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Abstract
Understanding the mechanisms responsible for the generation of chemical gradients in high-volume ignimbrites is key to 
retrieve information on the processes that control the maturation and eruption of large silicic magmatic reservoirs. Over the 
last 60 ky, two large ignimbrites showing remarkable zoning were emplaced during caldera-forming eruptions at Campi 
Flegrei (i.e., Campanian Ignimbrite, CI, ~ 39 ka and Neapolitan Yellow Tuff, NYT, ~ 15 ka). While the CI displays linear 
compositional, thermal and crystallinity gradients, the NYT is a more complex ignimbrite characterized by crystal-poor 
magmas ranging in composition from trachy-andesites to phonolites. By combining major and trace element compositions 
of matrix glasses and mineral phases from juvenile clasts located at different stratigraphic heights along the NYT pyroclastic 
sequence, we interpret such compositional gradients as the result of mixing/mingling between three different magmas: (1) 
a resident evolved magma showing geochemical characteristics of a melt extracted from a cumulate mush dominated by 
clinopyroxene, plagioclase and oxides with minor sanidine and biotite; (2) a hotter and more mafic magma from recharge 
providing high-An plagioclase and high-Mg clinopyroxene crystals and (3) a compositionally intermediate magma derived 
from remelting of low temperature mineral phases (i.e., sanidine and biotite) within the cumulate crystal mush. We suggest 
that the presence of a refractory crystal mush, as documented by the occurrence of abundant crystal clots containing clino-
pyroxene, plagioclase and oxides, is the main reason for the lack of erupted crystal-rich material in the NYT. A comparison 
between the NYT and the CI, characterized by both crystal-poor extracted melts and crystal-rich magmas representing 
remobilized portions of a “mature” (i.e., sanidine dominated) cumulate residue, allows evaluation of the capability of crystal 
mushes of becoming eruptible upon recharge.

Keywords Zoned ignimbrites · Caldera-forming eruption · Cumulate melting · Magma mixing · Neapolitan Yellow Tuff · 
Campi Flegrei

Introduction

The pyroclastic sequences deposited during large cal-
dera-forming volcanic eruptions enclose crucial informa-
tion about the mechanisms that govern the accumulation 
of large volumes of silicic magmas in the upper crust and 
the processes that lead to their explosive withdrawal (e.g., 
Smith and Bailey 1966; Lipman 1971; Blake 1981; Druitt 
and Bacon 1989; Wolff et al. 1990; de Silva 1991; Civetta 
et al. 1997). These pyroclastic sequences can display differ-
ent styles of compositional zoning (see Hildreth 1981 and; 
Bachmann and Bergantz 2008 for reviews) which mirror a 
complex interplay between magma evolutionary processes 
(e.g., fractional crystallization, magma mixing, crustal 
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assimilation) and magma chamber dynamics (e.g., crystal 
settling, convection, melt extraction, reactive porous flow).

Over the last decades many authors have discussed the 
relative importance of fractional crystallization, crystal 
accumulation and melt extraction in generating chemical 
and physical gradients in upper crustal magma chambers 
(e.g., Lipman 1966; Wolff and Storey 1984; Worner and 
Schmincke 1984; Bacon and Druitt 1988; de Silva and Wolff 
1995; Hildreth and Fierstein 2000; Hildreth and Wilson 
2007). More recently, recharge events involving hotter and 
more mafic magmas of deeper origin have been suggested 
to play a key role in generating chemically zoned erupted 
sequences by partial melting of the crystalline material 
accumulated in the eruptible reservoir (i.e., cumulate mush; 
Kennedy and Stix 2007; Pamukcu et al. 2013; Bachmann 
et al. 2014; Wolff et al. 2015; Forni et al. 2016). Since the 
geochemical signatures of the processes that control the evo-
lution of upper crustal reservoirs and eruption triggers are 

often superimposed in the pyroclastic sequences, an accurate 
reconstruction of the pre-eruptive history of magma bodies 
can be extremely challenging. While bulk-rock geochemistry 
of juvenile clasts typically returns average compositions of 
various proportions of mineral phases and coexisting melts, 
detailed micro-analytical investigations of matrix glasses 
and mineral phases reveal much broader and complex com-
positional ranges. When combined with textural observa-
tions, these data can be extremely helpful in pinpointing 
the processes that control the accumulation, evolution and 
eruption of magmas associated with caldera collapses.

In this study we focus on the Neapolitan Yellow Tuff 
(NYT; 14.9 ka, Deino et al. 2004), an excellent example of 
complexly zoned ignimbrite erupted at Campi Flegrei dur-
ing a cataclysmic caldera-forming event involving ~ 40 km3 
DRE (= dense rock equivalent) of alkaline magmas (Orsi 
et al. 1992, 1995; Scarpati et al. 1993) (Fig. 1). Complexly 
zoned pyroclastic sequences, such as the NYT, are not very 
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Fig. 1  Shaded relief map of the Campi Flegrei caldera showing the 
distribution of the NYT pyroclastic deposits (according to Pappalardo 
et  al. 1999) and the sampling localities. In the insets: a simplified 
map of Italy and a shaded relief map of the Campanian Plain display-

ing the location of the study area together with a simplified sketch 
of Campi Flegrei indicating the rims of the CI and the NYT calderas 
(colored dashed lines) according to the studies listed in the legend
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common and have been interpreted as the result of either 
eruption of isolated magma domains which were stored and 
evolved in different conditions (e.g., Eichelberger et al. 2000; 
Shane et al. 2008; Ellis et al. 2014) or of a layered magma 
chamber which was tapped at different and fluctuating draw-
down depths (e.g., Bacon and Druitt 1988; Orsi et al. 1995; 
Hildreth and Wilson 2007; Lipman et al. 2015). Differently 
from previous investigations mainly focused on bulk-rock 
geochemistry (Orsi et al. 1992, 1995; Scarpati et al. 1993), 
we report the results of a detailed micro-analytical study of 
mineral phases and matrix glasses from samples collected 
at different stratigraphic heights along the NYT pyroclastic 
sequence. We use our data to decipher the petrologic evolu-
tion of the NYT magmas and the dynamics of withdrawal. 
Finally, a comparison with the Campanian Ignimbrite (CI; 
~ 39 ka, De Vivo et al. 2001) erupted during the first and 
largest caldera-forming event of Campi Flegrei (~ 200 km3 
DRE; Pappalardo et al. 2008) allows reconstruction of the 
architecture of the magmatic reservoirs that fed the two 
eruptions and provide new insights into crustal dynamics 
at active calderas.

The Neapolitan Yellow Tuff

The NYT pyroclastic sequence consists of two main units 
called Lower and Upper Member according to the nomen-
clature of Orsi et al. (1992, 1995) that is adopted in this 
study (Fig. 2) or, alternatively, Members A and B follow-
ing Scarpati et al. (1993). The Lower Member consists of 
a sequence of pumice-and-ash fallout deposits and dilute 
pyroclastic density currents (PDCs) deposits which extend 
up to a distance of ~ 35 km from the vent and make ~ 1/3 
of the total erupted volume (Orsi et al. 1992). The Upper 
Member comprises both massive and thick pumice-and-ash 
deposits from highly concentrated PDCs and stratified ash 
beds from dilute PDCs which were recognized up to a dis-
tance of ~ 14 km from the vent (Wohletz et al. 1995). A 
coarse lithic breccia corresponding to the onset of the cal-
dera collapse phase was identified at the base of the Upper 
Member in the proximal areas (Scarpati et al. 1993). No 
paleosoils have been recognized between the two members 
in the field and 40Ar/39Ar dating confirms that the two units 
have the same age (14.9 ka; Deino et al. 2004). An angular 
unconformity and variations in the textural characteristics 
of the pyroclastic deposits were observed at the boundary 
between the two members. Such features were interpreted 
as the result of a change in the eruptive style from a central-
vent phreato-plinian to a phreatomagmatic and magmatic 
phase related to multiple ring-fault vents associated with 
the caldera collapse (Orsi et al. 1995; Wohletz et al. 1995). 
Published bulk-rock and isotope data used to depict a well-
defined chemostratigraphy indicate that the eruption was fed 
by a compositionally zoned reservoir hosting alkali-trachytic 

to trachytic magmas and triggered by the arrival of a less 
evolved recharge magma (alkali-trachytic to latitic, show-
ing slightly different Sr-isotope ratios; Orsi et al. 1995). 
The NYT deposits show lateral and vertical variations of 
the degree of lithification and zeolitization, which mostly 
depend upon the thermal conditions of deposition and the 
amount of phreatomagmatic water involved during eruption. 
The most lithified and zeolitized rocks are concentrated in 
the inner portions of the pyroclastic sequence in the proxi-
mal areas where the ignimbrite shows its maximum thick-
ness. Here, relatively high temperatures (i.e., close to the 
water–vapor condensation) within the wet deposits were 
maintained long enough to trigger the hydration-dissolution 
processes in the volcanic glass (de’Gennaro et al. 2000).

Sampling and analytical methods

To investigate the geochemical variations in the NYT pyro-
clastic sequence, juvenile clasts were sampled at different 
stratigraphic heights in proximal and distal outcrops (Fig. 1). 
The sampled pyroclastic deposits from the Lower Member 
(LM) and Upper Member (UM) correspond to some of the 
stratigraphic units described by Orsi et al. (1992, 1995) 
(Fig. 2). Specifically, the Lower Member was sampled at S. 
Marco (LM1), Ponti Rossi (LM3) and S. Angelo in Formis 
(LM9, 11), whereas the Upper Member was sampled at S. 
Severino (UM1, 11, 13) and Ponti Rossi (UM16). Since 
sharp compositional variations were reported in the literature 
at the base of the Upper Member (Orsi et al. 1992, 1995), the 
unit UM1 was sampled at the bottom (UM1b) and at the top 
(UM1t) of the corresponding pyroclastic deposit. Addition-
ally, pumiceous clasts from lithified facies were sampled at 
the same stratigraphic height from an underground tunnel 
underneath the city of Naples located at about 30 m below 
the ground level (Galleria Borbonica; GB2–4). According to 
the stratigraphic reconstructions reported in the Geological 
Map of Italy (ISPRA, Foglio 446–447 Napoli), pyroclastic 
deposits older than the Campanian Ignimbrite crop out in 
this area. Conversely, based on field observations and drill-
hole data, Perrotta et al. (2006) indicate that in this area the 
NYT deposits extend from a depth of about 2–4 to 60–80 m 
below the ground level. This would imply that the sampled 
deposits are correlated with the NYT although their precise 
stratigraphic position in the pyroclastic sequence remains 
undefined.

Pumiceous clasts were powdered and analyzed for bulk-
rock major and trace elements by XRF and ICPMS at ETH 
Zürich (see Online Resource 1 for a detailed description 
of the methods). Mineral phases and matrix glasses were 
separated, mounted in epoxy and analyzed for major and 
trace elements by EPMA and LA–ICPMS respectively 
at ETH Zürich. EPMA operative conditions were 15 kV 
acceleration voltage, counting times of 20 s on the peaks 
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and 10 s on the backgrounds. The beam current was set 
at 20 nA for clinopyroxene and feldspar and decreased to 
15 nA for biotite and glass analyses. To minimize alkali 
migration, a defocused beam was used for glass, feldspars 
and biotite analyses (20, 10, 5 µm, respectively), and  K2O 
and  Na2O were analyzed first. Analyses were typically 
reproducible to < 5% for all major oxides. LA-ICPMS is 
a 193 nm ArF Excimer laser from Resonetics coupled to a 
Thermo Element XR ICPMS. Spot sizes of 43 and 20 µm 
were used for mineral and glass analyses. The software 

SILLS (Guillong et al. 2008) was used for data reduc-
tion using NIST612 and NIST610 as external standards 
and major element concentrations from EPMA as internal 
standards. The USGS reference glass GSD-1G was used as 
secondary standard to monitor the accuracy of the meas-
urements. Repeat analyses (n = 53) of the USGS reference 
standard glass GSD-1G yielded external reproducibility 
(1SD) between 5 and 14%. The complete dataset of bulk-
rock, mineral, matrix glass and standard compositions is 
reported in Online Resource 1.
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Fig. 2  Simplified section of the NYT pyroclastic sequence (after 
Orsi et al. 1992) and variation of geochemical parameters with strati-
graphic height in the corresponding units: differentiation index (DI) 
(a); CaO (wt%) (b); MgO (wt%) (c);  K2O (wt%) (d); Zr (ppm) (e); 
Sr (ppm) (f); Ba (ppm) (g) and Eu/Eu* [= EuN/(SmN  ×  GdN)1/2; 
trace element concentrations normalized to values from McDon-
ough and Sun, 1995] (h). In a numbers denote the crystallinity 
of the corresponding samples. Grey symbols refer to data from 
the literature (Orsi et  al. 1992, 1995; Scarpati et  al. 1993; Wohletz 
et  al. 1995) whereas colored symbols indicate data from this study. 

Bulk-rock major element analyses are reported on anhydrous basis. 
 Fe2O3 was converted to FeO (FeO = Fe2O3 × 0.8998) to compare 
bulk-rock data with the matrix glass compositions. DI is defined as 
Or + Ab + Q + Ne + Lc normative, according to Thornton and Tuttle 
(1960). Note that for the NYT normative quartz (Q) and leucite (Lc) 
are equal to zero. In the reconstructed stratigraphic section, LM1–13 
correspond to the stratigraphic units distinguished by Orsi et  al. 
(1992) for the Lower Member whereas UM1–16 have been renamed 
following the progressive order of samples from the base to the top of 
the Upper Member as reported in Orsi et al. (1992)
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For the isotopic analyses, bulk-rock powdered samples 
(~ 200 mg) from the base of the Lower and Upper Members 
(LM1 and UM1t) and from the Galleria Borbonica (GB2, 
GB3, GB4) were digested in HF and  HNO3 and diluted in 
HCl. Sr was separated by ion-exchange chromatography 
and samples were analyzed via thermal ionization mass 
spectrometry (TIMS) using a Thermo Scientific Triton-
Plus mass spectrometer at ETH Zürich. Repeated 87Sr/86Sr 
measurements of the NBS 987 standard (n = 8) yielded the 
mean value of 0.710305 ± 0.000079 (2SD). The total proce-
dure blanks (0.5 ng of Sr) were negligible for the analyzed 
samples.

Relative crystallinity was estimated by XRD using an 
AXS D8 Advance diffractometer equipped with a Lynxeye 
super speed detector at ETH Zürich following the method 
of Rowe et al. (2012). Powdered samples (< 20 µm) were 
analyzed using CuKα radiations generated at 40 kV and 
40 mA. The following setting were used: 5°–90° (2θ scan 
interval), 0.02° (step size), 2 s (time/step), V12 (divergence 
and anti-scattering slits). Diffractograms were processed 
with the software OriginPro9, using the Peak Analyzer tool 
and Savitzky–Golay smoothing method. Integrated counts 
were calculated above the automatically determined linear 
background, giving the area of both amorphous and crystal-
line peaks (i.e., total area), and the cubic spline represent-
ing the area of crystalline peaks only (i.e., crystalline area). 
The relative crystallinity was calculated using the follow-
ing formula: relative crystallinity (%) = (crystalline area/
total area) × 100. All values were corrected according to a 
calibration curve obtained preparing powdered samples of 
known crystallinity by mixing various proportions of a gran-
ite (100% crystallinity) and amorphous glass (0% crystallin-
ity). See Online Resource 1 for further information.

Results

Petrography, bulk‑rock and matrix glass 
geochemistry

As a whole, the NYT pyroclastic rocks range in composi-
tion from trachy-andesites to phonolites  (SiO2 = 55–62 wt%; 
 Na2O + K2O = 11–14 wt%; Online Resource 2) and contain 
between 3 and 10% crystals of sanidine, clinopyroxene, 
plagioclase, biotite, Ti-magnetite, and apatite. The matrix 
glass is unaltered and microlite-free, therefore, the meas-
ured crystallinity reflects the macrocrysts content. Crys-
tal clots of mostly subhedral clinopyroxene, plagioclase, 
Ti-magnetite, apatite and rare biotite are abundant in the 
Upper Member (Online Resource 2). Binary plots of the dif-
ferentiation index (DI) versus major elements show positive 
correlations with  SiO2,  K2O (Fig. 3a) and  Na2O (Fig. 3b) 
and negative correlations with MgO (Fig. 3c), CaO,  TiO2, 

 Fe2O3,  P2O5, which indicate fractionation of clinopyroxene, 
biotite, Ti-magnetite, plagioclase and apatite. A decrease in 
 K2O and steeper increase in  Na2O at about DI ≥ 83 denote 
crystallization of sanidine (Fig. 3 a, b). Trace element vari-
ation diagrams display a steep decrease in Ba, Sr and Eu/
Eu* with increasing Zr which indicates feldspar crystalliza-
tion (Fig. 4a–c). Compared to the bulk-rock data, major and 
trace element compositions of matrix glasses reveal a much 
greater variability (Figs. 3, 4). Notably, some matrix glass 
compositions (e.g., LM9, LM11, UM1b and UM11) exhibit 
intermediate Sr and Ba, low Zr and slightly negative to posi-
tive Eu anomalies (Fig. 4a–c).

Chemostratigraphy

At the base of the Lower Member (LM1), bulk-rock and 
matrix glass compositions are homogeneously evolved 
(DI = 85–89) and display relatively low CaO, MgO, Ba 
and Sr contents together with high alkalis and Zr (Fig. 2). 
Above LM1, a sharp transition to less evolved composi-
tions (DI = 71–78) showing higher CaO, MgO, Ba and Sr 
and lower Zr and alkalis is observed (LM2–3). Towards 
the top of the Lower Member, bulk-rock and matrix glasses 
span much broader compositional ranges (LM9, LM11, 
DI = 69–88) (Fig. 2). A compositional shift was detected 
at the base of the Upper Member with the occurrence of 
 K2O-Ba-Sr-rich compositions (UM1b, DI = 78–86) which 
become more evolved, homogenous and similar to LM1 
towards the top of the same unit (UM1t, DI = 85–88) 
(Fig. 2). Extremely diverse compositions were found in the 
intermediate and top portions of the Upper Member (UM11, 
UM13, UM16, DI = 66–87). Compared to these units, the 
samples collected from the underground tunnel in Naples 
(Galleria Borbonica; GB2–4) show even wider composi-
tional variations in bulk-rock and matrix glass geochemis-
try (DI = 63–87) (Fig. 2). Notably, matrix glass with posi-
tive Eu anomalies occurs in all the studied units except for 
LM1, LM3 and UM1t (Figs. 4f, 5h). Coherently with the 
remarkable geochemical heterogeneities observed in most 
of the analyzed units, mingling textures were identified in 
back-scattered images of dense glass fragments from the 
Upper Member and Galleria Borbonica (Online Resource 
2). The crystallinity is slightly higher in the Lower Member 
(3.5–10% crystals) and in the samples from Galleria Bor-
bonica (GB3; 6.2% crystals) compared to the Upper Member 
(2.6–3.2% crystals; Fig. 2a).

Sr‑isotope geochemistry

To verify the stratigraphic position of the samples from 
Galleria Borbonica, bulk-rock Sr isotopic analyses were 
performed on all the samples collected in this location 
(GB2–4) and on two samples undoubtedly attributed to the 
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NYT pyroclastic sequence (LM1 and UM1t). The obtained 
isotopic ratios were compared with data from the literature 
referred to the entire range of volcanic activity at Campi 
Flegrei (literature data were normalized to the average value 
of NBS 987 standard measured in this study). The Sr iso-
topic ratios of the samples from Galleria Borbonica (GB2–4) 
vary between 0.70753 and 0.70755 (Fig. 5). These values are 

higher than those displayed by the pre-CI (0.70678–0.70746) 
and the CI samples (0.70732–0.70753) and partially over-
lap with the isotopic compositions of the post-CI/pre-NYT 
(0.70735–0.70764) and the post-NYT (0.70731–0.70871) 
eruptions (Fig. 5). The Sr isotopic signature of the GB2–4 
samples closely overlap with the 87Sr/86Sr ranges reported 
in the literature for the NYT (0.70755–0.70761; Di Renzo 
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to FeO (FeO = Fe2O3 × 0.8998) to compare bulk-rock data with the 
matrix glass compositions. DI is defined as Or + Ab + Q + Ne + Lc 

normative, according to Thornton and Tuttle (1960). Note that for 
the NYT normative quartz (Q) and leucite (Lc) are equal to zero. For 
the same plots, crystallization paths (dashed colored lines) calculated 
using rhyolite-MELTS (Gualda et al. 2012) are reported in d–f. Verti-
cal arrows indicate the crystallinity window suitable for melt extrac-
tion (50–70% crystals; Dufek and Bachmann 2010). Mixing lines 
connect the three magmatic components generating broad composi-
tional ranges. See text and Online Resources 3 for further information
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et al. 2011; Orsi et al. 1995) and those of the samples from 
the base of the Lower (LM1) and Upper (UM1t) Members 
analyzed in this study (0.70761 and 0.70756, respectively) 
(Fig. 5).

Chemistry and texture of mineral phases

Feldspars

Sanidine represents the most abundant mineral phase and 
is ubiquitous in the NYT juvenile clasts. Based on textural 

characteristics and compositional clustering, two main 
groups can be distinguished. Group 1 is more abundant 
and occurs in all the studied units, whereas group 2 is 
absent in LM1 and LM3 and is scarce in LM11 and UM1t 
(Fig. 6a). Group 1  (Or68–81) is euhedral and weakly zoned 
in back-scattered images and display relatively low Ba and 
Sr contents (up to 6474 ppm and 3068 ppm, respectively; 
Fig. 6 b, c). Group 2  (Or79–89) shows resorbed cores over-
grown by bright rims, which reflect increasing Ba and Sr 
contents from core-to-rim (up to 25,517 and 3612 ppm, 
respectively; Fig. 6b, d).
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normalized to values from McDonough and Sun, 1995] (c) of bulk-
rocks (color-filled symbols) and matrix glasses (white-filled sym-
bols) from the NYT. Grey symbols refer to data from the literature 
(Orsi et  al. 1992, 1995; Scarpati et  al. 1993; Wohletz et  al. 1995; 

Tomlinson et  al. 2012) whereas colored symbols indicate data from 
this study. For the same plots, trace element fractional crystallization 
models obtained using the Rayleigh fractional crystallization equa-
tion for a range of bulk-rock partition coefficients, are reported in d–f. 
Symbols along the lines indicate melt fractions with steps of 0.1. See 
text and Online Resources 3 for further information
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Plagioclase crystals are quite rare in the juvenile clasts of 
the NYT and range in composition from labradorite to anor-
thite  (An51–93; Online Resource 2). Labradoritic plagioclases 
 (An63–51) are euhedral and weakly zoned, with low-SrO 
contents (< 0.20 wt%; Online Resource 2). They were often 
recognized within crystal clots together with clinopyroxene, 
oxides and apatite (Online Resource 2). Bytownitic to anor-
thitic plagioclases  (An68–93) are only present in the Upper 
Member (UM13 and UM16) and samples from Galleria 
Borbonica (GB3 and GB4). They appear subhedral, sieve-
textured and partially resorbed and have higher-Sr-Ba con-
tents, often increasing towards more euhedral rims (Online 
Resource 2). Normally zoned crystals showing bytownitic 
cores and labradoritic rims were found in UM16, GB3 and 
GB4 (Online Resource 2).

Clinopyroxene

Euhedral clinopyroxene crystals ranging in composition 
from high-to-low-Mg diopside are widespread in NYT pyro-
clastic sequence. Three groups of clinopyroxene were rec-
ognized in the analyzed units (Fig. 7). Group 1 shows low-
Mg clinopyroxenes (Mg# = 62–79) with variable Sr content 
(4–140 ppm) and negative Eu anomalies (Eu/Eu* = 0.3–0.8) 
(Fig. 7a–c). Group 1 crystals are poorly zoned and often 
form crystal clots together with labradoritic plagioclases, 
oxides and apatite (Fig. 7d; Online Resource 2). Group 2 

includes high-Mg clinopyroxenes (Mg# = 77–93) with rela-
tively high-Sr contents (56–126 ppm) and slightly negative 
Eu anomalies (Eu/Eu* = 0.6–0.9) (Fig. 7a–c). Group 2 crys-
tals typically display high-Mg resorbed cores and rare pre-
served olivine crystals  (Fo78; Online Resource 2) overgrown 
by one or multiple intermediate-Mg zones and low-Mg thin 
bright rims, akin to group 1 clinopyroxene (Mg# = 66–73; 
Fig. 7 a, e). It is worth stressing that, although thin bright 
rims are ubiquitous in group 2 clinopyroxenes, only a few 
analyses are available due to the fact that in most cases the 
thickness of the crystal rims (1–2 microns) was smaller than 
the spot size of the electron microprobe and laser ablation. 
Group 3 clinopyroxenes were recognized in UM13 and in 
the samples from Galleria Borbonica (Fig. 7a). Compared 
with the other two groups, clinopyroxenes from group 3 
show intermediate compositions (Mg# = 70–90) and sig-
nificantly higher-Sr (84–250 ppm) and Eu/Eu* (0.7–1) 
(Fig. 7a–c). Most crystals are small (< 400 µ m) and appear 
poorly zoned in back-scattered images. Other crystals exhibit 
Mg-rich cores, akin to group 2 clinopyroxenes, overgrown 
by lower-Mg and higher-Sr-Eu/Eu* thick rims (Fig. 7f).

Other mineral phases

Euhedral biotite crystals (Mg# = 62–74) containing abun-
dant melt, apatite and oxide inclusions are common in the 
NYT. Low-Sr–Ba–Co and high-Rb–Mn poorly zoned biotite 
crystals mainly occur in the most evolved and composition-
ally homogenous units (LM1 and UM1t), whereas relatively 
high-Co and low-Mn–Rb zoned crystals with increasing Sr 
and Ba from core-to-rim are common in all the other strati-
graphic units (Online Resource 2). No correlation between 
Sr and Ba vs. Co and Mg# was observed in the zoned biotite 
crystals.

Ti-magnetite and apatite were recognized in all the ana-
lyzed units and often form crystal clots together with pla-
gioclase and clinopyroxene (Online Resource 2) or occur as 
mineral inclusions in clinopyroxene and biotite. Relatively 
high  TiO2 and MnO magnetite crystals (Usp = 19–20) were 
found in most of the studied units, whereas relatively low 
 TiO2 and MnO magnetites (Usp = 14–18) showing negative 
correlation between Usp and  V2O3 contents only occur in 
the Upper Member (UM1b and UM16) and in the samples 
from Galleria Borbonica (GB2 and GB4).

Intensive parameters

Equilibrium temperatures and magma water contents were 
obtained using clinopyroxene–liquid thermometers (Masotta 
et al. 2013) and K-feldspar-liquid hygrometers (Mollo et al. 
2015) specifically calibrated to alkaline compositions, 
akin to the NYT magmas. Mineral cores and rims were 
combined with bulk-rock and matrix glass compositions, 
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CI/pre-NYT and post-NYT data from the literature (Civetta et  al. 
1997; D’Antonio et  al. 1999, 2007; de Vita et  al. 1999; Pappalardo 
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(2011), whereas red-filled stars refer to NYT data from this study. 
Note that higher 87Sr/86Sr (up to 0.70871) and CaO (up to 10.7 wt%) 
compositions referred to the post-NYT activity, Epoch 1 (D’Antonio 
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malized to the average value of NBS 987 standard measured in this 
study (87Sr/86Sr = 0.710305)
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respectively. Specifically, different populations of glass 
were distinguished for the units that show wide ranges of 
matrix glass compositions (LM9, LM11, UM11, 13, 16 and 
GB2–4). Mineral–liquid equilibria were tested using the 
methods described in Mollo and Masotta (2014) and Mollo 
et al. (2015) and only equilibrium pairs were used for the 
thermometric and hygrometric calculations. The standard 
errors of estimate associated with the clinopyroxene–liquid 
thermometer (± 18.2 °C) and K-feldspar–liquid hygrometer 
(± 0.7 wt%) are included in the intervals of temperature and 
water content reported below.

Relatively low temperatures and high-water contents 
were estimated for LM1 (~ 910–980 °C and ~ 4.1–6.2 wt%, 
respectively) and UM1t (~ 910–970 °C and ~ 4.2–6 wt%, 
respectively). Higher temperatures and slightly lower 
water contents were observed in LM3 (~ 980–1065 °C and 
~ 4.6–4.9 wt%, respectively) and UMb (~ 940–1060 °C and 
~ 4.2–5.9 wt%). Compared with these units much wider 
ranges of temperature and water contents were calculated 
for LM9, 11 and UM1b (~ 930–1060 °C and ~ 3.4–6.0 wt%, 
respectively), UM11, 13, 16 (920–1095 °C; 3.9–5.5 wt%, 

respectively) and GB2–4 (930–1085 °C; 3.9–5.3 wt%). Equi-
librium tests show that only group 1 clinopyroxene and sani-
dine are in equilibrium with LM1 and UM1t, whereas group 
2 clinopyroxene (Mg# < 90) and group 1 sanidine (≥ Or74) 
are in equilibrium with LM3 (Figs. 6a, 7a).

Discussion

Correlation between the pyroclastic deposits 
of Galleria Borbonica and the Neapolitan Yellow Tuff

The Sr isotopic ratios of the samples from Galleria Bor-
bonica overlap with those of the NYT pyroclastic sequence 
and are clearly distinct from the Sr isotopic signatures of 
the pre-CI samples (Fig. 5). These findings suggest attri-
bution of the deposits of Galleria Borbonica to the NYT 
pyroclastic sequence, thus confirming the stratigraphic 
reconstructions of Perrotta et al. (2006). We note that the 
samples GB2–4 bear remarkable geochemical and tex-
tural similarities with UM1b, UM11, UM13 and UM16: 
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(1) the broad compositional ranges observed in bulk-rock 
and matrix glasses (Figs. 2, 3, 4); (2) the mingling textures 
detected in back-scattered images of juvenile glass frag-
ments (Online Resource 2); (3) the Sr enrichment in high-
An plagioclases (Online Resource 2); (4) the occurrence 
of high-Sr-Eu clinopyroxenes (group 3; Fig. 7) and (5) 
the presence of relatively low-Ti–Mn magnetite crystals 

(Online Resource 1). Hence, we propose a correlation 
between the pyroclastic deposits of Galleria Borbonica 
and the Upper Member of the NYT. Such correlation is 
further supported by the incipient lithification displayed by 
the pyroclastic deposits of Galleria Borbonica. Indeed, this 
post-depositional process typically affects the proximal 
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deposits in the intermediate and uppermost portions of 
the NYT pyroclastic sequence (de’Gennaro et al. 2000).

Role of fractional crystallization processes

The NYT is characterized by a wide range of compositions 
spanning from trachy-andesites to phonolites, and observ-
able both at the scale of the entire pyroclastic sequence and 
within single juvenile clasts (Figs. 2, 3, 4). Despite such 
compositional variability, the Sr-isotope ratios show lim-
ited variations (i.e., 0.70753–0.70761; Di Renzo et al. 2011; 
Orsi et al. 1995; this study; Fig. 5) suggesting that the most 
evolved magmas may be genetically correlated with the least 
evolved ones. A slight decrease of the bulk-rock 86Sr/87Sr has 
been observed towards the top of the pyroclastic sequence 
indicating that a fresh and slightly less radiogenic recharge 
magma was injected at the base of the NYT magmatic res-
ervoir prior or during eruption (Orsi et al. 1995). Rhyolite-
MELTS (Gualda et al. 2012) thermodynamic simulations 
performed at different pressures and initial water contents 
(Fig.  3d–f) as well as fractional crystallization models 
obtained using a range of bulk-rock partition coefficients 
(see Online Resource 3 for further details) show that the 
least evolved compositions and the most differentiated ones 
plot on the same crystallization paths (i.e., liquid lines of 
descent; Fig. 4d–f). Additionally, mass balance calcula-
tions confirm that the highly evolved phonolitic composi-
tions (LM1) can be derived from a trachy-andesitic parental 
magma akin to UM11 after ~ 60% fractional crystallization 
of sanidine (~ 28%), plagioclase (~ 16%), clinopyroxene 
(~ 8%), Ti-magnetite (~ 6%), biotite (~ 2%) and apatite (~ 1%) 
(Online Resource 3).

In agreement with experimental studies and thermody-
namic calculations of trachy-phonolitic magmas at Campi 
Flegrei (Bohrson et al. 2006; Fowler et al. 2007; Fabbrizio 
and Carroll 2008), our rhyolite-MELTS simulations indi-
cate that clinopyroxene is the liquidus phase followed by 
the late crystallization of feldspar (Online Resource 3). 
Consequently, in the early stages of magma cooling and 
differentiation, the geochemical evolution of clinopyrox-
ene primary controls the concentration of rare earth ele-
ments (i.e., REE + Y where Y is a pseudo-lanthanide) in 
the solidifying system. This is especially true for Ce and 
Y that are highly incompatible in feldspar (i.e., fsp−meltDCe 
= 0.03 and fsp−meltDY = 0.07 from Mahood and Hildreth 
1983 and; Ewart and Griffin 1994, respectively), but can 
be incorporated in clinopyroxene up to compatible trace 
element concentrations (Pappalardo et al. 2008). On this 
basis, the REE + Y model of Mollo et al. (2016) has been 
adopted to track the progressive variation of cpx−meltDCe 
and cpx−meltDY as a function of clinopyroxene composi-
tional changes in the NYT (see Fig. 8 and Online Resource 

3 for the details of the model). Our fractional crystalliza-
tion model shows that segregation of clinopyroxene (~ 9%) 
and feldspar (~ 42%), comparable with the results obtained 
via mass balance calculations (Online Resource 3), suc-
cessfully reproduces the ranges of Ce and Y observed in 
the NYT. This confirms the development of a fractional 
crystallization-dominated environment prevalently con-
trolled by the early formation of clinopyroxene at rela-
tive high temperature and the subsequent crystallization 
of variable amounts of feldspar during magma cooling. It 
is interesting to note that some compositions (e.g., LM9, 
LM11, UM1b, UM13) are not fully captured by the cpxFC1 
and fspFC1-5 vectors, as they are greatly depleted in Ce 
and Y (Fig. 8). Similarly,  K2O–Ba–Sr–Eu-rich and Zr-poor 
compositions referred to the same stratigraphic units, plot 
outside the main crystallization paths obtained by means 
of rhyolite-MELTS simulations (Fig. 3d–f) and trace ele-
ment fractional crystallization models (Fig. 4d–f). These 
observations suggest that fractional crystallization alone 
cannot adequately account for the remarkable heterogene-
ity in melt and mineral compositions of the NYT magmas; 
some melting of feldspar and biotite-rich material must be 
taken into account (see discussion below).
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See text and Online Resource 3 for more details
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Origin of textural and compositional variations

In a fractional crystallization-dominated environment 
crystal–liquid separation promotes the generation of a 
cumulate crystal mush, from which at intermediate crys-
tallinity (~ 50–70% crystals; Dufek and Bachmann 2010) 
highly evolved interstitial melts can be extracted and 
accumulate in the upper portion of the eruptible reservoir 
(Bachmann and Bergantz 2004). Fractional crystalliza-
tion and melt segregation processes undoubtedly played 
a key role in the evolution of the NYT magmas, produc-
ing the highly differentiated and water-rich compositions 
observed in LM1 and UM1t (Figs.  2, 3, 4). However, 
the remarkable heterogeneities displayed by the matrix 
glasses (Figs. 2, 3, 4, 8) and the presence of preserved 
mingling textures (Online Resource 2) indicate interac-
tions between compositionally different magmas prior to 
eruption. Specifically, the occurrence of disequilibrium 
mineral phases in most of the studied units, even those 
that show relatively homogenous bulk-rock and matrix 
glass compositions (i.e., LM1, LM3 and UM1t; Figs. 6a, 
7a), together with the presence of high-Mg clinopyrox-
ene overgrown by low-Mg rims (group 2; Fig. 7), the 
resorbed bytownitic plagioclases overgrown by labrador-
itic rims (Online Resource 2) and the variations in Sr 
isotopic ratios, suggest interaction between a more mafic 
magma from recharge (showing slightly lower 87Sr/86Sr) 
and the evolved resident melt. Additionally, the presence 
of matrix glass compositions (i.e., UM1b, LM11, UM11, 
UM13, UM16 and GB2–4) not captured by the fractional 
crystallization models (Figs. 3, 4, 8), indicate the occur-
rence of a third magmatic component. The geochemical 
characteristics of these matrix glasses suggest an origin 
via melting of  K2O–Ba–Sr–Eu-rich and  N2O–Zr–Ce–Y-
poor mineral phases (i.e., feldspars ± biotite). This is 
further testified to by the occurrence of resorbed sani-
dines (group 2; Fig. 6), plagioclases and biotites (Online 
Resource 2) overgrown by Sr-Ba-rich rims and the high-
Sr–Eu clinopyroxenes (group 3; Fig. 7) which record par-
tial melting and re-crystallization from a locally enriched 
melt. Partial melting of feldspars and minor biotite could 
be likely triggered by the invasion of more mafic and 
hotter magma in the NYT magma chamber prior to erup-
tion (see Wolff et al. 2015 for a review on this topic). 
Indeed, the notable temperature contrast between the most 
evolved compositions representing the resident magmas 
(~ 910 °C) and the least evolved ones indicative of the 
recharge magmas (up to ~ 1095 °C), is compatible with 
this scenario (see also the Bishop Tuff case, showing a 
similar thermal gradient, although the absolute tempera-
tures are significantly lower; Evans et al. 2016 and refer-
ences therein).

A comparison with the Campanian Ignimbrite

The CI and NYT caldera-forming eruptions display notable 
differences in the composition and crystallinity of erupted 
products (e.g., Orsi et al. 1995; Pappalardo et al. 2002, 2008; 
Thomlinson et al. 2012 and references therein). In the CI, 
crystal-poor evolved melts (5–6% crystals; DI = 86–91) fed 
most of the eruption until caldera collapse. Subsequently, 
crystal-rich and less differentiated magmas (36–37% crys-
tals; DI = 75–78) were evacuated from the deeper and more 
crystalline portions of the sub-volcanic reservoir (Forni 
et al. 2016). The crystal-poor juvenile clasts display the 
geochemical features of melts extracted from a feldspar-
dominated cumulate mush system (i.e., relatively high Zr, 
low-K2O–Ba–Sr and negative Eu anomalies; Fig. 9a–c), 
whereas the crystal-rich juvenile material, erupted together 
with abundant alkali-syenites, exhibits a clear cumulate sig-
nature (i.e., relatively low Zr, high-K2O–Ba–Sr and slightly 
negative to positive Eu anomalies; Fig. 9a–c).

In the NYT, only crystal-poor magmas showing a broad 
compositional range (3–10% crystals; DI = 72–87) were 
erupted. Evolved and relatively homogeneous products 
occur at the base and in the intermediate portions of the 
sequence, separated by more mafic and heterogeneous 
compositions, which become abundant towards the upper 
part of the ignimbrite (Fig. 2). We argue that the evolved 
magmas represent lenses of extracted melts showing lim-
ited interactions with the recharge magmas. Compared with 
the crystal-poor CI units, the NYT extracted melts display 
similar  SiO2, MgO and FeO contents but less pronounced Eu 
anomalies and higher CaO,  K2O, Sr and Ba contents, indi-
cating lower degrees of feldspar fractionation (Fig. 9a–c). 
This is confirmed by results from mass balance calculations 
and trace element modeling showing that higher percentages 
of feldspar crystallization are required to derive the most 
evolved compositions of the CI (~ 64%; Pappalardo et al. 
2008) compared with those of the NYT (~ 44%; see Fig. 8 
and Online Resource 3).

Similarly to the CI, high-K2O compositions displaying 
relatively high Zr, intermediate Ba and Sr contents and 
slightly negative to positive Eu anomalies occur in the NYT 
(Fig. 9a–c). Rhyolite-MELTS (Gualda et al. 2012) thermo-
dynamic simulations and fractional crystallization models 
obtained for a range of input parameters and partition coeffi-
cients (see Online Resource 3) show that these compositions 
are not fully included in any of the possible crystallization 
paths of the CI and the NYT (Fig. 9d–f). Such behavior 
is coherent with an origin via melting of low temperature 
phases (i.e., sanidine ± biotite) in the cumulate mush upon 
more mafic recharge, which likely represents a key process 
in triggering both caldera-forming eruptions. In the CI evi-
dence of the presence of a more mafic invading magma is 
given by the high-An plagioclase found in the crystal-rich 
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portions but the compositional variations observed through 
the pyroclastic sequences (mainly due to strong changes in 
the crystallinity) indicate that small amounts of recharge 
magmas mixed with the resident evolved ones (Forni et al. 
2016). Conversely, in the NYT, more pronounced interac-
tions between the recharge magmas and the resident melts 

are testified to by the presence of: (1) mingling textures 
and compositional heterogeneity in glass (Figs. 2, 3, 4 and 
Online Resource 2); (2) disequilibrium mineral phases 
(Figs. 6, 7); (3) notable scatter in major and trace element 
plots (Figs. 3, 4); (4) straight-line trajectories indicating 
magma mixing connecting the three different magmatic 

Fig. 9  Plot of MgO (wt%) vs.  K2O (wt%) (a), Zr (ppm) vs. Ba (ppm) 
(b) and Eu/Eu* [= EuN/(SmN  ×  GdN)1/2; trace element concentra-
tions normalized to values from McDonough and Sun, 1995] vs Sr 
(ppm) (c) in bulk-rock and matrix glasses from the CI and the NYT 
pyroclastic sequences. For the CI, compositions from the crystal-poor 
(color-filled symbols) and crystal-rich units (white-filled symbols) 
were distinguished (data from Melluso et  al. 1995; Signorelli et  al. 
1999; Fedele et al. 2008; Forni et al 2016). For the NYT, composi-
tions from the units LM1 and UM1t (color-filled symbols) and from 
all other units (white-filled symbols) were distinguished (data from 
Orsi et  al. 1992, 1995; Wohletz et  al. 1995; Tomlinson et  al. 2012 
and this study). Crystallization paths (dashed colored lines) calcu-
lated using rhyolite-MELTS (Gualda et  al. 2012) are reported in d. 

Trace elements fractional crystallization models obtained using the 
Rayleigh equation for a range of bulk-rock partition coefficients  are 
reported in e and f. In e and f symbols along the lines indicate melt 
fractions with steps of 0.1. Note that both for the CI and the NYT the 
high-K2O compositions showing low Zr, intermediate Ba and Sr and 
positive Eu anomalies are not included in the calculated crystalliza-
tion paths, coherent with their origin via partial melting of low tem-
perature phases in the cumulate mush. In the NYT, mixing lines con-
nect the least evolved compositions (high-MgO–Sr–Ba and low-K2O) 
with the remelted cumulates (high-K2O and slightly negative to posi-
tive Eu anomalies) and the extracted melts (low-MgO–K2O–Sr–Ba 
and negative Eu anomalies) generating broad compositional ranges. 
See text and Online Resources 3 for further information
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components in major element diagrams (Figs. 2, 3, 9) and 
(5) slight decrease in 86Sr/87Sr towards the top of the pyro-
clastic sequence (Orsi et al. 1995).

Furthermore, in the NYT the occurrence of crystal clots 
notably lacking sanidine, suggests that K-feldspar was not 
abundant in the cumulate mush (Online Resource 2). Rhyo-
lite-MELTS calculations confirm that in the NYT sanidine 
started crystallizing at a later crystallization stage com-
pared to the CI (≥ 0.3 vs. ≥ 0.1 crystal volume fraction, 
respectively; see Online Resources 3). Hence, it is plausible 
that in the NYT sanidine was removed relatively late from 
the evolving magma depositing in the upper portion of the 
cumulate pile (group 2 sanidine) and continued crystalliz-
ing in equilibrium with the most differentiated melt without 
being removed from it (group 1 sanidine). Consequently, the 
bulk of the cumulate crystal mush was more refractory and 
more difficult to remobilize, thus explaining why, differently 
from the CI products, crystal-rich juvenile clasts were not 
found in the NYT pyroclastic sequence.

Dynamics of magma withdrawal

According to the reconstructions of Orsi et al. (1992) and 
Scarpati (1993), the NYT eruption started with a single con-
duit phreato-plinian phase during which the basal pumice 
layer LM1 was deposited. The geochemical characteristics 

of LM1 indicate that it represents portions of the evolved 
lens of extracted magma accumulated at the top of the erupt-
ible reservoir, thus being the first to be erupted (Fig. 10a). In 
LM1, the occurrence of disequilibrium mineral phases (e.g., 
group 2 clinopyroxene; Fig. 7) suggests interaction with a 
less evolved recharging magma (Fig. 10b). When recharge 
entered the NYT magma chamber, convective stirring was 
activated due to thermal and physical perturbation promot-
ing mixing between the invading and the resident magma. 
This is testified to by the presence of intermediate and rela-
tively homogenous rock compositions (LM3; Fig. 10b) con-
taining crystals from both the evolved and the more mafic 
magmas (i.e., low-Or sanidines and high-Mg clinopyrox-
ene; Figs. 6, 7). As the eruption proceeded, deeper and more 
crystalline portions of the system became accessible, result-
ing in a slight increase of the crystallinity and compositional 
heterogeneity of the erupted magmas, as observed towards 
the upper portion of the Lower Member (LM9 and LM11) 
(Fig. 2). These magmas record mingling between the more 
mafic recharge and the high-K–Eu/Eu* magma derived from 
cumulate melting and become less crystalline and com-
positionally more homogeneous at the base of the Upper 
Member (UM1b). When the caldera collapse phase started, 
the opening of new fractures allowed tapping from other 
sectors of the eruptible reservoir where lenses of extracted 
melts were left almost undisturbed (Fig. 10c). This explains 

a b c

increasing stratigraphic height

Lower Member 

onset of caldera collapse

mafic recharge/s Upper Member 

biotite Fe-Ti oxide apatite

sanidine

group 1 group 2 
cores

group 2 
cores+rims

clinopyroxene

group 1 group 2 
cores

group 2 
cores+rims

group 3 
cores+rims

anorthitelabradorite

plagioclase other minerals

1 2 3 4 5 6

cumulate mush extracted melts

Fig. 10  Schematic cartoon illustrating the initial architecture of 
the NYT magmatic reservoir before eruption (a) and its subsequent 
evolution during eruption, as controlled by the dynamic of magma 
withdrawal (b, c). In a note the presence of a cumulate crystal mush 
dominated by group 1 clinopyroxenes, labradoritic plagioclases and 
oxides with minor biotite and sanidine crystals from which lenses of 
crystal-poor and relatively cold melts are extracted and accumulated 
in the upper part of the magmatic reservoir. In b more mafic magmas 
from recharge bring high-An plagioclases and high-Mg clinopyrox-
enes likely triggering the NYT eruption. The extracted melt ponding 
at the top of the magma reservoir is the first to be erupted (1). Note 
that despite the relatively homogeneous compositions of bulk-rocks 
and matrix glasses at the base of the Lower Member, the presence 
of disequilibrium high-Mg clinopyroxene cores overgrown by equi-

librium low-Mg rims (group 2) testifies to interactions between the 
resident and the recharge magmas (1). Subsequently, mixing between 
these two magmas generates intermediate compositions (2). More 
heterogeneous compositions indicative of mingling between the 
recharge magma and a melt derived from melting of the low tem-
perature phases within the cumulate mush (i.e., sanidine ± biotite) are 
present in the upper portion of the Lower Member (3) and become 
more homogenous in the lower part of the Upper Member (4). When 
caldera collapse occurs (c) eruption taps other sectors of the magma 
chamber where lenses of extracted melts are stored (5). Finally, mix-
ing/mingling between all the different magmatic components gener-
ates the highly heterogeneous compositions, which occur at the top of 
the Upper Member (6)
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the occurrence of evolved and homogeneous compositions 
akin to LM1 in the lower part of the Upper Member (UM1t) 
(Fig. 10c). Mixing/mingling between all the different com-
ponents (i.e., evolved resident magma, magma derived from 
cumulate melting and more mafic magma from recharge) 
characterized the late phases of the eruption, producing the 
broad compositional ranges observed in the intermediate and 
upper portions of the Upper Member (UM11, UM13, UM16, 
GB2–4) (Figs. 2, 3, 4).

Conclusions

The Neapolitan Yellow Tuff (NYT) is a voluminous pyro-
clastic sequence erupted at ~ 15 ka during the most recent 
caldera-forming event of Campi Flegrei (Southern Italy). 
The compositional variations observed in the NYT do not 
reflect the inversion of a vertically zoned magma chamber 
but rather a complex interaction between different magmatic 
components stored in a heterogeneous upper crustal magma 
reservoir and progressively tapped (Orsi et al. 1992, 1995; 
this study). Indeed, the most evolved compositions (pho-
nolites) occur at the base of the Lower and Upper Mem-
bers and a sharp decrease in the degree of magma evolu-
tion (trachy-andesites) is observed towards the top of both 
units. By combining bulk-rock and glass geochemistry with 
textural and compositional features of mineral phases we 
show that at least three compositionally different magmas 
fed the NYT eruption: (1) an evolved magma displaying 
low-Ca–Mg–Ba–Sr and negative Eu anomalies; (2) a more 
mafic magma with high-Ca–Mg–Ba–Sr, low-K and slightly 
negative Eu anomalies and (3) an intermediate magma show-
ing low-Ca–Mg, high-K, intermediate Ba and Sr and slightly 
negative to positive Eu anomalies. These three components 
variably interacted prior and during eruption generating 
the wide compositional ranges observed in the NYT bulk-
rocks and matrix glasses. The geochemistry of the evolved 
products suggests that they represent the relatively cold and 
water-rich extracted melt accumulated in the upper part of 
the magmatic reservoir from which unzoned low-K–Sr–Ba 
sanidine (group 1), low-Mg clinopyroxene (group 1) and 
low-Sr–Ba–Co, high-Rb–Mn biotite crystallized. This 
magma fed the initial stages of eruption but was also erupted 
immediately after the caldera collapse, when new magma 
pathways opened, allowing tapping from different sectors of 
the reservoir. The relative more mafic component, showing 
slightly lower Sr-isotope ratios is representative of recharge 
magmas which mixed with the resident evolved melt as testi-
fied to by the presence of high-Mg clinopyroxene cores sur-
rounded by thin bright low-Mg rims (group 2) and resorbed 
high-An plagioclase cores overgrown by lower-An rims. 
More mafic and hotter recharge triggered melting of the 
low temperature mineral phases (i.e., feldspars ± biotite) 

accumulated in the upper part of the cumulate pile. These 
processes generated a compositionally intermediate melt 
enriched in  K2O, Ba, Sr and Eu from which high-Sr–Eu/
Eu* clinopyroxene rims and crystals (group 3) together with 
high-Ba–Sr sanidine, plagioclase and biotite rims formed.

We conclude that the NYT represents a compelling exam-
ple of pyroclastic sequence in which a combination of melt 
extraction, cumulate mush melting and mixing/mingling 
with recharge magmas play a key role in generating complex 
chemical and physical gradients. A similar scenario has been 
proposed for the CI (Forni et al. 2016) and other zoned ign-
imbrites around the world (e.g., Deering et al. 2011; Bach-
mann et al. 2014; Pamukcu et al. 2013; Wolff and Ramos 
2014; Sliwinski et al. 2015, 2017; D’Oriano et al. 2017). 
However, differently from these other examples, erupted 
crystal-rich material with geochemical cumulate signature 
notably lacks in the NYT pyroclastic sequence (more akin to 
systems such as Yellowstone-Snake River Plain; e.g., Ellis 
et al. 2014). This implies that low temperature and highly 
fusible mineral phases (sanidine and biotite) did not rep-
resent the bulk of the cumulate mush system in the NYT 
magmatic reservoir. Hence, only detailed geochemical and 
textural analyses of matrix glasses and mineral phases allow 
reconstruction of the different processes that control the evo-
lution of the upper crustal reservoir and those that lead to 
eruption.
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