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A B S T R A C T

The common practice among developers is to use a CPU time profiler to inspect
a program that shows sub-optimal performance. A problem of CPU time pro-
filers is that they indicate to the developer the code locations of the program
where the time is spent, but not the code locations where the time is wasted.
Consequently a CPU time profiler offers limited help to find the cause(s) of
a performance bottleneck and it offers limited help to a developer to fix such
performance issue(s) in a program.

A major drawback of using CPU time profilers to debug a program’s perfor-
mance is that a CPU time profiler cannot pin-point the exact code location(s)
that cause(s) a performance issue. A performance issue may manifest in one
code location (e. g., a slow function execution) but the source of the problem
(e. g., setting a function’s argument to a specific value) can be located in a dif-
ferent code location.

To identify and to fix the cause(s) of a performance problem a developer
may execute multiple manual costly tasks. For example, a developer manually
inspects the profiler reports to identify the code locations that may contain the
cause(s) of a slow execution, and then he or she fixes the performance problem.
To fix a performance problem, a developer is required to perform multiple
iterations of code changes until he or she finds a suitable fix, i. e., to test the
different implementations of the fix. Additionally to check that the fix does not
introduce any performance regression, the developer must execute the program
with the bottleneck triggering input and exercise the fix with new inputs.

In this dissertation we present and implement three novel approaches that
aim to mitigate these issues: MemoizeIt, PerfSyn, and TestMiner. The main
goal of these novel approaches is to reduce the manual work required by a
developer during the performance debugging cycle.

To solve the problem of finding the exact program locations with a perfor-
mance problem, we introduce MemoizeIt, a dynamic program analysis that
records runtime execution traces and that suggests to the developer code lo-
cations that may benefit from memoization. Applying memoization to a code
location that performs redundant computations is one of the most effective
techniques to speedup a program’s execution. However identifying these loca-
tions is difficult because of the pervasive presence of side-effects, and because
a conservative program analysis may discard profitable memoization opportu-
nities (i. e., the analysis is too pessimistic). MemoizeIt takes a non-conservative,
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opposite, approach. MemoizeIt identifies memoization opportunities by com-
paring inputs and outputs of method calls in a scalable yet precise way, by
iteratively increasing the level of details at which objects are compared. We
show that MemoizeIt finds previously unknown performance bottlenecks such
as redundant computations that would be otherwise discarded by a conserva-
tive analysis.

The second approach, PerfSyn, is an automatic program synthesis technique
to generate bottleneck-exposing programs for a given method under test. Perf-
Syn solves the problem of manually providing inputs to validate a developer’s
assumptions about the performance of a method.

The idea behind PerfSyn is to repeatedly mutate a program that uses the
method under test to systematically increase the amount of work done by the
method. We formulate the problem of synthesizing a bottleneck-exposing pro-
gram as a combinatorial search, and we show that it can be effectively and ef-
ficiently addressed using well known graph search algorithms. Our evaluation
shows that PerfSyn is capable to synthesize programs that expose previously
unknown and known performance bottlenecks.

Unfortunately PerfSyn suffers from a major limitation: it fails to provide rel-
evant domain-specific input values, as a result, PerfSyn is effective for generic
classes, such as collections, but less successful for domain-specific software.

To address this limitation we introduce TestMiner. The key idea of TestMiner
is to exploit the information available in existing code bases, in particular in ex-
isting tests. TestMiner uses an information retrieval inspired mining technique
to predict input values suitable for a particular method. The approach extracts
literals from the source code of existing tests and it indexes them for quick re-
trieval. The indexed values can be used by a program generator that queries
the mined data for values suitable for a given method under test. We show
that TestMiner is able to increase code coverage of a state-of-the-art random
test generator.

Once a developer identifies a code location that has sub-optimal performance,
the developer must find a fix for the performance issue. We extend MemoizeIt
to infer cache configurations from executions and to present to the developer
the configurations in a textual form. Our hypothesis that the suggested fixes
are effective in speeding-up a program’s execution is validated by an evaluation
of the caching configurations with real-world programs. The evaluation shows
that applying the fixes to a series of bottleneck containing programs results in
statistically significant speed-ups with different inputs.
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S O M M A R I O

Gran parte dell’analisi delle prestazioni di un programma è basata sull’uso di
un profiler. L’obiettivo di un profiler è di quantificare il tempo che viene speso
in ogni singola funzione del programma quando è eseguito con un determinato
input.

Le attuali tecniche di profiling sono tuttavia affette da importanti limitazioni.
La prima limitazione di un profiler è di indicare allo sviluppatore dove un pro-
gramma spende il tempo durante un’esecuzione ma non come questo tempo
viene inutilmente consumato. Di conseguenza, un profiler è di minima util-
ità per lo sviluppatore se lo sviluppatore deve cercare le cause di un collo di
bottiglia in un programma. La seconda limitazione di un profiler è di offrire
un limitato supporto in aiuto allo sviluppatore per rimuovere un problema
di performance. Per esempio, un profiler non aiuta lo sviluppatore a trovare
un’implementazione più efficiente di una funzione.

L’incapacità di indicare con precisione la locazione delle cause di un collo
di bottiglia limita l’utilità di un profiler alla comprensione delle cause della
performance non ottimale di un programma. Il primo problema, cioè la de-
terminazione delle cause di un collo di bottiglia, è principalmente dovuto alla
difficolta di correlare quest’ultime coi loro effetti. Un problema di performance
può manifestarsi in una specifica parte del programma (per esempio, in una
funzione che richiede troppo tempo per essere eseguita), ma la causa della
lenta esecuzione (per esempio, un valore non ottimale assegnato ad un argo-
mento della funzione) può essere situata in una diversa parte del programma.

Il secondo problema, quello di identificare ed eliminare il collo di bottiglia,
richiede allo sviluppatore di eseguire molteplici e costosi compiti. Per esempio,
uno sviluppatore deve ispezionare i report generati da un profiler e manual-
mente identificare il codice che è causa di un’esecuzione lenta. In una fase
finale lo sviluppatore per risolvere il problema di performance deve applicare
delle modifiche al codice senza alterarne la correttezza. Per questo motivo lo
sviluppatore deve modificare il codice sorgente eseguendo diverse iterazioni
di test per verificare configurazioni multiple del nuovo programma. Infine, lo
sviluppatore deve validare il programma ottimizzato con nuovi input in modo
da verificare che le modifiche non introducano alcun nuovo collo di bottiglia.
Per concludere, lo sviluppatore deve eseguire il programma con i vecchi in-
put che esibiscono il problema di performance verificando che il problema di
performance è stato eliminato.
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In questa dissertazione, proponiamo tre nuovi approcci che mirano a miti-
gare le problematiche appena descritte, e la loro implementazione in tre differ-
enti sistemi: MemoizeIt, PerfSyn, e TestMiner.

MemoizeIt elimina il problema di trovare la locazione esatta di un prob-
lema di performance attraverso un’ analisi dinamica dell’esecuzione di un
programma. Tale analisi suggerisce allo sviluppatore indicazioni precise su
locazioni del programma a cui si può apportare tecniche di memoizazation.
Applicare questa ottimizzazione a programmi che eseguono computazioni ri-
dondanti è una tecnica effettiva per velocizzare l’esecuzione di un programma.
Tuttavia, identificare queste porzioni di codice è difficile poiché un analisi
dell’esecuzione del programma conservativa può scartare delle opportunità di
ottimizzazione se troppo pessimistica. Al contrario, MemoizeIt esegue un’ anal-
isi non conservativa identificando le opportunità di memoization osservando i
dati elaborati ed i dati prodotti da una chiamata di una funzione, in modo scal-
abile ma preciso. MemoizeIt incrementa iterativamente il livello di precisione
con cui gli oggetti elaborati da una funzione sono comparati per identificare
funzioni con comportamento ridondante. In questa dissertazione dimostriamo
che MemoizeIt è capace di trovare dei bug di performance che erano prece-
dentemente sconosciuti agli sviluppatori dei programmi utilizzati nei nostri
esperimenti.

Il secondo sistema PerfSyn implementa un approccio automatico di sintesi di
programmi per l’identificazione di colli di bottiglia. PerfSyn risolve il problema
di dover fornire manualmente input per verificare la performance di una fun-
zione. L’idea alla base di PerfSyn è di mutare sistematicamente e ripetutamente
un programma in modo da aumentare il carico di lavoro che la funzione es-
egue. Formulando il problema di sintesi come un problema di ottimizzazione,
dimostriamo che PerfSyn è capace di sintetizzare programmi in poco tempo
utilizzando algoritmi di ricerca basati su grafi. I nostri risultati dimostrano che
PerfSyn è capace di sintetizzare programmi che espongono problemi di perfor-
mance dovuti a scelte di algoritmi non ottimali dove l’implementazione di una
funzione ha una eccessiva complessità computazionale, e problemi di perfor-
mance introdotti da modifiche effettuate in una nuova versione della funzione.

Tuttavia, PerfSyn non affronta il problema di sintetizzare programmi che
richiedono valori di un particolare dominio. Il risultato è che PerfSyn è efficace
a sintetizzare programmi che usano strutture di dati generiche, ma è limitato a
testare programmi che utilizzano librerie specifiche in un particolare dominio,
come per esempio un compilatore.

Per minimizzare questa problematica introduciamo TestMiner. TestMiner
utilizza tecniche di information retrieval su codice esistente per predire valori
compatibili con i parametri di un metodo. TestMiner estrae constanti, come
stringhe, dal codice di test unitari esistenti, ed indicizza questi valori in modo
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che possano essere ricercati velocemente ed automaticamente. I valori indiciz-
zati possono, per esempio, essere utilizzati da un generatore automatico di test
unitari quando necessita i valori per un metodo testato. In questa dissertazione
dimostriamo che TestMiner è capace di incrementare la quantità di codice es-
eguito da test unitari creati con un moderno generatore di test unitari come
Randoop.

Infine, in questa dissertazione estendiamo MemoizeIt con funzionalità di
supporto all’eliminazione dei problemi di performance identificati attraverso
suggerimenti di configurazioni di cache pensate per ottimizzare una funzione
attraverso memoization. Tali configurazioni vengono presente allo sviluppa-
tore in forma testuale e vengono estratte dalle tracce di esecuzione del pro-
gramma testato. La nostra ipotesi è che le configurazioni di cache suggerite
da MemoizeIt sono effettive ed aiutano lo sviluppatore ad incrementare la ve-
locità di esecuzione di un programma. I risultati presentati nella dissertazione
dimostrano che applicando le configurazioni suggerite da MemoizeIt migliora
in modo statisticamente significativo le prestazioni dei programmi utilizzati nei
nostri esperimenti.
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1

I N T R O D U C T I O N

The performance of software is critical in many domains, e. g., to achieve the
desired throughput of a server, to reduce the energy consumption on resource-
constrained devices, to maximize the usage of computing resources for scien-
tific calculus, or to shield users from waiting for an unresponsive application.

The research literature does not lack of previous work that addresses the
problem of optimizing the performance of system components that range be-
tween the small scale (e. g., small kernel numerical functions [142]) to larger
systems (e. g., distributed systems like search engines [78]).

In a large application the many abstraction layers of the system affect the
end-to-end performance of the system in many interesting and unexpected
ways. For example, not only the single component performance matters but
also the interactions within these components affect the overall system perfor-
mance [19, 35, 49, 78, 79, 95, 98, 128]. Despite the analysis of the interactions
across system components is still subject of investigation, this dissertation fo-
cuses on analyzing a single component’s performance. In this dissertation we
consider a component a sub-set of classes that are part of a larger application.
Their declared public methods define the mean of interaction with the compo-
nent.

To determine if a component suffers from a performance problem, a com-
ponent developer must perform two steps. The first step is to determine a
performance specification for the application component (e. g., service-level
agreements). For example, a developer may set a quality of service metric
that requires a maximum response time for a component APIs method or may
demand that a method of the APIs is of a certain computational complexity
class. The second step is to verify that the component’s measured performance
fulfill the performance specification, i. e., the component does not suffers from
a performance issue.
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2 introduction

In practice finding an adequate performance specification is not easy:
• because it can be subjective to the user perception of an application perfor-

mance, or it may not be measurable
• because of the lack of the APIs performance documentation, therefore possi-

bly unknown for a client of the APIs or
• because a performance problem may not be known in advance.
In this dissertation we assume that a developer already determined a set of per-
formance specifications for the application therefore we don’t focus on finding
good performance specification(s) [23, 30, 33, 69, 130]. Instead the focus of this
dissertation is to advance the current state-of-the-art of performance analysis
tools by introducing novel techniques to reduce the manual effort that a devel-
oper must invest to debug a component’s performance. In this dissertation we
introduce novel approaches to help a developer finding previously unknown
performance problems, and a novel technique to help the developer validate
his or her assumptions about the performance of a method.

One of the most widely used approach to debug performance is CPU time
profiling. A CPU time profiler determines the distribution of time spent across
functions calls during a program execution with one input to the program.
There exist multiple implementations of CPU time profilers that work with
different operating systems and for different programming languages. For ex-
ample, a list of the most widely used CPU time profiles includes perf [9], OPro-
file [8], GProf [61], DTrace [28], JFluid [47]. All these tools share the same idea:
to report to the developer where the execution time of a program is spent.

In this dissertation we focus on Java programs that execute on the Java Vir-
tual Machine (JVM). We analyze Java programs because previous work that
describes the state-of-the-art performance debugging tools mainly focuses on
Java programs, and because Java is one of the most popular programming lan-
guages.

Despite the common use of profilers to debug performance, profilers suf-
fer from two types of limitations. The first limitation of profilers is strictly
technical. Profilers adopt sampling techniques to keep their overhead manage-
able and to reduce the program execution perturbations due to the observer
effect. In other words, sampling is used to reduce the large overhead that re-
sults from recording the execution time for every function called by a program.
Sampling approximates a function execution time by recording the program
state at regular intervals (e. g., the call stack content at the sampling interval).
The assumption behind this kind of a sampling techniques is that if a function
takes a large portion of the execution, it will be seen in proportionally many
samples. However due to limitations dictated by the implementation of a JVM,
Java profilers often report misleading results [100].



introduction 3

The focus of this dissertation is not on the technical limitations of profilers.
We assume that commonly used Java profilers are at least an actionable profiler,
because a perfect profiler does not exists in practice. An actionable profiler is
a profiler that if acted upon its reports, the outcome is what expected [100].
In other words if a developer optimizes a method that a profiler deems to be
slow, then an optimized version of the method execution time will be reduced
proportionally to what reported by the profiler.

The other limitations profilers suffer from are non-technical but rather con-
ceptual. In this dissertation we focus on these other important limitations be-
cause they limit the developer understanding of a program’s performance. We
believe that the contributions of this dissertation can help practitioners in their
daily tasks, and that the presented techniques could be used alongside profilers
to help developers getting a better understanding of a program’s performance.

It is common practice to debug a program that has a larger than expected
execution time using the results provided by a profiler report. A Java profiler
indicates to the developer the code locations of the program where the time is
spent, or the code locations that allocate a large amount of memory, or the state
of the program’s threads during a program run [47]. In this dissertation we fo-
cus on performance problems that can be optimized by reducing the amount of
work done by a single or multiple interacting methods, and that are caused by
a larger than expected execution time under, a possibly not yet known, input in
one single thread of execution. Since we analyze and optimize Java programs,
a reduction of the execution time in an optimized program may be due to the
effects caused by the different interactions between the runtime system and the
optimized program (e. g., a reduced garbage collection pressure because we al-
locate fewer objects). The performance problems we tackle on this dissertation
are referred in the literature to as performance bug, a type performance problem
that can be fixed with small program changes [75]. In the dissertation we refer
to a performance bug interchangeably as (performance) bottleneck, problem,
or issue.

The major drawback of using a profiler to discover a performance issue is
that a profiler won’t indicate to the developer why a program is spending a
large amount of time in a method. Therefore the first profiler limitation we
address in this dissertation is:

Limitation 1
Profilers indicate where the time in a program is spent but not how time is
wasted.

A profiler’s report provides only limited information to the developer to en-
able him/her to understand the causes of a performance problem. A developer
must inspect the profiler reports, identify the code locations that may contain
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the causes of the slow execution, and fix the performance problem. This task
is manually performed, tedious, and error prone because the profiler may mis-
lead the developer to attribute a performance problem to the wrong code loca-
tion [16, 38, 81].

A profiler does not provide the additional information required to find the
cause(s) of a performance problem. Therefore, there is a need for better tools
to guide a developer into debugging a program’s performance. A body of
work presents program analyses that record runtime program information that
is matched against a signature of a specific performance anti-pattern [75, 88,
93, 103, 110, 145, 147, 156]. These approaches execute the program with a
fixed input and they dynamically analyze a program, and they report program
locations where the performance anti-patterns manifests.

Similarly to existing approaches, we introduce MemoizeIt, a dynamic analy-
sis that detects, as performance anti-pattern, redundant computations. Given
a program’s input, MemoizeIt dynamically analyses the program’s execution
and it suggests to the developer methods that may benefit from memoization.
These methods may benefit from memoization because the method’s executions
produce the same output given the same input multiple times. To speedup a
program’s execution, a developer applies a cache to the method which maps
previously computed output to method inputs.

To trigger a performance bottleneck, a developer must find a bottleneck ex-
posing input for a program. Then, once a performance bottleneck location is
found, a developer can proceed to create a fix for the problem. To find a suit-
able fix, a developer may perform multiple changes to the code until he/she
finds a set of code changes that alleviates the bottleneck. To test the fix, the
developer must execute the program with the bottleneck triggering input, and
then exercise the fix with new inputs to test for unexpected performance re-
gressions.

However manually finding these new inputs is costly because it requires
the developer to search them from a possibly large set of inputs combinations.
In addition while performing this task a developer may overlook inputs that
trigger a performance regression. Unfortunately, also in this case, a profiler
helps a developer only when the new testing inputs are available:

Limitation 2
Profilers work with a sample of the program’s input. The understanding of
the program’s performance behaviour is limited to the provided available
input.

To address this limitation we introduce PerfSyn, an approach that automati-
cally synthesizes bottleneck-exposing programs for a given method under test.
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The key ideas of PerfSyn are: (i) to repeatedly mutate a program that uses
the method under test to systematically increase the amount of work done by
the method, and (ii) to formulate the problem of synthesizing a bottleneck-
exposing program as a combinatorial search. PerfSyn helps to reduce the man-
ual effort required to write performance testing programs by automatically gen-
erating testing inputs.

Once a developer found a method that has sub-optimal performance, and
he/she verified that indeed a method suffers from a performance bottleneck,
the developer has to fix the performance issue. First the developer decides if
the method is worth optimizing. For example, a developer may decide to not
optimize a method because the required changes to the application may affect
the application correctness. To decide if a set of program transformations that
remove the bottleneck exists, a developer must at least perform the following
tasks:
1. Determine which existing code is touched by a possible performance patch,

and which of these parts may affect the program correctness.
2. Explore and consider several code changes because in general there exists

more than one way to transform a piece of code.
3. Test the updated code with the bottleneck exposing input, and with other

inputs, to verify that the new program changes do not introduce a slowdown
compared to the original program.

However, profilers can only help the last debugging task, i. e., to verify that
a program change effectively reduces the execution time of a method. Never-
theless, the other debugging activities are still performed manually [102, 137],
and automatically patching code is a difficult task [13, 89, 99]. The last profiler
limitation we tackle in this dissertation is:

Limitation 3
Profilers do not provide actionable suggestions on how and on where to fix
a program if there is a performance issue.

To solve this limitation we extend MemoizeIt to guide the developer towards
finding a suitable fix that removes a redundant computation from a method.
MemoizeIt suggests to the developer actionable configuration fixes, but we
leave to the developer the ultimate choice how to implement the code changes.

We believe that the developer must be involved in the performance debug-
ging cycle. We argue that we can improve how developers debug and fix per-
formance bottlenecks by introducing tools that provide actionable information,
but that require minimal effort by developer to be used, and that scale for real-
world software.
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Given the profilers limitations and the premise to keep the developer in the
performance fixing loop, the goal of this dissertation is:

Goal of this dissertation
The goal of this dissertation is to investigate novel techniques that tackle the
discussed three major profilers limitations. The aim of this dissertation is to
reduce the developer’s manual effort by increasing the level of automation
developers detect/debug/fix performance bottlenecks.

organization of the dissertation. This dissertation is divided in
three chapters that reflect our research contributions. The contributions of
Chapters 2-4 are based on the research work published in following three peer-
reviewed articles [137–139].

In Chapter 2 we describe MemoizeIt and we evaluate how MemoizeIt ad-
dresses the first and the last profilers limitations. To address the first profilers
limitation we show an efficient approach that scales with large heap graphs
to detect redundant computations. To address the last profilers limitation we
investigate an automatic approach that analyzes an execution trace and which
it generates suggestions for cache configurations to avoid redundant computa-
tions. The content of Chapter 2 is based on the work published in [137].

We proceed by introducing PerfSyn in Chapter 3, a program synthesis ap-
proach that constructs short programs as input to a method under test. The
program synthesis is directed towards generating programs that trigger a per-
formance bottleneck. The generated program helps the developer to debug a
performance bottleneck (e. g., to find performance corner-cases) and to test a
performance fix (e. g., to validate the developer’s performance assumptions).
The PerfSyn program synthesis approach is introduced in the work published
in [138].

To address PerfSyn’s main limitation, i. e., failing to provide domain specific
values, we introduce TestMiner in Chapter 4. The key idea of TestMiner is
to exploit the information available in existing test suites. TestMiner uses in-
formation retrieval techniques to predict input values suitable for a particular
method. We evaluate TestMiner and we show that TestMiner is able to signif-
icantly increase code coverage for a state-of-the-art random test generator. A
shorter description of TestMiner is presented the research work published in
[139].

We conclude our dissertation by summarizing the lesson learned and by ver-
ifying our claims in Chapter 5.



2

P R O G R A M A N A LY S I S F O R M E M O I Z AT I O N
O P P O RT U N I T I E S

The first limitation of profilers reflects that a profiler reports the CPU usage
distribution across program locations (i. e., “hot code”) for a single program
run. A developer cannot easily determine from a profiler report whether the
identified “hot” code contains an optimization potential and how to use this
potential. Nevertheless CPU time profiling is still among the most widely used
approaches to identify and debug performance bugs. Even worse, profilers
may even mislead developers to refactor code with little or no performance
improvements [100].

In this chapter we tackle the first profilers limitation by introducing Mem-
oizeIt, an approach that suggests to the developer memoization opportunities
at the method level. Memoization is an easy way to optimize a method by
storing results from earlier calls of the method to reuse when the same input
reappears. Memoization is a successful optimization that is applied in many
contexts. For example, symbolic execution engines use memoization to avoid
repeatedly traverse paths [73, 141, 151], or web services make extensive use of
caches to avoid to recompute expensive queries results [32, 95]. Furthermore
a recent study suggests that in practice code suffers from wasted work, and
that developers fix slow code by applying memoization to code locations that
perform a redundant operation multiple times [120].

However fixing a program location that suffers from excessive redundant
computations is non-trivial. First because the inputs to a code location may
vary over time, finding an optimal fix may require to try a large number of
possible configurations. Second, because each fix is subject to performance
variations due to hardware and software configurations, complicating the task
of finding a suitable performance fix even further. To address the problem
of finding an effective fix for a performance problem, i. e. the second profiler
limitation, in Section 2.2.4 we present an enhanced version of MemoizeIt that
reports hints on how to implement memoization for a method in an efficient
way. The hints-enhanced version of MemoizeIt provides actionable suggestions
on how to fix a program that suffers from a bottleneck. The hints help the devel-
oper to implement a cache, but ultimately, it is the developer’s responsibility to

7
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1 class DateUtil {
2 private static final Pattern date_ptrn = Pattern.compile(..);

3 private static String lastFormat;

4 private static boolean cachedResult;

5 static boolean isADateFormat(String format) {

6 if (format.equals(lastFormat)

7 return cachedResult;

8 String f = format;
9 StringBuilder sb = new StringBuilder(f.length());

10 for (int i = 0; i < f.length(); i++) {
11 // [..] copy parts of f to sb
12 }
13 f = sb.toString();
14 // [..] process f using date patterns

15 cachedResult = date_ptrn.matcher(f).matches();

16 return cachedResult ;
17 }
18 }

Listing 2.1: Memoization opportunity in Apache POI that can be used by
adding the highlighted code.

implement a correct and efficient cache. MemoizeIt strikes a balance between
compiler optimizations, which automatically transform the code but must guar-
antee that the transformation preserves the semantics of the program, and exist-
ing profilers, which focus on hot but not necessarily optimizable code. Recent
research approaches help developers understand the cause of a performance
problem but not necessarily how to address it [75, 88, 93, 103, 110, 145, 147, 156].
In other words, the performance problem may be relevant but not actionable.
Other work proposes automatic fixing of loop-related performance problems
by performing automatic source-code transformations. However these fixes
are very limited and follow simple pre-defined patterns [102].

Overall, the challenge of pointing developers to actionable performance fixes
still waits to be fully addressed.

To illustrate the challenges of finding easy to address performance bottle-
necks, consider Listing 2.1, illustrates a performance bug in the document con-
verter tool suite Apache POI [2]. The method in the example analyzes a given
string and returns a boolean that indicates whether the string matches one of
several possible date formats. The method is called frequently in a typical work-
load, possibly repeating the same computation many times. The method can
be optimized using memoization. The highlighted code in the figure shows a
simple implementation of memoization, which leads to speedups ranging from
7% up to 25% in different workloads we experimented with.

Unfortunately, a developer may miss this opportunity with CPU time profil-
ing because the method is one of many hot methods. Likewise, the opportunity
is missed by existing compilers [46, 149] because the method has side effects.
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Existing work on finding repeated computations [101] also misses this oppor-
tunity because that work focuses on call sites that always produce the same
output, not on methods where multiple inputs yield the same outputs repeat-
edly.

The key idea of MemoizeIt is to systematically compare the inputs and the
outputs of different invocations of the same method with each other. If a
method repeatedly obtains the same inputs and produces the same outputs,
it is reported as a memoization candidate. For each memoization candidate,
MemoizeIt reports hints on how to implement memoization for the method.
MemoizeIt is the first profiling approach that focuses on opportunities for
method-level caching:
• The main contribution of this chapter is to present the first profiler that fo-

cuses on memoization opportunities at the method level. The profiler allows
developers to find easy-to-implement optimizations that are difficult to detect
with existing profiling approaches because these approaches are too conser-
vative [46, 149], or because they focus on call-sites [101]. MemoizeIt takes a
novel approach towards memoization by handling side effects and focusing
only on equivalent, therefore cacheable, method input-output pairs.

• The second contribution of this chapter is an iterative approach that increases
the degree of detail of a dynamic analysis to make MemoizeIt applicable to
large programs. The iterative approach shrinks the set of program locations
to analyze at each iteration, refining and reducing the set of memoization can-
didates over time. We show in our evaluation that the approach is effective
and beneficial in practice.

• The third contribution of this chapter is a technique that gives hints on im-
plementing memoization. The hints are based on the profiled data recorded
during program execution, and they are in the form of cache configurations
to apply to a method. A developer immediately apply the hints and he/she
can tailor the optimization based on multiple input profiles.

• The last contribution is an empirical evaluation of an implementation of
MemoizeIt. The evaluation shows that MemoizeIt is able to efficiently and ef-
fectively find previously unknown memoization opportunities that result in
statistically significant speedups in popular and widely used Java programs.

We begin this chapter by motivating our work with an illustrative example in
Section 2.1. In Section 2.2 we describe the approach in detail. In Section 2.3
we describe how we implemented a prototype for MemoizeIt and we evaluate
our implementation in Section 2.4. We list the limitations of the approach in
Section 2.6 and we summarize our findings in Section 2.7.
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1 class Main {
2 static void main() {
3 Main main = new Main();
4 Logger logger = new Logger();
5 Result res1 = main.compute(new Input(23));
6 boolean ok1 = logger.append(res1);
7 Result res2 = main.compute(new Input(23));
8 boolean ok2 = logger.append(res2);
9 if (ok1 && ok2) System.out.println("done");

10 }
11 Result compute(Input inp) {
12 Result r = new Result();
13 // complex computation based on inp
14 r.p.fst = ..
15 r.p.snd = ..
16 return r;
17 }
18 }
19 class Input {
20 int n;
21 Input(int n) { this.n = n; }
22 }
23 class Result {
24 Pair p = new Pair();
25 }
26 class Pair {
27 int fst;
28 int snd
29 }
30 class Logger {
31 Writer wr = ..;
32 int ctr = 0;
33 boolean append(res) {
34 wr.write(ctr+": "+res);
35 ctr++;
36 return true;
37 }
38 }

Listing 2.2: Program with a memoization opportunity.
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First iteration (depth 1):

Call Input (target, arguments) Output (return value)

compute (line 5) Input: n=23Main , Result some Pair
p

append (line 6) Result some Pair
p

Logger: ctr=0 some Writer
wr ,

true
compute (line 7) Input: n=23Main , Result some Pair

p

append (line 8) Result some Pair
p

Logger: ctr=1 some Writer
wr ,

true

Second iteration (depth 2):

compute (line 5) Input: n=23Main , Result Pair: fst=42, snd=23
p

compute (line 7) Input: n=23Main , Result Pair: fst=42, snd=23
p

(a) Executing MemoizeIt’s input-output profiling for the program in Listing 2.2 reveal
a memoization oppportunity after two iterations.

Potential performance bug in method Main.compute(Input):

• Same input-output pair occurs twice.

• Suggestion: Add a global single-element cache

1 private static int key = INVALID_CACHE; // Global cache key
2 private static Result cache = null; // Global cache value
3 Result compute(Input inp) {
4 if (key != INVALID_CACHE && key == inp.n) {
5 return cache;
6 } else {
7 Result r = new Result();
8 // complex computation based on inp
9 r.p.fst = ..

10 r.p.snd = ..
11 key = inp.n;
12 cache = r;
13 return cache;
14 }
15 }

(b) Report produced by MemoizeIt together with the method Main.compute(Input)
with a cache that implements the suggested fix.

Figure 2.1: The running example shows how MemoizeIt’s iterative profiling tra-
verses the input and the output objects of a method call (top figure)
and an example of the report that MemoizeIt produces for a devel-
oper to inspect (bottom figure).
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2.1 memoizeit by illustration

Listing 2.2 shows a program that repeatedly calls two methods, compute and
append. One of them, compute, redundantly performs a complex computation
that can be avoided through memoization. The method computes a result that
depends only on the given argument, and calling the method multiple times
with equivalent arguments yields equivalent results. In contrast, the other
method, append, cannot be memoized because it logs messages into a writer
and because it increments a counter at each call. A static or dynamic analysis
that conservatively searches for memoization opportunities [46, 149] misses the
opportunity in compute for two reasons. First, the method has side effects be-
cause it creates a new object that escapes from compute. In general, memoizing a
method with side effects may change the semantics of the program. Second, the
method’s return value has a different object identity at every call. In general,
memoizing such a method may change the semantics because the program may
depend on object identities. In the given program, however, the side effects of
compute are redundant because the created Result objects are structurally equiv-
alent and the program is oblivious of object identities. Therefore, memoizing
the results of compute improves performance while preserving the program’s
semantics.

A key insight of MemoizeIt is that a method may benefit from memoization
even though it has side effects and even though the object identities of its inputs
and outputs vary across calls. Instead of conservatively searching for memoiza-
tion opportunities that can certainly be applied without affecting the semantics,
MemoizeIt searches for memoization opportunities

Definition 1 (Memoization opportunity). We consider a method m as a potential
memoization opportunity if all of the following memoization conditions hold:
• (MC1) The program spends a non-negligible amount of time in m.
• (MC2) The program repeatedly passes structurally equivalent inputs to m, and m

repeatedly produces structurally equivalent outputs for these inputs. We formally
define “structurally equivalent” in Section 2.2.2.

• (MC3) The hit ratio of the cache, i. e., the number of times that a result can be reused
over the total number of lookups, will be at least a user-defined minimum. This
condition ensures that adding a cache will lead to savings in time because the time
saved by reusing already computed results outweighs the time spent for maintaining
the cache.

MemoizeIt detects memoization opportunities with a dynamic analysis that
checks, for each method that is called in the analyzed program execution,
whether conditions MC1 to MC3 hold. To check for MC1, MemoizeIt uses
a state of the art CPU time profiler to identify methods where a non-negligible
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amount of time is spent. To check for MC2, MemoizeIt records the inputs and
outputs of methods to identify methods that repeatedly take the same input
and produce the same output. To check for MC3, MemoizeIt estimates the hit
ratio that a cache would have if the developer added memoization to a method.
This estimate is based on the inputs and outputs observed in the execution.

To implement this idea, we must address two challenges. First, we must
define which inputs and outputs of a method call to consider. Second, we must
address the problem that the inputs and outputs of a call may involve complex
heap structures that are too large to record in full detail for each call.

2.1.1 Challenge 1: Inputs and Outputs

A conservative approach to detect memoization opportunities must consider
all values that a method execution depends on as the call’s input, and all side
effects and the return value of the call as the call’s output. The approach that
MemoizeIt takes is to deliberately deviate from this conservative approach to
detect memoization opportunities in methods that have redundant side effects.
As input to a call, MemoizeIt considers the arguments given to the method, as
well as those parts of the call’s target object that influence the method’s exe-
cution. As output of a call, MemoizeIt considers the call’s return value. These
definitions of input and output may ignore some state that a method depends
on and ignore some side effects that a method may have. E. g., in addition to
method arguments and the target object, a method may depend on state reach-
able via static fields and on the state of the file system. Furthermore, a method
may modify state reachable from the passed arguments and the state of the
file system. Our hypothesis is that focusing on the inputs and outputs given
above summarizes the behavior of many real-world methods well enough to
decide whether these methods may benefit from memoization. Our experimen-
tal results validate this hypothesis. The cost for considering methods despite
side effects is that MemoizeIt may report methods that cannot easily be memo-
ized because it would change the program’s semantics. Our experiments show
that this problem is manageable in practice and that MemoizeIt reports valid
memoization opportunities missed by all existing approaches we are aware of.
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2.1.2 Challenge 2: Complex Heap Structures

In object-oriented programs, the inputs and outputs of method calls often in-
volve complex objects. Recording these objects, including all other objects
reachable from them, for each call does not scale well to large programs. Con-
sider the inputs and outputs of method append in Listing 2.2. Since we consider
the state of the call target as part of the input, a naive implementation of our
approach would have to record the state of logger at lines 6 and 8. This state
includes the Writer object that logger refers to, which in turn refers to various
other objects. In general, fully recording the state reachable from an object may
involve arbitrarily many other objects, in the worst case, the entire heap of the
program.

To address the challenge of recording large input and output objects, Memo-
izeIt uses an iterative analysis approach that gradually refines the set of meth-
ods that are considered as memoization candidates. The key idea is to repeat-
edly execute the program, starting with an analysis that records objects without
following their references, and to iteratively increase the level of detail of the
recorded inputs and outputs while pruning the methods to consider. After
each iteration, MemoizeIt identifies methods that certainly fulfill the memoiza-
tion conditions MC2 and MC3, and methods that certainly miss one of these
two conditions. Methods that miss a condition are pruned and not considered
in subsequent iterations.

Figure 2.1a illustrates the iterative profiling approach for our running exam-
ple. We illustrate the recorded objects as heap graphs, where a node represents
an object with its primitive fields, and where an edge represents a reference.
In the first iteration, MemoizeIt records inputs and outputs at depth 1, i. e.,
without following any references. For example, the output of the first call to
compute is recorded as a Result object that points to a not further analyzed Pair

object. The information recorded at depth 1 allows MemoizeIt to decide that
append cannot fulfill MC2 because there is no recurring input-output pair. The
reason is that the value of ctr is 0 at line 6 but 1 at line 8. Note that MemoizeIt
prunes method append without following the reference to the Writer object, i. e.,
without unnecessarily exploring complex heap structures.

After the first iteration, MemoizeIt keeps compute in the set of methods that
may benefit from memoization and re-executes the program for the second
iteration. Now, MemoizeIt records inputs and outputs at depth 2, i. e., it fol-
lows references from input and output objects but not references from these
references. The lower part of Figure 2.1a shows the information recorded at
depth 2. MemoizeIt now completely records all inputs and outputs of compute

and determines that both calls to compute have structurally equivalent inputs
and outputs, i. e., the method fulfills MC2. Furthermore, the method fulfills
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MC3 because memoizing the results of compute would lead to a cache miss at
the first call and a cache hit at the second call, i. e., a hit ratio of 50%.

Since MemoizeIt has fully explored all methods after two iterations, it stops
the analysis and reports compute as a potential memoization opportunity. To
help developers use this opportunity, MemoizeIt suggests how to implement
memoization for every reported method. Based on the analyzed execution, the
approach suggests to add a global single-element cache, i. e., to store the last
observed input and output in static fields of Main, and to reuse the already
computed output if the input matches the most recently observed input.

Figure 2.1b shows an implementation of MemoizeIt’s suggestion. The opti-
mized code has two additional static fields key and cache that store the most
recently computed result and the corresponding input value inp.n. To avoid
redundantly recomputing the result, the optimized method reuses the result
whenever the same input value appears again. As a result, the program in
Listing 2.2 performs the complex computation in compute only once.

2.2 approach

The input to MemoizeIt is an executable program. MemoizeIt executes the
program multiple times while applying dynamic analyses and reports perfor-
mance bugs that can be fixed through memoization. MemoizeIt consists of four
parts:
1. Time and frequency profiling. This part executes the program once and uses

traditional CPU time profiling to identify an initial set of methods that may
benefit from optimization (Section 2.2.1).

2. Input-output profiling. The main part of the analysis. It repeatedly executes
the program to identify memoizable methods by analyzing the inputs and
outputs of method calls (Section 2.2.2).

3. Clustering and ranking. This part summarizes the analysis results and reports
a ranked list of potential memoization opportunities to the developer (Sec-
tion 2.2.3).

4. Suggest cache implementation. This part suggests for each memoization oppor-
tunity how to implement a cache for the respective method (Section 2.2.4).

In the remainder of this section we describe each part in detail.
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2.2.1 Time and Frequency Profiling

The first part of MemoizeIt uses state of the art CPU time profiling to identify
the set of initial memoization candidates. We record, for each executed method m,
the time tm spent in m (including time spent in callees) and the number cm of
calls of m. Furthermore, we also measure the total execution time tprgm of the
program.

Definition 2 (Memoization candidate). As the initial set of memoization candidates,
MemoizeIt considers all methods that fulfill three requirements:
1. The average execution time of the method is above a configurable minimum average

execution time:
tm
cm

° tmin.

2. The relative time spent in the method is above a configurable threshold:
tm

tprgm
°

rmin.
3. The method must be called at least twice, cm • 2.

The first two requirements focus MemoizeIt on methods that are worth opti-
mizing (MC1). The third requirement is a necessary condition for MC2 because
a method can repeat a computation only if the method is called multiple times.
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2.2.2 Input-output Profiling

The core of MemoizeIt is input-output profiling, which computes a set of memo-
ization candidates by comparing method calls with each other to check whether
MC2 and MC3 hold.

Representing Input-output Data

To detect method calls that perform computations redundantly, MemoizeIt
records the input and output of each call. For full precision, we could con-
sider the following input and output data:
• Input state (before the call):

– The state of the target object of the call. (*)
– The state of each argument passed to the call. (*)
– All heap state that is reachable via static fields.
– The environment state outside of the program’s heap, e. g., file system

and network state.
• Output state (after the call):

– The four kinds of state listed above.
– The state of the return value of the call (if any). (*)

Recording all these inputs and outputs of each method call is clearly infeasi-
ble, partly because such an approach would not scale to large programs and
partly because acquiring the complete state is practically impossible. Instead,
MemoizeIt focuses on those parts of the input and output state that are marked
with (*). The rationale for focusing on these parts of the input and output state
is twofold. First, we made the observation that these parts of the state are
sufficient to describe the relevant input and output state for many real-world
methods. E. g., most methods read the arguments given to them, but only few
methods depend on modifiable heap state reachable through static references.
Second, recording some of the state that is ignored by MemoizeIt would lead
to redundant information that does not improve the precision of the approach.
E. g., recording the state of the target object after each call would often replicate
the state recorded for the same target object before the next call. If a method is
not memoizable because it depends on the state of the target object, then record-
ing the target object’s state once as part of the input is sufficient to identify this
method as non-memoizable.

To compare input and output data of method calls, the analysis flattens data
items into a generic canonical representation. The canonical representation de-
scribes the data itself and, in case of complex object structures, the shape of
the data item. The representation describes objects structurally and is indepen-
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dent of the memory locations where objects are stored or other globally unique
identifiers of objects. A data item d is flattened as follows:

• If d is a primitive value, it is represented by its string representation.
• If d is an object, it is represented as a pair pRn, Fq, where

– Rn identifies the object d using its runtime type R and an identifier n
that is unique within the flattened data representation,

– F is a list of flattened data representations; each element of F repre-
sents the value of one of d’s fields.

• If d is the null value, it is represented by NULL.
• If d is an object that is already flattened in this representation and that has

the identifier Rn, it is represented by @Rn. We use this notation to deal
with object structures that have cyclic references.

To ensure that structurally equivalent objects have the same flattened repre-
sentation, each identifier is unique within its flattened representation but not
globally unique. Furthermore, the list F contains fields in a canonical order
based on alphabetic sorting by field name.

For example, the return values of the two calls of compute in Listing 2.2 are
both represented as:

pResult1, rpPair1, r42, 23sqsq
To illustrate how the representation deals with cyclic data structures, con-

sider a double-linked list built from instances of Item with fields next, previous,
and value. For a two-element list with values 111 and 222, the flattened repre-
sentation is:

pItem1, rpItem2, rnull, @Item1, 222sq, null, 111sq

Comparing Input-output Data

The goal of input-output profiling is to evaluate MC2 and MC3 by identifying
memoizable methods where multiple calls use the same input and produce the
same output. To achieve this goal, the analysis summarizes each call into a
tuple that represents the inputs and the output of the call.

Definition 3 (Input-output tuple). The input-output tuple of a call is T “
pdtar, dp1, . . . , dpn, dretq, where

• dtar is the flattened representation of the target of the call,
• dp1, . . . , dpn are the flattened representations of the parameters of the call, and
• dret is the flattened representation of the call’s return value.

For each method m, the profiler builds a multiset Tm of input-output tuples
observed for m, called the tuple summary. The tuple summary maps each ob-
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served tuple to the number of times the tuple has been observed during the
program execution. When the profiler observes a call of m, the profiler creates
an input-output tuple T for the executed call and adds it to the tuple summary
Tm.

Definition 4 (Tuple multiplicity). The multiplicity multpTq of a tuple T in the tuple
summary Tm is the number of occurrences of T in Tm.

E. g., the call in line 5 of Listing 2.2 gives the following input-output tuple:

T “ ppMain1, rsq, pInput1, r23sq, pResult1, rpPair1, r42, 23sqsqq

This tuple T has multpTq “ 2 because the two calls at lines 5 and 7 have the
same input-output tuple.

Based on the tuple summary for a method, MemoizeIt computes the potential
hit ratio that a cache for the method may have:

Definition 5 (Potential hit ratio). For a method m with tuple summary Tm, the
potential cache hit ratio is:

hitm “

∞

TPTm

pmultpTq ´ 1q
∞

TPTm

multpTq

The potential hit ratio indicates how often a method execution could be
avoided by reusing an already computed result. The hit ratio estimates how
profitable memoization would be, based on the assumption that the return
value for a particular input is stored in a cache when the input occurs the first
time and that the stored value is reused whenever the same input occurs again.
The ratio is an estimate, e.g., because it ignores that a cache may have to be
invalidated, a step that may reduce the number of hits.

Finally, MemoizeIt identifies methods that potentially benefit from caching:

Definition 6 (Memoization candidate). Method m is a memoization candidate if
hitm • hmin, where hmin is a configurable threshold.

By this definition, memoization candidates fulfill both MC2 and MC3. In
particular, a method that is called only once is not a memoization candidate,
because the potential hit ratio of such a method is zero.

For the example in Figure 2.1a, the potential hit ratio of compute is 50% be-
cause the call in line 5 must compute the return value, but the call in line 7 can
reuse the cached value.
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Iterative Refinement of Memoization Candidates

The approach described so far is effective but prohibitive for programs with
complex heap structures. The reason is that recording input-output tuples re-
quires the analysis to traverse all objects reachable from the target, the argu-
ments, and the return value of a call. In the worst case, the analysis may tra-
verse the entire heap multiple times for each call. To overcome this scalability
problem, our analysis executes the program multiple times, while iteratively
increasing the exploration depth up to which the analysis explores the object
graph, and while shrinking the set of memoization candidates. After each it-
eration, the analysis discards two sets of methods: (i) methods that certainly
do not satisfy Definition 6 and (ii) methods for which the input-output tuples
include all objects and all their transitive references. We say that a method in
the second set has been fully explored.

To support iterative refinement of memoization candidates, we refine the
canonical flattened data representation by including a bound k for the explo-
ration depth. Specifically the k-bounded flattened data representation of a data
item d is the flattened representation of d, where only objects reachable from d
via at most k references are included.

Similar to the above, we also adapt Definitions 3, 4, 5, and 6 to consider the
exploration depth k. The k-bounded input-output tuple of a call is a tuple Tk
where each element of the tuple is now k-bounded. For a method m with a k-
bounded tuple summary Tm,k, the k-bounded potential hit ratio becomes hitm,k
and, a method m is a memoization candidate at depth k if hitm,k • hmin.

For example, the previously illustrated call at line 5 of Listing 2.2 gives the
following k-bounded input-output tuple for k “ 1:

T “ ppMain1, rsq, pInput1, r23sq, pResult1, rpPair1, rsqsqq

That is, in the k-bounded flattened data representation an object that is not
expanded is represented as the pair (Rn, []), where R is the runtime type and
where n is the unique identifier.

Based on these adapted definitions, Algorithm 1 summarizes the iterative
algorithm that refines the set of memoization candidates. The algorithm starts
with an initial set Cinit of memoization candidates provided by time and fre-
quency profiling. The outer loop of the algorithm iteratively increases the
depth k and performs input-output profiling at each depth, which returns a
list of k-bounded tuple summaries. Based on the tuple summaries, lines 5 to 12

compute the set Cnext of methods to consider in the next iteration as the set of
methods with a sufficiently high hit ratio.
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Algorithm 1 Iterative refinement of memoization candidates.
Input: Initial method candidate set Cinit, profiling timeout in seconds
Output: Candidates set C, Tm for each method m P C

1: k “ 1
2: C “ Cinit
3: while (stopping_condition(timeout) != true) do
4: Tm1,k, . . . , Tmj,k “ IOpro f ilepC , kq
5: Cnext “ H
6: for method m P C do
7: hitm,k “ computeHitRatiopTm,kq
8: if hitm,k • hmin then
9: Cnext “ m Y Cnext

10: end if
11: end for
12: C “ Cnext
13: k “ nextDepthpkq
14: end while

The algorithm iterates until one of the following stopping conditions holds:
• all remaining memoization candidates in C have been fully explored;
• there are no more memoization candidates that satisfy MC3.
• a user-provided timeout is reached;
When reaching the stopping condition, the algorithm returns the set C of mem-
oization candidates, along with the tuple summary Tm.

For illustration, recall the example in Figure 2.1a. Initially, both methods
compute and append are in the set C of candidates. After the first iteration, the
check at line 8 finds that the hit ratio of append is zero, i.e., below the minimum
hit ratio, where as the hit ratio of compute is 50%, i.e., above the threshold.
Therefore, only compute remains as a candidate for the second iteration. After
the second iteration, compute is still a memoization candidate and the algorithm
stops because all calls have been fully explored.
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properties of iterative refinement. It is important to note that Algo-
rithm 1 does not miss any memoization opportunities found by an exhaustive
approach that analyzes all calls with unbounded tuples. Specifically, the itera-
tive refinement of caching candidates provides two guarantees:
• If the analysis discards a method as non-memoizable at depth k, it would

never find that the method requires memoization at a depth ° k. That is,
discarding methods is sound. The reason is that once two tuples are found
to be different, this fact cannot be changed by a more detailed analysis (that
is, a larger k), i.e., C is guaranteed to be a superset of Cnext.

• When a method is fully explored, the iterative approach yields the same set
of methods as with unbounded exploration. This property is an immediate
consequence of the first property.
As a result, iteratively refining memoization candidates reduces the complex-

ity of input-output profiling without causing the analysis to miss a potential
memoization opportunity.

To increase the depth k, Algorithm 1 uses a function nextDepth. This function
must balance the cost of repeatedly executing the program against the ability
to remove methods from the candidate set. Smaller increments result in more
program executions, but they also allow the algorithm to discard methods at
a lower k. E.g., suppose a method can be pruned from the candidate set at
depth 2. If nextDepth increases k from 1 to 10, the algorithm will unnecessarily
explore the method’s inputs and outputs at depth 10. In contrast, incrementing
the depth by one allows the algorithm to prune the method after exploring it at
depth 2. In our experiments we find that doubling the depth at each iteration,
i. e., k “ 1, 2, 4, .., provides a reasonable tradeoff. To further reduce the runtime
of Algorithm 1, future work may adapt nextDepth based on knowledge from
previous iterations. For example, the analysis could use larger increases of k if
it discovers that many methods have deep reference structures.

Field Access Profiling

The following describes a refinement of input-output profiling that allows
MemoizeIt to discover additional memoization opportunities and that im-
proves the efficiency of MemoizeIt by reducing the size of flattened represen-
tations. The approach described so far considers all objects reachable from the
input and output objects as part of the input and output, respectively. However,
a method may read and write only parts of these objects. E. g., suppose that in
Listing 2.2, class Main has a field f that is not accessed by compute. Recording
the value of f as part of the target object of compute includes unnecessary data
because the memoizability of compute is independent of f. Even worse, sup-
pose that f’s value differs between the two redundant calls in lines 5 and line 7.
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In this case, MemoizeIt would not report compute as a potential memoization
opportunity because there would not be any repeated input-output tuple.

To avoid unnecessarily including fields of target objects in input-output tu-
ples, we refine input-output profiling by considering only those fields of the
target object as input to a method m that are used in some execution of m. To
compute this set of input fields for a method m, MemoizeIt executes the program
once before input-output profiling to track all field reads and writes. A field f
is an input field of m if there exists at least one execution of m, including the
callees of m, that reads f before writing to it. Other fields, e. g., a field that is
never accessed in m or a field that is written by m before being read by m, are
not part of m’s input.

To further reduce the overhead and improve the precision of the analysis, a
similar refinement can be applied for other inputs and outputs, namely, method
parameters and return object. In practice, we have not observed many cases
where these additional refinements would improve precision.

2.2.3 Clustering and Ranking

MemoizeIt constructs reports about potential memoization opportunities by
clustering methods that should be inspected together and by ranking methods.
To cluster methods that should be inspected together, MemoizeIt creates a static
call graph and assigns two methods m1 and m2 to the same cluster if:
• m1 is a direct caller of m2, or
• m1 is an indirect caller of m2 and both methods are defined in the same class.

The clustering approach is based on the observation that a possibly memo-
izable method often calls other possibly memoizable methods. In this case, a
developer would waste time by inspecting both methods separately. Instead,
MemoizeIt presents both methods together.

The analysis ranks method clusters based on an estimate of their potentially
saved time savedm “ tm ˚ hitm where tm is the total time spent in the method
during the initial time profiling run. For each cluster of methods, the analysis
selects the method with the highest potentially saved time savedm and sorts all
clusters by the potentially saved time of this method.
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Table 2.1: Cache implementations suggested by MemoizeIt.

Size Scope Description

Single Global Stores the most recently seen input and output of all calls of
the method, e.g., in static fields, and reuses the output when
the same input appears in consecutive calls.

Single Instance For each target object, stores the most recently seen input
and output of the method, e.g., in instance fields, and reuses
the output when the same input appears in consecutive calls.

Multi Global Maps all inputs to the method to the computed output, e.g.,
in a static map, and reuses outputs whenever a previously
seen input occurs.

Multi Instance For each target object, maps inputs to the method to the com-
puted output, e.g., in an map stored in an instance field, and
reuses outputs whenever an input has already been passed
to this instance.

2.2.4 Suggesting a Cache Implementation

To use a memoization opportunity identified by MemoizeIt, a developer must
implement a cache that stores previously computed results of a method for
later reuse. Choosing an appropriate implementation is non-trivial and an
inefficiently implemented cache may even reduce the performance of a pro-
gram. In particular, a developer must make the following decisions. First, how
many input-output pairs should the cache store? Common strategies include
a single-element cache that remembers the last input-output pair and an as-
sociative map of bounded size that maps previously observed inputs to their
computation output. Second, what should be the scope of the cache? Common
strategies include a global cache that stores input-output pairs for all instances
of a class and an instance-level cache that stores input-output pairs for each
instance of the class.

To help developers decide on an appropriate cache implementation, Memo-
izeIt suggests a cache implementation based on the observed execution. To this
end, the approach considers four common kinds of caches (Table 2.1). For each
possible cache implementation, the approach simulates the effects of the cache
on the analyzed execution based on the recorded input/output tuples, and it
computes the following data:
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• Hit ratio. How often can the method reuse a previously computed result?
Depending on the cache implementation, the hit ratio may differ from Defi-
nition 5, which assumes that a global, multi-element cache is used.

• Invalidation. Does the program have to invalidate the cache because returning
a cached value would diverge from the method’s actual behavior? The cache
simulator determines that the cache needs to be invalidated if there is a cache
hit (i.e., a call’s input matches a stored input) but the cached output does not
match the recorded output of the call.

• Size. For multi-element caches, how many input-output pairs does the cache
store, assuming that it never evicts cache entries?

Based on these data, MemoizeIt suggests a cache implementation with the
following algorithm. First, the approach removes all cache implementations
that lead to a hit ratio below a configurable threshold (default: 50%). Second,
the approach picks from the remaining cache implementations the top-most
implementation as listed in Table 2.1. The table sorts cache implementations by
how simple they are to implement and by the computational effort of inserting
and looking up input-output pairs. As a result, MemoizeIt suggests the sim-
plest and most efficient cache implementation that yields a large enough hit
ratio.

2.3 implementation

We implement MemoizeIt into a tool for Java programs. The implementation
combines online and offline analysis and builds upon several existing tools.
Time and frequency profiling (Section 2.2.1) builds on JFluid [47] included
in NetBeans 7.3 [7]. Input-output profiling (Section 2.2.2) uses ASM-based
instrumentation [22] to inject bytecode that traverses fields. For some con-
tainer classes, the flattened data representation contains internal details that
are not necessary to determine whether two objects are conceptually equiva-
lent. To deal with such classes, our implementation provides type-specific rep-
resentations for arrays and for all classes implementing java.util.Collection

or java.util.Map. Non-map collections and arrays are represented as a list of
elements. Maps are represented as a list of key-value pairs. MemoizeIt summa-
rizes flattened data representations into hash values using the MurmurHash3 hash
function [4], writes input-output tuples to a trace file, and analyses the file of-
fline as described in Algorithm 1 and Section 2.2.4. For clustering optimization
opportunities (Section 2.2.3), MemoizeIt uses Soot [140] to obtain call graphs.
Our current implementation assumes that heap objects are not shared between
multiple concurrent threads.
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2.4 evaluation

We evaluate the effectiveness of the MemoizeIt performance bug detection ap-
proach by applying it to widely used Java programs. The analysis discovers
nine memoization opportunities that give rise to speedups between 1.04x and
1.27x with the profiling input, and up to 12.93x with other inputs. Four of
these nine memoization opportunities have already been confirmed by the de-
velopers in reaction to our reports. In the ranked list of methods reported by
MemoizeIt, the memoization opportunities are first, second, or third for the re-
spective program. In contrast, traditional CPU time profiling often hides these
opportunities behind dozens of other methods and fails to bring them to the
developer’s attention.

2.4.1 Experimental Setup

Table 2.2 lists the programs and inputs used in the evaluation. We use all
single-threaded programs from the DaCapo 2006-10-MR2 [18] benchmark suite
(antlr, bloat, chart, fop, luindex, and pmd). We exclude jython because its use
of custom class loading breaks our instrumentation system. The remaining
benchmarks are excluded because they are multi-threaded. In addition we
analyze Apache POI (a library for manipulating MS Office documents, 4,538

classes), the content analysis toolkit Apache Tika (13,875 classes), the static
code checker Checkstyle (1,261 classes), and the Java optimization framework
Soot (5,206 classes).

We apply MemoizeIt to each program with a profiling input. Since the
speedup obtained by a cache depends on the input, we also experiment with
other inputs to explore the potential benefit of adding a cache. For DaCapo,
we use the “default” inputs for profiling and the “large” inputs (if available)
as additional inputs. For the other programs, we use typical inputs, such as
a spreadsheet with student grades for the spreadsheet conversion tool Apache
POI, or the Java source code of CheckStyle for the static analysis CheckStyle.
Columns 3 and 4 of Table 2.2 summarize the inputs.

For each profiling input, we run MemoizeIt until Algorithm 1 has fully ex-
plored all memoization candidates or until a one hour timeout occurs. We set
the minimum average execution time tmin “ 5µs because it filters most short
methods, such as accessor methods, in our environment. To study the overhead
of the profiler with a large set of memoization candidates, we set the minimum
relative execution time rmin “ 0.25%; to evaluate the reported memoization op-
portunities, we use the more realistic rmin “ 1%. For pruning reports, we set
the minimum hit ratio hmin “ 50%.
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To measure the performance of the DaCapo benchmarks, we use their built-
in steady-state measurement infrastructure. Because the other programs are
relatively short-running applications, we measure startup performance by re-
peatedly running them on a fresh VM, as suggested by [55]. To assess whether
memoization yields a statistically significant speedup, we measure the execu-
tion time 30 times each with and without the cache, and compute the confi-
dence interval for the difference (confidence level 95%). We report a perfor-
mance difference if and only if the confidence interval excludes zero, i.e., the
difference is statistically significant.

All experiments are done on an eight-core machine with two 3GHz Intel
Xeon processors E5450, 8GB memory running 64-bit Ubuntu Linux 12.04.2 LTS,
Java 1.6.0_27 using OpenJDK IcedTea6 1.12.5, with 4GB of heap assigned to the
VM.
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2.4.2 Memoization Opportunities Found

MemoizeIt reports potential memoization opportunities for eight of the eleven
programs. We inspect the three highest ranked opportunities for each program
and implement a patch that adds a cache for the most promising opportuni-
ties (Table 2.3). The second-to-last and the last column of Table 2.3 show the
speedup when using the profiling input and another input, respectively. When
adding a cache, we follow the implementation strategy suggested by Memo-
izeIt. As we have only limited knowledge of the programs, we add a cache
only if it certainly preserves the program’s semantics. We use the programs’
unit tests to check the correctness of the modified programs.

The memoization opportunities detected by MemoizeIt confirm two impor-
tant design decision. First, considering complex objects in addition to primitive
input and output values is crucial to detect various memoization opportunities.
Five of the nine reported methods in Table 2.3 involve non-primitive values.
IDs 1 and 5 have a complex target object; ID 4 and ID 6, and ID 8 have non-
primitive target objects and non-primitive return values; ID 7 returns an inte-
ger array. These results underline the importance of having an analysis able
to analyze complex objects. Second, several methods have side effects but nev-
ertheless are valid optimization opportunities (IDs 1, 4, 5, 6, 7, and 8). These
methods are memoizable because the side effects are redundant. These ex-
amples illustrate how our approach differs from checking for side effect-free
methods.

In the following, we describe representative examples of detected memoiza-
tion opportunities.

apache poi The motivating example in Listing 2.1 is a memoization op-
portunity that MemoizeIt finds in Apache POI (ID 2). The analysis reports
the method as memoizable because most calls (99.9%) pass a string that was
already passed earlier to the method. The memoization opportunity is also
reported when analyzing Apache Tika Excel (ID 3) because Tika builds upon
POI. Adding a single element cache that returns a cached value if the string
is the same as in the last call of the method gives speedups of 1.12x and 1.25x
for Apache POI and Apache Tika, respectively. We reported this problem and
another performance problem (IDs 1 and 2) to the Apache POI developers who
confirmed and fixed the problems.
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1 class LocalizedMessage {
2 // set at startup
3 private static Locale sLocale = Locale.getDefault();
4 private final String mKey; // set in constructor
5 private final Object[] mArgs; // set in constructor
6 private final String mBundle // set in constructor
7

8 String getMessage() {
9 try {

10 // use sLocale to get bundle via current classloader
11 final ResourceBundle bundle = getBundle(mBundle);
12 final String pattern = bundle.getString(mKey);
13 return MessageFormat.format(pattern, mArgs);
14 } catch (final MissingResourceException ex) {
15 return MessageFormat.format(mKey, mArgs);
16 }
17 }
18 }

Listing 2.3: Memoization opportunity in Checkstyle.

checkstyle The LocalizedMessage class of Checkstyle represents messages
about violations of coding standards and its getMessage method constructs and
returns a message string. Listing 2.3 shows the implementation of the method.
The message string for a particular instance of LocalizedMessage is always the
same because the message depends only on final fields and on the locale, which
does not change while Checkstyle is running. Nevertheless, Checkstyle unnec-
essarily re-constructs the message at each invocation. MemoizeIt detects this
redundancy and suggests to memoize the message. Memoization does not lead
to a measurable speedup for the profiling input, which applies Checkstyle to
its own source code, because the Checkstyle developers adhere to their own
coding standards. As an alternative input, we configure Checkstyle to search
for duplicate code lines, which leads to many calls of getMessage. For this alter-
native input, adding a cache yields a 2.80x speedup (not reported in Table 2.3).
When applying Checkstyle to a larger code base (the 160 KLoC of the Soot
project), the benefits of the cache become even more obvious: the execution
time is reduced from 6–7 minutes to about 40 seconds, giving a speedup of
9.95x.
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soot MemoizeIt identifies a memoization opportunity for a method,
Scene.getActiveHierarchy, that already has a cache that is accidentally invali-
dated more often than necessary. The method either computes the class hierar-
chy of the program analyzed by Soot or reuses the already-computed hierarchy.
MemoizeIt reveals this opportunity because the method repeatedly recomputes
the same hierarchy in one of the last phases of Soot, i.e., at a point in time
when the class hierarchy does not change anymore. The problem is that the
existing cache is flushed every time before Soot validates the intermediate rep-
resentation of a method body. To avoid redundantly computing the hierarchy,
it suffices to remove the unnecessary flushing of the cache, which gives 1.27x
speedup with the profiling input. An alternative, larger input that runs Soot
on its own source code yields a speedup of 12.93x. The speedup for the second
input is so much higher because the second input triggers significantly more
recomputations of the class hierarchy than the profiling input. We reported this
performance bug to the Soot developers who confirmed and fixed the problem.
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Table 2.4: Data computed for suggesting a cache implementation and suggested
implementation. The columns labels are abbreviations for HR=hit
ratio, I=needs invalidation, S=size.

ID Instance-level Global Suggestion

Single Multi Single Multi

HR I HR S I HR I HR S I

1 100 no 100 1 no 88 no 100 12 no single, global
2 - - - - - 97 no 100 3 no single, global
3 - - - - - 97 no 100 3 no single, global
4 82 no 79 1 no 21 yes 72 10 yes single, instance
5 72 no 72 1 no 21 no 72 1,696 no single, instance
6 99 no 99 1 no 50 no 99 2 no single, instance
7 96 no 96 1 no 5 no 96 708 no single, instance
8 60 no 60 1 no 4 no 60 2,655 no single, instance
9 - - - - - 41 no 99 57 no multi, global

2.4.3 Suggestions for Implementing Caches

When implementing caches for the reported optimization opportunities, we fol-
low the implementation strategies suggested by MemoizeIt. Table 2.4 lists the
data that the approach computes to suggest a cache implementation and the
kind of cache that MemoizeIt suggests. For example, for memoization oppor-
tunity 4 (as listed in Table 2.3), MemoizeIt’s simulation of different kinds of
caches shows that a global single-element cache would achieve only 21% hits
and require to invalidate the cache, whereas an instance-level single-element
cache would have 82% hits and not require invalidation. Therefore, MemoizeIt
suggests to exploit this memoization opportunity with an instance-level single-
element cache. For all but one of the memoization opportunities in Table 2.4,
following MemoizeIt’s suggestion yields a profitable optimization. The one ex-
ception is memoization opportunity 7, where the first suggestion does not lead
to any speedup, but where the second suggestion, a global multi-element cache,
turns out to be profitable. Such suboptimal suggestions are possible because
the suggestions are based on a simple model of caching behavior, which, for
example, ignores the effects of JIT optimizations.
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1 class HSSFCellStyle {
2 // inputs
3 private static short lastDateFormat = INVALID_VALUE;
4 private static List<FormatRecord> lastFormats = null;
5 // output
6 private static String cache = null;
7

8 String getDataFormatString() {
9 if (cache != null &&

10 lastDateFormat == getDataFormat() &&
11 lastFormats.equals(_workbook.getFormats())) {
12 return cache;
13 }
14 lastFormats = _workbook.getFormats();
15 lastDateFormat = getDataFormat();
16 cache = getDataFormatString(_workbook);
17 return cache;
18 }
19

20 void cloneStyleFrom(HSSFCellStyle source) {
21

_format.cloneStyleFrom( source._format );
22 if (_workbook != source._workbook) {
23 lastDateFormat = INVALID_VALUE; // invalidate cache
24 lastFormats = null;
25 cache = null;
26 // ...
27 } } }

Listing 2.4: Cache implementation in Apache POI.

example of cache implementation. Listing 2.4 shows a cache
implementation that exploits optimization opportunity 1 in method
getDataFormatString(). Following MemoizeIt’s suggestion to implement a
global single element cache, we add three static fields (lines 3 to 6): Fields
lastDateFormat and lastFormats store the input key of the cache; field cache con-
tains the cached result. We modify the method so that it returns the cached
result if the stored inputs match the current inputs (lines 9 to 13). Otherwise,
the method executes as usually and fills the cache. MemoizeIt suggests that the
cache may not require invalidation because the profiled executions do not trig-
ger any path that requires invalidation. However, inspecting the source code
reveals that cloneStyleFrom(HSSFCellStyle) writes into fields that may invali-
date a previously stored result. To ensure that caching preserves the program’s
semantics for all execution paths, we invalidate the cache in lines 23 to 25. We
reported this cache implementation to the Apache POI developers who inte-
grated the change into their code.
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2.4.4 Precision of the Analysis

The effectiveness of an approach to find memoization opportunities largely
depends on how quickly a developer can identify valuable optimization oppor-
tunities based on the results of the analysis. MemoizeIt reports a ranked list
of methods, and we expect developers to inspect them starting at the top. As
shown by the “Rank, MemoizeIt” column of Table 2.3, the memoization oppor-
tunities that give rise to speedups are quickly found: five are reported as the top
opportunity of the program and three are ranked as the second opportunity.

comparison with cpu time profiling . We compare MemoizeIt to two
state-of-the-art profiling approaches: (i) Rank methods by inclusive CPU time,
that is, including the time spent in callees, and (ii) rank methods by CPU self-
time, that is, excluding the time spent in callees. In Table 2.3, the “Rank, CPU
time” columns show the rank that CPU time profiling assigns to the meth-
ods with memoization opportunities. Both CPU time-based approaches report
many other methods before the opportunities found by MemoizeIt, illustrating
a weakness of CPU time profiling: It shows where time is spent but not where
time is wasted [103]. Instead of overwhelming developers with hot but not nec-
essarily optimizable methods, MemoizeIt points developers to a small set of
methods that are likely candidates for a simple and well-known optimization.

non-optimizable methods . MemoizeIt may report methods that are not
easily memoizable. We find two causes for such reports in the evaluated pro-
grams. First, some methods already use memoization but are reported because
their execution time is relatively high despite the cache. Even though reports
about such methods do not reveal new optimization opportunities, they con-
firm that our analysis finds valid memoization opportunities and helps the
developer understand performance problems.

Second, some methods have non-redundant side effects that the analysis does
not consider. For example, a method reads a chunk of data from a file and ad-
vances the file pointer. Although the method may return the same chunk of
data multiple times, its behavior cannot be replaced by returning a cached
value because the file pointer must be advanced to ensure reading the expected
data in later invocations of the method. In most cases, the analysis effectively
addresses the problem of non-redundant side effects by considering the target
object as part of the call’s input, but the analysis fails to identify some side
effects, such as advancing file pointers. A strict side effect analysis [149] could
avoid reporting such methods but would also remove six of the nine valid op-
timization opportunities that MemoizeIt reveals, including the 12.93x-speedup
opportunity in Soot.
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1 class CachingBloatContext extends PersistentBloatContext {
2

3 Map fieldInfos; // Declared and initialized in superclass
4

5 public FieldEditor editField(MemberRef field) {
6 // Lookup in existing cache
7 FieldInfo info = fieldInfos.get(field);
8 if (info == null) {
9 // Compute field infos and store them for reuse

10 FieldInfo[] fields = /* Get declaring class */
11 for (int i = 0; i < fields.length; i++) {
12 FieldEditor fe = editField(fields[i]);
13 if (/* field[i] is field */) {
14 fieldInfos.put(field, fields[i]);
15 return fe;
16 }
17 ...
18 }
19 ...
20 }
21 return editField(info);
22 } }

Listing 2.5: Non-memoizable method in DaCapo-bloat.

Another potential cause for reporting non-memoizable methods, which does
not occur in our experiments, are non-deterministic methods. MemoizeIt can
filter such methods by checking for inputs that lead to multiple outputs.

Listing 2.5 shows an example of a memoization candidate in Dacapo-bloat,
which we cannot further optimize because the method already uses memoiza-
tion. At line 7 the parameter field is used as the key of an instance-level,
multi-element cache. If field is not yet in the cache, then the associated field
information is created and added to the cache. MemoizeIt reports this method
because the hit ratio is 57.65%, which confirms the developers’ intuition to im-
plement a cache.
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2.4.5 Iterative vs. Exhaustive Profiling

We compare MemoizeIt’s approach of iteratively refining memoization candi-
dates to a more naive approach that exhaustively explores all input-output tu-
ples in a single execution. The last six columns of Table 2.2 show how long both
approaches take and how many opportunities they report. The last column
shows that the iterative approach clearly outperforms exhaustive exploration.
For six programs, exhaustive exploration cannot completely analyze the execu-
tion within one hour (“TO”) and therefore does not report any opportunities,
whereas the iterative approach reports opportunities even if it does not fully ex-
plore all methods within the given time. For three programs, both approaches
terminate and the iterative approach is faster. For the remaining two programs
both approaches takes a comparable amount of time, while reporting the same
opportunities.

2.4.6 Performance of the Analysis

Our prototype implementation of the MemoizeIt approach yields actionable
results after at most one hour (Table 2.2, column “Iterative, Time”) for all pro-
grams used in the evaluation. Therefore, we consider the approach to be ap-
propriate as an automated tool for in-house performance analysis.

The runtime overhead imposed by MemoizeIt depends on the exploration
depth k. Figure 2.2 shows the profiling overhead (left y-axes) throughout the
iterative refinement algorithm, i.e., as a function of the exploration depth k. The
profiling overhead imposed by MemoizeIt is influenced by two factors. On the
one hand, a higher depth requires the analysis to explore the input and output
of calls in more detail, which increases the overhead. On the other hand, the
analysis iteratively prunes more and more methods while the depth increases,
which decreases overhead. The interplay of these two factors explains why the
overhead does not increase monotonically for some programs, such as DaCapo-
fop, and Apache Tika Excel. In general, we observe an increasing overhead for
larger values of k because recording large object graphs requires substantial
effort, even with a small set of memoization candidates.

Figure 2.2 also shows the number of memoization candidates (right y-axes)
depending on the exploration depth. The figure illustrates that the iterative
approach quickly removes many potential memoization opportunities. For ex-
ample, MemoizeIt initially considers 30 methods of Apache Tika Excel and
reduces the number of methods to analyze to 15, 9, and 6 methods after one,
two, and three iterations, respectively.
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2.5 related work

2.5.1 Detecting Performance Problems

There exists various dynamic analyses that find excessive memory and CPU
usage, e. g., by searching for equal or similar objects [93, 145], overuse of tem-
porary structures [49], under-utilized or over-utilized containers [148], unneces-
sarily copied data [146], objects where the cost to create them exceeds the ben-
efit from using them [147], and similar memory access patterns [103]. Yan et
al. use reference propagation profiling to detect common patterns of excessive
memory usage [150]. Jovic et al. propose a profiler to identify long latencies of
UI event handlers [76]. All these approaches focus on particular “symptoms”
of a performance problem, which help developers to identify a problem but
not to find a fix for it. In contrast, MemoizeIt focuses on a well-known “cure”,
memoization, and searches for methods where this cure is applicable.

Several profiling approaches help developers find performance bugs due to
asymptotic inefficiencies [39, 59, 157]. Xiao et al. describe a multi-execution
profiler to find methods that do not scale well to large inputs [143]. These ap-
proaches relate the input of a computation to execution time to help developers
reduce the complexity of the computation. Instead, MemoizeIt relates the input
of a computation to its output to help developers avoid the computations.

2.5.2 Understanding Performance Problems

Approaches to diagnose performance problems include statistical debugging,
which identifies program predicates that correlate with slow executions [127],
the analysis of idle times in server applications caused by thread synchroniza-
tion issues or excessive system activities [11], and dynamic taint analysis to dis-
cover root causes of performance problems in production software [14]. Other
approaches analyze execution traces [155] or stack traces [65] from a large num-
ber of executions to ease performance debugging. These approaches are aimed
at understanding the root cause of a performance problem, whereas MemoizeIt
discovers problems that a developer may not be aware of.

2.5.3 Fixing Performance Problems

Nistor et al. propose a static analysis that detects loop-related performance
problems and that proposes source code transformations to fix these prob-
lems [102]. MemoizeIt is orthogonal to their work because it addresses a dif-
ferent class of performance bugs. Chen et al. present CacheOptimizer, a frame-
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work to automatically find and fix caching opportunities in programs that use
the Hibernate [5] framework [32]. In contrast to MemoizeIt, CacheOptimizer
focuses only on one specific framework, when MemoizeIt can be use to detect
memoization opportunities in any Java program.

2.5.4 Compiler Optimizations

Compilers and runtime systems can automatically memoize the results of some
computations. Ding et al. propose a profiling-based, static compiler optimiza-
tion that identifies deterministic code segments and that adds memoization via
a source to source transformation [46]. Their approach seems to be limited to
primitive input values, whereas MemoizeIt addresses the problem of summa-
rizing large object structures. Xu et al. propose a dynamic purity analysis and
apply it in a compiler optimization that caches method return values of dynam-
ically pure methods [149]. Their analysis considers the parameters of a method
as its only input, and adds a global cache if a method is found to be a memo-
ization candidate. Guo et al. propose an optimization that adds caches to long
running functions for programs written in a dynamically typed language [64].
They target applications that elaborate data in stages and add caches after each
stage.

As conservative compiler optimizations, the above approaches can memoize
a computation only if it is side effect-free. These optimizations miss various
memoization opportunities identified by MemoizeIt because the methods have
redundant side effects.

Shankar et al. propose a dynamic analysis that identifies methods that create
many short-lived objects and a runtime optimization that inlines those methods
to enable other optimizations [125]. Shankar et al. propose a code specialization
technique embedded in a JIT compiler that optimizes execution paths based on
runtime values observed during execution [126]. Costa et al. propose a JIT
optimization that speculatively specializes functions based on previously ob-
served parameters [42]. Combined with other optimizations, such as constant
propagation, their approach can have an effect similar to automatically added
memoization.

In contrast to MemoizeIt, their work focuses in primitive values instead of
complex object structures.

Sartor et al. [119] and Huang et al. [70] use a compiler and runtime infras-
tructure to optimize programs towards better usage of hardware caches. While
memoization can indirectly affect hardware caching, MemoizeIt focuses on soft-
ware caches where performance is improved by avoiding repetitive expensive
computations.
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JITProf [60] profiles JavaScript programs to identify code locations that pro-
hibit profitable JIT optimizations. Optimization coaching [129] aims at improv-
ing the feedback given by a compiler to the programmer to help the program-
mer enable additional optimizations. These approaches optimize a program for
a particular compiler or execution environment, whereas MemoizeIt identifies
platform-independent optimization opportunities.

2.5.5 Other Related Work

Ma et al. empirically study the effectiveness of caching web resources loaded
in a mobile browser and suggest strategies for improving the effectiveness [90].
MemoizeIt shares the idea of analyzing caching opportunities but it addresses
redundant computations instead of redundant transfers of data over the net-
work.

Depth-first iterative-deepening is a tree search algorithm that repeatedly ap-
plies a depth-first search up to an iteratively increasing depth limit [82]. The
iterative refinement of the dynamic analysis introduced in Section 2.2.2 shares
the idea of iteratively increasing the depth of exploration to reduce the com-
plexity of the problem. MemoizeIt’s iterative refinement differs from iterative-
deepening because it does not perform a tree search and because it does not
stop once a solution is found but it prunes methods from the search space that
are guaranteed not to be memoization opportunities.

Incremental computation, a technique to update the results of a computa-
tion when the input changes [111], memoizes partial results across program
executions. Instead, MemoizeIt focuses on memoization opportunities within
a single execution.

Biswas et al. present DoubleChecker, an atomicity checker that executes the
program twice, with an imprecise and a precise analysis, respectively [17]. Sim-
ilar to MemoizeIt, DoubleChecker increases precision based on the results of a
less precise analysis. Their approach may miss some atomicity violations due
to different thread-schedules. In contrast to DoubleChecker, MemoizeIt does
not bound the number of iterations a-priori and guarantees that the iterative
analysis does not miss any memoization opportunities.
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2.6 limitations

details of cache implementation. MemoizeIt identifies memoization
opportunities and outlines a potential cache implementation, but leaves the de-
cision whether and how exactly to implement memoization to the developer. In
particular, the developer carefully decides whether memoization might break
the semantics of the program and whether the benefits of memoization out-
weigh its cost (such as increased memory usage). Furthermore, MemoizeIt’s
suggestions may not be accurate because they are based on a limited set of exe-
cutions. In particular, a cache may require invalidation even though MemoizeIt
does not suggest it.

input selection. As all profiling approaches that we are aware of, includ-
ing traditional CPU time profiling, MemoizeIt requires the developer to provide
input that drives the execution of the program. The memoization candidates
provided by MemoizeIt are valid only for the given inputs, i. e., other inputs
may lead to other sets of memoization candidates.

multi-threading . The current prototype-implementation does not sup-
port multi-threaded programs; if multiple threads are running while traversing
the heap graph there is the risk that an object is modified during the traver-
sal. To avoid this issue an updated implementation can: (a) record a serialized
execution of the a program and replay the serialized execution with our itera-
tive approach, or (b) at each method entry and exit point stop all the running
threads, and resume the program execution only after the heap-traversal for
the current method is terminated.

non-deterministic programs . The current implementation of Memo-
izeIt iterative refinement of memoization opportunities assumes that each ex-
ecution of the program under the same input is deterministic. However this
assumption may not always hold in practice. In our evaluation we did not
encounter this problem.
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2.7 summary

In this chapter we presented MemoizeIt, a dynamic program analysis that helps
developer automate the task of discovering performance bottlenecks. The re-
ports that MemoizeIt produces reveal to developers methods that can be op-
timized through memoization. The approach reports methods where memo-
ization is likely to be beneficial because the method repeatedly transforms the
same inputs into the same outputs. Key to scaling the approach to complex
object-oriented programs is an iterative analysis algorithm that increases the
degree of detail of the analysis while shrinking the set of methods to analyze.
Based on the profiled information MemoizeIt give hints on applying memo-
ization. The report that MemoizeIt produces provide simple but actionable
suggestions how to apply this well-known optimization to a profiled method.
The work introduced in this chapter lays the foundation for a practical tool that
supports developers in improving their code’s efficiency by providing them ac-
tionable reports about performance bugs. We demonstrate that our approach is
useful practice by evaluating the approach to real-world Java programs. Mem-
oizeIt finds nine previously unknown memoization opportunities reducing the
program execution time up to a factor of 12.93x. We report these fixes to de-
velopers that integrated MemoizeIt suggestions into the program’s code base.
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P R O G R A M S Y N T H E S I S F O R P E R F O R M A N C E

The main contribution of this chapter is to address the second limitation of
profilers, namely, that to fully understand the performance behavior of a pro-
gram a developer must execute the program with multiple inputs and with
different input sizes. However, this is difficult to achieve in practice because
manually creating inputs is costly, and detecting an inefficient piece of code
may require to exercise the code with a specific kind of input. To make the
problem even worse, most of the code has manually crafted or automatically
generated tests for correctness, but these tests typically focus on covering each
statement, branch, or path once. In general, these tests are usually insufficient
to detect performance problems, and the lack of performance tests is perva-
sive even among open-source projects [85]. Therefore we argue that there is
a need for new tools to automatically generate inputs that attempt to trigger
performance bottlenecks.

A body of previous work has shown that real-world software often suffers
from performance bottlenecks [75, 88, 120], and that some of them can be fixed
with relatively little effort [60, 102, 137]. Unfortunately, finding such bottle-
necks often is non-trivial as this step requires executing the inefficient code
with input data that brings the bottleneck to the attention of a profiling tool,
a developer, or in the worst case, a user. Because it is desirable to find bot-
tlenecks before deploying the software, techniques for exposing bottlenecks
as part of in-house quality control are needed [85]. Existing work addresses
the problem of detecting and reporting a performance problem in a given
piece of code, e. g., by empirically measuring the complexity of code through
profiling [39, 59, 157] or by identifying instances of known performance anti-
patterns [60, 75, 88, 103, 120, 146, 148]. The focus of this chapter, to trigger an
execution that exposes the bottleneck, is currently understudied.

To address this problem, we introduce PerfSyn, an automatic approach for
synthesizing “inputs” that expose performance bottlenecks. PerfSyn focuses
on analyzing a unit-level piece-of-code, i. e., to find bottlenecks in individual
methods. In the case of unit-tests, “inputs” are test programs that prepare an
object under test and then call the method under test. However PerfSyn allows

45
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to analyze software at a finer level of granularity, for example at the basic-block
level, or even single expressions. PerfSyn starts with a minimal usage example
of the method under test and then applies a sequence of program mutations
that add, remove, or modify statements in the program.

PerfSyn is the first framework for synthesizing programs that expose
performance-bottlenecks:
• The main contribution of this chapter is to formulate the problem of finding a

sequence of program changes that yields a bottleneck-exposing program as a
combinatorial search problem. To efficiently address the combinatorial search
problem we adopt well-known graph search algorithms [48, 66]. To this end,
the approach learns from the execution feedback of synthesized programs to
steer the search towards program changes that generate bottleneck-exposing
programs.

• The second contribution of this chapter is to design PerfSyn as a general
framework that can expose different kinds of performance bottlenecks. Once
the approach hits a program that exposes a specific bottleneck, this program
along with information recorded from the program execution is reported to
the developers, who then can fix the problem.

• The last contribution of the chapter is to provide empirical evidence that
PerfSyn is effective and efficient in exposing performance problems in real-
world Java classes. We evaluate PerfSyn in two usage scenarios. In the first
scenario we compare the performance of two versions of a program, e. g., for
performance regression testing. In the second scenario a developer validates
his/her assumption about the computational complexity of code against the
actual performance, i. e., execution time of the code.
We begin this chapter by motivating our work in Section 3.1 showing how

the approach works with a running example. In Section 3.2 we describe the
approach in detail. In Section 3.3 we describe how we implemented a proto-
type for PerfSyn. We evaluate our implementation in Section 3.4. We list the
limitations of the approach in Section 3.6 and we summarize our findings in
Section 3.7.
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1 class Messages {
2 Set<Msg> set = ...
3 List<Msg> list = ...
4

5 Messages(List<Msg> msgs) {
6 /* Add messages to set and list */
7 }
8

9 void log(List<Msg> newMsgs, boolean renameDups) {
10 for (Msg msg : newMsgs) {
11 if (renameDups) {
12 if (set.contains(msg)) {
13 logOne(makeUnique(msg));
14 } else {
15 logOne(msg);
16 }
17 } else {
18 /* Bottleneck 1:
19 * Inefficient containment check */
20 if (!list.contains(msg)) {
21 logOne(msg);
22 }
23 }
24 }
25 }
26

27 void logOne(Msg msg) {
28 /* Add msg to set and list */
29 }
30

31 /* Bottleneck 2: Expensive hash function */
32 Msg makeUnique(Msg msg) {
33 /* append expensive-to-compute hash to msg */
34 }
35 }

Listing 3.1: Class with two bottlenecks.
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3.1 perfsyn by illustration

Listing 3.1 shows the code of Messages, a container class for logging messages.
The class ensures that each logged message is assigned a message identifier.
To store messages the class provides the method log, which takes two argu-
ments: a list of new messages and a flag to indicate whether duplicate mes-
sages should be renamed into unique messages. The implementation of the
class stores messages in a list data-structure. It uses a list to check whether
a message has already been logged and to represent the order of messages.
The helper method logOne adds a new message to the list. If the user wants
duplicate messages to be renamed, then another helper method, makeUnique,
changes the message by appending an unique string. The example contains
two performance bottlenecks:
• The first bottleneck at line 20 is an inefficient containment check that acci-

dentally uses the expensive List.contains instead of the faster Set.contains.
A developer may expect the containment check to require constant time, but
instead, the required time is linear with respect to the number of already
logged messages, making the overall complexity of log quadratic in the num-
ber of messages.

• The second bottleneck causes suboptimal performance when an already con-
tained messages get renamed. The reason is that makeUnique uses an expen-
sive hash function to append a unique string to the message (line 33). In-
stead, a more efficient implementation would be to append a unique number
obtained via a global counter.
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3.1.1 Challenge 1: Expose Bottlenecks

Finding bottlenecks, such as those in our motivating example, in complex soft-
ware is non-trivial. The most successful approach to find bottlenecks in prac-
tice is profiling. However, effective profiling depends on inputs that trigger an
execution that exposes a bottleneck. In practice, most code comes without ex-
tensive performance tests but only a correctness test suite, or maybe even only
a set of minimal usage examples [85].

For the example, program p0 in Figure 3.1 shows a minimal usage example of
the Messages class. The program initializes the class with an empty list of mes-
sages and then calls log with two arguments: an empty list and the constant
true. Profiling an execution of this program does not expose the performance
bottlenecks in the class. For bottleneck 1, the program fails to trigger the ineffi-
cient check because it requires setting the flag to false and to log at least two
messages. For bottleneck 2, the program fails to expose the inefficiency because
it requires repeatedly logging the same message.

3.1.2 Challenge 2: Synthesizing Bottleneck-Exposing Programs

PerfSyn searches for bottlenecks in the method under test mut starting from an
initial program p0. The program p0 in Figure 3.1 is generated by PerfSyn and it
contains the minimal number of statements required to execute mut without a
crash. To search for a bottleneck PerfSyn modifies p0, e.g., by inserting method
calls or by modifying the values passed to the calls. The approach identifies
a program as bottleneck-exposing based on a configurable performance oracle.
The term “oracle” is inspired by test oracles, which decide whether a test ex-
poses an error [15]. In contrast, the performance oracle decides to what extent
a program exposes a performance bottleneck.

For example, the performance oracle may report that the measured complex-
ity differs from the expected worst-case complexity [39, 59, 157] or that two im-
plementations with supposedly equal performance have different performance
properties.

For the two bottlenecks in our example, let log be the method under test.
Suppose that PerfSyn modifies the initial program p0 into the programs pm and
pn in Figure 3.1, respectively. The sequence of program transformations that
led from p0 to pm initialize the class and then add an increasingly large list of
messages while setting the renameDups flag to false. That is, the programs reach
the inefficient check at line 20 with an increasingly large input. PerfSyn profiles
the execution of log with these programs and creates the performance plot
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shown next to program pm. The plot shows the execution time depending on
the input size and compares the measured values to the expected complexity.

For the second bottleneck, suppose that an alternative version of the Messages

class uses a more efficient implementation of makeUnique. PerfSyn exposes the
bottleneck in Figure 3.1 using the programs that lead to pn in Figure 3.1. The
programs pass to log an increasingly large number of duplicate messages, each
of which triggers the makeUnique function. The performance plot next to pn
compares the two implementations with each other and shows that the imple-
mentation in Figure 3.1 performs sub-optimally.

3.1.3 Challenge 3: Targeted Search

The key challenge in exposing bottlenecks by automatically synthesizing pro-
grams is the large space of possible programs. PerfSyn is a novel approach to
address this challenge based on feedback obtained from executing programs.
Starting from the initial program p0, PerfSyn represents the space of possible
modifications as a tree, where p0 is the root, each node is another possible
program, and edges represent code modifications that turn one program into
another one. The approach explores the tree while gathering feedback about
how effective specific program changes are at getting closer to a bottleneck-
exposing program. The feedback depends on the performance oracle used to
identify bottleneck-exposing programs. For example, an oracle aimed at ex-
posing an unexpected complexity class steers the approach toward programs
where the observed complexity diverges more and more from the expected
complexity. Likewise, an oracle aimed at exposing performance differences be-
tween two implementations targets the approach toward programs with such
differences.

For the example in Figure 3.1, suppose that PerfSyn at first modifies p0 by
calling isEmpty on the list given to log, as shown in program p1 in Figure 3.1.
Because this mutation does not influence the performance of the method under
test in the intended way, the approach decreases the priority of this part of the
tree. Instead, PerfSyn learns over time that applying the mutations that lead to
pm and pn are beneficial and steers the search along these mutations.
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3.2 approach

PerfSyn is a feedback-directed code synthesis approach with the goal to syn-
thesize a program that exposes a bottleneck. The feedback is in the form of
runtime performance measurements that are collected while running a synthe-
sized program. We say that a method suffers from a bottleneck when the value
of a performance property of the executed method with an input of a particu-
lar size exceeds the value expected by the developer. We design PerfSyn as a
generic framework that supports different kinds of bottlenecks and strategies
to expose them. In Section 3.2.7 we show two examples of these strategies, and
how we integrated them in the PerfSyn framework.

The approach takes as input: (i) a class source-code and, (ii) one or multiple
mut that must be declared in the source-code. The approach then analyses the
source-code to extract type information and to build the type hierarchy. This
phase is implementation dependent and will not be described in this section,
Section 3.3 briefly describes how we implemented the type analysis for Java
classes. The results of the type analysis are stored for later reuse during the
program synthesis. The approach proceeds and analyzes one mut at the time.
For each mut the approach builds an initial program p0 that exercises the mut,
i. e., p0 is the input to the program synthesis phase (see Section 3.2.2). The
main task of PerfSyn is the program synthesis phase where PerfSyn iteratively
generates and executes multiple programs to trigger a performance bottleneck.
The approach terminates by reporting to the developer a ranked list programs
that exercise mut and that expose a bottleneck according to the performance
oracle (see Section 3.2.8).
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3.2.1 Framework Components

In this section we describe the main components of the PerfSyn framework.

Synthesized Program

The main data structure created and manipulated by PerfSyn is a program that
uses the method under test once or multiple times

Definition 7 (Program). A program p P P for a method under test mut is a se-
quence of statements s P Sp of the form vo “ varg0.mpvarg1 , .., vargkq, or vo “
OPpvarg0 , .., vargkq where
• P is the set of all programs,
• Sp is the set of statements in p,
• vo and varg0..k are typed variables in the set of variable for the program Vp ,
• m is a method name,
• OP is a type-specific operator,
• and there exists at least one statement s where m “ mut.

This means that a program must execute mut at least once. A common in-
stance of this formulation is the instance where the last statement executes the
method under test. However there exists instances of the formulation where
it could be necessary to execute the method mut multiple times because of the
type of performance property that needs to be collected. For example, one
can imagine a program analysis that looks for memoization opportunities. In
this scenario multiple calls to the mut in a program are required to check for
redundant computations [137].

Take for example the program p0 in Figure 3.1. The program p0 is repre-
sented in our formulation in the following form:

s0 : v0 “ constructorpLinkedListq
s1 : v1 “ constructorpMsgs, v0q
s2 : v2 “ constructurpArrayListq
s3 : v3 “ f alse
s4 : v1.logpv2, v3q

In the formulation variables are renamed as li1 = v0, msgs = v1, li2 = v2 and
the second constant argument to the mut is hoisted and assigned to v3. Notice
that each statement represents a single assignment to a new variable or a re-
assignment to an existing variable. This simplified program representation
allows to trivially extend and compare generated programs (e. g., to compare
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for added statements, or to check for modified values). A similar representation
has been successfully used in the past by other random unit test generators [53,
105].

Mutation Tree

The initial program p0 can be automatically generated by PerfSyn, or in the
case that PerfSyn is not able to automatically generate the program because the
setup code is too complicated (e. g., because it requires a data-structure to be in
a specific state), PerfSyn can start from an existing test. The existing test could
be a manually written test by a developer, for example, a correctness test, or
could be a test that is generated by another generator [45, 53, 105].

To derive a program that exposes a bottleneck, PerfSyn performs sequences
of mutations that, starting from p0, feed the result of each mutation into the
subsequent mutation. The space of all possible sequences of mutations for a
specific initial program forms a tree:

Definition 8 (Mutation tree). A mutation tree for an initial program p0 is an acyclic,
connected, and directed graph pP ,Mq, where each node p P P is a program and each
edge is a mutation µ P M that modifies the source node’s program into the destination
node’s program.

The mutation tree represents all possible sequences of mutations that can be
applied to a given initial program p0. Since the number of possible mutations
per program is finite, the number of outgoing edges per node is also finite. In
contrast, the number of nodes in a mutation tree is unbounded, because each
mutation results in a new program that can always be further extended with a
mutation.
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Algorithm 2 Synthesize a bottleneck-exposing program
Input: Initial program p0, the kbest number of programs to report
Output: A set Pbest of kbest programs that expose a bottleneck

1: Fbest “ H
2: while no timeout do
3: for nbmut – 1 to maxMuts do
4: p – copy of p0
5: F – empty sequence
6: for step – 1 to nbmut do
7: µ – pickMutationpp,Lq ô Mutate program
8: p – mutatepp, µq
9: p f1, .., f jq – executeppq ô Execute program

10: add p f1, .., f jq to F
11: score – oraclepFq ô Rank best solutions
12: update Fbest with pp, scoreq
13: L – learnpp, Fq ô Learn from execution of program
14: end for
15: end for
16: end while
17: Pbest “ maxByScorepFbest, kbestq
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3.2.2 Program Synthesis Algorithm

To expose a program with a bottleneck PerfSyn repeatedly performs five steps,
described in Algorithm 2:
1. Mutate a program. Transforms a program into another program by modify-

ing or adding statements. To this end, the function pickMutation takes an
existing program p and it decides which mutation to apply next (line 7).

2. Execute and gather feedback. Executes a program while applying a dynamic
analysis that collects runtime properties of the program and that serves as a
feedback (line 9).

3. Learn. Checks if the applied mutation changed the performance of the
method under test based on the oracle feedback and it infers which mu-
tations are the most effective (line 13).

4. Explore. Steers the synthesis towards mutations of the initial program that
may yield a bottleneck-exposing program. To this end, the algorithm it-
eratively explores the mutation tree (line 4) and ranks the most effective
mutations (line 11).
The search continuously updates the set of best programs Fbest until exceed-

ing a configurable time budget and then returns the top-kbest programs that
have the highest score, i.e., the programs that are most likely to expose a bottle-
neck (line 17). In the next sections we describe each of these steps in detail.

3.2.3 Mutating Programs

PerfSyn is a black-box program synthesis technique, in other words PerfSyn does
not perform a program analysis to help the search for bottlenecks. PerfSyn
assumes that to change the runtime behavior of mut, it is sufficient to mutate
the program that exercises the mut.

Definition 9 (Mutation). A mutation µ P M transforms a given program p into
another program p1.

Each mutation consists of a mutation operator, i.e., how to transform a pro-
gram, and of multiple mutation operands, i.e., the program elements subject of
the program transformation. One mutation to a program p adds or replaces one
or multiple statements of the program. The mutation operator and the mutation
operands define which and how many of the programs statements are touched
by the mutation.
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Mutation Operators

The approach supports four kinds of operators:
• Inject call. This operator mutates a program by calling a method on any

of the existing objects. To this end, the operator inserts a new statement
vo “ varg0.mpvarg1 , .., vargkq into the sequence of statements. The rationale for
including this operator is to modify the state that may influence the perfor-
mance of the method under test. In Figure 3.1, this operator synthesizes p1
from p0 by inserting the call to li2.isEmpty().

• Modify constructor. This operator mutates a program by replacing an exist-
ing constructor call with a subtype constructor call. PerfSyn supports this
operator to trigger bottlenecks that require an instance of a specific class. In
Figure 3.1, this operator could synthesize a variant of p0 where the first state-
ment calls new ArrayList() instead of new LinkedList().

• Mutate value. This operator applies a type-specific operation to one of
the existing variables. Specifically, the operator inserts a statement vo “
OPpvarg0 , .., vargkq that applies a type-specific operator to a set of variables.
PerfSyn supports operators for primitive types, such as incrementing an in-
teger variable or toggling a boolean variable. In Figure 3.1, the operator
synthesizes p2 from p0 by mutating the boolean value passed to log from
true to false.

• Mutate field. This operator is similar to the mutate value operator but it applies
a type-specific operation to one of the public fields of a variable that is of
reference type. PerfSyn supports this operator for a class and instance level
fields. The (side-)effects of this mutation operator can be also emulated using
a sequence of inject call operators, granted that the call changes an object state.
Previous work applied a similar set of mutation operators has been proven

effective to generate unit-test targeted towards correctness bugs [53, 105]. De-
spite the different objective in covering the mut control flow, PerfSyn generates
an unit-test like program as the cited approaches.
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Apply Mutation Operators

Applying an operator to a specific program requires several decisions: (i) Perf-
Syn lists the mutation operators applicable to a program, (ii) it then concretizes
the mutation operator by binding program variables to the operands, and lastly
(iii) it generates the list of statements that the operator must add to the program
and it inserts statements to the program. Decisions (i), and (ii) are described in
Algorithm 3, and Algorithm 4 describes how PerfSyn generates statements for
decision (iii). To insert and replace statements in a program PerfSyn follows
simple rules that modify a program depending on the mutation operator type.

Take the example in Figure 3.1 and consider the mutation that synthesizes
p3 from p2 by applying the “inject call” operator. When applying this operator,
PerfSyn decides to apply the mutation before the call to log and to use the
List.add method. Furthermore, when trying to bind the argument to add to
a variable, PerfSyn decides to create a fresh value and recursively inserts a
statement, for example, a call to the constructor new Msg().

Algorithm 3 describes how PerfSyn determines the set of all possible to mu-
tations for a program p. The algorithm traverses each statement si to collect the
mutation operators that are allowed at or before each statement si. It then stores
the mutation operators in the set O. These mutation operators are selected first
by collecting the program’s variables that are visible at si (line 3 to 5).

Definition 10 (Variable visibility). A variable is visible at a program statement si if
and only if the variable has been initialized before si.

For each variable that is visible at si the algorithm picks one or multiple
mutation operator that are compatible with the variable’s type (line 5).

For example, if a variable is of reference type the algorithm adds to O a
mutation operator inject call for all the public declared methods in the type, and
a replace constructor operator for all the declared constructors. In the program
p0 from Figure 3.1 the algorithm assigns to the set O at s1 multiple replace
constructor operators for li1 and msgs, and multiple inject call operators all the
public methods of li1 type (e. g., to change the behavior of Msgs constructor).
Similarly if a variable is of primitive type, the algorithm selects a type specific
operator. For example, for a variable of integer type the set O is tplus, minusu.

The algorithm continues and concretizes a mutation operator by assigning
to each mutation operand a concrete variable, or an abstract variable that yet does
not exist in the program (line 8 and 9). The concept of abstract variable adds
the support to alter a method’s runtime behavior when the behavior is depen-
dent on a specific value for the method argument. For example, the behavior
of method log in Figure 3.1 depends on the new messages being duplicated.
Therefore the need to support to add new messages objects to the list.
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The approach continues and it stores the mutation operator type compatible
variables in the set oV . For p0 at s2 the set oV for the mutation operator of
List.add contains li1 and an abstract variable of type List, and a concrete and
abstract variable of type Msg.

The final set of mutations Mp is updated with a mutation for each combi-
nation (i. e., cartesian product) of valid arguments oargs taken from oV (line 13)
that are compatible with oT.

To apply a mutation operator the approach concretizes all abstract variables
in oargs with an initial value (line 12). Algorithm 4 describes how PerfSyn
initialize abstract values of primitive and reference types. First the function
checks the type of the variable, if the variable is of primitive type then it assigns
to the variable a random value, or a value from a pool of existing constants
(line 5). Otherwise if the variable is of a reference type, the function recursively
construct fresh objects to initialize the abstract variable, and the constructor
arguments (line 17).

The approach taken to initialize an abstract variable by Algorithm 4 is to
select the first valid sequence of statements. The selected sequence is not guar-
anteed to increase the probability of finding a bottleneck. However this is not a
problem because PerfSyn can apply a mutation operator that initializes a vari-
able using a different constructor and change the arguments to the constructor
later on the search process.

The final step to apply a mutation operator is to change a program p into p1,
by adding or by substituting a sequence of statements in p. A mutation derived
from a mutation operator of type inject call, mutate value, or mutate field will add
new statements to p before the statement position si. The mutation operator
modify constructor substitutes the appropriate statements in p and adds new
statements to p if necessary (e. g., if an argument to the constructor is a freshly
initialized variable).
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Algorithm 3 Mutations for a program p
1: function mutations(p P P)
2: Mp – H
3: for statement si – Sp do
4: V – get variables visible at si
5: O – list of mutation operators for V
6: for mutation operator o – O do
7: oT – list of types of o parameters
8: V concrete – variables in V with type oT

9: V abstract – abstract variables for each type in oT

10: oV – V concrete Y V abstract

11: for oargs – oV
0

ë
oV

1
ë

...
ë

oV
n do

12: oargs – concretize all abstract variables in oargs

13: Mp – Mp Y mutationpo, oargsq
14: end for
15: end for
16: end for
17: return Mp
18: end function

Algorithm 4 Initialization of an abstract variable
1: function initAbstractVariable(abstract variable va of type T)
2: Sinit “ r s
3: if T is primitive then ô Primitive value initialization
4: index – nextVariableIndexpq
5: value – randomOrPoolValuepTq
6: add statement vindex “ value to Sinit
7: return Sinit
8: else ô Recursive ctor arguments setup
9: CT – constructor(T)

10: Cargs “ H
11: for parameter type Tparam of CT do
12: va – abstractVar(Tparam)

13: Cargs – Cargs Y va
14: add statements calling initAbstractVariablepvaq to Sinit
15: end for
16: index – nextVariableIndexpq
17: add statement vindex “ CTpCargsq to Sinit
18: return Sinit
19: end if
20: end function
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3.2.4 Gathering Execution Feedback

To determine whether a program p exposes a bottleneck, PerfSyn executes and
dynamically analyzes a program p.

Definition 11 (Execution feedback). The feedback obtained by executing a program
p is a tuple p f1, . . . , f jq, where each fi (1 § i § j) represents a dynamically measured
property of p’s execution.

The tuple of measurements may contain any value of interest to understand
the performance of the method under test, such as execution time, memory
consumption, or amount of network traffic. In practice these measurements
can be any type of data that a dynamic analysis can collect during a program
execution.

Based on the execution feedback obtained for each program in a path through
the mutation tree, an oracle decides how useful a program is for exposing a
bottleneck:

Definition 12 (Performance oracle). Let pp0
µ1››Ñ p1

µ2››Ñ . . . pkq be a path through the
mutation tree. Given a sequence of execution feedback F, where each element represents
the feedback for a pi (0 § i § k) on the path, the performance oracle is a function
F Ñ R. A higher value returned by the oracle indicates that the program pk is closer
to exposing a bottleneck.

The strict requirement that the oracle must return a discrete value is imposed
by the type of search that PerfSyn performs on the mutation tree. I. e., it maxi-
mizes the execution feedback from the oracle. The intuition is that maximizing
such a value will steer PerfSyn closer to trigger a bottleneck.

In Section 3.2.7 we describe concrete examples of how an oracle uses the
execution feedback.
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3.2.5 Learning from Executions

PerfSyn extends the mutation tree by selecting one of the outgoing edges of
the current program p. The main challenge is to decide about the potential
effectiveness of a mutation µpredict before having performed it. This is crucial
because performing a mutation costs time: first it requires to modify the cur-
rent program, second and more importantly it requires to execute the mutated
program to collect the execution feedback, and third it requires the oracle to
compute the score for the program starting from the execution feedback. To
address this challenge, after each iteration the algorithm learns from the pre-
viously performed mutations to predict the effectiveness of similar mutations
(line 13). At first, the algorithm computes the set Mlearn of already performed
mutations µlearn that fulfill three conditions:
1. µlearn and µpredict share the same mutation operator;
2. the operator is applied with the same method, constructor, or type-specific

operator;
3. if the mutation refers to existing variables, then both µlearn and µpredict share

the same choice as to whether to use existing or new variables.
Based on this set of already performed mutations to learn from, the algorithm

builds a prediction table L that indicates for each mutation how often it has
increased the value returned by the oracle in previous iterations. The mutation
tree is an implicit memory of the effects on mut performance. The prediction
table L is a concrete, simple, and naive form of this memory. We leave the
study to build alternative strategies to the prediction table as future work.

3.2.6 Exploring the Search Space

The key step of PerfSyn is to explore the mutation tree to find a bottleneck-
exposing program. Because of the large number of possible mutations, ex-
haustively exploring the tree is impractical, even when setting a bound on the
exploration depth. In principle, any search algorithm, metaheuristic, or other
machine learning technique that solves combinatorial optimization problems
can be used to explore the mutation tree. We implement and experimentally
compare two algorithms
1. the A* algorithm [66], because it is one of the most popular and widely used

graph search algorithms; and
2. Ant Colony Optimization (ACO) [48], which we find to be well-suited for

our problem.
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In the following sections we explain how we concretize the generic parts of the
exploration strategy using these two approaches.

A* Search

A* [66] is a path finding algorithm that heuristically and iteratively builds a
solution to reach a goal state. The algorithm selects at each iteration step the
most promising solution, i.e., a solution that maximizes the cost function f pnq “
gpnq ` hpnq. Function gpnq represents the cost for a path from the root to node n,
and hpnq heuristically estimates the cost of traversing node n to reach the goal.

We adapt the A* algorithm to the problem of finding in the mutation tree a
path that exposes a bottleneck. A node n is a program, and the function f pnq
is the performance oracle’s score for this program. Our version of A* does
not use the heuristic function h, but PerfSyn uses only the feedback obtained
from the execution gpnq. The issue of using the heuristic function hpnq that
an upper bound for the performance oracle’s score cannot be known a priori.
To bound the memory used by the search, we use the SMA* variant of the A*
algorithm [118].

Our modified version of mutation selection based on A* is presented in Al-
gorithm 5. The algorithm has a global state that is maintained during the entire
search. The global state is an ordered set openSet which contains all the nodes
of the tree that have to be explored, sorted by the performance oracle score (i. e.,
the most promising nodes are selected first). In addition A* keeps set closedSet
that contains all so far explored nodes. The algorithm starts by collecting the
list of mutations for the program p. The algorithm then applies each of p’s pos-
sible mutations to collect the score for each one of them (line 3-8). This step is
necessary because the A* algorithm extracts the most promising node from the
openSet as next node to explore (line 11). The algorithm terminates by reducing
the openSet size to a maximum user set threshold bestOpenSize if the size of
openSet exceeds maxOpenSize value. This last step is necessary to control that
the size of openSet does not grow too large when the explored depth of the
mutation tree increases.
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Algorithm 5 A* based mutation selection
1: function pickMutation(p P P , µ P M)
2: Mp – mutationsppq
3: for each µ P Mp do
4: p1 – mutatepp, µq
5: p f1, .., f jq – executepp1q
6: add p f1, .., f jq to Fp1
7: score – oraclepFp1q
8: replace µ with pµ, scoreq in Mp
9: end for

10: openSet – openSet Y Mp
11: µbest – maxByScorepopenSetq
12: if |openSet| • maxOpenSize then
13: reduce size of openSet to bestOpenSize
14: end if
15: return µbest
16: end function
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Ant Colony Optimization (ACO)

ACO [48] is an iterative algorithm to find an approximate solution to a combi-
natorial optimization problem. The intuition of the algorithm, which gave it its
name, is that a set of ants traverse the tree while leaving pheromones on edges
between components. Pheromones are numeric weights that are obtained by
evaluating partial solutions and that evaporate over time. Pheromones encode
how close already explored paths are to its goal. Based on the pheromones
from previous iterations, ants prioritize paths through the solution space in
such a way that the ants steer toward a solution with high pheromone values.
This process iteratively improves the explored solutions until meeting some
stopping criterion.

We adapted ACO to iteratively explore paths through the mutation tree using
a set of ants that independently select the next mutation. During an iteration,
each ant traverses the mutation tree and picks the next mutation based on the
probability distribution described by prob for all outgoing edges:

probpµq “ T pµq ¨ Lpµq
∞

µ1Poutgoingppq T pµ1q ¨ Lpµ1q (3.1)

The map T pµq yields a default pheromone value for all not yet performed mu-
tations or it yields the current pheromone for the already explored mutations.
In other words, the algorithm initially assigns equal probabilities to all the mu-
tations, and then focuses more and more on promising mutations. The map L
is the prediction table that assigns to each mutation its expected effectiveness in
changing the performance. The algorithm updates pheromones values t after
all ants have completed a sequence of nbmut mutations:

tnew “
#

p1 ´ jq ˚ told ` told ˚ score if on best path
p1 ´ jq ˚ told otherwise

(3.2)

The algorithm reduces each pheromone by a constant factor j, i.e., the
pheromones evaporate. Furthermore, the pheromones of all mutations in-
volved in the best path found so far are increased proportionally to the score
returned by the oracle. Moreover, the algorithm bounds pheromone values
in such a way that no mutation ever becomes impossible, and that the search
continues to explore new mutations even after finding a promising path [131].
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Algorithm 6 shows in detail our ACO based mutation selection strategy. The
algorithm uses an #-greedy strategy combined with random proportional strat-
egy to select the next mutation to explore. The algorithm starts by obtaining
the list of mutations for the program p, and then it draws a random number
(line 3). If the number does not exceed a probability of 25% it then returns a
random mutation, favoring exploration of the mutation tree. Otherwise the al-
gorithm proceeds by using a random proportional strategy (line 6-14) described
in Equation 3.1.

This strategy first draw a random probability, it then traverses the list of
mutations until it finds a mutation with probability that is greater or equal
to the random probability. This selection strategy favors mutations that have
higher probability, i. e. the mutations with the highest score, but it still allows
exploration of the mutation tree.

Algorithm 6 ACO based mutation selection
1: function pickMutation(p P P , µ P M)
2: Mp – mutationsppq
3: rnd# – randompq
4: if rnd# § 0.25 then return pickAtRandompMpq
5: else
6: probselect – randompq
7: probsum – 0.0
8: for each µ P Mp do
9: if probsum • probselect then return µ

10: else
11: probsum – probsum ` probpµq
12: end if
13: end for
14: return pickAtRandompMpq
15: end if
16: end function
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3.2.7 Feedback and Performance Oracle

Which of the synthesized programs is the best is determined by the perfor-
mance oracle (see Definition 12) and depends on the kind of performance prob-
lem to search. Instantiating PerfSyn for a specific kind of bottleneck requires to
define a feedback function that evaluates to a higher score when the program
is closer to reach the goal of exposing a bottleneck. The following presents two
feedback functions targeted at specific kinds of bottlenecks.

Exposing Changes in Relative Performance

The first application of our generic framework detects performance bottlenecks
fixed or introduced into another functionally equivalent implementation. Prior
work to detect performance regressions [31, 50, 153] requires inputs that exer-
cise the analyzed code. In contrast, we focus on how to automatically create in-
puts that expose performance changes. To use PerfSyn to find bottlenecks due
to changes in relative performance, the developer provides a second, assumed
to be slower, implementation of the analyzed code, e.g., an earlier version of the
same class. We call this alternative implementation the reference implementation.
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execution feedback The feedback for a path from the root pro-
gram p0 to a program pk through the mutation tree is a sequence F “
rpc0, cre f

0 q, . . . , pck, cre f
k qs where each pair pcj, cre f

j q contains the execution cost for
the implementation under analysis and the reference implementation, respec-
tively. During both executions, the approach gathers feedback about the exe-
cution cost. Because naively measuring the execution cost as wallclock time
is inaccurate for short methods we instead measure the number of evaluated
conditional checks [110, 154].

performance oracle The oracle computes the score of a program pj as
the difference in execution cost of the implementation under analysis and the
reference implementation using the formula:

scorepFq “ |cre f
j ´ cj| (3.3)

That is, the oracle steers the search toward paths that maximize the difference
in execution cost between the two versions of the code. This formulation of the
score allows to find paths in the mutation tree where the reference implementa-
tion is faster (i. e., the new implementation introduces a bottleneck) and where
the reference implementation is slower (i. e., the new implementation fixes a
bottleneck).

Figure 3.2a depicts graphically the formulation for scorepFq where the imple-
mentation under test contains a bottleneck, i. e. the reference implementation
is faster. Each point in the curve represent a measurement, and the dashed
black lines length represent how the score evolves when multiple mutations
are applied.

An alternative formulation to Equation 3.4 is to consider the two cases in
separated formulas. For example, PerfSyn could search only for programs
where the reference implementation is slower using the formula:

scorepFq “ maxp0, cre f
j ´ cjq (3.4)
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mutations

execution time

cre f
j

cj

Tested impl.
Reference impl.

(a) The dashed black line represents
the score for the program pj after
applying j mutations.

input size

execution time

ij´1 ij

cj´1

cj

Measured complexity

(b) The highlighted area below the
curve represents one of the trape-
zoid used to calculate scorepFq.

Figure 3.2: Representation of the calculation for scorepFq for both performance
oracles described in Section 3.2.7

Exposing Unexpected Asymptotic Complexity

The second application of the PerfSyn framework focuses on unexpected asymp-
totic complexity, where an implementation requires more resources to handle
increasingly larger inputs than expected. Prior work has studied how to detect
such problems under the assumption that the inputs that expose the problem
are available [39, 59, 157]. In contrast, we focus on how to automatically synthe-
size inputs that expose an unexpected asymptotic complexity. To use PerfSyn
to find such a problem, the developer specifies the expected complexity class,
e.g., Op1q, Opnq, Opn2q, of the method under test.

execution feedback The feedback for a path through the mutation tree
is a sequence F “ rpi0, c0q, . . . , pik, ckqs, where each pair pij, cjq represents a mea-
surement of the input size and the execution cost of a program pj in the path.
In general, the problem of determining this size is impossible because the no-
tion of “input size” is program-specific and typically not explicitly specified.
In this dissertation, we measure the size of the input based on the number of
first read memory locations [39, 40], and we measure the execution cost as the
number of conditional checks.

performance oracle To compute a score that indicates how close a path
is to expose a bottleneck the oracle performs polynomial curve fitting using
the measured values in F. The curve represents how the execution cost varies
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depending on the input size. To determine the best-fitting curve, PerfSyn a
naive curve matching algorithm.

First the algorithm tries to fit the data points to curves of different degrees
and it selects the curve that yields the smallest normalized root mean square
error against the selected polynomial. This naive algorithm is effective in prac-
tice and it does not require complex numerical techniques that are out of the
scope of this dissertation. However the naive algorithm due to its limitations is
not able to automatically match polynomials for logarithmic complexities like
Oplogpnqq and the definition of input size used wrongly estimates the input size
for such functions with sub-linear behavior [39].

Second, the oracle computes the score as the area under the curve using the
trapezoidal numerical integration over the data points in F:

scorepFq “ 1
2

¨
ÿ

pij,cjqPF
pij ´ ij´1q ¨ pcj ` cj´1q (3.5)

The intuition behind the score is that, the larger the area under the curve the
more the actual performance deviates from the expected performance because
the work per input increases. Figure 3.2b depicts graphically how the area
under the curve is calculated. Each black dot on the red linear curve is a mea-
surement. The area in the figure highlighted in blue shows how one portion of
the summation is calculated.



3.2 approach 71

3.2.8 Reporting and Ranking of Methods

PerfSyn reports to the developer a ranked list of methods that may contain
a performance bottleneck, the ranked list reports the most severe bottlenecks
first.

The oracle score alone does not provide an intuitive characterization for a
developer of the severity of the bottleneck to identify which methods should
be inspected first. To this end PerfSyn uses a different ranking system for each
of the oracles described in Section 3.2.7:
• Changes in Relative Performance. PerfSyn first filters a method if the score of

the best bottleneck exposing program pbest for the method does not exceed a
trel threshold. PerfSyn then sorts the remaining methods by their scoreppbestq,
and it then prioritizes methods for which the new implementation is slower
than the reference implementation.

• Unexpected Asymptotic Complexity. PerfSyn first filters a method if the error
of the fitted curve for pbest is above a threshold terr and for which |Fbest| †
tsize. I. e. PerfSyn filters methods that do not have enough data-points to
reliably approximate the polynomial curve. The remaining methods are then
reported to developer by prioritizing methods with an higher empirically
complexity for pbest.
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3.3 implementation

We implemented PerfSyn as a tool to analyze Java classes. To gather feedback
about program executions, we instrument the analyzed code using the Java
bytecode manipulation library ASM [22]. To collect information about the pro-
gram structure, the class hierarchy, and type information of the initial program,
we use the Soot framework [140]. We developed our own framework to make
use of Soot information (e. g., querying data-type relationships). The imple-
mentation of curve fitting and other mathematical computations builds upon
the Apache-Commons Math library [1] . The oracle that exposes changes in
relative performance is implemented by executing a synthesized program with
two version of the class under test, each running in a separate Java Virtual
Machine (JVM). To avoid issues of incompatible APIs across versions, PerfSyn
ignores mutations that involve methods that do not exist in both versions or
methods that have different signatures.

PerfSyn’s implementation is split across two main software components: (i)
a program synthesis component that traverses the mutation tree and that gener-
ates bottleneck exposing programs, and (ii) a profiling component that executes
programs and that collects the execution feedback. The tree search process
communicates with one or multiple profiling process using a memory mapped
file(s) to minimize the communication overhead. Reduction of the commu-
nication overhead is key factor because PerfSyn must spend its time budget
searching for bottlenecks.

Search

The input to implementation is the source-code and executable Jar archives of
the mut and its dependencies. The implementation of the search performs four
main tasks:
1. It first parses the source-code to extract Java data-types and their generics

type information using the Eclipse JDT framework [3]. The extracted in-
formation contains the information required by PerfSyn to instantiate the
data-types during program generation. For example, PerfSyn requires to
know the type-hierarchy to handle sub-classing while searching for com-
patible types to concretize an abstract variable. Java utility libraries make
extensive use of generic types and it is important to handle generic types
correctly during program generation. For example, binding the Object type
to each generic parameter is not profitable for PerfSyn because this causes to
make all type instances to be compatible for a method argument. The result
is an unnecessary increase in size of the search space.
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2. In the second phase the implementation builds an initial root program p0
concretizing an inject call mutation operator for the mut using the procedure
described in Section 3.2.3. The implementation queries the type-hierarchy
and searches for compatible data-types to instantiate all the arguments to
the mut.

3. Once p0 is created the search starts and continues until the specified time
budget expires. The implementation runs the profiling instances in parallel
and collects the execution feedback using a simple synchronization protocol.

4. The explored mutation tree is saved into a JSON file and then parsed with a
Python script that reports the ranked methods to the developer as described
in Section 3.2.8.

Profiling

The profiler takes as an input the Jar of the dependencies and which perfor-
mance metric to measure for all the executed methods. The profiling process
is agnostic of the specific mut that is executing. Using a simple API interface
the profiling process is provided to a new program p every time that the search
requires the execution feedback measurements. Profiling instruments all the
loaded classes in the JVM and each newly received program p. The limitation of
this byte-code instrumentation approach is that the instrumentation may miss
some of the classes. For example, the java.lang.Object or java.lang.String

classes methods cannot reliably instrumented without crashing the running
VM.
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Table 3.1: Classes and methods used in the evaluation.
Project Version Classes (# of methods under test)

Changes in relative performance:

Ant 1.9.1 vs.
1.9.4

IdentityStack (6), VectorSet (20)

Commons-
Collections

3.2.1 vs.
4.1

TreeList (9), ListOrderedMap (14), ListOrderedSet (11)

Commons-
Lang

3.4 vs.
3.5

ArrayUtils (51), CharSetUtils (5), StringUtils (1)

Unexpected asymptotic complexity:

Lucene 5.5.4 Operations (17)

Commons- 3.2.1 BoundedFifoBuffer (8)
Collections 4.1 CompositeMap (1)

Commons-
Math

3.6 EnumeratedIntegerDistribution (1)

Guava 8ea0f20 Sets (1)
6cec4d2 NavigableMap (1)

SunFlow 0.07.2 SunFlowAPI (1)

3.4 evaluation

In this section we verify the claim that PerfSyn synthesizes bottleneck triggering
programs. We evaluate PerfSyn using the oracles presented in Section 3.2.7.
We start by describing our experimental setup and we evaluate PerfSyn with a
set of popular Java libraries. We show that PerfSyn is able to trigger known
and previously unknown bottlenecks for multiple methods in popular Java
libraries. In Section 3.4.2 we describe the cases for which PerfSyn fails to trigger
a bottleneck.

3.4.1 Experimental Setup

benchmarks We apply PerfSyn to 147 methods from 15 classes in seven
popular Java projects [133]. Table 3.2 shows the list of methods we selected for
the evaluation. We analyze 17 methods with bottlenecks known from previous
work [103] and from publicly available bug reports, all of which have been
confirmed by the developers. These methods allow us to evaluate whether
PerfSyn detects developer-confirmed problems. The remaining 130 methods
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used are to evaluate how many additional bottlenecks PerfSyn reports and
whether it detects any previously unknown problems.

For the oracle that targets to discover bottlenecks due to changes in relative
performance, we compare different versions of the same class. We select the
latest two versions of the same class at the of evaluation time. One can imagine
to apply PerfSyn for any two pair of versions of a method, or for pairs of
commits in a version control system. For the methods with known and fixed
bottlenecks, we use the version before and after the fix.

For the oracle that targets to discover unexpected asymptotic complexity, we
analyze methods that explicitly annotate the expected complexity in their doc-
umentation. To selected these methods we first programmatically parsed the
documentation for keywords like complexity, O(*), linear, quadratic, etc. We
then manually inspected methods that contained an annotation about the ex-
pected complexity and selected the methods from which the complexity was
explicitly stated in the documentation.

inspecting bottlenecks For each method, PerfSyn yields a set of synthe-
sized programs and their performance score. In practice, we expect developers
to inspect only methods with an high score and methods that ranked hight
based on the criteria listed in Section 3.2.8. In our evaluation, we set the meta-
parameters described in Section 3.2.8 as follows:
• Changes in Relative Performance. The difference in performance reported by

PerfSyn is larger than trel • 1.2x.
• Unexpected Asymptotic Complexity. The error of the fitted curve is below terr §

5%, the number of data-points is |Fbest| • 4, and the fitted complexity exceeds
the expected complexity.

In our evaluation we report only methods that pass these two criteria.

parameters and hardware We give a 5-minute time budget per method
under test, and we limit the maximum exploration depth of the mutation tree
maxMuts “ 32. For A*, we set the maximum number of nodes in the open
set to maxOpenSize “ 8,192 when the memory is full, and all but the best
bestOpenSize “ 16 nodes are removed. For ACO, we use 16 ants.

All experiments are done on a 42-core machine with two 2.2 GHz Intel Xeon
processors E5-2699, 512GB memory, running 64-bit Ubuntu 16.04.1 LTS with
GNU/Linux 4.4, Java 1.6.0_27 using OpenJDK 1.8.0.111, with 256GB of memory
assigned to the VM.
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Table 3.2: Bottlenecks detected by PerfSyn (Muts=number of mutations,
Perf=Outcome of performance oracle in bytecode conditionals (bc),
and the execution time in nano-seconds (ns)). The highlighted rows
represent previously unknown bottlenecks.

Best program

A* ACO

ID Method Muts Performance Muts Performance
(bc) (ns) (bc) (ns)

Changes in relative performance:

1 ArrayUtils.removeAll 1 -1.85x -1.01x 3 -1.85x -1.04x
2 ArrayUtils.removeElements 31 +1.68x +1.59x 29 +1.54x +1.24x
3 ArrayUtils.indexOf 1 +1.23x +1.23x 1 +1.23x +1.37x
4 ArrayUtils.isNotEmpty 1 -1.67x - 1 -1.67x -
5 ArrayUtils.isSameLength 1 +1.40x - 1 +1.40x -
6 CharSetUtils.squeeze 14 +1.75x +1.24x 13 +1.25x -
7 StringUtils.getLevenDist 3 +79.95x +8.32x 1 +50.60x +5.16x
8 IdentityStack.containsAll 7 -40.91x -5.29x 14 -41.03x -6.92x
9 IdentityStack.removeAll 12 -6360.0x -772.0x 8 -57.05x -11.35x

10 IdentityStack.retainAll 12 -6360.0x -697.0x 14 -3.24x -3.96x
11 ListOrderedMap.remove 7 -1.44x -1.16x 6 +2.37x +1.14x
12 ListOrderedSet.addAll 12 +1.37x +1.25x 14 +1.37x +1.18x
13 ListOrderedSet.addAllAtIndex 1 -1.42x - 3 -1.39x -1.40x
14 ListOrderedSet.toArray 5 +2.60x - 2 +2.60x -
15 ListOrderedSet.remove - - - 23 +1.75x +1.11x
16 VectorSet.addAll 9 -1.22x -2.48x 12 -1.26x -1.24x
17 VectorSet.clone 5 +1.22x - 2 +1.22x -
18 TreeList.addAll 1 +6.18x +1.16x 10 +7.48x +4.22x
19 TreeList.addAllAtIndex - - - 12 +1.51x +1.35x

Unexpected asymptotic complexity:

20 EnumIntDist.probability 32 Opnq - 7 Opnq -
21 NavigableMap.isEmpty 7 Opnq - 6 Opnq -
22 Sets.powerSet 10 Opnq - 4 Opnq -
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3.4.2 Effectiveness in Finding Bottlenecks

For 22 out of the 147 methods, PerfSyn synthesizes a program that exposes a
bottleneck and that we inspect based on the criteria given in Section 3.4.1. The
table which shows for each method the best program synthesized with A* and
ACO, along with the number of mutations applied to reach this program and
the performance effect exposed by the program. For the changes in relative
performance, we show speedups and slowdowns with a plus and minus, re-
spectively. For example, for bottleneck 7, the A* search synthesizes a program
by applying three mutations, and this program shows the method to be faster
than in the previous version. Bottleneck 7 is previously known and the code for
the last version (version 3.5 of Apache-Lang) contains a fix to the performance
problem. In other words PerfSyn is able to synthesize a program that shows
that the new version is faster than the previous. This means, that at least for
the synthesized program, that the optimization was beneficial. For unexpected
asymptotic complexities, the table reports the complexity class that PerfSyn
finds. For all bottlenecks in the table, the methods were expected to be Op1q,
but turn out to have linear complexity.

The performance differences reported in Table 3.2 are based on the number
of evaluated conditions (bc) and execution time (ns) on the profiling machine.
To validate this proxy metric, we execute the synthesized programs and mea-
sure their wall-clock execution time, reported in column Performance (ns). To
confirm the performance differences for bottlenecks ID 1 to ID 19, we repeat-
edly measure the execution time (32 times) and check whether the differences
are statistically significant (95% confidence) using the JMH framework [55]. To
confirm bottlenecks ID 20 to ID 22, we manually inspect the code and verify
that the computational complexity reflects what PerfSyn reports. The valida-
tion confirms that in general the proxy metric reliably reflects the performance
behavior of the synthesized tests when executed on the machine used for the
experiments, and that the manually checked code complexity reflects what Perf-
Syn reports. However for short methods (e.g., like for bottleneck ID 14 and
bottleneck ID 17) the proxy metric fails to accurately approximate the perfor-
mance behavior of the method because the execution time differences for the
methods are not significant.
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Analysis of Reported Bottlenecks

Eight of the 22 methods reveal a previously unknown performance property
and the remaining bottlenecks other previously known bottlenecks. Table 3.2
highlights these bottleneck in grey. Bottleneck ID 1 is a previously unknown
slowdown in a method without a previously known problem. For the other
highlighted bottlenecks, PerfSyn triggers an unexpected slowdown introduced
by a change supposed to optimize the code. For example, for bottleneck ID 16,
PerfSyn shows that applying a change supposed to be an optimization is not
beneficial for a usage scenario. These cases show that our approach helps de-
velopers to find unexpected effects of modifying code. The remaining reports
confirm that optimizations applied by developers are indeed beneficial. This
kind of report is useful for a developer who wants to verify his/her perfor-
mance assumptions after a code change.

Analysis of Non Reported Bottlenecks

125 methods out of the 147 are not reported by PerfSyn as containing a bottle-
neck. Among these methods 19 methods were not reported because PerfSyn
failed to generate an initial program p0 to start the program synthesis. The
common cause for PerfSyn to fail creating an initial program p0 is the lack of
semantic knowledge about the method arguments. For example, methods of
the class VectorSet from Ant expect that the index argument must be already in
range of the underlying collection. This issue araises because the approach is
not aware of the semantic relationship among method parameters and because
primitive values are randomly selected from a pool of existing values. We dis-
cuss this limitation in Section 3.6 and how to alleviate this issue in practice.

The remaining 106 methods are not reported by PerfSyn because they did
not pass the filtering criteria. We list some common reasons for which PerfSyn
does not report a method:
• Commons-Lang. The class ArrayUtils is a helper class that performs bulk

operations on arrays (e. g., adding and removing array elements). We selected
from this class methods that perform the same operation but on arrays of
different data-types. It is the case that these methods do not contain any
bottleneck. Many of these methods are filtered altogether because they all
call the same utility methods to perform the operation on the array.

• Lucene. None of the methods of the class Automaton is reported to have an
higher empirical complexity than the expected complexity. We manually in-
spected the class source-code and we found that none of the methods in the
class exceeds its documented computational complexity as reported by Perf-
Syn.
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We manually inspected all the remaining filtered methods, the methods are
not listed because they either fall in the two categories above for the respective
oracle type, or because they did not contain a bottleneck.
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3.4.3 Examples of Synthesized Programs

Figure 3.3 shows three programs synthesized by PerfSyn. The highlighted state-
ments are inserted by PerfSyn on top of the initial program.

The program in Listing 3.3b exposes a bottleneck in ListOrderedMap.remove.
The implementation of the faster version of remove performs a containment
check before removing the element to save time when the collection is non-
empty and when it does not contain the element. A previous version the
method did not contain this optimization. For bottleneck ID 11 PerfSyn we
synthesize two different programs, one for each search as indicated in Table 3.2.
PerfSyn discovers a path in the mutation tree that adds multiple elements to
the map and that passes an argument to the method. For one synthesized pro-
gram the argument to remove is contained in the collection, and for the other
program the argument is not part of the collection.

For the program shown in Listing 3.3c, after a few iterations, PerfSyn priori-
tizes a path through the mutation tree that inserts multiple similar statements.
As a result, the execution time of the method under test increases, exposing the
linear complexity of the method.

The first example in Listing 3.3a, shows the program synthesized for bottle-
neck 1. The bottleneck is caused by two unnecessary calls in ArrayUtils.remove

that copy and sort the second parameter of the method. These calls are only
necessary when the second argument is a non-empty array. PerfSyn detects
this case and synthesizes a program that triggers the problem, showing that
the bottleneck is triggered independently of the content of the first argument.

For bottleneck 9, PerfSyn synthesizes a program that removes from an empty
collection. The older version of IdentityStack.remove does not execute any code
because the collection is empty. However, the newer version of the method
first creates a useless instance of a HashSet and then needlessly adds to this
newly created set multiple elements supposed to be removed from the empty
collection.

Overall, these examples show that our approach detects real-world perfor-
mance bottlenecks in widely used Java classes. By synthesizing a program
that demonstrates each problem, developers can easily understand and then
fix the bottlenecks, or more easily understand the performance impacts of code
changes.
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(a) Program that triggers bottleneck ID 1.
1 public class SynProg {
2 public run() {
3 String[] v0;
4 String v3;
5 int v2;
6 int[] v1;
7 v0 = new String[/*...*/];

8 v3 = "str0";

9 v0 = Array.add(v0, v3);

10 v0 = Array.removeLast(v0);

11 ...
12 v1 = new int[/*...*/];
13 ArrayUtils.removeAll(v0,v1);
14 }
15 }

(b) Program that triggers bottleneck ID 11.
1 public class SynProg {
2 public run() {
3 ListOrderedMap v0 = new ListOrderedMap();

4 v0.put("str0","...");

5 v0.put("str1","...");

6 ...

7 v0.put("strN","...");

8 v0.remove("strX");
9 }

10 }

(c) Program that triggers bottleneck ID 20.
1 public class SynProg {
2 public run() {
3 int[] v0 = new int[/*...*/];
4 int v3 = /*...*/;

5 Array.add(v0,/*...*/);

6 Array.add(v0,/*...*/);

7 /*...*/

8 Array.add(v0,/*...*/);

9 EnumIntDist v1 = new EnumIntDist(v0);
10 v1.probability(v3);
11 }
12 }

Figure 3.3: PerfSyn synthesized programs from Table 3.2. The light blue state-
ments have been inserted by PerfSyn to p0 during the program syn-
thesis.
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3.4.4 Efficiency

To evaluate the efficiency of PerfSyn we measure the number of explored nodes
in the specified budget of time. Figure 3.4 shows the distribution of the number
of explored nodes in the mutation tree. The results show that both A* and ACO
explore a large number of programs in the given time budget. The relative dif-
ference between the two search strategies are mostly due to an implementation
detail: ACO probabilistically chooses a single mutation at each step, which
sometimes causes ACO to expand longer paths of programs that cause a crash.

These programs take more time to execute because of our handling of excep-
tions in the profiling VMs (e. g., timeouts to manage infinite loops and recur-
sions).

Figure 3.5 shows the breakdown for each benchmark of the valid generated
and executed programs for the two evaluated oracles. A valid generated and
executed program is a synthesized program that was correctly executed with-
out throwing an exception, but could be a semantically invalid program (e. g.,
it does not respect APIs calling protocols). The two graphs confirm our previ-
ous hypothesis: ACO generates more failing programs that cause PerfSyn to
synthesize, on average, less programs.

Overall, we conclude that both search strategies efficiently explore the mu-
tation tree, which enables them to detect bottlenecks in at most 5 minutes per
method.
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(a) Unexpected Changes in Relative Performance.
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(b) Unexpected Asymptotic Complexity.
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Figure 3.4: Violin plots of the average number of programs synthesized while
analyzing a method.
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(a) Unexpected Changes in Relative Performance.
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(b) Unexpected Asymptotic Complexity.
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Figure 3.5: Plots showing the percentage of valid synthesized programs for
each oracle.
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3.5 related work

3.5.1 Test Generation

Wise [24] steers symbolic execution toward inputs that trigger worst-case com-
plexity. In contrast, PerfSyn uses a blackbox approach. SpeedGun [109] detects
performance regressions via test generation, which is a special case of detect-
ing unexpected relative performance. Instead of generating tests at random,
PerfSyn uses feedback to steer toward bottleneck-exposing tests.

EventBreak [110] also exploits performance feedback to generate tests, but for
UI-level instead of unit-level tests. Dhok et al. [45] propose to generate tests that
expose loop inefficiencies. Their work focuses on a particular kind of perfor-
mance problem and it relies on a manual inspection of generated tests. Travi-
oli [106] dynamically identifies functions that traverse data structures, which
can help developers in manually constructing performance tests.

Compared to all of the work above, PerfSyn is the first framework (i) that
provides a generic approach to automatically create tests for different kinds of
bottlenecks and (ii) to formulate the problem of finding a bottleneck as a graph
exploration problem.

Test generation for purposes other than performance has been widely stud-
ied. Fuzz testing [56, 58], concolic execution [57], feedback-directed random
test generation [105], evolutionary algorithm-based test generation [51], and
combinations of static and dynamic analysis [136] share the idea of using feed-
back from past executions to steer the generation of future tests.

These and other [25] approaches steer toward high code coverage. Instead,
PerfSyn exposes bottlenecks, which typically do not require covering all state-
ments or branches but repeatedly trigger specific statements and branches. Ap-
proaches that use genetic algorithms [51] may not be directly usable for perfor-
mance because it is not trivial to understand the performance effects of their
program mutations (e. g., mutations that combine two different programs).

3.5.2 Dynamic Analysis

PerfSyn relates to dynamically analyzing the asymptotic complexity and scal-
ability of software. Goldsmith et al. [59] pioneered the idea of empirically
estimating the computational complexity of a program. Their work requires a
developer to specify the input size of the analyzed code – a problem addressed
more recently [39, 157]. PerfSyn builds on one of these approaches [39] to es-
timate the input size for determining unexpected asymptotic complexities. A
limitation shared by all of the above is to require inputs that may expose com-
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plexity issues; PerfSyn addresses this limitation by automatically generating
the inputs.

Instead of analyzing scalability w.r.t. input size, Calotoiu et al.[27] propose a
dynamic analysis to model the scalability w.r.t. the number of processors that
execute a program. Our work differs by targeting performance problems that
are independent of the underlying hardware.

Beyond asymptotic complexity issues, dynamic analysis is widely used to
detect various other kinds of bottlenecks. General purpose profilers highlight
functions where most CPU time is spent [61] or performance-critical paths [114],
extract a model that summarizes performance properties of a program [23], or
highlight code locations that, if optimized, will speed up the execution [44].

Other profilers target particular classes of performance problems, such as JIT-
unfriendly code [60, 129], unnecessarily repeated behavior [103], inefficient use
of object-oriented language features [93, 101, 145–148, 150], and UI delays [76].
PerfDiff [160] compares the performance of a single implementation in different
environments; in contrast, one of our oracles compares the performance of
different implementations.

The effectiveness of all these approaches depends in test inputs that trigger
interesting behavior. PerfSyn contributes an automated way to generate such
test inputs.

To help developers understand and localize observed bottlenecks, several
dynamic analyses have been proposed. They help understand idle times of
servers [11], associate bottlenecks with particular configuration options [14],
and reveal impact relations between code locations [155]. Some approaches
combine runtime data from multiple users to pinpoint the root cause of bottle-
necks [65, 127]. SyncProf [154] analyzes waits-for relationships between critical
sections to localize synchronization-related bottlenecks. A recent survey [71]
summarizes work on performance anomalies.

3.5.3 Static Analysis

Several static analyses have been proposed that detect performance bottlenecks,
e. g., redundant traversals of data structures [104] and other unnecessary loop
iterations [102]. Dufour et al. [49] propose a technique that combines static and
dynamic analysis to find excessive uses of temporal objects.
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3.5.4 Studies of Performance Issues

Studies of performance issues in real-world code show that developers spend
non-negligible amounts of time dealing with bottlenecks [75, 88, 120]. One of
them [88] reports that many bottlenecks only manifest with specific input data
and with input data of specific sizes, a problem addressed here. A recent study
over large body of open-source projects shows that performance tests is still
lacking in the large [85].
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3.6 limitations

structured input data . In our evaluation we focused on libraries that
build generic collections (e. g., arrays, trees, or lists). However PerfSyn lacks
support targeted specifically to programs (e. g., parsers) that use domain-
specific data-structures governed by a language grammar and that also carry
semantic information (e. g., HTML and XML file formats). To correctly synthe-
size programs that use these data-structures PerfSyn can implement tailored
mutation operators for the data-types, but at the cost of loosing generality. We
plan to study and to evaluate an extension of PerfSyn with specific support for
these data-structures in future work.

effectiveness of initial program . The effectiveness of PerfSyn in re-
porting performance bottlenecks is influenced by the initial program p0 because
the program may be far from a bottleneck triggering state. Therefore finding a
sequence of mutations that yields a better solution in the time budget depends
on p0. Our current prototype implementation generates a root program p0 us-
ing the same procedures used to generate a sequence of statements to initialize
an abstract variable (see Section 3.2.3). However this can lead to sub-optimal
results because only a fraction of the possible initial programs p0 that exercise
mut is explored. An optimal solution to the problem of finding a “good” initial
program is unfeasible to find in practice because of the requirement to explored
a large number of programs.

Other approaches [53] combine a randomized search with systematic explo-
ration of suitable primitive values to generate an initial program to start the
search.

white-box approach . PerfSyn is efficient in finding performance bottle-
necks because it does not execute expensive program analyses. However Perf-
Syn may benefit from a white-box approach, i. e., an approach that analyzes a
program’s source-code and that uses facts about the program under analysis
to drive the search for bottlenecks. For example, PerfSyn could use informa-
tion about the predicates that condition a method’s control flow branches to
drive the program generation. PerfSyn could generate programs that setup the
state to evaluate these branches towards a specific, possibly bottleneck trigger-
ing, method path. Currently PerfSyn is not aware of path predicates and find-
ing a predicate-triggering state may be difficult because it may require long
sequences of mutations. Consequently PerfSyn may miss performance bottle-
necks that are triggered when a method’s control flow depends on a specific
argument’s value (e. g., specific enumerative type value).
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3.7 summary

In this chapter we presented the first general framework for synthesizing in-
puts to expose performance bottlenecks in a given method under test. This new
approach addresses the understudied problem of creating bottleneck-exposing
inputs and it expands the application of existing profiling techniques, helping
software developers in their efforts to reduce performance bottlenecks. The
approach synthesizes a program that calls the method under test, and dur-
ing the synthesis process systematically increase the amount of work done by
the method. A key insight enabling PerfSyn is that the problem of finding a
sequence of mutations that leads to a bottleneck-exposing program can be ef-
fectively and efficiently addressed as an optimization problem. This type of
problem can be solved using state-of-the-art algorithms. Based on this insight,
the approach uses feedback from executions of the synthesized programs to
steer the synthesis towards the most promising sequences of mutations. The
presented approach is applicable to different kinds of performance bottlenecks,
including unexpected asymptotic complexity and unexpected performance rel-
ative to another implementation. We evaluate PerfSyn by applying it to widely
used Java classes, in which PerfSyn reveals 22 bottlenecks in only five minutes
of profiling time per bottleneck.
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M I N I N G T E S T I N P U T S

The main contribution of this chapter is to tackle a major limitation that affects
PerfSyn and state-of-the-art automatic test generators [51, 52, 105]. I. e. PerfSyn
is effective in synthesizing bottlenecks exposing programs for generic classes,
such as collections, but it is ineffective in generating tests for domain-specific
software.

PerfSyn fails to synthesize programs for domain specific classes because the
setup code for the inputs to the method under test creates an invalid state for
the method (e. g., it always crashes the method’s execution), or because the in-
put to the method does not allow repeated executions of the same portion of
the code (e. g., there is no crash but the method does not execute relevant pro-
gram paths). To hit a performance bottleneck, the input to the method may be
required to have specific properties. For example, a method may require an in-
memory data-structure that the method traverses to have a specific shape and
size, achievable only towards a specific sequence of API calls (e. g., a graph free
of cycles). Reaching a performance triggering state may be easier for generic
classes because their limited set of operations is shared among a common in-
terface (e. g., java.util.Collection) and each operation has always the same
semantic. However, creating a performance triggering program for a method
that requires well-formed inputs (e. g., inputs in the language of a grammar)
is not trivial. In this case the number of operations that can be applied to the
input can be large and each operation may have strong, type-specific, semantics
attached.

Unfortunately, PerfSyn is not aware of these requirements and the program
synthesis is limited by design because of its black-boxing nature. A possible
solution to this limitation is to manually provide type specific operations but
at a loss of generality of the approach, or to use a white-boxing approach but at
the cost of executing prohibitively expensive and limited program analyses [24,
57, 121]. Yet, even if the input data-structure respects all the preconditions
required by a method, the method may still require that the fields values of
the data-structure to be valid domain-specific identifiers (e. g., HTML tags in
a web-page, or JSON objects delimiters). Also, in this case, PerfSyn fails to
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synthesize valid programs because it assigns primitive values randomly or by
extracting them from a pool of commonly used constant values.

These limitations are not unique to PerfSyn but they are also shared with au-
tomatic test generators, a powerful and widely used approach to create inputs
for exercising a software under test with minimal human effort. Compared
to PerfSyn a test generator focuses on maximizing the execution coverage of a
method to reveal correctness bugs, while PerfSyn maximizes the time spent in
a piece of the code to expose performance bottlenecks. Existing test-generators
use a wide range of techniques, ranging from feedback-directed random test
generation [12, 105, 108], over search-based approaches [34, 51], to symbolic
reasoning-based test generators [25, 57, 121, 136]. Despite all successes, test gen-
eration still suffers from non-trivial limitations. For example, a study reports
that only 55.7% of bugs in a well known collection of existing faults are revealed
by the test suites generated by three state-of-the-art test generators [124].

A cause of the limited success of revealing bugs is that test generators of-
ten fail to cover a buggy statement because the inputs provided in the test
do not enable the code to bypass sanity checks that reject invalid inputs, a
limitation also shared with PerfSyn. In particular, creating bug-revealing in-
puts often requires suitable strings, but creating such strings requires domain
knowledge about the software under test, which existing test generators and
PerfSyn do not have. For example, consider testing a class responsible for
parsing SQL statements. Testing the class with a randomly generated string
is highly unlikely to reach deeply into the code because the invalid input is
discarded quickly due to a parse error.

In this chapter we attack the limitation described above, namely to find ap-
propriate literal values for a domain-specific context. We study this problem
in the context of a test generator and we compare against a state-of-the-art test
generator [105] using a well-known suite of existing faults that provide a clear
metric for success [124]. In this chapter we present TestMiner, an approach to
predict input values suitable for a given method under test:
• The first contribution of this chapter is an information retrieval technique for

test inputs. We are the first to exploit the knowledge hidden in large amounts
of existing code to address the problem of finding suitable input values for
testing.

• The second contribution of this chapter is to devise a scalable and efficient
prediction technique of domain-specific values. We show how to integrate
the technique into an existing state-of-the-art test generator [105]. One of the
major advantages of TestMiner is that it does not require any pre-processing
of data and it can be used out-of-the-box.
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• The last contribution is an empirical evaluation of TestMiner. We show
that our novel approach substantially increases the branch coverage of Ran-
doop [105] for benchmark classes that are usually difficult to handle by a test
generator.
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1 package org.pkg;
2

3 class SqlParser {
4 /* Transforms provided string into an
5 * abstract syntax tree.
6 * Quickly rejects invalid strings.
7 */
8 Tree parse(String stmt) {
9 SqlLexer lexer = new SqlBaseLexer(/*...*/);

10 SqlBaseParser parser = new SqlBaseParser(/*...*/);
11 /* Other setup code ... */
12 Tree result = null;
13 try {
14 /* Try parsing mode (i) */
15 tree = parser.apply(lexer, stmt);
16 } catch (ParseException ex) {
17 /* Failed with parsing mode (i), trying mode (ii) */
18 lexer.reset();
19 parser.reset();
20 tree = parseFunction.apply(lexer, stmt, /*...*/);
21 } catch (Exception e) {
22 throw new /*...*/;
23 }
24 return tree;
25 }
26

27 class SqlsOptimizer {
28 /* Transforms the given tree
29 * into another tree.
30 * Quickly rejects invalid values,
31 * e.g., null.
32 */
33 Tree optimizeRanges(Tree sqlTree) {/*...*/}
34 }

Listing 4.1: Example of a class under test that requires a set of suitable string
values for effective testing.
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4.1 testminer by illustration

As an example, consider testing a class responsible for parsing SQL statements,
such as the SqlParser class shown in Listing 4.1. The example class is a simpli-
fied version of a real-world SQL parsing class that can be found in the Defects4J
suite [124]. Testing the parse method with randomly generated strings is highly
likely to not reach deeply into the method’s code because invalid inputs are
discarded quickly. Moreover, suppose to generate tests for a larger code base
where some code requires instances of Tree, i. e., values returned by parse, such
as the SqlOptimizer class in the example. Without passing suitable strings to
the parser, the test generator cannot create non-trivial Tree objects and will also
fail to effectively test other parts of the code.

State-of-the-art test generators obtain input data, such as strings, in various
ways. First, most generators use randomly generated values or values from
a fixed pool which are cheap to obtain but unlikely to match domain-specific
data formats. For example, Randoop [105] often uses the value “hi!” as a string
value. Clearly this value will not pass the SqlParser string sanity checks.

Second, some test generators extract constants, e. g., stored in fields of the
class under test, and return values of previously called methods and use these
values as inputs. This approach is effective if suitable constants and methods
are available, but fails otherwise.

Third, some test generators symbolically reason about expected values [58],
e. g., based on a constraint solver able to reason about strings [158]. While ef-
fective, this approach often suffers from scalability issues and may not provide
the best cost-benefit ratio which is crucial for testing [20].

Fourth, some test generators for UIs testing use automated monkey testing
together with human knowledge to manually collect input data, which is time
consuming and expensive for a large code-base [87].

Finally, some test generators rely on a grammar that describes expected
string values [56, 152]. However, including grammars for all, or even most,
domain-specific input formats into a general-purpose test generators is imprac-
tical.

Contrary to existing input generation approaches, TestMiner is a scalable and
a general approach that exploits the wealth of information available in existing
code bases. TestMiner extracts the domain-specific information encoded in
existing tests, using an information retrieval-inspired mining technique that
predicts input values suitable for testing a particular method.

TestMiner relates to approaches for mining method call sequences to be used
during test generation [135], but is orthogonal because we mine test input val-
ues. Another existing approach obtains values via a search engine [94]. In
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contrast to TestMiner, it relies on web pages that list example values for a
particular domain and on an external search service whose implementation is
neither known nor under the control of the test generator. Recent work ap-
plies advanced machine learning techniques on large code bases to address
software engineering problems, e. g., by suggesting API usages [63], detecting
plagiarism [68], and completing partial code [115].

To achieve generality of the approach we must define the program context
associated with values found in existing tests [87]. The context definition must
allow a test generator to easily query TestMiner for later values retrieval. In
this dissertation we define the context to be the fully qualified signature of
methods where a literal appears to be an argument of a call to this method. We
found a method signature to be a natural mapping for the context first, because
method calls are the main execution unit in object-orient programs. Second
because method calls are the main unit of composition of unit-tests built by
test generators [105], and finally because method signatures carry semantic
information in the form of natural language [67].

To achieve scalability we must address the challenge to efficiently search
across thousands of values given their associated context (i. e., method signa-
ture). To this end TestMiner applies state-of-the-art information retrieval tech-
niques that are used daily in search engines achieving low response query times
for very large data-sets [29].

4.1.1 Challenge 1. Effective Indexing of Literals

At first, TestMiner extracts literals from the source code of existing tests and
indexes them for quick retrieval. The indexing is designed in such a way that
the approach can predict suitable values for method signatures not seen during
the mining, e. g., because the natural language terms used in the signature
overlap with an already seen signature.

The assumption we make for TestMiner is that the multitude of analyzed
projects contain classes that share common domain-specific knowledge, and
that domain-specific literals are spread across projects test-suites, to test a
project components. For example, Listing 4.1 shows two SQL classes. In the
multitude of projects we analyzed, there exist classes that use an SQL-database
as a back-end for data storage. These classes implement or call other SQL util-
ity classes using string literals as arguments for SQL queries. The key idea of
TestMiner is to mine calls in existing tests to re-use the mined literals to test
classes like SqlParser. The challenge is to correctly map the signatures in a
generated test to semantically similar signatures in the mined corpus.
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Take for example the partially generated test in Figure 4.1 for the method
parse of the class SqlParser. In the example the test generator must select
a value for the first method argument in the partial test (highlighted and in-
dicated with ???). In the corpus we analyzed we found multiple calls to SQL
related classes like java.sql.ResultSet.getClob. These calls have string literal ar-
guments such as "SELECT * FROM javaSavedTable". and "create table TEST(COL

varchar(128))". For the signature org.pkg.SqlParser.parse in the example, it is
clear that the signature contains two semantically important keywords (tokens)
“parse” and “sql”. These keywords should be prioritized when matching signa-
tures but they still must be compared to the more commonly used tokens like
“org” used in package names. A naive solution to filter these common tokens
could be to manually filter them. However this solution is impractical because
it will require endless manual work. A practical and more effective solution
to avoid this issue is to assign a weight to each token. Intuitively tokens that
carry a semantically relevant meaning are assigned an higher weight, and less
important tokens are assigned a possibly lower weight. This is a well known
problem that is addressed by state-of-the-art information retrieval techniques.
To assign weights to tokens, TestMiner uses the tf-idf function, see Section 4.2
for more details. This weighting function guarantees to assign an higher weight
to non-recurring tokens such as “sql”, but it assigns a lower weight to common
tokens like “org”. In the example in Figure 4.1 the tf-idf function assigns for
the method signature org.pkg.SqlParser.parse the following weights to tokens:

torg : 5, pkg : 10, sql : 45, parse : 40u

Such assignment satisfies our requirement to increase importance of semanti-
cally relevant keywords like “‘sql”.
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4.1.2 Challenge 2. Fast Prediction of Values

The mining and indexing part of TestMiner is executed only once, indepen-
dently of the specific software under test and the test generator, and the same in-
dexed data can serve inputs for various queries. Then, a test generator queries
the mined indexed data for suitable values for a given class under test, and the
predicted values are then used as test inputs during test generation.

When testing the SqlParser.parse method in Listing 4.1, TestMiner suggests
string values that relate to the domain encoded in the signature of the method
under test. Using these values during test generation enables the generated
tests to cover code not touched with randomly generated inputs, which in turn
also enables the approach to effectively test other classes in the code base, such
as SqlOptimizer.

To efficiently retrieve the indexed data TestMiner matches tokens from the
query signature to tokens in the indexed data. To this purpose TestMiner
adopts the locality-sensitive hash function Simhashing [29] to transform a se-
quence of tokens with their respective weights into a bit vector representation.
TestMiner groups similar vector representations in the index and then performs
a bit-wise comparison of the vector representations in the index to match vec-
tors that have the lowest bit distance.

Figure 4.1 shows this process graphically. In the example TestMiner
uses a 8 bit-vector representation for the index, which results in the rep-
resented bit patterns. Assume that TestMiner only indexed the four sig-
natures found in existing tests represented in the example and that the
query signature is org.pkg.SqlParser.parse. Figure 4.1 shows that the bit-
vector representation for the signatures com.query.sql.Exporter.prefix and
org.object.SqlObject.Dao.insert differ of only one bit (distbits “ 1) from the
query signature. As a reply to the query TestMiner collects values associated
with the two signatures in the index and returns them to the test generator.

Since retrieving values from indexed data is cheap, the technique is more
efficient than existing heavyweight techniques, such as symbolic reasoning. At
the same time, the technique is more effective than existing efficient techniques,
such as using random values, because TestMiner returns values suitable for the
domain of the tested code.
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4.2 approach

This section presents TestMiner in detail. The input to TestMiner is a corpus of
projects with existing test-suites. A test-suite is a collection of unit-tests run to
verify the correctness of a program’s implementation. Due to the prevalence of
unit-tests in most real-world projects, there are thousands of suitable test-suites
available. Nevertheless TestMiner can also benefit from the source-code of the
project itself.

The first step of the approach is to statically analyze the test-suites to extract
test input values. The analysis yields pairs of values and a summary of the
context where a value occurs.

The second step of the approach is to summarize and index these values into
a representation that enables quick retrieval of the values. TestMiner exploits
techniques popular in information retrieval, such as a locality sensitive hashing
function called Simhashing [124].

Finally, the third and last step is to enable an automated test generator to
retrieve values when creating new test-cases. The test generator queries Test-
Miner, which in turn provides suitable test input values.

The approach is designed to provide three properties that are essential to
achieve the overall goal of generating more effective tests:
1. Scalable. The huge space of available code and tests provides input values for

various domains. To benefit from this knowledge, the approach must scale
well to a large number of corpus projects and input values.

2. Efficient. The overall success of a test generator is determined by the number
of bugs it reveals in a given time budget. To generate tests efficiently, Test-
Miner should provide input values quickly yet targeted at the code under
test.

3. Generalizing. TestMiner aims at testing code that is not in the analyzed cor-
pus. To achieve this goal, the approach should generalize from the context
in which an input value occurs and suggest this value in a different, yet sim-
ilar context during test generation. For example, as illustrated in Figure 4.1,
TestMiner may learn from tests of one SQL parser what values to use for
testing another SQL-related software.
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4.2.1 Static Analysis of Test Suites

This first step extracts input values from the program corpus and associates
each value with a context. The context will be later used in the retrieval phase
when the test generator requests values. The input to the static analysis is the
source of the tests in the corpus. The analysis extracts values that appear as
literals in the code. The output of the analysis is a set of context-value pairs.

Definition 13 (Context-value pair). A context-value pair pC , vq consists of a context
C : S Ñ N, represented as a bag of words, and a value v P V in some value domain.
The set S refers to the set of all strings.

The context C may be anything that can be represented as a bag of words.
There are various options for defining the context, such as the calling context
for the method under test, the type hierarchy of the program, or the signature
of a method that is tested.

In this thesis, we compute the context of a value from the statically typed
signature of the method that receives the value as an argument. For example,
suppose a test case calls sqlParser.parse("SELECT x FROM y"), then the context
for the value "SELECT x FROM y" is computed from the fully qualified signature
of the parse method. This notion of context works well because fully qualified
method signatures often contain rich semantic information [67].

To extract values, the static analysis first transforms each test’s source into
an abstract syntax tree. The analysis traverses the tree to collect call sites that
contain literal arguments. At each call site the analysis collects the method
signature, and it annotates each argument with its static type. The analysis does
not perform any constant propagation, because we observed that it provides
little benefit in practice. The analysis returns for each test a set of call site
tuples.

Definition 14 (Call site tuple). A call site tuple Sc “ pTc, mc, Vcq consists of a set Tc
of fully qualified type names in which the method mc is defined, the method name mc,
and a set Vc of values passed as arguments at the call site.

For example, suppose a test case calls sqlParser.parse("SELECT x FROM y").
Then the static analysis extracts the following call site tuple:

ptorg.pkg.SqlParseru, parse, t”SELECT x FROM y”uq

The set Tc may, in principle, contain multiple type names because a call site
may resolve to multiple methods (e. g., because of overriding of the method
in sub-classing). Our static analysis considers only the statically declared type
of the base object of a call, i.e., |Tc| “ 1. Completely resolving all possible
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Algorithm 7 Summarize and index context-value pairs.
Input: Set P of context-value pairs
Output: Index-to-values map M

1: M – empty map
2: for each pC , vq P P do
3: Cweighted – normalizeptfidf pCqq
4: h – simHashpCweightedq
5: update Mphq with v
6: end for
7: return M

call targets would require a whole-program analysis, which does not scale to a
large corpus, and which interferes with our goal to analyze many projects in a
scalable way. For the set Vc of values, we focus on string values in this thesis.
Applying the idea to another value domain, e.g., integers, is straightforward.
The reason is that finding suitable strings is a major obstacle for state-of-the-art
test generators [124].

Finally, the analysis transforms the tuples into context-value pairs. For this
purpose, the approach tokenizes the type names in Tc and the method name
at dot-delimiters, splitting strings based on the camelCase and snake_case con-
ventions, and it normalizes the remaining tokens into lower case. The resulting
strings are then represented as a bag of words, which represents the context C.
For the above example, the analysis yields this context-value pair:

ptorg fiÑ 1, sql fiÑ 1, pkg fiÑ 1, parser fiÑ 2u, ”SELECT x FROM y”q

4.2.2 Summarizing and Indexing of Inputs Values

Based on the set of context-value pairs extracted by the static analysis, the next
step is to summarize and index these data for a later retrieval. The idea is to
associate each input value with one or more hash values that summarize the
context in which the input value occurs. The resulting hash map then serves
as the basis for retrieval of values suitable for a particular context. Algorithm 7

summarizes the main steps of the approach, which we explain in detail in the
following.
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Assigning Weights to Context Words

The context of a value, as provided by the static analysis, is a bag of words.
Some of these words (or terms) convey useful information about the domain of
the tested code, whereas others are highly redundant. For example, consider
all test input values extracted from calls to the method org.pkg.SqlParser.parse.
The string value passed to this method is supposed to be a SQL query, i. e., a
string formatted according to the SQL grammar. Therefore, the term “sql” is
crucial for describing the context where the values passed to the method are
typically used. In contrast, words such as “org” are very frequent and occur
across various different contexts.

To enable TestMiner to focus on the most relevant words in a context, we com-
pute a weight for each word (line 3 in Algorithm 7). To this end, we compute
the tf-idf value of each term, i. e., the term frequency-inverse document frequency.
This measure is commonly used for information retrieval. Intuitively, it repre-
sents how important a term is to a document in a corpus of documents. The
document d here is the context C, a term t is a context word in C, and the
corpus D is the set of all contexts gathered by the static analysis. Formally, we
compute tf-idf as

tfidf pt, d, Dq “ ft,d ¨ log
´ |D|

|td P D : t P du| ` 1

¯
(4.1)

where document d is the context C, a term t is a context word in C, the cor-
pus D is the set of all contexts, and where ft,d is the frequency of term t in
document d. The weight assigned to a word is then normalized over all the
tf-idf values in C. Other normalization strategies are possible, e.g., log scale.
For the above example the normalized weights from Equation 4.1 result in the
following weights assignment:

torg : 5, pkg : 10, sql : 45, parse : 40u

In the example a low weight is assigned to “org” because this word occurs
frequently in the corpus, and it assigns a relatively high weight to “sql” because
this word is relatively uncommon but appears twice in the context. As a result,
the approach champions the informative parts of the signature and penalizes
the less informative ones.
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Indexing with Locality-Sensitive Hashing

After assigning weights to context words, TestMiner indexes the values for
efficient retrieval. A naive approach would be to build a hash map from bags of
context words to values. To retrieve a value for a particular context, TestMiner
checks if the same context has been observed in the corpus of projects and if it
does, returns the matching values. This naive approach has several problems.
The first problem is the limited scalability because the approach will scan the
entire corpus for every query. The second, more important, problem is the lack
of generalization of the naive approach. Specifically, the approach could not
return any value for contexts that have not been observed in the corpus. As
the overall goal of TestMiner is to support the generation of tests for projects
beyond the corpus, the naive approach is unsatisfactory.

We address the challenge of generalizing beyond the contexts observed in the
corpus using locality-sensitive hashing. This class of hash functions is designed
to preserve similarities of values in their hash values. A locality-sensitive hash
function assigns to very similar values the same hash value with high probabil-
ity, preserving the value similarity also in the hash space.

This goal is fundamentally different from cryptographic hash functions,
which aim at producing hashes that minimize collisions and that do not allow
for inferring any similarities of the hashed values.

TestMiner uses the locality-sensitive hash function Simhashing [29]. Given a
bag of words with weights assigned to each word, this function returns a bit
vector that represents the hash.

We exploit locality-sensitive hashing by computing a hash value for each
context (line 4 of Algorithm 7) and by storing values indexed by their hash
value (line 5).

The final result of the indexing step of TestMiner is a map that assigns hash
values to test input values:

Definition 15 (Index-to-values map). The index-to-values map M : Booleank Ñ
pV Ñ Nq assigns a boolean vector of length k to a bag of values. The bag of values is
itself a map that assigns each value to the number of occurrences of the value.

This representation summarizes the context-value pairs extracted from differ-
ent projects by grouping together all values with the same context. For example,
there may be multiple input values for a context (e. g., multiple values for the
same method in different call-sites). The index-to-values map will contain a
single hash value for this context and map it to a bag of test input values.
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4.2.3 Retrieval of Values for Test Generation

TestMiner provides values to a test generator. When the test generator retrieves
values, e. g., to pass them to a constructor or method call, it is crucial to query
in a timely manner because the time budget allocated for test generation is
limited.

Integration into Test Generator

As a proof-of-concept, we integrate TestMiner into the state-of-the-art feedback-
directed random test generator Randoop [105]. When Randoop requires a
string value, e.g., to pass it as an argument to a method under test, we override
its default behavior so that it queries TestMiner for Vquery input values with a
Pquery probability. Randoop default behavior is to use the literal "hi!", a value
observed at runtime or one extracted from the byte-code constant pool.

Algorithm 8 Retrieve values from index-to-values map.
Input: context Cq and index-to-values map M
Output: Probability distribution Vresult of values

1: Cq,weighted – tfidfWeightsForQuerypCqq
2: R “ searchSimhashpCq,weighted,M, distbitsq
3: return probDistributionpR,Mq

Retrieval of Values

Algorithm 8 summarizes how TestMiner retrieves test input values for a given
query with a context Cq. At first, it assigns weights to the query context words
in Cq using the following weighting function:

p0.5 ` 0.5
ft,q

maxt ft,q
q ¨ log

´ |D|
|td P D : t P du| ` 1

¯
(4.2)

where ft,q is the frequency of a context word in the query and all the other
terms have the same meaning as in Equation 4.1.

These weights give equivalent importance to a token frequency in the query
and to its inverse document frequency in the corpus, effectively prioritizing
uncommon tokens. The different weighting function prevents bias towards
longer signatures that may contain multiple similar terms. Once the weights
are normalized as in Algorithm 7, TestMiner matches the query context Cq
against the contexts that have similar bit patterns using the search algorithm
presented in [91]. The search algorithm function searchSimhash returns a map
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R : String Ñ Nq of indexed input values. This function selects input values
from hash indices that differ at most in distbits bits from the hashed query
context. The threshold distbits effectively controls the number of input values
returned to the test generator. A high value for distbits will match against
many contexts in the corpus, resulting in a high latency query and possibly
unrelated values. In contrast, a low value for distbits will provide a faster query
but may return only few input values. Finally, the algorithm returns a map
that represents a probability distribution across suggested values where the
probability of a value is proportional to its frequency across all context-value
pairs. This map is further passed to the test generator as a set of alternative
string values for the current method call. The final decision as to which actual
value from the map to be used is left to the test generator, which may decide
to use the probability distribution we provide or to randomly pick one of the
values.
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4.3 implementation

We integrate TestMiner into Randoop 3.0.8, a state-of-the-art feedback-directed,
random test generator [105]. We modify Randoop to probabilistically request
literal values from TestMiner whenever the test generator requires a string
value, e.g., as an argument for a method call or a constructor call. The modified
test generator queries TestMiner with a probability of Pquery and otherwise exe-
cutes its default behavior. We implemented the retrieval part of our approach
as a self-contained Java library, making it easy to integrate it into other test
generators. The static analyses part of TestMiner is implemented on top of the
Eclipse JDT framework [3]. Integrating TestMiner into Randoop required only
to change about 100 lines in the ForwardGenerator class and to add about 70

lines of new code to communicate with TestMiner.
To query TestMiner for values to be passed to a method m, the modified

Randoop performs multiple queries with different contexts Cq:
• the package, the class and the method name, and
• the class and the method name,
• the method name.
Querying with multiple contexts allows the test generator to retrieve more
diverse values than with a single query because different queries em-
phasize different domain specific terms. For example, for a method
org.foo.Util.parseDate we perform a query with the full signature, one with
Util.parseDate, and one with parseDate.

We then combine all the returned values obtained from the three different
queries into one set. From this set, the implementation randomly selects Vquery
values and provides them to Randoop as possible input values for the method.

As an optimization to reduce querying time, our implementation caches the
results of queries. The motivation is that Randoop often requests values for
the same method multiple times during one test generation run. This simple
optimization significantly reduces the time spent for retrieving values.
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4.4 evaluation

We evaluate TestMiner with a large corpus of Java projects and apply a
TestMiner-enhanced test generator to a series of benchmark classes that are
difficult for a test generator. This section reports to what extent TestMiner im-
proves the effectiveness of generated tests (Section 4.4.2), presents examples
to illustrate the strengths and weaknesses of the approach (Section 4.4.3), and
evaluates the performance of TestMiner (Section 4.4.4).

4.4.1 Experimental Setup

data to learn from To learn about values suitable in a particular context,
we apply TestMiner to 3,601 Java projects from the the Maven Central Repos-
itory [6]. We use all projects with source code of tests, which yields 263,276

string values used in 37,821 different contexts.

classes under test To evaluate the effectiveness of tests generated with
TestMiner, we use 40 classes from 18 open source Java projects. 20 of these
classes have been previously used for evaluating test generators [54, 94, 122,
123]. We further augment the existing benchmark classes with string manip-
ulation classes from Defects4J [77] and with parsers of different text formats.
Because the overall goal of TestMiner is to suggest values for classes beyond
the corpus that the approach learns from, we remove from the corpus all the
call site tuples that contain a type name in the projects of the classes under test.

test generation For each class under test, we generate tests using both
the default version of Randoop and the TestMiner-enhanced version. We use
a time budget of 5 minutes per class and repeat each experiment 10 times to
account for the random-based nature of Randoop, where each experiment uses
a different random seed. Similar parameters were used in previous work [124].
We run the tests using JUnit and measure test coverage using the JaCoCo library.
The coverage is the ratio of executed branches and all branches in the source
code of a class.

All experiments are done on a 24-core machine with two 2.20 GHz Intel
Xeon processors E5-2650 v4, 64GB memory, running 64-bit Ubuntu 16.04 LTS
from the Docker image ubuntu:16.04, using the latest Oracle Java 8 HotSpot VM
(1.8.0.151 at the time of writing), with default values for the memory assigned
to the VM.
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4.4.2 Effectiveness of Generated Tests

To assess to what extent TestMiner increases the effectiveness of generated tests,
we measure the branch coverage in each class under test. Figure 4.2 shows the
average coverage over 10 test suites generated for each class. Overall, TestMiner
improves the coverage for 30 classes and decreases it for 2 classes. On average
over all classes, the relative improvement is 21%, increasing coverage from 57%
to 78%. A Wilcoxon signed rank test shows this increase to be statistically
significant (p † 2.7 ˚ 10´6). Cohen’s d effect size, which is a statistical measure
of the strength of the increase, is 0.87, which is considered large.

increased coverage TestMiner increases coverage from 0% to more than
30% for the classes PathURN, ResourceURL, and URN because Randoop is unable
to instantiate these classes. In contrast, by using domain-specific strings, Test-
Miner helps instantiate these classes, enabling the test generator to explore their
behavior. However, for the UTF8StreamJsonParser class, TestMiner also fails to
instantiate the class. Manual inspection shows that the class requires a com-
plicated IOContext object that reads JSON files and assumes such files to exist.
Providing such files is out of reach for both Randoop and TestMiner but may
be addressed, e.g., by symbolic testing techniques [25].

decreased coverage TestMiner decreases the branch coverage for 2

classes. A manual inspection of the produced test suites for StringEscapeUtils

shows that the constant retrieval fails due to an implementation error in
our prototype caused by a non-escaped unicode character. For DateTime and
StrTokenizer, the decrease is on average, but achieves higher coverage than
Randoop for some test suites, as shown by the error bars. For the DateTime

class, TestMiner is effective in predicting related data, but the returned values
are not compatible with the class constructors and methods because most ar-
guments are not strings. Adding support for primitive types to TestMiner can
alleviate this issue. Similarly, for the class StrTokenizer, TestMiner fails to select
correct values for the class constructor. TestMiner succeed to pass a string to
be tokenized but fails to pass a valid delimiter possibly contained in the string.
As a consequence the code that performs the string splitting is not covered
during execution. To alleviate this issue TestMiner could consider the method
parameters name, which are ignored in the current implementation.

Besides a few classes, most of the results do not show a significant difference
in coverage across the 10 repetitions, i. e. the error bars are moderately small.
We believe that this is due to our relatively large timeout, which allows the
test generator to reach saturation no matter what the initial random seed is.
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For some of the classes, like the two mentioned earlier, an even higher timeout
would probably allow TestMiner to achieve better coverage.

Overall our results show that TestMiner significantly improves coverage for
most classes under test.

4.4.3 Query Result Examples

TestMiner provides to the test generator semantically rich and diverse values.
The following values are examples from tests suites generated during our ex-
periments:
1. IBAN: SCBL0000001123456702
2. SQL: ’abc’ LIKE ’_’

3. Network address: fe80::226:8ff:fefa:d1e3
4. E-mail: test@example.org

Many values returned by TestMiner are semantically rich values that follow
a particular format, such as SQL expressions, email addresses, or international
bank account numbers (IBAN), as the ones listed above. However, there are
also strings that do not help in testing a specific method, such as “foo” or
“metadata”. Fortunately, due to the nature of feedback-directed test generation,
these values are likely to be ignored in later stages of the generation process.
For example, Randoop filters already seen values that did not trigger any errors
during execution.

For many queries, we observe high diversity among the suggested values.
TestMiner does not only produce valid IBANs like previous work [94], but it
also produces almost correct values, such as a BBAN which is the last part of an
IBAN. It also produces values printed in various formats, e.g., with and without
spaces. Moreover, TestMiner produces IBANs of various lengths, i.e., valid in
different countries. Most of these values, mined from existing tests, are given
in the IBAN ISO standard documents as examples for valid or invalid values.
For example, TestMiner returns the following list of values when queried with
the signature org.apache.commons.validator.routines.IBANValidator.isValid

• SC18SSCB11010000000000001497USD

• 099900000001001901229114

• TR330006100519786457841326

• SCBL0000001123456702

• IS14 0159 2600 7654 5510 7303 39
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1 public void test() {
2

3 SqlParser parser0 = new SqlParser();
4 Expression expr0 = parser0.createExpression("xx");
5 Expression expr1 = parser0.createExpression(
6 "bound_integer in (2, 4, 3, 5)"
7 );
8 /* The exception was thrown in
9 test generation */

10 try {
11 Statement stmt0 = parser0.createStatement(

12 "SELECT * FROM BOGUS_TABLE_DEF_DOESNT_EXIST"
13 );
14 Assert.fail("Expected exception")
15 } catch (NoSuchMethodError e) {
16 /* Expected exception.*/
17 }
18

19 /* Regression assertion
20 (captures the current behavior of the code)
21 */
22 Assert.assertNotNull(expr0);
23

24 /* Regression assertion
25 (captures the current behavior of the code)
26 */
27 Assert.assertNotNull(expr1);
28

29 }

Listing 4.2: Example JUnit test case generated by TestMiner, which exercises
code paths that Randoop alone is unable to cover. The highlighted
value is provided by TestMiner.

To illustrate how the test suites produced by TestMiner differ from the ones
Randoop produces, we present the test case in Listing 4.2. This is a test case
generated by TestMiner for the class com.facebook.presto.sql.parser.SqlParser.
By taking this test and adding it to the suite produced by Randoop, we are
able to increase the coverage, showing that it covers a path that Randoop is not
able to cover. The crucial difference, highlighted in the figure, is the valid SQL
command passed to the createStatement method. Randoop alone is not able to
create such a complex string as an input value, but TestMiner is able to make
use of the knowledge mined from existing tests.
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4.4.4 Performance

analysis and indexing The static analysis takes several hours to process
the entire corpus but finishes within a single day. Indexing the context-value
pairs takes about 20 seconds. However downloading the large corpus of Java
projects requires several days due the timeouts imposed by repositories servers.

retrieval Retrieving values from TestMiner takes longer than using Ran-
doop’s hard-coded constants. To measure slow down of test generation, we
compare the size of the test suites generated by Randoop and TestMiner. In
the 5 minutes time budget, Randoop generates 545,895 tests, whereas the
TestMiner-enhanced test generator creates only 243,494 tests, i. e., a 55% reduc-
tion. During our evaluation, millions of string values are requested by the test
generator, but the number of unique queries is only 481, allowing our imple-
mentation to make extensive use of caching to keep the runtime overhead low.
Overall, TestMiner slows down the test generation, but the increased runtime
cost pays off because the tests generated with TestMiner are significantly more
effective.

4.4.5 Influence of Parameters

TestMiner has three meta-parameters, which we set experimentally to maxi-
mize coverage increase:

maximum tolerated bit distance distbits . We report results for exper-
iments were we set distbits “ 16. Running TestMiner with distbits “ 4 , 8 sig-
nificantly reduces branch coverage because fewer strings are returned to Ran-
doop, which often defaults to its built-in strings. Setting distbits “ 32 drastically
increases query time and reduces the number of generated test in the time
budget.

query probability Pquery . We report results for experiments were we set
Pquery “ 0.5, such as a coin-toss. Running TestMiner with Pquery “ 0.25, 0.75
provides a lower branch coverage. Using a lower probability will increase the
number of times TestMiner uses the standard Randoop behavior. Using an
higher probability will increase the amount of time spent in querying Test-
Miner, therefore achieving lower coverage because less tests are generated.
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number of values Vquery returned by testminer . In our experiments
we report results for Vquery “ 10. Running TestMiner with Vquery “ 5 , 15
provides no significant difference in branch coverage. TestMiner returns the
values related to a query sorted by the number of times they appear in the
mined corpus. Therefore this parameter does not have a large influence on the
covered branches because the most common values in the mined corpus are
used with an higher probability.

4.5 related work

4.5.1 Test Generation

There are various approach for automatically generating test cases: sym-
bolic [25, 80] and concolic [57, 121] execution [26, 136, 144], random-based test
generation [43, 105], and search-based testing [51]. Beyond unit tests, auto-
mated testing has been applied, e. g., to concurrent software [108, 109] and to
graphical user interfaces [36, 37, 62, 108]. TestMiner is orthogonal and could be
integrated into many of these approaches.

4.5.2 Learning From Existing Code to Improve Test Generation

Liu et al. train a neural network to suggest textual inputs for mobile apps [87].
Similar to TestMiner, they learn from existing tests how to create test inputs.
TestMiner differs by using information retrieval instead of a neural network, by
learning from already existing tests written by developers instead of writing
tests specifically for learning, and by generating unit tests instead of UI-level
tests.

Testilizer [97] mines UI tests for web applications by collecting input val-
ues for generating tests. In contrast, TestMiner statically collects input values
from tests written for a different application. The “equivalence modulo input”
(EMI) approach [84] tests compilers by modifying existing tests, i. e., programs,
into new test. TestMiner learns how to create new tests from existing tests
but applies to various applications domains beyond compilers. Several ap-
proaches improve test generation by learning from existing code which meth-
ods to call [72, 134, 135]. TestMiner differs from these techniques by improving
the selection of input values instead of the selection of calls.
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4.5.3 Domain Knowledge for Test Generation

Studies show that providing domain knowledge to test generators improves
testing effectiveness [53, 117]. Several approaches obtain domain-specific in-
puts, e. g., by querying web sites [94, 122], web services [21], or semantic knowl-
edge graphs [92]. All these techniques require querying the internet for retriev-
ing values. To the best of our knowledge, TestMiner is the first offline technique
to suggest domain-specific input values.

4.5.4 Learning from Existing Source Code

Existing work exploits natural language information in source code, e. g., to
detect programming errors [86, 107] and suboptimal identifier names [10, 67],
to cluster software systems [41], to infer specifications [159], and to find incon-
sistencies between code and comments [132]. TestMiner also exploits domain
knowledge encoded in natural language, specifically in identifier names, to im-
prove testing. Other work on learning from existing code includes learning a
statistical language model for code completion [116] and applying information
retrieval to the problem of bug localization [74, 83, 112, 113, 161].
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4.6 limitations

out of vocabulary tokens . TestMiner does not handle out of vocabu-
lary tokens. In other words, if a token part of the query signature is not in
the indexed corpus, TestMiner returns a probability distribution set Vresult with
possibly unrelated content to the query signature. This behavior depends on
the hashing function that the Simhashing algorithm uses to build the bit pattern
of the signature bit vector. This limitation is shared among other natural lan-
guage processing approaches that rely on dictionaries of fixed size. However
in our case, if the result set is empty or it contains unrelated values, TestMiner
will default to the standard behavior of the test generator. To alleviate this
issue other approaches adopted Word2Vec [96] to match semantically similar to-
kens [87]. However, this approach needs to be trained with a dataset compatible
with TestMiner (e. g., code documentation) because it was originally designed
for natural languages in mind and not for a programming language setting.

naive context definition. In TestMiner we defined the context to be
the statically resolved method signature. This limitation can cause TestMiner
to loose potential matching opportunities due to dynamic method resolution.
Other work successfully used different definitions of context, for example, the
variable and argument declarations in a method body [10].

method sequences for object initialization. In this chapter we
presented how to efficiently mine literal values from existing tests. However
test generators fail to trigger faults also because of the missing knowledge how
to correctly initialize objects [124]. TestMiner still suffers from this limitation.
The large body of test suites we used in our evaluation can be mined to collect
object initialization sequences using similar approach to [135].
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4.7 summary

Test generation is a challenging problem, and finding suitable input values is an
important part of this challenge. In this chapter we presented TestMiner, a new
approach that learns from a large corpus of existing tests which input values to
use in newly generated tests based on the domain of the tested software. The
approach combines static analysis and information retrieval to extract input
values, to index them based on the context in which they occur, and to provide
values suitable for a specific domain to a test generator. The approach scales to
thousands of analyzed projects, efficiently responds to queries for input values,
and generalizes beyond the software analyzed as part of the corpus. The Test-
Miner approach provides a simple querying interface that enables existing test
generators to benefit from domain-specific input values with little effort. We
evaluated TestMiner and we show that TestMiner improves test coverage from
57% to 78%, on average, over a set of 40 classes that challenge state-of-the-art
test generators.





5

C O N C L U S I O N S

In this dissertation we presented a series of novel program analyses to help
developers find and fix performance issues. We introduced three novel tech-
niques that advance the current state-of-the-art of performance issues detection
via runtime program analysis.

In Chapter 2 we present an automatic analysis that discovers memoization
opportunities, a common way to optimize programs that perform redundant
work. This program analysis is novel because it takes an unsound but effective
approach compared to previous work that uses conservative analyses based
on method purity. We show that the novel analysis is effective in finding pre-
viously unknown memoization opportunities in real-world Java libraries. We
reported the memoization opportunities that the analysis discovers to the de-
velopers of the libraries and they fixed and integrated our suggestions in the
libraries code bases.

In Chapter 3 we introduce the first approach to automatically generate bot-
tleneck exposing programs for methods. We show that our novel technique is
effective and efficient in generating programs that expose previously known
and unknown bottlenecks. The generated programs are short such that a de-
veloper can easily inspect them and can use them to evaluate an optimization
with little manual effort.

Finally, in Chapter 4, we present an approach to predict domain-specific in-
puts for methods. This approach leverages the large amount of existing test-
cases in open-source repositories to build an index of existing values that is
fast to query. We show that this approach is able to provide domain-related
values to an existing test generator, and that the approach enables the test gen-
erator to achieve higher branch-coverage over a set of difficult-to-test classes.

Given our listed contribution we state that we successfully reached our initial
goal to reduce the developer’s manual effort in performing the tasks required
in debugging a program’s performance. Achieving our initial goal was possi-
ble because the presented novel approaches increase the level of automation
during the performance debugging tasks that a developer manually performs.

119
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However, we learned a valuable lesson while facing the challenges to automate
these manually executed debugging tasks. We learned that the developer must
still be involved in the performance debugging loop.

Automatically fixing performance problems is an attractive property for a
performance debugging tool. Nevertheless, our practical experiences and the
limitations of current approaches show that only a very confined set of perfor-
mance problems can be automatically fixed. In the one hand, the limitations of
an automatic approach are due the shallow understanding of the program se-
mantics that a tool possesses and to the properties that a tool can automatically
deduce by analyzing the program’s behavior. On the other hand, a human is
capable of quickly assessing (with more precision if correctly guided by a tool)
if a program transformation may improve the program’s performance, while
maintaining the semantics.

For example, our last contribution of this dissertation presents a practical ap-
proach that reports to a developer caching suggestions for methods that suffers
from redundant computations. The approach processes the large amount of
runtime information collected during a program’s execution. Hidden in this in-
formation there may exists interesting facts about the program’s behavior (i. e.,
redundant computations) that a developer may have overlooked. These facts,
if properly exposed, can guide a developer to implement a profitable perfor-
mance fix in short time. A developer can use the provided hints to deduce
effective fixes to the program with his/her knowledge about the program’s
behavior.

In this dissertation we did not develop a fully fledged conservative automatic
program analysis that may miss these important optimization opportunities.
Instead we decided to pay a price in terms soundness to gain in exchange ad-
ditional valuable information (otherwise discarded) that directed developers
to profitable performance gains. As a positive example, some of the suggested
fixes by MemoizeIt were accepted by developers even if integrating the changes
required additional manual effort to modify the original source-code. Unfortu-
nately, for some of our suggested fixes the developer required additional guar-
antees (e. g., the implemented cache to be thread-safe) or the developer rejected
the changes because they were covering an uncommon use-case of the library
(e. g., the cache introduced an overhead).

Despite the decision by the developers to reject some of our proposed
changes because they targeted uncommon use-cases of the library, in this dis-
sertation we show that manually crafting inputs that cover only common (per-
formance) cases can be a disadvantage. In general it is good practice to focus
on commonly used inputs because they are relevant. However, a manual ap-
proach to input generation is not always attractive because a human may for-
get to evaluate specific (performance) corner-cases. These corner-cases may not



conclusions 121

be initially considered relevant but they may occur in practice (e. g., by a not
yet known or executed workload) causing sub-optimal performance, as shown
with the programs generated by PerfSyn. Our tool synthesized programs that
trigger such, considered uncommon, corner-cases and that could be fixed with
little effort.

Sadly, also fully automating input generation is difficult because of the lim-
ited program’s semantic knowledge available that causes to miss optimization
opportunities. To alleviate this problem, a human could provide mutation prim-
itives to PerfSyn that may strengthen the effectiveness of the approach. This
work can be performed once by the developer for the future benefit of avoiding
to manually create new inputs after each important application change.

To conclude this dissertation we encourage to focus future research efforts
towards better assisting developers with new tools for performance debugging.
These tools should guide developers with suggestions that can reduce their
efforts but these tools should also consider, request, and exploit the developer’s
knowledge about the program under analysis.
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