aqueous solutions and thereby influence the position of the laminar flow
interface between the two phases in a microfluidic channel, attempting to
position this interface at 30 % of the channel width.

In a two-phase dispersed flow environment the algorithms control the
flow rates of two phases, a continuous phase of fluorinated oil (HFE7500;
3M, Rüschlikon, Switzerland) and an aqueous dispersed phase. We use
flow-focusing (13) to produce regularly sized microfluidic droplets on chip
from these two immiscible phases. Altering the flow rates results in the
production of differently-sized droplets and the control algorithms aim to
produce droplets of 54 µm diameter.

Both environments limit the attainable flow rates between 0.5 µL/min
and 10 µL/min in 0.5 µL/min steps. Interaction frequency is limited to 1.5
hertz and the environments are reset to random flow rates after a fixed
number of interaction (250 interactions), thereby splitting the challenge
into separate episodes. Due to extensive training times we have ended
separate experiments at different points, after a performance plateau was
reached.

4.2.2 Experimental Setup

Microfluidic devices were fabricated using conventional soft lithographic
methods in polydimethylsiloxane (119). A detailed description of the fab-
rication process is provided in Chapter 2, and it should be noted that for
the current experiments all microfluidic channels were 50 microns deep.
Deionized water and deionized water containing 1 % v/v ink were used as
the two phases for the laminar flow experiments. For droplet-based experi-
ments the same ink solution was used as the dispersed phase and HFE7500

(3M, Rüschlikon, Switzerland) containing 0.1 % wt/wt EA-surfactant (Pico-
Surf 1; Sphere Fluidics, Cambridge, UK) was used as the continuous phase.
Two piston-based pumps (milliGAT; GlobalFIA, Fox Island, USA) were
used to deliver fluids and control volumetric flow rates, and high-speed
fluorescence camera (pco.edge 5.5; PCO AG, Kelheim, Germany) was used
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to observe fluids through an inverted microscope (Ti-E; Nikon GmbH, Egg,
Switzerland) equipped with a 4X objective (Nikon GmbH, Egg, Switzer-
land).

4.2.3 Data Pre-Processing

Observations from the high-speed camera are minimally pre-processed be-
fore being fed as an input into the controller. Initially, the raw camera
frame is converted to a floating-point representation, where a pixel value
of 0.0 corresponds to a black and 1.0 corresponds to a white pixel respec-
tively. Finally, the frame is resized to a size of 84 x 84 pixels, according to
the original publication (75).

4.2.4 Reward Calculation

The reward estimator for the laminar flow environment evaluates the po-
sition of the laminar flow interface across the microfluidic channel by per-
forming a thresholding operation on the raw frame. The dye-containing
solution yields black pixels, whereas the clear solution produces white pix-
els. The interface position is then estimated using the average intensity of
pixels across the complete image. Finally, the reward is calculated as an
error between the current position and the desired position. It should be
noted that the desired position was chosen to be one third of the channel
width to prevent the “simple” solution of using the maximum flow rate on
both pumps. The reward in the droplet-based experiments was calculated
by detecting the radii of droplets in the observed frame. Initially, both
Gaussian blur (5x5 kernel) and Otsu thresholding (171) operations were
applied to achieve proper separation of the black, dye-containing droplets
from the background. A dilation operation (with a 3x3 kernel) was then
used to additionally discriminate the droplets from the channel walls. Sub-
sequently, circles were detected in each processed frame using a Hough
circle transform (172) and the radii of all detected droplets extracted. The
final reward is calculated from the mean error between the droplet radii
and a desired radius of 27 pixels (corresponding to 54 µm). All reward cal-
culations were performed using classical image processing employing the
OpenCV Python module (173). It should also be noted that both reward
calculation methods produce noisy estimates, providing an additional chal-
lenge to the RL agent.
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4.2.5 Environment Characterization

Due to the limited complexity of our model environments, we chose to
perform a full characterization of the reward space. Using an automated
scheme, observations for every possible flow rate combination were ob-
tained and post-processed offline, using the respective reward estimators.
However, it should be noted that the obtained reward surface is specific
to a single microfluidic device, since variations in the manufacturing and
treatment process of identical devices result in an altered reward surface.

4.2.6 DQN Algorithm

Our DQN architecture is similar to the dueling network architecture re-
ported by Wang and co-workers (76). Specifically, we used raw camera
frames as inputs to the neural network-based Q-function. However, due to
reduced update rates, we used an initial random phase of 10’000 frames
and an annealing phase of 135,000 frames (number of frames to change
from 100 % random actions to 0.05 % random actions). Furthermore, we
updated the target network parameters every 5000 frames, storing and
learning from only the most recent 50,000 frames. We used a custom DQN
version, implemented in Python 2.7 using Keras (174) and the Theano (175)
backend running on Windows 7 (Microsoft Corporation, Redmond, USA).
For training and inference of the involved ANN we used a GPU (Quadro
K2000; Nvidia, Santa Clara, USA). Finally, we used custom Python scripts
to post-process and visualize results.

4.2.7 Model-free Episodic Control Algorithm

We used a custom version of MFEC, implemented using Python 2.7 accord-
ing to the architecture outline described by Blundell and co-workers (165).
We use an approximate nearest neighbor search to determine related ob-
servations [Locality Sensitive Hashing forest (176), LSHForest, implemen-
tation provided by the sklearn Python module (177)] with 10 estimators.
This method was chosen since it allows for a partial fit (addition) of new
data, without the need to recalculate the entire tree for each new observa-
tion. Such a complete re-balancing of the tree is only performed in 10 %
(randomly sampled) of data additions. Observations are pre-processed us-
ing the same pre-processing pipeline as DQN. Subsequently, input frames
are encoded using a random projection into a vector with 64 components.
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We chose random encoding because it shows similar performance, when
compared to a more complex encoding scheme using a variational auto-
encoder (165). The MFEC algorithm requires the environment interaction
to be split up into episodes (regular intervals at which the complete envi-
ronment is reset, and performance evaluated).

4.2.8 Algorithm Tests using VizDoom

We used a basic scenario included with VizDoom (169) for algorithm test-
ing (see Figure 4.5). In this scenario, the player starts in the center of a
small room, with a static enemy being spawned at a random position on
the far end of the room. The goal is to simply eliminate the enemy using a
series of the following actions: walk left, walk right or shoot. Accordingly,
the algorithm must line up the player with the enemy and then shoot. A
large reward is given for hitting the enemy, at which point the scenario is
restarted. A missed shot is punished with a negative reward and the al-
gorithm additionally obtains a small negative reward after each action, to
punish indirect paths to the solution.

4.2.9 Benchmarking Learning Performance

To benchmark controller performance in the fluidic environments, we used
scores obtained by a human tester and a random agent. Random perfor-
mance benchmarks were obtained by choosing a random action from the
available action set every frame and recording the obtained rewards. The
random agent represented a lower bound on performance and served to
check initial DQN performance, as it is expected to be random. Human-
level performance results were obtained by having two separate, trained
human agents solve an identical task (observation at the identical position,
with identical resolution and an identical action set) for approximately 30

minutes while recording the rewards. Prior to benchmarking, each human
tester was given an explanation of the underlying physics and allowed to
practice the task for at least 30 minutes. All benchmarks shown represent
the mean reward obtained as well as a 95 % confidence interval.
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4.3 results and discussion

4.3.1 Laminar Flow Control

Low Reynolds numbers (Re) are typical for fluids flowing through micro-
fluidic channels, with fluid flow being dominated by viscous forces rather
than inertial (turbulent) forces (1). Such low Reynolds numbers are char-
acterized by the existence of laminar flows, where fluid flows in parallel
layers, with no disruption between the layers. The ability to control and
align the interface between two co-flowing streams within a microfluidic
channel is critical in many applications (see Figure 4.6 a). In the current
experiments, which involve the confluence of two aqueous streams under
low Re, this interface is made visible by the addition of ink to one of the
input solutions (see Figure 4.6 b).

We use the presented environment (see Figure 4.6 a) to investigate auto-
matic control over a laminar flow environment. The controller repeatedly
alters the flow rates of the constituent fluid phases resulting in various
laminar flow interface positions. After a fixed number of interactions (250,
corresponding to one episode) the environment is reset to random flow
rates and the controller restarts its task.

While we use this system as a simplified proof-of-concept model, there
are several applications which require the establishment and control of
a stable linear interface between two co-flowing phases, such as the con-
trolled synthesis of vesicles (178) or droplet trapping and transport sys-
tems (179).

The volumetric flow rates of each flow stream are limited to values be-
tween 0.5 µL/min and 10 µL/min (resulting in total flow rates between
1 µL/min and 20 µL/min), representing typical flow rates used in micro-
fluidic experimentation over extended time periods. As previously indi-
cated, flow rates are set to random values within this acceptable range at
the start of every episode. The challenge then involves adjustment of the
flow rates such that the fluid interface moves to an (arbitrary) optimal posi-
tion (30 % of the channel width) within one episode (corresponding to 250

interactions). The scalar reward for the previous action is defined as the
proximity of the laminar flow interface to the optimal position, which is
extracted from the captured frame via classical image processing methods.
The control algorithm adjusts the volumetric flow rates by performing one
out of five discreet actions, namely, increasing or decreasing the flow rate
of the continuous phase, increasing or decreasing the flow rate of the dis-
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Figure 4.6: Laminar flow control. (A) Schematic of a standard laminar flow en-
vironment, established in a microfluidic device. Two aqueous solu-
tions are introduced into a common microfluidic channel. One so-
lution contains a dye to allow direct visualization of the interface
between the two streams. The control algorithm is used to alter the
volumetric flow rate of both input streams, thereby influencing the
position of the interface in the channel cross-section (being quanti-
fied by d). (B) Example image frames captured during the training
phase (scale bar - 150 µm). Depending on the volumetric flow rates
of the input streams, the laminar flow interface will occupy a dif-
ferent position across the channel width. It should be noted that a
small number of trapped bubbles can be seen along the lower chan-
nel wall. These bubbles originate due to fluidic defects (aspiration
of air in the piston-based pumps) and pose an additional challenge
to the control algorithm, by increasing the amount of noise in both
the reward calculation and the observed frame. (C) Results of a com-
plete environmental characterization of a single microfluidic device.
Rewards are shown for various flow rates (fr1, fr2, from 0.5 µL/min
to 10 µL/min). An optimal flow rate regime can be observed, which
produces a desired value (d in panel A) of 30 % of the channel width.
However, due to variations in the fabrication and setup process, re-
ward surfaces will be different for different experiments, even when
using “identical” microfluidic devices.
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persed phase, or maintaining the flow rates unchanged. An optimal fixed
step size of 0.5 µL/min was determined empirically to limit any strain
on the pumps and ensure that an optimum is found within one episode.
Additionally, control algorithms were limited to 1.5 hertz interaction fre-
quency to prevent equipment damage and enhance the coupling between
the performance of an action and the observation of the resulting condi-
tions within the microfluidic systems.

4.3.1.1 Environment Characterization

Figure 4.6 c shows a complete characterization of a reward surface for the
laminar flow challenge. Intuitively, it is expected that the position of the
laminar flow interface should be correlated with the ratio between the flow
rates of the two fluid phases. Indeed, the reward surface shown clearly
identifies an optimal region, where the flow rates produce the desired in-
terface position and thus achieve high rewards. However, as previously
noted, the data graphically shown in Figure 4.6 c is valid for a specific
microfluidic device, with replicate devices (having the same putative di-
mensions) exhibiting significantly different behavior due to variations in-
trinsic to the fabrication process.

4.3.1.2 Laminar Flow Control using DQN

Figure 4.7 shows algorithmic performance in the laminar flow environ-
ment. Inspection of Figure 4.7 a indicates that DQN performance during
the first 5500 frames (approximately one hour in experimental time) is
comparable to the performance of the random agent due to the initial ex-
ploration phase of the DQN, where the share of predicted actions is slowly
increased from 100 % random actions to 95 % controller-based actions (see
Figure 4.7 a, where the exploration phase ends after 27 hours). Over the
course of the next 36 hours of training (which equates to approximately
195,000 image frames) the algorithm manages enhance performance to a
level that is comparable to a human tester, at times even surpassing human-
level performance (e.g 27 hours to 37 hours during the “blue” experiment).
It is also observed that although separate experiments indicate the same
general trends in performance, short term performance variations differ
markedly between experiments. We hypothesize that performance should
be improved further through the use of longer training phases, noting that
typical benchmarks for ATARI environments involve training for up to
200 million frames (180). Such an approach was impractical in the current
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study, since the testing of 200 million frames would correspond to over 4

years of training time at the investigated frame rates.
During the initial exploration phase, as the share of random actions is

slowly reduced and DQN improves its accuracy, a gradual increase in per-
formance is expected. Even though such a trend is apparent, some exper-
imental runs required longer than the initial exploration phase to realize
peak performance. We hypothesize that the control algorithm is captured
within the vicinity of a local minimum during poorer performing experi-
ments. That said, such effects could be mitigated through the use of mul-
tiple asynchronous experimental setups, such as A3C (166), which allows
the controller to interact with multiple similar environments at the same
time, greatly reducing the chances of being captured in such a local op-
timum. However, while using multiple environment is trivial when us-
ing simulated environment, it is unpractical in real-world scenarios. It is
also noted, that all experiment repeats surpassed the performance of hu-
man testers eventually. Generally, performance fluctuated around human-
level performance after 48 hours (approximately 260,000 frames) of train-
ing. However, we could observe that longer run times did not significantly
improve performance.

In the current study, DQN is retrained from scratch for each new experi-
ment. Accordingly, in future experiments, algorithm training from pooled
experimental data (collected using multiple devices over multiple experi-
ments) could improve the stability of the control algorithm across a wider
variety of situations.

On a practical level, deposition of debris within microfluidic channels
often leads to blockage, with gas bubble accumulation leading to flow sig-
nificant instabilities. Accordingly, it is remarkable that the presented con-
trol algorithm is successful in maintaining performance and adjusting to
changing conditions over extended periods of time. Indeed, the presence of
a gas bubble appears to have only short-term effects (see inset highlighting
the performance dip shown in Figure 4.7 a), with the algorithm recovering
quickly after the bubble dissipates. However, it should also be noted that
we did not uncover evidence of the algorithm learning how to get rid of
the bubbles actively within the observed time frame. That said, such a
feat would constitute a non-trivial task even for human operators! Conse-
quently, we conclude that DQN is able to achieve human-level performance
for the laminar flow challenge, albeit requiring considerable training time
to achieve peak performance. We find that DQN is well-suited to the auto-
mated handling of real-world complications that arise due to the extended
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Figure 4.7 (previous page): Controller performance during laminar flow control
(inset width - 150 µm). Benchmark performance (ran-
dom and human-level, highlighted using icons) are
indicated using mean performance and 95 % confi-
dence intervals. (A) Results of the DQN controller
in the laminar flow environment. Three experimen-
tal runs are shown, highlighting that DQN can attain
human level performance for the laminar flow chal-
lenge. It can be seen that each experiment initially ex-
hibits a random performance level, as is expected for
an untrained controller. Furthermore, it is observed
that controllers exhibit variable performance improve-
ments over time, with all experiments eventually sur-
passing human performance. In this respect, it should
be noted that some of the sharp drops in performance
(for example the "green" experiment run at around
22 hours, see inset) are due to experimental compli-
cations. For example, as shown in the inset, a gas bub-
ble trapped within the field of view of the camera
disturbs both reward calculation and controller per-
formance. (B) MFEC performance in the laminar flow
challenge. The MFEC exhibits a rapid learning capa-
bility and shows peak performance within two hours
of training. However, absolute performance is lower
than DQN, and for this task remains below human-
level performance. In a similar fashion to DQN ex-
periments, sharp drops in performance are observed
when bubbles become trapped within the microchan-
nel (see inset), but interestingly MFEC performance
recovers more rapidly than for DQN controller, which
is expected because the MFEC does not require visit-
ing a particular situation multiple times to incorporate
it into the control scheme.
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experimental time-frames, enabling automation of a variety of long-term
experiments. Therefore, our results highlight for the first time, the capa-
bilities of DQN for maintaining complex control situations in microfluidic
devices based on visual inputs over extended time periods.

4.3.1.3 Laminar Flow Control using MFEC

The MFEC is able to achieve peak performance within the first 11,000

frames (approximately 2 hours of experimental time). This compares fa-
vorably to the 130,000 frames (or 24 hours of experimental time) needed
by DQN (see Figure 4.7 b). Such a situation is to be expected, since ev-
ery single rewarding situation can be exploited by the algorithm. However,
the maximum performance achieved by the model-free controller did not
consistently reach human-level performance (unlike DQN), albeit show-
ing only marginal reduction in performance (typically 90 % of human-
level performance in terms of achieved scores). In a typical experiment
this might pose an acceptable trade-off, given the significant reductions in
initial training time.

Similar to the disturbances observed during DQN experiments, sharp
performance drops were detected when a bubble enters the microfluidic
channel (see inset highlighting the performance dip shown in Figure 4.7
b). However, the model-free controller exhibits a substantially faster recov-
ery, once the bubble dislodges and the environment reverts to the default
state, when compared to the DQN controller. We hypothesize that such
behaviour is due to the model-free nature of the MFEC algorithm, which
does not update an internal model when encountering flawed observa-
tions caused by short-term fluctuations. Therefore, the MFEC can quickly
recover performance as soon as the bubble is dislodged, and normal ob-
servations are obtained again. Furthermore, empirically the model-free
controller shows less performance fluctuations than DQN, especially over
long time-frames. Indeed, due to its consistent performance, the MFEC is
well-suited to the control of relatively simple experimental environments,
where slightly reductions in peak performance are acceptable. In practi-
cal terms, the short training time requirements heavily favor MFEC over
DQN, since training a controller in a few minutes is simply not feasible
using DQN.
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4.3.2 Droplet Size Challenge

Under certain circumstances, co-flowing two immiscible fluids through a
narrow orifice (a flow-focusing geometry) within a microfluidic channel re-
sults in the formation of monodisperse droplets of one of the fluids within
the other (1). Importantly, these droplets represent separate reaction con-
tainers and can be produced at rates exceeding 10,000 droplets per second.
Unsurprisingly, such segmented-flow formats have attracted enormous at-
tention from the biological research community and are now an essential
part of high-throughput experimental platforms for single-cell genomic se-
quencing (66), early stage kinetic studies (181) or high-throughput screen-
ing (21).

The goal of the droplet size challenge was to adjust the flow rates of
the two droplet forming phases to produce droplets of a predetermined
size (see Figure 4.8 a). In a similar manner to the laminar flow challenge,
volumetric flow rates are limited to values between 0.5 µL/min and 10

µL/min, with the step size being fixed to 0.5 µL/min and the interaction
frequency limited to 1.5 hertz. Furthermore, the control algorithms inter-
act with the environment using the same set of actions used in the lami-
nar flow challenge, i.e. increasing or decreasing the flow rates of the two
droplet-forming phases, as well keeping the flow rates constant.

4.3.2.1 Environment Characterization

Figure 4.8 c shows an exemplar reward surface for the droplet size chal-
lenge. In a similar manner to the laminar flow reward surface (see Fig-
ure 4.6 c), results indicate optimal flow rate ratios, which frequently pro-
duce droplets of the correct size (e.g. continuous phase (fr1) = 5 µL/min
and dispersed phase (fr2) = 3.2 µL/min resulting in a diameter of 54 µm).
However, the boundaries of this optimal region are much less well defined
than those observed in the laminar flow challenge. Furthermore, we found
larger variations between reward surfaces originating from separate micro-
fluidic devices. We believe this increased uncertainty stems from the sensi-
tivity of the droplet formation process to surface wetting effects (182), as
well as the circle Hough transform used in the reward calculation, which
in turn results in a noisier reward signal. On the basis of the direct compar-
ison between reward surfaces, we expect that the droplet size environment
will require a more sophisticated control solution, providing additional
challenges for the control algorithms applied.
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Figure 4.8: Droplet size challenge. (A) Schematic illustration of the droplet size
challenge. Droplets are produced at a flow-focusing junction by co-
flowing an aqueous solution (containing a dye) with an immiscible
oil phase. The control algorithm attempts to optimize the flow rates
of the constituent solutions such that droplets of the desired size
(optimal droplet diameter d = 30 pixels = 54 µm) are produced. (B)
Example frames captured during an experimental run (scale bar - 150

µm). Droplets of varying diameters are produced depending on the
magnitude of the input flow rates. (C) An example reward surface
for a complete scan of the environment for various flow rates of the
dispersed phase (fr1) and the continuous phase (fr2) both within a
range of 0.5 µL/min to 10 µL/min. An extended region exhibiting
high rewards exists but the boundaries are less clearly defined than
the reward surface shown in Figure 4.6 c.
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4.3.2.2 Droplet Size Control using DQN

Starting from random performance, the DQN controller typically managed
to surpass human-level performance prior to the end of the exploration
phase (see Figure 4.9 a). As in the case of the laminar flow challenge,
superhuman-level performance was achieved in all experiments, despite
the fact that short-term performance variations and absolute performance
variations can be observed between experiments. Again, this is unsurpris-
ing, given that separate experiments utilized different microfluidic devices,
different reagent solutions and were performed at different times. Given
that similar differences in maximal performance were observed when us-
ing the MFEC, it is likely that such differences originate partially from
differences in the fabrication, surface treatment, and during initial setup
of the microfluidic platform (connecting the microfluidic device to pumps
and aligning the optical setup). However, since RL in non-simulated en-
vironments constitutes a stochastic process, performance variations stem-
ming from the algorithm (due to capture in local optima) are also expected,
especially given the limited training times involved.

In a similar manner to the laminar flow challenge, large-scale perfor-
mance fluctuations over extended time periods were observed. This could
be explained by increased sensitivity of droplet formation to surface wet-
ting effects, when compared to the single-phase system examined in the
laminar flow challenge. For example, Xu and co-workers have shown that
altering the wetting properties by changing the surfactant concentration
results in different co-flow regimes, varying between laminar flow and
droplet flow (182) due to surface aging effects of the PDMS microfluidic
device. Therefore, reaction conditions in the flow focusing geometry are ex-
pected to vary greatly, as surface conditions change over long time-frames.
Further, long-term experiment drift can also be caused by small-scale fluid
leakage, as previously faulty fluidic connectors loosen more over time, in-
creasing fluid leakage further. However, despite these phenomena DQN
performance was observed to remain close to or exceed human-level per-
formance. Such results clearly indicate that DQN is a viable option for
maintenance of reaction conditions during long-term microfluidic experi-
ments, even in complex environments.

4.3.2.3 Droplet Size Control using MFEC

The performance of the MFEC in the current task was outstanding and
on par with DQN performance (see Figure 4.9 b). Typically, the model-
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Figure 4.9 (previous page): Controller performance in the droplet size challenge.
Benchmark performance values (random and human-
level, highlighted using icons) are indicated using
mean performance and 95 % confidence intervals. (A)
DQN is able to surpass human-level performance in
the droplet size challenge. However, the experimen-
tal runs exhibit different absolute performance levels.
While this difference, in part, can be attributed to vari-
ations in the fabrication and setup process it most
likely stems from the stochastic learning process un-
derlying RL. (B) MFEC excels in the droplet size chal-
lenge, with the controller quickly surpassing human-
level performance and maintaining high performance
levels throughout the whole experiment.

free controller achieves human-level performance very soon after the start
of the experiment and rapidly surpasses it for most of the time. Interest-
ingly, after quickly surpassing human-level performance, one experiment
("green" data in Figure 4.9 b) showed a slow but steady decline towards
human-level performance over the next 20 hours. Since we did not observe
a similar decline in any of the following experimental repeats, we believe
that this effect was specific to the device and that the gradual decline was
caused by an aged surface treatment solution, only resulting in temporary
adherence of surface coating silanes to the channel surface (183).

In general, the MFEC is very well-suited to the droplet size challenge.
The absolute performance of the MFEC is comparable to DQN and almost
always superior to human-level performance. Even though significant at-
tention was focused on ensuring a level playing field for the human testers
(see Experimental Methods: Benchmarking Learning Performance), we be-
lieve that the super-human performance observed in this task is partly
due to the rapid decision making available to the algorithm. Indeed, the
human and control algorithm are adjusting droplet formation happening
at approximately 1000 hertz. Even though human testers are not limited by
a fixed interaction frequency, we could observe that interactions at rates in
excess of 1.5 hertz (interaction frequency of the algorithm) were challeng-
ing to our testers.
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4.4 conclusion

Given the rapid decision making inherent to modern computational sys-
tems, there are numerous microfluidic tasks that can be performed in a
previously unachievable manner using machine learning methods. This is
especially true for operations which are currently performed using fixed
or manually tuned parameters.

Herein, we have demonstrated for the first time that state-of-the-art ma-
chine learning algorithms can surpass human-level performance in micro-
fluidic-based experiments, solely based on visual observations. Moreover,
we have confirmed such a conclusion through the use of two different re-
inforcement learning algorithms, based on neural networks (DQN) and
episodic memory (MFEC) respectively. We hypothesize that a combination
of these algorithms could provide a solution that leverages the advantages
of each method. For example, MFEC could provide initial guesses, via
rapid policy improvement, that could then be used to improve DQN train-
ing. This would almost certainly decrease the overall time required for
DQN to reach peak performance (which as shown herein is super-human
in all studied environments).

Bright-field microscopy is one of the most commonly used experimental
techniques in chemical and biological analysis due to its simplicity and
high information content. Since visual observations are exclusively used
in the current experiments, the proposed control algorithms are easily inte-
grated into existing experimental setups. Moreover, we found that the com-
putational requirements for learning were much lower than anticipated,
presumably due to the fact that the rate limiting step was typically the
interaction with the physical environment and not controller evaluation.
This further highlights the applicability of reinforcement learning to vari-
ous microfluidic environments.

At a more general level, this study purposely used proof-of-concept level
challenges. Therefore, simpler control algorithms, such as PID controllers,
could be applied to such environments. That said, it should be noted that
due to their general-purpose nature the investigated algorithms are likely
to perform well in a large variety of visual tasks. Indeed, a novel envi-
ronment is simply established by defining a reward function and then
re-training the same algorithm. Accordingly, further research will extend
the presented findings by investigating more complex environments us-
ing the same algorithms. Finally, we believe that this study highlights the
benefits of combining experimental platforms with “smart” decision mak-
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ing algorithms. To date, there have been few applications of reinforcement
learning in non-simulated environments. Nevertheless, we expect that a
large variety of microfluidic-based experiments could be used to generate
state-of-the-art results through the use of advanced interpretation or con-
trol algorithms. Examples of such experiments include the manipulation
of organisms on chip, cell sorting or reaction monitoring. To conclude, and
based on the results presented herein, we think that reinforcement learning
and machine learning in general has the potential to disrupt and innovate
not only microfluidic research but many related experimental challenges
in the biological and life sciences.



5
D E E P L E A R N I N G E N A B L E D R E A L T I M E C E L L
S O RT I N G

5.1 introduction

5.1.1 Cytometry

Cytometry, the measurement of the characteristics of cells, is a key tech-
nique in cell biology (184) and medical diagnostics (185). Cytometric meth-
ods allow for the quantification of a large variety of cell properties includ-
ing cell number, morphology (cell size, shape and internal structure) and
aggregation. When paired with molecular staining methods, cell cytometry
additionally allows for the detection and analysis of various intracellular
biomolecules, such as proteins (intracellular and cell membrane bound) or
nucleic acids (184, 185).

Image cytometry, where static cells are observed under a microscope, is
the oldest form of cytometry, initially developed in the late 19th century
by Louis Charles Malassez amongst others (186). Here, cells under obser-
vation are stained to improve contrast and subsequently imaged through
a microscope. Modern imaging cytometry systems are often partially auto-
mated, nevertheless their static nature inherently limits the throughput of
such systems (187).

In contrast to the imaging of static cells in conventional cytometry, flow
cytometry analyzes cells that are rapidly moving through a detection vol-
ume (188). Typically, the cellular population under investigation is hydro-
dynamically focused using an additional sheath flow, which lines up the
cells in single file before they pass through the detector. In the vast ma-
jority of embodiments, flow cytometers do not image the transiting cells,
but instead measure various optical properties such as forward-scattered
light (which is proportional to cell-surface area or size), side-scattered light
(which is proportional to cell granularity) and fluorescence emission (188).
The ability to move cells through the detection volume at high linear ve-

This work has been developed in collaboration with Gregor Holzner, who provided hardware
and the C++ control software.
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locities means that modern flow cytometers can assay cells at through-
puts between 10

4 and 10
6 cells per second (188). Accordingly, the multi-

parametric data obtained using flow cytometry has significant utility in
medical diagnosis and the characterization of large and heterogeneous cell
populations (184, 185, 187).

Fluorescence-activated cell sorting (FACS) is a direct extension of flow
cytometry and enables the sorting and isolation of specific cells based on
the observed characteristics (189). FACS allows cellular populations con-
taining multiple cell types to be partitioned into separate sub-populations
based on their optical properties. This is achieved by splitting the cell sus-
pension into charged droplets, each containing no more than one cell, us-
ing a vibrating nozzle. These charged droplets are subsequently passed
through an electric field where they can be selectively directed towards
one of several containers via electrostatic deflection. Selective enrichment
through purification has proven to be extremely powerful in enabling novel
methods in protein engineering (134) and single cell analysis (190).

Despite the fact that point-based flow cytometers and FACS systems
allow the high-throughput and high-sensitivity analysis of cellular popula-
tions, the information content, on which the sorting decision is based is in-
herently limited due to the use of one-dimensional point detectors. To this
end, much effort has recently focused on the development and application
of imaging flow cytometry (191). Imaging (or image-based) flow cytome-
try combines the high-throughput characteristics of standard flow cytom-
etry with the imaging capabilities of optical microscopy to allow for high-
resolution imaging of single cells within flowing environments (191, 192).
Over the last decade, a number of novel benchtop systems have been devel-
oped, allowing for multispectral imaging of cells in flow (193–195). Such
high-information content data has been used to localize fluorophore la-
beling within intracellular environments, successfully identify sub-cellular
structures (196) and also probe the stages of apoptosis with high-temporal
resolution (192).

5.1.2 Microfluidic image-based flow cytometry

Traditionally, visual data obtained using a microscope has been analyzed
manually. This is a time-consuming process often yielding highly biased
results due to inconsistent analytical practices and human interpretation.
Importantly, software tools such as ImageJ (136) and CellProfiler (197) have
been developed to automate aspects of the data processing pipeline. By
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enabling the experimenter to perform identical processing steps on all
image data, automated tools greatly enhance the reproducibility of the
data processing pipeline. However, the analysis of image data is more
time-consuming than one-dimensional data, even with the aid of modern
tools. Thus, the implementation of real-time data processing platforms re-
quired for cell sorting has proven particularly challenging, often necessi-
tating advanced computational techniques such as multi-threading (198),
or specialized computational hardware such as field-programmable gate
arrays (FPGA) or graphics processing units (GPU) (187). Nevertheless, re-
cent studies have demonstrated the feasibility of image-based sorting of
particles or cells based on fluorescence (199) or cell deformability (200).
That said, it is fair to say that novel image-based sorting algorithms typ-
ically involve hand-crafting sorting criteria and non-trivial programming
of a separate data processing pipeline (200). Optimally, a classification al-
gorithm is easy to develop and adapt to novel problems. It should further
minimize hand-engineering of classification rules.

Recent advances in machine learning have yielded state-of-the-art per-
formance levels in a range of vision-based tasks, including image classifi-
cation (69). Many of these results have been achieved by using algorithms
based on artificial neural networks (ANN). These networks imitate bio-
logical computation as performed in the animal brain (201). Specifically,
data are processed via artificial neurons organized into layers. Numer-
ous weighted connections exist between neurons of different layers and
information is stored in the weights of these connections (resulting in am-
plification or dampening of transferred signals). Typically, an ANN con-
sists of an input layer, several hidden layers and an output layer. In the
classical supervised case, an ANN is trained using a dataset of known
input-output pairs. Therefore, while requiring large datasets for training,
a neural network-based classifier can be automatically trained to perform
novel classification experiments, rendering ANNs a highly promising can-
didate for flexible image-based cell sorting systems. The interested reader
is directed to Chapter 4 for a more detailed introduction to ANNs and
machine learning in general.

In the current study we employ a neural network-based image classifi-
cation pipeline at the core of a flexible real-time cell sorting and flow cy-
tometry architecture. We additionally use an elasto-inertial focusing strat-
egy recently developed by Holzner and co-workers to align micron-sized
species (cells or beads) at the center of the channel prior to detection (202).
Training data are obtained by recording images from pure cell populations



122 deep learning enabled real time cell sorting

in separate experiments prior to classification. Subsequently, the neural
network-based image classification algorithm is trained offline using the
collected dataset. Finally, a mixed analyte population is sorted and pu-
rified in real-time using the trained neural network. To our knowledge,
these studies represent the first example of using neural network-based
image classification in combination with microfluidic sorting technology
to achieve real-time cell sorting.

5.2 materials and methods

5.2.1 Experimental Setup

PDMS microfluidic devices were manufactured using standard soft-litho-
graphic technique that are described in more detail in Chapter 2 (119).
Specifically, the microfluidic device consists of a elasto-inertial focusing
channel (square cross section 50 µm x 50 µm) and 4.15 mm length. The
sorting junction (see Figure 5.2 b) consists of a 4-way microfluidic junction,
located after the focusing channel and integrated push-down valves (203),
located in a separate PDMS layer above the fluid layer.

Figure 5.1 provides a schematic of the entire optical setup used to per-
form the real-time analysis of cells in flow. The system allows for both
bright-field and dark-field illumination of the sample, albeit we only used
bright-field illumination during the current experiments. The optical sys-
tem is self-contained, providing integrated illumination, magnification and
sample detection. Observations during bright-field observation were mag-
nified using a 20X objective (Nikon GmbH, Egg, Switzerland). After pass-
ing through a 50/50 mirror (only required for dark-field observation), the
beam was cleaned using an iris (CP205; Thor Labs, Newton, USA) and de-
tected using a high-speed camera (UI 3060 CP; IDS, Obersulm, Germany).

Sample is pumped into the microfluidic device using a piston-based
pump (milliGAT, Globalfia, Fox Island, USA). Preliminary experiments in-
volved the use of 12 µm (standard deviation < 0.2 µm) diameter polystyrene
beads (Sigma-Aldrich, Buchs, Switzerland). Subsequent experiments, in-
volved the use of Jurkat (Sigma-Aldrich, Buchs, Switzerland) and H562

(Sigma-Aldrich, Buchs, Switzerland) cell lines. Cell and bead suspensions
used in cytometric experiments are prepared to an average concentration
of 3 million beads and 3 million cells per milliliter in Dulbecco’s Phosphate-
Buffered Saline (DPBS; Sigma-Aldrich, Buchs, Switzerland) respectively.
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Figure 5.1: Optical detection system for imaging flow cytometry. For bright-field
illumination, a light source is mounted above the microfluidic device.
Light is captured from the bottom using a 20X objective, and further
cleaned using an iris before detection using a high-speed camera.

Figure 5.2 illustrates the microfluidic geometry used for screening and
sorting experiments. In brief, analytes are focused to the channel center
during passage along the focusing channel (202). Visco-elastic focusing
occurs as a result of the small height of the focusing channel and the high
flow velocity during passage. Subsequently, cells or particles are observed
within a narrow detection region (see the yellow region of interest (ROI) in
Figure 5.2 b). Based on this measurement, the analyte is classified, and a
set of solenoid valves (197020; Festo AG, Lupfig, Switzerland) is activated.
This allows analyte sorting through the pressurization of control channels
an activation of on-chip push-down valves (203).

Custom-written software, developed in C++ (204), was used to perform
image classification and control all operational devices, including camera,
pumps, light source and solenoid valves. Figure 5.3 shows the user inter-
face of this software suite. Custom Python software was used to train the
classifier offline. Finally, custom-written Python scripts were used to post-
process and visualize the obtained results.
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Figure 5.2: Push-down valve-based particle sorting architecture. Particles are fo-
cused using a visco-elastic focusing strategy before detection and
sorting. (A) Schematic of the employed sorting architecture. Parti-
cles enter from the left and exit the sorting junction through one of
the outlets. Push-down valves (203) filled with water allow the se-
lective closure of outlet channels through the application of pressure
to the respective control channel. (B) Microscope image of the sort-
ing junction, highlighting the position of the region of interest (ROI)
used for analyte classification, prior to sorting.
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Figure 5.3: Control software interface. A custom software was developed in C++,
allowing interactive control of the camera, region of interest (ROI)
and image pre-processing (A), neural-network used for classification
(B), peripheral devices, such as pumps and illumination sources (C),
real-time results, and real-time observations (E). Such an integrated
software solution greatly facilitates experimental work by combining
all necessary control within a single interface.

5.2.2 Classification Algorithm

Raw observations, captured by the high-speed camera (see Figure 5.1) are
retrieved from the camera buffer using the presented control software. Sub-
sequently, the camera frame is resized and pre-processed to remove back-
ground noise.

Figure 5.4 shows the neural network-based classification algorithm used
in the current study. Briefly, we employ a simple convolutional neural net-
work (CNN) architecture for image classification, implemented using the
Tensorflow framework (205). Our algorithm uses three convolutional lay-
ers with a max pooling operation between each layer and a ReLU (155)
activation function after each pooling layer. Following the third convolu-
tional layer, we reduce dimensionality by flattening the resulting layer into
a single dimensional vector. Finally, we use two fully connected layers with
a 20 % dropout layer in between (206). This results in an output layer with
an artificial neuron for each possible analyte class (i.e. cells or beads). Ac-
cordingly, when used for classification, the trained neural network is fed
a pre-processed camera frame, and produces an estimated probability for
each of the possible classes in the output layer. Therefore, the final class of
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Figure 5.4: CNN-based classification algorithm. A custom neural network archi-
tecture is used for image classification, and is based on a relatively
simple convolutional neural network. Specifically, each input frame
(84 x 84 pixels) is fed into a series of three, successively smaller, con-
volutional layers, with intermittent max pooling layers, employing
ReLU activation. Finally, two fully connected (dense) layers with a
dropout layer between them are used for dimensionality reduction
of the output to match the number of analyte classes. A scalar prob-
ability for each possible class (for example empty, bead or cell) is
generated and classified according to the highest probability.

the analyte is determined according to the maximum estimated probabil-
ity, read from the output vector. Figure 5.4 provides more details regarding
the neural network architecture.

5.2.3 Offline Algorithm Training

We collected a labeled training dataset by recording observations from
pure sample populations (e.g. pure beads). Each frame was subsequently
processed to determine the presence of an analyte (either a cell or a mi-
crobead). This generated a dataset containing labeled observations for each
of the following classes: empty frames, frames containing beads and frames
containing cells (see Figure 5.5). Due to large time requirements for train-
ing, the CNN-based classification algorithm was typically trained offline
using collected data. Due to the simplicity of our neural network and GPU-
based (GeForce GTX980 Ti; NVIDIA, Santa Clara, USA) training, we were
normally able to achieve sufficient accuracy within 10 epochs, correspond-
ing to 10 minutes of training time. Training datasets normally consisted of
at least 1000 frames for each class investigated. Additionally, an indepen-
dent and randomly selected dataset (consisting of 15 % of the complete
dataset) was used to test classification accuracy (see Figure 5.5). It should
also be noted that due to the deterministic nature of neural networks, the
network topology in conjunction with the connection weights contains all
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the information stored in the neural network. This enables the use of a
pre-trained neural network in subsequent experiments by initializing the
classification network using the weights obtained during training. Accord-
ingly, we used two different programs for training and evaluation of the
classifier. Initially, training frames are collected using the aforementioned
software suite (see Figure 5.3). Next, training is performed from the col-
lected dataset using a custom program developed in Python, which stores
the resulting network topology and weights upon completion. Finally, this
trained neural network is loaded into the control software, for use during
classification and sorting. Such an approach allowed the rapid testing of
various neural network architectures in Python, independent of the control
software, whilst maintaining the execution speed inherent to C++ during
real-time sorting experiments.

5.2.4 Real-time Particle Sorting

To perform real-time cellular sorting, we use a pre-trained network (ob-
tained using offline training). A mixture of analytes was then introduced
into the microfluidic device and sorting performed on the basis of the clas-
sification output provided by the neural network. Observations were col-
lected from sorting events to assess the correctness of the sorting decision
and the resulting analyte movement (see Figure 5.7). Correct execution of
the sorting signal is then verified via manual analysis of the visual data.

5.3 results and discussion

5.3.1 Classification algorithm

To test the accuracy of the proposed neural network-based classifier, vari-
ous neural networks were trained using a dataset containing at least 1000

images each of all analytes, namely two cell types (i.e. Jurkat and H562),
microbeads, and empty camera frames. A simpler neural network topol-
ogy was generally favored to increase image processing throughput and
reduce training times. After comparing multiple classification algorithms,
it was found that the relatively simple neural network architecture used
in this study is sufficient for the sorting task investigated. Current state-
of-the-art classification algorithms, such as squeezenet (207) or inception
v-4 (69) did not provide justifiable improvements, when considering their
increased training time requirements. However, we hypothesize that, sim-
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ilar to other visual classification tasks (69, 207), employing novel classifi-
cation algorithms has the potential to provide significant improvements in
classification accuracy.

We observed that the classifier was able to successfully classify empty
frames, frames containing beads, and frames containing cells in 83.9 % +-
3.9 % (N=5) of the frames within the test dataset (see Figure 5.5 provides
exemplar classifications). While cells are normally classified correctly (sep-
arate from empty frames or microbeads), we found a significant portion
of misclassified frames were due to confusion of the two cell types in-
vestigated (e.g. the bottom left panel of Figure 5.5). We believe that this
stems from the large size-heterogeneity of the investigated cell popula-
tions, when compared to the commercial bead populations. For example,
while Jurkat cells are frequently smaller and more compact than H562 cells
(see Figure 5.5 bottom right panel and top left panel respectively), there ex-
ist a significant number of deviating Jurkat cells, and we believe that this
morphological diversity is the main cause of mis-classification.

To confirm that the main classification difficulty stems from analyzing
two different cell types, we have trained the classifier to identify empty
frames, microbeads and Jurkat cells exclusively. Indeed, we could achieve
near perfect classification accuracy of 99.87 % +- 0.05 % (N=3) for this
classification task. This further confirms, that the classification algorithm
can successfully identify Jurkat cells despite a high heterogeneity in cell
size, cell shape and internal structure.

Compared to classical image processing, the use of custom-built classifi-
cation algorithms provides several key advantages. Even though an ANN
requires extra computation, we found that classification speeds actually
rival classical approaches. Due to the GPU-based ANN inference in the
proposed system, classification speeds exceeding 500 frames per second
can be reached. Moreover, the classification algorithm shows excellent clas-
sification of partial images. For example, Figure 5.6 shows images where
the algorithm correctly identifies only partially visible analytes. Interest-
ingly, the algorithmic behavior resulting in this increased accuracy has
never been specified manually (for example as a definite rule set) and is
achieved automatically, because the training dataset contains countless par-
tial images and the classification algorithm automatically identifies the un-
derlying pattern. We believe that it would be non-trivial to construct an
equally flexible classification system using classical image processing, as
an extensive rule set that accounts for all possible observations, must be
engineered manually.
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Figure 5.5 (previous page): Neural network for real time classification of H562

cells, Jurkat cells, polystyrene beads and empty
frames. Identified class and expected (Exp) ground-
truth is noted above each panel. Green titles indi-
cate successful identification, whilst red titles indicate
mis-classification. The ANN-based classifier correctly
identifies 89 % observations in a large test dataset
(>500 frames per analyte class), even if the analyte
is only partially visible (see Figure 5.6). Incorrectly
classified frames (e.g. bottom row, left panel) are of-
ten due to confusion of the two cell types. Neverthe-
less, we can confirm that the classifier can successfully
identify analytes even if there are additional objects
in the field of view (e.g. cell debris in the right frame
of the center row). We hypothesize, that classification
accuracy can be further improved by using a larger
training dataset and more advanced neural network
architectures.

Figure 5.6: Identification of Partially Visible Analytes. Only the highlighted re-
gion of interest (ROI) is used for classification. The use of neural net-
works for image classification allows for the successful identification
of partially visible analytes. The classifier has automatically incor-
porated this knowledge during training as the known dataset also
contains partial images. In contrast, using classical image processing
for classification would require the engineering of an extensive rule
set to capture all special or unusual cases.
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Given the initial results, it is evident that the proposed classifier can suc-
cessfully be used to classify complex mixtures containing various cell types
and beads. This allows us to combine the trained classifier with the micro-
fluidic sorting architecture, for real-time perform neural network-based
classification.

5.3.2 Neural network-based sorting

We performed a range of preliminary experiments, to serve as a proof-of-
concept for the proposed sorting architecture. Based on previous results
from the training process, a mixture of one cell type (Jurkat) and mi-
crobeads was sorted. This mixture was chosen, since the classifier showed
near perfect (>99 %) classification accuracy for this mixture over multiple
(N=3) datasets. Combination of the trained classifier with the microfluidic
sorting architecture allowed real-time sorting of microbeads and Jurkat
cells at rates up to 20 hertz. Significantly, it should be noted that sorting
rates were inherently limited by the solenoid valves used, and adoption of
an alternate sorting strategy, should easily be able to increase sorting rates
by more than one order of magnitude, remembering that we could achieve
classification rates in excess of 500 hertz.

To confirm correct sorting, automatic snapshots were captured during
sorting events (see Figure 5.7). Manual analysis of these data suggests that
our automatic particle sorting system correctly classifies passing analytes
before sorting them into the correct outlet. However, it must be noted that
further research is required to fully characterize the sorting strategy and
its application to state-of-the-art biological assays.

5.4 conclusion

This proof-of-principle study presents, for the very first time, an automatic
cell sorting system based on bright-field observations and neural network-
based image classification. We show that high-accuracy, real-time analyte
classification within a microfluidic system is feasible using such a classifi-
cation algorithm. That said, we find that while classification is possible at
500 hertz, PDMS valve-based sorting limits sorting speeds to 20 hertz. Fu-
ture systems will incorporate improved sorting mechanisms, such as elec-
trophoretic sorting (49) or bubble-jet sorting (208) to significantly enhance
sorting rates.
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Figure 5.7: Use of the presented architecture for successful real-time particle
sorting (scale bar - 50 µm). The two panels show an overlay of mul-
tiple images taken whilst analytes are being sorted into separate col-
lection outlets. (A) A Jurkat cell is sorted into the bottom outlet after
correct classification, (B) A polystyrene bead is sorted into the top
outlet after correct classification.
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Besides classification accuracy, the main appeal of ANN-based classifiers
lies in their general applicability and easy adaptation to novel classification
tasks. Indeed, re-training an algorithm typically only requires the use of
a novel training dataset. We found that the controlled fluidic environment
within a microfluidic system greatly facilitates the collection of large, la-
beled datasets. In our case, adaptation of the proposed setup to novel sort-
ing problems simply requires the collection of observations of pure cell
solutions and subsequently re-training using this dataset. Adjustment of
the presented setup is thus feasible with less than one day of experiments,
greatly reducing experimental iteration times. Accordingly, we believe that
the versatile nature of the proposed system more than offsets any increases
in experimental complexity. Since our classifier is based on visual observa-
tions (bright-field or dark-field), we can evaluate high-dimensionality data
when compared to point-detectors normally used in flow cytometry ex-
periments. Furthermore, the proposed classifier can recognize internal cell
morphological features without the use of fluorescent labels, which lies in
stark contrast to traditional FACS-based techniques. This enables a novel
set of label-free sorting criteria and experiments, currently unobtainable
using FACS, such as sorting cells based on cell cycle phase.

The supervised classification approach shown in this study relies on
collecting a training dataset prior to classification. However, we propose
that future studies could use unsupervised classification approaches to
achieve automatic classification without any prior training. Typically, un-
supervised classification, such as clustering, is effective without requiring
labeled data, with the classification being performed based on internal cri-
teria (often related to the maximal separation between separate groups of
data). Accordingly, by using unsupervised classification the experimenter
can rely on the algorithm to identify the relevant criteria without the need
for external input. We hypothesize, that an unsupervised approach to cell
sorting will also reduce bias in the final results at the cost of a reduced
classification accuracy.

Finally, and given the presented results, we conclude that the proposed
particle sorting system enables real-time, high-accuracy detection and sort-
ing exclusively based on visual observations. Furthermore, the neural net-
work-based algorithm is easily adapted to novel experiments and enables
classification based on previously unattainable criteria. We believe this
study highlights the benefits of combining microfluidics with novel control
algorithms and paves the way for the large-scale application of machine
learning technologies to microfluidic systems.





6
S U M M A RY A N D O U T L O O K

The studies shown in this thesis highlight the importance of active and pas-
sive control schemes for microfluidic high-throughput experimentation.

In Chapter 2 we have presented a high-accuracy droplet synchronization
architecture. Like other droplet unit operations, this technology serves as
a basic building block for multi-step biological or chemical assays. Droplet
synchronization is achieved by producing a dense droplet configuration
and subsequent geometric self-ordering of droplets. The presented archi-
tecture exhibits a low synchronization error rate across a wide variety of
flow rates and droplet sizes investigated. Besides an extensive characteri-
zation of the synchronization effect, we have also used the device to study
inter-droplet transfer between microfluidic droplets in motion, as the ge-
ometry produces highly reproducible droplet configurations. This has al-
lowed us to investigate osmotic transfer of water and H3O+ ions between
droplets in motion.

Future work includes applying the proposed passive synchronization ar-
chitecture in a multi-step droplet assay, which could greatly increase the
reliability of subsequent droplet unit operations, such as droplet merg-
ing. Due to our passive control approach, the synchronization architecture
could also be included in point-of-care medical diagnosis. Nevertheless,
passive control is limited by fluidic complexity and often requires exten-
sive design iterations to optimize fluidic properties. Active control, on the
other hand, can often achieve similar results at the cost of increased exper-
imental setup complexity.

In Chapter 3 we therefore show a flexible droplet labeling system rely-
ing on active droplet sorting combined with extensive signal processing
and automatic control. The proposed system can produce a large number
of droplets with unique fluorescent signatures (barcodes). While other dye-
based barcoding approaches rely on precise control over droplet formation
(for example on-chip dye dilution), we instead decoupled droplet forma-
tion from the droplet selection process. Therefore, we can initially pro-
duce droplets exhibiting random fluorescent signatures and subsequently
select and sort out droplets showing unique barcodes, resulting in un-
precedented control over the final barcoded droplet population. We have
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further developed a droplet storage system using additive manufacturing
(3D-printing). The low-loss nature of the developed storage method high-
lights the utility of 3D-printing as an interface technology for microfluidics
on the millifluidic or mesofluidic scale.

The proposed barcoding system could be used to allow for repeated
scanning of droplet populations allowing time-course measurements with
single droplets resolution. Especially applications combining our barcod-
ing approach with other barcoding methods, such as nucleic acid-based
barcoding, could yield interesting results by first allowing for cultivation
and time-course measurements of cell populations using fluorescent bar-
codes and subsequent single-cell sequencing to investigate the underlying
molecular dynamics.

We believe this study has shown that existing droplet platforms (such
as droplet sorting) can be greatly augmented by employing “smart” con-
trol algorithms. Still, our barcoding system requires extensive human in-
tervention, specially during the initial calibration phase, as all processing
steps are highly parametrized. However, novel self-improving control algo-
rithms have shown promising results in other domains, highlighting that
human intervention is not necessary and might in fact be detrimental to
experiment outcome (75).

In Chapter 4 we therefore investigate the possibility of autonomous con-
trol over fluidic conditions on a microfluidic device solely based on vi-
sual input. Fluidic control was achieved using two separate state-of-the-art,
self-improving algorithms based on reinforcement learning, one using ar-
tificial neural networks (ANNs) and the other basing decisions on a large
database of previous observations. Using these control algorithms, we in-
vestigated two fundamentally different fluidic regimes: laminar flow and
two-phase droplet flow. By comparing algorithmic performance to human
testers, we could show that super-human performance is attainable in both
fluidic regimes using both algorithms. This study thus highlights the gen-
eral applicability and flexibility of reinforcement learning to microfluidic
control.

To our knowledge this is the first study using reinforcement learning to
control non-simulated fluidic environments. Due to the optimistic results
obtained we hypothesize that reinforcement learning can provide benefits
to a large variety of microfluidic experiments, specially ones that require
frequent human interaction. However, excellent recent results using ma-
chine learning have not been limited to control algorithms but extend to a
wide variety of domains, particularly involving visual interpretation (69).
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Chapter 5 investigates the use of ANN-based classification to sort var-
ious analytes in real-time. We have shown that artificial neural networks
can be used to classify images of cells and particles flowing through a
microfluidic channel. Based on this classification we could achieve real-
time sorting of cells and microbeads employing exclusively visual input.
Crucially, due to the use of self-learning algorithms no prior definition of
sorting criteria were required to achieve excellent classification accuracy.
Further, the proposed microfluidic architecture allows for facile collection
of training data, in stark contrast to traditional ANN-based classification
tasks, which require extensive work to assemble labeled training datasets.
In summary, we have shown a fast and flexible system for real-time image-
based cell sorting. This enables studying exiting and novel questions, as
cell populations can now be sorted label-free and based on visual criteria.
For example, we hypothesize that the proposed system could be used to
separate cells based on their cell cycle phase, which was previously only
possible using extensive fluorescent labeling.

In conclusion, using the studies presented in this thesis, we have shown
that advanced control over the fluidic environment in microfluidic devices
enables a host of novel applications in microfluidic research. We hypoth-
esize, that the study of biological systems, such as on-chip cell culture
or long-term monitoring of organisms, can profit vastly from the insights
gained, as such studies often require interaction with an unpredictable or-
ganism. However, applications of smart control algorithms extend beyond
biological applications, including chemical synthesis monitoring or high-
throughput reactant screening. We are therefore convinced that combining
microfluidic applications with advanced control schemes will enable many
insights, both in microfluidics and a variety of other scientific disciplines.
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osmotic inter-droplet transfer (chapter 2)

process_osmosis.py

from SimpleCV import Image, VirtualCamera, Display
from matplotlib import pyplot as plt
import cv2
import numpy as np
import time
import pickle
from math import sqrt, pi

conc= ’00’

filepath = ’video_data/{}.avi’.format(conc)
mode = 3
num_frames = 10000
skip = 5
show = False

# Max size deviation from average (larger is considered a coalesence event and removed)
max_deviation = 1.4

# fps = iter([150, 100, 100])

video = VirtualCamera(filepath, ’video’)

# Do some of the calibration (croping channel positions, ...)
first = video.getImage()
s = first.size()
if s[0] > 1850:
print ’Video too wide. Calibration will not work properly. Automatically cropping {} px on

the right...’.format(s[0]-1850)
first = first.crop((0,0), (1850, s[1]))

first = first.getNumpyCv2()

edges, max_dist, channels = [], [], []

# mouse callback function
def clickedy(event,x,y,flags,param):
if event == cv2.EVENT_LBUTTONDOWN:
if len(edges) < 4:
color = (255,0,0)
edges.append((x, y))

elif len(max_dist) < 2:
color = (0,255,0)
max_dist.append((x, y))
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else:
color = (0, 0, 255)
channels.append(x)

cv2.circle(first,(x,y),3,color,-1)

# Create a black image, a window and bind the function to window
cv2.namedWindow(’Calibration’)
cv2.setMouseCallback(’Calibration’, clickedy)

while True:
cv2.imshow(’Calibration’, first)
if cv2.waitKey(20) & 0xFF == 13 and len(max_dist) == 2:
break

cv2.destroyAllWindows()

# Calculate distance between green points entered
channel_size = sqrt((max_dist[0][0] - max_dist[1][0])**2 + (max_dist[0][1] - max_dist[1][1])

**2)
channel_tolerance = channel_size/4.

max_area = 2 * pi * channel_tolerance**2

print ’Processing the data for {} M ...’.format(conc)

# The actual processing
bins = {c: [] for c in channels}
before = time.time()

lowest = [s[1]] * 4

for i in range(num_frames):

# Skip a few frames
for j in range(skip):
video.getImage()

# Get image
img = video.getImage()

# No img: end the processing
if img.size() == (0,0):
break

# Crop image
img = img.crop((edges[2][0],edges[0][1]),(edges[3][0],edges[1][1]))

# Pre-processing (thresholding)
if mode == 1:
img = img.morphGradient().binarize()

elif mode == 2:
img = img.erode().morphGradient().binarize()

elif mode == 3:
img = img.binarize().invert()

blobs = img.findBlobs(minsize=500, maxsize=5000, threshblocksize=0, threshconstant=5,
appx_level=3)
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if blobs:
# Remove blobs on edge
blobs = blobs.notOnImageEdge(tolerance = 3)

# Put blobs in bins
for b in blobs:
# IMPLEMENT: Check if droplet has the right color..
# Further IMPLEMENT: Check ordering and also discard neighbouring droplets

for bin in bins.keys():
if abs(b.coordinates()[0] - bin + edges[2][0]) < channel_tolerance:
bins[bin].append(b.area())

’’’
# Record y to estimate flow speed
if bin == channels[0] and i < 4:
y = int(b.coordinates()[1])

if i:
if lowest[i-1] < y < lowest[i]:
lowest[i] = y

else:
if y < lowest[i]:
lowest[i] = y

’’’

if show:
blobs.show()

# Processing Speed
print ’Finished processing {} frames @’.format(i), round(i / (time.time() - before),1), ’

frames/s’

# Data postprocessing for plotting
ordered = sorted(bins.keys())
bins = {b:np.array(d) for b,d in bins.items()}

# Check for merged droplet and remove
for k,v in bins.items():
avg = v.mean()
deviation = np.absolute(v - avg)
bins[k] = v[deviation < max_deviation*avg]

y = [bins[b].mean() for b in ordered]
yerr = [bins[b].std() for b in ordered]

# Simple x coords
x = range(len(ordered))
xerr = [0] * len(ordered)

# Normalize to minimal value and convert to %
y_min = min(y)
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y = [f/y_min * 100 for f in y]
yerr = [f/y_min * 100 for f in yerr]

import csv
# with open(’’)
print x, y, xerr, yerr

microfluidic reinforcement learning (chapter 4)

agents.py

agent12 = {
# Various
’scale_reward’: 1.0,
#’game_var_scale’: [0.1,0.1,0.01], # Flow rates (2 pumps) and desired radius (px)

’memory_size’: 4,
’batch_size’: 32,
’max_memory’: 100000,
’final_epsilon’: 0.05,
’n_observe’: 10000, # 5000
’n_anneal’: 135000, # 120000

# DDQN learning scheme
’learn_delay’: 1,
’n_learn_per_q’: 2,
’target_update_delay’: 5000,

# Various environment params
’size_x’: 84, # The cropped size of the input frame (square)
’pump_step’: 0.5, # ul/min
’total_fps’: 1.5,
’action_delay’: 1./10, # Delay after performing action (before reward cala)
’n_frame_averaged’: 5, # Reward is calc from radii of past frames
’episode_length’: 250 # Number of frames in one episode

}

# Network params
params[’network’] = {

’n_filters’: [16,32],
’s_filters’: [8,4],
’s_pool’: [0,0],
’stride’: [4,2],
’dueling_units’: [256,256], # N hidden units in value and advantage network
’gamma’: 0.99,
’learning_rate’: 0.0001, # Very sensitive?
’gradient_clip’: 10.0, # 10 in Dueling networks [Wang 2016]
’network_path’: ’networks/test2’

}

doom.py

from random import randrange

import tensorflow as tf # Import this first!
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import numpy as np
from scipy.misc import imresize
import matplotlib.pylab as plt

from vizdoom import DoomGame
from vizdoom import Mode
# from vizdoom import ScreenFormat
# from vizdoom import ScreenResolution

def histeq(im,nbr_bins=256):
’’’

http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html
’’’
#get image histogram
imhist,bins = np.histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() #cumulative distribution function
cdf = 255 * cdf / cdf[-1] #normalize

#use linear interpolation of cdf to find new pixel values
im2 = np.interp(im.flatten(),bins[:-1],cdf)

return im2.reshape(im.shape)

class CustomDoom(DoomGame):
def __init__(self, config_path = ’config/basic.cfg’, size_x = 120, competitive = False,

equalize_histogram = False, *args, **
kwargs):

super(CustomDoom, self).__init__(*args, **kwargs)
self.load_config(config_path)
self.equalize_histogram = equalize_histogram

# Set Screen format manually (R,G,B,DEPTH_BUFFER)
# self.set_screen_format(ScreenFormat.CRCGCBDB)
# self.set_screen_resolution(ScreenResolution.RES_640X480)

self.competitive = competitive

if self.competitive:
# Start multiplayer game only with your AI (with options that will be used in

the competition, details in
cig_host example).

self.add_game_args("-host 1 -deathmatch +timelimit 100000.0 "
"+sv_forcerespawn 1 +sv_noautoaim 1 +sv_respawnprotect 1 +

sv_spawnfarthest 1")

# Name your agent and select color
# colors: 0 - green, 1 - gray, 2 - brown, 3 - red, 4 - light gray, 5 - light

brown, 6 - light red, 7 - light
blue

self.add_game_args("+name AIII +colorset 4")

# Multiplayer requires the use of asynchronous modes, but when playing only with
bots, synchronous modes can also
be used.

self.set_mode(Mode.PLAYER)
#self.set_mode(Mode.ASYNC_PLAYER)
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self.init()
self._size_x = float(size_x)
# self._game_var_cutoff = -(1+2*NUM_WEAPONS)

# First episode and update
# self.new_episode()
self.start_new_episode(force_restart = True) # For setting a correct seed and adding

bots
self._update_state()

def start_new_episode(self, seed = False, force_restart = False):
if force_restart or self.is_episode_finished():

if not seed:
seed = randrange(1E6,1E7-1)

self.set_seed(seed)
super(CustomDoom,self).new_episode()

if self.competitive:
# Respawn player
if self.is_player_dead():

self.respawn_player()

# Add bots
self.send_game_command("removebots")
for i in range(9):

self.send_game_command("addbot")

def _update_state(self):
’’’

Despite the name this does not update the game state but
merely updates the internal state variables.

Currently only perform_action updates the state.
This function should only really be called during init or
straight after such an update.

’’’
self._current_state = super(CustomDoom,self).get_state()

# Game variables
self._cur_var = np.float32(self._current_state.game_variables)

# Image data
if self._current_state.image_buffer is None:

return False

img = self._current_state.image_buffer[0]

# Image data (RGB+DEPTH) doesnt work (no depth)
# img = current_state.image_buffer[:3]
# img = img.swapaxes(0,2)
# img = np.dot(img[...,:3], [0.299, 0.587, 0.114])

factor = self._size_x/img.shape[1]

if not self.equalize_histogram:
self._cur_img = (imresize(img, factor)/255.).astype(’float32’)
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else:
img = imresize(img, factor)
self._cur_img = histeq(img).astype(’float32’)/255.

# self._cur_depth = (imresize(current_state.image_buffer[3], factor)/255.).astype(’
float32’)

# plt.imshow(self._cur_img, cmap = plt.get_cmap(’Greys’), interpolation= ’None’)
# plt.show()
return True

def perform_action(self,action,frames=1, auto_loop = True):
’’’

Wraps make_action, calls update_state
returns: state image and reward

’’’
frames = 5
reward = self.make_action(action,frames)
terminal = self.is_player_dead() or self.is_episode_finished()

if terminal:
self.start_new_episode()

# Update the state (the only time this should happen in the mainloop)
# started_new = False
self._update_state()

return self._cur_img, np.float32(reward), self._cur_var, terminal

def get_game_variables(self):
return self._cur_var

def get_state_image(self):
return self._cur_img

def close(self):
pass

doom_test.py

import numpy as np
import tensorflow as tf

from doom import CustomDoom
from qagent import QAgent

import matplotlib.pylab as plt

params = {
# Various
’scale_reward’: 0.01,
#’game_var_scale’: [0.1,0.1,0.01], # Flow rates (2 pumps) and desired radius (px)

’memory_size’: 4,
’batch_size’: 32,
’max_memory’: 50000,
’final_epsilon’: 0.05,
’n_observe’: 5000, # 5000
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’n_anneal’: 120000, # 120000

# DDQN learning scheme
’learn_delay’: 1,
’n_learn_per_q’: 1,
’target_update_delay’: 5000,

# Various
’size_x’: 84, # the region should be square...

# Transition sampling method
# ’sample_type’: ’uniform’,

}

# Network params
params[’network’] = {

’n_filters’: [16,32],
’s_filters’: [8,4],
’s_pool’: [0,0],
’stride’: [4,2],
’dueling_units’: [256,256], # N units in advantage and value network
’gamma’: 0.99,
’learning_rate’: 0.0001,
’gradient_clip’: 10.0, # 10 in Dueling networks [Wang 2016]
’network_path’: ’networks/test6’

}

# The simple doom scenario
environment = CustomDoom(config_path = ’../VisualAI/config/basic.cfg’, size_x = params[’

size_x’],
competitive = False, equalize_histogram = False)

# The Q-learning agent
agent = QAgent(params, environment)

# Setup status plots
fig = plt.figure()
q_max = fig.add_subplot(211)
reward = fig.add_subplot(212)

q_max.set_ylim([-1,1])
q_max.set_title(’Max Q’)

reward.set_ylim([-1,1])
reward.set_title(’Reward’)

# some X and Y data
x = np.arange(2500)

q_max_val = np.zeros(2500)
reward_val = np.zeros(2500)

d_qmax, = q_max.plot(x, q_max_val)
d_reward, = reward.plot(x, reward_val)

# draw and show it
fig.canvas.draw()
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plt.show(block=False)

plt_update_delay = 10
summary = []
for i in xrange(100000000):

# Plotting updates
if len(summary) == plt_update_delay:

q_max_val[:-plt_update_delay] = q_max_val[plt_update_delay:]
q_max_val[-plt_update_delay:] = [s[0] for s in summary]

reward_val[:-plt_update_delay] = reward_val[plt_update_delay:]
reward_val[-plt_update_delay:] = [s[1] for s in summary]

summary = []

d_qmax.set_ydata(q_max_val)
d_reward.set_ydata(reward_val)
fig.canvas.draw()

if not agent._steps%1000:
q_max.set_ylim([np.min(q_max_val),np.max(q_max_val)])
reward.set_ylim([np.min(reward_val),np.max(reward_val)])

# Advance one step
summary.append(agent.make_step(learning = True))

if i and not i%12500:
agent.save_network(params[’network’][’network_path’])

environment.py

import time
import random
from os import listdir
from collections import Counter

import cv2
import numpy as np
import matplotlib.pyplot as plt

empty_array = np.array([])

class DropletEnvironment:
’’’
This environment controls 3 pumps and a high-speed camera.

Pumps: Oil, Buffer, Particles
’’’

def __init__(self, params):
# The cropped size of the input frame (square)
self._size_x = params.get(’size_x’, 84)
# Amount of change in the flow rates of the pumps
self._pump_step = params.get(’pump_step’, 0.25) # ul/min
# Delays: Total fps puts a hard limit on achievable fps (save the pumps...)
self._total_fps = params.get(’total_fps’, 6.5)
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# Time to wait between changing the flow rate and getting the next frame (larger =
slower but better correlation)

self._action_delay = params.get(’action_delay’, 1./20) # Has to be much shorter than
total_fps (bc total includes image processing
and learning)

# Number of frames over which reward is decided (smoothing the inherent error of hough
transform)

self._n_frames_averaged = params.get(’n_frame_averaged’, 5)
# Number of frames in one episode
self._episode_length = params.get(’episode_length’, 1000)

# The camera and the pump controller
# Importing here because simulation environment does not need it
from pco import Edge
from pump2 import MilliGAT, open_pump_connection

# Counts the updates and terminates an episode if it lasts too long
self.counter = 0

# Action flow rate conversion for all pumps (2)
ps = self._pump_step
self._actions = [[0.0,0.0], [ps,0.0], [-ps,0.0], [0.0,ps], [0.0,-ps]]

# Set up camera
self._camera = Edge(pco_edge_type = ’5.5’)
self._camera.apply_settings(
region_of_interest=(961, 1000, 1120, 1100),
exposure_time_microseconds=500,
verbose = False)

self._camera.arm(num_buffers=3)
self._camera._prepare_to_record_to_memory()

# Set up pumps
self._pump_connection = open_pump_connection()
self._pumps = [MilliGAT(self._pump_connection, adr) for adr in [’E’, ’F’]]

# Set up counter for radii (average over multiple frames)
self.radius_storage = [np.array([]) for i in range(self._n_frames_averaged)]

self._last_action_time = time.time()
self._cur_reward = 0.0

self._frames_in_episode = 0
self._total_reward = 0.0

self.update_state()

def get_num_actions(self):
’’’
TODO: Less static:)

’’’
return 5

def start_new_episode(self):
# Calc average reward during the previous episode
if self._frames_in_episode > 0:
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avg_reward = float(self._total_reward)/self._frames_in_episode
else:
avg_reward = 0

self._frames_in_episode = 0
self._total_reward = 0.0

# Set to a random flow rate within the allowed step size
max_pump_step = int(10.0 / self._pump_step)
for p in self._pumps:
flow_rate = self._pump_step * random.randrange(1,max_pump_step)
p.slew(flow_rate)

return avg_reward

def get_state_image(self):
return self._raw_img

def update_state(self, simulate = False):
if simulate:
print ’SIMULATING FRAME!’
frame = self.simulate_frame()

else:
frame = self.get_camera_frame()

self._cur_img = self.preprocess_frame(frame)

# The raw image is now scaled (only for neural net not for reward calc)
self._raw_img = cv2.resize(frame, (self._size_x, self._size_x), interpolation = cv2.

INTER_LINEAR).astype(’float32’)
self._raw_img /= 255.

def perform_action(self, action, frame = False, plot = False):
’’’
Perform an action (change flow rates),
get new frame from the camera,
process frame to get reward,

Also assures that delay between frames and delay between changing flow rate
and taking a frame is more or less constant.

Returns: frame and reward
’’’

delay_per_frame = 1./self._total_fps # Run at x fps overall
delay_after_action = self._action_delay # Wait a bit between changing and taking a frame

diff = delay_per_frame - (time.time() - self._last_action_time)
if diff > 0:
time.sleep(diff-0.001)

self._last_action_time = time.time()

# Change the pump flow rates according to the action
flow_change = self._actions[action]
for i, change in enumerate(flow_change):
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self._pumps[i].change_flow_rate(change)

# Wait a bit (might help to increase correlation between action and reward)
if delay_after_action > 0:
time.sleep(delay_after_action)

# Get a new frame from the camera and preprocess it
self.update_state()

# Calculate reward for frame
self._cur_reward = self.calc_reward(self._cur_img, plot_frame = plot)

terminal = False
# End episode after a set time period
if self.counter > self._episode_length:
self.counter = 0
terminal = True

else:
self.counter += 1

self._frames_in_episode += 1 # TODO: unify with counter (it’s the same)
self._total_reward += self._cur_reward

# Use raw image to learn
return self._raw_img, self._cur_reward, terminal

def preprocess_frame(self, frame):
# Convert to grayscale
if frame.ndim == 3:
frame = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

# Simple thresholding
__, frame = cv2.threshold(frame, 100, 200, cv2.THRESH_TOZERO)

# Adaptive thresholding
# (bc we want this to be as automated as possible)
# opts = {’maxValue’: 1,
# ’adaptiveMethod’:cv2.ADAPTIVE_THRESH_GAUSSIAN_C,# ADAPTIVE_THRESH_MEAN_C
# ’thresholdType’: cv2.THRESH_BINARY,
# ’blockSize’: 51,
# ’C’: 2}

# frame = cv2.adaptiveThreshold(frame, **opts)

# # Now erode to segment the droplet from the walls and remove single pixel noise
kernel = np.ones((3,3), dtype=’int’)
frame = cv2.dilate(frame, kernel)

# plt.imshow(frame)
# plt.show()
return frame

def calc_reward(self, frame, plot_frame=False):
’’’
Calculate reward based on droplet size, size uniformity and number of particles

Only use plotting for debugging; also do not use both ploting options at the same time
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’’’

# Find droplets (large circles)
opts_droplets = {
’method’: cv2.cv.CV_HOUGH_GRADIENT,
’dp’: 1, ’minDist’: 37,
’minRadius’: 20,
’maxRadius’: 34,
’param1’: 5.0, # Canny edge detector higher threshold
’param2’: 29, # Circlyness (smaller = more false positives)

}

# Hough circle transform
circles = cv2.HoughCircles(frame, **opts_droplets)

# Plot
if plot_frame:
plt.imshow(frame)
fig = plt.gcf()
gca = fig.gca()

reward = 0.0

if circles is not None:
circles = np.round(circles[0, :]).astype("int")

# n_particles = []
if plot_frame:
for c in circles:
# plot Droplets
circ = plt.Circle(c[:2], c[2], color=’g’, alpha = 0.35)
gca.add_artist(circ)
#plt.text(c[0]-10,c[1]-40, str(n_particles[-1]), fontsize = 30, color = ’b’)

# Add the radii to the storage
self.radius_storage.pop()
self.radius_storage.insert(0, circles[:,2])

# No circles found
else:
self.radius_storage.pop()
self.radius_storage.insert(0, empty_array)

if plot_frame:
# Maximize window, show plot
mng = plt.get_current_fig_manager()

# Qt backend (anaconda)
# mng.window.showMaximized()

# WX backend (canopy)
# mng.frame.Maximize()

# Tk backend (standard)
mng.window.state(’zoomed’)
mng.resize(*mng.window.maxsize())

plt.show()
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# Calc reward (mean squared error over past few frames)
self.desired_radius = 27
error = np.concatenate(self.radius_storage) - self.desired_radius

# Absolute error (linear increase from edge of circle detection to max)
if error.shape[0] > 0:
m = np.mean(np.absolute(error)) # Abs mean error
if m > 7:
reward = 0

elif m < 0.5:
reward = 1.0

else:
reward = 1.-(m/8.)

else:
reward = 0.0

return reward

def simulate_frame(self, size = (100,100)):
# A random frame
# frame = np.random.random(size) * 256
# frame = frame.astype(’int’)

# Grab a random frame from the folder
folder = ’test_frames/’
file = folder + random.choice(listdir(folder))
frame = cv2.imread(file)#, cv2.CV_LOAD_IMAGE_GRAYSCALE)

return frame

def get_camera_frame(self):
frame = self._camera.record_to_memory(num_images=1, verbose=False)[0]

# Scale image across 0-255
print ’INVESTIGATE ME! NEED NORMALIZATION?’
frame -= np.min(frame)
frame = 255. * frame.astype(’float’) / np.max(frame)

# Converts to uint8 (needed for opencv stuff)
frame = cv2.convertScaleAbs(frame)
return frame

def close(self):
for p in self._pumps:
p.close() # Mainly stops pumps

self._pump_connection.close() # Serial connection for pumps
self._camera.close()

class SimulationEnvironment(DropletEnvironment):
def __init__(self):
# Counts the updates and terminates an episode if it lasts too long
self.counter = 0

# Amount of change in the flow rates of the pumps
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self._pump_step = 0.25 # ul/min

# Pump min and max flow rates
# self._pump_range = (0.01, 12.) # ul/min

# Action flow rate conversion for all pumps (3)
ps = self._pump_step
self._actions = [[0.0,0.0], [ps,0.0], [-ps,0.0], [0.0,ps], [0.0,-ps]]

# Set up counter for radii (average over multiple frames)
self.n_frames_averaged = 3
self.radius_storage = [np.array([]) for i in range(self.n_frames_averaged)]

self.update_state(True)

def new_episode(self):
pass

def perform_action(self, action = False, frame = False, frame_delay = 0.0, plot = False):
’’’
Perform an action (change flow rates),
then wait a bit (frame_delay),
get new frame from the camera,
process frame to get reward,

Returns: frame and reward
’’’

# Change the pump flow rates according to the action
# flow_change = self._actions[action]
# for i, change in enumerate(flow_change):
# self._pumps[i].change_flow_rate(change)

# Wait a bit (might help to increase correlation between action and reward)
if frame_delay > 0.0:
time.sleep(frame_delay)

# Get a new frame from the camera and preprocess it
self.update_state(simulate = True)

# Calculate reward for frame
reward = self.calc_reward(self._cur_img, plot_frame = plot)

terminal = False
# End episode after a set time period
if self.counter > 500:
self.counter = 0
terminal = True

else:
self.counter += 1

return self._raw_img, reward, terminal

def simulate_frame(self, size = (100,100)):
# A random frame
# frame = np.random.random(size) * 256
# frame = frame.astype(’int’)
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# Grab a random frame from the folder
folder = ’test_videos_ink/’
file = folder + random.choice(listdir(folder))
frame = cv2.imread(file)#, cv2.CV_LOAD_IMAGE_GRAYSCALE)

return frame

def close(self):
pass

if __name__ == ’__main__’:
env = SimulationEnvironment()

for i in range(10):
env.perform_action(plot = True)

env_tests.py

import unittest
import random
import time

import numpy as np
from numpy.testing import assert_array_equal

from environment import DropletEnvironment

class TestEnvironment(unittest.TestCase):

def test_init(self):
env = DropletEnvironment()

exp = [env._pump_step, -env._pump_step, env._pump_step, -env._pump_step, env._pump_step,
-env._pump_step]

assert_array_equal(env._action_conv, np.array(exp))

def test_make_action(self):
env = DropletEnvironment()

for i in range(0):
action = np.zeros(6, dtype=’int’)
action[random.randrange(6)] = 1
frame, reward = env.make_action(action, frame_delay = 0.0, plot = True)

def test_profile_make_action(self):
env = DropletEnvironment()
example_frames = [env.simulate_frame() for i in range(10)]

before = time.time()
for i in xrange(100):
action = np.zeros(6, dtype=’int’)
action[random.randrange(6)] = 1
frame, reward = env.make_action(action, frame = random.choice(example_frames),

frame_delay = 0.0, plot = False)
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diff = time.time() - before
per = round((diff/100.) * 1000.,4)
print ’Preprocessing & Reward Calculation: {} ms per action ({} fps)’.format(per, round(

1000./per,2))
time.sleep(0.01) # to display correctly

if __name__ == ’__main__’:
unittest.main()

nn.py

## ConvQ network for Q-learning agent, Oliver Dressler 2016
import numpy as np

from keras.layers import Convolution2D, MaxPooling2D, Input, Dense, Flatten, Lambda, Merge
from keras.models import Model
from keras.optimizers import RMSprop
from keras import backend as K

class ConvQ:
def __init__(self, **kwargs):

self._gamma = 0.99

def setup_network(self, input_shape, num_actions, add_len,
n_filters = [32,64,64], s_filters = [8,4,3],
s_pool = [2,0,0], stride = [4,2,1], dueling_units = [512,512],
gamma = 0.99, learning_rate = 0.00025, gradient_clip = 10, setup_target = False,
network_path = ’’):

self.network_path = network_path
self._num_actions = num_actions

# Input
self._in_layer = Input(shape = input_shape)

# Convolution and pooling
cur_layer = self._in_layer
for i, n_filt in enumerate(n_filters):

cur_layer = Convolution2D(n_filt, s_filters[i], s_filters[i],
init = ’glorot_normal’, activation = ’relu’, dim_ordering = ’tf’,
subsample = (stride[i], stride[i])) (cur_layer)

if s_pool[i]:
cur_layer = MaxPooling2D((s_pool[i], s_pool[i]), dim_ordering = ’tf’) (

cur_layer)

print cur_layer._keras_shape

cur_layer = Flatten()(cur_layer)

# Normal (non dueling architecture)
# layer = Dense(dueling_units[0], init = ’he_normal’, activation = ’relu’)(cur_layer

)
# self._out_layer = Dense(num_actions, init = ’he_normal’)(layer)
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# Dueling network architecture
dueling = []
for i_net, n_out in enumerate([1, num_actions]):

layer = Dense(dueling_units[i_net], init = ’glorot_normal’, activation = ’relu’)(
cur_layer)

dueling.append(Dense(n_out, init = ’glorot_normal’)(layer))

# out = value + adv - mean(adv)
cur_layer = Merge(mode = ’concat’)(dueling)
self._out_layer = Lambda(lambda a: K.expand_dims(a[:,0], dim=-1) + a[:,1:] - K.mean(

a[:, 1:], keepdims=True), output_shape
=(num_actions,))(cur_layer)

# And the final model (only needs to be compiled in on-line network)
# target network is not optimized
self._model = Model(input = self._in_layer, output = self._out_layer)

# Turns out it is easier to set this up for both networks...
# inp = Input(shape = input_shape)
if setup_target:

opt = RMSprop(learning_rate, clipvalue = gradient_clip)
self._model.compile(optimizer = opt, loss = ’mse’)

else:
# We actually never need to optimize the target network (cant hurt to compile

though?)
self._model.compile(optimizer = ’rmsprop’,

loss = ’mean_squared_error’,
metrics = [’accuracy’])

# Target Q network (nested within parent network)
if setup_target:

self._target_network = ConvQ()
self._target_network.setup_network(input_shape, num_actions, add_len,

n_filters = n_filters, s_filters = s_filters,
s_pool = s_pool, stride = stride, dueling_units = dueling_units,
gamma = gamma, learning_rate = learning_rate, gradient_clip =

gradient_clip,
network_path = network_path,
setup_target = False)

# Try to load previous weights
self.load(self.network_path)

# And update the target network
self.update_target_network()

def update_target_network(self):
tn = self._target_network._model.layers

for i, l in enumerate(self._model.layers):
weights = l.get_weights()
tn[i].set_weights(weights)

print ’Updated target network’

def learn(self, img_cur, img_next, act_cur, reward_cur, terminal):
’’’
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DDQN [van Hasselt 2015] using the provided minibatch,
performs one gradient step using specified optimizer

’’’
batch_size = reward_cur.shape[0]

# Make some predictions (get Q)
tn = self._target_network
y_batch = self._model.predict(img_cur, batch_size = batch_size) # Current state
q_next = self._model.predict(img_next, batch_size = batch_size) # Next state
q_next_target = tn._model.predict(img_next, batch_size = batch_size) # Next state as

predicted by target network (rarely
updated to increase stability)

for i in xrange(batch_size):
# Only this value gets corrected (do not learn/correct non-deep decisions)
chosen_action = act_cur[i]

# Terminal = only reward
if terminal[i]:

y_batch[i, chosen_action] = reward_cur[i]
else:

# Online DQN (no target network)
# y_t = reward_cur[i] + self._gamma * q_next[i, m_online]

# DDQN (van Hasselt 2015)
m_online = np.argmax(q_next[i])
Q = q_next_target[i, m_online]
y_t = reward_cur[i] + self._gamma * Q

# Clipping update magnitude (methods Mnih 2015)
diff = y_t - y_batch[i, m_online]
if diff > 1:

y_t = y_batch[i, m_online] + 1.0
elif diff < -1:

y_t = y_batch[i, m_online] - 1.0

y_batch[i, chosen_action] = y_t

# perform gradient step
self._model.train_on_batch(img_cur, y_batch)

def get_best_action(self, state):
state = state.reshape([1] + list(state.shape))
out_act = self._model.predict(state, batch_size = 1)[0]
max_act = np.argmax(out_act)
return max_act, out_act[max_act]

def dump_memory(self, path):
pass

def get_best_action_observe(self, state):
return self.get_best_action(state)

def save(self, path = ’’):
if not path:
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path = self.network_path
self._model.save_weights(path, overwrite = True)

def load(self, path = ’’):
if not path:

path = self.network_path

try:
self._model.load_weights(path)
print ’Successfully loaded weights from:’, path

except Exception, e:
print ’Could not load previous weights:’, e

def close(self):
pass

if __name__ == ’__main__’:
cq = ConvQ()
cq.setup_network((162,160,4), 5, 0, setup_target = True)

# A little test for update_target_network
inp = np.random.random((162,160,4))
prev = cq.get_best_action(inp)
#assert prev != cq._target_network.get_best_action(inp)
cq.update_target_network()
assert cq.get_best_action(inp) == cq._target_network.get_best_action(inp) == prev
#cq.save()

print ’Everything seems to be ok...’

prime_pumps.py

from pump2 import open_pump_connection, MilliGAT

import random, time
connection = open_pump_connection()

pump1 = MilliGAT(connection, ’E’)
pump2 = MilliGAT(connection, ’F’)

pump1.slew(1)
pump2.slew(1)
time.sleep(10)

pump1.close()
pump2.close()

connection.close()

pump2.py

import _winreg as winreg
import itertools
from time import sleep
import re
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import serial
from serial.serialutil import SerialException

version_regex = re.compile(’(\d\d*)(\D)’)
# Hardware details
pump_details = {

206140022: {’type’: ’M50’, ’backlash’: 14.607, ’vol_rev’: 629.680},
206140020: {’type’: ’M50’, ’backlash’: 13.224, ’vol_rev’: 627.080}
}

# Allowed flow rates [ul/min]
type_details = {’M50’: {’flow_rates’: (1., 25000), ’gear_ratio’: 9.88}}

def enumerate_serial_ports():
"""

From: http://stackoverflow.com/questions/1205383/listing-serial-com-ports-on-windows
"""
path = ’HARDWARE\\DEVICEMAP\\SERIALCOMM’
try:

key = winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, path)
except WindowsError:

raise IterationError

for i in itertools.count():
try:

val = winreg.EnumValue(key, i)
yield (str(val[1]), str(val[0]))

except EnvironmentError:
break

def open_pump_connection(port = ’COM2’):
’’’

Opens a serial connection to the pumps
’’’
# ports = enumerate_serial_ports()

connection = serial.Serial(port=port, timeout=0.25)
return connection

class MilliGAT:

’’’
This class controls a milliGAT low flow pump,
which includes a simple three port valve.
’’’

def __init__(self, ser, adress):
’’’
adress is the specific adress of the pump (daisy chained).
num_pos defines the number of positions on the valve
’’’
self.ser = ser
self.adress = adress
self.current_rate = 0

def read_response(self):
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’’’
Wait 0.05s for response from device
’’’
resp = ’’
sleep(0.05)
while self.ser.inWaiting() > 0:

resp += self.ser.read(1)
return resp

def change_flow_rate(self, delta_r):
’’’

Change slew using a definded delta flow rate
’’’
new_rate = self.current_rate + delta_r
if not 0.25 <= new_rate <= 10:

# print ’Flow rate too extreme!!!’
pass

else:
self.slew(self.current_rate + delta_r)

def slew(self, pump_rate):
’’’
Start pumping at constant rate [ul/min]
’’’

if pump_rate == 0:
pass

elif not 0.1 <= pump_rate <= 500:
print ’{} ul/min not allowed: 0.1 - 500’.format(pump_rate)
return

self.current_rate = pump_rate

# convert from ul/min to microsteps/
rate = int(round(pump_rate * 2432/60))

# set pump rate
command = self.adress + ’SL=’ + str(rate) + ’\r\n’
self.ser.write(command)

# self.read_response()

def stop(self):
’’’
Stop the pump
’’’
self.slew(0)

def moving(self):
’’’
Returns True if the pump is moving.
’’’
self.read_response()

# Get current rate from device



appendix 161

command = self.adress + ’PR MV\r\n’
self.ser.write(command)

resp = self.read_response()

if resp:
pattern = self.adress + ’PR MV[^\d]*(\d)’
res = re.compile(pattern).search(resp, 0)
if res.groups()[0] == ’1’:

return True
elif res.groups()[0] == ’0’:

return False
else:

return False

def close(self):
self.stop()

class MilliGATOld:
’’’

Controls a single MilliGAT pump.
Since these pumps are so simple we only really need one method
.slew() # pumps at a constant rate.

’’’
def __init__(self, port):

# Open serial connection
self.connection = serial.Serial(port=port[0], timeout=0.25)

if not self.connection.isOpen():
self.connection.close()
raise SerialException

# Check if device response makes sense (get serial number)
self.connection.write(’PRINT SER\n\r’)
response = self.connection.read(1000).replace(’ ’, ’’)
version = version_regex.search(response)

if version:
version = version.groups()
try:

# Addr is (adress, serial_nr)
self.serial_nr = int(version[0])

except:
self.connection.close()
raise SerialException

else:
self.connection.close()
raise RuntimeError(’Could not connect to pump in port {}!’.format(port[0]))

self.current_rate = 0
self.p_details = pump_details[self.serial_nr]
self.t_details = type_details[self.p_details[’type’]]

# Set the correct backlash value
self.connection.write(’BLSH={}\r\n’.format(self.p_details[’backlash’]))
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d = self.connection.read(1000)

# Set maximum flow rate
max_rate = self.t_details[’flow_rates’][1]/60.
self.connection.write(’VM={}\r\n’.format(max_rate))

# Set the correct conversion factor on the device
fact = (256. * (360./1.8) * self.t_details[’gear_ratio’])/self.p_details[’vol_rev’]
fact = round(fact, 3)

self.connection.write(’MUNIT={}\r\n’.format(fact))

# Save to non-volatile memory just because
self.connection.write(’SAVE\r\n’)
sleep(0.05)
self.connection.flushInput()

self.connection.write(’PRINT MUNIT\r\n’)
sleep(0.05)
data = self.connection.read(1000)

munit = data.split(’PRINT MUNIT\r\n’)[1].split(’\r\n’)[0]
munit = float(munit)

if munit != fact:
perc = round(100. * (1 - min(munit,fact)/max(munit,fact)),2)
print ’Pump on {}: incorrect calibration (off by {} %).’.format(port[0],perc)

else:
print ’Calibrated pump {} and saved values to non-volatile memory.’.format(self.

serial_nr)

def change_flow_rate(self, delta_r):
’’’

Change slew using a definded delta flow rate
’’’
self.slew(self.current_rate + delta_r)

def slew(self, rate):
’’’

Pumps fluid at a constant rate [ul/min]
’’’
assert type(rate) in (float,int)

if rate == self.current_rate:
return

elif rate == 0:
self.stop_pump()

else:
# Check if rate within range
mi, ma = self.t_details[’flow_rates’]
if not mi <= abs(rate) <= ma:

print ’Rate should be within [{}, {}] ul/min’.format(mi, ma)
return

rate_sec = rate / 60. # Also convert to ul/s

self.current_rate = rate
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# Send the command to the pump
self.connection.write(’SLEW={}’.format(rate_sec))

def stop_pump(self):
self.connection.write(’SSTP 0’)

def close_pump(self):
if self.current_rate != 0:

self.stop_pump()
self.connection.close()

if __name__ == ’__main__’:
import random, time
connection = open_pump_connection()

pump1 = MilliGAT(connection, ’E’)
pump2 = MilliGAT(connection, ’F’)

pump1.slew(3)
pump2.slew(1)
time.sleep(30)

for i in xrange(0):

p1 = round(random.random() * 19.9 + 0.1,1)
p2 = round(random.random() * 19.9 + 0.1,1)

print ’Flow rates:’, p1, p2

pump1.slew(p1)
pump2.slew(p2)

assert pump1.moving()
assert pump2.moving()
time.sleep(5)

pump1.stop()
pump2.stop()

assert not pump1.moving()
assert not pump1.moving()

pump1.close()
pump2.close()

connection.close()

qagent.py

## Q-learning Agent, Oliver Dressler 2016
import time
from random import randrange, sample, random, choice
import itertools as it

import numpy as np
from scipy.misc import imresize
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import matplotlib.pylab as plt

from nn import ConvQ
from environment import DropletEnvironment

def simple_actions_generator(n_actions):
a = np.zeros((n_actions,n_actions))
np.fill_diagonal(a, 1)
return a

def permutation_actions_generator(n_actions):
return np.array(list(it.product(range(2), repeat=n_actions)))

class QAgent:
def __init__(self, params, environment):

# All the required agent parameters
self._memory_size = params[’memory_size’]
self._batch_size = params[’batch_size’]
self._max_memory = params[’max_memory’]
self._final_epsilon = params[’final_epsilon’]
self._n_observe = params[’n_observe’]
self._n_anneal = params[’n_anneal’]
self._learn_delay = params[’learn_delay’]
self._n_learn_per_q = params[’n_learn_per_q’]
self._target_update_delay = params[’target_update_delay’]
self._scale_reward = params[’scale_reward’]
# self._game_var_scale = params[’game_var_scale’]

# The passed environment
self._environment = environment

self.rendered_episodes = 0
self._num_actions = self._environment.get_num_actions() # len(self._actions)

# Get a first state (img and game vars) and assemble current state (stack 4 times)
img = self._environment.get_state_image()
self._img_shape = img.shape
self._current_state = np.stack([img]*self._memory_size, axis = 2)

# Setup Q network
self._nnet = ConvQ()
self._nnet.setup_network(self._current_state.shape,

self._num_actions, 0,#v.shape[0],
# Sets up an identical nested target network (which will receive setup_target =

False to stop the turtles)
setup_target = True,

**params[’network’])

# Setup epsilon function
def epsilon():

epsilon_grad = (1.0 - self._final_epsilon) / self._n_anneal
if self._steps < self._n_observe:

return 1.0
elif self._steps < (self._n_observe + self._n_anneal):

s = self._steps - self._n_observe
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return 1.0 - s * epsilon_grad
else:

return self._final_epsilon

self._epsilon = epsilon

# Global steps and action statistics
self._steps = 4
self._action_occ = np.zeros(self._num_actions)

# Initialize the memory (using fized size numpy arrays)
maxm = params[’max_memory’]
self._memory_img = np.zeros([maxm] + list(self._img_shape) + [4], dtype = ’float32’)

# Image state
self._memory_act = np.zeros((maxm), dtype = ’uint8’) # Actions (index of action

chosen)
self._memory_r = np.zeros((maxm), dtype = ’float32’) # Rewards
self._memory_t = np.zeros((maxm), dtype = ’bool’) # Terminal

self.new_epoch()
print ’Set up environment, neural network and Q-agent...’

def get_flow_rates(self):
rates = [self._environment._pumps[0].current_rate,

self._environment._pumps[1].current_rate]
return rates

def new_epoch(self):
self.new_episode()

# Reset episode and action counters
self.rendered_episodes = 0
self._action_occ.fill(0.0)

# mainly to advance self._step
self.make_step(learning = True)

def new_episode(self):
self.rendered_episodes += 1
self._current_state.fill(0.0)

# Resets the pumps to a random level
# returns the average reward of the last episode
avg_reward = self._environment.start_new_episode()

print ’Episode {}, Reward: {}’.format(self.rendered_episodes, avg_reward)
time.sleep(0.25)

def make_step(self, learning = True):
if learning:

action_index, max_q = self._nnet.get_best_action(self._current_state)
# choose an action epsilon greedily (if not observing)
if random() <= self._epsilon():

action_index = randrange(self._num_actions)
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else:
action_index, max_q = self._nnet.get_best_action(self._current_state)
# print action_index

# action = self._actions[action_index,:]

# Statistics
self._action_occ[action_index] += 1

# run the selected action and observe next state and reward
# print ’CHANGE THIS IF NOT USING DOOM TEST: qagent.py: 147’
# act = [0 for i in range(self._num_actions)]
# act[action_index] = 1
# print act
# x_t, r_t, __, terminal = self._environment.perform_action(act)

x_t,r_t,terminal = self._environment.perform_action(action_index)

# scale reward & game variables
r_t *= self._scale_reward

# game_vars = np.multiply(self._environment.get_game_variables(), self.
_game_var_scale)

# store the transition in memory
#action_store = np.zeros((self._num_actions))
#action_store[action_index] = 1

# Create the next state for both image and game variables
if not terminal:

x_t = np.reshape(x_t, (self._img_shape[0], self._img_shape[1], 1))
next_state = np.append(x_t, self._current_state, axis = 2)
next_state = next_state[:,:,:-1]

else:
x_t = np.reshape(x_t, (self._img_shape[0], self._img_shape[1], 1))
next_state = np.append(x_t, np.zeros_like(self._current_state), axis = 2)
next_state = next_state[:,:,:-1]

# var_t = np.reshape(game_vars, (len(self._game_var_scale), 1))
# next_game_var = np.append(var_t, self._current_game_var, axis = 1)
# next_game_var = next_game_var[:,:-1]

# Save the transition
s = self._steps%self._max_memory
self._memory_img[s] = self._current_state
self._memory_act[s] = action_index #action_store
self._memory_r[s] = r_t
self._memory_t[s] = terminal
# self._memory_y[s] = 1.0 # 1 makes sure that new transitions are favoured (in

prioritized sampling)

# New episode was started
if terminal:

self.new_episode()

else:
self._current_state = next_state
# self._current_game_var = next_game_var
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# Target update
if learning and not self._steps % self._target_update_delay:

self._nnet.update_target_network()

# Q learning
if learning:

if self._steps > self._n_observe:
if not self._steps % self._learn_delay:

for i in range(self._n_learn_per_q):
self._qlearn()

self._steps += 1

# Some status info (not for the first round...)
if not self._steps % 5000:

n_a = sum(self._action_occ)
fillers = [self._steps, self._epsilon(), np.round(100. * self._action_occ / n_a,

1)]
print ’T: {}, Epsilon: {}, Actions: {}’.format(*fillers)
self._action_occ.fill(0.0)

# Return some stats to the trainer (for rt visualization)
return max_q, r_t

def _qlearn(self):
’’’

Assemble the minibatch then update the nn using batch.
’’’
if self._steps > self._max_memory:

all_ind = range(self._max_memory)
else:

all_ind = range(self._steps)

# uniform random minibatch
selected = np.array(sample(all_ind, self._batch_size))
sel_next = (selected + 1)%self._max_memory

# Learn batch
self._nnet.learn(self._memory_img[selected], self._memory_img[sel_next],

self._memory_act[selected], self._memory_r[selected],
self._memory_t[selected])

def save_network(self, path):
self._nnet.save(path)

def close(self):
self._environment.close()

if __name__ == ’__main__’:
env = DropletEnvironment()

params = {
# Various
’scale_reward’: 0.01,
’game_var_scale’: [0.1,0.1,0.01], # Flow rates (2 pumps) and desired radius (px)
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’memory_size’: 4,
’batch_size’: 32,
’max_memory’: 150000,
’final_epsilon’: 0.05,
’n_observe’: 50, # 5000
’n_anneal’: 100000, # 120000

# DDQN learning scheme
’learn_delay’: 4,
’n_learn_per_q’: 1,
’target_update_delay’: 5000,

# Various
’size_x’: 120, #@ 16:10 128x80, 160x100, 120x75

# @ 4:3 120x90, 100x75

# Transition sampling method
’sample_type’: ’uniform’,

}

# Network params
params[’network’] = {

’n_filters’: [32,64,64],
’s_filters’: [8,4,3],
’s_pool’: [0,0,0],
’stride’: [4,2,1],
’dueling_units’: [512,512], # N units in advantage and value network
’gamma’: 0.99,
’learning_rate’: 0.0001,
’gradient_clip’: 10.0, # 10 in Dueling networks [Wang 2016]

}

agent = QAgent(params, env)

before = time.time()
for i in xrange(10000):

agent.make_step(learning = True)

if not i%250 and i:
fps = round(250./(time.time()-before),2)
print ’Step {}, {} fps’.format(i, fps)
before = time.time()
agent.save_network(’networks/test_net’)

agent.close()

trainer.py

import time

import matplotlib
matplotlib.use(’TkAgg’)
import matplotlib.pyplot as plt
import numpy as np

from environment import DropletEnvironment
from qagent import QAgent
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from agents import *

params = agent2

plot_it = True
plot_frame = True
learning = True

# All we need...
env = DropletEnvironment(params)
agent = QAgent(params, env)

if plot_it:
# Setup status plots
fig = plt.figure()
q_max = fig.add_subplot(411)
reward = fig.add_subplot(412)
flow_rates = fig.add_subplot(413)

if plot_frame:
frame = fig.add_subplot(414)
frame.axis(’off’)

q_max.set_ylim([-1,1])
q_max.set_title(’Max Q’)

reward.set_ylim([0,1])
reward.set_title(’Reward’)

flow_rates.set_ylim([0,10.0])
flow_rates.set_title(’Flow Rates’)

# some X and Y data
x = np.arange(2500)
q_max_val = np.zeros(2500)
reward_val = np.zeros(2500)
flow1_val = np.zeros(2500)
flow2_val = np.zeros(2500)

d_qmax, = q_max.plot(x, q_max_val)
d_reward, = reward.plot(x, reward_val)
d_flow1, = flow_rates.plot(x, flow1_val, ’r’)
d_flow2, = flow_rates.plot(x, flow2_val, ’b’)
# show_frame = frame.imshow(np.zeros([params[’size_x’]]*2))

# draw and show it
plt.ion()
plt.show()

# # Training loop
plt_update_delay = 25
summary = []

before = time.time()
for i in xrange(10000000):

if plot_it:
# Plotting updates
if len(summary) == plt_update_delay:
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q_max_val[:-plt_update_delay] = q_max_val[plt_update_delay:]
q_max_val[-plt_update_delay:] = [s[0] for s in summary]

reward_val[:-plt_update_delay] = reward_val[plt_update_delay:]
reward_val[-plt_update_delay:] = [s[1] for s in summary]

flow1_val[:-plt_update_delay] = flow1_val[plt_update_delay:]
flow1_val[-plt_update_delay:] = [s[2] for s in summary]

flow2_val[:-plt_update_delay] = flow2_val[plt_update_delay:]
flow2_val[-plt_update_delay:] = [s[3] for s in summary]

summary = []

d_qmax.set_ydata(q_max_val)
d_reward.set_ydata(reward_val)
d_flow1.set_ydata(flow1_val)
d_flow2.set_ydata(flow2_val)

if plot_frame:
frame.imshow(agent._environment.get_state_image()) # The frame used for

training
frame.set_title(’Reward: {}’.format(round(agent._environment._cur_reward,2))

)

# Weird: have to use this instead of .draw()...
plt.pause(0.0000001)

# Rescale plot
if not i%500 and i:

q_max.set_ylim([np.min(q_max_val),np.max(q_max_val)])
reward.set_ylim([np.min(reward_val),np.max(reward_val)])

# Advance one step
data = list(agent.make_step(learning = learning)) + agent.get_flow_rates()
summary.append(data)

else:
agent.make_step(learning = learning)

# Show some stats (mainly speed)
if not i%500 and i:

fps = round(500./(time.time()-before),2)
print ’Step {}, {} fps’.format(i, fps)
before = time.time()

# Save sometimes
if i and not i%15000 and learning:

agent.save_network(params[’network’][’network_path’])
print ’Saved network after {} steps’.format(agent._steps)

agent.close()

extract_images.py

import numpy as np
import matplotlib.pyplot as plt
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f = np.load(’scans/laminar7_before.npz’)
data = f[’arr_0’]
f.close()

# Plot some random frames
print ’Loaded all frames’

for j in range(4):
ind = np.random.randint(0,19,(3))
frame = data[ind[0], ind[1], ind[2], :, :]
plt.subplot(2,2,j+1)
plt.imshow(-1*frame, cmap = plt.get_cmap(’Greys’))
plt.axis(’off’)

plt.savefig(’laminar_examples.png’)

plot.py

import matplotlib.pyplot as plt
import csv
import numpy as np
import scipy.stats as st

viridis = plt.get_cmap(’viridis’).colors

# Calc random and human benchmark
benchmark_folder = ’benchmark/laminar/’

with open(benchmark_folder+’human.txt’, ’r’) as f:
human = np.array([float(i) for i in f.readlines()])
human_mean = np.mean(human)
human_confidence = st.t.interval(0.95, len(human)-1, loc=human_mean, scale=st.sem(human))

with open(benchmark_folder+’random.txt’, ’r’) as f:
random = np.array([float(i) for i in f.readlines()])
random_mean = np.mean(random)
random_confidence = st.t.interval(0.95, len(random)-1, loc=random_mean, scale=st.sem(

random))

# Result plot
fig = plt.figure()

# DQN plot
fps = 1.5 # Fluctuates, more or less precise
n_anneal = 135000# 75000
frames_per_episode = 250# 350 #250

ax = fig.add_subplot(211)

f_names = [’laminar7_260916.txt’, ’laminar8_071016.txt’, ’laminar9_101016.txt’]
# f_names = [’droplet10_300816.txt’, ’droplet12_060916.txt’]

# f_names = [’model_free_logs/laminar1_281016.txt’, ’model_free_logs/laminar2_281016.txt’]
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max_x, max_y = 0, 0
for i, f_name in enumerate(f_names):

data = []
with open(f_name, ’rb’) as file:
reader = csv.reader(file)
for row in reader:
data.append(float(row[-1]))

#ax.plot(data)

# Running Average plot
N = 35
avg = np.convolve(data, np.ones((N,))/N, mode=’valid’)
ax.plot(avg,lw = 1.25, c=viridis[i*100])

max_x = max(max_x, len(data))
max_y = max(max_y, max(avg))

max_y *= 1.05

# Change the tick labels
time_per_episode = frames_per_episode / (fps * 3600) # [h]
final_time = max_x * time_per_episode
x = range(0,max_x, 200)
labels = [int(xx*time_per_episode) for xx in x]
plt.xticks(x, labels)

# Plot end of epsilon decay
ep_anneal = float(n_anneal) / frames_per_episode
plt.plot((ep_anneal, ep_anneal), (0, max_y), ’k’, lw= 2, ls = ’--’)

# Title and axis labels
ax.set_title(’Laminar Flow (DQN)’)

ax.set_xlabel(’Time [h]’)
ax.set_ylabel(’Reward’)
ax.set_ylim([0.0, max_y])
ax.set_xlim([0.0, 1500])

# Benchmark
plt.plot((0, 1500), (human_mean, human_mean), ’k-’)
plt.plot((0, 1500), (human_confidence[0], human_confidence[0]), ’k--’)
plt.plot((0, 1500), (human_confidence[1], human_confidence[1]), ’k--’)

plt.plot((0, 1500), (random_mean, random_mean), ’k-’)
plt.plot((0, 1500), (random_confidence[0], random_confidence[0]), ’k--’)
plt.plot((0, 1500), (random_confidence[1], random_confidence[1]), ’k--’)

# Model Free plot

fps = 1.5 # Fluctuates, more or less precise
n_anneal = 135000# 75000
frames_per_episode = 250# 350 #250

ax = fig.add_subplot(212)
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# f_names = [’laminar7_260916.txt’, ’laminar8_071016.txt’, ’laminar9_101016.txt’]
# f_names = [’droplet10_300816.txt’, ’droplet12_060916.txt’]

f_names = [’model_free_logs/laminar1_281016.txt’, ’model_free_logs/laminar2_281016.txt’, ’
model_free_logs/laminar3_311016.txt’]

max_x, max_y = 0, 0
for i, f_name in enumerate(f_names):
data = []
with open(f_name, ’rb’) as file:
reader = csv.reader(file)
for row in reader:
data.append(float(row[-1]))

#ax.plot(data)

# Running Average plot
N = 35
avg = np.convolve(data, np.ones((N,))/N, mode=’valid’)
ax.plot(avg,lw = 1.25, c=viridis[i*100])

max_x = max(max_x, len(data))
max_y = max(max_y, max(avg))

max_y *= 1.05

# Change the tick labels
time_per_episode = frames_per_episode / (fps * 3600) # [h]
final_time = max_x * time_per_episode
x = range(0,max_x, 200)
labels = [int(xx*time_per_episode) for xx in x]
plt.xticks(x, labels)

# Plot end of epsilon decay
#ep_anneal = float(n_anneal) / frames_per_episode
#plt.plot((ep_anneal, ep_anneal), (0, max_y), ’k’, lw= 2, ls = ’--’)

ax.set_title(’Laminar Flow (MFEC)’)

ax.set_xlabel(’Time [h]’)
ax.set_ylabel(’Reward’)
ax.set_ylim([0.0, max_y])
ax.set_xlim([0.0, 1400])

# Benchmark
plt.plot((0, 1500), (human_mean, human_mean), ’k-’)
plt.plot((0, 1500), (human_confidence[0], human_confidence[0]), ’k--’)
plt.plot((0, 1500), (human_confidence[1], human_confidence[1]), ’k--’)

plt.plot((0, 1500), (random_mean, random_mean), ’k-’)
plt.plot((0, 1500), (random_confidence[0], random_confidence[0]), ’k--’)
plt.plot((0, 1500), (random_confidence[1], random_confidence[1]), ’k--’)

plt.savefig(’laminar_benchmark.png’, figsize=(20,20), dpi=300)
plt.show()#
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training of neural network classifier (chapter 5)

data_manager.py

import numpy as np
from scipy.misc import imread, imresize
from os import listdir, walk, path
from random import shuffle, randrange
from collections import Counter

import matplotlib.pyplot as plt

class DataManager(object):
def __init__(self, folder):
self.folder = folder

if not self.load_from_npz():
print ’Npz file not found. Loading from folder.’
self.parse_files()

# Now save to npz so we don’t have to do it again
print ’Images loaded, saving to npz file’
self.save_to_npz()

else:
print ’Loaded dataset from npz file’

self.n_train = self.x_train.shape[0]
self.n_test = self.x_test.shape[0]
self.n_categories = len(self.categories)
self.in_shape = self.x_train.shape[1:]

print ’{} train images, {} test images.’.format(self.n_train, self.n_test)

# Distributions of train and test set
train_dist = {self.categories[i]: round(100. * n/self.n_train,1) for i, n in Counter(

self.y_train).items()}
train_dist = [’{}: {}%’.format(n, p) for n,p in train_dist.items()]
print ’Distribution train: ’ + ’, ’.join(train_dist)

test_dist = {self.categories[i]: round(100. * n/self.n_test,1) for i, n in Counter(self.
y_test).items()}

test_dist = [’{}: {}%’.format(n, p) for n,p in test_dist.items()]
print ’Distribution test: ’ + ’, ’.join(test_dist)

def parse_files(self):
# Top level folders => categories
self.categories = listdir(self.folder)

# Each category
x_train, y_train, x_test, y_test = [], [], [], []
for cat_i, cat in enumerate(self.categories):
cat_path = path.join(self.folder, cat)

# Smallest folder = test set, others = training
f_size = []
for sub in listdir(cat_path):
sub_path = path.join(cat_path, sub)



appendix 175

f_size.append((len(listdir(sub_path)), sub))

f_size = sorted(f_size)

# Load all the images into the correct category
for sub in listdir(cat_path):
sub_path = path.join(cat_path, sub)
for p in [path.join(sub_path, f) for f in listdir(sub_path) if f.endswith(’.png’)]:
if sub == f_size[0][1]:
x_test.append(self._load_img(p))
y_test.append(cat_i)

else:
x_train.append(self._load_img(p))
y_train.append(cat_i)

self.x_train = np.array(x_train)
self.y_train = np.array(y_train)
self.x_test = np.array(x_test)
self.y_test = np.array(y_test)

def _load_img(self, path):
’’’
Squeezes image into square shape 84x84

’’’
img = imresize(imread(path), (84,84))
img = img.reshape((84, 84, 1))
img = img.astype(np.float32) / 255. # Convert to float32!
return img

def train_stream(self, nb_epoch = 1, batch_size = 32, limit = None):
if limit is not None:
print ’!!! Train limit is {} per epoch ({}) !!!’.format(limit, nb_epoch)

# Yield batches
for epoch in range(nb_epoch):
inds = range(self.n_train)
shuffle(inds)

if limit is not None:
inds = inds[:limit]

print ’Epoch {}: {} batches’.format(epoch, len(inds)//batch_size)

e=True
for i in range(0, len(inds), batch_size):
l = inds[i:i + batch_size]
yield self.x_train[l,:,:], self.y_train[l], e
e = False

def test_stream(self, nb_epoch = 1, batch_size = 32, limit = None):
if limit is not None:
print ’!!! Test limit is {} per epoch ({}) !!!’.format(limit, nb_epoch)

# Yield batches
for epoch in range(nb_epoch):
inds = range(self.n_test)
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shuffle(inds)

if limit is not None:
inds = inds[:limit]

print ’Epoch {}: {} batches’.format(epoch, len(inds)//batch_size)

e=True
for i in range(0, len(inds), batch_size):
l = inds[i:i + batch_size]
yield self.x_test[l,:,:], self.y_test[l], e
e = False

def get_random_train(self):
ind = randrange(self.n_train)
return self.x_train[ind:ind+1, :, :], self.y_train[ind]

def get_random_test(self):
ind = randrange(self.n_test)
return self.x_test[ind:ind+1, :, :], self.y_test[ind]

def save_to_npz(self):
np.savez(path.join(self.folder, ’dataset.npz’),
categories = self.categories,
x_train = self.x_train,
y_train = self.y_train,
x_test = self.x_test,
y_test = self.y_test)

def load_from_npz(self):
try:
data = np.load(path.join(self.folder, ’dataset.npz’))

except IOError:
return False

self.categories = list(data[’categories’])
self.x_train = data[’x_train’]
self.y_train = data[’y_train’]
self.x_test = data[’x_test’]
self.y_test = data[’y_test’]
return True

def visualize_dataset(self):
’’’
Show some of the images and their labels

’’’
stream = self.train_stream(batch_size = 36)
imgs, labels, __ = stream.next()

# Some simple statistics
print ’Min: {}, Max: {}, Mean: {} +- {}’.format(imgs.min(), imgs.max(), imgs.mean(),

imgs.std())

f, axarr = plt.subplots(6, 6)
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f.suptitle(’Dataset: ’ + self.folder, fontsize=10)

for i in xrange(36):
# Display
axarr[i // 6, i % 6].imshow(imgs[i,:,:,0], vmin=0, vmax=1)
axarr[i // 6, i % 6].set_title(self.categories[labels[i]], fontsize=8)
axarr[i // 6, i % 6].axis(’off’)

plt.show()

if __name__ == "__main__":
manager = DataManager(’/home/o/Desktop/TestDataset/’)

manager.visualize_dataset()

neural_tf.py

import tensorflow as tf
import numpy as np
from random import shuffle, randrange
import os

# Save protobuf needs a whole lot of stuff..
from tensorflow.python.tools import freeze_graph
from tensorflow.python.training import saver
from tensorflow.core.protobuf import saver_pb2

# Helpers: variable initialization
def bias_variable(shape):

init = tf.constant(0.1, shape=shape)
return tf.Variable(init)

def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial)

# Helpers: Simple Layers
def conv_layer(in_layer, kernel_size=4, kernel_size_y = None, n_channels=32, stride=1,

activation=’’, padding = ’SAME’):
in_size = in_layer.get_shape().as_list()[-1]

# Weights and bias in correct shape
if kernel_size_y is None:

weights = weight_variable([kernel_size, kernel_size, in_size, n_channels])
else:

weights = weight_variable([kernel_size, kernel_size_y, in_size, n_channels])

layer = tf.nn.conv2d(in_layer, weights, strides=[1, stride, stride, 1], padding=padding)
layer = tf.nn.bias_add(layer, bias_variable(shape=[n_channels]))

if activation == ’relu’:
layer = tf.nn.relu(layer)

return layer
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def max_pooling(in_layer, kernel_size = 2, stride = 2, padding = ’SAME’):
return tf.nn.max_pool(in_layer,

ksize = [1, kernel_size, kernel_size, 1],
strides = [1, stride, stride, 1],
padding = padding)

def flatten(in_layer, name = None):
s = in_layer.get_shape().as_list()
return tf.reshape(in_layer, [-1, s[1]*s[2]*s[3]], name = name)

def dense_layer(in_layer, n_neurons=512, activation=’’, name = ’’):
n_in = in_layer.get_shape().as_list()[1]
weights = weight_variable([n_in, n_neurons])
layer = tf.matmul(in_layer, weights)
if name:

layer = tf.nn.bias_add(layer, bias_variable(shape=[n_neurons]), name = name)
else:

layer = tf.nn.bias_add(layer, bias_variable(shape=[n_neurons]))

if activation == ’relu’:
if name:

layer = tf.nn.relu(layer, name = name)
else:

layer = tf.nn.relu(layer)

return layer

class TFModel(object):
’’’

This class handles general stuff like trainining and prediction.
Initialize your own network by extending the init function (run super().__init__

first) .
Required: - Use self.in_layer (and potentially self.labels)

- Create self.out_layer (name=’out_layer’) which produces class
probabilities

’’’

def __init__(self, input_shape, clip_value = 0.05, learning_rate = 1e-4, learning_decay
= 1.0, n_classes = None, dropout = 0.2):

# Make sure we have fresh variable names
tf.reset_default_graph()

# Setup network
self.in_layer = tf.placeholder(tf.float32, [None] + list(input_shape), name=’

in_layer’)
self.labels = tf.placeholder(tf.int32, [None])

# Feed this tensor the keep probability during training
# (during evaluation this should be 1.0)
self.keep_prob = tf.placeholder_with_default(1.0, [])
self.default_keep_prob = 1. - dropout

self.learning_rate = tf.placeholder(tf.float32, [])
self.current_learning_rate = learning_rate
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self.learning_decay = learning_decay

# Do some image preprocessing
# Cut of low level noise
l = tf.clip_by_value(self.in_layer, clip_value, 1.0, name=None)

# Apply whitening to each image
self.start_layer = tf.map_fn(tf.image.per_image_standardization, l, back_prop=False)

def setup_training(self):
# A prediction layer (argmax on out_layer)
self.prediction_layer = tf.cast(tf.argmax(self.out_layer, 1), tf.int32, name=’

prediction_layer’)

# Setup training
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.out_layer,

labels=self.labels)
self.loss = tf.reduce_mean(losses)
self.optimizer = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(

self.loss)

correct_prediction = tf.equal(self.prediction_layer, self.labels)
self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

# Checkpoint saver
self.saver = tf.train.Saver(write_version=saver_pb2.SaverDef.V2)

# And initialize all variables
self.session = tf.Session()
self.session.run(tf.global_variables_initializer())

def fit(self, stream, verbose=1, path = None):
epoch = 0
last_path = None
for i in xrange(int(1e8)):

try:
x, y, new_epoch = stream.next()

except StopIteration:
if path is not None:

last_path = self.save(path + ’model.ckpt’, epoch = epoch)
print ’Saved model:’, last_path
return last_path

else:
return None

# decay learning rate every new epoch
if new_epoch and i:

self.current_learning_rate *= self.learning_decay
epoch += 1

# Save checkpoint
if path is not None:

last_path = self.save(path + ’model.ckpt’, epoch = epoch)
print ’Saved model:’, last_path

# Training with 20% dropout if model includes dropout
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self.session.run(self.optimizer, feed_dict={self.in_layer: x, self.labels: y,
self.keep_prob: self.
default_keep_prob,

self.learning_rate: self.current_learning_rate})

if not i % 50 and verbose == 1:
loss, acc = self.session.run([self.loss, self.accuracy],

feed_dict={self.in_layer: x, self.labels: y})
print ’Batch {}; Loss: {}, Accuracy: {}’.format(i, loss, acc)

return last_path

def evaluate(self, stream):
losses, accuracies = [], []
for i in range(int(1e8)):

try:
x,y, new_epoch = stream.next()

except StopIteration:
n = float(len(losses))
return sum(losses)/n, sum(accuracies)/n

l, a = self.session.run([self.loss, self.accuracy], feed_dict={self.in_layer: x,
self.labels: y})

losses.append(l)
accuracies.append(a)

def predict(self, x):
pred = self.session.run(self.prediction_layer, feed_dict={self.in_layer: x})
return pred[0]

def get_output(self, x):
pred = self.session.run(self.out_layer, feed_dict={self.in_layer: x})
return pred[0]

def save(self, path, epoch = 0):
return self.saver.save(self.session, path, global_step = epoch)

def load(self, path):
self.saver.restore(self.session, path)

def save_protobuf(self, path):
’’’

Inspired by: freeze_graph_test.py
’’’
rand_check = str(randrange(1e10,1e11))
rand_graph = str(randrange(1e10,1e11))

saver_inst = saver.Saver(write_version=saver_pb2.SaverDef.V2)
checkpoint_path = saver_inst.save(

self.session,
’/tmp/’ + rand_check,
global_step=0,
latest_filename=’checkpoint_state’)
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# checkpoint_path = self.save(’/tmp/’+rand_check)
tf.train.write_graph(self.session.graph, ’/tmp’, rand_graph + ’.pb’)

# Now freeze the graph including the weights
freeze_graph.freeze_graph(input_graph = ’/tmp/{}.pb’.format(rand_graph),

input_saver = ’’,
input_binary = False,
input_checkpoint = checkpoint_path,
output_node_names = ’prediction_layer’,
restore_op_name = "save/restore_all",
filename_tensor_name = "save/Const:0",
output_graph = path,
clear_devices = False,
initializer_nodes = ’’)

print ’Saved protobuf:’, path

###
#
# Our custom classifiers
#
###

class SimpleConv(TFModel):
’’’

A simple convolutional classifier:
3 times convolution then 512 fully connected.

’’’
def __init__(self, **kwargs):

super(SimpleConv, self).__init__(**kwargs)

cur_layer = self.start_layer
s_conv = [8, 4, 3]
d_conv = [32, 64, 64]
strides = [4, 2, 1]
for i in range(3):

cur_layer = conv_layer(cur_layer, kernel_size=s_conv[i],
n_channels=d_conv[i], stride=strides[i], activation=’relu

’)

cur_layer = flatten(cur_layer)
cur_layer = dense_layer(cur_layer, n_neurons=512, activation=’relu’)
self.out_layer = dense_layer(cur_layer, n_neurons=kwargs[’n_classes’], name =’

out_layer’)

# Setup training in super
self.setup_training()

class AdvancedConv(TFModel):
’’’

Similar to SimpleConv but with maxpooling instead of strides
& 15 % dropout in the end.

’’’
def __init__(self, **kwargs):

super(AdvancedConv, self).__init__(**kwargs)



182 appendix

cur_layer = self.start_layer
s_conv = [8, 4, 3]
d_conv = [32, 64, 64]
for i in range(3):

cur_layer = conv_layer(cur_layer, kernel_size=s_conv[i],
n_channels=d_conv[i], stride=1, activation=’relu’)

cur_layer = max_pooling(cur_layer, kernel_size = 2, stride = 2)

cur_layer = flatten(cur_layer)
cur_layer = dense_layer(cur_layer, n_neurons=512, activation=’relu’)

# Dropout only during training
cur_layer = tf.nn.dropout(cur_layer, self.keep_prob)

self.out_layer = dense_layer(cur_layer, n_neurons=kwargs[’n_classes’], name =’
out_layer’)

# Setup training in super
self.setup_training()

# Squeezenet fire module
def fire_module(in_layer, s1x1, e1x1, e3x3, residual=False):

fire = {}
shape = in_layer.get_shape()

# Squeeze
fire[’s1’] = conv_layer(in_layer, kernel_size = 1, n_channels = s1x1, activation=’relu’)

# Expand
fire[’e1’] = conv_layer(fire[’s1’], kernel_size = 1, n_channels = e1x1)
fire[’e3’] = conv_layer(fire[’s1’], kernel_size = 3, n_channels = e3x3)

# tf.concat changed order....\
fire[’concat’] = tf.concat([fire[’e1’], fire[’e3’]], 3)

if residual:
cur_layer = tf.add(fire[’concat’], in_layer)

else:
cur_layer = fire[’concat’]

return tf.nn.relu(cur_layer)

class SqueezeNet(TFModel):
’’’

SqueezeNet aims to reduce the number of parameters in a neural network.
We use the squeezenet 1.1 according to:
https://github.com/DeepScale/SqueezeNet

’’’
def __init__(self, **kwargs):

super(SqueezeNet, self).__init__(**kwargs)

cur_layer = self.start_layer

# Conv 1
cur_layer = conv_layer(cur_layer, kernel_size = 3, n_channels = 64, stride = 1) #

stride = 2 in original but larger
images
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# Pool 1
cur_layer = tf.nn.max_pool(cur_layer, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding=’VALID’)

# Fire 2
cur_layer = fire_module(cur_layer, 16, 64, 64)

# Fire 3
cur_layer = fire_module(cur_layer, 16, 64, 64, True)

# Pool 3
cur_layer = tf.nn.max_pool(cur_layer, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding=’VALID’)

# Fire 4
cur_layer = fire_module(cur_layer, 32, 128, 128)

# Fire 5
cur_layer = fire_module(cur_layer, 32, 128, 128, True)

# Pool 5
cur_layer = tf.nn.max_pool(cur_layer, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],

padding=’VALID’)

# Fire 6
cur_layer = fire_module(cur_layer, 48, 192, 192)

# Fire 7
cur_layer = fire_module(cur_layer, 48, 192, 192, True)

# Fire 8
cur_layer = fire_module(cur_layer, 64, 256, 256)

# Fire 9
cur_layer = fire_module(cur_layer, 64, 256, 256, True)

# Dropout
cur_layer = tf.nn.dropout(cur_layer, self.keep_prob) # 50% in original! 20% here

# Conv 10
cur_layer = conv_layer(cur_layer, kernel_size = 1, n_channels = kwargs[’n_classes’],

activation = ’relu’)

# Pool 10 (Average pooling)
cur_layer = tf.nn.avg_pool(cur_layer, ksize=[1, 9, 9, 1], strides=[1, 1, 1, 1],

padding=’VALID’)

# Flatten (our version)
self.out_layer = flatten(cur_layer, name = ’out_layer’)

# Setup training in super
self.setup_training()

# The modules for inception resnet v2
def inception_a(cur_layer):

# branches
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b1 = conv_layer(cur_layer, kernel_size = 1, n_channels = 32)

b2 = conv_layer(cur_layer, kernel_size = 1, n_channels = 32)
b2 = conv_layer(b2, kernel_size = 3, n_channels = 32)

b3 = conv_layer(cur_layer, kernel_size = 1, n_channels = 32)
b3 = conv_layer(b3, kernel_size = 3, n_channels = 48)
b3 = conv_layer(b3, kernel_size = 3, n_channels = 64)

combo = tf.concat([b1,b2,b3], 3)

combo = conv_layer(combo, kernel_size = 1, n_channels = cur_layer.get_shape().as_list()[
3])

# The magic scaling to stabilize training, supposed to be around 0.1
cur_layer += combo * 0.15

# And an activation function
return tf.nn.relu(cur_layer)

def reduction_a(cur_layer):
b1 = max_pooling(cur_layer, kernel_size = 3, stride = 2, padding = ’VALID’)
b2 = conv_layer(cur_layer, kernel_size = 3, n_channels = 384, stride = 2, padding = ’

VALID’)

b3 = conv_layer(cur_layer, kernel_size = 1, n_channels = 256)
b3 = conv_layer(cur_layer, kernel_size = 3, n_channels = 256)
b3 = conv_layer(cur_layer, kernel_size = 3, n_channels = 384, stride = 2, padding = ’

VALID’)

combo = tf.concat([b1,b2,b3], 3)

return combo

def inception_b(cur_layer):
b1 = conv_layer(cur_layer, kernel_size = 1, n_channels = 192)

b2 = conv_layer(cur_layer, kernel_size = 1, n_channels = 128)
b2 = conv_layer(b2, kernel_size = 1, kernel_size_y = 7, n_channels = 160)
b2 = conv_layer(b2, kernel_size = 7, kernel_size_y = 1, n_channels = 192)

combo = tf.concat([b1,b2], 3)

combo = conv_layer(combo, kernel_size = 1, n_channels = cur_layer.get_shape().as_list()[
3])

# Another magic scaling to stabilize training, supposed to be around 0.1
cur_layer += combo * 0.15

return tf.nn.relu(cur_layer)

def reduction_b(cur_layer):
b1 = max_pooling(cur_layer, kernel_size = 3, stride = 2, padding = ’VALID’)

b2 = conv_layer(cur_layer, kernel_size = 1, n_channels = 256)
b2 = conv_layer(b2, kernel_size = 3, n_channels = 384, stride = 2, padding = ’VALID’)
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b3 = conv_layer(cur_layer, kernel_size = 1, n_channels = 256)
b3 = conv_layer(b3, kernel_size = 3, n_channels = 288, stride = 2, padding = ’VALID’)

b4 = conv_layer(cur_layer, kernel_size = 1, n_channels = 256)
b4 = conv_layer(b4, kernel_size = 3, n_channels = 288)
b4 = conv_layer(b4, kernel_size = 3, n_channels = 320, stride=2, padding = ’VALID’)

combo = tf.concat([b1,b2,b3,b4], 3)

return combo

def inception_c(cur_layer):
b1 = conv_layer(cur_layer, kernel_size = 1, n_channels = 192)

b2 = conv_layer(cur_layer, kernel_size = 1, n_channels = 192)
b2 = conv_layer(b2, kernel_size = 1, kernel_size_y = 3, n_channels = 224)
b2 = conv_layer(b2, kernel_size = 3, kernel_size_y = 1, n_channels = 256)

combo = tf.concat([b1,b2], 3)

combo = conv_layer(combo, kernel_size = 1, n_channels = cur_layer.get_shape().as_list()[
3])

cur_layer += combo * 0.15

return tf.nn.relu(cur_layer)

class InceptionResNet2(TFModel):
’’’

Inception ResNet-v2, adapted from:
https://arxiv.org/abs/1602.07261

We use a variant of the stem from Inception-ResNet-v1 bc we have different input
dimensions

and it is easier to adapt. Actually our stem is quite custom but linear like v1.

General structure:

Stem
10 x Inception A
Reduction A
20 x Inception B
Reduction B
10 x Inception C

Bottom: Avg, Dropout, Softmax
’’’
def __init__(self, **kwargs):

super(InceptionResNet2, self).__init__(**kwargs)

cur_layer = self.start_layer

# Stem
cur_layer = conv_layer(cur_layer, kernel_size = 5, n_channels = 32, padding = ’VALID

’)
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cur_layer = conv_layer(cur_layer, kernel_size = 3, n_channels = 64, padding = ’VALID
’)

cur_layer = conv_layer(cur_layer, kernel_size = 3, n_channels = 80, padding = ’VALID
’)

cur_layer = conv_layer(cur_layer, stride = 2, kernel_size = 3, n_channels = 192,
padding = ’VALID’)

cur_layer = conv_layer(cur_layer, kernel_size = 3, n_channels = 256, padding = ’
VALID’)

# Inception A
for i in range(1):

cur_layer = inception_a(cur_layer)

# Reduction A
cur_layer = reduction_a(cur_layer)

# Inception B
for i in range(1):

cur_layer = inception_b(cur_layer)

# Reduction B
cur_layer = reduction_b(cur_layer)

# Inception C
for i in range(1):

cur_layer = inception_c(cur_layer)

# Bottom
cur_layer = tf.nn.avg_pool(cur_layer, ksize=[1, 8, 8, 1], strides=[1, 1, 1, 1],

padding=’VALID’)
cur_layer = flatten(cur_layer)

# Dropout only during training
cur_layer = tf.nn.dropout(cur_layer, self.keep_prob)

self.out_layer = dense_layer(cur_layer, n_neurons=kwargs[’n_classes’], name =’
out_layer’)

self.setup_training()

if __name__ == "__main__":
m = SqueezeNet(input_shape = (84,84,1), n_classes = 3)
m = InceptionResNet2(input_shape = (84,84,1), n_classes = 3)

prepare_data.py

import numpy as np
from os import walk
from scipy.misc import imread, imresize

# Get images
train_data_dir = ’/home/g/Desktop/TestSet05.04.17/’
categories = [’H562’, ’Jurkat’, ’Empty’, ’Beads’]

frames = {c: [] for c in categories}
for root, __, files in walk(train_data_dir):

cat = root.split(’/’)[-2]
for f in files:
if f.endswith(’.png’) and cat in categories:
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img = imread(root + ’/’ + f) # 160x200
img = imresize(img[20:-20,40:-40], (84,84))
img = img.reshape((84, 84, 1))
img = img.astype(np.float32) / 255. # Convert to float32!
frames[cat].append(img)

x = np.concatenate([np.array(frames[c]) for c in categories])

y = np.zeros(len(x), dtype = np.int32)
n = 0
for i, c in enumerate(categories):
y[n:n+len(frames[c])] = i
n += len(frames[c])

# Save the dataset
name = ’datasets/complete.npz’
np.savez(name, x=x, y=y)

print ’Saved dataset at:’, name

train_offline.py

import time
import os
from random import randrange
import matplotlib.pyplot as plt
import numpy as np

from data_manager import DataManager
from neural_tf import SimpleConv, AdvancedConv, SqueezeNet, InceptionResNet2

class MultiTrainer(object):
def __init__(self, data_path, model_path, limit=None):

self.data = DataManager(data_path)
self.model_path = model_path
self.limit = limit

# Test frame is all 1.0
self.test_frame = np.ones([1] + list(self.data.in_shape), dtype=np.float32)

# Initiate all models
self.models = {

’simple_conv’: SimpleConv(input_shape = self.data.in_shape,
n_classes = self.data.n_categories,
clip_value = 0.05,
learning_rate = 1e-4,
learning_decay = 1.0),

’advanced_conv’: AdvancedConv(input_shape=self.data.in_shape, n_classes=self.
data.n_categories),

# ’squeezenet’: SqueezeNet(input_shape = self.data.in_shape, n_classes = self.
data.n_categories,

# learning_rate = 0.04, learning_decay = 0.94),
# ’inception_resnet_v2’: InceptionResNet2(input_shape = self.data.in_shape,

n_classes = self.data.n_categories
,

# learning_rate = 0.045, learning_decay = 0.94)
}
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# Save some model statistics (at least final loss and accuracy)
self.model_stats = {}

def train_all_models(self, nb_epoch=1, batch_size=32, verbose=1):
# We are keeping a training log, some of this is used in cpp later
legend = [’cat {}’.format(i) for i in range(self.data.n_categories)]
legend += [’test {}’.format(i) for i in range(self.data.n_categories)]
legend += [’n_classes’, ’name’, ’n_train’, ’n_test’, ’speed_train’, ’loss’, ’

accuracy’, ’path’, ’in_shape_x’,
’in_shape_y’]

for name, m in self.models.items():
# Create model folder if not exists
model_path = self.model_path + name + ’/’
if not os.path.exists(model_path):

os.makedirs(model_path)

print ’\nTraining’, name
before = time.time()

# Train
train_stream = self.data.train_stream(limit=self.limit, nb_epoch=nb_epoch,

batch_size=batch_size)
last_path = m.fit(train_stream, verbose=verbose, path=model_path)
fps = round(float(self.data.n_train * nb_epoch) / (time.time() - before), 1)

# Test on complete test set
print ’Testing’, name
test_stream = self.data.test_stream(limit=self.limit, nb_epoch=1, batch_size=

batch_size)
loss, acc = m.evaluate(test_stream)

self.model_stats[name] = (loss, acc)
test_out = list(m.get_output(self.test_frame))

# Assemble the csv
all_data = self.data.categories + test_out
all_data += [self.data.n_categories, name, self.data.n_train, self.data.n_test,

fps, loss, acc, last_path]
all_data += [self.data.in_shape[0], self.data.in_shape[1]]
all_data = [str(i) for i in all_data]

# We use the csv format (first row is legend)
log = ’,’.join(legend) + ’\n’ + ’,’.join(all_data)
with open(model_path + ’log.csv’, ’w’) as f:

f.write(log)

print ’{} fps (train), loss {}, accuracy {},’.format(fps, loss, acc)

# Example output values
print ’Test frame values:’, test_out

# print ’Saving {} as protobuf’.format(name)
# m.save_protobuf(model_path + ’{}.pb’.format(name))

def plot_best_result(self):
# Get largest accuracy
losses = [(i[1], name) for name, i in self.model_stats.items()]
best_model = max(losses)[1]
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f, axarr = plt.subplots(6, 6)
f.suptitle(’{}: {}% accuracy’.format(best_model, round(100. * self.model_stats[

best_model][1], 1)),
fontsize=14)

cat = self.data.categories

for i in range(36):
frame, exp = self.data.get_random_test()

# Predict
pred = cat[self.models[best_model].predict(frame)]
exp = cat[exp]

color = ’g’
if exp != pred:

color = ’r’

# Display
axarr[i // 6, i % 6].imshow(frame.reshape(frame.shape[1], frame.shape[2]), vmin=

0, vmax=1)
axarr[i // 6, i % 6].set_title(’{}, Exp: {}’.format(pred, exp), color=color,

fontsize=8)
axarr[i // 6, i % 6].axis(’off’)

plt.show()

if __name__ == "__main__":
trainer = MultiTrainer(data_path=’/home/o/Desktop/TestDataset/’, model_path=’models/’)
trainer.train_all_models(nb_epoch=1)
trainer.plot_best_result()

# ’/home/g/Desktop/Sorting/HL6015umBeads/’

convert_model.py

from neural_tf import SimpleConv, AdvancedConv, SqueezeNet

folder = ’models/simple_conv/’
# folder = ’models/squeezenet/’

# Open log file
with open(folder + ’log.csv’, ’r’) as f:
legend, vals = f.read().split(’\n’)
legend = legend.split(’,’)
vals = vals.split(’,’)

# Get the necessary params from the logfile
savefile = vals[-3]
name = vals[legend.index(’name’)]
n_classes = len([n for n in legend if n.startswith(’cat’)])
in_shape = [vals[legend.index(’in_shape_x’)], vals[legend.index(’in_shape_y’)], 1]

in_shape = [int(i) for i in in_shape]

# Create model
if name == ’simple_conv’:
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model = SimpleConv(input_shape = in_shape, n_classes = n_classes)
elif name == ’advanced_conv’:
model = AdvancedConv(input_shape = in_shape, n_classes = n_classes)

elif name == ’squeezenet’:
model = SqueezeNet(input_shape = in_shape, n_classes = n_classes)

else:
raise NotImplementedError(’Can not convert network...’)

# Load from checkpoint and save as protobuf
model.load(savefile)
model.save_protobuf(folder + name + ’.pb’)
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sented at the Computational Intelligence and Games (2016), 1.

170. ZDOOM (2004; http://zdoom.org).

171. N. Otsu, A threshold selection method from gray-level histograms.
IEEE transactions on systems, man, and cybernetics 9, 62–66 (1979).

172. R. O. Duda, P. E. Hart, Use of the Hough transformation to detect
lines and curves in pictures. Communications of the ACM 15, 11–15

(1972).

http://zdoom.org


Bibliography 205

173. G. Bradski, The OpenCV Library. Dr. Dobb’s Journal: Software Tools for
the Professional Programmer 25, 120–123 (2000).

174. F. Chollet, Keras, self-published (2015).

175. J. Bergstra, O. Breuleux, P. Lamblin, R. Pascanu, O. Delalleau, G. Des-
jardins, I. Goodfellow, A. Bergeron, Y. Bengio, P. Kaelbling, Theano:
Deep learning on gpus with python. self-published (2011).

176. M. Bawa, T. Condie, P. Ganesan, presented at the 14th international
conference on World Wide Web (2005), 651.

177. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-
learn: Machine learning in Python. Journal of Machine Learning Re-
search 12, 2825–2830 (2011).

178. S. Matosevic, B. M. Paegel, Stepwise synthesis of giant unilamellar
vesicles on a microfluidic assembly line. Journal of the American Chem-
ical Society 133, 2798–2800 (2011).

179. M. P. Carreras, S. Wang, A multifunctional microfluidic platform
for generation, trapping and release of droplets in a double laminar
flow. Journal of Biotechnology 251, 106–111 (2017).

180. H. Van Hasselt, A. Guez, D. Silver, presented at the AAAI (2016),
2094.

181. I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. deMello, M. V.
Kovalenko, Synthesis of cesium lead halide perovskite nanocrystals
in a droplet-based microfluidic platform: fast parametric space map-
ping. Nano letters 16, 1869–1877 (2016).

182. J. Xu, G. Luo, S. Li, G. Chen, Shear force induced monodisperse
droplet formation in a microfluidic device by controlling wetting
properties. Lab on a Chip 6, 131–136 (2006).

183. J. Zhou, A. V. Ellis, N. H. Voelcker, Recent developments in PDMS
surface modification for microfluidic devices. Electrophoresis 31, 2–16

(2010).

184. A. Adan, G. Alizada, Y. Kiraz, Y. Baran, A. Nalbant, Flow cytometry:
basic principles and applications. Critical reviews in biotechnology 37,
163–176 (2017).

185. O. D. Laerum, T. Farsund, Clinical application of flow cytometry: a
review. Cytometry Part A 2, 1–13 (1981).



206 Bibliography

186. M. Verso, The evolution of blood-counting techniques. Medical his-
tory 8, 149 (1964).

187. Y. Han, Y. Gu, A. C. Zhang, Y.-H. Lo, imaging technologies for flow
cytometry. Lab on a Chip 16, 4639–4647 (2016).

188. M. A. Van Dilla, T. Truiullo, P. F. Mullaney, J. Coultex, Cell microfluo-
rometry: a method for rapid fluorescence measurement. Science 163,
1213–1214 (1969).

189. J. Steinkamp, M. Fulwyler, J. Coulter, R. Hiebert, J. Horney, P. Mul-
laney, A new multiparameter separator for microscopic particles and
biological cells. Review of Scientific Instruments 44, 1301–1310 (1973).

190. F. Porichis, M. G. Hart, M. Griesbeck, H. L. Everett, M. Hassan, A. E.
Baxter, M. Lindqvist, S. M. Miller, D. Z. Soghoian, D. G. Kavanagh, et
al., High-throughput detection of miRNAs and gene-specific mRNA
at the single-cell level by flow cytometry. Nature communications 5,
5641 (2014).

191. A. S. Rane, J. Rutkauskaite, S. Stavrakis, A. J. deMello, High-
Throughput Multi-parametric Imaging Flow Cytometry. Chem 3,
588–602 (2017).

192. D. A. Basiji, W. E. Ortyn, L. Liang, V. Venkatachalam, P. Morrissey,
Cellular image analysis and imaging by flow cytometry. Clinics in
laboratory medicine 27, 653–670 (2007).

193. T. C. George, D. A. Basiji, B. E. Hall, D. H. Lynch, W. E. Ortyn, D. J.
Perry, M. J. Seo, C. A. Zimmerman, P. J. Morrissey, Distinguishing
modes of cell death using the ImageStream® multispectral imaging
flow cytometer. Cytometry Part A 59, 237–245 (2004).

194. M. E. Skindersoe, S. Kjaerulff, Comparison of three thiol probes for
determination of apoptosis-related changes in cellular redox status.
Cytometry Part A 85, 179–187 (2014).

195. A. Filby, J. P. Houston, Imaging cytometry: Automated morphology
and feature extraction. Cytometry Part A 91, 851–853 (2017).

196. A. D. Posey, O. U. Kawalekar, C. H. June, Measurement of intracellu-
lar ions by flow cytometry. Current protocols in cytometry, 9–8 (2015).

197. A. E. Carpenter, T. R. Jones, M. R. Lamprecht, C. Clarke, I. H. Kang,
O. Friman, D. A. Guertin, J. H. Chang, R. A. Lindquist, J. Moffat,
et al., CellProfiler: image analysis software for identifying and quan-
tifying cell phenotypes. Genome biology 7, R100 (2006).



Bibliography 207

198. O. Otto, P. Rosendahl, A. Mietke, S. Golfier, C. Herold, D. Klaue, S.
Girardo, S. Pagliara, A. Ekpenyong, A. Jacobi, et al., Real-time de-
formability cytometry: on-the-fly cell mechanical phenotyping. Na-
ture methods 12, 199 (2015).

199. J. Kovac, J. Voldman, Intuitive, image-based cell sorting using
optofluidic cell sorting. Analytical chemistry 79, 9321–9330 (2007).

200. Q. Gu, T. Aoyama, T. Takaki, I. Ishii, Simultaneous vision-based
shape and motion analysis of cells fast-flowing in a microchannel.
IEEE Transactions on Automation Science and Engineering 12, 204–215

(2015).

201. D. H. Hubel, T. N. Wiesel, Brain and visual perception: the story of a
25-year collaboration (Oxford University Press, 2004).

202. G. Holzner, S. Stavrakis, A. DeMello, Elasto-inertial focusing of
mammalian cells and bacteria using low molecular, low viscosity
PEO solutions. Analytical chemistry 89, 11653–11663 (2017).

203. M. A. Unger, H.-P. Chou, T. Thorsen, A. Scherer, S. R. Quake, Mono-
lithic microfabricated valves and pumps by multilayer soft lithogra-
phy. Science 288, 113–116 (2000).

204. S. Bjarne, The C++ programming language, 1997.

205. M. Abadi, A. A. B. P. TensorFlow, presented at the 12th USENIX Sym-
posium on Operating Systems Design and Implementation (2016),
265.

206. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdi-
nov, Dropout: A simple way to prevent neural networks from over-
fitting. The Journal of Machine Learning Research 15, 1929–1958 (2014).

207. F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K.
Keutzer, SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and< 0.5 MB model size. arXiv preprint arXiv:1602.07360 (2016).

208. R. B. Maxwell, A. L. Gerhardt, M. Toner, M. L. Gray, M. A. Schmidt,
A microbubble-powered bioparticle actuator. Journal of microelec-
tromechanical systems 12, 630–640 (2003).


	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	1.1 Functional Components and Unit Operations
	1.1.1 Droplet Generation
	1.1.2 Droplet Storage and Payload Retention
	1.1.3 Droplet Manipulations

	1.2 Probing Small Volumes: Detection in Droplets
	1.2.1 Fluorescence
	1.2.2 Droplet Barcoding

	1.3 Neural Network Based Control
	1.4 Conclusions

	2 Passive Synchronization of Microfluidic Droplets
	2.1 Introduction
	2.2 Experimental Methods
	2.2.1 Microfluidic Device Fabrication
	2.2.2 Synchronization Performance
	2.2.3 Inter-droplet Osmotic Transfer

	2.3 Synchronization Device Development
	2.4 Low-Error Synchronization Device
	2.5 Results and Discussion
	2.5.1 Synchronization Performance Characterization
	2.5.2 Quantification of Inter-droplet Osmotic Transfer

	2.6 Conclusion

	3 Large-Scale Active Droplet Barcoding
	3.1 Introduction
	3.1.1 Droplet Barcoding
	3.1.2 Droplet Storage
	3.1.3 Active Sorting Barcoding

	3.2 Barcoding System Development
	3.2.1 FPGA-based Barcode Generation
	3.2.2 Flow Rate Feedback Algorithm
	3.2.3 Droplet Storage Chamber Design

	3.3 Materials and Methods
	3.3.1 Experimental Setup
	3.3.2 Software
	3.3.3 Barcoding Experiments
	3.3.4 3D-printed Storage Chamber

	3.4 Results and Discussion
	3.4.1 3D-printed Storage Chamber
	3.4.2 Single-color Barcodes
	3.4.3 Two-color Barcodes

	3.5 Conclusion

	4 Reinforcement Learning For Microfluidic Control
	4.1 Introduction
	4.1.1 Machine Learning
	4.1.2 Artificial Neural Networks
	4.1.3 Reinforcement Learning
	4.1.4 Deep Q-learning
	4.1.5 Model-free Episodic Controller
	4.1.6 Reinforcement Learning in Simulated Environments
	4.1.7 Microfluidic Reinforcement Learning

	4.2 Materials and Methods
	4.2.1 Investigate Fluidic Environments
	4.2.2 Experimental Setup
	4.2.3 Data Pre-Processing
	4.2.4 Reward Calculation
	4.2.5 Environment Characterization
	4.2.6 DQN Algorithm
	4.2.7 Model-free Episodic Control Algorithm
	4.2.8 Algorithm Tests using VizDoom
	4.2.9 Benchmarking Learning Performance

	4.3 Results and Discussion
	4.3.1 Laminar Flow Control
	4.3.1.1 Environment Characterization
	4.3.1.2 Laminar Flow Control using DQN
	4.3.1.3 Laminar Flow Control using MFEC

	4.3.2 Droplet Size Challenge
	4.3.2.1 Environment Characterization
	4.3.2.2 Droplet Size Control using DQN
	4.3.2.3 Droplet Size Control using MFEC


	4.4 Conclusion

	5 Deep Learning Enabled Real Time Cell Sorting
	5.1 Introduction
	5.1.1 Cytometry
	5.1.2 Microfluidic image-based flow cytometry

	5.2 Materials and Methods
	5.2.1 Experimental Setup
	5.2.2 Classification Algorithm
	5.2.3 Offline Algorithm Training
	5.2.4 Real-time Particle Sorting

	5.3 Results and Discussion
	5.3.1 Classification algorithm
	5.3.2 Neural network-based sorting

	5.4 Conclusion

	6 Summary and Outlook
	A Appendix
	Bibliography

