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Abstract

In the past few decades, wireless communication has become one of the fastest growing

sectors in the communication industry. In order to satisfy the tremendous growth of de-

mand, wireless service providers are striving to improve the communication systems so that

higher data rate wireless transmission can be supported. One of the major breakthroughs

for supporting high data rate wireless communications is the multiple-input multiple-output

(MIMO) communication technology, i.e., multi-antenna communication. The utilization of

multiple antennas provides a significant increase in the reliability and the information trans-

mission rate in wireless systems. After their proposal, multi-antenna communication has

been widely adopted as a key solution for providing high datarate throughput in wireless

systems. Nowadays, multi-antenna communication techniques are indispensable to most of

the wireless communication standards.

On the other hand, conventional wireless communication architecture does not seem to

be feasible to offer the high data rate transmission required for future generation wireless

communication systems in reasonably large areas, e.g., forthe fourth generation (4G) cel-

lular wireless networks. Relay communication was proposedas a means to extending the

coverage range in wireless networks with reduced infrastructure deployment costs. How-

ever, conventional relaying protocols require two channeluses to transmit the data from the

source to the destination via the relay, which leads to a lossin the spectral efficiency. The

two-way relaying protocolwas proposed to recover a significant portion of the spectralef-

ficiency loss. Such a protocol combines the transmission of the bidirectional information

flows in relay networks and is simple to implement in practical systems.

This dissertation deals with the analysis and design of communication techniques in

MIMO relaying systems, especially in MIMO two-way relayingsystems. The analysis of

the considered system is based on information theoretical performance limits, such as capac-

ity and achievable rates. For the design of communication techniques, we propose practical

transmission strategies and show their performance results based on practical performance

measures.
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Abstract

Firstly, we verify that relay communication can extend the coverage of wireless networks,

and propose a quantitative analysis framework for determining the coverage extension by us-

ing decode-and-forward (DF) relays in cellular wireless systems. We define the coverage of

cellular relaying networks based on the achievable rates, and provide theoretical calculations

as well as simulations to show the improvement of coverage incellular relaying systems.

Secondly, information-theoretic performance analysis onMIMO two-way relaying sys-

tems is proposed. For MIMO two-way DF relaying systems, two data-combining schemes,

i.e., the superposition coding (SPC) scheme and the networkcoding scheme, are studies

in detail. When the transmit channel knowledge is availableat the relay, we propose the

optimum transmission strategies at the multi-antenna relay from the information-theoretic

perspective for the two data combining schemes. Furthermore, we propose the methods to

find the optimum time-division (TD) strategies between the multiple access (MAC) phase

and the broadcast (BRC) phase in two-way DF relaying systems, considering both peak and

average power constraints.

Next, we consider the design of practical transmission schemes in MIMO two-way relay-

ing systems. We propose a novel channel estimation method for the BRC phase of MIMO

two-way DF relaying systems when the SPC scheme is applied. The self-interference (SI),

which contains the known data at the receivers in two-way relaying systems, is utilized to

estimate the channel. Since the SI is inherent in the received signals in two-way relaying

systems, it does not consume additional system resources aspilots do. On the other hand,

the SI can also be used together with pilots to offer superiorchannel estimation performances

than the purely pilot-aided channel estimation scheme. Furthermore, we quantify the spec-

tral efficiency improvement of the BRC phase channel with SI-aided channel estimation by

deriving its achievable rates using different codebooks.

Finally, we propose a novel method to exploit the bit-level SI so that asymmetric data rates

can be transmitted in the BRC phase of two-way DF relaying systems when the network cod-

ing scheme is applied. Since the network coding scheme combines the data on the bit level,

the major problem faced by the network coding scheme is how totransmit with asymmetric

data rates to the user stations according to their individual link qualities in the BRC phase.

In the proposed scheme, the weaker link receiver exploits thea priori bit information in each

received data symbol, so that it only needs to decode on a subset of the signal constellation.

Subject to the same bit error rate constraint, the weaker link receiver can decode at lower

signal-to-noise ratio (SNR) compared to the stronger link.
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Kurzfassung

In den vergangenen Jahrzehnten hat sich die drahtlose Kommunikation in eine der am

schnellsten wachsenden Sektoren der Nachrichtentechnik-Industrie gewandelt. Um die

enorm gestiegene Nachfrage decken zu können, setzen Wireless Service Provider darauf,

zukünftige drahtlose Kommunikationssysteme so zu verbessern, dass wesentlich höhere

Datenraten unterstützt werden. Eine der wichtigsten Innovationen der letzten Jahre zur

Unterstützung hoher Datenraten in der drahtlosen Kommunikation ist die Einführung

der Multiple-Input Multiple-Output (MIMO)-Technologie,die durch die Verwendung von

Merfach-Antennen-Arrays auf Seiten von Sender und Empfänger möglich wird. Die Ver-

wendung von mehreren Antennen bietet für Wireless-Systemeeine signifikante Erhöhung

der Zuverlässigkeit und der Übertragungsrate. Mittlerweile gilt die Verwendung von MIMO-

Techniken allgemein als Schlüssel zur Bereitstellung hoher Übertragungsraten in drahtlosen

Systemen und findet Eingang in die aktuellen Standards der drahtlosen Kommunikation.

Auf der anderen Seite wirft dies aber auch die Frage auf, ob konventionelle drahtlose

Kommunikations-Architekturen in der Lage sind, die für diekünftige Generation draht-

loser Kommunikationssysteme notwendigen hohen Datenraten allen Nutzer zur Verfügung

zu stellen. Ist es z.B. im Fall von LTE Advanced, der vierten Generation (4G) zellularer

Mobilfunknetze, möglich, auch Usern am Zellrand mit der gebotenen Zuverlässigkeit die

erstrebten hohen Übertragungsraten zu liefern? Relay-Kommunikation wird als ein Mittel

zur Erweiterung der Reichweite in drahtlosen Netzen vorgeschlagen, mit dem Vorteil gerin-

gerer Kosten für die Bereitstellung der Infrastruktur im Vergleich zu anderen Optionen, wie

z.B. einer Erhöhung der Dichte von Basisstationen. Allerdings erfordern konventionelle

Halb-duplex Relaying Protokolle zwei Kanalzugriffe, um die Daten von der Quelle über das

Relay bis zum Bestimmungsort weiterzuleiten. Dies schlägtsich in einer reduzierten spek-

tralen Effizienz nieder. DasTwo-Way (Zwei-Wege) Relaying Protokollwurde vorgeschlagen,

um diese Verluste signifikant zu minimieren. Two-Way Relaying Protokolle kombinieren

die Übermittlung zweier bidirektionaler Informationsflüsse in Relay-Netzen und können in

vielen Fällen vergleichsweise problemlos in praktischen Systemen implementiert werden.

Diese Dissertation befasst sich mit der Analyse und dem Entwurf von Kommunikation-
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Kurzfassung

stechniken für MIMO-Relaying-Systeme, wobei insbesondere Two-Way Relaying betrachtet

wird. Die Analyse der Relay-Systeme basiert auf Informationstheoretischen Metriken wie

etwa der Kanalkapazität und den erreichbaren Datenraten. Wir schlagen geeignete Übertra-

gungsstrategien vor und bewerten die Leistungsfähigkeit dieser Strategien anhand zweck-

mässiger Kenngrössen.

Zunächst zeigen wir dass Relay-Kommunikation zur Erhöhungder Reichweite drahtloser

Netzwerke eingesetzt werden kann und schlagen einen quantitativen Analyseansatz vor, um

die Verbesserung der Reichweite in zellularen Funksystemen mittels sog. Decode-and-

Forward (DF) Relays zu bestimmen. Die Reichweite zellularer Netzwerke definieren wir

hierbei anhand der erzielbaren Übertragungsrate und präsentieren analytische Berechnungen

sowie Simulationsergebnisse, welche die Reichweitenverbesserung der betrachteten Systeme

durch Relaying belegen.

Darüber hinaus schlagen wir einen Informationstheoretischen Ansatz zur Performance-

analyse von MIMO Two-Way Relaying Systemen vor. Für diese Systeme werden unter

Einsatz von DF-Relaying zwei Verfahren detailliert untersucht, die sich darin unterscheiden,

wie die beiden bidirektionalen Informationsflüsse kombiniert werden: das sog. Superpo-

sition Coding (SPC) Verfahren, sowie das Network Coding Verfahren. Für den Fall, dass

der sendeseitige Kanalzustand am Relay bekannt ist, entwickeln wir die optimale Übertra-

gungsstrategie für Mehrfach-Antennen-Relays durch die Informationstheoretische Betrach-

tung der beiden Verfahren. Weiterhin schlagen wir für dieseVerfahren Methoden vor, um die

optimale zeitliche Aufteilung zwischen der Multiple Access (MAC) Phase und der Broadcast

(BRC) Phase in Two-Way-DF-Relaying-Systemen zu finden. Dabei werden systembedingte

Anforderungen hinsichtlich einer Beschränkung von Spitzen- und Durchschnittsleistungen

berücksichtigt.

Als nächstes betrachten wir das Design von geeigneten Übertragungsverfahren für MIMO

Two-Way Relaying Systeme. Wir schlagen eine neue Methode zur Kanalschätzung vor,

die für die BRC Phase von MIMO Two-Way DF Relaying Systemen mit SPC angewen-

det werden kann. Die Selbst-Interferenz (SI), die durch dasTwo-Way-Relaying Prinzip in

solchen Systemen entsteht, und die aus den über den Kanal zurückgesendeten und damit

den Empfängern bekannten Daten besteht, wird genutzt, um den Kanal zu schätzen. Da bei

Two-Way Relaying Systemen die SI inhärent in dem Empfangssignal vorhanden ist, wer-

den keine zusätzlichen Systemressourcen wie Pilotsignalebenötigt. Andererseits kann die

SI auch zusammen mit Pilotsignalen genutzt werden, um eine verbesserte Kanalschätzung

im Vergleich zur rein Piloten-gestützte Kanalschätzung zubieten. Darüber hinaus quan-

tifizieren wir die Verbesserung der spektralen Effizienz derBRC-Phase mit SI unterstützter
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Kanalschätzung durch die Berechnung der erreichbaren Raten mit unterschiedlichen Code-

büchern.

Schließlich schlagen wir eine neuartige Methode vor, die für ein Network-Coding

basiertes Two-Way-Relaying auf Bit-Ebene die SI nutzt, um asymmetrische Datenraten in

der BRC Phase von Two-Way Relaying Systemen übertragen zu können. Da das Network-

Coding Schema die Daten auf der Bit-Ebene verarbeitet, ist das hauptsächliche Problem

dieses Schemas, wie asymmetrische Datenraten in der BRC Phase zu den Nutzerstatio-

nen entsprechend der individuellen Verbindungsqualität übertragen werden können. In

dem vorgeschlagenen Schema nutzt die schwächere Verbindung diea priori Bitinformation

in jedem empfangenen Datensymbol, so dass nur eine Teilmenge der Signalkonstellation

dekodiert werden muss. Unter der gleichen Bitfehlerratenbedingung kann der Empfänger

der schwächeren Verbindung so bei einem geringeren Signal-zu-Rausch-Verhältnis (SNR)

dekodieren im Vergleich zu dem SNR der stärkeren Verbindung.
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Chapter 1

Introduction

This dissertation discusses the multiple-input multiple-output (MIMO) relaying systems.

Such systems play a central role in the next-generation wireless communication networks. In

particular, we investigate the performance limits and develop transmission strategies for the

systems employing a spectrally efficient relaying protocol– the two-way relaying protocol.

1.1 Motivation

The last few decades saw tremendous developments in communication technologies, espe-

cially in wireless communication. Nowadays, wireless communication has penetrated into

nearly every aspect of our life and has become indispensableto the modern society. For

example, cellular mobile communication has enabled peopleto keep contact anywhere, and

mobile phones have turned into an important business and social communicating tool; wire-

less local area networks (WLAN) are supplanting wired Ethernet in campuses, hotels and

airports. The next-generation wireless communication systems are expected to offer high

speed multimedia services, such as high definition television broadcasting and high quality

video conferencing. Those services need a significant boostin the system capacity. However,

the performance of the system is subject to the adverse physical factors such as the limited

transmit power, the scarcity of the electromagnetic spectrum and the signal attenuation and

fluctuation in wireless links. In order to deliver the performance necessary for supporting

the emerging applications, it is essential for future wireless systems to utilize the available

spectrum in a more efficient way. Recent developments of the multiple-input multiple-output

(MIMO) transmission technology, i.e., using multiple collocated antennas at both the trans-

mitter and the receiver sides, provides a promising solution for increasing the system ca-

pacity. Theoretical studies [224] and practical implementations [67] have shown that the
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capacity of MIMO systems can be dramatically increased compared to that of the conven-

tional single-input single-output (SISO) transmission systems without extra consumption of

transmit power and bandwidth. In rich-scattering environments and when the signal-to-noise

ratio (SNR)ρ is high, the MIMO channel capacityC scaleslinearly with the minimum of

the number of the transmit antennasM and the number of the receive antennasN , i.e.,

C ∝ min(M,N) log(ρ). (1.1)

In addition, thespatial diversityprovided by MIMO systems offers an effective way of com-

bating the signal fluctuation due to the fading effects in wireless channels. Nowadays, MIMO

has become a key communication technology on the physical layer (PHY) in many wireless

standards, such as IEEE 802.11n (WLAN) [2], IEEE 802.16e/m (WiMAX) [3] and 3GPP

Long Term Evolution (LTE) [6].

Relay communication is an effective approach for combatingthe signal attenuation and the

shadowing effects in wireless channels. It is a well-known technique for transmitting signals

over very long distance. Research on relay channels can be dated back to the 1970’s [48,234].

Recently, due to the research on the fourth generation (4G) cellular mobile communication

systems in academia and industry, relay communication was again brought to the mainstream

of the wireless communication community [87, 204]. That is because of the following rea-

sons: first, the envisioned transmission data rate of 4G systems is several orders of magnitude

higher than that of the current 2G and 3G mobile systems. Withthe same transmit power

level, the energy per bit will be just a small fraction of thatin current systems. It is unlikely

that 4G mobile systems can cover the same service area without additional infrastructure.

Second, the 4G systems are expected to be operating in the frequency spectrum range that

is much higher than current mobile systems. This leads to higher pathloss that prohibits the

base station from communicating with users far away [174]. One way to overcome those

problems is to deploy relay stations in the cellular system so that the coverage area can be

extended and the overall data rate in the whole network can beimproved.

Besides extending the coverage and enhancing the capacity in wireless networks, relay

communication has also been shown by recent research to be able to improve the stability of

the radio links by introducing a new form of diversity –cooperative diversity. The incorpora-

tion of relay stations into the system creates additional paths between the transmitter and the

receiver. Signals carrying the same information are therefore transmitted over independently

fading channels and can be combined at the receiver [112, 134]. Relay communication can

be considered as a technique that realizes the benefits of MIMO communication in systems

where multiple antennas are spatially distributed. Setting up relay stations in cellular sys-
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Base station

Mobile stationRelay station

Fig. 1.1:A cellular relaying system with bidirectional informationflow

tems is rather simple. For example, fixed relay nodes can be placed on the top of lampposts

or high buildings where good wireless connection with the base station is possible. Those

dedicated relay stations can have sufficient power supply and can be equipped with powerful

signal processing hardware as well as multiple antennas. Another possible relay deployment

strategy is for some users to act as relays for their neighbors, which may be useful in, e.g.,

WLAN hotspots. The integration of relay communication intocellular mobile networks and

WLAN is envisioned to be one of the most promising wireless architecture in the years to

come. Relay communication has also been incorporated into wireless standards, such as

IEEE 802.11s (mesh networking) [4] and IEEE 802.11j (wireless multihop relay) [5].

Current practical wireless stations operate in half-duplex transmission mode. That is, they

cannot transmit and receive data simultaneously using the same frequency channel due to the

coupling between the transmit and receive circuitry [134].For the simplest two-hop relaying

scenario, where a half-duplex relay station assists the communication between the source

and destination stations, the transmission of each information symbol from the source to

the destination occupies two channel uses. This leads to a loss in spectral efficiency. One

protocol that recovers a significant portion of the half-duplex loss is thetwo-way relaying

protocolproposed in [193]. Observing that the information flows in the real world are often

bidirectional, this relaying protocol considers a common scenario that both stations want to

transmit data to each other via a relay station. This scenario can be considered as, e.g., the

base station communicates with a mobile user via a dedicatedrelay in a cellular system as

shown in Fig. 1.1, or two mobile clients exchange data via theaccess point in a WLAN. The

idea of the two-way relaying protocol is to combine the “uplink” and “downlink” data trans-

mission together by ingeniously mixing the data from different sources at the relay, instead

of simply forwarding the received data from one source at a time. While traditional relaying

protocols require four phases (in time or frequency) to achieve bidirectional communication

between the two stations, the two-way relaying protocol only needs two phases, namely, the

multiple access (MAC) phase and the broadcast (BRC) phase.

3
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From all that has been presented above, the combination of MIMO transmission technolo-

gies and relay communication will play an important role in the next-generation wireless

communication systems. This dissertation is devoted to theanalysis and design in MIMO

relaying systems, and we especially focus on the MIMO two-way relaying systems. We

present the analysis and results from information theoretic aspects on the one hand, which

serve as the fundamental performance limits for the considered system. On the other hand,

we present practical transmission strategies, which are crucial for the real-world implemen-

tation of the system.

1.2 Outline of Dissertation

This dissertation studies MIMO relay transmission technologies in modern wireless com-

munication. We focus on the analysis of the fundamental performance limits and the design

of practical transmission strategies for the systems employing a spectrally efficient relaying

protocol – the two-way relaying protocol. Fig. 1.2 shows theorganization of this dissertation.

The outline of each chapter in the dissertation is as follows.

Chapter 1 summarizes the motivation, outline and contributions of the dissertation.

Chapter 2 reviews the state of the art in modern wireless communication technologies.

This chapter is divided into three parts: MIMO communications, relay communications and

two-way relay communications. We present the basic system models and the important

transmission schemes for the communication systems. Recent research developments and

important achievements are summarized. For relay communication and two-way relay com-

munication, we present the transmission scenarios and focus on the commonly used relaying

strategies.

Chapter 3 presents the coverage analysis for MIMO decode-and-forward (DF) relaying

systems. We define the coverage range of cellular relaying networks according to the quality

of service (QoS) criterion based on the information theoretic outage capacity. In order to

quantitatively determine the advantages of incorporatingMIMO and relay communication

techniques into cellular mobile systems, we present an analytical framework for analyzing

the coverage range of MIMO DF relaying networks for its givensystem setup. Further-

more, the analytical results are verified by simulations based on the IST WINNER channel

model. Both the analysis and the simulations show that the coverage of cellular mobile com-

munication systems can be significantly enhanced by introducing multi-antenna and relay

communication.
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Fig. 1.2:Organization of this dissertation
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Chapter 4 presents the system models and data transmission strategies for MIMO two-way

relaying systems. We discuss the fundamental transmit-receive signal models and the basic

relaying strategies in MIMO two-way relaying systems. The two practical data combining

schemes in two-way DF relay systems, i.e., the superposition coding (SPC) scheme and

the network coding scheme, are studied in detail. When the channel state information at

the transmitter (CSIT) is available at the relay for the BRC phase of MIMO two-way DF

relaying systems, we propose methods for calculating the achievable sum rates when the two

data combining schemes are applied. Both schemes show significant advantages over the

traditional one-way relaying protocol.

Chapter 5 discusses the optimum time-division (TD) strategies between the MAC and the

BRC phases in MIMO two-way DF relaying systems. We show that the achievable rate

region can be greatly improved by optimally allocating the spectral-temporal resources on

the two transmission phases when the two-way DF relaying protocol is applied. We propose

the methods to find the optimum TD strategies for the given channel, considering both peak

and average power constraints. Furthermore, the achievable ergodic sum rates of the system

and the average achievable user rates subject to QoS requirements are compared for different

antenna configurations using the equal TD and the optimum TD strategies.

Chapter 6 proposes a novel and practical channel estimationapproach for the BRC phase

of MIMO two-way DF relaying systems when the SPC scheme is applied. The proposed

approach exploits the self-interference (SI), which contains the known data symbols at the

receivers, to estimate the BRC phase channel. The proposed SI-aided channel estimation

can be applied without pilots, which achieves higher bandwidth efficiency, or the SI can also

be used together with pilots to offer superior channel estimation performances than schemes

that are purely based on pilots. We propose the structure of SI-aided iterative receivers and

compare its performances with that of pilot-aided iterative receivers. Even when the channel

estimates are solely based on the SI, the proposed receiver can still significantly outperform

the pilot-aided receiver in realistic scenarios.

Chapter 7 quantifies the spectral efficiency improvement of the BRC phase channel in

MIMO two-way DF relaying systems from the information theoretic perspective when the

SI-aided channel estimation scheme is applied. We considerblock-fading channels in the

BRC phase and derive the achievable rates for systems employing the SI-aided and the pilot-

aided channel estimation schemes. The idea is to consider the time slots of a coherence

interval with different channel estimation qualities to beone use of a set of parallel channels

with different SNRs. The spectral efficiency improvement for systems employing the SI-

aided channel estimation scheme is quantified by comparing its achievable rates to that of
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the traditional pilot-aided channel estimation scheme.

Chapter 8 proposes a novel and practical transmission scheme for the BRC phase of two-

way relaying systems when the network coding scheme is applied. The proposed scheme

exploits the bit-level SI and is able to transmit with asymmetric data rates to the receivers

according to their individual link qualities. The idea is that the weaker link receiver exploits

thea priori bit information in each transmit symbol, so that it only needs to decode on a sub-

set of the transmit symbol constellation. Subject to the same bit error rate (BER) constraint,

the weaker link receiver can decode at lower SNR compared to the stronger link. The signal

labeling used for mapping bits to symbols at the relay is shown to be crucial for the perfor-

mance at the receivers, and we provide the criteria and methods for finding the optimized

labeling schemes. Simulations show that the proposed transmission scheme can be applied

to practical scenarios with asymmetric channel qualities,and the optimized labeling greatly

outperforms conventional ones at both receivers.

Chapter 9 concludes the dissertation summarizing the main results and presents topics for

future research.

1.3 Research Contributions

The main contributions of this dissertation are the information theoretic analysis and the pro-

posal of practical transmission schemes for MIMO relaying systems, especially for MIMO

two-way relaying systems. In the following, a detailed listof the research contributions in

each chapter is presented.

Chapter 3

The main contributions of this chapter are the novel analytical framework for analyzing the

coverage of cellular DF relaying networks with multiple antennas. Part of those results has

been published in one conference paper.

• J. Zhao, I. Hammerström, M. Kuhn, A. Wittneben, M. Herdin, and G. Bauch, “Cover-

age analysis for cellular systems with multiple antennas using decode-and-forward re-

lays,” IEEE Vehicular Technology Conference (VTC-Spring’07), Dublin, Ireland, April

22–25, 2007.

7



Chapter 1 Introduction

Chapter 4

The main contributions of this chapter are the analysis and comparisons of the relaying

schemes and the data combining schemes from information theoretic perspectives in MIMO

two-way relaying systems. In particular, we characterize the optimal relay transmit covari-

ance matrices when the BRC phase CSIT is available at the relay for MIMO two-way DF

relaying systems. Part of those results has been published in one conference paper.

• I. Hammerström, M. Kuhn, C. Esli, J. Zhao, A. Wittneben, and G. Bauch, “MIMO

two-way relaying with transmit CSI at the relay,”Proc. IEEE International Workshop

on Signal Processing Advances in Wireless Communications (SPAWC’07), Helsinki,

Finland, Jun. 17–20, 2007.

Chapter 5

The main contributions of this chapter are the characterization of the optimal TD strategies

in MIMO two-way DF relaying systems using convex optimization methods. The optimal

transmit covariance matrices at the MIMO user stations and the relay station under the op-

timal TD strategies are determined as well. Part of those results has been published in one

conference paper.

• J. Zhao, M. Kuhn, A. Wittneben, and G. Bauch, “Optimum time-division in MIMO

two-way decode-and-forward relaying systems,” inProc. 42nd Annual Asilomar Con-

ference on Signals, Systems, and Computers, Pacific Grove, CA, Oct. 26–Oct. 29,

2008.

Chapter 6

The main contributions of this chapter are the proposal of the novel SI-aided channel esti-

mation scheme for the BRC phase of MIMO two-way relaying systems, which is the first

scheme thatutilize SI instead of simplycancelingit out in two-way relaying systems. Part

of those results has been published in one conference paper and a patent has been granted.

• J. Zhao, M. Kuhn, A. Wittneben, and G. Bauch, “Self-interference aided channel esti-

mation in two-way relaying systems,” inProc. IEEE Global Communications Confer-

ence (GLOBECOM), New Orleans, LA, Nov. 30–Dec. 4, 2008.
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• J. Zhao, M. Kuhn, A. Wittneben, and G. Bauch, “Method, apparatus and system for

channel estimation in two-way relaying networks,”Patent number(s): EP2079209-A1;

CN101483622-A; JP2009171576-A; US2009190634-A1; EP2079209-B1.

Chapter 7

The main contributions of this chapter are the derivation ofthe achievable rates and the

quantification of the spectral efficiency improvement of theBRC phase channel in MIMO

two-way DF relaying systems from the information theoreticperspective when the SI-aided

channel estimation scheme is applied. Those results have been published in one conference

paper.

• J. Zhao, M. Kuhn, A. Wittneben, and G. Bauch, “Achievable rates of MIMO bidi-

rectional broadcast channels with self-interference aided channel estimation,” inProc.

IEEE Wireless Communications & Networking Conference (WCNC), Budapest, Hun-

gary, Apr. 5–8, 2009.

Chapter 8

The main contributions of this chapter are the proposal of a novel asymmetric data rate

transmission scheme for the BRC phase of two-way DF relayingsystems when the network

coding scheme is applied. The proposed approach representsa new method of exploiting the

bit-level SI for network coding schemes. Furthermore, the methods and results for finding

the optimized signal labeling are presented. Part of those results has been published in one

conference paper and a patent application has been filed.

• J. Zhao, M. Kuhn, A. Wittneben, and G. Bauch, “Asymmetric data rate transmission

in two-way relaying systems with network coding,” inProc. IEEE International Con-

ference on Communications (ICC), Cape Town, South Africa, May 23–27, 2010.

• J. Zhao, M. Kuhn, A. Wittneben, and G. Bauch, “Coding and modulation techniques

for two-way relaying systems with asymmetric channel quality,” Patent pending.

Other contributions not presented in this dissertation

Some research works not directly related to this dissertation have been published in the

following four conference papers.
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The proposal and the analysis of two cooperative relaying transmission schemes for a

low mobility cellular relaying system downlink where two mobile users are served by two

neighboring DF relays has been published in one conference paper:

• J. Zhao, M. Kuhn, A. Wittneben, and G. Bauch, “Cooperative transmission schemes

for decode-and-forward relaying,”Proc. 18th Annual IEEE International Symposium

on Personal, Indoor and Mobile Radio Communications (PIMRC’07), Athens, Greece,

Sept. 3-7, 2007.

The summary of the state of the art and open issues in cellularrelaying networks has been

published in one conference paper:

• J. Zhao and A. Wittneben, “Cellular relaying networks: state of the art and open is-

sues,”Proc. 2nd COST 289 Workshop, Kemer, Antalya, Turkey, July 6–8, 2005.

Two joint papers on joint cooperative diversity and scheduling have been published in:

• I. Hammerström, J. Zhao, and A. Wittneben, “Temporal fairness enhanced scheduling

for cooperative relaying networks in low mobility fading environments,”Proc. IEEE

International Workshop on Signal Processing Advances in Wireless Communications

(SPAWC’05), New York, NY, June 5–8, 2005.

• I. Hammerström, J. Zhao, S. Berger, and A. Wittneben, “Experimental performance

evaluation of joint cooperative diversity and scheduling,” IEEE Vehicular Technology

Conference (VTC-Fall’05), Dallas, TX, Sept. 25–28, 2005.
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Chapter 2

Overview of Modern Wireless

Communication Systems

Wireless communications have dramatically revolutionized the life of people in the past few

decades. Modern wireless communication technology has become an integral part of our

everyday life and also a driven force for the social and economical development. For ex-

ample, the twelve-month wireless revenues in the United States alone have reached more

than 151 billion dollars till June 2009 [50]. The demand for wireless communication has

evolved from the original low data rate voice transmission to recent high data rate multime-

dia services. Such demand requires modern wireless data transmission to befast, stable and

ubiquitous, and propelled the invention of new wireless transmission techniques. This chap-

ter summarizes the development of modern wireless communication technologies, where we

focus on the major research achievements in the physical layer (PHY) in recent years.

Wireless communication refers to the transfer of information over a distance without the

use of electrical conductors. Although its origin can be traced back to the use of beacons

for defensive and navigation purposes many centuries ago, e.g., in China, the first wireless

Fig. 2.1:Outline of wireless communication categories
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communication system was invented by Marconi in 1895 for hisradiotelegraph. Civilian

wireless communication systems were established much later. For example, Motorola op-

erated the first commercial mobile telephone service (MTS) in conjunction with the Bell

System in the United States in 1946. At the early stage, the research on wireless commu-

nication focused on the implementation issues of designingreal transmission systems. Af-

ter the development for more than one century, wireless communication has evolved into a

large research subject in electrical engineering. The transmission scenarios in wireless com-

munications can be roughly described in Fig. 2.1.Single user communication, sometimes

calledPoint-to-point communication, refers to the transmission scenario that one source sta-

tion transmits data to one destination station. It acts as the building block for the research

on larger wireless networks. When the transmitter and the receiver are each equipped with a

single antenna, this communication system is called “single-input single-output” (SISO) sys-

tem. “Multiple-input multiple-output” (MIMO) systems distinguishes itself from the SISO

systems by equipping multiple co-located antennas at the transmitter and the receiver sides.

The invention of MIMO communication systems is a significantresearch breakthrough in

the 1990s, which improved the system performance, such as the transmission data rate and

the link reliability, considerably compared to SISO systems. Multiuser communicationrefers

to the communication scenario comprising multiple sourcesor multiple destinations. It in-

cludes the multiple-access transmission scenario, where multiple sources transmit signals to

one destination, and the broadcast transmission scenario,where one source sends informa-

tion to multiple destinations. Many present-day wireless systems are centralized, where one

central unit is responsible for the communication with manyusers. For example, the base

station (BS) controls the data transmission to and from multiple mobile stations (MS) in

cellular systems. Multiple access transmission and broadcast transmission scenarios are im-

portant research topics for those networks. Another type ofwireless systems, such as some

of the mobilead hocnetworks, do not rely one a preexisting infrastructure and do not have

centralized control. The source node relies on its neighboring nodes to forward informa-

tion to the destination. We call this kind of decentralized communication patterndistributed

communication. In distributed communication systems, relaying techniques play an impor-

tant role since the information from the source relies on multihop transmission to arrive at

the destination. Finally,two-way relayingrefers to a special kind of relaying technology

where bidirectional information flow is considered. In sucha scenario, two or more nodes

exchange information via relays. Each node acts both as a source and as a destination of

information.

This chapter is organized as follows: Section 2.1 gives a briefly summarizes the important
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results for the MIMO communication technology. Section 2.2discusses relay communica-

tions, which can be considered to achieve the benefits of MIMOcommunications in dis-

tributed fashions. After that, current developments of a spectrally efficient relaying scheme,

i.e., the two-way relaying protocol, is summarized in Section 2.3.

2.1 Multi-Antenna Communication

The multi-antenna communication technique is one of the major breakthroughs in modern

wireless communication technology. The available resources in wireless systems, such as

the radio spectrum and the transmit power, are limited, either by regulations or by practical

system constraints. The use of multiple antennas at the transmitter and/or receiver in a wire-

less link opens a new dimension – space. The multi-antenna communication technique can

transmit higher data rate without extra consumption of bandwidth and transmit power, which

is highly desirable in wireless systems. Such a technique brings fundamental improvement

over traditional single antenna communication systems. Nowadays, it is at the core of the

link communication techniques in many existing and future wireless standards. In literatures,

MIMO transmissionis another term used for multi-antenna transmission, whichsometimes

includes the case that only one side of the transmission system is equipped with multiple

antennas. In this dissertation, we use the term “multi-antenna transmission” and “MIMO

transmission” interchangeably.

2.1.1 Development of Multi-Antenna Communication

Before the middle of the 1990s, research on wireless communication focused on develop-

ing coding and modulation schemes for systems equipped withsingle transmit and receive

antenna. Splendid achievements have been made, which include the discovery of capacity-

achieving turbo codes [35] and low-density parity-check (LDPC) codes [70, 153]; multi-

carrier modulation schemes for wideband digital communication, i.e., orthogonal frequency-

division multiplexing (OFDM) [38]; and spread-spectrum technologies for serving multiple

users simultaneously, i.e., code division multiple access(CDMA) [243]. However, given

that the available resources in single antenna systems, such as the transmit power and the

frequency band, are limited, it became increasingly difficult for single-antenna systems to

support the physical transmission of high rate wireless data. The only way to satisfy the

rapidly growing demand for high data rate services is to significantly improve the spectral ef-

ficiency, whereas none of the techniques above achieve this.In order to significantly improve
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Fig. 2.2:Wireless MIMO Channel

the spectral efficiency and link reliability in wireless systems, boldly innovative techniques

are called for and new frontiers must be explored.

The multi-antenna transmission technique provides such a new frontier. This technique

brought a previously unexploited new dimension, i.e., space, into wireless communications.

As is shown in Fig. 2.2, multi-antenna communication systems utilize multiple co-located

antennas (antenna arrays) at the transmitter and the receiver side. Multiple data symbols

can be transmitted or received simultaneously in the system. The use of antenna arrays has

a long history and can actually be found in radar technologies during World War II. Since

then, smart signal processing algorithms have been proposed for antenna arrays to identify

spatial signal signatures, and to adjust the antenna array patterns bybeamforming[133,236].

The revolution came in the 1990s. Paulraj and Kailath were among the first to realize that the

wireless channel capacity can be dramatically improved by using multipleco-locatedanten-

nas at both the transmitter and the receiver. They proposed the scheme ofspatial multiplexing

for increasing the capacity of wireless link using multipleantennas [183] in 1994. Roy and

Ottersten [194] proposed to use multiple base station antennas to support multiple co-channel

users in 1996. Foschini [65] proposed a new transceiver architecture, i.e., Bell Laboratories

Layered Space-Time (BLAST), for transmitting multiple data streams simultaneously over

the multi-antenna wireless channel. Depending on how the data are arranged on the transmit

antenna arrays, the BLAST architecture consists of two variations, i.e., the vertical-BLAST

(V-BLAST) architecture [259] and the diagonal-BLAST (D-BLAST) architecture [65]. In

their subsequent laboratory experiments, the BLAST architecture testbed demonstrated un-

precedented spectral efficiencies [76, 259]. At about the same time, fundamental research
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on the multi-antenna communication theory by Telatar and Foschini [66, 224] showed that

the potential gains of multi-antenna systems over single-antenna systems can be rather large.

Under the assumption of independent channel entries, e.g.,in rich scattering environment and

when each antenna is spaced sufficiently far apart, the capacity of the multi-antenna system

scales linearly with the minimum number of the transmit and receive antennas. Especially,

the boost in channel capacity comes at no cost in frequency bandwidth and transmit power,

which provides an ideal solution for achieving higher data rates in wireless communication

systems.

Except for boosting the spectral efficiency, another important benefit of the multi-antenna

transmission technique is the enhancement of link quality by using space-time coding. In the

presence of fading in wireless channels, combination of multiple replicas of the transmitted

signal through independent faded paths provides a more reliable reception. Such a technique

is calleddiversity. The use of multiple antennas bringsspatial diversityinto wireless com-

munications. Using multiple antennas at the receiver side to achievereceive diversityhas

been known for a long time [34]. However, exploitingtransmit diversitywhen there are mul-

tiple antennas at the transmitter side requires the signalsto be smartly pre-processed before

transmission. One of the first schemes that realized transmit diversity was thedelay diver-

sity scheme proposed by Wittneben [255], where each symbol is transmitted from different

antennas after being delayed. This delay diversity scheme can be considered as a repetition

coding scheme over space. Alamouti [12] proposed a simple transmission scheme for sys-

tems with two transmit antennas. By ingeniously arranging the transmit data symbols on the

antenna array, the Almouti scheme transmits the two symbolson two effectively orthogonal

channels, and achieves the second order diversity for systems with two transmit antennas and

one receive antenna. Such a scheme was generalized to orthogonalspace-time block codes

(STBC) for more than two transmit antenna by Tarokh [220, 221]. Orthogonal STBC was

proposed to achieve the diversity gain with low decoding complexity. Such code only needs

simple linear processing at the receiver side. The drawbackof orthogonal STBC is that it

cannot achieve full rate transmission for more than two transmit antennas. Another type of

space-time coding technique,space-time trellis codes(STTC), was proposed in [222], which

can generally achieve higher transmission rates compared to orthogonal STBC. However,

the improvement of transmission rate in STTC is at the cost ofhigher decoding complexity,

where the decoding complexity of its maximum-likelihood (ML) detector is much higher

than the linear detector used in orthogonal STBC. Unlike theorthogonal STBC that suffers

from the rate loss due to its orthogonal design, some space-time coding schemes, such as

the linear complex-field space-time coding[152] was proposed to achieve full rate and full
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diversity in multi-antenna transmission systems.Linear dispersion codes[96, 102] by Has-

sibi et al. was proposed to subsume many earlier space-time transmission techniques, such

as the V-BLAST architecture [259] and the Alamouti scheme. Linear dispersion codes were

designed to be be simple to encode and decode while achievinglittle penalty in the mutual

information. The space-time coding schemes above do not require the channel knowledge

to be available at the transmitter side but still require thechannel knowledge at the receiver

side. When there is no channel knowledge available at eitherside of the multi-antenna trans-

mission system, differential space-time codes [106, 111] were proposed for the noncoherent

communication.

Multi-antenna systems can achieve spatial multiplexing gain and spatial diversity gain

simultaneously. However, there exists a fundamental tradeoff between the two types of gains.

This diversity-multiplexing tradeoff(DMT) was discovered by Zheng and Tse [281], where

they showed that the spatial multiplexing gain and spatial diversity gain in a multi-antenna

system cannot be increased simultaneously. The search for the space-time codes that achieve

the optimal DMT has been an active area of research. Space-time codes that achieve the

DMT were proposed and discussed in [61,223,229,268]. Yaoet al.[268] proposed rotation-

based codes to achieve the DMT for MIMO channels with two transmit and two receive

antennas; the permutation codes for achieving the DMT for parallel channels were proposed

in [223] and codes based on cyclic divisional algebras were proposed in [61]. Those codes

were shown to be DMT-optimal by verifying theapproximate universality conditions[229].

Multiuser transmission is especially useful for cellular networks. The Gaussian MIMO

multiple-access channel capacity region was considered byYu [271]. The capacity region of

the Gaussian MIMO broadcast channel was characterized by Weingartenet al. [250], where

it was proved to be achievable by thedirty paper coding(DPC) scheme [47]. In real-world

implementations, multi-antenna systems can be used with most state-of-the-art modulation

schemes. The combination of multi-antenna system and OFDM techniques can be found

in, e.g., [27, 145]. Good books on multi-antenna transmission technology are abundant,

e.g., [24,184].

2.1.2 Benefits of Multi-Antenna Communication Systems

Multi-antenna communication systems provide a series of advantages over traditional single-

antenna communication systems, such as thearray gain, thediversity gainand themulti-

plexing gain. The array gain and the diversity gain improve thelink reliability and can be

obtained in single-input multiple-output (SIMO) and multiple-input single-output (MISO)
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systems, as well as in MIMO systems. However, the multiplexing gain improves thespectral

efficiencyand it is unique in MIMO systems, i.e., it requires both the transmitter and receiver

sides to be equipped with multiple antennas.

The gains in multi-antenna communication systems are summarized as follows:

Array gain Array gain is the improvement in the receive signal-to-noise ratio (SNR) ob-

tained by coherently combining the signals on multiple transmit or receive anten-

nas [30]. It is traditionally associated with the array processing techniques in smart

antennas. When the coherent combining is realized at the transmit antenna arrays, i.e.,

for MISO systems, the channel knowledge is usually requiredto be available at the

transmitter side to make spatial pre-processing of the transmit signals possible. The

array gain improves the resistance of the system to noise, and boosts the link reliability.

Diversity gain The diversity technique mitigates the fading effects by transmitting the same

data symbol over multiple independently faded branches. With those independent

replicas of the same information signal, the probability that at least one of the copies

is not in deep fade increases. Diversity can be realized in time (temporal diversity), in

frequency (frequency diversity) or in space (spatial diversity). Multi-antenna systems

are ideal for realized spatial diversity, which include transmit diversity and receive di-

versity. Receive diversity simply requires that the received signals on different receive

antennas experience independent fades. Transmit diversity is more difficult to be re-

alized since it needs more intricate coding and modulation schemes to be applied at

the transmitter side. The research on transmit diversity leads to the development of the

space-time coding schemes. The diversity techniques combat channel fluctuation and

thus improve link reliability.

Multiplexing gain When multiple antennas are placed at both sides of the wireless radio

link, multiple independent data streams can be transmittedthrough the parallel sub-

channels established within the MIMO channel, which leads to an increase in the

channel capacity. Such an improvement in channel capacity is calledspatial multi-

plexing gain. It is achieved without additional consumption of power or bandwidth.

However, unlike the array gain and the diversity gain, the spatial multiplexing gain

requires that both the transmitter and receiver to be equipped with multiple co-located

antennas. It also requires certain channel conditions, e.g., rich scattering environment,

so that the receiver can separate the multiple data streams.The multiplexing gain pro-

vides higher data rate for the MIMO system, i.e., it improvesthe spectral efficiency of

the system.
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2.1.2.1 Relation Between Different Gains in MIMO Systems

Array and Diversity Gains The array gain results from the coherent combining of multiple

replicas of the same signal, and it boosts the effective SNR of the received signal. The

array gain only depends on the channel realization. However, diversity gain requires

each branch of the transmit signal to fade independently, which depends on the statis-

tical properties of the channel. The two types of gains can co-exist in a multi-antenna

communication system and there is no tradeoff between them [179].

Array and Multiplexing Gains The array gain aims to maximize the SNR at the receiver.

For a MIMO channel, maximizing the array gain implies allocating all the transmit

power on the subchannel with the maximum eigenvalue [13], i.e., transmitting the

data on only one subchannel. However, the multiplexing gainaims to maximize the

mutual information in the system. For a MIMO channel with multiple subchannels, the

optimum way to maximize the multiplexing gain is to transmitmultiple data streams

with the power allocation according to the waterfilling algorithm [49].

Diversity and Multiplexing Gains The diversity gain is related to the link reliability and

the multiplexing gain is related to the spectral efficiency.Both gains can be simulta-

neously achieved in a MIMO system. However, there exists a fundamental tradeoff

between the two types of gain [281], which means that the two types of gains can-

not be simultaneouslyincreased. The multiplexing gainr and the diversity gaind are

achievable for a coding scheme if the data rateR at high SNRρ satisfies

lim
ρ→∞

R(ρ)

log ρ
= r (2.1)

and the average error probabilityPe at high SNRρ satisfies

lim
ρ→∞

logPe(ρ)

log ρ
= −d. (2.2)

For eachr, the optimal diversity gaind⋆(r) is defined to be the supremum of the

diversity advantage achieved over all schemes. For a MIMO system withM transmit

andN receive antennas that experiences an i.i.d. Rayleigh slow-fading channel where

the channel gain is random but remains constant for a duration of l ≥ M + N − 1

symbols, it has been shown in [281] that the optimal diversity gaind⋆(r) achievable

by any coding scheme of block lengthl for a given multiplexing gainr (r ∈ N) is

d⋆(r) = (M−r)(N−r). For example, the diversity-multiplexing tradeoff for a MIMO

system (M = 6, N = 5) in an i.i.d. Rayleigh fading channel is shown in Fig. 2.3.
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Fig. 2.3:Diversity-multiplexing tradeoff for a MIMO system (numberof transmit antennas
M = 6, number of receive antennasN = 5) in i.i.d. Rayleigh fading channels.

2.1.3 Single-User MIMO Channel

For a frequency flat multi-antenna transmission system withM transmit antennas andN

receive antennas as shown in Fig. 2.2, the discrete-time signal model at time instancek can

be expressed as

y[k] = H[k]s[k] + n[k] (2.3)

=

√
P

M
H[k]̃s[k] + n[k]. (2.4)

Each item is explained as follows:

• P is the transmit power constraint.

• s[k] ∈ CM×1 denotes the transmit symbol vector ands̃[k] denotes the transmit sym-

bol vector normalized with respect to the transmit power. Weintroduce the transmit

covariance matrix asΩ = E
{
s̃[k]̃s[k]H

}
, where the expectation is taken with respect

to all the time instance. In order to satisfy the transmit power constraint, we require

trΩ ≤ M , and it followstr
(
E
{
s[k]s[k]H

})
≤ P .

• H[k] ∈ CN×M is the channel matrix, where the(m,n)th entry in the channel matrix

H[k] corresponds to the channel from the transmit antennam to the receive antennan.

• y[k] ∈ CN×1 denotes the received symbol vector.
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• n[k] ∼ CN (0, σ2IN) is the additive white Gaussian noise (AWGN) vector at the re-

ceiver, whereσ2 is the noise variance.

For simplicity, we will omit the discrete-time indicesk without causing confusion.

Many factors impact the properties of the MIMO channelH. Different characterizations of

MIMO channels can be found in, e.g., [184]. However, one of the most widely used channel

models is to assume the entries in the channel matrixH to be uncorrelated with each other.

This is satisfied in a rich scattering environment and when the neighboring antennas in the

transmit or receive antenna arrays are spaced more than the coherence distance apart. Typical

coherence distance for antenna decorrelation isλ/2, whereλ is the wavelength corresponds

to the operation frequency.

When neither side of the transmitter and the receiver has thechannel knowledge, i.e., in

the noncoherent case, the capacity of the MIMO channel is still an open problem [32, 280].

For coherent communications, the channel state information (CSI) is usually required to be

available at least at the receiver side in a MIMO system. Channel estimation in MIMO

systems is usually performed by transmitting orthogonal training sequences from different

transmit antennas. The channel state information at the transmitter (CSIT) is more difficult

to obtain. it is usually acquired by channel knowledge feedback from the receiver in the

frequency-division duplexing (FDD) transmission mode or assuming channel reciprocity in

time-division duplexing (TDD) transmission mode. Assuming perfect CSI at the receiver but

no CSIT, the channel capacity of a deterministic MIMO channel is given by

C = log det

(
IN +

P

Mσ2
HHH

)
. (2.5)

where the capacity is achieved by transmittingM statistically independent and equal power

data streams with Gaussian codebook at the transmit antennas. In a fast fading channel where

the codeword length is much larger than the channel coherence interval, the capacity of the

channel is replaced by the ergodic channel capacity

Cerg = E

{
log det

(
IN +

P

Mσ2
HHH

)}
. (2.6)

where the expectation is taken with respective to the realizations of channelH. For a MIMO

channel with fixed number of receive antennasN and assuming each entry of the channelH

to be i.i.d., we have the following

1

M
HHH → IN , asM → ∞, (2.7)
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according to the law of large numbers [181]. Therefore the ergodic capacity of the fast fading

channel approaches [30]

Cerg → N log

(
1 +

P

σ2

)
, asM → ∞. (2.8)

This means that the ergodic capacity of the fast fading channel increases linearly with the

number of receive antennasN for the fixed SNR when the number of transmit antennasM

is asymptotically large. More precisely, if the receiver perfectly knows the channel, it was

shown in [66, 224] that the ergodic capacity of the i.i.d. Rayleigh fading MIMO channel

scales likemin(M,N) log(P/σ2) no matter the transmitter knows the channel or not. Com-

pared to the SISO channel with the same SNR, i.e.,P/σ2, the ergodic capacity of the MIMO

channel is aboutmin(M,N) times higher in high SNR regime.

When the channelH is perfectly known to both the transmitter and the receiver,the ca-

pacity of a deterministic MIMO channel can be expressed as

CCSIT = max
tr(Ω)≤M,Ω�0

log det

(
IN +

P

Mσ2
HΩHH

)
. (2.9)

whereΩ � 0 means thatΩ is a positive semidefinite matrix. In this case, the MIMO channel

capacity in (2.9) can be calculated as follows. Using singular value decomposition (SVD)

method, the channel matrix can be written as

H = UΣVH , (2.10)

whereU ∈ C
N×N andV ∈ C

M×M are unitary matrices andΣ ∈ C
N×M is a diagonal

matrix whose diagonal elements are made of the singular values ofH. We denote the rank

of the channel matrixH asr, wherer ≤ min(M,N). The singular values ofH are denoted

as
√
λi, i = 1, 2, . . . , r. So the MIMO channel channel can be decoupled intor parallel

single-input single-output (SISO) channels, and the channel capacity can be calculated as

CCSIT =

r∑

i=1

log

(
1 +

Pγi
Mσ2

λi

)
. (2.11)

γi reflects the transmit power allocation in theith subchannel. The optimum power allocation

in (2.11) can be calculated using thewaterfilling algorithm[49], which is given by

γi =

(
µ− Mσ2

Pλi

)+

, for i = 1, 2, . . . , r (2.12)
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Fig. 2.4:Ergodic Capacity forM = N = 4 MIMO channels with and without CSIT.

where the function(·)+ is defined as

(x)+ =

{
x if x ≥ 0

0 if x < 0.
(2.13)

µ is a constant that denotes the “waterlevel” so that the powerallocation satisfies

r∑

i=1

γi = M. (2.14)

Compared to the channel capacity without CSITC in (2.5), the capacity gain of the perfect

CSIT case in (2.11) is significant in low SNR regime but only marginal in high SNR regime.

The ergodic capacity with and without CSIT for a MIMO system with M = N = 4 antennas

in i.i.d. Rayleigh fading channels is shown in Fig. 2.4. Withonly average power constraints,

a two-dimensional water-filling in both the temporal and spatial domains has been shown to

be optimal in fast fading MIMO channels if the channel knowledge is available at both the

transmitter and receiver sides [119,211].
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(a) MIMO multiple access channel (b) MIMO broadcast channel

Fig. 2.5:MIMO multiple access channel and MIMO broadcast channel.

2.1.4 Multiuser MIMO Channel

Multiuser communication refers to the scenario that multiple users simultaneously transmit

(or receive) signals in the same frequency channel. It includes the multiple access scenario

(many-to-one) and the broadcast scenario (one-to-many). The multiple access channel and

the broadcast channel can respectively model the downlink and uplink transmission in cel-

lular mobile communication systems. When some of the stations in the multiuser communi-

cation systems are equipped with multiple antennas, this channel model is called multiuser

MIMO channel [77,78,150].

The MIMO multiple access channel is shown in Fig. 2.5(a). Fora multiple access channel

with multiple antennas, the input-output relation of the system can be described as

y =

K∑

k=1

Hksk + n (2.15)

where thekth user is equipped withM (k)
T antennas and the receiver hasMR antennas.Hk ∈

CMR×M
(k)
T denotes the channel fromkth transmitter to the receiver.sk ∈ CM

(k)
T ×1 is the

transmit data symbol vector at userk, andQk = E
{
sks

H
k

}
denotes the transmit covariance

matrix at thekth user without normalization with respect to the transmit power. We require

tr(Qk) ≤ Pk to satisfy the transmit power constraintPk at thekth user.n ∼ CN (0, σ2IMR)

is the AWGN vector at the receiver. Furthermore, we defineH = [H1, · · · ,HK ].

Assuming the channelH to be static and perfectly known at both the transmitters andthe

receiver, the capacity region of the Gaussian multiple access channel for the given transmit
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power constraintP1, · · · , PK can be expressed as [224,271]

CMA (P1, · · · , PK ;H) =
⋃

Qk�0,tr(Qk)≤Pk{
(R1, · · · , Rk) |

∑

k∈S
Rk ≤ log det

(
IMR +

∑

k∈S
HkQkH

H
k

)
, ∀S ⊆ {1, · · · , K}

}
(2.16)

The corner points of the capacity region can be achieved by successive decoding, i.e., the

receiver successively decodes users’ signals and subtracts the decoded signal from the re-

ceived signal. The MIMO multiple access channel capacity region in (2.16) is convex can be

calculated by using convex optimization methods.

A K-user broadcast channel is shown in Fig. 2.5(b). The transmitter hasMT antennas and

thekth receiver is equipped withM (k)
R antennas. Denoting the channel matrix between the

transmitter and the userk asGk ∈ C
M

(k)
R ×MT, the received signal at thekth user is

yk = Gks+ nk (2.17)

wheres ∈ C
MT×1 is the transmit vector at the transmitter, andtr

(
E
{
ssH
})

≤ P satisfies

the transmit power constraint.nk ∼ CN (0, I
M

(k)
R
) is the AWGN at the receiverk. Let π(·)

denote a permutation of the user indices1, · · · , K and letQ = [Q1, · · · ,QK ] denote a set

of positive semidefinite covariance matrices withtr(Q1 + · · · + QK) ≤ P . The capacity

region of the broadcast channel has been shown by Weingartenet al. [250] to be achievable

by the DPC scheme [47]. For the given permutationπ and the set of covariance matricesQ,

the following set of rate vectors is achievable

R(π,Q) = (Rπ(1), · · · , Rπ(K)) (2.18)

where

Rπ(k) = log
det
[
I+Gπ(k)(

∑
j≥k Qπ(j))G

H
π(k)

]

det
[
I+Gπ(k)(

∑
j>k Qπ(j))G

H
π(k)

] , k = 1, · · · , K. (2.19)

We defineG = [GT
1 , · · · ,GT

K ]
T . Assuming the channel to be deterministic and perfect chan-

nel knowledge is available at both the transmitter and the receivers, the capacity region [250]

CBC is the convex hull of the union of all such rate vectors over all permutations and all
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positive semidefinite covariance matrices satisfying the average power constraintP , i.e.,

CBC(P,G) = conv

(
⋃

π,Q

R(π,Q)

)
. (2.20)

The transmit signal vector iss = s1 + · · ·+ sK using Gaussian codebooks, and the input co-

variance matrices are of the formQk = E(sks
H
k ). The DPC scheme implies thats1, · · · , sK

are uncorrelated, and thustr(Q) = tr(Q1 + · · · ,QK) ≤ P . The calculation of the MIMO

broadcast channel capacity region is a non-convex optimization problem due to the rate re-

gion expression (2.19) and the necessity of considering theorderingπ(·) of all different

users.

The capacity region of the MIMO broadcast channel in (2.20) cannot be directly solved

by convex optimization methods and it is much more difficult to be characterized than the

MIMO multiple access channel capacity region (2.16). Fortunately, there exists a duality

between the two capacity regions [241], which greatly simplifies the problem. The duality

between the multiple access channel and the broadcast channel states that: the MIMO broad-

cast channel capacity regionCBC(P,G) with power constraintP and channel gain matrixG

is equal to the union of the capacity regions of the multiple access channel with channel gain

matrix GH , where the union is taken over all individual power constraints that sum toP .

That is, we have

CBC(P ;G) =
⋃

(P1,··· ,PK):
∑K

k=1 Pk=P

CMA (P1, · · · , PK ;G
H) (2.21)

whereCBC(P ;G) andCMA (P1, · · · , PK ;G
H) are given in (2.20) and (2.16), respectively.

The duality relation can convert the problem of determiningthe broadcast channel capacity

region into the problem of determining its dual multiple access channel capacity region,

which can be solved efficiently using convex optimization methods.

For a MIMO Gaussian broadcast channel withM transmit antennas andK users each

with N antennas, the sum rate of the system scales likeM log log(KN) for largeK if per-

fect channel knowledge is available at the transmitter (CSIis required at the receivers for

decoding anyway) [210]. However, if the transmitter does not have the CSIT, the sum rate

of the system in high SNR regime is approximatelymin(M,N) log(SNR), which is essen-

tially the single-user capacity achievable in high SNR regime [75]. For systems with a large

number of users, obtaining full channel knowledge at the transmitter may be infeasible. One

solution that only requires limited feedback from the usersis proposed by Sharif and Has-
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sibi in [210]. Their scheme is to constructM random orthogonal beams and transmit to

users with the highest signal-to-interference-plus-noise ratios (SINRs), which dramatically

reduces the feedback overhead of the full channel knowledgeto only that of the SINRs. Fur-

thermore, the authors showed that such a scheme achieves thesame sum rate scaling as the

perfect CSIT case for fixedM and largeK.

2.1.5 Multi-Antenna Communication Schemes

2.1.5.1 Single-User Transmission Schemes Without CSIT

Even with no CSIT, multi-antenna communication systems canachieve the multiplexing and

diversity gains. Not only is this promised by the theoretical results such as capacity, but also

has it been demonstrated by practical communication schemes.

Spatial multiplexing architectures were proposed to achieve the multiplexing gain. It re-

quires both the transmitter and the receiver to be equipped with multiple antennas and the

multi-dimensional signals are transmitted simultaneously on different spatial substreams.

The most famous spatial multiplexing architecture is the BLAST architecture. The original

diagonal layered space-time architecture was proposed in [65] and was later referred to as D-

BLAST. In D-BLAST, the coding sequence was dispersed acrossthe diagonals in space and

time. Such a diagonally layered coding scheme can achieve the full MN diversity promised

by the MIMO channel withM transmit antennas andN receive antennas if combined with

Gaussian codebooks and infinite block length. It can achievethe spatial multiplexing gain as

well. However, the receiver structure of the D-BLAST architecture is complex for practical

applications. In [67, 259], a less complex architecture, V-BLAST, was proposed. In the V-

BLAST architecture, the transmitter simply demultiplexesindependent data substreams onto

the transmit antennas. No inter-substream coding is applied as done in the D-BLAST archi-

tecture. The V-BLAST architecture does not achieve the fulldiversity gain offered by the

MIMO channel. However, the spatial multiplexing gain provided by the MIMO channel can

be achieved with lower implementation complexity comparedto the D-BLAST architecture.

Although the V-BLAST transmitter only needs to send independent data symbols on its

transmit antennas, its receiver structure may have different complexity and may lead to dif-

ferent performance. The V-BLAST detector structures can besorted as follows in the order

of increasing complexity and usually better performance.

Linear detectors In MIMO communication systems, the main problem for the receiver is

how to detect symbols in the presence of multi-stream interference. Linear detectors
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are desirable due to its low complexity. However, for spatial multiplexing schemes like

V-BLAST, linear detection usually leads to suboptimal performance. Linear detectors

consist of the following two types:

• Zero-forcing (ZF) detector: If the channel matrix in (2.4) is nonsingular, the ZF

detector that separates the multistream from the received signal is given by

ŝZF = H†y (2.22)

whereH† denotes the pseudo-inverse of the channel matrixH. The ZF detec-

tor is simple, yet the noise enhancement causes large performance degradation

compared to other detectors [82,154,253].

• Minimum mean square error (MMSE) detector: The MMSE detector tries to

balance the multi-stream interference mitigation and noise enhancement by min-

imizing the total detection errorsE {‖ŝ− s‖2}, whereŝ denotes the estimated

symbol using linear operations. The MMSE detector is given by GMMSE =

argminG E {‖Gy− s‖2}, and the detected data symbol can be expressed as

ŝMMSE =
P

M
HH

(
σ2IN +

P

M
HHH

)−1

y (2.23)

Compared to the ZF detector, the MMSE detector needs to estimate the noise

varianceσ2 at the receiver. The MMSE detector has much better performance

compared to the ZF detector in the low SNR regime [1]. In the high SNR regime,

its performance approaches that of the ZF detector.

Successive cancellation detector The successive cancellation detector can be considered

as a kind of decision-feedback detector, which has been proposed to be used in the

BLAST architecture [76, 259]. Such detector starts decoding from the stream with

the highest SINR using the ZF or MMSE algorithm. After a stream of symbols is

decoded, it is subtracted from the received signals. The advantage comes from the

inherentselection diversityin the ordered successive cancellation. An upper bound on

the performance of such a detector is provided in [81].

Maximum-likelihood (ML) detector Assuming equally likely transmitted symbols, the op-

timum detector for the transmit symbols in (2.4) is the ML detector, which is given

by ŝ = argmins ‖y − Hs‖2F . However, the decoding complexity of the ML detec-

tor grows exponentially with the number of transmit antennas M . Sphere decoding
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algorithm [54, 244] was proposed to reduce the decoding complexity of ML detec-

tors, which has worst-case exponential decoding complexity but expected polynomial

decoding complexity. Soft-output sphere decoding algorithms generate not only the

symbol decision but also the metrics. Its implementation can be found in [217].

Iterative detector Iterative MIMO detectors are usually combined with channelcoding and

use soft-input soft-output decoding algorithms [14]. In each iteration, the estimate of

the data bits are refined [107,202].

Space-time coding was proposed to achieve the transmit diversity gain of the channel. No

channel knowledge is required at the transmitter. Redundancy is introduced by coding on

both the spatial and the temporal dimensions. In fact, the orthogonal STBC maps different

symbols onto orthogonal channels and only simple linear operation is required on the re-

ceiver side. The ML detector of orthogonal STBC symbols happens to be linear. Space-time

codes that achieve the DMT were considered and proposed in [61,223,229,268]. When there

is no channel knowledge available at either side of the MIMO system, differential space-time

codes [106,111] can be applied for noncoherent communications.

2.1.5.2 Single-User Transmission Schemes With CSIT

It is generally more difficult to obtain channel knowledge atthe transmitter than at the re-

ceiver side. In TDD systems, channel reciprocity can be assumed for the transmission chan-

nel. So the channel knowledge during reception can be used for the transmission if the

coherence time is sufficiently long. Feedback of channel knowledge from the receiver is

used for FDD systems to obtain CSIT.

Single-user transmission schemes with CSIT are usually considered for linear transceiver

design [247]. One of the first transceiver structure in the presence of CSIT was considered

in [266], where the design objective was the minimization ofmean square error (MSE) at

the receiver. Several linear transceiver structures with perfect CSI at both the transmitter and

the receiver were proposed in [198]. All those structures convert the MIMO channel with

memory into a set of parallel flat fading subchannels. The authors of [177] generalized the

existing results by developing a unified framework by considering two families of objec-

tive functions that embrace a set of reasonable criteria to design a MIMO communication

system: Schur-concave and Schur-convex functions. When the performance measure is a

Schur-concave function, such as the mutual information andweighted arithmetic mean of

the MSE at the receiver, the optimal transceiver structure diagonalizes the effective system
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channel. When the performance measure is a Schur-convex function, such as the maximiza-

tion of the mean bit error rate (BER) with the same transmit constellation for each substream,

or the maximization of the harmonic mean of the SNR, the optimal transceiver structure diag-

onalizes the effective system channel up to a rotational transformation at the transmitter side

and uniformly distributes the transmitted symbols among the different substreams. When

the performance measure is the average BER, the design of linear transceiver structures with

different constellations at each substream was consideredin [176], and the authors proposed

to solve the problem via primal decomposition. Joint transceiver design that combines the

geometric mean decomposition with either the conventionalZF V-BLAST decoder or the ZF

dirty paper precoder as proposed in [121].

When only second order statistical channel knowledge is available at the transmitter, the

authors of [114] proposed to transmit signals on the eigenmodes based on the statistical

channel knowledge. The authors of [162] considered the scenario that only noisy or quan-

tized version of the channel matrix is available at the transmitter, and proposed transceiver

structures to optimize the SNR or the mutual information of the system. The proposed struc-

tures transmit different data streams through the eigenmodes with different power allocation.

When the transmitter is aware of the uncertain region of CSIT, another design criterion is

to maximize the worst-case performance according to some performance measure. Such a

maxmin design philosophy is calledrobust optimization, and transceiver structures exploit-

ing robust optimization can be found in [180,245].

2.1.5.3 Multiuser MIMO Transmission Schemes

Multiuser MIMO transmission schemes are active research areas due to its important appli-

cations in real-world systems, especially cellular mobilecommunication systems. For exam-

ple, the uplink transmission in cellular systems can be typical modeled as a multiple access

channel, and the downlink transmission can be modeled as a broadcast channel. Although

using multiple antennas at the receiver to improve the performance when there are multiple

users has been known for a long time, the capacity-achievingtransmission techniques for the

downlink transmission with multiple antennas were newly found [75].

In the MIMO multiple access scenario, the system can be considered as a generalization

of the single user MIMO transmission scheme where the channel matrix consists of all the

channel gains from all the transmit antennas to the receiverand each user’s symbols can

only be precoded by that user’s transmitter antennas. The multiple co-located receive anten-

nas provide the degrees-of-freedom for spatial separationof the data streams transmitted by
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those multiple transmitters. Linear transmitter and receiver structures for the MIMO multi-

ple access channel have been considered in [206], where the authors assume that both the

transmitters and the receiver are equipped with multiple antennas. The performance mea-

sure is the sum of MSE of all users in the system. The channel knowledge is assumed to be

known at both the transmitters and the receiver, i.e., an error-free and low-delay feedback

channel to each user is assumed to exist. The authors proposed algorithms to find the jointly

optimum linear precoders at each transmitter and linear decoders at the receiver. They also

investigated how the symbol rate should be chosen for each user with the optimum linear

precoders.

Although multiple access transmission schemes do not require channel knowledge at

transmitters in general, the availability of channel knowledge at the transmitter is vital for

the broadcast transmission schemes. When the transmitter has enough antennas, linear pre-

coding schemes can be applied at the transmitter. One of the simplest approaches is to

pre-multiply the transmitted symbol vector by the inverse of the multiuser channel matrix.

However, if the selected users are not sufficiently separable, this approach may result in in-

efficient use of transmit power, causing a large rate loss with respect to the optimum sum

capacity solution. The reason is that while the sum capacitygrows linearly with the min-

imum of the number of antennas and users, the sum rate of channel inversion does not.

This poor performance is due to the large spread in the singular values of the channel ma-

trix [185]. A generalization for the channel inversion scheme, known as theblock diago-

nalization, was proposed in [215], which incorporates the power control for each user. The

authors of [212,213] studied the problem of transceiver design in MIMO broadcast systems

with the MSE as the performance measure. In [212], the authors proposed transceiver struc-

tures that minimize the downlink sum-MSE of all users under asum power constraint, and

showed that this problem can be solved efficiently by exploiting a duality between the down-

link and uplink MSE feasible regions. In [213], the authors addressed the transceiver design

problem for MIMO broadcast channels to a broader category, which includes, for example,

minimizing the total transmit power subject to per-user MSErequirements.

Nonlinear transceiver design schemes for MIMO broadcast channels have been proposed

in [64, 105, 185]. The authors of [105, 185] introduced an encoding scheme to improve

the condition of the multi-user channel inverse and maximize the SINR at the receivers by

regularizing the channel inverse, i.e., the transmit signal is modified to

x = HH(HHH + αI)−1s (2.24)

whereα is the regularization constant, ands is the data symbol vector before precoding.H
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is the multi-user channel matrix. After the regularizationof the channel inverse, a certain

perturbation of the data using a sphere encoder was performed to further reduce the power

of the transmitted signal, which enables the proposed scheme to achieve near-capacity per-

formance at all SNRs. Another nonlinear transceiver structure for MIMO broadcast chan-

nel is based on the nonlinear precoding scheme proposed by Thomlinson [227] and Ha-

rashima [91] for intersymbol interference equalization. The authors of [64, 252] proposed

the transceiver structure applying the Thomlinson-Harashima precoding scheme for MIMO

broadcast systems. The proposed structure moves the decision feedback equalizer (DFE)

structure, which is usually located at the receiver side, tothe transmitter side. Since the

information symbols are perfectly known to the transmitter, the problem of error propaga-

tion in DFE systems is avoided. This nonlinear pre-equalization scheme outperforms linear

precoding schemes that increases average transmit power. In [251], a precoding structure

that fills the gap between the Thomlinson-Harashima precoding scheme and the sphere de-

coder based scheme [105,185] was proposed based on lattice reduction, which improves the

diversity gain compared to the Thomlinson-Harashima precoding scheme.

2.2 Relay Communication

Relay communication refers to the technology that the communication between the source

and the destination is established or enhanced by one or morethan one relays. The relays

can be dedicated relay stations that are built to support thewireless link, or other mobile

users that are selected to facilitate the data transmissionfrom the source to the destination.

Relay communication is also termedcooperative communication, which we use in this dis-

sertation without distinction. From the network aspects, traditional wireless communication

systems, e.g., cellular mobile communication networks, are centralized. There, the trans-

mission scenarios are point-to-point (single user), one-to-many (broadcast) or many-to-one

(multi-access), which can all be categorized assingle-hop transmission. However, in relay

communication, the transmission of information from the source to the destination consists

of at least two-hops. This multi-hop transmission model makes the relay communication sce-

narios more versatile and the research on it more difficult. Although relay communication is

still a young research topic, many important results have been achieved, which makes it a fer-

tile field of research. We summarize the important relaying strategies and the state-of-the-art

research results in this section.
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2.2.1 Development of Relay Communication

The first information theoretical study of relaying technique can be dated back to Van der

Meulen in 1971 [234,235], where upper and lower bounds for a three-terminal relay channel

were investigated. Here the source transmits information to both the relay and the destina-

tion. The received information at the relay is retransmitted to the destination. Inspired by the

ALOHA system, Sato [197] also studied the relay channel in 1976. In 1979, Cover and El

Gamal [48] significantly improved the upper and lower boundsproposed by Van der Meulen

for such a relay channel, and they also considered various other scenarios, including relay

channels with feedback from the destination and the relay. However, the capacity of the relay

channel remains a open problem until now.

In the 1990s, the Third Generation Partnership Project (3GPP) Concept Group Epsilon

proposed the concept of Opportunity Driven Multiple Access(ODMA) that aims to increase

the range of high data rate services using relays for Universal Mobile Telecommunications

System (UMTS) TDD transmission mode. Although ODMA was finally dropped in 1999

due to concerns over routing, complexity and signaling overhead, the research on relaying

was revived at the beginning of the 21st century. In 2000, Gupta and Kumar studied the

capacity of large-scale relay networks with randomly located but fixed nodes [87], where

the neighboring nodes can assist the data transmission by forwarding the information to its

destination. The authors proposed a new approach for research on network capacity, i.e.,

finding the scaling laws for networks with many nodes. They showed that as the number

of nodesn increases in a fixed geographic area, the throughput per source-destination pair

decreases approximately like1/
√
n. When mobility is introduced into the model and con-

sidering the scenario that users move independently aroundthe network, Grossglauser and

Tse [83] showed that the average long-term throughput per source-destination pair can be

kept constant even as the number of nodes per unit area increases. This improvement is

achieved by exploitingmultiuser diversityvia packet relaying. In [74], Gastpar considered

the same physical model of a wireless network as [87] but under a different traffic pattern,

where there is only one active source-destination pair and all other nodes act as relays to

assist its transmission. They showed that as the number of nodesn in the network goes to

infinity, the capacity of such a network behaves likeO(logn) bits per second. Recently,

Ozgur [173] showed that the total capacity in the wireless network of [87] can scale linearly

with the number of nodesn asn goes to infinity. The performance gain is achieved by using

a hierarchical architecture and distributed space-time coding where different nodes exchange

information to realize cooperation between them.

Seminal work that drew people’s attention on cooperative communication was the con-
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tribution by Sendonariset al. [203–205]. In their work, the authors considered the uplink

transmission scenario and proposed user cooperative strategies to improve its performance.

In the proposed transmission strategies, each mobile user transmits its data to both the base

station and another mobile user nearby, which helps to retransmit the data to the base station.

That is, each mobile user acts both as a information source and as a relay. The authors showed

that the achievable rate region can be increased by cooperation between the two transmitting

users. Moreover, higher orders of diversity, i.e., cooperative diversity, can improve the sta-

bility of wireless links. Cooperative diversity was further analyzed by Laneman [134, 135].

In [134], the authors developed and analyzed some cooperative diversity protocols that com-

bat fading induced by multipath propagations in wireless networks. They summarized the

important relaying strategies, such as the amplify-and-forward (AF) and decode-and-forward

(DF) relaying strategies. They also addressed the major problems for implementing practi-

cal relays, such as the half-duplex constraint. The distributed space-time coding schemes

for cooperative wireless networks were proposed in [135], which generalized the space-time

coding techniques for the point-to-point MIMO systems to distributed relay networks where

each station is equipped with a single antenna. A summary of the distributed space-time

coding schemes can be found in [146].

Capacity scaling laws in MIMO relay networks were discovered in [28], where multiple

relays assist the transmission from a multi-antenna sourceto a multi-antenna destination.

The authors showed that the point-to-point MIMO link capacity in high SNR can be achieved

when the number of relays is asymptotically large. The authors of [256] proposed amultiuser

zero-forcing(MUZF) scheme for relay networks with multiple source-destination pairs and

multiple AF relays. Each node is equipped with a single antenna. The authors showed that

the relay gain can be ingeniously chosen so that the multiuser interference can be perfectly

canceled at the destinations nodes when the number of relay nodes is large.

2.2.2 Advantages and Challenges of Relay Communication

Relay communication can provide the benefits that traditional single-hop communication

cannot achieve in many practical scenarios. Relay communication has drawn wide interests

from both academia and industry [58]. For practical systems, we summarize the advantages

of relay communication over single-hop communication as follows.

Combating signal attenuation The adverse effects of wireless channels include pathloss,

shadowing and fading effects. The signal strength decays exponentially with the dis-

tance between the source and the destination. When the distance between the source
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and destination is too large, the signal attenuation becomes too high due to pathloss,

which makes it impossible for the source and destination to communicate. By placing

relays between the source and the destination, the distancebetween the source and the

relay and the distance between the relay and destination is shortened. As a result, the

signal strength can be boosted a lot. Moreover, due to the signal strength improvement,

the source can use higher modulation symbol alphabets to transmit more data in each

channel use. In this way, relaying technology not only increases the coverage of the

system, but also improves the data rate transmitted to the users.

Combating shadowing effects In large cities and hilly areas, tall buildings and mountains

typically block signals transmitted from the source to the destination. Such effect

is calledshadowing. Relays provide another path to circumvent the obstruction. In

those scenarios, relaying is maybe the only way to provide services in shadowing

environments.

Combating fading effects The fading effects arise due to the multipath propagations that

lead to the fluctuations in received signals. Diversity is aneffective way to combat the

signal fluctuation due to the fading effects. Thecooperative diversityintroduced by the

cooperative communication brings higher link reliabilityto the users [204,205], where

multiple independently faded signals from the source and the relay are combined at

the destination.

Low cost Future cellular communication systems will move to higher frequency. As a re-

sult, the coverage of each cell will shrink a lot compared to present cellular commu-

nication systems. Building more base stations can be the solution, but the cost of

building those base stations will be very high. A low-cost alternative will be build-

ing relays to extend the coverage of each cell. Thus relay communication provides

low-cost solutions for future generation wireless communication systems.

Infrastructure-less network In traditional cellular networks, the whole system operation

depends on the centralized control, e.g., from the base station. However, in military

services or due to the disasters like earthquakes, infrastructure-less networks such asad

hocnetworks are preferable. Such networks do not rely on a preexisting infrastructure

such as dedicated routers or base stations. Instead, each node participates in the routing

by forwarding data for other nodes. That is each node can act as a relay, and the choice

of relay nodes are determined dynamically based on the network connectivity.

Despite all those benefits that may be available by incorporating cooperative communica-

tion into future wireless communication systems, there arealso challenges for implementing

cooperative communications. Those challenges include:
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Fig. 2.6:A basic relaying system setup

Increased overhead Compared to point-to-point communication, the data in relay commu-

nication must traverse multiple links. Each link may introduce some overheads which

must be considered in the implementation of relay communications. Such overheads

include synchronization and channel estimation. Moreover, in some cooperative trans-

mission schemes with multiple relays, each relay is also required to have the channel

knowledge of other relays, i.e.,global CSIof the system, which may require the relays

to exchange CSI between them. The resource consumed by CSI exchange is usually

not negligible.

Resource consumption Cooperative communication requires extra links between mobile

users to be established. This requires extra resource consumption, which may include

power (indicated by the battery life), frequency and time resources.

Increased interference and traffic In cooperative communications, each mobile user

sends its data first to it neighboring user. This may cause interference to other users.

Furthermore, sending data to the destination via relays leads to increased traffic for the

whole system.

Spectral efficiency loss The major problem of current relays is that they cannot transmit

and receive data using the same time-frequency channel. This half-duplex constraint

leads to the spectral efficiency loss compare to direct transmissions. The two-way

relaying protocol to be discussed in Section 2.3 was proposed as a solution to make up

for the spectral efficiency loss.

2.2.3 Basic Relaying System Model

A basic relaying system setup is depicted in Fig. 2.6. The source and destination can be

mobile users or one of them can be the base station for cellular systems. A wireless station’s
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Time slot n Time slot n+1

Fig. 2.7:Half-duplex Transmission

transmit signal is typically 100-150dB above its received signal and it is difficult to have suf-

ficient electrical isolation between the transmit and receive circuitry up to now. Technologies

for designing electronic circuits with duplex isolation, which enables simultaneous two-way

information transfer over a common radio channel, are underresearch [43, 270]. However,

current limitations in radio implementation make it difficult for wireless stations to achieve

full-duplex communication, i.e., transmitting and receiving signals at the same time using

the same frequency channel [134]. Such a constraint is called thehalf-duplex constraint, and

orthogonal channels are required for the transmission and reception at wireless stations. In

practice, the transmit and receive signals are usually separated in time (time-division duplex-

ing, TDD) or in frequency (frequency-division duplexing, FDD).

For simplicity, we assume the two-hop transmission is separated in time, i.e., in time divi-

sion multiple access (TDMA) fashion. We just consider half-duplex operations as depicted in

Fig. 2.7, and assume equal time allocation for the two time slots and each node is equipped

with a single antenna. In the first time slotn, the source sends its signalxs[n]. For a flat

fading channel, the received signal at the relay and the destination can be expressed as

yr[n] = hs,rxs[n] + zr[n]

yd[n] = hs,dxs[n] + zd[n],
(2.25)

whereyr[n] and yd[n] are the relay and destination received signals, respectively. In the

second time slotn + 1, the source keeps silent, while the relay transmits signalxr[n + 1] to

the destination.

yd[n + 1] = hr,dxr[n+ 1] + zd[n+ 1], (2.26)

whereyd[n + 1] denotes the received signal at the destination in the time slot n + 1. In the

above equations,hi,j is the channel coefficient between the transmitter and receiver andzj
is the additive noise at the receiver, wherei ∈ {s, r} andj ∈ {r, d}. For Rayleigh fading

channel, we can modelzj as independentCN (0, N0) random variables, whereN0 denotes

the noise variance.
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2.2.4 Relaying Strategies

Relaying strategies refer to the processing schemes at the relay, i.e., howxr[n+1] in (2.26) is

generated at the relay. Different relaying strategies havedifferent implementation complexi-

ties and lead to different performance at the destination. The following relaying schemes are

the most commonly used processing strategies at present-day relays.

2.2.4.1 Amplify-and-Forward

The amplify-and-forward (AF) relays resemble the traditional analog relays, which transmit

an amplified version of the previously received signal, i.e.[134]

xr[n+ 1] = βyr[n], (2.27)

with the power constraint

β ≤
√

PR

|hs,r|2 PS +N0

, (2.28)

wherePS andPR are the transmit power constraints for the source and the relay, respectively.

In order to achieve the highest capacity available, the amplification factorβ in (2.28) should

be met with equality. Since the destination receives the same information from the source and

the relay at different time slots, the two versions of the received signal can be decoded using

the maximum-ratio combining technique at the destination.This leads to low-complexity

relay transceivers and lower processing power consumptionsince there is no need of signal

processing for the decoding procedures. Moreover, AF relays are transparent to adaptive

modulation techniques which may be employed by the source.

Assuming that equal time is allocated for the two relaying phases as shown in Fig. 2.7, the

maximum average mutual information and the outage behaviorhas been analyzed in [134].

The result shows that the outage probability declines proportional toSNR−2 at high SNR.

Thus AF relaying achieves full second order diversity for the considered system in Fig. 2.6.

One of the most important question for AF relaying is how to choose the relaying function.

For fading channels, when the CSI is available at the relay, the gain allocation (2.28) was

proposed in [134], and the average BER and outage probability analysis for some modulation

schemes in a two-hop AF relaying system without the direct link has been considered in

[93, 94] over frequency flat Rayleigh-fading channels. A fixed gain allocation in such a

system, which benefits from the knowledge of the first hop’s average fading power, was

37



Chapter 2 Overview of Modern Wireless Communication Systems

proposed in [95]. Such a fixed gain allocation AF scheme requires less channel knowledge

and has lower complexity since it does not change the gain allocation in the process of fading.

The gain allocation in (2.28) calculates the gain allocation based on the average received

power of the signal. A gain allocation scheme that is based onthe received signal itself

was proposed in [7]. The considered scenario is a two-hop relaying system without the

directlink. The channel model is AWGN and the modulation scheme is binary phase-shift

keying (BPSK). The system is uncoded and memoryless, i.e., during each relay transmission,

the signal transmitted by the relay only depends on its last received symbol. The authors

showed that the optimal amplification function is a Lambert Wfunction whose parameters

vary with the noise variance and the input signal. Here the objective is to minimize the

average probability of detection error. Furthermore, theyshowed that for low SNR regimes,

the optimal amplification function resembles a hard limiter, and for high SNR regimes it

resembles an linear amplifier. A similar problem was considered in [80], where the two-hop

channel remains memoryless but the objective is to maximizethe SNR at the destination.

Both the single relay case and the multi-relay case are considered.

The basic relaying system where each node is equipped with a single antenna as shown in

Fig. 2.6 was considered in [159], and the authors unified previous results on the protocols of

such a system. Three different TDMA-based cooperative protocols that vary the degree of

broadcasting and receive collision were proposed. The three protocols that the authors con-

sidered are depicted in Table 2.1. For each protocol, the authors study the ergodic and outage

capacity behavior assuming Gaussian code books under the AFand DF modes of relaying.

The authors analyzed the spatial diversity performance of the various protocols and find that

the full spatial diversity (second-order in this case) is achieved by certain protocols provided

that appropriate power control is employed. The authors also discussed the distributed space-

time code design for fading relay channels operating in the AF mode. They showed that the

corresponding code design criteria consist of the traditional rank and determinant criteria for

the case of collocated antennas, as well as appropriate power control rules. For the AF mode,

the comparison of mutual information in different scheme is

IAF
I ≥ IAF

II ≥ IAF
III . (2.29)

Protocol I is the only protocol that can realize a multiplexing gain in the classical sense and,

hence, recover (to a certain extent) from this 50% loss in spectral efficiency due to the half-

duplex constraint. All the three schemes can achieve full second order diversity for single

antenna nodes if power control is applied.
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Table 2.1:Three different TDMA-based protocols.S, R, and,D stand for the source, relay,
and destination terminals, respectively.A → B signifies the transmission from
terminalA to terminalB.

Time slot/Protocol I II III
1 S → R,D S → R,D S → R
2 S → D,R → D R → D S → D,R → D

The relay linear processing schemes in MIMO AF relaying systems were considered

in [158,219]. The authors proposed the relay linear processing scheme to maximize the mu-

tual information between the source and destination using MIMO transmission with channel

knowledge at the relays. Three different levels of CSI can beconsidered at the relay station:

• only first hop channel knowledge, i.e., between the source and the relay;

• first hop channel and second hop channel knowledge, i.e., between relay and destina-

tion;

• the CSI in the whole system, including the first and second hopchannels and also the

direct channel between source and destination.

The optimum linear processing matrix at the relay turns out to diagonalize the equivalent

channels from the source to the destination, and the gain allocation on each subchannel is

chosen according to the waterfilling technique.

A power allocation scheme for AF MIMO-OFDM was proposed in [89]. The authors

proposed power allocation schemes over the subchannels in frequency and space domain to

maximize the instantaneous rate of this link if channel state information at the transmitter

(CSIT) is available. Furthermore, a heuristic scheme was proposed that pairs the subcarriers

in the first and second hop channels in OFDM systems.

2.2.4.2 Decode-and-Forward

Although the AF relaying scheme is simple to implement, it forwards the signal as well as the

noise to the destination and may be subject to noise enhancement. Thedecode-and-forward

(DF) scheme tries to regenerate the data information at the relay and forwards a “clean”

version of the data to the destination. Error-detecting codes, such as cyclic redundancy check

(CRC) codes, and error-correcting codes, such as turbo codes, are usually applied in the DF

relaying systems to detect and correct the errors in the received data at the relay. Compared

to the AF schemes, decoding the channel codes at the relay is adistinct characteristic of the

DF schemes.
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Base station

User T1

User T2

Fig. 2.8:Cooperation Transmission Scenario in [204]

The DF scheme was one of the first relaying strategy applied inthe user cooperation

scenario [204, 205], where the authors considered an uplinktransmission scenario as shown

in Fig. 2.8. Here the two terminalT1 andT2 represent two independent mobile users that

both have their own data to be transmitted to the base station. The two terminals considered

in [204,205] are full-duplex, i.e., they can transmit and receive signals in the same frequency

channel simultaneously. Each terminal splits its transmitinformation into two parts: the first

part is to be sent directly to the base station and the second part is to be sent to the base

station via the other terminal. The power allocation of the two parts of signals enables the

other terminal to perfectly decode the second part of the signal. Due to the broadcast nature

of wireless channels, each terminal overhears the transmitsignal when the other terminal

transmits. The authors showed that, even though the interuser channel is noisy, cooperation

leads to an increase in the ergodic achievable rate region for both users.

Actually the user cooperation scenario considered in Fig. 2.8 can be decomposed into the

basic relaying system model as shown in Fig. 2.6, where the only difference is that each

terminal act both as a source of information and as a relay. The achievable diversity gain

of DF relaying strategies was calculated in [134], where thebasic relaying system model

as shown in Fig. 2.6 was considered. Since the data symbol from the source is transmitted

from the source and the relay, people may expect to achieve second-order diversity in DF

schemes. However, by analyzing the outage probabilities, the results in [134] showed that

such DF relaying strategy does not offer diversity gain for largeSNR if we require the relay

to fully decode the source message. The outage probability can only decay proportionally

to SNR−1 at high SNR. This is because the channel between the source and the relay limits

the performance for the whole system. In order to overcome the limitations, the authors also
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proposedselection relayingand incremental relayingwhich can be used with either AF or

DF relays:

• In selection relaying, the source retransmits in the secondtime slot if the source-relay

path falls below a certain threshold. It is a adaptive version of relay transmission which

falls back to direct transmission if the relay cannot decode.

• In incremental relaying, the destination sends feedbacks to the source and the relay

upon receiving the symbol from the source in the first time slot. If the destination

can correctly decode the received symbol in the first time slot, the source can directly

transmit the next message and no relaying is required.

Combined with selection relaying or incremental relaying,the authors showed that DF re-

laying can achieve the full diversity (second-order diversity in this case).

Coded cooperation[112, 113, 167, 216] utilizes channel coding for user cooperation. It

can be considered as a practical way of using channel coding to implement the selection DF

relaying strategy. In this scheme, the data from the source is divided into two parts: the first

part is a punctured convolutional code which is a valid code in itself; the second part consists

of parity bits that can form a stronger code with the first part. The source transmits the first

part of the code. Upon reception, the relay decodes that partand checks the CRC code. If the

CRC code is correct, the relay forms the second part (parity bits) and transmits it to the des-

tination. Otherwise the second part will not be transmittedby the relay, i.e., the user resorts

to the noncooperative mode. The parity bits can be considered as incremental redundancy.

Furthermore, whether or not to choose the relaying mode is automatically managed through

channel coding instead of the feedback. It has been shown that coded cooperation is also

capable of achieving the full diversity provided by user cooperation. Based on the idea of

coded cooperation, aspace-time coded cooperationscheme was proposed in [117], where

each user transmits his own as well as his partner’s second set of parity bits by splitting the

available power and utilizing space-time codes upon successful decoding of the first part.

The analysis and simulation show that the space-time coded cooperation scheme allows the

users to capture better space-time diversity in fast fading, compared to the original coded

cooperation scheme.

Instead of forwarding the parity bits, the authors of [17, 144] proposed to forward the

soft reliability information obtained at the relay to the destination, i.e.,soft information re-

laying. In traditional DF relaying strategies, the relay retransmits the hard decision of the

decoded data bits. Thus the reliability information obtained in the relay decoding process

is lost. When the channel quality between the source and the relay is poor, the relay may
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be unable to do perfect decoding and the hard decisions at therelay may be incorrect. In

order to overcome this drawback, the authors of [144] proposed to first calculate the a pos-

teriori probabilities (APPs) of the information symbols atthe relay. Based on the APPs of

the information symbols, the relay calculates the parity symbol soft estimates of the source

information and then forwards them to the destination. By observing that the AF scheme

with binary inputs can be viewed as a way of forwarding soft reliability information without

utilizing channel codes, the authors of [17] proposed the “decode-amplify-forward” (DAF)

scheme, which combines the merits of AF and DF by having the relay perform soft decoding

and forward the reliability information. A hybrid scheme ofDAF and coded cooperation

is implemented through simple time-sharing in [17]. The soft information relaying scheme

achieves better performance compared to the AF and the traditional DF relaying schemes.

Applying the idea of turbo coding in relaying systems was proposed in [278], which is

called “distributed turbo codes”. The idea is that the relayforwards to the destination a re-

interleaved version of the convolutional code from the source upon successful decoding the

messages. The destination receives two sets of convolutional codes, one from the source and

one from the relay. The two sets of codes are encoded from the same information bits and

interleaved by different interleavers, which can be combined and decoded using the turbo

decoding principle. It has been shown that such a coding strategy performs close to the

theoretical outage probability bound of a relay channel. Similarly, LDPC codes can also be

integrated into the relay transmission systems [37], whichare shown to be able to approach

the theoretical limit of the relay channel.

Another scheme trying to combine the merits of AF and DF relaying was proposed

in [143], where the authors considered a system with multiple relays. The relays that fail

to decode the message from the source resort to the AF scheme,and only those relays who

correctly decode the transmitted data from the source use the DF scheme to forward the data

to the destination. The received signals at the destinationfrom all the relays are combined

into one signal to recover the source information. This adaptive relaying protocol outper-

forms the pure AF and DF relaying schemes, and it was shown that the performance gain

grows as the number of relays increases.

2.2.4.3 Demodulate-and-Forward

The demodulate-and-forward(DemF) scheme is a simpler relaying strategy compared to

the DF scheme in that the DemF scheme does not perform channeldecoding at the relay.

On the other hand, DemF tries to avoid noise amplification, which is the main problem in
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the AF scheme, by demodulating the received signals on a symbol-by-symbol basis. The

demodulated signals at the relay are remodulated to form thetransmit symbols. When the

same modulation scheme is applied at the source and the relay, the destination can coherently

combine the received signals from the source and the relay. In [249], the authors considered

a system consisting of a single source-destination pair with a single or multiple relays. A

weighted coherent combiner at the destination was proposed, where the weights take into

account the detection errors at the relays. The authors showed that the proposed scheme

achieves the maximum possible diversity of the system. The authors of [42] considered

a similar system setup, and proposed demodulators with piecewise-linear combining as an

approximation of the nonlinear ML detectors for coherent and noncoherent detection. The

proposed scheme achieves better diversity gains than the DFstrategy, but loses about half of

the diversity gains compared to the AF strategy.

2.2.4.4 Compress-and-Forward

The compress-and-forward (CF) relaying strategy allows the relay station to quantize the

received signal from the source node and to forward it to the destination without decoding

the signal [131]. In the CF relaying strategy, Wyner-Ziv coding [49] can be used for optimal

compression. The CF relaying strategy is compared with the DF relaying strategy from the

information theoretical aspects in [131]. The authors considered the coding strategies of the

DF and CF relaying strategies for full-duplex relays with the basic system setup as shown in

Fig. 2.6. For the CF relaying strategy, coding schemes that take advantage of the statistical

dependence between the channel outputs of the relay and the destination are proposed. It

was shown that the DF strategy is useful for relays that are close to the source and the CF

strategy is useful for relays that are close to the destination.

2.2.5 Relaying Networks

The basic relaying system setup is only a building block for larger wireless networks. The

Relaying network can comprise of multiple users and multiple relays, and it may have com-

plicated structures. We summarize the important research results on relaying networks in

this section.
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2.2.5.1 Multiple Relays

In a dense wireless network, multiple relays are usually available to facilitate the data trans-

mission from the source to the destination. Those relays altogether resemble a “virtual”

antenna array. Since all the data that the relays forward to the destination come from the

same source, space-time codes designed for multi-antenna systems can be applied to obtain

diversity gain. Applying space-time codes in the relaying scenario is usually referred to as

distributed space-time coding.

A distributed space-time coding scheme was proposed in [135] based on the orthogonal

STBC. The authors considered DF relays and require the relays to fully decode the source

message. In this scheme, different relays transmit different columns of the STBC code ma-

trix. Absence of an antenna corresponds to deletion of a column in the matrix, which is

analogous to that antenna experiencing a deep fade. However, the columns still remain

orthogonal, which allows the code to maintain its residual diversity benefits. The authors

showed that the proposed distributed space-time coding scheme achieves full spatial diver-

sity in the number of cooperating terminals, not just the number of decoding relays, and has

higher spectral efficiencies than repetition-based schemes.

Another distributed space-time coding scheme was proposedin [124], where the relay

nodes encode their received signals into a distributed linear dispersion code, and then trans-

mit the coded signals to the receive node. The authors showedthat the diversityd of the

system behaves as

d = min(T,R)

(
1− log logP

logP

)
, (2.30)

whereT is the coherence interval,R is the number of relay nodes, andP is the total transmit

power. whenT ≥ R and the average total transmit power is very high (P ≫ logP ), the

relay network has almost the same diversity as a multiple-antenna system withR transmit

antennas, which is the same as assuming that theR relay nodes can fully cooperate and

have full knowledge of the transmitted signal. Furthermore, the optimal power allocation

of the system is analyzed when there is a fixed total transmit power constraint across the

entire network. Besides distributed space-time block codes, distributed STTC were discussed

in [272].

In addition to achieving the diversity gain, another usage of using multiple cooperative

relays is to improve the capacity in a rank-deficient MIMO channel [191, 257]. It is known

that full spatial multiplexing gain in a MIMO channel is achieved only when the channel

has full rank. When there are not enough scatterers to provide a rich scattering environment,

the MIMO channel will be rank-deficient and suffers from a loss in capacity. The authors
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of [257] proposed the idea of using multiple single antenna AF relays asactive scatterersfor

the MIMO channel, and showed that the full spatial multiplexing gain is achievable when a

sufficient number of relays are available to act as active scatterers.

Multi-antenna relay networks were considered in [19], where multiple AF relays assist

the communication between a single source-destination pair. Here all stations are equipped

with multiple antennas and inter-relay cooperation is allowed. Under the ZF criterion and

the MMSE criterion, the authors proposed schemes to maximize the SNR at the destination

subject to certain power constraints.

The channel estimation is another important issue in relaying networks. The authors of

[71] considered the channel estimation in a relaying network with a single source-destination

pair and multiple AF relays. Each node is equipped with a single antenna. The proposed

scheme estimates the overall channel from the source to the destination where each relay

node is subject to its individual power constraint. The linear least-square estimators and the

MMSE estimator, together with their optimal training sequences, are proposed for the con-

sidered relaying network. The DF relaying network with the same setup has been considered

in [72], where the ML and the MMSE channel estimators as well as their optimal training

sequence design have been studied.

2.2.5.2 Multiple Users

Multiuser relay networks utilize relays to assist the communication between multiple source-

destination pairs. The research of multiuser relay networks is related to theinterference

channelin information theory, where multiple sources transmit information to multiple des-

tinations in the same channel. The capacity region of the interference channel is still a open

problem until now.

In the research of multiuser relay networks, the authors of [115] established the duality

between the multiple access and broadcast relaying channels with two users and AF relays.

In a multiuser multi-access relay channel, more than one user transmits data to a common

destination with the help of relays as shown in Fig. 2.9(a); in a multiuser broadcast relay

channel, a common source transmits its data to different destinations as shown in Fig. 2.9(b).

The sum power constraints are applied on the transmitting user(s) and the relays separately.

Under this assumption, the achievable rate region of the multi-access relay channel with a

sum source power constraintP1 + P2 = P and sum relay power constraintPR in Fig. 2.9(a)

is shown to the be identical to the achievable rate region of the broadcast relay channel with

transmit power constraintPR and a sum relay power constraintP as shown in Fig. 2.9(b).
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Fig. 2.9:Dual multi-user multi-access and broadcast relay channel

This shows that the two channel models in Fig. 2.9 aredual, and the achievable rate region

of the broadcast relay channel can be thus characterized by determining its dual multi-access

relay channel. The duality also holds for multi-hop relay channels and networks with multi-

antenna nodes [79].

A multiuser zero-forcing relaying scheme was proposed in [256, 258], where multiple

source nodes transmit data to their corresponding destination nodes via multiple AF relaying

nodes. Each node is equipped with a single antenna. The authors proposed the gain allo-

cations at the relays such that each destination node only receives the data symbol from its

intended source node, and the inter-user interferences arecanceled by those AF relays. As-

suming there areN source-destination pairs, the authors showed that at leastNR = N(N−1)

AF relays are required to perform this zero-forcing relaying. Multiuser zero-forcing relay-

ing achieves distributed spatial multiplexing gain via AF relays, and this scheme has been

extended into the multiuser MMSE relaying scheme in [21].
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2.2.5.3 Resource Allocations

Considering a cellular network with many user, the design ofsuch a network from a system

point of view becomes challenging. The design of the system includes the optimal alloca-

tion of physical-layer resources, such as power and frequency subcarriers for each user, the

optimal choice of relays and the optimal relaying strategies. The optimization of all those

parameters should take into account the channel realizations and the user traffic. Joint op-

timization of all those parameters may sound impossible. However, it was shown in [165]

that the resource allocation problem can be solved if a central unit has perfect knowledge

of each link’s channel conditional and user traffic. The system considered in [165] is a

cellular orthogonal frequency-division multiple access (OFDMA) mobile network with one

base station and many users where each user can also act as a relay to forward the data

to its neighbors. The network operates in a frequency-selective slow-fading environment,

and the choices of relaying strategies are AF and DF. The authors proposed a centralized

utility maximization framework for the optimization of thephysical-layer parameters, the

choice of relays and the relaying strategies. The solution is obtained by first decomposing

the Lagrangian dual of the original problem into the application-layer and physical-layer

subproblems, and then solving the subproblems separately.

Another cross-layer resource allocation framework for cooperative networks was proposed

in [44], where an energy-constrained cooperative network is considered. The objective is

to guarantee the lifetime of each node to be equal to a target lifetime and let each node

efficiently utilize its available energy to optimize its performance such as throughput and

outage probability. This work considers the physical and network layers jointly. It is found

that the fairness and energy constraint cannot be satisfied simultaneously if each node uses a

fixed set of relays. The authors proposed a multi-state cooperation methodology to solve the

problem, where the energy is allocated among the nodes state-by-state via a geometric and

network decomposition approach. Given the energy allocation, the duration of each state is

then optimized so as to maximize the nodes utility. It is shown that the proposed framework

will not only guarantee fairness, but will also provide significant throughput and diversity

gain over conventional cooperation schemes.

2.2.5.4 Capacity Scaling Laws

After the seminal work [87], the research on the network capacity scaling law became a hot

research topic. The capacity scaling law in MIMO relaying networks can be found in [28]. In

the considered network, a source terminal communicates with a destination terminal, with the
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help ofK relay terminals using a half-duplex protocol. Both the source and the destination

are equipped withM antennas, and each relay hasN antennas. When perfect CSI is available

at the destination and the relays, the network capacityC scales like

C ∼ M logK

2
, asK → ∞ (2.31)

for fixed M and arbitrary, but fixed,N . This is accomplished by simply matched filtering

at the relays. When the relays do not have CSI, the authors showed that the simple AF

scheme turns the relay network into a point-to-point MIMO link in the high SNR regime,

i.e., C ∼ (M/2) log(SNR), asK → ∞ and for fixedM andN . This shows that the

AF relays can act as active scatterers to recover spatial multiplexing gain in poor scattering

environments.

2.2.6 Testbeds for Relay Communication

As a burgeoning area of research, industry soon realized theimportance of deploying relays

in cellular networks. Up to now, the following testbed are under development or becoming

mature.

EASY-C Testbed in Dresden The research project EASY-C (Enablers for Ambient Ser-

vices and Systems, Part C) is supported by the German FederalMinistry for Education

and Research, and it is jointly led by Deutsche Telekom and Vodafone. Multi-cell joint

signal processing as well as cooperative relaying techniques are the major research top-

ics in this project. Those techniques are expected to provide significant improvement

of user experience at the cell-edges, i.e., providing enhanced spectral efficiency and

fairness in cellular systems. The testbed in Dresden, Germany, is run by the Vodafone

Chair in Dresden University of Technology. In the final stage, the testbed will comprise

of 10 sites with a total of 28 cells. The backhaul between the sites is built through low

latency microwave links. Those links are operating in the 5 GHz frequency band and

have a maximum throughput of 300 Mbit/s. This testbed will beoperated in frequency

division duplex (FDD) mode [118].

Berlin LTE-Advanced Testbed This testbed was set up by the Heinrich-Hertz-Institut in

Berlin, and it is also part of the research project EASY-C. One study item of the testbed

for LTE-Advanced is to enhance existing LTE networks by deploying DF relays. The

testbed is being established with 3 sites and a total of 6 cells, where the focus is on

testing applications that are enabled or improved through multi-cell joint signal pro-

cessing. The sites are connected through both fiber-optic cables and laser links [254].
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By indoor and outdoor field measurements using this testbed,researchers have demon-

strated that relaying can have high impact on the coverage and the capacity in cellular

systems.

Nokia Siemens Networks LTE Relay Testbed This testbed is built up by Nokia Siemens

Networks and it operates in FDD mode. The system comprises ofan LTE system

supporting MIMO transmission with two transmit and two receive antennas, together

with a relay station. The relaying station operates in-band, which means that the relay

station inserted in the network does not need an external data backhaul. It is connected

to the nearest base station by using radio resources within the operating frequency band

of the base station itself. The relay station act as if it was the base station towards the

user terminal, and the system offers the full functionalityof LTE. The demonstration

using this testbed showed that the performance at the cell edge could be increased up

to 50% of the peak throughput.

RACooN Lab in ETH Zurich The Radio Access with Cooperative Nodes (RACooN) lab is

a mobile simulation testbed at the Wireless CommunicationsGroup in ETH Zurich.

It was set up to investigate the behavior of different transceiver schemes, including

cooperative relaying. The whole testbed consists of ten single antenna relay nodes

which can be combined arbitrarily, which makes RACooN an extremely adaptive and

highly flexible laboratory. The operation band of the RACooNLaboratory lies between

5.1 GHz and 5.9 GHz. 34 MHz of feasible baseband user bandwidth (30 MHz with

equalized phase response) correspondents to a passband user bandwidth of 68 MHz

(60 MHz with equalized phase response). The carrier frequency can be set in steps

of 1 MHz. The RACooN Lab has successfully demonstrated relaying transmission

schemes, such as the multiuser ZF relaying [22].

2.3 Two-Way Relay Communication

Two-way relay communication can be considered as a sub-branch of relay communication. It

comprises of the same system setup as conventional relay networks, with the only difference

that it employs the two-way relaying protocols. The two-wayrelaying protocol distinguishes

itself from conventional relay protocols by considering bidirectional information flows in the

process of relaying. The bidirectional data traffic is prevalent in modern wireless commu-

nication systems. For example, there are both downlink dataand uplink data transmissions

in cellular mobile communication systems. Surprisingly, this simple introduction of a new
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ingredient brings significant benefits into relay communication. It provides a solution for the

long-standing problem of the spectral efficiency loss due tothe application of half-duplex

relays. Today two-way relay communication has become an important research topic for

both academia and industry. Sometimes two-way relay communication is also termedbidi-

rectional relaying, and the traditional relay communication with unidirectional information

flow is calledone-way relayingor unidirectional relaying.

2.3.1 Development of Two-Way Relay Communication

The original study of the two-way communication problem canbe traced back to Shannon’s

work [209] in 1961. Interestingly, in retrospect, Shannon’s work in 1961 already consid-

ered an AND channel and an OR channel, which are very similar to the two-way relay

channel with network coding nowadays. At the beginning of the 21st century, interests in

cooperative communication and relaying systems begin to boom due to its connections to

distributed MIMO and its promise to achieve coverage extension of cellular networks with

low costs [174]. However, although full-duplex relays are under research, most of present-

day relays are still half-duplex, i.e., they cannot transmit and receive signals using the same

temporal-spectral channel due to the insufficient isolation between the transmit and receive

circuitry [134]. Such half-duplex signaling requires two channel uses in two-hop networks.

It causes a substantial loss in the spectral efficiency due tothe pre-log factor1/2 in the

corresponding capacity expressions. This problem pestered the research community for a

long time, and researchers proposed schemes, e.g., spatialreuse of the relaying time slot

as in [110, 157], to improve the spectral efficiency in relaying systems. However, those

solutions are based on specific system setups. In 2005–2007,Rankov and Wittneben pro-

posed two spectrally efficient relaying protocols, i.e., the two-path relayingprotocol and the

two-way relayingprotocol, and summarized them in [193]. The two-path relaying protocol

considers the unidirectional transmission, where two relays alternatively forward messages

from a source terminal to a destination terminal. In contrast, the two-way relaying proto-

col considers the bidirectional data transmission and doesnot need to introduce additional

relays into the system. Here the bidirectional data transmission means that two wireless sta-

tions exchange data via another relay station. This can be considered as, e.g., the base station

communicates with a mobile user via a dedicated relay in a cellular system, or two mobile

clients transmit data to each other via the access point in a WLAN. The two-way relaying

protocol combines the traditional “uplink” and “downlink”data transmission together by

ingeniously mixing the data from different sources at the relay. While traditional relaying

protocols require four phases (in time or frequency) to achieve bidirectional communication
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Fig. 2.10:Butterfly network

between the two stations, the two-way relaying protocol only needs two phases, namely, the

multiple access (MAC) phase and the broadcast (BRC) phase.

Shortly after the proposal of the two-way relaying protocol, its connection tonetwork

codingwas observed. Originally proposed by Ahlswedeet al. for improving the throughput

in multicast scenarios, network coding was traditionally considered as a research topic for

computer and wireline communications since it operates on discrete finite fields [10]. One of

the most famous example of network coding is the butterfly network as shown in Fig. 2.10.

Two source nodes at the top of the figure want to send data bitscA andcB to the two des-

tination nodes at the bottom of the figure. Each edge can only transmit a single data bit in

each transmission. In network coding, the central line combines the data bitscA andcB and

transmits the combined valuecA ⊕ cB to the two destination nodes. Since the two destination

nodes also receivecA andcB from the two sources respectively, they can subtract the known

data bits fromcA ⊕ cB and get the value ofcB andcA, respectively. This method is better than

conventional routing, where the central nodes have to send the data bitcA andcB separately

to the two destination nodes. It was shown in [88,136] that network coding can be integrated

into two-way relaying to achieve good performance. Actually, the broadcast nature of wire-

less channels is more suitable for network coding than wireline channels. Two-way relaying

with network coding shows a good example of cross layer design that connects the physical
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Fig. 2.11:Asymmetric channel conditions and asymmetric data traffic

layer (PHY) and the data link layer. Such observation bringsnew insights into the research of

both relay communication and network coding. Nowadays, theidea of two-way relaying has

been generalized to many other research areas or scenarios beyond the originally considered

ones, such as secret communication [101] and uplink cooperative transmission [39].

2.3.2 Advantages and Challenges of Two-Way Relay Communica tion

The main advantage of applying the two-way relaying protocol in relaying networks is the

improvement of the spectral efficiency. The bidirectional data transmission in a two-way

relaying system is performed simultaneously. Even though the data transmission in each

direction still requires two channel uses, the sum rate of the network is significantly boosted

by the two-way relaying protocol due to the concurrent establishment of the bidirectional

links. Another advantage of the two-way relaying protocol compared with other spectrally

efficient relaying protocols is that only minor changes in the system is required to integrate

the two-way relaying protocol into a conventional relayingsystem setup. This is highly

desirable for the practical network implementation.

The two-way relaying protocol can be applied to general relay networks with bidirectional

information flow. However, there is some differences between the two-way relaying systems
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and the conventional relaying systems. The following listssome the challenges faced by the

design and implementation of practical two-way relaying systems.

Asymmetric channel conditions In wireless communication systems, the channel condi-

tions in all the radio links cannot be guaranteed to be the same. In a typical cellular

relaying network as shown in Fig. 2.11(a), the channel quality between the base station

and the relay station is usually much better than that between the relay station and the

mobile station if the mobile station is located near the border of the cellular coverage.

This may be due to the pathloss, the different transmit powerand the different number

of antennas at each station. Such asymmetric channel conditions are detrimental for a

two-way relaying system. This is because both the uplink andthe downlink data flows

have to pass through the two-hop channels. The overall data rate is limited by the hop

with the worse channel quality.

Asymmetric data traffic In wireless relaying networks, the amount of data to be transmit-

ted in one direction may be much larger than the other direction. For example, in

cellular two-way relaying systems as shown in Fig. 2.11(b),the data rate to be trans-

mitted in the downlink is usually required to be much larger than that in the uplink.

How to combine different amount of data is problem especially for two-way relaying

systems with network coding. This will be discussed in Chapter 8.

Synchronization Some two-way relaying protocols, e.g., the two-phase protocol, require

the two user stations to transmit the data simultaneously. How to synchronize the

transmission is an important problem for the practical implementation of the two-way

relaying protocol.

2.3.3 Basic System Setup and Transmission Protocols

The basic system setup for two-way relaying is the same as theconventional relaying setup in

Fig. 2.6. In conventional relaying protocols, the transmission of data from the source to the

destination in a two-hop scenario requires two channel uses, i.e., the source first transmit the

data to the relay and the relay forward the data to the destination. In real-world applications,

e.g., cellular communications between the base station andthe mobile station, both stations

have data to transmit to the other side, i.e., each station acts both as a source and a destination.

We consider such a traffic pattern, i.e., two stationsA andB exchanging data via another relay

R as shown in Fig. 2.12. All the stations are half-duplex. Whenthe conventional relaying

protocol is applied, it requires four phases to exchange thedata as shown in Fig. 2.12(a).
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Fig. 2.12:Comparison of different protocols with bidirectional information transmission

Two-way relaying ingeniously exploits the fact that the data to be transmitted to the other

side by the relay is known by its source. The idea of two-way relaying is to combine the

received data from the two stations at the relay and retransmit the combined signal. Based

on the data received from the relay and the previously transmitted data of the two stations,

each station can extract the unknown data transmitted from the other side. Based on this

transmission patterns, there are two schemes proposed for two-way relay communication:

the two-phase protocol and the three-phase protocol. The core idea of the two schemes is the

same, and the difference lies in how to transmit the data to the relay.

Two-phase protocol:The two-phase protocol is shown in Fig. 2.12(b). The exchange of

data between the stationsA andB is completed in the MAC phase and the BRC phase. In

the MAC phase, the two stations transmit their data simultaneously to the relay; the relay

processes the received signal and retransmits the combinedsignals back to the two stations.

Compared to the conventional relaying schemes, the two-phase protocol saves two channel

uses in exchanging the data between the stationsA andB. Since both the stations and the

relay are half-duplex and they cannot transmit when they receive, the directlink between

the two stationsA andB need not to be considered. The two-phase protocol was proposed
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by [193] and has been analyzed in, e.g., [85,88,239].

Three-phase protocol: The three-phase protocol is shown in Fig. 2.12(c), which splits

the MAC phase into two phases. In this protocol, the stationsA andB transmit to the relayR

using two orthogonal channel uses. Then the relay combines the received data and sends the

combined data back to the stationsA andB. Compared to the two-phase protocol, one ad-

vantage of the three-phase protocol is that it does not require the complicated multiple access

receiver at the relay when the relay has to decode. The other advantage of the three-phase

protocol is that the directlink can be exploited for data transmission. When the directlink

signal strength is strong, the two sets of received signals provide diversity and improve the

decoding performance at the stationsA andB. The drawback of the three-phase scheme is

that it requires one additional channel use compared to the two-phase protocol. When the two

stations are too far from each other and the directlink can beneglected, the three-phase pro-

tocol is suboptimal compared to the two-phase protocol at least from information theoretical

perspective. The three-phase protocol has been consideredin [136, 140, 260]. Comparison

of the different protocols was performed in, e.g., [151]

2.3.4 Relaying Strategies

Only with slight modifications, the relaying strategies used in conventional relaying systems

can also be applied to the two-way relaying protocol. The relaying strategies are decisive

for the system performance and may differ in implementationissues, such as processing

power, signal processing complexity and memory (cache) requirements. In addition, specific

problems and solution, such as channel estimation, may arise for systems utilizing different

relaying strategies.

2.3.4.1 Amplify-and-Forward

The two-way AF relaying strategy is sometimes called “analog network coding” [127] in

literature. In this strategy, the relay simply retransmitsan amplified version of the received

signal in the BRC phase. It is usually applied with the two-phase two-way relaying protocol.

The relay gain allocation is assumed to be known at the two receivers. The receiving stations

subtract the known data symbols transmitted by itself, i.e., theself-interference(SI), from the

received signals in the BRC phase, so the remaining signal only contains the data symbols

from the other side.

The choice of the relay gain allocation is decisive for the system performance. The relay

gain allocation proposed in [193] is simply based on the transmit power constraint at the
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relay and the received signal power in the MAC phase. Such a choice of relay gain is easy to

implement but may not lead to the optimal performance at the receives. For uncoded trans-

mission, i.e., when the relay applies an instantaneous relay function on its received signal, an

optimized relay amplification function was proposed in [51]to minimize the average BER

in the high SNR regime. Such an optimal relay gain is a function of the received signal

value, and it is shown to be a Lambert W function, which is similar to the results obtained

for one-way relaying [7].

When the relay is equipped with multiple antennas, the relaymay apply linear processing

on the received signal. The authors of [277] considered a two-way AF relaying system where

each user station is equipped with a single antenna and the relay has multiple antennas. The

linear processing strategy at the relay is reduced to the beamforming strategy. Under the

given transmit power constraints, the capacity region of the system with beamforming at

the relay is analyzed. The optimal relay beamforming structure, as well as an algorithm

to compute the optimal beamforming matrix based on convex optimization techniques, is

provided.

Space-time codes applied for two-way AF relaying with multiple relay antennas was con-

sidered in [90]. The authors of [90] considered a two-way AF half-duplex relaying system

where the user stations are equipped with two antennas each and the relay has only one

antenna. The source and the destination stations each transmits using the Alamouti’s or-

thogonal STBC. Both upper and lower bounds for the average sum rate as well as an upper

bound for the pairwise error probability (PEP) for the proposed two-way orthogonal STBC

scheme were provided. It is showed that the average sum rate of the proposed scheme is

improved compared to the single antenna case and a diversityorder of two is achieved for

the considered system configuration.

The availability of channel knowledge is also an important issue in the two-way AF re-

laying strategy. In the process of self-interference cancellation, the receiving station needs

the channel knowledge between itself and the relay; in orderto decode the remaining signal,

the two-hop CSI from the information source is also required. The design of the training

sequence to minimize the MSE of the channel estimation underZF criterion was considered

in [186]. A linear estimator that maximizes the SNR, which takes the channel estimation

errors into account was proposed in [73].
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2.3.4.2 Decode-and-Forward

The two-way DF relaying strategy was proposed in [193], where the relay decodes the re-

ceived data bits from the two stations. Since channel decoding is performed at the relay, the

two-way DF relay may have more complicated structure and require higher signal process-

ing capability than two-way AF relays. Error-detecting codes (such as the CRC codes) can

be applied in the transmitted data from the two stations to guarantee correct decoding at the

relay. Unlike the two-way AF relaying strategy where the signal is actually combined on the

symbol level at the relay, the decoded data at the relay in thetwo-way DF relaying strategy

can be combined on the symbol level or on the bit level. The data combining schemes at the

relay for the two-way DF relaying strategy are important forthe system performance, and

we summarize them as follows:

Superposition coding The superposition coding (SPC) scheme combines the data from the

two user stations on the symbol level. When the SPC scheme is applied at the relay, the

relay retransmits the linear sum of the two sets ofsymbolscontaining the decoded data

from the two user stations. In the BRC phase, each user station receives a combination

of the symbols containing the data from its own and its partner. By canceling its own

data symbols before decoding, each station only needs to decode the data symbols

from its partner. This method was proposed in [193].

Network coding The network coding schemes combines the data from the two user sta-

tions on the bit level using the XOR operation. The combined data bits are remodu-

lated using conventional quadrature amplitude modulation(QAM) or phase-shift key-

ing (PSK) modulations schemes and retransmitted to the two user stations. The user

stations demodulate and decode the received signals, and reveal the unknown data by

XOR-ing the decoded data bits with its own transmitted data bits. Network coding

applied in two-way relaying systems can be found in [10,136,260].

Lattice coding Lattice coding uses modulo addition in multi-dimensional spaces. Like the

network coding scheme, the lattice coding scheme utilizes nonlinear operations for

combining the data. Applying lattice coding in two-way relaying systems was consid-

ered in [15,160,161]. Due to its complicated structure, most of the results obtained for

the lattice coding scheme remain theoretical. How to apply the lattice coding scheme

in real-world two-way relaying systems still needs to be investigated.

For the two-way DF relaying protocol, how to transmit the decoded information of each

bit to the two stations is an important issue for the system performance. The authors of [140]

considered forwarding signals based on the hard or soft decisions at the relay in the BRC
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phase of a three-phase MIMO two-way DF relaying system with the network coding scheme.

When hard decisions are to be forwarded at the relay, they proposed a new decoding algo-

rithm that takes into account the estimated bit error rate ofthe packets to be forwarded;

when the relay forwards soft decisions, the relay retransmits estimates of the decoded sig-

nals based on the soft decisions at the relay decoder outputs, rather than their hard-decision

based sliced versions, in order to retain the soft information obtained at the relay. The error

in the forwarded signal is modeled as the combination of the hard decoding errors and the

Gaussian soft errors, and they modified the hard decision forwarding decoders taking into

account such errors. They showed that the proposed scheme achieves better decoding perfor-

mance at the user receivers compared to the DF schemes that disregard the decoding errors

at the relay. However, the proposed soft-decision based decoder only achieves slightly better

performance compared to the hard-decision based decoder.

Two-way DF relaying systems with multiple antennas at the relay and its optimal trans-

mission strategies in the BRC phase was considered in [172] from the information theoretical

aspects. The authors of [172] considered a two-way DF relaying system where the relay is

equipped with multiple antennas and the user stations each with single antenna. In the BRC

phase, they showed that the relay beamforming into the subspace spanned by the channels is

an optimal transmit strategy for the MISO bidirectional broadcast channel, and the correla-

tion between the channels is advantageous. Furthermore, they presented the optimal trans-

mit strategy at the relay that specifies the whole capacity region for this MISO bidirectional

broadcast channel.

Both the two-phase protocol and the three-phase protocol asshown in Fig. 2.12 can be

applied to the two-way DF relaying systems. The major difference between them is whether

the directlink is exploited. The authors of [99] consideredthe three-phase two-way DF

relaying protocol, where the coded bits from the directlinkand the relay consist of different

interleaved versions of the same data bits. They form distributed turbo codes and are decoded

at the destination using the turbo decoding principle.

When the receivers do not have the channel knowledge, the authors of [53] considered non-

coherent transmission in two-way relay systems where the CSI at receiver is not required.

They proposed differential AF and DF relaying transmissionstrategies. Uncoded scenarios

were considered and ML detectors were proposed for the AF andDF relaying strategies,

where the latter can be considered as performing differential network coding at the physical

layer. In addition, several suboptimal detection schemes,including decision feedback de-

tectors and prediction based detectors, were proposed to reduce the complexity of the ML

detector. Furthermore, they extended the proposed schemesto multiple-antenna cases and
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provided the design criterion of the differential unitary space-time modulation (DUSTM) for

two-way relay channels.

Unlike the SPC and the network coding schemes, most work on the lattice coding scheme

remains theoretical. The authors of [161] considered a two-way relaying system with real

inputs. They showed that when the lattice coding scheme is applied at a Gaussian two-way

relay channel, the achievable rates at the two stations using lattice coding are asymptotically

optimal. The channels between the relay and the two user stations are average power con-

strained AWGN channel with the SNR ofρ, i.e., the channels between the relay and the two

user stations are equally strong. Each user station, as wellas the relay, is equipped with

a single antenna. The upper bound of the system is shown to be1/2 log(1 + ρ) bits per

transmitter per use of the MAC phase and the BRC phase of the bidirectional relay channel.

The authors showed that the lattice coding scheme can obtaina rate of1/2 log(1/2 + ρ) bits

per transmitter per channel use, which is asymptotically optimal when the SNR is high. The

main idea is to decode the sum of the codewords modulo a lattice at the relay followed by a

broadcast phase which performs Slepian-Wolf coding with structured codes. When the SNR

is asymptotically low, jointly decoding of the transmitteddata from the two user stations at

the relay in the MAC phase is shown to be optimal. In such a scenario, the two-way AF

relaying strategy is shown to be suboptimal.

A similar transmission strategy was considered in [160], where the authors considered

two-way full-duplex relaying systems without the directlink between the user station pair.

They proposed a transmission scheme that applies nested lattice codes in the MAC phase and

use structured binning for the BRC phase. They showed that the proposed scheme achieves

within 1/2 bits from the cut-set upper bound and is asymptotically optimal when the SNR

at the receiver is high. Applying the lattice coding scheme in the two-way relay channel

with asymmetric channel qualities was considered in [15], where the authors proposed to

apply high-dimensional lattice codes whose shaping gain isclose to the optimal one for the

two-way relaying communication. The authors called it “modulo-and-forward”. When the

transmission powers of two nodes are different, they proposed to use superposition coding

and partial decoding at the relay node, which were shown to achieve better performance than

the conventional AF and DF relaying strategies in certain scenarios.

2.3.4.3 Compress-and-Forward

Unlike the DF relaying strategy where the relay fully decodes the received signals and the

AF relaying strategy where the relay simply transmits a linear amplified version of the re-

ceived signals, the CF relaying strategy allows the relay node to quantize and compress the

59



Chapter 2 Overview of Modern Wireless Communication Systems

received signals before transmitting it to the destinationnode. The index of the quantized

codeword is assumed to be transmitted reliably back to the two stations in the BRC phase.

The quantization error is usually modeled as noise.

The authors of [190] compared the DF and CF relaying schemes in a two-way full-duplex

relaying system. They showed that when the relay is near one of the two stations but far

from the other, employing the pure DF or the pure CF relaying strategy at the relay results

in low rate for one of the communication directions. The authors proposed to combine the

two relaying strategies, which achieves better sum rates compared to the DF and CF relaying

strategies. Inspired by this result, the authors of [84] proposed a two-way CF relaying scheme

with two layered quantization, where one of the users receives a better description of the relay

received signal. The relay operates in half-duplex transmission mode. The proposed scheme

was shown to achieve rates within a half bit of the capacity region in two-way Gaussian relay

channels when there is no directlink between the two user stations.

2.3.4.4 Compute-and-Forward

The idea of the two-way compute-and-forward relaying strategy is to let the relay transmit a

function of the data from the two stations. The function is known to the two stations. Based

on signals from the relay and the known data at the destination, the receiver can reveal the

unknown data from the other side. Actually, the two-way compute-and-forward relaying

strategy works similarly to the two-way DF relaying strategy. The benefit of the two-way

compute-and-forward relaying strategy is that the relay does not have to fully decode the two

sets of data from the two user stations. It only needs to calculate a reliable version of the

function based on the received signals.

The compute-and-forward relaying strategy was originallyproposed for conventional re-

laying networks with multiple sources [163], where multiple linear functions of the transmit-

ted data from several sources are transmitted to the destination node such that the destination

can recover the data from all the sources based on those functions. The authors of [163] pro-

posed to use algebraically structured codes, i.e., latticecodes, to exploit the structure of the

interference and protect against noise. Later, it was discovered that such a relaying strategy

is more suitable for two-way relaying systems. The compute-and-forward relaying strategy

applied in MIMO two-way relaying systems was considered in [276].
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Fig. 2.13:“Denoise” mapping for the received signal at the relay

2.3.4.5 Denoise-and-Forward

The denoise-and-forward scheme was proposed in [187] for two-way relaying. Similar to

the DemF scheme for one-way relaying, the denoise-and-forward scheme does not perform

channel decoding at the relay. Instead, it maps the receivedsignal to the symbol that corre-

sponds to the combined data bits, i.e., it estimate the XOR-ed data bits transmitted from the

two stations based on the received signal and maps the received signal to the XOR-ed data

signal constellation. This scheme was originally proposedconsidering BPSK transmission

from the two stations and extended to other constellations [130,188].

An example of the “denoise” mapping is shown in Fig. 2.13. We only consider the real

dimension. The two stations use BPSK modulation in the MAC phase, i.e., the bit 0 is

mapped to -1 and the bit 1 is mapped to 1. We assume the channel is Gaussian, i.e., the

channel gains between the user stations and the relay are both unity. The received signal at

the relay has the following combinations

• Two stations transmit bit 0 and 0; relay receives signal -2, and maps it to bit0⊕0 = 0;

• Two stations transmit bit 0 and 1; relay receives signal 0, and maps it to bit0⊕ 1 = 1;

• Two stations transmit bit 1 and 0; relay receives signal 0, and maps it to bit1⊕ 0 = 1;

• Two stations transmit bit 1 and 1; relay receives signal 2, and maps it to bit1⊕ 1 = 0.

Based on the received signal, the relay does not have to decode the data transmitted from the

two stations separately, but only needs to decode the resultant bit after the XOR operation.

2.3.5 Two-Way Relaying Networks

In real-world wireless networks, there are different network topologies. The same is true

for two-way relaying network as shown in Fig. 2.14. For cellular networks, the traditional

network topology is tree-structured, i.e., the base station communicates with the mobile users
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Fig. 2.14:Comparison of different system setups
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via relays using multi-hop transmission. The relays forwards the received data towards the

destination, and they are sometimes called therouters. Cellular relaying networks can be

modeled as a two-hop or multi-hop network. In wireless mesh networks, the topology is

more complicated since each node can act as a source or destination node of data or as a

relay node. We summarize the system setups in two-way relaying networks and important

results for them in this section.

2.3.5.1 Multiple Relays

The authors of [52] considered a two-way relaying system with single user pair and multiple

relays, where both the two-phase protocol and the three phase protocol were considered. For

the two-phase protocol, the authors considered two-way AF relaying strategies, and proposed

a partial DF relaying strategy at the relay, where each relayfirst removes part of the noise

before sending the signal to the two terminals. After processing their received signals, the

relays encode the signals using a distributed linear dispersion code and retransmit them. For

the proposed AF relaying strategy, it achieves the diversity orderd of

d = min(N,K)

(
1− log logP

logP

)
(2.32)

whereN is the number of relays, isP the total power of the network, andK is the number

of symbols transmitted during each time slot. The proposed partial DF strategy achieves the

diversity order ofmin(N,K) but the conventional DF can only achieve the diversity orderof

1. The capacity scaling for two-way relay channel when the number of the relays goes large

was considered in [239].

2.3.5.2 Multiple User Pairs

The authors of [125] studied the optimal resource allocation problem for the relay-assisted

cellular system employing the orthogonal frequency-division multiple-access (OFDMA)

technique. Each relay is responsible for assisting the transmission between the base station

and one mobile user. The authors considered both DF and AF relaying strategies for the re-

lays. Algorithm based on convex optimization techniques were developed for optimizing the

resource allocation at the base station, the relays and mobile users, which include the subcar-

rier assignment and the power allocation on each transmission link. Substantial throughput

gains are achieved by using two-way relaying protocols and the proposed optimal resource

allocation in the considered cellular communication system.
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The two-way orthogonalize-and-forward scheme was proposed in [193], where the system

consists of multiple user pairs that exchange data via multiple AF relays. Each station is

equipped with single antenna. The orthogonalize-and-forward scheme utilizes the scheme

proposed in [256] by choosing the gain allocation at the relays to diagonalize the compound

two-hop channels of the system so that each user only receives data from its corresponding

transmitter.

2.3.5.3 Mesh Networks and Ad Hoc Networks

Wireless mesh networks and mobile ad hoc networks (MANET) are closed related. The

main difference between them is that the nodes in mesh networks are generally fixed while

the nodes in MANET are mobile. In mesh network, each node in the network may act both

as a source, a destination or a relay of information. Depending on the topology, multiple con-

nections among users within the network are possible. Any two nodes in a mesh network are

connected together via multiple hops. The data transmittedfrom the source node in wireless

mesh networks can jump around the broken or blocked paths until the destination is reached.

Since there are usually more than one path between the sourceand destination in such net-

works, mesh network has the advantage of self-healing, i.e., the network can still work even

when some nodes break down. Wireless mesh networks were originally developed for mili-

tary applications, but are now having more and more applications in civilian communication

systems. International standards such as IEEE 802.11s [4] are proposed, which defines how

wireless devices can interconnect to create a WLAN mesh network. Research work consid-

ering network coding in wireless mesh networks can be found in, e.g., [60,128].

2.3.5.4 Capacity Scaling Law and DMT in Two-Way Relaying

The authors of [239] considered the capacity scaling in MIMOtwo-way relay channels where

all nodes work in half duplex mode. They showed that the capacity scales linear with the

number of transmit antennas and logarithmically with the number of relays as the number

of relays grows large. That is, for a two-way relay network with each user station equipped

with M antenna,K relays assisting the communication between the two user stations, and

each relay is equipped withN antennas. AsK → ∞, the capacity of the systemC scales

like

C ∼ M log(K). (2.33)

This result shows that with two-way relay channels it is possible to obtain full-duplex per-

formance asymptotically in the number of relays while usingonly half-duplex nodes.
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Fig. 2.15:Multi-access relay channel

The authors of [85] considered a two-way full-duplex relay channel where all the stations

are equipped with multiple antennas. They characterized the optimal diversity-multiplexing

gain tradeoff (DMT) curve for the system when assuming independent quasi-static Rayleigh

fading channels and channel state information available atthe receivers. The authors also

showed that the optimal DMT can be achieved by a CF type relaying strategy in which the

relay quantizes its received signal and transmits the corresponding channel codeword. With

this transmission protocol, the two transmissions in opposite directions can achieve their

respective single user optimal DMT performances simultaneously.

2.3.6 Related Research Topics

Nowadays the application scenarios of two-way relaying arenot limited to the three-station

network as shown in Fig. 2.12. The research on two-way relaying has revealed it connections

to other research topics. We list some of the related research topics as follows.

Multi-access relay channel: Multi-access relay channel (MARC) was introduced

in [132]. It considers the system as shown in Fig. 2.15, wheretwo sources,S1 andS2 transmit

information to the destinationD via a half-duplex relayR. This system models the uplink

transmission of two sources to the base station via a relay inbetween. It has been found that

network coding can be applied to such a system similar to two-way relaying. Consider the

following transmission scheme:

• The first phase: the sourceS1 transmit its data to the relayR and the destinationD,

• The second phase: the the sourceS2 transmit its data to the relayR and the destination

D,
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• The third phase: the relay combines the data fromS1 andS2 and transmits the com-

bined data to the destinationD.

The mathematical description of this scheme is very similarto the three-phase two-way

relaying protocol. The author of [98] proposed a turbo decoding method in MARC similar

to the one used in two-way relaying [99]. The authors of [274,275] considered imperfect

decoding at the relay and designed a quantizer for the soft decoding value at the relay, which

outperforms the belief propagation approach in [267] wherethe relay sends the LLR of the

network coded message to the destination. Outer bounds for discrete memoryless MARC

are obtained in [195], where the authors also presented a CF strategy and an AF strategy for

MARC. The DMT was analyzed in [41]. An AF relaying strategy for MARC was proposed

in [269], where the authors investigated both linear and nonlinear mapping schemes at the

relay.

Multicast: Multicast refers to the technology for delivering information to a group of

destinations simultaneously, i.e, one-to-many communication. It is an important technol-

ogy for streaming media and Internet television applications. In computer networks, it is

typically refers toIP multicast. Multicast over wireless networks has been considered in,

e.g, [122, 214, 238, 248]. The idea of network coding has beenshown to be able to improve

the multicast capacity of a network [104,142].

Secret communication: In cryptography, the only encryption method that has peen

proven to be absolutely impossible to crack if used correctly is the method ofone-time pad.

In one-time pad, the useful data is encrypted by XOR-ing it with a sequence of random

data of the same length. Such a random data sequence, which acts as a random key, is only

known by the transmitter and the receiver. If the key is trulyrandom and only used once,

the resulting transmitted data sequence, i.e., “ciphertext”, will be impossible to be decrypted

without knowing the random key. This method is calledone-time padand was proved by

Shannon [208]. When network coding is applied at the relay inthe BRC phase, the transmit-

ted data from the relay can also be considered as a ciphertext, which can only be deciphered

when the “key”, i.e., the data from one station is known. Compared to direct forwarding,

this property is more security for the data transmission at the relay. Works related to secrete

communication in two-way relaying can be found in, e.g., [101].

Multi-way relaying channel: The authors of [86] considered the scenario that multiple

users exchanges information with the help of a relay. The system is divided into multiple
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clusters where the users within the same cluster wish to exchange messages among them-

selves via the relay. Multiple interfering clusters can transmit data simultaneously. AF, DF

and CF protocols are investigated for the system and the authors also considered two extreme

cases: one is that every user wants to receive data from all other users and the other is that

the system is composed of multiple two-way relay channels.
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Chapter 3

Coverage Analysis of Multi-Antenna

Decode-and-Forward Relaying Systems

Coverage extension is an important application of relay communication in cellular networks.

However, the quantity of the coverage extension using relays in cellular systems is usually

determined only by measurement campaigns without much theoretical analysis beforehand.

Analytical frameworks for quantifying the coverage extension in cellular relay networks pro-

vide insights on relaying and serve as an important tool for cellular network planning. This

chapter proposes a quantitative analysis framework of coverage extension by using decode-

and-forward (DF) relays in the downlink direction of a cellular network. We consider the

scenario that the relays are placed uniformly on a circle around the base station, and define

the coverage of cellular relaying networks based on a 1%-outage achievable rate criterion.

The considered channel model is based on the IST-WINNER model for the fourth genera-

tion (4G) cellular systems. However, the analytical methodis general and can be applied to

other cellular systems. To describe the coverage of a relaying system and its relation to the

number of relays, we introduce the concept ofcircular coverage rangeandcoverage angle.

Moreover, the coverage of such a network also depends on the distance between the base and

relay stations. For a fixed number of relays, there exists a certain distance between the base

and relay stations such that the relaying system achieves the maximum circular coverage

range. We are interested in how to determine the maximum circular coverage range given

the coverage angle. Moreover, we derive upper and lower bounds for the maximum circular

coverage range when the transmitters do not have the channelknowledge. We also propose a

heuristic approximation for the maximum circular coveragerange, which is useful for practi-

cal system design. The corresponding distance between baseand relay stations that achieves

this maximum circular coverage range is also calculated in the analysis. Furthermore, we

optimized the transmit covariance matrices when the channel knowledge is available at the
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transmitters, and studied its impact on the circular coverage range extension. The compari-

son of coverage for cellular relaying systems and that for conventional cellular systems are

shown by simulations.

3.1 Introduction

In the future fourth generation (4G) cellular wireless networks, the use of higher carrier fre-

quencies (higher than 5 GHz) leads to smaller cell size compared to current 2G and 3G net-

works [156], [155]. Using relays and multihop transmissionstrategies to assist transmission

in cellular networks has been shown to be effective in cellular coverage improvement [174].

This means higher data rates can be carried over larger distances, which reduces the base

station density in the cellular network.

Currently, there are two major types of relays: amplify-and-forward (AF) relays and

decode-and-forward (DF) relays. AF relays simply transmitan amplified version of the

received signal, while DF relays first decode the received signal before re-encoding and re-

transmitting it. DF relays may be preferable in a cellular environment since they do not suf-

fer from noise enhancement. In addition, currently relay stations cannot transmit and receive

data simultaneously due to the coupling between the transmit and receive circuitry [134].

Thus half-duplexity is also a constraint for practical relays (see Chapter 2).

In cellular networks, we can either use free mobile stations(MS) as relays (calleduser co-

operation) or build dedicated fixed relay stations (RS). These dedicated relay stations have

sufficient power supply, higher signal processing capabilities and better antennas than the

mobile stations. The positions of those dedicated relays can also be chosen intentionally

to ensure stable connections to the base station (BS) of the cell. This chapter considers

dedicated half-duplex DF relay stations with multiple antennas in a cellular downlink envi-

ronment.

The coverage of wireless systems is an important factor in cellular network planning. The

direct way to determine the coverage of a cellular system is by measurement, where one

mobile test equipment is sent out to determine the signal quality as it moves around in the

cell (see e.g., [92]). In this chapter, we consider such a measurement campaign scenario

where this measurement equipment is assisted by one relay station at a given time.

Although measurement campaigns are effective ways of determining the coverage, the

results are just valid for the specific measured system and highly depend on the environment.

The aim of this chapter is to provide a theoretical frameworkfor quantifying the coverage
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improvement in a cellular relaying network, and provide useful hints for cellular relaying

system design.

There have been plenty of research works on the coverage of conventional cellular net-

works. For example, Chenet. al [40] proposed a scheduling scheme to replenish diversity

deficient MIMO systems with multiuser diversity, and they showed that the coverage of con-

ventional cellular networks could be significantly increased by wireless scheduling. With

the advances of relaying networks, much effort has also beendevoted to the research on the

coverage of cellular relaying systems. Fujiwaraet. al [68] applied the multi-hop connection

scheme to a code division multiple access (CDMA) cellular system and compared its per-

formance to that of a conventional single-hop cellular system by computer simulations. The

simulation results confirmed that significant coverage areaenhancement could be obtained

by using multi-hop connection. Another interesting work [55] considered a similar CDMA

network. The authors proposed to divide each cell into innerand outer regions, and only

the users belonging to an outer region communicate with the BS using two hops. Each of

the two regions is allocated a separate frequency channel. The authors analyzed the intercell

interference reduction and coverage extension when the proposed method is used. Huet.

al [110] showed the coverage extension of a cellular relaying network by using a frequency

channel reuse scheme, which uses a pre-configured relaying channel selection algorithm to

minimize co-channel interference in the network. In [57], the authors investigated the cellu-

lar downlink transmission scenario where randomly positioned mobile stations are used as

relays. The authors studied the coverage of such a cellular downlink scenario and considered

both the pathloss only channel model and the channel model which include both pathloss and

the lognormal shadowing. They shows that when the lognormalshadowing is considered, the

coverage improvement using relays is more significant. Using mobile stations as relays was

also considered in [232], where the mobile stations chosen as relays use DF strategies to for-

ward the data to the destinations. The authors investigatedthe effects of different relay and

channel selection strategies on the system performance. In[20], the authors considered using

dedicated DF relay stations in 3GPP LTE-Advanced cellular networks. The authors proposed

a heuristic method describing the relay transmit power, theratio between the number of the

relay and the base stations, and the performance of the system. The coverage analysis for

AF relaying schemes was considered in [226]. In most existing work, they either choose

a fixed cell range or choose the QoS requirement based on the signal power level. The re-

ceived power alone is sometimes not a good indicator of the system throughput, especially

for MIMO systems. On the other hand, the method for evaluating the coverage is usually

measurement campaign or computer simulations, which is difficult to obtain insights.
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In order to quantitatively analyze the coverage extension in a cellular DF relaying network,

we propose the concept ofcoverage angleandcircular coverage range. In short, the cover-

age angle is360◦ divided by the number of relays, which represents the angle of the sector

covered by each relay. The coverage of a relaying system is measured by circular coverage

range, which is the radius of the circular coverage area of the relaying system achieved by

placing those relays. When the coverage angle (or the corresponding number of relays) is

given, we can find the maximum circular coverage range by varying the distance between

the BS and the RS. The distance between the BS and the RS that achieves the maximum

circular coverage range is called theoptimum distancebetween them. The relationship be-

tween the coverage angle and the maximum circular coverage range fully characterizes the

coverage improvement in the cellular relaying network. Based on these concepts, we pro-

pose analytical upper and lower bounds for the maximum circular coverage range when the

power is uniformly allocated at the transmit antennas. Thiscorresponds to the case of no

channel knowledge at the transmitters. We also propose a heuristic method to approximate

the maximum circular coverage range and the optimum distance between BS and RS, which

may be useful for system design. The impact of channel knowledge at the transmitters on

the circular coverage range will be shown by simulation results. In the analysis, we neglect

the intercell and intracell interference and assume orthogonal channels are allocated for the

transmission at each relay.

Our Contributions: The contributions of this chapter can be summarized as follows:

• We propose novel concepts, such as coverage angle and circular coverage range, for

describing the coverage extension in cellular relaying network

• We propose a novel quantitative analytical framework for calculating the coverage

extension by using MIMO DF relays, which is important for cellular network planning.

The remainder of the chapter is organized as follows: In Section 3.2, the reference channel

model and metrics for describing the coverage extension in acellular relaying network will

be presented. We will first discuss how we define coverage fromthe outage capacity point

of view. Then we will propose the idea ofcircular coverage rangeand its relation with

coverage anglein detail. In Section 3.3, the achievable rate for the MIMO DFrelaying

systems will be summarized. The impact of channel state information at the transmitters

(CSIT) will also be considered. We will present upper and lower bounds of the maximum

circular coverage range for given coverage angles in Section 3.4, where we just consider

uniform power allocation at the transmitters. We also propose a heuristic approximation for

the maximum circular coverage range, where the corresponding optimum relay position is

determined at the same time in the analysis. The comprehensive performance results are
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presented in Section 3.5. Conclusions are drawn in Section 3.6

3.2 Coverage of Cellular Relaying Systems

Upcoming 4G systems are expected to move to much higher carrier frequencies (> 5 GHz)

than today’s systems (< 2.2 GHz); this leads to higher signal attenuations. In addition, the

bandwidth of those new systems will be much larger than that of today’s cellular systems,

but the transmit power will probably not increase. Therefore we expect that the coverage

range of a 4G base station will be smaller compared to today’scellular systems. In this

chapter we neglect the influence of intercell interference on the coverage by investigating a

single cell scenario; this refers to a case where neighboring cells use orthogonal channels

(e.g. different frequency bands). We assume different relays use different resources, e.g., in

frequency, time, spreading code, space or combinations of these, to serve their mobile users.

In this scenario, the intra-cell interference between the relays can be neglected.

The coverage of a cellular system is usually defined as the area that fulfills a certain quality

of service (QoS) requirement. However, in a cellular relaying system, such an area may be

an irregular figure, which is hard to analyze and impracticalfor system design. In order to

quantitatively analyze the coverage of a relaying system, we propose the concept ofcoverage

angle and circular coverage range. In the following sections, the coverage of a cellular

relaying system is always measured in terms of those two notions.

3.2.1 Reference Channel Model

In order to quantitatively calculate the coverage of a cellular relaying, certain channel model

has to be applied in the analysis. We use the following channel models, whose parameters

were proposed in the IST WINNER project [18]. We assume the BSto be placed above

rooftop level, i.e., more than 30m high. The RS is placed on rooftop level, so we can assume

good channel conditions between the BS and the RS. The MS is located at street level, i.e.,

at the height of a person. The transmit power at BS and RS is 1W each, which is much

lower than current 2G systems. We choose the same transmit power at RS and BS because

the transmit power at BS is already very low. In this chapter,we assume the channels to be

isotropic, i.e., the transmitted signal experiences the same fading statics in every direction.

Thus the original cell (without relays) is circular.

We consider a wideband channel, but we constrict ourselves to frequency-flat fading, i.e.,

frequency diversity is not considered here. This restriction corresponds to the worst-case

73



Chapter 3 Coverage Analysis of Multi-Antenna Decode-and-Forward Relaying Systems

Fig. 3.1:Cellular relaying system channel model

scenario consideration because frequency diversity can also be exploited to enhance the cir-

cular coverage range in frequency-selective fading environments. As shown in Fig. 3.1, the

first hop channelH1 is a Ricean fading channel withK-factor of 10dB, while the direct path

channelH0 and second hop channelH2 are Rayleigh fading channels. The pathloss model

is as follows:

PL0 = 35.0 log10(d0) + 38.4; (3.1)

PL1 = 36.5 + 20 log10(fc/2.5) + 23.5 log10(d1); (3.2)

PL2 = 35.0 log10(d2) + 38.4, (3.3)

wherePL0, PL1 andPL2 are the pathlosses in dB for the direct channel (BS-MS), the

first hop channel (BS-RS), and the second hop channel (RS-MS), respectively.d0, d1 and

d2 are the distance between the transmitter and the receiver for the corresponding channels

measured in meters.fc represents the center frequency in GHz. In our simulations,fc =

5GHz. As we can see, the pathloss exponent for the first hop channel is 2.35, while it is 3.50

for the direct and second hop channels. This channel model complies with the assumption

that the channel condition between BS and RS is much better than the channels to the MS.

The noise variance is calculated as

σ2 = kBT∆fF = 1.3805× 10−23× 290× 1× 108× 10(8/10) = 2.5260× 10−12 Watt (3.4)

wherekB is Boltzmann’s constant in joules per kelvin,T is the absolute temperature in

kelvins,∆f denotes the bandwidth, andF denotes the noise figure.
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We summarize the parameters for the system model in Table 3.1.

Table 3.1:System Model Parameters
Bandwidth 100 MHz
Center frequency 5 GHz
Transmit power at BS and RS 1 W
Noise figure of RS and MS 8 dB
QoS requirement (1%-outage rate) 1 b/s/Hz
Pathloss exponentH1 (BS-RS) 2.35
Pathloss exponentH0 andH2 (BS-MS and RS-MS) 3.50

3.2.2 QoS Requirements and SNR Regime

The choice of the QoS requirement determines the coverage area of a cellular system and

lays the foundation for our following discussions. This requirement influences the minimum

required SNR at the mobile stations within the coverage of the system. A common choice

[137] of QoS criterion is anε-outage data rate requirement, which means that the supported

data rate for every position within coverage is guaranteed to be higher than the specified

required rateCQ with probability of at least1 − ε, i.e.,P {C ≤ CQ} ≤ ε, whereC is the

achievable data rate of the user within coverage.

The choice ofε andCQ influences the operational SNR regime at the border of the cell

and therefore the possibilities of enhancing the range by diversity, spatial multiplexing or

array gain techniques. IfCQ is chosen so large that an MS at the border of the centralized

cell without relays is in the high SNR regime, spatial multiplexing techniques are efficient

means for further extension of the cell. This comes from the fact that they cause a pre-log

rate gain proportional to the minimum number of BS and MS antennas. Using beamforming

to provide array gain only causes a logarithmic gain in achievable rate, which is less efficient.

We have to choose a QoS criterion that meets the high data raterequirement of future 4G

cellular networks. On the other hand, the cell size under this QoS requirement should not be

too small. So we require the1%-outage rate for each point in the coverage area to be higher

than 1b/s/Hz1, i.e.,CQ = 1b/s/Hz andε = 0.01. This QoS requirement makes the MS at the

border of the cell to be in the low SNR regime, where spatial multiplexing gain is small and

the achievable rate scales linearly with the SNR. For example, the received signal SNR of

1The unit b/s/Hz actually represents the spectrum efficiency. However, since the bandwidth is fixed in our
system model, the achievable data rate is proportional to the spectrum efficiency. We do not distinguish the
two terms unless it causes confusion in the following.
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the mobile sets on the cell border is about−4dB for a4 × 4 MIMO system under this QoS

requirement. This makes diversity and array gain techniques much more attractive compared

to spatial multiplexing. Note it does not mean every user in the system is in low SNR regime.

However, those users who have high SNR do not affect the coverage because they are in the

middle of the coverage area.

3.2.2.1 Coverage Range for Conventional Cellular Systems

In conventional cellular mobile systems, the BS transmits data directly to the MS, and there

is no relay to facilitate the communication. We assume OFDMAtechnique is applied in

the system and each MS is assigned with a distinct OFDM subcarrier. That is, there is no

interuser interference in the system for the uplink and downlink transmission. We apply the

IST WINNER C2 NLOS channel model [18] (see (3.1) in Section 3.2.1) for the BS to MS

transmission and we provide numerical results on the coverage range of such a system. The

QoS requirement for each MS is chosen such that the1%-outage capacity of the border users

is not smaller than 1 b/s/Hz. We discuss how the coverage range scales with the diversity

order, array gain, and number of antennas in the low SNR regime.

In Fig. 3.2 the coverage range for different number of receive antennasN versus the num-

ber of transmit antennasM is depicted. The solid lines correspond to the case, that theBS

has no knowledge about the channel (no CSIT), whereas the dashed lines are for the case that

the BS has instantaneous CSIT and therefore can perform water-filling method to maximize

the instantaneous capacity. In the left figure the absolute coverage range is shown, whereas

on the right side all values are normalized with respect to the coverage range of a single-input

single-output (SISO) system.

For a multiple-input single-output (MISO) system without CSIT only a diversity gain

can be achieved. Compared to a SISO system, the range improvement is high for the first

couple additional order of diversity. Later the increase inrange saturates. It can be seen,

that increasing the number of transmit antennas fromM = 1 to M = 2 doubles both the

diversity order and the coverage range. FromM = 4 to M = 8 the range increase is only

about 10%.

The blue dashed MISO curve shows that array gain pays off morein terms of range im-

provement than only diversity gain. When the number of transmit antennas are doubled from

M = 4 to M = 8, the improvement of coverage range is about 50%.

Since the users at the border are in low SNR regime, spatial multiplexing gains plays

an unimportant role in the coverage range of the system. Thiscan also be seen from the
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Fig. 3.2:Coverage range for direct communication
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comparison of the coverage range of(M/N) = (8/2) and (M/N) = (4/4) with CSIT,

where the coverage range for(M/N) = (8/2) is larger than that for(M/N) = (4/4) in this

case. In the high SNR regime one would expect larger capacities for the(M/N) = (4/4)

case due to the spatial multiplexing gain of 4 compared to thespatial multiplexing gain of

2 for the(M/N) = (8/2) case. However, in the low SNR regime spatial multiplexing gain

have little impact in the capacity. In both casesMN = 16, so that both should have an

identical diversity gain ofMN = 16. The factor that determine the coverage range is then

the array gain. When CSIT is available, it is shown in [13] that the array gain is proportional

to the largest eigenvalue and is therefore upper bounded by(
√
M+

√
N)2. Intuitively, this is

due to the fact that there are16 channel coefficients but onlyM +N weighting coefficients

available at source and destination. In our case of(M/N) = (8/2) and(M/N) = (4/4) this

gives us upper bounds on the array gain of18 and16, respectively. Thus, the(M/N) = (8/2)

can achieve a larger coverage range. Note that in the case of no CSIT, the coverage range

of the (M/N) = (4/4) system is higher than of the(M/N) = (8/2) system, because the

higher receive array gain of the(M/N) = (4/4) system.

In Fig. 3.3 we show the CDF of the capacity for the users at the coverage border. In the

left figure the CDFs for a MISO system are depicted. It can be seen, that the1%-outage

capacity is for all curves equal to the required 1 b/s/Hz. Only the mean value of the CDFs

changes. In the right figure the CDFs forN = 2 are depicted. If one compares the curve for

(M/N) = (2/2) in Fig. 3.3(b) with the curve for(M/N) = (4/1) in Fig. 3.3(a), it can be

observed that both CDFs are almost identical. Both cases have equal diversity order.

To quantify the range improvement in a MISO system withM transmit antennas in the low

SNR regime due to instantaneous CSIT compared to no CSIT, we evaluate the capacities of

both schemes.

In the case of no CSIT the capacity of a MISO system is given as

CnoCSIT = log2

(
1 +

ρ

M
· ‖h‖2

)
,

whereρ is the SNR andh is the MISO channel vector between transmitter and receiver.

In the case of perfect instantaneous CSIT, the capacity is given as

CCSIT = log2
(
1 + ρ · ‖h‖2

)
.

Due to the fact that we are in the low SNR regime the log-function scales linearly with the
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SNR, i.e.,

CnoCSIT≈
ρ

M log(2)
· ‖h‖2,

CCSIT ≈
ρ

log(2)
· ‖h‖2.

It can be seen that for the same SNRρ, the capacity with CSITCCSIT would beM times

larger than without CSITCnoCSIT. Therefore, the attenuation due to the path loss in the case

of CSIT can be alsoM times larger than the case of no CSIT. If we assume the pathloss

exponent to beα, i.e., the signal strength attenuates according to∼ r−α, the distances with

and without CSIT have the ratio
(

rCSIT

rnoCSIT

)α

= M.

Therefore, the coverage range of a MISO system with instantaneous CSIT compared to a

MISO system without CSIT is given by

rCSIT = M
1
α · rnoCSIT, (3.5)

whereα denotes the path-loss exponent. In Fig. 3.4 it can be seen that this approximation is

quite tight to the simulated coverage range of a MISO system with CSIT. Hereα is chosen

asα = 3.5 according to (3.1).

3.2.3 Coverage Angle vs. Circular Coverage Range

For MIMO relaying systems, the coverage range is not easily defined as single-user MIMO

systems. Thus we first have to define the coverage range of a MIMO relaying system in this

section. In accordance with most other papers on cellular relaying (e.g. [110]), we consider

the case that the relays are placed uniformly around the BS. After placing the relays, we

still require the new cell to be acircular cell, where the same QoS requirement is fulfilled.

We refer to the cell radius achieved by the BS and the uniformly placed relays ascircular

coverage rangercov. Note that we always require a circular shape for the cell. Ifthe border

of the area where the QoS requirement is fulfilled is not a circle, the circle which has the

maximum radius within this shape determinesrcov. This is because requiring the new cell to

have the same shape as the original cell provides a good basisfor comparing their coverage.

On the other hand, this analysis will provide the basis for analyzing cells with other shapes.

For example, the circular cell considered here is the inscribed circle if we require the cell
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Fig. 3.4:Coverage range improvement because of CSIT for a MISO directcommunication
system

shape to be hexagon. If the circular coverage rangercov is known, the size of the hexagon

cell can be calculated accordingly.

To clarify our definition of circular coverage range, Fig. 3.5 shows the coverage region

by placing eight relays. The radiusr0 is the coverage range for the BS before the relays are

placed. The circular coverage range is defined by the radiusr2 which is the newrcov for

the system of the BSand relays. The circular coverage range can be extended by placing

more relays around the BS. For example, in Fig. 3.5, the circular coverage range of the

system can approachr1 by placing infinitely many relays around the BS uniformly. The

angleα = 360◦/8 = 45◦ that determines the size of the circle sector supported by one

specific relay is also shown in Fig. 3.5. We refer to this angleas coverage angleαcov.

Equivalently, when we say the coverage angle isαcov, we mean thatNr = ⌈360◦/αcov⌉
relays are placed uniformly in the cell. Due to symmetry, we only depict one relay in the

following figures if the coverage angle is specified.

We observe that the circular coverage range also depends on the distance between the BS

and the RS. Given a certain coverage angle, we are interestedin the maximum achievable

circular coverage range by varying the distance between theBS and the RS. This distance

between the BS and the RS that achieves the maximum circular coverage range is called the

optimum distancebetween them.
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Fig. 3.5:Example for enhanced coverage region by multiple relays

Fig. 3.6:MIMO relaying system model

3.3 Achievable Rate Expressions for MIMO DF Relaying

Schemes

We consider a MIMO relaying system shown in Fig. 3.6, and we denote the number of

antennas at BS, RS and MS asM/R/N , respectively.H0 is anN ×M matrix representing

the direct channel between the BS and MS, andH1 is anR × M matrix representing the

first hop channel between the BS and RS.H2 is the second hop channel between the RS and

MS, which is anN ×R matrix. We denote the power constraint at BS and RS to bePBS and

PRS, respectively.n(1)
d , n(2)

d andnr are the Gaussian noise at MS in the first time slot (direct

link), the noise at MS in the second time slot (relay link) andthe noise at RS, respectively.

We haven(1)
d ∼ CN (0, σ2

dIN), n
(2)
d ∼ CN (0, σ2

dIN) andnr ∼ CN (0, σ2
r IR), and each noise

vector is i.i.d. in space and time. We only consider half-duplex DF relays.

The DF relaying scheme comprises of two time slots. In accordance with other papers

(e.g. [134] and [175]), we assume the duration of the two timeslots to be the same. In the
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first time slot, the BS first transmits the data vectorxs. The transmit signal covariance matrix

is R1 = E{xsx
H
s }. In order to meet the transmit power constraint, we requiretr(R1) = M .

Letyr andy(1)
d represent the signal received at RS and MS in the first time slot, respectively.

They can be expressed as:

yr =

√
PBS

M
H1xs + nr, (3.6)

y
(1)
d =

√
PBS

M
H0xs + n

(1)
d . (3.7)

The RS retransmits the received data to the MS if the decodingis successful. We denote the

signal transmitted at the RS to bex′
s. The signal covariance matrixR2 = E{x′

sx
′H
s }, and

we also requiretr(R2) = R to meet the transmit power constraint. The signal received at

MS in the second time slot can be expressed as:

y
(2)
d =

√
PBS

M
H2x

′
s + n

(2)
d . (3.8)

The achievable rate expressions for a DF relaying system have been shown in e.g. [134]

and [175]. We recapitulate the main results as follows. According to (3.6), the maximum

mutual information of the first hop transmission is

I(xs;yr) = log2 det

(
IR +

PBS

Mσ2
r

H1R1H
H
1

)
. (3.9)

Based on (3.7) and (3.8), the maximum mutual information between the transmitted data

symbols and the received signals at MS can be expressed as [175]

I(xs,x
′
s;y

(1)
d ,y

(2)
d ) = log2 det

(
IN +

PBS

Mσ2
d

H0R1H
H
0 +

PRS

Rσ2
d

H2R2H
H
2

)
. (3.10)

Since the RS repeats the information transmitted in the firsttime slot, this repetition coding

DF scheme only provides higher SNR but no multiplexing gain.Due to two hop transmis-

sion, the maximum transmission rate for the considered overall system can be calculated

as

C = max
tr(R1)=M
tr(R2)=R

{
1

2
min

{
I(xs;yr), I(xs,x

′
s;y

(1)
d ,y

(2)
d )
}}

. (3.11)

The first term in (3.11) represents the rate at which the relaycan reliably decode the data

from the BS, and the second term represents the rate the MS canreliably decode the data
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symbols based on the signals received from BS and RS. Since werequire both RS and MS

to fully decode the data symbols, the maximum rate we can choose is the minimum of the

two terms. The factor1/2 in front of themin operator in (3.11) comes from the fact of two

channel uses.

In order to find the optimum transmit covariance matrices, wecan reformulate the achiev-

able rate expression (3.11) as follows:

maximize
1

2
τ (3.12)

subject to I(xs;yr) ≥ τ, I(xs,x
′
s;y

(1)
d ,y

(2)
d ) ≥ τ,

tr(R1) = M, tr(R2) = R,

whereτ is a slack variable. This problem is convex and can be solved by efficient interior-

point methods [33]. Note, in order to solve the above optimization problem, all the channel

matricesH0, H1 andH2 have to be available. One way to achieve this is to let the relay

feed back the channel information aboutH2 to BS. BS feeds the optimizedR2 to RS after it

finishes the calculation of (3.12). On the other hand, if channel knowledge is not available

at the transmitters, it is reasonable to allocate the power uniformly at the transmit antennas

since it is known to be a robust solution under channel uncertainty [178]. That is, the signal

covariance matrices are chosen to beR1 = IM andR2 = IR.

3.4 Analysis of Circular Coverage Range of Relaying

Systems with Uniform Power Allocation at Transmit

Antennas

If Nr relays are placed uniformly on a circle around the BS, each relay covers a sector

with coverage angle360◦/Nr. For a given coverage angle (or the corresponding number of

relays), there exists an optimum position for the relays where the maximum circular coverage

range is achieved. In this section, we derive analytical upper and lower bounds for the

maximum circular coverage range when the coverage angle is given. The analysis is done for

uniform power allocation at the transmit antennas, i.e., inthe case of no channel knowledge at

transmitters. Furthermore, we propose an approximation for the maximum circular coverage

range, which utilizes some results in the analysis of upper and lower bounds. With the

knowledge of the two bounds and the approximation, the system designers can get an idea of
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the achievable coverage range of the relaying system beforedoing measurement campaigns.

We assumePBS = PRS andσr = σd. Furthermore, we denoteρ = PBS/σ
2
d = PRS/σ

2
d. Since

we allocate different subcarriers in each sector and there is no intracell interference between

the relays due to our assumption in Section 3.2, we can analyze the circular coverage range

by considering just one sector in the system. This is becausethe same analysis applies to

each sector independently. The analysis consists of the following steps:

• Assumptions on the BS-RS channel: Normally, dedicated relay stations are placed at

those places where good connection with the BS is established. It is reasonable to

assume that the first hop channelH1 is much better thanH0 andH2, i.e.,PL1 ≪ PL0

andPL1 ≪ PL2, at least for the users on the border. Thus for those border users, we

have

I(xs;yr) ≫ I(xs,x
′
s;y

(1)
d ,y

(2)
d ), (3.13)

whereI(xs;yr) andI(xs,x
′
s;y

(1)
d ,y

(2)
d ) are the mutual information in (3.9) and (3.10),

respectively. Since we consider the case that no channel knowledge is available at the

transmitters and power is uniformly allocated at the transmit antennas, we can write

the following according to (3.11)

C ≈ 1

2
I(xs,x

′
s;y

(1)
d ,y

(2)
d )

=
1

2
log2 det

(
IN +

PBS

Mσ2
d

H0H
H
0 +

PRS

Rσ2
d

H2H
H
2

)
(3.14)

=
1

2
log2 det

(
IN +

ρ

M
η0 · H̄0H̄

H
0

︸ ︷︷ ︸
BS contribution

+
ρ

R
η2 · H̄2H̄

H
2

︸ ︷︷ ︸
RS contribution

)
, (3.15)

whereη0 = 10−PL0/10 andη2 = 10−PL2/10 denote the signal attenuation from the BS

and the RS, respectively.̄H0 andH̄2 denote the normalized direct and second hop

channels, respectively. Each element ofH̄0 andH̄2 is a CN (0, 1) random variable

according to our channel model in Section 3.2.1. The achievable rateC consists of

the signal contributions from the BS and from the RS. Which contribution is stronger

depends on the location of the mobile user.

• Decomposition of coverage area: In general, the coverage area of the sector has an ir-

regular shape as shown in Fig. 3.7. However, depending on which signal contribution

is stronger, the whole coverage area can be considered to be composed of two inde-

pendent parts: BS coverage and RS coverage. For users in BS coverage, BS signal is

the major contribution toC in (3.15), i.e.,ρη0/M > ρη2/R. It is vice versa for users

in RS coverage. On average, we can characterize the strengthof signal contribution
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Fig. 3.7:UserA andB in a cellular relaying system

just by the termsρη0/M andρη2/R becausēH0 andH̄2 are the normalized channels

and have the same distribution.

• Approximation of the RS coverage using round disk: UserA andB in Fig. 3.7 are

two extreme points on the border of RS coverage. UserA is the “luckiest” user on

the RS coverage border in the sense that it lies on the intersection of BS and RS cov-

erage ranges. The received signal strengths from BS and RS are equally strong, i.e.,

ρη0/M = ρη2/R. The userB is among the “most unlucky” users since the signal con-

tribution from BS is very small. Since both userA andB have the same 1%-outage

rate (1b/s/Hz), userB must receive stronger relay link signal from RS than userA.

The shape of the RS coverage is like a ellipse, which has a larger distance from RS to

border userA than to userB. This shape of RS coverage makes it still hard to analyze

the coverage of the relaying system. In order to simplify ouranalysis and get upper

and lower bounds for the maximum circular coverage range, weapproximate the RS

coverage using a round disk with the center at RS and call it “RS coverage disk”. By

using the distance between RS andA as radius of the disk, we overestimate the RS

coverage; the RS coverage is underestimated when we use the distance between RS

andB as the radius. We also use a round disk with the distance between BS and user

A as the radius to approximate the BS coverage, which we call “BS coverage disk”.

• Calculation of disk radiuses and maximum circular coveragerange: The next step is to

calculate the disk radiuses, i.e., to determine the distance between BS, RS andA, B.

The exact expressions for the distances are hard to find analytically. However, we can

easily calculate upper and lower bounds for them. After we get the upper and lower

bounds for the radiuses, the corresponding upper and lower bounds for the maximum

circular coverage range can be determined by geometry.
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The last two points will be elaborated in the following subsections.

3.4.1 Upper Bound of Maximum Circular Coverage Range

Since the userA lies on the watershed separating the BS coverage and RS coverage, its signal

contributions from BS and RS should be equally strong, i.e.,ρη0/M = ρη2/R. According

to (3.1) and (3.3), we can calculate an upper bound of the distance between userA and BS,

RS. By using them as the BS and RS coverage disk radiuses, we get an overestimate of the

relaying system coverage and can derive an upper bound of themaximum circular coverage

range of the system.

We just show how to calculate the upper bound of the distance betweenA and RS. The

upper bound of the distance betweenA and BS can be calculated in the same way. We denote

H̄ =
[
H̄0 H̄2

]
, which is aN × (M + R) matrix with each element i.i.d.∼ CN (0, 1). The

rate expression of userA can be written as

C ≈ 1

2
log2 det

(
IN +

ρ

M
η0 · H̄0H̄

H
0 +

ρ

R
η2 · H̄2H̄

H
2

)
(3.16)

=
1

2
log2 det

(
IN +

ρη2
R

H̄H̄H
)

(3.17)

=
1

2

N∑

i=1

log2

(
1 +

ρη2
R

λi

)
, (3.18)

whereλi, i = 1 . . . N are the eigenvalues of̄HH̄H . The distribution of (3.18) is difficult to

characterize. However, since we are interested in an upper bound of coverage, we can use

the inequality:log2(1 + x) ≤ x log2(e), ∀x ≥ 0, and get

C ≤ C(u) =
ρη2
4R

log2(e) ·
(

N∑

i=1

2λi

)
. (3.19)

For the i.i.d. Rayleigh fading channel,
∑N

i=1 2λi is a Chi-squared random variable with

2(M +R)N degrees of freedom [184]. Its cumulative distribution function (CDF) is:

F [x; 2(M +R)N ] = G[(M +R)N, x/2] (3.20)

=
γ[(M +R)N, x/2]

Γ[(M +R)N ]
, (3.21)

whereG(·, ·) denotes the regularized incomplete gamma function.γ(·, ·) is the lower incom-

plete Gamma function, andΓ(·) denotes the Gamma function.

87



Chapter 3 Coverage Analysis of Multi-Antenna Decode-and-Forward Relaying Systems

Fig. 3.8:Calculation of the upper bound for the maximum circular coverage range when
θ ≥ 60◦ (M = R)

C(u) is an overestimate of the achievable rate for userA. By usingC(u) instead ofC to

characterize our QoS requirement, we can get an overestimate of the distance between RS

andA. That is,

P
{
C(u) ≤ CQ

}
= F

[
4RCQ

ρη2 log2(e)
; 2(M +R)N

]
= ε. (3.22)

HereCQ = 1b/s/Hz andε = 0.01. We denoteF−1(y; k) as the inverse function for the

CDF F (x; k). We haveF−1(y; k) = 2G−1(k/2, y), whereG−1(·, ·) is the inverse of the

regularized incomplete gamma function. The pathloss betweenA and RS can be calculated

as

PL2 = 10 log10

{
ρ log2(e)

2RCQ
·G−1[(M +R)N, ε]

}
(3.23)

= 35.0 log10(b
(u)
A ) + 38.4 (3.24)

By solving the above equation, we can get the upper bound of the distanceb(u)A between user

A and the RS, which is also an upper bound of the radius for the RScoverage disk. Similarly,

we can get an upper bounda(u) for the radius of the BS coverage disk.

When the number of antennas at BS and RS are the same, i.e.,M = R, the radiuses of BS

and RS coverage disks are the same. Given the radiuses of the BS and RS coverage disks,

the next step is to determine the optimum distance between the BS and RS, and calculate the

maximum circular coverage range. For illustration purpose, we just show theM = R case in

the figures. Given the coverage angle, the maximum circular coverage range is the maximum

radius such that every user in thecircular sector fulfills the QoS requirement. As depicted in

Fig. 3.8, the lineOT is tangent to the BS disk and RS disk atO andT , respectively. When
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Fig. 3.9:The circular coverage range will shrink if RS moves farther away (θ ≥ 60◦, M =
R)

Fig. 3.10:Calculation of the upper bound for the maximum circular coverage range when
θ < 60◦ (M = R)

θ > 60◦, the maximum circular coverage range is achieved when the point T is on the ray of

angleθ. The distance between BS andT is the maximum circular coverage range. Otherwise

if we move the RS further away, the circular coverage range will shrink. This is shown in

Fig. 3.9.

For the coverage angleθ ≤ 60◦ as depicted in Fig. 3.10, the maximum circular coverage

range is achieved when the ray of the angleθ crosses the crossing point of the BS and RS

circles. The maximum circular coverage range equals the distance from BS to the pointA′.

This is because if we move the RS and BS further apart, some area in the sector will not fulfill

the QoS requirement and is not in the coverage of the system. This is shown in Fig. 3.11.

WhenM = R, the upper bound for the maximum circular coverage range canbe ex-

pressed as:

rcov =

{
a(u) + 2a(u) cos θ, if θ < 60◦;

a(u)/ sin(θ/2), if θ ≥ 60◦.
(3.25)
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Fig. 3.11:Some area will be out of coverage if RS moves farther away (θ < 60◦, M = R)

wherea(u) is the radius of the BS and RS coverage disks since they are thesame. The

corresponding distancerrelay between BS and RS is

rrelay =

{
2a(u) cos(θ/2), if θ < 60◦;

a(u) cot(θ/2), if θ ≥ 60◦.
(3.26)

WhenM 6= R, the upper bound for maximum circular coverage range can be calculated

as follows according to coverage angleθ

rcov =





a(u) + 2b
(u)
A cosϕ, if θ < 2 arcsin

(√
p2+8−p

4

)
;

b
(u)
A / sin(θ/2), if θ ≥ 2 arcsin

(√
p2+8−p

4

)
.

(3.27)

whereϕ satisfiesb(u)A sinϕ = (a(u) + b
(u)
A cosϕ) tan(θ/2) andp = a(u)/b

(u)
A . Herea(u) and

b
(u)
A are the upper bounds for the radiuses of the BS and RS coveragedisks, respectively. The

corresponding distance between BS and RS is

rrelay =





b
(u)
A sinϕ/ sin(θ/2), if θ < 2 arcsin

(√
p2+8−p

4

)
;

b
(u)
A cot(θ/2), if θ ≥ 2 arcsin

(√
p2+8−p

4

)
.

(3.28)

3.4.2 Lower Bound of Maximum Circular Coverage Range

In the last subsection, we first calculated an overestimate of the BS and RS coverage radiuses

and then derived an upper bound for the maximum circular coverage range. Following the

same idea, we can also derive an lower bound. In Fig. 3.7, userB is on the other side of the

relay and is much farther away from the BS than from the RS. Thus the signal contribution
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from BS is much smaller than RS signal contribution at this position, i.e.,ρη0/M ≪ ρη2/R.

We ignore the signal contribution from the BS and get the rateexpression for userB as

C ≈ 1

2
log2 det

(
IN +

ρ

M
η0 · H̄0H̄

H
0 +

ρ

R
η2 · H̄2H̄

H
2

)
(3.29)

≥ 1

2
log2 det

(
IN +

ρ

R
η2H̄2H̄

H
2

)
(3.30)

=
1

2

N∑

i=1

log2

(
1 +

ρ

R
η2λ

′
i

)
(3.31)

≥ 1

2
log2

(
1 +

ρ

2R
η2

N∑

i=1

2λ′
i

)
= C(l), (3.32)

whereλ′
i, i = 1 . . . N are the eigenvalues of̄H2H̄

H
2 .
∑N

i=1 2λ
′
i is a Chi-squared random

variable with2RN degrees of freedom. The last inequality (3.32) follows from

N∑

i=1

log2(1 + xi) = log2

[
N∏

i=1

(1 + xi)

]
≥ log2(1 +

N∑

i=1

xi), for xi ≥ 0. (3.33)

By usingC(l) instead ofC to characterize the QoS requirement, we can derive an under-

estimate of the distance between RS andB. We have

P
{
C(l) ≤ CQ

}
= F

[
2R(22CQ − 1)

ρη2
; 2RN

]
= ε. (3.34)

HereCQ = 1b/s/Hz andε = 0.01. So the pathloss betweenB and RS can be calculated as

PL2 = 10 log10

{
ρ

R(22CQ − 1)
·G−1[RN, ε]

}
(3.35)

= 35.0 log10(b
(l)
B ) + 38.4 (3.36)

By solving the above equation, we can get the distanceb
(l)
B , which is a lower bound of the

radius for RS coverage disk. The inequality (3.33) should also be used to calculate a lower

bounda(l) on the distance betweenA and BS, which is also a lower bound on the radius of

the BS coverage disk. Similarly, we can get a lower boundb
(l)
A on the distance between RS

and userA using the inequality (3.33), which will be used in the next subsection.

After calculating lower bounds on the radiusa(l) of BS coverage disk and the radiusb(l)B of

RS coverage disk, the next step is to determine the optimum distance between BS and RS,

and calculate the lower bounds of the maximum circular coverage range. This is depicted
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Fig. 3.12:Calculation of the lower bound for the maximum circular coverage range

in Fig. 3.12. Following the same discussion as in subsection3.4.1, the lower bound for the

maximum circular coverage range vs. coverage angle in such acase can be calculated as

rcov =





a(l) + 2b
(l)
B cosϕ, if θ < 2 arcsin

(√
p2+8−p

4

)
;

b
(l)
B / sin(θ/2), if 2 arcsin

(√
p2+8−p

4

)
≤ θ < 2 arcsin(1

p
);

a(l), if θ ≥ 2 arcsin(1
p
),

(3.37)

wherecosϕ = cos(θ/2)
√
1− p2 sin2(θ/2) − p sin2(θ/2) andp = a(l)/b

(l)
B . Herea(l) and

b
(l)
B are lower bounds on the radius of BS and RS coverage disks, respectively. The optimum

distancerrelay between BS and RS can be calculated as

rrelay =





b
(l)
B sinϕ/ sin(θ/2), if θ < 2 arcsin

(√
p2+8−p

4

)
;

b
(l)
B cot (θ/2) , if θ ≥ 2 arcsin

(√
p2+8−p

4

)
,

(3.38)

3.4.3 Heuristic Approximation for Maximum Circular Covera ge Range

We derived upper and lower bounds for the maximum circular coverage range of DF relay-

ing systems in the previous subsections. However, a designer of a real system may be more

interested in an approximation for the maximum circular coverage range of the system, es-

pecially for the case of low coverage angle (e.g., below90◦). This is because usually more

than four relays are expected to be used in a cell in order to get high coverage extensions.

Thus we propose a heuristic approximation of the maximum circular coverage range for DF

relaying systems.

As we can see from Fig. 3.7, the RS coverage is like an ellipse which has larger distance to

A than toB. Because the border users are in low SNR regime,ρη2λ
′

i/R is a small number in
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(3.32). We haveC ≈ C(l). As an approximation, we can average the two distancesb
(l)
A and

b
(l)
B , and use it as the radius of the RS coverage disk. In addition,the radius of BS coverage

disk is between the overestimatea(u) and the underestimatea(l). As an approximation, we

also take the average of it. That is, we define

ā =
(
a(u) + a(l)

)
/2 (3.39)

b̄ =
(
b
(l)
A + b

(l)
B

)
/2. (3.40)

Then we substitutēa and b̄ for a(l) and b(l)B in (3.37) and (3.38) to get the approximation

expression for the maximum circular coverage range and the optimum distance between BS

and RS for the coverage angles.

3.5 Simulation Results

Monte Carlo simulations are carried out to determine the 1%-outage rate for each point in

a DF relaying system. We use the channel model discussed in Section 3.2.1, which reflects

the fact that the RS is chosen to be placed at the positions where stable connections to the

BS is established. Nevertheless, the outage at the RS is considered in our simulation results.

We restrict ourselves to two extreme cases in the assumptions of CSIT: perfect CSIT and

no CSIT. When perfect CSIT is available, we calculate the achievable rate of each point

according to (3.11) and optimize the covariance matricesR1 andR2 numerically. When no

CSIT is available, we choose the transmit covariance matrices to beR1 = IM andR2 = IR.

The channel knowledge at the receivers is always assumed to be perfectly available. Different

antenna configurations are displayed asM/R/N in the figures.

3.5.1 Analysis of Circular Coverage Range for DF Relaying wi th

Uniform Power Allocation at Transmit Antennas

Fig. 3.13(a) depicts the upper and lower bounds for a DF relaying system withM/R/N =

2/2/2 antenna configuration. The simulation result and the approximation are also shown.

For the coverage angle90◦ ≤ αcov ≤ 180◦, the lower bound remains unchanged. This is

because at those points, the RS coverage disk merges into theBS coverage disk. So the

maximum circular coverage range equals the radius of the BS coverage disk when90◦ ≤
αcov ≤ 180◦. As we can see, the upper and lower bounds are not tight. In a real system, it
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(a) M/R/N = 2/2/2 antenna configuration
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(b) M/R/N = 4/4/2 antenna configuration

Fig. 3.13:Analysis of the maximum coverage angle vs. circular coverage range for DF re-
laying systems: uniform power allocation at transmit antennas,M/R/N = 2/2/2
and4/4/2 antenna configurations
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Fig. 3.14:Coverage angle vs. maximum circular coverage range for DF relaying schemes:
Uniform power allocation at transmit antennas. The solid lines represent the max-
imum circular coverage range of relaying systems, and the dashed lines represent
the circular coverage range of direct transmission.

may be more interesting to consider the approximation for the maximum circular coverage

range, which fits well with the simulated results for0◦ ≤ αcov ≤ 70◦. In this range, the

maximum difference between simulated and approximated circular coverage range is less

than 20m. Similar observations can be obtained forM/R/N = 4/4/2 antenna configuration

shown in Fig. 3.13(b).

3.5.2 Circular Coverage Range Improvement for DF Relaying W ithout

CSIT

Fig. 3.14 shows the maximum circular coverage range of DF relaying schemes compared

to the coverage range of direct transmission for different types of antenna configurations

with uniform power allocation at transmitter antennas. Relay outage is considered. For all

relaying schemes, except the1/1/1/ antenna configuration, the maximum circular coverage

ranges atαcov = 180◦ are similar as their corresponding direct transmission schemes. This

is because border users at this coverage angle receive approximately equally strong signals

from BS and RS. This SNR improvement atαcov = 180◦ compensates for the transmission

rate loss due to two hop transmission.
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For the considered uniform power allocation at transmittercases, the maximum circular

coverage ranges of the relaying systems are better than their corresponding direct transmis-

sion systems for coverage angleαcov < 140◦. This meansNr = 3 relays per cell can

guarantee the circular coverage range extension. As shown in Fig. 3.14, placing more relays

(lowering coverage angle) will achieve higher circular coverage range extension. For exam-

ple, for a(4/4/4) configuration and at coverage angleαcov = 60◦, which corresponds to 6

relays per cell, the DF relay achieves the maximum circular coverage range ofrcov ≈ 356m.

Compared to the coverage range of direct transmission (rcov ≈ 216m), this corresponds to

an65% increase in circular coverage range.

Using multiple antennas is another effective means for coverage extension. As shown

in Fig. 3.14, the maximum circular coverage range of2/2/2 antenna configuration more

than doubles the maximum circular coverage range of1/1/1 antenna configuration for any

coverage angle. The maximum circular coverage range of4/4/4 relaying system is about

50% larger than that of the2/2/2 system. Furthermore we conclude that the maximum

circular coverage range does not improve much by placing more antennas at BS if we have

fixed antenna configurations(R/N) at RS and MS. This can be observed from the simulation

result of8/4/2 antenna configuration as compared to that of4/4/2 antenna configuration.

Their maximum circular coverage ranges are nearly identical. The same is also true for the

simulation result of8/4/4 antenna configuration as compared with that of4/4/4 antenna

configuration. This is because the first hop channel between BS and RS is already very good

and the overall transmission rate is limited by the second hop. Thus placing more antennas

at BS provide no more advantages.

3.5.3 Circular Coverage Range Improvement for DF Relaying w ith Full

CSIT

Fig. 3.15 shows the maximum circular coverage range of DF relaying schemes compared to

direct transmission for different types of antenna configurations when channel knowledge is

available at the transmitters. Using the optimum covariance matrices as discussed in Sec-

tion 3.3 at the transmitters can provide surprisingly largecoverage extension for MIMO DF

relaying systems. For8× 4 cellular system, waterfilling at the BS can provide an additional

87m circular coverage range extension compared to the uniform power allocation case for

direct transmission. Using the optimum signal covariance matrices can provide an additional

210m circular coverage range extension compared to the uniform power allocation case for

DF relaying with8/4/4 antenna configuration at the coverage angle60◦ (i.e., using 6 relays).
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Fig. 3.15:Coverage angle vs. maximum circular coverage range for DF relaying system: full
CSIT at transmitters. The solid lines represent the maximumcircular coverage
range of relaying systems, and the dashed lines represent the coverage range of
direct transmission.

However, in order to calculate the optimum covariance matrices, the RS has to feedback the

channel knowledge onH2 to the BS, and the BS has to inform the RS about the calculated

covarianceR2. This may introduce additional cost for a real system. From Fig. 3.15, we

can also observe that a DF relaying system with8/4/2 antenna configuration has similar

maximum circular coverage range as a4/4/2 system when full CSIT is available. The same

is also true for4/4/4 and8/4/4 DF relaying systems. This is similar to what is observed in

Fig. 3.14.

3.5.4 Circular Coverage Range Improvement by Using Fixed Nu mber

of Relays

In Fig. 3.16 and Fig. 3.17, we compare the absolute circular coverage range extension and

the relative improvement of DF relaying schemes compared todirect transmission for 6 and

9 relays per cell. The corresponding coverage angles areαcov = 60◦ andαcov = 40◦,

respectively.

In thesymmetric scenariosin which BS and RS have the same number of antennas, i.e., for

2/2/2, 4/4/2 and4/4/4 antenna configurations, their relative improvement in the maximum
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(a) DF relay; no CSIT
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Fig. 3.16:Relative circular coverage range improvement compared to direct transmission
for Nr = 6 andNr = 9 DF relaying systems. Antenna configurations from left to
right: 1/1/1, 2/2/2, 4/4/2, 8/4/2, 4/4/4, 8/4/4.
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circular coverage range in the case of no CSIT (i.e., the gainrelative to the coverage range

of the direct communication between BS and MS) do not differ much (cf. Fig. 3.16(a)). For

1/1/1 antenna configuration, its relative circular coverage range improvement is much higher

than the others. This is because its coverage range is small in direct transmission, and small

circular coverage range improvement in DF relaying leads tohigh relative circular coverage

range improvement. For theasymmetric scenarios, i.e.,M > R, the relative improvement

in circular coverage range is smaller, especially when CSITis available. This behavior is

due to the fact that the direct transmission scheme improvessignificantly in the mentioned

asymmetric scenarios, while in the DF relaying schemes the rate is limited by the second

hop, and therefore the maximum circular coverage ranges in DF relaying do not improve

as much as direct transmission. Note that to achieve the depicted circular coverage range

extension in the case of DF without CSIT (cf. Fig. 3.17(a)) space-time coding techniques

have to be used.

The use of more antennas at the BS than at the MS does not improve the performance

significantly (cf. Fig. 3.17), at least in the considered scenarios, in which the link between

BS and RS is stable compared to the two links BS-MS and RS-MS. Therefore, it is sufficient

to use as many BS antennas as RS antennas. Additional BS antennas can be used for SDMA

(space-division multiple access) techniques. For example, they can be used to transmit data

to two different relays in the same cell in the same band, in order to improve the overall

spectral efficiency.

To answer the question when it does pay off to use relays instead of more base stations, we

calculate a rough estimate. As a fair comparison, we assume the same amount of resources

and the same number of active users in both cases. Fig. 3.16 shows that DF relaying in a

4/4/4 scenario more than doubles the maximum circular coverage range if 9 relays are used

(i.e., coverage angleαcov = 40◦), whether CSIT is available or not. Therefore, the covered

area is improved by the factor of 4, which would require 3 additional base stations if no

relays would be deployed. This means relaying is profitable if 9/3 = 3 relays are cheaper

than one base station in this example.

3.6 Chapter Summary and Conclusions

We proposed the concepts ofcoverage angleandcircular coverage rangefor the analysis

of coverage extension in cellular relaying networks. The upper and lower bounds for the

maximum circular coverage range when uniform power is allocated at the transmitters were
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Fig. 3.17:Circular coverage range extensions compared to direct transmission forNr = 6
andNr = 9 DF relaying systems. Antenna configurations from left to right:
1/1/1, 2/2/2, 4/4/2, 8/4/2, 4/4/4, 8/4/4.
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presented. We also proposed an approximation for the maximum circular coverage range

and verified our proposals by simulations. Our simulation results showed that the circular

coverage range extension for MIMO relaying systems is significant compared to the conven-

tioanl direct transmission, even though we have a rather high QoS requirement and require

a circular cell. If CSIT is available, additional coverage range can be achieved by using the

optimum transmit signal covariance matrices. We also foundthat if the first hop channel is

already very good, as is the case for most relaying systems, placing more antennas at BS

does not provide substantial additional coverage extension.
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Chapter 4

Two-Way Relaying Systems With

Multiple Antennas

The two-way relaying protocol provides an effective means to reduce the spectral efficiency

loss in half-duplex relaying systems that is due to the two channel uses required for the trans-

mission from the source station to the destination station.This is achieved by bidirectional

simultaneous transmission of data between the two stations. In this chapter, we consider two-

way relaying systems with multiple antennas equipped at each station, i.e., MIMO two-way

relaying systems. Fundamental transmit and receive signalmodels for two-way amplify-and-

forward (AF) and decode-and-forward (DF) relaying protocols are presented. In particular,

we discuss in detail two practical data combining schemes atthe relay for the broadcast

(BRC) phase in the two-way DF relaying protocol, i.e., thesuperposition codingscheme

and thenetwork codingscheme. The difference of the two schemes lies in combining the

decoded data at the relay on the symbol level or on the bit level. A unified view for the data

combining schemes at the relay is also proposed. Furthermore, we explore how to choose

the optimum transmit signal covariance matrices at the relay and characterize the achievable

sum rates using the two data combining schemes for given channels. The capacity region in

the BRC phase achieved by random coding approaches is also presented. In this chapter, we

allocate equal time resources on the multiple access (MAC) and BRC phases. The optimum

time-division strategies between the MAC and BRC phases will be discussed in Chapter 5.

4.1 Introduction

Conventional relaying schemes suffer from the half-duplexconstraint, which causes the spec-

tral efficiency loss due to the two channel uses required for the transmission from the source
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Chapter 4 Two-Way Relaying Systems With Multiple Antennas

to the destination. This results in the pre-log factor of 1/2in the corresponding rate expres-

sions. In [192, 193], thetwo-way relaying protocolwas proposed to recover the spectral

efficiency loss in half-duplex relaying systems. The two-way relaying protocol considers the

bidirectional information exchanges between two wirelessstations via a relay. Conventional

relaying protocols require four channel uses to exchange the data of those two stations. The

two-way relaying protocol in [192, 193] only needs two phases, which represents the chan-

nel uses, to finish the information exchange. In order to distinguish the two phases, the first

phase is referred to as themultiple access(MAC) phase, and the second phase is referred

to as thebroadcast(BRC) phase (see Chapter 2). In the MAC phase, both stations transmit

their messages simultaneously to the relay. In the BRC phase, the relay combines the data

from the two stations and transmits the combined data back tothe two stations. Since the two

stations know their own data, they can subtract the back-propagating known data, i.e.,self-

interference, and the reveal the information from its partner. Both the amplify-and-forward

(AF) and decode-and-forward (DF) relaying strategies wereconsidered for the two-way re-

laying protocol in [192,193], where each station is equipped with only a single antenna. The

data combining scheme at the relay proposed by [192, 193] is realized on the symbol level,

and it is called thesuperposition coding (SPC)scheme.

The network coding scheme was proposed in [10,142] originally for data communication

in computer networks. In [136, 260], a network coding schemefor relaying networks was

considered, where two stations communicate via an access point in three time slots. In the

first and second slot, the two nodes transmit their messages via orthogonal channels to the

relay. The relay combines both messages on bit-level by means of the XOR operation and

retransmits it to both nodes. The nodes use the XOR operationon the decoded message

and the own transmitted message to obtain the message from the other node. The basic idea

of the schemes in [136, 260] is also the information combining at the relay and the known

information cancellation at the receiving stations. The difference to the SPC scheme is that

the information combination at the relay is realized on the bit level in the network coding

scheme.

The optimum random coding schemes and the capacity region inthe BRC phase of two-

way DF relaying systems were proposed in [170, 264] for discrete memoryless channels,

and extended to multiple-input multiple-output (MIMO) Gaussian channels in [262]. The

considered scenario is that the relay wants to transmit information two two stations and each

station knows perfectly the information intended for the other side. Such a channel model

was termedbidirectional broadcast channel. The interesting results showed that independent

messages can be sent out to two receivers simultaneously at their respective link capacities

104



4.1 Introduction

by the same input at the relay using random coding approaches.

The optimum linear processing matrix at the relay that maximizes the achievable rate

in MIMO unidirectional AF relaying systems can be found in [158] without considering

the directlink between the transmitter and the receiver. However, for MIMO two-way AF

relaying systems, finding the optimum linear processing matrix at the relay to maximize the

sum rate exploiting the channel state information at the transmitter (CSIT) in the BRC phase

is a non-convex optimization problem, which is difficult to solve. Recently, the authors

of [139] proposed an iterative scheme to find a relay linear processing matrix aiming to

maximize the sum rate for MIMO two-way AF relay systems. Sucha scheme iteratively

identifies a local optimal solution by deriving the gradientof the sum rate and applying the

gradient descent algorithm. Linear precoder and decoder which minimize the sum of mean

squared error at the two stations can be found in [141].

In this chapter, we extend the two-way AF and DF relaying protocol [193] to multiple

antennas at all stations, i.e., MIMO two-way AF and DF relaying systems. We present the

signal models for the MIMO two-way AF and DF relaying protocols and assume further the

knowledge of transmit CSI at the DF relay. In the time-division duplex (TDD) transmission

mode, the relay has to estimate the MIMO channels for decoding in the MAC anyway. So,

in the BRC phase this knowledge can be used for precoding if the bursts are short enough

compared to the coherence time of the MIMO channels. In the frequency-division duplex

(FDD) transmission mode, the relay may require feedback of channel knowledge from the

two receiving stations. Equal time (or frequency) resources are allocated to the MAC and

BRC phases. We compare the two practical approaches, i.e., the SPC and the network coding

schemes, for combining the information at the relay in the BRC phase of two-way DF relay-

ing protocol. Furthermore, we also present the method of characterizing the capacity region

in the MIMO bidirectional broadcast channel and calculating its maximum sum rate. We

show that two-way relaying achieves a quite substantial improvement in spectral efficiency

compared to conventional relaying with and without transmit CSI at the relay. We show that

the difference in sum-rate compared to the case where no CSITis used, increases with in-

creasing ratio between number of relay antennas and number of node antennas. We further

show that the network coding scheme achieves nearly the optimal sum rate when CSIT is

available at the relay. When CSIT is not available at the relay, the two-way DF relaying

protocol always significantly outperforms the two-way AF relaying protocol.

Our Contributions: The contributions of this chapter can be summarized as follows:

• We provide the analysis and comparison of the relaying strategies and the data com-

bining schemes from information theoretic perspectives inMIMO two-way relaying
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Fig. 4.1:MIMO two-way DF relaying system. The dashed arrows and solidarrows represent
the transmissions in the MAC and BRC phases, respectively.

systems. In particular, we characterize the optimal relay transmit covariance matrices

when the BRC phase CSIT is available at the relay for MIMO two-way DF relaying

systems;

• We provide a unified view of the SPC and the network coding schemes;

• We propose an algorithm for characterizing the BRC phase capacity region.

This chapter is organized as follows: Section 4.2 presents the system setup for MIMO

two-way relaying systems. Section 4.3 discusses the signalmodels in MIMO two-way AF

relaying systems, where the relay linear processing matrixis chosen according to [193]. Sec-

tion 4.4 presents the signal models in MIMO two-way DF relaying systems, where the two

practical relay combining schemes, the SPC scheme and the network coding scheme, are

discussed in detail. A unified view for the SPC scheme and the network coding scheme is

also discussed. Furthermore, we present the method of characterizing the capacity region in

the MIMO bidirectional broadcast channel and calculating its maximum sum rate. Compre-

hensive performance results are presented in Section 4.5, and this chapter is summarized in

Section 4.6.

4.2 System Setup

A generic MIMO two-way relaying system model is shown in Fig.4.1, where two wireless

stationsA andB exchange data via a relay stationR. All stations are half-duplex. We refer

the stationsA and B collectively asuser stations. We consider a discrete-time baseband

transmission model. The channel is assumed to be flat-fading, which can be considered as

one subcarrier in orthogonal frequency-division multiplexing (OFDM) systems. The number

of antennas at StationA, the relay and StationB are denoted asNA, NR andNB, respectively.

The transmission in two-way relaying protocols is separated in transmission phases, which

represent channel uses. Each transmission phase can be a time-slot in the time division
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duplex (TDD) transmission mode or a frequency subcarrier inthe frequency division duplex

(FDD) transmission mode. Our discussions are based on the two-phase protocol, i.e., the data

from stationsA andB are exchanged in the multiple access (MAC) phase and the broadcast

(BRC) phase. Since all the stations are half-duplex, the directlink has no impact on the

two-phase transmission and need not to be considered. In Fig. 4.1, Gk ∈ CNR×Nk and

Hk ∈ CNk×NR respectively denote the channel matrices between Stationk and the relay in

the MAC and BRC phases, wherek ∈ {A,B}. All the channels remain constant during its

corresponding transmission phase. We assume that the information generated by the two

user stations are independent, and the transmission in the system is perfectly synchronized.

RA denotes the information rate of the data to be transmitted from StationA to B, andRB

denotes the information rate of the data to be transmitted from StationB to A.

4.3 Amplify-and-Forward Relaying

The amplify-and-forward (AF) protocol is a simple relayingprotocol where the relay trans-

mits a linearly processed version of its received signal to the destination. The two-way AF

relaying protocol was proposed in [193] where each station is equipped with a single an-

tenna. We generalized the two-way AF relaying system to the MIMO case, and present the

transmission models for the scenario where multiple antennas at each station.

In the MAC phase, StationA andB transmit their data simultaneously to the relay, and the

received datay ∈ CNR×1 at the relay is

y = GAxA +GBxB + n (4.1)

wherexA ∈ C
NA×1 andxB ∈ C

NB×1 denote the signal vectors transmitted by StationA

andB in the MAC phase under the transmit power constraintPA andPB, respectively.n ∼
CN (0, σ2INR) denotes the additive white Gaussian noise vector at the relay. We assume that

stationsA andB do not have channel state information at transmitters (CSIT) in the MAC

phase, and equal power is allocated on each data stream. Thatis, we haveE
{
xAx

H
A

}
=

PA/NA · INA andE
{
xBx

H
B

}
= PB/NB · INB .

The AF relay linearly process the received signal and transmits an amplified version of the

signal vectory. We assume the linear processing matrix at the AF relay to beF ∈ CNR×NR.
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The transmitted symbol at the relay in the BRC phase is then given by

sR = Fy (4.2)

= FGAxA + FGBxB + Fn. (4.3)

Furthermore, we require the signal vectorsR to satisfy the transmit power constraintPR at the

relay, i.e.,tr
(
E
{
sRs

H
R

})
≤ PR. Equivalently, the linear processing matrixF must satisfy

tr

[
F

(
PA

NA
GAG

H
A +

PB

NB
GBG

H
B + σ2INR

)
FH

]
≤ PR. (4.4)

We assume the relay knows the MAC phase channel matricesGA andGB. One linear pro-

cessing matrix that satisfies the transmit power constraintat the relay can be chosen as [193]

F =

√
PR

PA
NA

tr(GAG
H
A ) + PB

NB
tr(GBG

H
B ) + σ2NR

· INR. (4.5)

So the received signals at stationsA andB can be expressed as

yA = HAsR + nA (4.6)

= HAFy + nA (4.7)

= HAFGAxA︸ ︷︷ ︸
SI for StationA

+HAFGBxB +HAFn+ nA (4.8)

yB = HBsR + nB (4.9)

= HBFy + nB (4.10)

= HBFGAxA +HBFGBxB︸ ︷︷ ︸
SI for StationB

+HBFn+ nB (4.11)

wherenA ∼ CN (0, σ2
AINA) andnB ∼ CN (0, σ2

BINB) are the additive white Gaussian noise

vectors at stationsA andB, respectively. The linear processing matrixF is also known to

both stationsA andB. We assume that StationA knows the channel matricesHAFGA and

HAFGB, while StationB knows the channel matricesHBFGA andHBFGB. The signal

contribution of their own transmitted data symbols is called self-interference(SI) and can

be canceled before decoding. Assuming that the channel matrices remain constant during

their transmission phases, the information rate of the datafrom stationsA and B can be
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respectively expressed as

RAF
A =

1

2
log det

[
INB +

(
PA

NA
HBFGAG

H
A FHHH

B

)(
σ2

BINB + σ2HBFF
HHH

B

)−1
]

(4.12)

RAF
B =

1

2
log det

[
INA +

(
PB

NB
HAFGBG

H
B FHHH

A

)(
σ2

AINA + σ2HAFF
HHH

A

)−1
]
, (4.13)

which can be achieved by using i.i.d. Gaussian codebooks. The transmission in each direc-

tion still suffers from the pre-log factor one-half due to the two-hop transmission. However,

the bidirectional information flows are established simultaneously, i.e., the sum rate ofRAF
A

andRAF
B is achieved simultaneously which roughly doubles the spectral efficiency.

Unlike the optimum linear processing matrix design problemfor MIMO unidirectional

AF relaying systems [158], finding the optimum linear processing matrixF exploiting CSIT

on HA andHB, which are available at the relay, to maximize the sum rateRAF
A + RAF

B is

a non-convex optimization problem, which is difficult to solve. Simple choice of AF gain

matrix can be chosen according to (4.5). Linear precoder anddecoder which minimize the

sum of mean squared error at the two stations can be found in [141].

4.4 Decode-and-Forward Relaying

The AF relaying protocol is a simple scheme that forwards thereceived signals only after

linear processing. Compared to the AF relaying protocol, the DF relaying protocol requires

the relay to decode the received the signals, which is more complicated. However, the DF

relaying protocol has some advantages: firstly, the DF relays do not have to store the received

waveforms as AF relays do. So the DF relays may require less memory compare to the AF

relays. Secondly, due to the decoding process done at the DF relays, the transmitted signal

from the relays is “clean” and does not contain noise. As a result, the DF relays do not suffer

from the noise amplification as AF relays do. The two-way DF relaying protocol works as

follows.

Same as the two-way AF relaying protocol, the stationsA andB transmit their data simul-

taneously to the relay in the MAC phase. The received signaly ∈ CNR×1 at the relay is given

by

y = GAxA +GBxB + n (4.14)

wherexA ∈ CNA×1 andxB ∈ CNB×1 denote the signal vectors transmitted by StationA

andB in the MAC phase under the transmit power constraintPA andPB, respectively.n ∼
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CN (0, σ2INR) denotes the additive white Gaussian noise vector at the relay. We assume that

stationsA andB do not have channel state information ofGA andGB in the MAC phase. So

equal power is allocated on the transmit data streams, i.e.,E
{
xAx

H
A

}
= PA/NA · INA and

E
{
xBx

H
B

}
= PB/NB · INB.

Unlike the AF relay that simply stores and retransmits a linearly processed version of

the received signal, the DF relay fully decodes the signal received in the MAC phase. The

capacity region for the MAC phase channel is the closure of all the set of achievable rates

(RA, RB) in the MAC phase. It can be described by

RA ≤ IMAC
A =

1

2
log2 det

(
INR +

PA

NAσ2
GAG

H
A

)
, (4.15)

RB ≤ IMAC
B =

1

2
log2 det

(
INR +

PB

NBσ2
GBG

H
B

)
, (4.16)

RA +RB ≤ IMAC
sum =

1

2
log2 det

(
INR +

PA

NAσ2
GAG

H
A +

PB

NBσ2
GBG

H
B

)
, (4.17)

The MAC phase capacity region can be achieved by i.i.d. Gaussian codebooks [49].

In the BRC phase, the relay re-encodes the information and broadcasts the combined in-

formation to both stations on the same time or frequency channel. We denote the data bits

contained in the MAC phase transmit symbols{xA} and{xB} as{bA} and{bB}, respectively.

The transmit signal of the relaysR is determined by the decoded bit-sequences of the MAC

phase, i.e.,

({bA}, {bB}) mod7−→ {sR}.

Since both stationsA andB respectively knows the bit sequence information{bA} and{bB}
that have been transmitted in the MAC phase, they can cancel this contribution and reveal

the information from their partners after receiving the signals transmitted from the relay.

There are two basic approaches for combining the information from the stationsA andB

at the relay in the two-way DF relaying protocol. The first is based on superposition coding

(SPC) scheme as in [192], whereas the second approach is based on the networking coding

scheme as in [260]. Their difference lies in that the SPC scheme combines the decoded data

from the stationsA andB on the symbol level, while the network coding scheme combines

two sets of data on the bit level.
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4.4.1 Superposition Coding Scheme

In the SPC scheme, the two sets of decoded bit sequences{bA} and{bB} are re-encoded

separately and respectively mapped to the transmit symbol vectorssA andsB, i.e.,{bA} mod7−→
sA and{bB} mod7−→ sB. Note that the encoding and mapping methods ofsA andsB can differ

from those ofxA andxB used in the MAC phase, and those methods have to be known to the

receivers of the stationsA andB, which may be agreed upona priori within the two-way DF

relaying protocol. The transmit signal vector in the BRC phase is given by

sR = sA + sB (4.18)

= β
PR

NR
s̃A + (1− β)

PR

NR
s̃B. (4.19)

HeresA andsB contain the same data asxA andxB. s̃A ands̃B denote the normalized transmit

signal vectors.PR denotes the transmit power constraint at the relay.β and1−β respectively

denote the power allocation for symbolsA andsB, where0 < β < 1. We denote the transmit

signal covariance matrices asΩA = E
{
s̃As̃

H
A

}
andΩB = E

{
s̃Bs̃

H
B

}
. In order to satisfy the

transmit power constraint, we requiretr(ΩA) ≤ NR andtr(ΩB) ≤ NR. Here we assume the

relay knows the channel ofHA andHB in the BRC phase. In the TDD transmission mode,

the CSIT can be obtained by assuming channel reciprocity, since the channel knowledge is

anyway required to be available at the relay receiver for decoding in the MAC phase. In the

FDD transmission mode, the CSIT onHA andHB may be obtained by the feedback from the

stationsA andB.

The received signals at stationsA andB can be expressed as

yA = HAsA +HAsB + nA (4.20)

= β
PR

NR
HAs̃A

︸ ︷︷ ︸
SI for StationA

+(1− β)
PR

NR
HAs̃B + nA (4.21)

yB = HBsA +HBsB + nB (4.22)

= β
PR

NR
HBs̃A + (1− β)

PR

NR
HBs̃B

︸ ︷︷ ︸
SI for StationB

+nB (4.23)

wherenA ∼ CN (0, σ2
AINA) andnB ∼ CN (0, σ2

BINA) denote the additive white Gaussian noise

at stationsA andB, respectively. Since each station knows its own transmitted data, the back-

propagating SI can be subtracted at the receivers before decoding the data symbols from the

partner station. This requires the knowledge of the MIMO channel from the relay to the

receivers to be available at the corresponding receivers. The coding and modulation schemes
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for constructing the symbol vectorssA andsB also needs to be known to both the stationsA

andB. With this interference cancellation technique we essentially have an interference-free

reception at each receiving station, which results in two equivalent point-to-point single-user

channels. It follows that the achievable rates in the BRC phase using the SPC scheme have

to fulfill the constraints

RA ≤ ISPCA =
1

2
log

(
INB +

βPR

NRσ
2
B

HBΩAH
H
B

)
, (4.24)

RB ≤ ISPCB =
1

2
log

(
INA +

(1− β)PR

NRσ
2
A

HAΩBH
H
A

)
. (4.25)

The rate expressions in (4.24) and (4.25) are only coupled via the transmit power constraint

PR at the relay. For a given power allocationβ, the transmit signal covariance matricesΩA

andΩB can be chosen separately. In this case, the maximum information rate transmitted to

stationA andB in the BRC phase can be calculated according to the point-to-point single-user

MIMO channel capacity with the transmit power constraintβPR and(1−β)PR, respectively.

They can be expressed as

ISPC,⋆
A (β) = max

tr(ΩA)≤NR,ΩA�0

1

2
log

(
INB +

βPR

NRσ
2
B

HBΩAH
H
B

)
, (4.26)

ISPC,⋆
B (1− β) = max

tr(ΩB)≤NR,ΩB�0

1

2
log

(
INA +

(1− β)PR

NRσ
2
A

HAΩBH
H
A

)
, (4.27)

whereΩA � 0 andΩB � 0 denote that they are positive semidefinite matrices. For each

given value ofβ, the optimum covariance matricesΩA andΩB in (4.26) and (4.27) can be

calculated via the waterfilling algorithm [49] as describedin Section 2.1.3.

Maximizing the Sum Rate: The set of achievable rate pairs(RA, RB) for the data from

stationA andB have to satisfy the MAC phase constraints (4.15)–(4.17) andthe BRC phase

constraints (4.24)–(4.25) simultaneously. Unlike the AF case, the achievable rates not only

depends on the given channel but also depends on the power allocationβ, i.e., the expressions

of (4.24) and (4.25) are coupled by the transmit power constraint at the relay. For the given

channel and the given power allocationβ, the overall rate region of the two-way DF relaying

system with SPC scheme can be expressed as

RA ≤ min
(
IMAC

A , ISPC,⋆
A (β)

)
(4.28)

RB ≤ min
(
IMAC

B , ISPC,⋆
B (1− β)

)
(4.29)

RA +RB ≤ IMAC
sum , (4.30)
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Fig. 4.2:Superposition Coding (SPC): Sum-rate and user rates for a specific realization of
HA, HB vs.β.

whereRA andRB denote the achievable information rates from stationA to stationB and

from stationB to stationA, respectively. The maximum sum-rate of the two-way DF relaying

protocol using the SPC scheme is thus given by

Rsum = RA +RB

= min
{
min(IMAC

A , ISPC,⋆
A (β)) + min(IMAC

B , ISPC,⋆
B (1− β)), IMAC

sum

}
. (4.31)

Because the transmit signal covariance matricesΩA andΩB in (4.26) and (4.27) can be

optimized individually when the power allocationβ is given, the maximization of (4.31) can

be reduced to the problem of finding the optimum value ofβ. Fig. 4.2 shows an example

of the rates changing overβ for a specific realization ofHA andHB. Here the sum-rate

(4.31) is not limited byIMAC
sum in (4.17), and there exists a uniqueβ⋆ which maximizes (4.31),

β⋆ = 0.07 in Fig. 4.2. For thisβ⋆ only one pair of possibleRA andRB exists. However,

if the sum-rate is limited byIMAC
sum , Rsum is constant over a certain range ofβ. In this case,

multiple choices of the user rates are possible. Since the maximization of the sum rate in

(4.31) over the whole achievable rate region of the two-way DF relaying system using the

SPC scheme only depends on the choice of one variableβ, the maximization ofRsum can be

calculated using the golden section search algorithm as described in Algorithm 1.
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Algorithm 1 MaximizingRsum for two-way DF relaying systems using SPC scheme

Initialize βmin = 0, βmax = 1,
βmid = βmin + 0.618(βmax − βmin) and
β = βmin + 0.618(βmid − βmin).

repeat
CalculateRsum(β

min), Rsum(β
max), Rsum(β

mid) andRsum(β) in (4.31) using the water-
filling algorithm [49].
if Rsum(β) < Rsum(β

mid) then
βmin = β;
βmax andβmid unchanged;
β = βmin + 0.618(βmax − βmin);

else
βmax = βmid;
βmin andβmid unchanged;
β = βmin + 0.382(βmax − βmin);

end if
until |Rsum(β)−Rsum(β

mid)| < ǫ or |βmax − βmin| < ζ
return Rsum(β).

4.4.2 Network Coding Scheme

In the two-way DF relaying protocol, the binary informationbit sequences{bA} and{bB} are

both available at the relay after the decoding in the MAC phase. Another practical scheme

for processing the data at the relay is the network coding scheme [260]. The basic idea

is that the relay combines the decoded bit sequences{bA} and{bB} on the bit level prior

to re-encoding. Specially the relay applies the bitwise XORoperation on the decoded bit

sequences{bA} and{bB}, and remodulates the combined bit sequence{bR} into transmit

symbol sequencesR, i.e.,

{bA ⊕ bB} = {bR} mod7−→ {sR}. (4.32)

wheresR ∈ CNR×1 denotes the transmit symbol vector at the relay. The encoding and mod-

ulation schemes for the bit sequence{bR} andsR can be different compared to those used

at the stationsA andB in the MAC phase, but they have to be known at the two stations for

decoding in the BRC phase. By using the XOR operation, the decoded two bit sequences are

combined into one. As a consequence, lower data rate is required to be transmitted from the

relay. Compared to the SPC scheme, the transmit energy per bit is increased in the network

coding scheme, and the network coding scheme may have advantages in the transmit SNR
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Fig. 4.3:Re-encoding at the relay

per bit. The received signals at stationsA andB are

yA = HAsR + nA (4.33)

=

√
PR

NR
HAs̃R + nA, (4.34)

yB = HBsR + nB (4.35)

=

√
PR

NR
HBs̃R + nB (4.36)

where s̃R denotes the normalized transmit signal vector. The transmit signal covariance

matrix of the transmit signal in (4.34) and (4.36) is defined asΩ = E{s̃Rs̃
H
R }, wheretr(Ω) ≤

NR satisfies the transmit power constraint.nA ∼ CN (0, σ2
A) andnB ∼ CN (0, σ2

B) are the

additive Gaussian noise vectors at stationsA andB in the BRC phase, respectively. Upon

receiving the signals, the two stations first demodulate thereceived signals and convert the

received signals into the binary information bit sequence,i.e.,

sR
demod7−→ {b̂R}. (4.37)

Then the stations reveal the unknown data bits by XOR-ing thedecoded data{b̂R} with

their own transmitted data on the bit level. Here, the SI cancellation is accomplished after

demodulation using the XOR operation again. That is,

{b̂B} = {b̂R ⊕ bA}, at StationA;

{b̂A} = {b̂R ⊕ bB}, at StationB.

An example of encoding and decoding procedure for the network coding scheme is shown

in Fig. 4.3 and Fig. 4.4. The decoded bit sequences{bA} and{bB} at the relay in the MAC

phase is{bA} = 0110 and{bB} = 0001. The relay first combines the two bit sequences using
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yA 0111  

{bA}

0110 = 0001

R
ˆ{ }b B

ˆ{ }b

yB 0111  

{bB}

0001 = 0110

R
ˆ{ }b A

ˆ{ }b

At Station A

At Station B

Fig. 4.4:SI cancellation at the stationsA andB

the XOR operation and obtains{bR} = {bA ⊕ bB} = 0111. Then the relay modulates the

combined bit sequence{bR} to the transmit symbol vectorsR on the its antennas as shown

in Fig. 4.3. We assume that the relay is equipped with two antennas and we use the 4QAM

constellation with Gray labeling to map the bit sequences tothe transmit symbols on the

transmit antennas. The first two bits of{bR}, i.e.,01, is mapped to the symbol on the first

antenna; the last two bits of{bR}, i.e.,11, is mapped to the symbol on the second antenna,

which is shown in Fig. 4.3.

After receiving the signalsyA andyB as in (4.34) and (4.36), the stationsA andB de-

modulate the received signals in the BRC phase and obtain thedemodulated bit sequence

{b̂R} = 0111. Since the bit sequence{bA} and{bB} is already respectively known at the

stationsA andB, stationA can reveal the bit sequence{b̂B} transmitted from stationB by

using the XOR operation, i.e.,

{b̂B} = {b̂R ⊕ bA}
= 0111⊕ 0110

= 0001,

and the same is done at stationB, i.e.,

{b̂A} = {b̂R ⊕ bB}
= 0111⊕ 0001

= 0110

as shown in Fig. 4.4. In this way, both receivers obtain the bit sequence information from

the other side.

In the network coding scheme, two different sets of information bits {bA} and{bB} are
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combined in the same transmit symbol{sR}. The relay broadcasts the common information,

i.e.,sR, to both stationA andB, and both stations have to be able to decodesR. For the given

transmit signal covariance matrixΩ, the information rate transmitted from the relay to the

stationsA andB in the BRC phase with the network coding scheme is given by

IXOR = min
{
IBRC

A , IBRC
B

}
, (4.38)

i.e.,RA ≤ IXOR andRB ≤ IXOR, with

IBRC
A =

1

2
log

(
INR +

PR

NRσ
2
B

HBΩHH
B

)
(4.39)

IBRC
B =

1

2
log

(
INR +

PR

NRσ2
A

HAΩHH
A

)
. (4.40)

The choice of the transmit signal covariance matrix determines the achievable rates in the

BRC phase using the network coding scheme.

IXOR in (4.38) is the minimum of the mutual information between the relay and both

stations subject to the transmit power constraint of the relay. The maximum value of the

information rates, i.e.,IXOR⋆ can be obtained by solving

maximize min
{
IBRC

A , IBRC
B

}

subject to tr(Ω) ≤ NR, Ω � 0

variable Ω

(4.41)

where� denotes the positive semidefinite generalized inequality.This problem can be con-

verted into the following convex optimization problem by introducing aslack variableτ :

maximize τ

subject to IBRC
A ≥ τ ; IBRC

B ≥ τ

tr(Ω) ≤ NR, Ω � 0

variable Ω.

(4.42)

This optimization problem is equivalent to the problem to determine the capacity of a Gaus-

sian broadcast channel with common information [123], which is also denoted asmulticast

scenario. It can be seen that different to the superpositioncoding scheme we have to find

one covariance matrix for two links, instead of one matrix for each link. The optimization

problem (4.42) can be solved bysemidefinite programmingtechniques [218,237].

Since both receiving stations have to decode the data contained in the symbolsR, tradi-
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tional network coding scheme let the relay transmit at a datarate that can be supported by

both links, which sacrifices the stronger link. Compared to the superposition coding scheme,

an advantage of the network coding scheme is that it does not suffer from the loss in transmit

power when the same amount of information bits are containedin the symbol.

Maximizing the Sum Rate: For the given channel realization, the set of achievable rate

pair for the two-way DF relaying system using the network coding scheme must satisfy both

the MAC phase and the BRC phase constraints. However, once the maximum achievable

rate for the BRC phase, i.e.,IXOR⋆ is calculated, those constraint becomes linear, and the

maximum sum rate can be obtained as

Rsum = RA +RB

= min
{
min(IMAC

A , IXOR⋆) + min(IMAC
B , IXOR⋆), IMAC

sum

}
. (4.43)

4.4.3 A Unified View of Superposition Coding and Network Codi ng

Schemes

For two-way DF relaying schemes, the SPC scheme operates on the symbol level and the

network coding scheme operates on the bit level. However, they have one thing in common,

i.e., the relay introduces a binary operation to combine twoelements each chosen from a set.

Based on the result after the binary operation and one of the elements, the other element can

be uniquely determined. Thus we introduce the following concept ofquasigroupto unify

the data combining schemes at the relay for two-way relayingschemes. A quasigroup is

an algebraic structure resembling a group in the sense that “division” is always possible.

Quasigroups differ from groups mainly in that they need not be associative.

Definition 4.1. A quasigroup〈Q, ∗〉 is a setQ with a binary operation∗ (that is, a magma),

such that for eacha andb in Q, there exist unique elementsx andy in Q such that:

a ∗ x = b;

y ∗ a = b.

The unique solutions to these equations are writtenx = a \ b and y = b / a. “ \” and

“ /” denote, respectively, the defined binary operations of left and right division (sometimes

called parastrophe).

For the SPC scheme, the setQ is chosen as complex symbol spaceC or CNR and the
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magma operation is the linear sum “+”. For the network coding scheme,Q is chosen as

binary set{0, 1} and the magma operation is the XOR operation “⊕”.

Actually, any combining scheme that obeys the definition of the quasigroup can be applied

to the two-way relaying protocol. However, the SPC scheme and the network coding scheme

are the two most widely used ones up to now.

4.4.4 Capacity Region of Bidirectional Broadcast Channel

In the MAC phase of a two-way DF relaying system, we have a classical multiple access

channel. The optimal coding strategies for the multiple access channel and its capacity re-

gion have been characterized in [9,148], which has been shown in (4.15)–(4.17). In the BRC

phase of a two-way DF relaying system, the relay combine the information decoded from the

two stations and send the combined information back to the two stations, where the receiver

of each station decodes the unknown information based on thereceived signal and its known

information transmitted to its partner. Such a channel model is different from the broad-

cast channel in information theory. We use the definition of [170] and call itbidirectional

broadcast channel. The capacity region and its optimal coding strategies havebeen proposed

in [170,261,264]. Here we summarize the definitions for the Gaussian MIMO bidirectional

broadcast channel and its capacity region.

The Gaussian MIMO bidirectional broadcast channel consists of the transmitting relay

station and two receiving stationsA and B, where the signal model is defined in (4.33)–

(4.36). At any time instantt = 1, 2, · · · , the transmitter sends the transmit symbolsR(t) ∈
SR ⊂ CNR×1. HereSR denotes the transmit symbol set. The transmit signal sequence must

satisfy the relay transmit power constraint, i.e., for a transmit signal sequence of lengthN we

have 1
N

∑N
t=1 sR(t)

HsR(t) ≤ PR. Equivalently, the transmit signal normalized with respect

to the power constraint is defined ass̃R =
√

NR
PR
sR. The transmit signal covariance matrix

is defined asΩ = E{s̃Rs̃
H
R }. In order to satisfy the transmit power constraint, we require

tr(Ω) ≤ NR.

We denotewA andwB as the independent information messages at the stationsA andB,

respectively, which are also known at the relay station. Thetransmit data symbol for time

instant 1 toN at the relay encoder is chosen according to the messageswA ∈ WA and

wB ∈ WB jointly, i.e.,

sNR : WA ×WB 7→ SN
R . (4.44)

WA andWB denote the message sets for the information from StationA andB, respectively.
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The relay wants to sent the messagewA to stationB and the messagewB to stationA simul-

taneously. Each receiveri ∈ {A,B} decodes based onyi(1), · · · ,yi(N) and the message of

its ownwi ∈ Wi. That is, the decoders at stationsA andB work as follows

gA : YN
A ×WA 7→ WB, (4.45)

gB : YN
B ×WB 7→ WA. (4.46)

For the given message setv = [wA, wB], the receiver of stationA is in error ifg(yN
A , wA) 6=

wB. The probability of error event at the receiver of stationA is defined as

λA(v) = P[g(yN
A , wA) 6= wB | sNR (v) sent] (4.47)

Accordingly, we denote the probability that the receiver ofstationB is in error by

λB(v) = P[g(yN
B , wB) 6= wA | sNR (v) sent] (4.48)

Now, we able to introduce the notation for the average probability of error for the stationi,

wherei ∈ {A,B}
µ
(N)
i =

1

|V|
∑

v∈V
λi(v) (4.49)

whereV is defined as the overall message setV = WA ×WB.

A rate pairRA, RB is achievablefor the Gaussian MIMO bidirectional broadcast channel

with the transmit power constraintPR if for any δ > 0 there exists anN(δ) ∈ N and a

sequence of codessNR satisfying the power constraint such that for allN ≥ N(δ) we have
log |WA|

N
≥ RB − δ and log |WB|

N
≥ RA − δ while µ

(N)
A , µ

(N)
B → 0 asN → ∞.

The capacity region describes the transmission rate pairsRA, RB that are simultane-

ously achievable by terminalsA and B under certain channel conditions, i.e.,C ={
[RA, RB] ∈ R

2
+ : [RA, RB] is achievable

}
. Its capacity region is described by the following

theorem

Theorem 4.4.1( [262]). For given covariance matrixΩ � 0 with tr(Ω) ≤ NR satisfying the

power constraint, the rate pairsRA, RB satisfying the following inequalities are achievable

RA ≤ IBRC
A (Ω) =

1

2
log

(
INB +

PR

NBσ2
B

HBΩHH
B

)
, (4.50)

RB ≤ IBRC
B (Ω) =

1

2
log

(
INA +

PR

NAσ2
A

HAΩHH
A

)
. (4.51)
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Here the pre-log factor1/2 is due to two channel uses (MAC and BRC phases) in the two-way

DF relaying protocol. The capacity region of the Gaussian MIMO bidirectional broadcast

channel is given by

C =
⋃

tr(Ω)≤PR,Ω�0

conv[IBRC
A (Ω), IBRC

B (Ω)] (4.52)

The technique to prove the capacity region is random binning(random coding ap-

proaches). Note Theorem 4.4.1 has an interesting implication that if both terminals have

perfect information about the messages that is intended forthe other side, they can decode

the messages transmitted by the relay as if the other side does not exist.

Characterizing the Capacity Region: The capacity region of the BRC phase bidirec-

tional broadcast channel is convex. One method to characterize the capacity region by its

boundary is to calculate the weighted sum rate optimal rate pairs. That is, for the given

weighting coefficient0 < w < 1, the aim is to find the optimal covariance matrix that

maximizes the weighted sum rate:

maximize wIBRC
A (Ω) + (1− w)IBRC

B (Ω)

subject to tr(Ω) ≤ NR, Ω � 0

variable Ω

(4.53)

After the weighting factorw is taken all the values from 0 to 1, we can characterize all the

boundary points for the capacity region.

Another method to determine the boundary of the BRC phase bidirectional broadcast

channel capacity region is to solve the following convex optimization problem:

maximize IBRC
A (Ω)

subject to IBRC
B (Ω) ≥ q

tr(Ω) ≤ NR, Ω � 0

variable Ω

(4.54)

whereq takes the value from 0 tomaxtr(Ω)≤NR,Ω�0 I
BRC
B (Ω)

Maximizing the Sum Rate: The overall achievable rate region of the MIMO two-way DF

relaying system must satisfy both the MAC phase capacity region described by (4.15)–(4.17)

and the BRC phase capacity region (4.50)–(4.51). Since we assume the stationsA andB do

not have the channel knowledge onGA andGB in the MAC and equal power is allocated

to the data streams inxA andxB, IMAC
A , IMAC

B andIMAC
sum in (4.15)–(4.17) are constants for

given channelsGA andGB. However, we assume the relay has the channel knowledge of
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HA andHB in the BRC phase so that the transmit covariance matrixΩ can be optimized.

Furthermore, we can choose the operational point in the overall achievable rate region to

maximize the sum rate. In this case, the points that achievesthe maximum sum rate only

depends on the transmit signal covariance matrixΩ.

First of all, the point(IBRC
A (Ω⋆), IBRC

B (Ω⋆)) that maximizes the BRC phase capacity re-

gion can be calculated by solving the following convex optimization problem:

maximize IBRC
A (Ω) + IBRC

B (Ω)

subject to tr(Ω) ≤ NR, Ω � 0

variable Ω

(4.55)

The optimum transmit covariance matrix that solves the problem (4.55) is denoted asΩ⋆. By

comparing(IBRC
A (Ω⋆), IBRC

B (Ω⋆)) with IMAC
A andIBRC

B in (4.15) and (4.16), we can obtain

the following four cases as shown in Fig. 4.5:

1. IMAC
A ≥ IBRC

A (Ω⋆) andIMAC
B ≥ IBRC

B (Ω⋆): In this case, the maximum achievable

sum rate ismin{IMAC
sum , IBRC

A (Ω⋆) + IBRC
B (Ω⋆)}.

If IMAC
sum ≥ IBRC

A (Ω⋆) + IBRC
B (Ω⋆), the point(IBRC

A (Ω⋆), IBRC
B (Ω⋆)) is also located

within the MAC phase capacity region. Since the overall achievable rate region is

the intersection of the MAC phase and BRC phase capacity regions, it can be no larger

than either of them. Thus the point(IBRC
A (Ω⋆), IBRC

B (Ω⋆)) achieves the maximum sum

rate in the overall achievable rate region and them maximum sum rate is(IBRC
A (Ω⋆) +

IBRC
B (Ω⋆));

If IMAC
sum ≤ IBRC

A (Ω⋆)+IBRC
B (Ω⋆), at least one point within the regionRA ≤ IBRC

A (Ω⋆)

andRB ≤ IBRC
B (Ω⋆) achieves the sum rateIMAC

sum . This is because the regionRA ≤
IBRC

A (Ω⋆) andRB ≤ IBRC
B (Ω⋆) is continuous. The sum rate of the point(0, 0) is

smaller thanIMAC
sum while the sum rate of the point(IBRC

A (Ω⋆), IBRC
B (Ω⋆)) is larger. So

there exist one point in the region that achieves the sum rateIMAC
sum . SinceIMAC

sum is the

maximum sum rate achievable in the MAC phase capacity region, it is thus also the

maximum sum rate in the overall achievable rate region.

2. IMAC
A ≤ IBRC

A (Ω⋆) andIMAC
B ≤ IBRC

B (Ω⋆): In this case, the maximum achievable

sum rate isIMAC
sum . This is because the MAC phase capacity region is inside the BRC

phase capacity region in this case.

3. IMAC
A ≥ IBRC

A (Ω⋆) and IMAC
B ≤ IBRC

B (Ω⋆): In this case, the point

(IBRC
A (Ω⋆), IBRC

B (Ω⋆)) is outside the MAC phase capacity region and we have to solve
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(a) Case 1 (b) Case 2

(c) Case 2 (d) Case 4

Fig. 4.5:Four cases depicting the capacity regions of the MAC and BRC phases.
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the following convex optimization problem

maximize IBRC
A (Ω)

subject to IBRC
B (Ω) ≥ IMAC

B

tr(Ω) ≤ NR, Ω � 0

variable Ω

(4.56)

The optimum value of the objective function in (4.56) is denoted asp⋆. In this case,

the maximum sum rate ismin{IMAC
sum , p⋆ + IMAC

B } following similar discussion as in

Case 1.

4. IMAC
A ≤ IBRC

A (Ω⋆) andIMAC
B ≥ IBRC

B (Ω⋆): This case is similar to Case 3. We have to

first solve the following convex optimization problem

maximize IBRC
B (Ω)

subject to IBRC
A (Ω) ≥ IMAC

A

tr(Ω) ≤ NR, Ω � 0

variable Ω

(4.57)

The optimum value of the objective function in (4.57) is denoted asp⋆2. In this case,

the maximum sum rate ismin{IMAC
sum , p⋆2 + IMAC

A } following similar discussion as in

Case 3.

The algorithm for calculating the maximum sum rate considering the MAC phase and the

BRC phase capacity region can be described by Algorithm 2

Algorithm 2 MaximizingRsum for two-way DF relaying systems considering the MAC and
BRC phase capacity region

Find the point(IBRC
A (Ω⋆), IBRC

B (Ω⋆)) that solves the convex optimization problem (4.55)
if IMAC

A ≥ IBRC
A (Ω⋆) andIMAC

B ≥ IBRC
B (Ω⋆) then

Rsum = min{IMAC
sum , IBRC

A (Ω⋆) + IBRC
B (Ω⋆)};

else ifIMAC
A ≤ IBRC

A (Ω⋆) andIMAC
B ≤ IBRC

B (Ω⋆) then
Rsum = IMAC

sum ;
else ifIMAC

A ≥ IBRC
A (Ω⋆) andIMAC

B ≤ IBRC
B (Ω⋆) then

The optimum value of the objective function in (4.56) is denoted asp⋆;
Rsum = min{IMAC

sum , p⋆ + IMAC
B };

else
The optimum value of the objective function in (4.57) is denoted asp⋆2;
Rsum = min{IMAC

sum , p⋆2 + IMAC
A }.

end if
return Rsum.
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Fig. 4.6:Achievable rate region in the BRC phase of a MIMO two-way DF relaying system.

4.5 Performance Results

The achievable rate regions using the SPC scheme and the network coding scheme in the

BRC phase of two-way DF relaying systems for a given channel realization are shown in

Fig. 4.6, and they are compared with the capacity region according to Theorem 4.4.1. Here

NA = NR = NB = 4, PR/σ
2
A = PR/σ

2
B = 1. The channel realizationHA andHB are chosen

as follows

HA =




−0.31 + 0.75i −0.81 + 0.21i 0.23− 0.49i −0.42− 1.02i

−1.18 + 0.04i 0.84− 0.94i 0.12 + 0.61i 1.54 + 0.40i

0.09− 0.07i 0.84 + 0.51i −0.13 + 0.89i −0.10− 0.28i

0.20− 0.59i −0.03 + 1.15i 0.51− 1.13i 0.08 + 0.49i




(4.58)

HB =




0.58− 1.53i 0.84 + 0.36i −1.13 + 0.27i −0.57 + 0.00i

0.50− 0.04i −0.85 + 1.20i 0.18− 0.71i 0.37− 0.22i

0.91− 0.71i −0.01 + 0.42i −0.75− 0.01i 0.16 + 0.77i

0.47 + 0.43i −0.11− 0.46i 1.00− 0.03i −0.65− 1.33i



. (4.59)

It can be seen from Fig. 4.6 that the maximum achievable sum rate of the SPC scheme in

lower than that of the network coding scheme. This is becausethe SPC scheme modulates

the two sets of decoded data bits separately and each set of data consumes part of the transmit

power, whereas the network coding scheme combines the two sets of data into one and does

125



Chapter 4 Two-Way Relaying Systems With Multiple Antennas

2 4 6 8 10 12 14 16 18 20
6

8

10

12

14

16

18

20

number of relay antennas N
R

av
er

ag
e 

su
m

 r
at

e 
(b

/s
/H

z)

Average sum−rate; N
A
=2, N

B
=2 (SNR

A
=20dB, SNR

B
=20dB)

 

 

Capacity ≈ NC

SPC: no CSIT

AF

NC: no CSIT

I
sum
MAC

Capacity no CSIT

SPC

Fig. 4.7:Average sum rates with and without CSIT with respect to the number of relay an-
tennasNR. The considered schemes are: BRC phase capacity region according to
Theorem 4.4.1, network coding scheme, SPC scheme and AF. TheAF relay linear
processing matrix is calculated according to (4.5).

not split the power. However, the SPC scheme can easily transmit different data rates to

the two stations in the BRC phase. The network coding scheme achieves the point that is

the intersection of the bisector of the first quadrant and thecapacity region boundary. In

such a symmetric channel condition, i.e., the channel to both stations are equally strong, the

network coding scheme achieves most of the internal area of the capacity region.

Fig. 4.7 shows the average sum rates with and without CSIT fortwo-way relaying systems

with respect to the number of relay antennasNR. Here the sum rates consider the achievable

rates after both the MAC phase and the BRC phase. We consider frequency-flat block fading

channels between all stations; the elements of the channel matricesGA, GB, HA andHB

are i.i.d. CN (0, 1) random variables. We assume the channels to be constant overthe two

phases of the two-way relaying scheme. The noise vectors at the relay and the stations are

circular symmetric complex Gaussian noise vectors with zero mean. Furthermore, we define

SNRA = PA/σ
2 = PR/σ

2
A andSNRB = PB/σ

2 = PR/σ
2
B. In Fig. 4.7, the number of antennas

at the stationsA andB is fixed toNA = NB = 2 and the SNR for the channel between the

stationA, B and the relay isSNRA = SNRB = 20dB. WhenNR = 2, i.e., all the three stations

have two antennas, there is no significant difference in the sum rates for all the considered

schemes, neither with nor without CSIT. This is mainly due tothe fact that the sum rate for
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Fig. 4.8:Average sum rates with CSIT: two-way DF relaying protocol using the network
coding scheme and the SPC scheme compared to one-way DF relaying protocol.

theNA = NB = NR = 2 case is limited by the MAC phase constraintIMAC
sum (4.17) compared

to the curve ofIMAC
sum . ForNR = 4 antennas at the relay the SPC scheme without CSIT shows

a significantly lower sum rate than the other schemes. This isdue to the fact that in this case

β = 1/2 is chosen, i.e. powerPR/2 is used forsA andPR/2 for sB. Since the network coding

scheme combines the two decoded information bits and transmits the combined bits using

the total powerPR, the network coding scheme has 3dB power gain compared to theSPC

scheme when no CSIT is available. The maximum achievable sumrate using random coding

according to Theorem 4.4.1 is approximately the same as the network coding case when

CSIT is available. When no CSIT is available, the gain in the maximum sum rate using

random coding according to Theorem 4.4.1 compared to the thenetwork coding scheme

is marginal. When no CSIT is available, the maximum achievable sum rates for all the

considered schemes show almost no increase with the number of the relay antennasNR

whenNR is large, i.e.,NR ≥ 6. However, when CSIT is available at the relay, the maximum

achievable sum rates increase linearly with the number of relay antennasNR whenNR is

large, i.e.,NR ≥ 6. As a result, the difference between the maximum achievablesum rates

with and without CSIT cases increases with the increase of the number of relay antennasNR.

Another observation of in Fig. 4.7 is that the maximum achievable sum rate of two-way AF

relaying scheme is significantly lower than that of the DF relaying scheme, when the relay

linear processing matrix is calculated according to (4.5).
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Fig. 4.9:Average sum rates without CSIT: two-way DF relaying protocol using the network
coding scheme and the SPC scheme compared to one-way DF relaying protocol
and two-way AF relaying protocol (relay linear processing matrix is calculated ac-
cording to (4.5)).

In Fig. 4.8 and Fig. 4.9, we study the impact of unbalanced link quality, i.e. SNRA =

20dB and0dB ≤ SNRB ≤ 40dB. The average sum-rates are given for a scenario with

NA = NB = 2 antennas at the nodesA and B andNR = 4 antennas at the relay. The

elements of the channel matricesGA, GB, HA andHB are i.i.d.CN (0, 1) random variables,

and the channels remain constant over their corresponding phases of the two-way relaying

scheme. Fig. 4.8 shows the average sum rate when CSIT is available at the relay. We consider

the random coding scheme that achieves the capacity region in the BRC phase, the network

coding scheme and the SPC scheme for the two-way DF relaying protocol, as well as the one-

way DF relaying protocol. The sum-rate of the one-way DF relaying scheme is calculated

by averaging over four hops: from nodeA over the relay to nodeB and vice versa. When

the random coding scheme that achieves the capacity region in the BRC phase is applied, it

achieves approximately the same average sum rate as the network coding scheme, and shows

marginal advantage over the SPC scheme for the two-way DF relaying protocol. When there

is no CSIT available as shown in Fig. 4.9, the difference between the three schemes increases.

Without CSIT, the network coding scheme shows an advantage for 13dB ≤ SNR2 ≤ 27dB

compared to the SPC scheme. Generally, all two-way relayingschemes with CSIT or without

almost double the average sum rate of the one-way DF relayingscheme in those scenario.
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Fig. 4.10:Average user rates for two-way DF relaying protocol using the SPC scheme com-
pared to the sum rate for one-way DF relaying.

In Fig. 4.9, it is also shown that the two-way DF relaying protocol outperforms the two-way

AF relaying protocol in the average sum rate when CSIT is not available at the relay.

Fig. 4.10 shows for the same scenario as Fig. 4.8 where a comparison of the user rates in

the SPC scheme and the average sum rate of one-way DF relayingis presented. In addition,

IMAC
A andIMAC

B defined in (4.15) and (4.16) are shown, too. In the consideredscenario the

user rates differ only slightly; the second interesting observation is that both SPC user rates

are not far from the sum rate of the one-way DF protocol.

4.6 Chapter Summary and Conclusions

In this chapter, we extended the two-way AF and DF relaying protocol [193] to multiple

antennas at all stations, i.e., MIMO two-way AF and DF relaying systems. We presented the

signal models for the MIMO two-way AF and DF relaying protocols and assume further the

knowledge of transmit CSI at the DF relay. In the TDD transmission mode, the relay has

to estimate the MIMO channels for decoding in the MAC anyway.So, in the BRC phase

this knowledge can be used for precoding if the bursts are short enough compared to the co-

herence time of the MIMO channels. In the FDD transmission mode, the relay may require

feedback of channel knowledge from the two receiving stations. Equal time (or frequency)
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resources were allocated to the MAC and BRC phases. We compared the two practical ap-

proaches, i.e., the SPC and the network coding schemes, for combining the information at

the relay in the BRC phase of two-way DF relaying protocol. Furthermore, we also pre-

sented the method of characterizing the capacity region in the MIMO bidirectional broadcast

channel and calculating its maximum sum rate. We showed thattwo-way relaying achieves a

quite substantial improvement in spectral efficiency compared to conventional relaying with

and without transmit CSI at the relay. We showed that the difference in sum-rate compared

to the case where no CSIT is used, increases with increasing ratio between number of relay

antennas and number of node antennas. We further showed thatthe network coding scheme

achieves nearly the optimal sum rate when CSIT is available at the relay. When CSIT is not

available at the relay, the two-way DF relaying protocol always significantly outperforms the

two-way AF relaying protocol.
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Chapter 5

Optimum Time-Division in Two-Way

Relaying Systems

The capacity region of a general two-way relay channel is still an open problem up to

now. The optimal relaying strategy is therefore also unknown. However, specific relaying

strategies, such as amplify-and-forward (AF), compress-and-forward (CF) and decode-and-

forward (DF), have been proposed for the two-way relay channel. Among them, the two-way

DF relaying scheme is of particular interest due to its practical applicability in real-world

systems. We consider two-phase two-way relaying protocols, i.e., we divide the two-way

communication into the multiple access (MAC) phase and the broadcast (BRC) phase in ac-

cordance with other papers. Under such a assumption, the rate region of the two-way DF

relaying system depends on the time-division (TD) between the MAC and BRC phases, i.e.,

the temporal or spectral resources allocated to the two phases. In Chapter 4, we only consid-

ered equal TD and no power scaling. In this chapter, we discuss the achievable rate regions

in two-way DF relaying systems with optimum TD strategies between the MAC phase and

the BRC phase and provide practical algorithms for characterizing them, which is especially

complex for multiple-input multiple-output (MIMO) systems. Both peak power constraint

and average power constraint are considered. We show that byoptimizing the TD strategies,

the achievable rate regions of the two-way DF relaying system can be significantly enhanced.

Using those methods, we also compare the ergodic sum rates ofthe system and the average

achievable rates of one user given the minimum quality-of-service (QoS) requirement of the

other in different scenarios.
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5.1 Introduction

After the proposal of the two-way DF relaying protocol [193], people are looking for the

optimal transmission schemes that maximize the achievablerate region. The MAC phase

in the two-way DF relaying protocol represents a conventional multiple access channel. Its

capacity region and optimal coding schemes have been summarized in [78]. The encoding

schemes at the relay in the BRC phase has aroused much research interest in recent years.

Practical encoding schemes, such as thesuperposition coding(SPC) scheme [193] and the

networking codingscheme [260], have been proposed (see Chapter 4). The difference be-

tween the two schemes lies in combining the data at the relay on the symbol level or on the

bit level. From the information theoretic perspective, theBRC phase in the two-way DF re-

laying protocol represents a two-user broadcast scenario where both receiving stations have

perfect side information about the messages intended for its partner. This channel model is

calledbidirectional broadcast channeland its optimal coding strategies have recently been

characterized in [262,264].

Even though the optimal coding schemes and the rate regions for the MAC phase and the

BRC phase in the two-way DF relaying system can be separatelycharacterized according to

those in the multiple access channel and the broadcast channel, the achievable rate region

of the two-way DF relaying system also depends on the “coupling” between the two phases.

This is because the MAC and BRC phases have to be separated either in time (time-division

duplex, TDD) or in frequency (frequency-division duplex, FDD) due to the half-duplex con-

straint of relaying systems. The total time or frequency resources can not be spent solely

on the MAC or the BRC phase. We call this coupling the time-division (TD) between the

MAC and the BRC phases. Note that the name “time-division” does not imply it is only

valid for TDD relaying systems. The same discussions can be applied to the FDD sys-

tems as well. Many papers, such as [239], allocate equal timeor frequency resources to

the MAC and BRC phases. The author of [169] considered the problem of finding the op-

timum TD strategies between the two phases when the SPC scheme is applied in the BRC

phase. The authors of [263] considered the optimal TD strategies between the MAC and

BRC phases for two-way DF relaying system with multiple antennas at the relay and single

antenna at user stations. They characterized the overall achievable rate regions using the op-

timum coding strategies for the MAC and BRC phases separately, and compared it with the

rate regions when the SPC scheme and the network coding scheme are applied in the BRC

phase. In [171], the authors presented the method to characterized the overall achievable

rate regions using the optimum coding strategies for the MACand BRC phases for the same

system model as in [263], i.e., multiple antennas are equipped at the relay and each user
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5.1 Introduction

station only has a single antenna. They showed that the achievable rate region using optimal

TD strategies is convex and no additional time-sharing within the rate region is necessary.

In [168], the optimum TD strategy for single antenna two-wayDF relaying system, i.e., each

station including the relay is equipped with a single antenna, was discussed in detail. How-

ever, how to determine the optimum TD strategies for such a system with multiple antennas,

so that the achievable rate region is maximized, has not yet been solved. In this case, both

the TD strategies and the transmit signal covariance matrices have to be optimized if all the

stations have channel knowledge.

In this chapter, we require the relay to fully decode the datafrom the two transmitting

stations in the MAC phase and propose algorithms for calculating the achievable rate regions

with optimum TD strategies between the MAC and BRC phases forthe following two cases:

One is under the peak power constraint and the other is under the average power constraint.

Here peak power constraint means that the transmit power at each station cannot exceed cer-

tain constraints at any given time. In this case, TD strategies only affect the pre-log factor in

the rate expression, and the rate regions of the MAC phase or the BRC phase are scaled by

the TD factor. Average power constraint means that the transmit power at the stations can

be varied if the transmit power averaged over the whole time period does not exceed certain

constraints. In this case, both the pre-log factor and the transmit power inside the rate expres-

sions are affected by the TD strategies. For both power constraints, we present optimization

methods to characterize their achievable rate regions considering both the MAC phase and

the BRC phase rate constraints. The increase of the achievable rate regions compared to the

equal TD case is shown. Using the proposed methods, we also compare the average achiev-

able rates of one user station given the minimum quality-of-service (QoS) requirement of the

other under different scenarios. To the best of our knowledge, the proposed method achieves

the largest rate region for the MIMO two-way DF relaying protocol up to now.

Our Contributions: The contributions of this chapter are summarized as follows:

• We characterize the optimal TD strategies in MIMO two-way DFrelaying systems

using convex optimization methods. The optimal transmit covariance matrices at the

MIMO user stations and the relay station under the optimal TDstrategies are deter-

mined as well.

• The ergodic sum rate and the average achievable rates of one user station given the

minimum quality-of-service (QoS) requirement of the otherare presented. Insights

are provided for the results under different system setups.

This chapter is organized as follows: The system model and the capacity regions of the

MAC and BRC phases are shown in Section 5.2. An algorithm to find the optimum TD
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Chapter 5 Optimum Time-Division in Two-Way Relaying Systems

Fig. 5.1:MIMO two-way DF relaying system. The dashed arrows and solidarrows represent
the transmissions in the MAC and BRC phases, respectively.

strategy under the peak power constraint is presented in Section 5.3. Section 5.4 presents an

algorithm to find the optimum TD strategy under the average power constraint. Comprehen-

sive simulation results are presented in Section 5.5, wherethe achievable rate regions and the

ergodic sum rates of two-way relaying systems with optimum TD strategies are compared to

those with equal TD strategy. Furthermore, we also show the average achievable rate of one

user given the QoS requirement of the other. After that, conclusions are drawn in Section 5.6.

5.2 System Model

We consider a two-way DF relaying system as shown in Fig. 5.1,where the number of an-

tennas at stationA, the relay and stationB are denoted asNA, NR andNB, respectively. Each

station operates in time division duplex (TDD) mode, i.e., it transmits and receives data con-

secutively in time.Gk ∈ CNR×Nk andHk ∈ CNk×NR , wherek ∈ {A,B}, denote the channel

matrices between stationk and the relay in the MAC and BRC phases, respectively. All the

channels are frequency-flat and remain constant during its corresponding transmission phase.

Both the transmitters and receivers have their corresponding channel knowledge. We define

the time-division (TD) factorα as the portion of the total transmission time assigned to the

MAC phase as shown in Fig. 5.2, where0 ≤ α ≤ 1. The BRC phase occupies1− α portion

of the total transmission time. The transmit power constraints at stationA, the relay and

stationB arePA, PR andPB, respectively. We distinguish between the following two cases:

One ispeak power constraintwhere the actual transmit power in the MAC and BRC phases

cannot exceedPk, k ∈ {A,B,R}; the other isaverage power constraintwhere the transmit-

ter k can vary its actual transmit power in the MAC and BRC phases according toα if the

transmit power averaged over the whole relaying process does not exceedPk, k ∈ {A,B,R}.

We useP ∗
k to denote the actual transmit power in the MAC or BRC phase fortransmitterk.

RA denotes the information rate of the data to be transmitted from stationA to B, andRB
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5.2 System Model

denotes the information rate of the data to be transmitted from stationB to A.

In the MAC phase, stationA andB transmit their data simultaneously to the relay, and the

relay decodes the received data. The received signaly ∈ C
NR×1 at the relay in the MAC

phase is

y = GAxA +GBxB + n (5.1)

=

√
P ∗

A

NA
GAx̃A +

√
P ∗

B

NB
GBx̃B + n, (5.2)

whereP ∗
k = Pk under the peak power constraint andP ∗

k = Pk/α under the average power

constraint fork ∈ {A,B}. x̃A ∈ CNA×1 andx̃B ∈ CNB×1 denotes the normalized transmit

signal vectors at stationA andB in the MAC phase, respectively. The transmit signal co-

variance matrices are defined asΩA = E(x̃Ax̃
H
A ) andΩB = E(x̃Bx̃

H
B ). In order to satisfy

the power constraint, we havetr(ΩA) ≤ NA andtr(ΩB) ≤ NB. n ∼ CN (0, σ2INR) is the

additive white Gaussian noise (AWGN) at the relay in the MAC phase.

Given the TD factorα, the MAC phase capacity regionCMAC(α) = (RA, RB) can be

characterized as [78]

RA ≤ α log2 det

(
INR +

P ∗
A

NAσ2
GAΩAG

H
A

)
, (5.3)

RB ≤ α log2 det

(
INR +

P ∗
B

NBσ2
GBΩBG

H
B

)
, (5.4)

∑

k∈{A,B}
Rk ≤ α log2 det


INR +

∑

k∈{A,B}

P ∗
k

Nkσ2
GkΩkG

H
k


 , (5.5)

wheretr(Ωk) ≤ Nk andΩk � 0 for k ∈ {A,B}. For simplicity reasons, we denote the

special caseCMAC(α = 1) asCMAC(1).

In the BRC phase, the relay combines the decoded data into thedata symbol vectorx ∈
CNR×1 and sends it to the two stations. The received signal vectorsat stationA andB are

yA ∈ CNA×1 andyB ∈ CNB×1, respectively. We have

yA = HAx+ nA (5.6)

=

√
P ∗

R

NR
HAx̃ + nA, (5.7)

yB = HBx+ nB (5.8)

=

√
P ∗

R

NR
HBx̃ + nB, (5.9)
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Fig. 5.2:Time-division between the MAC and BRC phases

whereP ∗
R = PR under the peak power constraint andP ∗

R = PR/(1 − α) under the average

power constraint.nA ∼ CN (0, σ2
AINA) andnB ∼ CN (0, σ2

BINB) are the AWGN at the

receivers of stationA andB, respectively.x̃ denotes the normalized transmit signal vector

at the relay, and its covariance matrix is defined asΩ = E(x̃x̃H). Furthermore, we require

tr(Ω) ≤ NR in order to satisfy the power constraint at the relay. Assuming both stationsA

andB have perfect side information about the messages intended for the other station, the

capacity region of the BRC phaseCBRC(α) = (RA, RB) can be characterized as [262]

RA ≤ (1− α) log2 det

(
INB +

P ∗
R

NRσ2
B

HBΩHH
B

)
, (5.10)

RB ≤ (1− α) log2 det

(
INA +

P ∗
R

NRσ2
A

HAΩHH
A

)
, (5.11)

wheretr(Ω) ≤ NR andΩ � 0. For simplicity reasons, we denote the special caseCBRC(α =

0) asCBRC(0).

CMAC(α)
⋂ CBRC(α) depicts the achievable rate region of the two-way relaying system for

the given TD factorα. Considering all possible TD factors, we have the followingachievable

rate region of the two-way relaying system

ROPT =
⋃

0≤α≤1

(
CMAC(α)

⋂
CBRC(α)

)
. (5.12)

Here we restrict ourselves to the case that the transmit signal covariance matricesΩA, ΩB

andΩ remain unchanged in their corresponding transmission phase. Furthermore, we have

the following conjecture:

Conjecture 5.2.1. ROPT is always convex for Gaussian multiple-input multiple-output

(MIMO) two-way relaying channels.

It has been proved in [168] thatROPT is always convex for two-way relaying systems

with only single-antenna stations and relay under both peakand average power constraints.

Recently, the authors of [171] proved thatROPT is convex whenA andB each has single

antenna andR has multiple antennas. WhetherROPT is always convex in general MIMO
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5.3 Optimum Time-Division Under Peak Power Constraint

Fig. 5.3:The MAC and BRC capacity regionsCMAC(1) andCBRC(0) of a two-way relaying
system. The rayθ intersects withCMAC(1) andCBRC(0) on the pointP1 andP2,
respectively. The two points are indicated in polar coordinates.

two-way relaying systems is still an open problem to the bestof our knowledge. IfROPT

is not always convex,time-sharingbetween two TD strategies is further required to achieve

certain boundary points ofCOPT = convROPT, whereconv denotes the convex hull. How-

ever, this time-sharing strategy requires the transmit signal covariance matricesΩA, ΩB and

Ω to be changed in different time-sharing phases, which is notconsidered here.

When the rate regionROPT is convex, its boundary points can be determined by maximiz-

ing the weighted sum rate as in Appendix 5.7.1. However, thismethod is subject to certain

implementation constraints, and it is hard to be solved by standard second-order cone and

semidefinite programming solvers [230].

In the following, we propose two implementable algorithms to determine the boundary

points of the achievable rate regionROPT regardless of its convexity. They find both the

optimum values ofα and the signal covariance matrices for each boundary point of ROPT.

Section 5.3 considers the problem under the peak power constraint, and Section 5.4 discusses

the problem under the average power constraint.

5.3 Optimum Time-Division Under Peak Power Constraint

Under the peak power constraint, we haveP ∗
k = Pk for k ∈ {A,R,B} in (5.3)–(5.5) and

(5.10)–(5.11). Fig. 5.3 shows the capacity regionsCMAC(1) andCBRC(0) of a two-way re-

laying system. For a given TD factorα, the boundary points ofCMAC(1) andCBRC(0) are

scaled respectively by the factors ofα and1 − α along the line through the origin to get
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Fig. 5.4:Finding the pointP where the rayθ intersects with the capacity regionC’s boundary

the boundary points ofCMAC(α) andCBRC(α). We can writeCMAC(α) = αCMAC(1) and

CBRC(α) = (1 − α)CBRC(0). It is more convenient for us to use polar coordinates to repre-

sent the rate pair(RA, RB) in our discussions of this section.

The algorithm to characterize the boundary points of the achievable rate regionROPT

under the peak power constraint consists of the following two steps: Firstly, for a given

angleθ, we determine the two intersection pointsP1(ρ1, θ) andP2(ρ2, θ) on the boundaries

of CMAC(1) andCBRC(0) as shown in Fig. 5.3, where they are indicated by polar coordinates.

Secondly, we calculate the optimum TD factorα⋆ betweenP1 andP2, and get the boundary

point onROPT for the given angleθ. The first step will be discussed in Section 5.3.1, and

the second step will be discussed in Section 5.3.2. Without causing confusions, we useθ to

denote both the angle and the ray that forms the angle with theRA-axis.

5.3.1 Boundary Point on Capacity Regions for Given θ

The capacity regionsCMAC(1) andCBRC(0) are both convex. Efficient algorithms for calcu-

lating the maximum weighted sum rate
∑

k µkRk, k ∈ {A,B}, for the MAC phaseCMAC(1)

are available in e.g., [149, 242]. Hereµk, k ∈ {A,B} are non-negative weighting con-

stants. Similar algorithms can be applied to calculate the maximum weighted sum rate for

the BRC phaseCBRC(0) (see Appendix 5.7.2). LetC represent the capacity regionCMAC(1)

or CBRC(0). For a given angle0 ≤ θ ≤ π/2 as shown in Fig. 5.4, we denote the intersection

point of the rayθ with the boundary of the capacity regionC asP . SinceC is convex, there is

only one intersection point. Furthermore, the following lemma can be utilized to determine

the intersection pointP .

Lemma 5.3.1( [138]). Letw denote the weighting factor, where0 ≤ w ≤ 1. The intersection
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pointP = (R⋆
A, R

⋆
B) of the rayθ with the boundary of the capacity regionC satisfies

R⋆
A =

R⋆
B

tan θ
(5.13)

= max
(RA,RB)∈C

min

(
RA,

RB

tan θ

)
(5.14)

= max
(RA,RB)∈C

min
0≤w≤1

[
wRA + (1− w)

RB

tan θ

]
(5.15)

= min
0≤w≤1

max
(RA,RB)∈C

[
wRA + (1− w)

RB

tan θ

]
. (5.16)

Furthermore, we have

wR⋆
A + (1− w)

R⋆
B

tan θ
= R⋆

A =
R⋆

B

tan θ
, ∀w. (5.17)

Proof. Equation (5.13) is because the pointP = (R⋆
A, R

⋆
B) is on the rayθ. Equation (5.14) is

due to the fact that the rayθ divides the first quadrant into two sectors. In Sector 1 that is be-

low the rayθ, RB/RA ≤ tan θ and thusRB/ tan θ ≤ RA. In Sector 1,min(RA, RB/ tan θ) =

RB/ tan θ and (5.14) is equivalent to maximizingRB, which is achieved by the intersec-

tion pointP = (R⋆
A, R

⋆
B). The same argument also applies to Sector 2. Equation (5.15)

follows from the fact thatwx + (1 − w)y ≥ (w + 1 − w)min(x, y) = min(x, y),

∀x, y ≥ 0 and0 ≤ w ≤ 1. The equality is achieved when

w =

{
1 if x ≤ y

0 if x > y.

Thusmin0≤w≤1[wx+ (1− w)y] = min(x, y). Equation (5.16) follows from Fan’s Minimax

Theorem [63] (see Appendix 5.7.3). This is because the capacity regionC and the setW =

{w|0 ≤ w ≤ 1} are both convex and compact. Moreover, the functionf(w,RA, RB) =

wRA + (1 − w)RB/ tan θ is continuous and linear on the setW andC. So the strong max-

min property holds.

The algorithm to determine the intersection point of the given rayθ with the boundary of

the capacity regionC is presented in Algorithm 3. Here we utilize the bisection method [23]

to determine the optimum weighting factorw.
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Algorithm 3 Calculating the intersection pointP = (R⋆
A, R

⋆
B) for the given rayθ

Initialize wmin = 0, wmax = 1 andw = (wmax + wmin)/2.
repeat

Determine the rate pair(RA, RB) ∈ C that maximizes the weighted sum rate using the
algorithms described in [149,242], i.e., determine

(RA(w), RB(w)) = argmax
(RA,RB)∈C

wRA + (1− w)
RB

tan θ
.

if RA(w) < RB(w)/ tan θ then
wmin = w; wmax unchanged;w = (wmax + wmin)/2;

else ifRA(w) > RB(w)/ tan θ then
wmax = w; wmin unchanged;w = (wmax + wmin)/2;

end if
until |RA − RB/ tan θ| < ǫ or |wmax − wmin| < ζ
return R⋆

A = wRA(w) + (1− w)RB(w)/ tan θ, R⋆
B = R⋆

A tan θ.

5.3.2 Calculating the Optimum Time-Division Factor

For a given angleθ, Algorithm 3 can determine the intersection pointsP1 = (R⋆
A1, R

⋆
B1) and

P2 = (R⋆
A2, R

⋆
B2) of the rayθ with the capacity region boundariesCMAC(1) andCBRC(0).

In order to calculate the optimum TD factor betweenP1 andP2, we first convert them into

polar coordinate representationsP1(ρ1, θ) andP2(ρ2, θ) as shown in Fig. 5.3. The following

lemma can be utilized to determine the optimum TD factorα⋆ betweenP1 andP2:

Lemma 5.3.2.We assume the rayθ intersects with the boundaries ofCMAC(1) andCBRC(0)

respectively onP1(ρ1, θ) and P2(ρ2, θ). The point(ρ⋆, θ) in polar coordinates is on the

boundary ofROPT with optimum TD factorα⋆, where

ρ⋆ =
ρ1ρ2

ρ1 + ρ2
(5.18)

α⋆ =
ρ2

ρ1 + ρ2
. (5.19)

The transmit covariance matrices of the MAC and BRC phases for that point are the corre-

sponding ones obtained for the pointsP1 andP2, respectively.

Proof. For a given TD factorα, the pointQ(ρ(α), θ) represented in polar coordinates is on

the boundary of the rate regionCMAC(α)
⋂ CBRC(α), whereρ(α) = min(αρ1, (1 − α)ρ2).

ρ(α) is maximized whenα⋆ρ1 = (1− α⋆)ρ2, i.e., whenα⋆ = ρ2/(ρ1 + ρ2). The same result

is obtained for two-way relaying systems with single antenna [168]. When we choose that
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TD factorα⋆, the correspondingρ(α⋆) = ρ1ρ2/(ρ1 + ρ2), which is the maximum value that

ρ(α) can achieve for0 ≤ α ≤ 1.

In summary, we have Algorithm 4 to calculate the boundary point of ROPT for the given

angleθ. Evaluating every boundary point ofROPT for 0 ≤ θ ≤ π/2 yields the whole

boundary of the achievable rate regionROPT under the peak power constraint.

Algorithm 4 Calculating the boundary point ofROPT for the given angleθ
1: For givenθ, Use Algorithm 3 to determine the intersection points of theray θ with

CMAC(1) andCBRC(0);
2: Use (5.18) and (5.19) to determine the boundary point in polar coordinate(ρ⋆, θ).

5.4 Optimum Time-Division Under Average Power

Constraint

Under the average power constraint,CMAC(α) andCBRC(α) are not simply the scaled ver-

sions ofCMAC(1) andCBRC(0). In order to find the optimum TD strategies under the average

power constraint, we first prove the following lemma:

Lemma 5.4.1.For any given covariance matricesΩA,ΩB andΩ, the right-hand sides (RHS)

of (5.3)–(5.5)are monotonically increasing functions ofα, and the RHS of(5.10)–(5.11)are

monotonically decreasing functions ofα.

Proof. For any given transmit signal covariance matrixΩA, the RHS of (5.3) under the aver-

age power constraint can be written as

α log2 det

(
INR +

PA

αNAσ2
GAΩAG

H
A

)
=

NR∑

i=1

α log2(1 +
λi

α
), (5.20)

whereλi ≥ 0, i = 1, · · · , NR, denote the eigenvalues ofPA
NAσ2GAΩAG

H
A . ∀λi ≥ 0, f(α) =

α log2(1 + λi/α) is a monotonically increasing function ofα when0 ≤ α ≤ 1. Thus (5.20)

is a monotonically increasing function ofα. The same discussion also applies to (5.4)–(5.5).

Since the RHS of (5.10)–(5.11) are monotonically increasing functions of1 − α, they are

monotonically decreasing functions ofα.
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Fig. 5.5:For a given valueq and TD factorα, calculate the valuep(α) such that(p(α), q) is
on the boundary ofCMAC(α). Decreasingα expandsCBRC(α) and shrinksCMAC(α).

This lemma implies that the regionCMAC(α) swells, while the regionCBRC(α) diminishes

asα increases. In this section, we propose an algorithm to determine the boundary points of

ROPT under the average power constraint. We first define

qmax = max
tr(Ω)≤NR,Ω�0

log2 det

(
INA +

PR

NRσ2
A

HAΩHH
A

)
,

whereqmax is the maximum possible value ofRB in the BRC phase. For a given valueq,

where0 ≤ q ≤ qmax, the proposed algorithm finds the optimum valuep⋆ andα⋆ such that

(p⋆, q) is on the boundary ofROPT under the average power constraint, and the TD factor

for that point isα⋆, i.e.,(p⋆, q) ∈ CMAC(α
⋆)
⋂ CBRC(α

⋆). The idea of the algorithm is shown

in Fig. 5.5. For each value of the TD factorα, we can determine the point(p(α), q) on the

boundary ofCBRC(α) for the given valueq, and(p(α), q) ∈ CBRC(α) is satisfied.p⋆ is the

largestachievablevalue ofp(α), i.e.,

p⋆ = max
0≤α≤1

{p(α)|(p(α), q) ∈ CMAC(α)} . (5.21)

For the given value ofα, we can determine whether(p(α), q) ∈ CMAC(α). If (p(α), q) ∈
CMAC(α), a smaller TD factorβ, whereβ ≤ α, can be chosen with increasedp(β) while still

keeping the point(p(β), q) to be insideCMAC(β). Otherwise, the present value ofα is too

small and should be increased. The fact that decreasing the TD factorα expandsCBRC(α)

and shrinksCMAC(α) is due to Lemma 5.4.1.

The details of the algorithm work as follows: For a given value q, where0 ≤ q ≤ qmax,

we first choose an initial value ofα, where0 ≤ α ≤ 1. For the given valueq and the TD
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factorα, the point(p(α), q) on the boundary ofCBRC(α) under the average power constraint

can be calculated by solving the following convex optimization problem:

maximize (1− α) log2 det
(
INB +

P ∗

R

NRσ2
B
HBΩHH

B

)

subject to (1− α) log2 det
(
INA +

P ∗

R

NRσ2
A
HAΩHH

A

)
≥ q

tr(Ω) ≤ NR, Ω � 0

variable Ω

(5.22)

whereP ∗
R = PR/(1 − α). The maximum value of the objective function in (5.22) isp(α).

Secondly, we can check whether(p(α), q) ∈ CMAC(α) with the TD factorα under the aver-

age power constraint. That is, we solve the following convexfeasibility problem:

find ΩA,ΩB

subject to α log2 det
(
INR +

P ∗

A
NAσ2GAΩAG

H
A

)
≥ p(α)

α log2 det
(
INR +

P ∗

B
NBσ2GBΩBG

H
B

)
≥ q

α log2 det

(
INR +

∑
k∈{A,B}

P ∗

k

Nkσ2GkΩkG
H
k

)
≥ p(α) + q

tr(ΩA) ≤ NA, ΩA � 0

tr(ΩB) ≤ NB, ΩB � 0.

(5.23)

whereP ∗
A = PA/α andP ∗

B = PB/α. By solving the problem (5.23), we get afeasibility

certificateto show whether suitable matricesΩA andΩB can be found satisfying the con-

straints. If suitable covariance matricesΩA andΩB can be found satisfying the constraints

of (5.23), then(p(α), q) ∈ CMAC(α). This indicates thatα ≥ α⋆ and the present choice of

TD factor should be decreased; if no suitable covariance matricesΩA andΩB can be found,

then(p(α), q) /∈ CMAC(α), which indicates thatα < α⋆ and the present choice of TD factor

should be increased. Here we utilized Lemma 5.4.1. This feasibility certificate can be con-

sidered as a subgradient [23] for finding the optimum factorα⋆. This process repeats untilα

converges. This algorithm is summarized in Algorithm 5.

We get the correspondingΩ, ΩA andΩB when we solve (5.22) and (5.23). Evaluation for

every point of0 ≤ q ≤ qmax yields the boundary of the whole achievable rate regionROPT

under the average power constraint.
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Algorithm 5 Bisection method to determine the boundary point(p⋆, q) on ROPT and the
optimum TD factorα⋆ for given QoS requirementRB = q

Initialize αmin = 0, αmax = 1 andα = (αmin + αmax)/2.
while αmax− αmin > ǫ do

Solve(p(α), q) for the convex optimization problem (5.22);
Check the feasibility of(p(α), q) in the feasibility check problem (5.23);
if (p(α), q) is feasiblethen
αmax = α; αmin unchanged;α = (αmax + αmin)/2

else
αmin = α; αmax unchanged;α = (αmax + αmin)/2

end if
end while
return p⋆ = p(α), α⋆ = α.

5.5 Simulation Results

Using the methods proposed in Section 5.3 and Section 5.4, wecan characterize the achiev-

able rate regions with optimum TD strategies for given channels. In a real mobile system,

the channel knowledge may not always be available to the transmitters. So we also show the

rate regions when there is no channel state information at the transmitters (CSIT). In such

a case, the transmit covariance matrices are chosen asΩA = INA , ΩB = INB andΩ = INR.

As stated in Appendix 5.7.1, the rate region under the peak power constraint can be charac-

terized using linear programming for no CSIT case, while itsrate region under the average

power constraint is calculated using Algorithm 5 in the simulations.

5.5.1 Achievable Rate Region ROPT for Static Channels

The achievable rate regionsROPT with optimum TD strategies for static channels with full

CSIT and no CSIT are shown in Fig. 5.6 and Fig. 5.7, respectively. Both peak and average

power constraints are considered. The channel matrices arerandomly generated as follows

GA =

[
−1.30− 0.45i −0.60 + 0.13i

−1.88 + 0.33i 0.34 + 0.66i

]
(5.24)

GB =

[
−0.05− 0.45i −0.55 + 0.19i

0.60− 0.99i 1.13− 0.01i

]
(5.25)

HA = GT
A , HB = GT

B . (5.26)
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Fig. 5.6:Achievable rate regions under peak and average power constraints. “MAC region
1/2” and “BRC region 1/2” correspond to1/2CMAC(1) and1/2CBRC(0), respec-
tively. Their intersection region is the achievable rate region with equal TD under
the peak power constraint.
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Fig. 5.7:Achievable rate regions under peak and average power constraints for no CSIT
case. “MAC region 1/2” and “BRC region 1/2” correspond to1/2CMAC(1) and
1/2CBRC(0), respectively. Their intersection region is the achievable rate region
with equal TD under the peak power constraint.
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Fig. 5.8:Ergodic sum rate under peak and average power constraints,NA/NR/NB = 2/2/2,
SNRA = 20dB

The channels remain constant during their corresponding transmission phase. Furthermore,

we havePk/σ
2 = 1, wherek ∈ {A,B,R}. Given RB = 0.5 bits/s/Hz, the maximum

achievable rate ofRA is shown in Table 5.1. The gain of the achievable rateRA in optimum

TD case is significant compared to equal TD case. For average power constraint, the actual

transmit powerP ∗
k is larger thanPk. Due to power scaling, the achievable rate region under

the average power constraint is also larger than that under the peak power constraint.

Table 5.1:Maximum Achievable Rate ofRA for Given QoS RequirementRB = 0.5 bits/s/Hz
Equal TD Optimum TD Increase

Peak Power Constraint (CSIT) 0.93 bits/s/Hz 1.12 bits/s/Hz 20.43%
Average Power Constraint (CSIT) 1.33 bits/s/Hz 1.51 bits/s/Hz 13.53%
Peak Power Constraint (no CSIT) 0.77 bits/s/Hz 0.87 bits/s/Hz 13.19%

Average Power Constraint (no CSIT)1.23 bits/s/Hz 1.35 bits/s/Hz 9.43%

5.5.2 Ergodic Sum Rate in Rayleigh Fading Channels

Fig. 5.8–Fig. 5.11 show the ergodic sum rate of a two-way relaying system in Rayleigh fading

channels for different antenna configurations with and without CSIT. Each entry inGA, GB,

HA andHB areCN (0, 1) random variables. We haveSNRA = PA/σ
2 = PR/σ

2
A = 20dB,
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Fig. 5.9:Ergodic sum rate under peak and average power constraints,NA/NR/NB = 2/4/2,
SNRA = 20dB
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Fig. 5.10:Ergodic sum rate under peak and average power constraints (no CSIT case),
NA/NR/NB = 2/2/2, SNRA = 20dB
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Fig. 5.11:Ergodic sum rate under peak and average power constraints (no CSIT case),
NA/NR/NB = 2/4/2, SNRA = 20dB

which means that the distance between stationA and the relay is fixed. We also define

SNRB = PB/σ
2 = PR/σ

2
B, which is shown as thex-axis in the figure. In Fig. 5.8, the number

of antennas at stationA, the relay and stationB areNA = NR = NB = 2. Fig. 5.8 shows that

the optimum TD strategies do not gain in the ergodic sum rate whenSNRB is below 8dB.

SinceSNRA is high, the weak link, i.e., the link between the relay and stationB, determines

the achievable rate region whenSNRB is low. By choosing different TD factors, we can

increase eitherRA or RB, but at the price of the other. In this case, optimum TD strategies

do not increase the sum rate of the system. However, whenSNRB = 20dB, optimum TD

strategies increase the sum rate by 1.2 bits/s/Hz and 1.5 bits/s/Hz compared to equal TD

case under the peak power constraint and average power constraint, respectively. This is

because the relay has only two antennas. WhenSNRB is high, the MAC phase becomes the

bottleneck of the system. By increasing the duration of the MAC phase, more data from

stationA andB can be decoded at the relay. Those data can still be retransmitted back to the

two stations in the BRC phase even though the duration of the BRC phase is shorter now.

By choosing the optimum TD strategies, the sum rate can be increased. On the other hand,

optimum TD strategies do not increase the sum rate much when the number of antennas is

increased toNR = 4 as shown in Fig. 5.9. In this case, the MAC phase is not a constraint of

the system any more. By increasing the duration of the MAC phase, more data from station

A andB can be decoded at the relay. However, those data cannot be transmitted to the two
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Fig. 5.12:Average achievable rate ofRA for given QoS requirementRB ≥ 1bit/s/Hz,
NA/NR/NB = 2/4/2, SNRA = 20dB

stations in the BRC phase due to its shorter duration. By comparing Fig. 5.9 and Fig. 5.8,

we can observe that by increasing the number of antennasNR at the relay, the sum rates have

been improved by about 1 bits/s/Hz both under peak and average power constraints. Similar

observations can be found for no CSIT case in Fig. 5.10 and Fig. 5.11.

5.5.3 Average Achievable Rate RA for Given QoS Requirement in RB

The maximum achievable ergodic sum rate does not consider the QoS for individual users,

and is only one out of many figures of merit for communication systems. In some systems,

especially cellular communication networks, the data traffic is asymmetric: the data rate

transmitted by one user (e.g., the uplink data rate) is limited, while the data rate transmitted

by the other user (e.g., the downlink data rate) should be increased as large as possible.

This motivates us to consider the following problem: Given the setup of a two-way relaying

system and the QoS requirement inRB, what is the maximum average achievable rateRA if

optimum TD strategy is applied. We apply Algorithm 5 to answer this problem.

We consider the antenna configuration thatNA = NB = 2 andNR = 4, where it has

been shown in Section 5.5.2 that optimum TD strategy does notimprove the ergodic sum

rate much. The setup is similar to Section 5.5.2, whereSNRA = PA/σ
2 = PR/σ

2
A = 20dB

andSNRB = PB/σ
2 = PR/σ

2
B. We consider a Ricean fading channel, where theK-factor
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Fig. 5.13:Average achievable rate ofRA for given QoS requirementRB ≥ 1bit/s/Hz (for no
CSIT case),NA/NR/NB = 2/4/2, SNRA = 20dB

betweenA andR is KA = 5 (i.e., 7dB) and theK-factor betweenB andR is KB = 1 (i.e.,

0dB). We choose a Ricean fading channel model since we do not want the channel to be

frequently in outage. The QoS requirement for the data rate transmitted from StationB is

RB ≥ 1bit/s/Hz.

Fig. 5.12 and Fig. 5.13 show the average achievable rateRA for given QoS requirement

RB ≥ 1bit/s/Hz for full CSIT and no CSIT cases, respectively. WhenRB is in outage for

the given channel,RA is set to be 0. We can observe that the optimum TD strategy increases

the average achievable rate ofRA by about 1bit/s/Hz under peak or average power constraint

when SNRB = 10dB, no matter whether CSIT is available. Combined with the results

obtained in Section 5.5.1, we can see that using the optimum TD strategies can increase

the achievable rates of one user given the QoS requirement ofits partner not only in static

channels but also in fading channels. In Fig. 5.12 and Fig. 5.13, we can observe that curve

of the average rateRA with peak power constraint is almost parallel to that with average

power constraint in both the optimum TD strategies and the equal TD strategy. This is true

no matter whether the CSIT is available or not. Another observation is that the gain using

optimum TD strategies compared to the equal TD strategy decreases whenSNRB is high at

around 18dB.
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5.6 Chapter Summary and Conclusions

We proposed two methods for characterizing the achievable rate regions with optimum TD

strategies for two-way DF relaying systems with multiple antennas. Both peak power con-

straint and average power constraint were considered. Simulation results showed that the

achievable rate region can be further increased by choosingoptimum TD strategies. At high

SNR, the optimum TD strategies improve the ergodic sum rate when the MAC phase is

the bottleneck of the system, e.g., whenNA + NB > NR. The gain in ergodic sum rate

by using the optimum TD strategies is small whenNA + NB ≤ NR. However, even when

NA + NB ≤ NR, the average achievable rate of one user given the QoS requirement of the

other is increased a lot by using optimum TD strategies underpeak power and average power

constraint.

5.7 Appendices

5.7.1 Maximum Weighted Sum Rate Calculation for ROPT

When the rate regionROPT is convex, its boundary points can be determined by solving the

following optimization problem:

maximize µRA + (1− µ)RB

subject to (RA, RB) ∈ CMAC(α)
⋂ CBRC(α)

0 ≤ α ≤ 1

variables RA, RB, α,ΩA,ΩB,Ω,

(5.27)

whereµ is a weighting constant and0 ≤ µ ≤ 1.

For a fixed weighting constantµ, the problem (5.27) can be solved by decomposition

methods [23]: Firstly, we observe that for a given TD factorα, where0 ≤ α ≤ 1, the

following is a convex optimization problem:

maximize µRA + (1− µ)RB

subject to (RA, RB) ∈ CMAC(α)
⋂ CBRC(α)

α is given

variables RA, RB,ΩA,ΩB,Ω.

(5.28)

(5.28) is a convex optimization problem becauseCMAC(α) andCBRC(α) are both convex
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regions for the fixed valueα. Their intersection is thus also convex. For the fixedα, we

denote the optimum objective value of (5.28) asr(α) = µR⋆
A(α) + (1 − µ)R⋆

B(α), and its

value can be determined by convex optimization methods, e.g., interior-point methods [33].

That is,r(α) can be considered as a function of the TD factorα. Secondly, we solve the

following problem:

maximize r(α) = µR⋆
A(α) + (1− µ)R⋆

B(α)

subject to 0 ≤ α ≤ 1

variables α.

(5.29)

Since there is only one variableα in (5.29), it can be solved by using thebisection

method [23]. The solutionα⋆ and the optimum objective value in (5.29) are also respectively

the optimum TD factor and the optimum objective value of (5.27) for the given weighting

constantµ. In this way, the original problem (5.27) is decomposed intotwo subproblems

(5.28) and (5.29). However, this decomposition method suffers from difficulties in imple-

mentation because it is hard for (5.28) to be converted to a second-order cone programming

problem or a semidefinite programming problem and solved by standard solvers [230].

There is an exception when the transmitters do not have channel state information (CSIT)

under the peak power constraint. In such a case, the transmitcovariance matrices are chosen

asΩA = INA, ΩB = INB andΩ = INR. Thus the problem (5.27) degenerates into a linear

programming problem with variableα and can be solved by standard linear programming

tools [69].

5.7.2 Maximum Weighted Sum Rate Calculation for CMAC(1) and

CBRC(0)

We briefly summarizes the method for calculating the maximumweighted sum rate for the

MAC phase and BRC phase channels used in Section 5.3.1. The discussions follow that

of [78,242].

5.7.2.1 MAC Phase Channel

The MAC phase capacity regionCMAC(1) is convex. Given two weighting factorsµA, µB ≥ 0

and assumingµA ≥ µB without loss of generality, the problem of maximizing the function
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µARA + µBRB over all rate vectors in(RA, RB) ∈ CMAC(1) is equivalent to [78]

maximize µB log2 det
(
INR +

∑
k∈{A,B}

Pk

Nkσ2GkΩkG
H
k

)

+ (µA − µB) log2 det
(
INR +

PA
NAσ2GAΩAG

H
A

)

subject to tr(Ωk) ≤ Nk, Ωk � 0, for k ∈ {A,B}
variables ΩA,ΩB.

(5.30)

The covariance matrices that maximize the objective function in (5.30) are also the corre-

sponding optimal covariances for the maximum weighted sum rate problem. Furthermore,

(5.30) is a convex optimization problem and can be solved using convex optimization tools

numerically or using the following algorithm [242].

Denote the objective function of (5.30) asf(ΩA,ΩB). The gradient of thef(ΩA,ΩB) with

respect to the covariance matrixΩA andΩB is respectively given by

∇Af(ΩA,ΩB) =
µB

ln 2


GH

A


INR +

∑

k∈{A,B}

Pk

Nkσ2
GkΩkG

H
k




−1

GA




+
(µA − µB)

ln 2

[
GH

A

(
INR +

PA

NAσ2
GAΩAG

H
A

)−1

GA

]
; (5.31)

∇Bf(ΩA,ΩB) =
µB

ln 2


GH

B


INR +

∑

k∈{A,B}

Pk

Nkσ2
GkΩkG

H
k




−1

GB


 . (5.32)

The algorithm proceeds iteratively as follows: Given thenth iterateΩk(n), k ∈ {A,B}, de-

termine the principle eigenvectorsvk (of unit norm) and the corresponding principle eigen-

valuesλk of the gradients∇kf(ΩA,ΩB) for k ∈ {A,B}. Let j∗ = argmaxk∈{A,B} λk.

The(n+ 1)st iterateΩk(n+ 1), k ∈ {A,B} are updated as follows:

Ωj∗(n + 1) = t∗Ωj∗(n) + (1− t∗)Nj∗vj∗v
H
j∗ (5.33)

Ωi(n + 1) = t∗Ωi(n), for i 6= j∗ (5.34)

wheret∗ is the solution to the following one-dimensional optimization that can be solved

through bisection

t∗ =

{
argmax0≤t≤1 f

(
tΩA(n) + (1− t)NAvAv

H
A , tΩB(n)

)
, whenj∗ = A,

argmax0≤t≤1 f
(
tΩA(n), tΩB(n) + (1− t)NBvBv

H
B

)
, whenj∗ = B.

(5.35)

As n → ∞, the covariance matrices converge to the optimum covariance matrices. When
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µA < µB, we only need to swap the subscripts in (5.30), and the same algorithm applies.

5.7.2.2 BRC Phase Channel

The BRC phase capacity regionCBRC(0) is also convex. Given two weighting factors

µA, µB ≥ 0, the problem of maximizing the functionµARA + µBRB over all rate vectors

in (RA, RB) ∈ CBRC(0) is equivalent to

maximize µA log2 det
(
INB +

PR
NRσ2

B
HBΩHH

B

)
+ µB log2 det

(
INA +

PR
NRσ2

A
HAΩHH

A

)

subject to tr(Ω) ≤ NR, Ω � 0

variables Ω.
(5.36)

The covariance matrices that maximize the objective function in (5.36) are also the corre-

sponding optimal covariances for the maximum weighted sum rate problem. Furthermore,

(5.36) is a convex optimization problem and can be solved using convex optimization tools

numerically or using the following algorithm.

We denote the objective function of (5.36) asg(Ω). Its gradient with respect to the covari-

ance matrixΩ is then given by

∇g(Ω) = µAH
H
B

(
INB +

PR

NRσ2
B

HBΩHH
B

)−1

HB + µBH
H
A

(
INA +

P ∗
R

NRσ2
A

HAΩHH
A

)−1

HA.

(5.37)

Given thenth iterateΩ(n), determine the principle eigenvectorsv (of unit norm) and the

corresponding principle eigenvaluesλ of the gradients∇g(Ω). The(n+1)st iterateΩ(n+1)

is updated as follows:

Ω(n + 1) = t∗Ω(n) + (1− t∗)NRvv
H (5.38)

wheret∗ is the solution to the following one-dimensional optimization that can be solved

through bisection

t∗ = argmax
0≤t≤1

g
(
tΩ(n) + (1− t)NRvv

H
)
. (5.39)

As n → ∞, the covariance matrices converge to the optimum covariance matrices.
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5.7 Appendices

5.7.3 Minimax Theorem

Theorem 5.7.1( [63, 189]). LetA andB be nonempty sets andf : A× B 7→ R a function

onA× B. The primal problem associated with the functionf is given by

v(P ) = inf
b∈B

sup
a∈A

f(a, b) (5.40)

while the dual problem has the form

v(D) = sup
a∈A

inf
b∈B

f(a, b). (5.41)

We havev(P ) = v(D), whenever bothA andB are convex,A is compact andf is concave

and upper-semicontinuous ina and convex inB.
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Chapter 6

Self-Interference-Aided Channel

Estimation in Two-Way Relaying

Systems

The two-way decode-and-forward (DF) relaying protocol andits applications have been dis-

cussed in Chapter 2 and Chapter 4. The core idea of the two-wayDF relaying protocol is

theself-interference(SI) cancellation in the broadcast (BRC) phase. That is, theknown data

information transmitted from the relay does not interfere with the decoding at the receivers

in the BRC phase since it can be canceled in the decoding process. However, conventional

two-way relaying protocols onlycancelinstead ofutilize the SI. In this chapter and Chap-

ter 8, we propose practical transmission schemes that exploit the SI to provide additional

benefits in two-way DF relaying protocols. In this chapter, we propose a novel approach that

utilizes the SI for channel estimation in the BRC phase of MIMO two-way DF relaying sys-

tem when the superposition coding (SPC) scheme is applied. In this case, the SI contains the

known data symbols at the receivers, which can play a similarrole as pilot sequences for the

purpose of channel estimation. Firstly, we propose the SI-aided joint maximum likelihood

(ML) channel estimation and data detection scheme. We show that its channel estimation

performance can approach the Cramér-Rao lower bound when the signal-to-noise ratio at the

receiver is high. Then we propose an SI-aided linear channelestimator in iterative receivers.

Its channel estimate is achieved with lower complexity compared to the joint ML scheme.

The proposed SI-aided channel estimation can be applied together with pilot sequence to

improve the channel estimation accuracy. In order to make fair comparisons, we consider

two types of systems in this chapter: one purely relies on SI to estimate the channel, and

the other purely relies on the pilot sequences to estimate the channel. In the purely SI-aided

channel estimator, higher bandwidth efficiency can be achieved since pilot sequences are no
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longer transmitted. We show the conditions under which the SI-aided linear channel estima-

tor is able to outperform the pilot-aided channel estimator. Taking into account the channel

estimation errors, we propose an optimized power allocation scheme to provide fairness for

the different stations. Under the same average power constraint and transmitting the same

amount of data symbols, simulations show that the performance of the proposed SI-aided it-

erative receiver can significantly outperform that of the iterative receiver which solely relies

on the pilots for channel estimation in realistic scenarios.

6.1 Introduction

Thetwo-way relaying protocol[193] is applicable to systems with bidirectional information

flow and recovers a significant portion of the half-duplex loss in traditional relaying systems.

A large number of transmission scenarios, such as the base station communicates with a

mobile user via a dedicated relay in a cellular system, or twomobile clients transmit data to

each other via the access point in a wireless local area network (WLAN), is suitable for the

application of the two-way relaying protocol. Compared to traditional relaying protocols that

require four phases (in time or frequency) to achieve bidirectional communication between

the two stations, the two-way relaying protocol only needs two phases to exchange the data,

namely, the multiple access (MAC) phase and the broadcast (BRC) phase (see Chapter 2).

The two-way decode-and-forward (DF) relaying protocol is particularly interesting due

to its practical applicability in real-world communication systems. The idea of the two-

way DF relaying protocol is to combine the decoded data information at the relay, and send

back the combined data information to the two user stations in the BRC phase. The back-

propagated data information, called theself-interference(SI), can be canceled at the receiver

if the channel from the relay to the receiver is known. Up to now, there are two major types of

practical schemes proposed for combining the data at the relay, i.e., thesuperposition coding

(SPC) scheme and thenetwork codingscheme. The SPC scheme combines the decoded

data information on the symbol level, whereas the network coding scheme combines the

decoded data on the bit level. The comparison of the two schemes can be found in, e.g.,

[88, 128, 151, 193, 260] (see Chapter 4). The SI cancellationis the core idea of the two-way

relaying protocol. That is, the known data information transmitted from the relay does not

interfere with the decoding at the receivers in the BRC phasesince it can be canceled in the

decoding process. However, conventional two-way relayingprotocols onlycancelinstead of

utilizethe SI. In this chapter and Chapter 8, we propose schemes thatexploit the SI to provide

additional benefits in two-way DF relaying protocols. In this chapter, we propose a novel
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approach that utilizes the SI for channel estimation in the BRC phase of the multiple-input

multiple-output (MIMO) two-way DF relaying system when thesuperposition coding (SPC)

scheme is applied. In this case, the SI contains the known data symbols at the receivers,

which can play a similar role as pilot sequences for the purpose of channel estimation.

Future wireless communication systems are envisioned to beequipped with multiple an-

tennas because multiple-input multiple-output (MIMO) technology can provide significant

increase in channel capacity [224] and great enhancement inlink reliability [221]. To obtain

that advantage, channel knowledge is required at least at the receiver side. However, accu-

rate channel estimation in MIMO systems is generally difficult. Conventional pilot-aided

channel estimation schemes send orthogonal pilot sequences on different transmit anten-

nas to estimate the channel, which wastes system resources,especially when the number

of transmit antennas is large. The major algorithms for time-multiplexed pilot-aided chan-

nel estimation, i.e., the least-square (LS) algorithm and the minimum mean square error

(MMSE) algorithm, are summarized in [26], where the authorsalso investigated the optimal

choice of pilot signals. A pilot-embedding method was proposed in [103, 109] and further

investigated in [100, 126, 166, 283], where low-power orthogonal pilot sequences are trans-

mitted concurrently with the data. Such schemes trade transmit power for higher spectrum

efficiency. Decision-directed iterative channel estimation can be found in, e.g., [56,108]. All

those channel estimation schemes rely on an initial estimate of the MIMO channel based on

the transmission of pilot sequences.

Blind and semi-blind channel estimation are discussed in, e.g., [11,29,164]. The purpose

is to identify the channel solely based on some known properties of the channel or data sym-

bols. For example, the use of cyclostationary statistics toaccomplish blind MIMO channel

estimation has first been proposed for frequency-flat fadingchannels in [199], and was ex-

tended to MIMO-OFDM systems in [29], which can recover the transmitted symbol streams

up to a phase rotation. A blind channel estimation approach combining different modulation

schemes on adjacent subcarriers was proposed in [164] for OFDM systems. Compared to the

statistically blind channel estimation approaches in [199], which have a slow convergence

rate, the proposed scheme in [164] achieves fast convergence rate exploiting the specific

symbol constellation of the system based on the maximum likelihood (ML) principle. A

semi-blind channel estimation and data detection scheme based on the ML principle exploit-

ing the discrete symbol constellation was proposed in [11].The advantage of blind channel

estimation is that the resources occupied by pilot sequences can be released. However, the

blind channel estimation methods suffer from the ambiguityproblem, i.e., the channel and

data cannot be uniquely identified without transmitting additional pilots for conventional
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modulation schemes. That problem is inherent in blind channel estimation schemes them-

selves. In order to uniquely determine the channel and data,some pilots are still required to

be transmitted.

Channel estimation in relaying systems is a relatively new topic. The authors of [71] inves-

tigated the channel estimation strategies and optimal pilot sequence design for conventional

unidirectional AF relaying systems with one source, one destination and multiple relays.

Both the LS and the MMSE algorithms were considered. The authors investigated the linear

precoding matrix design at the relays to minimize the channel estimation errors subject to the

individual power constraints at each relays. The same setupis considered for DF relaying

systems in [72], where the authors investigated two types ofchannel estimation algorithms:

MMSE and ML estimation algorithms. Pilot symbol spacing in unidirectional AF relaying

systems is address in [182]. Channel estimator design in a two-way AF relaying system

with one source, one destination and one relay is consideredin [73]. All those works only

consider relaying systems with single antenna on each station.

In this chapter, we consider channel estimation in a two-wayDF relaying system with

multiple antennas. We propose a novel approach that exploits the known data symbols in the

SI to estimate the channel for the BRC phase. We call itSI-aided channel estimation. The

SI plays a similar role in the proposed scheme as the superimposed pilots in [103]. However,

pilots contain no information and waste power, while the proposed approach does not suffer

from the power penalty since SI is inherent in the consideredscenario. Furthermore, the

data contained in the SI is random and does not have the special structure as pilots in [103].

Specific problems, such as the power allocation to provide fairness for the two receivers,

arise in two-way DF relaying systems. The channel estimation schemes in the MAC phase

is left aside in this paper, since the channel knowledge at the relay in the MAC phase can

be obtained from existing multiuser channel estimation schemes, e.g., in [240], or from the

feedback of the stations. The SI-aided channel estimation approach can be used together

with pilot-aided channel estimation to improve the accuracy of the estimated channel. In

order to make fair comparisons, we consider two types of systems in this chapter: one purely

relies on SI to estimate the channel, and the other purely relies on the pilot sequences to

estimate the channel.

Our Contributions: The contributions of this chapter are summarized as follows:

• We propose the SI-aided joint maximum likelihood (ML) channel estimation and data

detection scheme when noa priori knowledge of the channel is available. The problem

of unique identifiability of the channel and data symbols is addressed. We observe

that the SI implicitly helps to uniquely determine the channel, and channel estimates
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with high precision can be obtained without using pilots. Furthermore, we show that

its channel estimation performance can approach the Cramér-Rao lower bound for

joint channel and data symbol estimation when the signal-to-noise ratio (SNR) at the

receiver is high.

• We propose an SI-aided linear channel estimator. We provideits theoretical mean

square error (MSE) performance analysis, and show the conditions under which the

SI-aided linear channel estimation outperforms the pure pilot-aided channel estima-

tion. The advantage of the proposed scheme is more conspicuous when the coherence

interval in block-fading channels or the observation framelength in time-varying chan-

nels is large. In order to provide fairness for the receiversat different stations in the

BRC phase, we propose an optimized power allocation at the relay taking into account

the channel estimation errors.

• We show how SI-aided linear channel estimator is integratedin commonly used re-

ceivers, e.g., the iterative receiver structure for channel estimation and data detection.

Considering SI, we show that only small modifications to existing receiver structures

are required.

• Our proposed SI-aided channel estimation scheme can be usedalone or be combined

with pilot-aided channel estimation. In the purely SI-aided channel estimator, higher

bandwidth efficiency in the BRC phase can be achieved since pilot sequences are no

longer transmitted. Simulation results verify our conclusions and show that the perfor-

mance of the SI-aided iterative receiver can greatly outperform that of the pilot-aided

iterative receiver under the same average power constraintand transmitting the same

amount of data. The proposed scheme is particularly interesting for multi-carrier sys-

tems because SI can track the channel in all subcarriers, andthere is no need of doing

interpolations in time and frequency as pilot-aided schemes.

• To the best of our knowledge, this is the first scheme that exploits the SI for channel

estimation in two-way relaying systems. Prior works focus on canceling interference

when it contains known data [193]. This work goes one step further and shows that SI

can beutilized. Since interferences with known data is very common in cooperative

communication systems, we believe more application areas can be found for them.

The following of the chapter is organized as follows: The system model is shown in Sec-

tion 6.2. The SI-aided joint ML channel estimation and data detection scheme is proposed

in Section 6.3. Afterwards, we consider receiver structures with separate channel estima-

tion and data detection. In Section 6.4, we focus on the SI-aided linear channel estimator
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Fig. 6.1:MIMO two-way DF relaying system, where the dashed arrows represent the trans-
mission in the MAC phase, and the solid arrows represent the transmission in the
BRC phase.

and provide the performance analysis. The estimated channel can serve as the initial chan-

nel estimate for the iterative receiver structure in Section 6.5, where the subsequent channel

estimation and MIMO symbol demapping are discussed in detail. Comprehensive simula-

tion results are presented in Section 6.6, where we compare the proposed schemes with the

pilot-aided schemes in block-fading and time-varying channels. Conclusions are drawn in

Section 6.7.

6.2 System Model

We consider a relaying system where two wireless stationsA andB exchange data via a half-

duplex relay as shown in Fig. 6.1. The number of antennas at stationA, the relay and station

B are denoted asNA, NR andNB, respectively.

The data of stationsA and B are exchanged in two or three phases when the two-way

relaying protocol is applied. Their difference only lies inthe MAC phase and not in the BRC

phase. The MAC and BRC phases can be separated in time (time-division duplex, TDD) or

in frequency (frequency-division duplex, FDD). Considering the two-phase protocol, at one

time slot in the MAC phase, stationsA andB transmit their information-bearing data symbol

vectorsxA ∈ CNA×1 andxB ∈ CNB×1 simultaneously to the relay. The received signalyR at

the relay can be expressed as

yR = GAxA +GBxB + nR (6.1)

whereGA ∈ CNR×NA andGB ∈ CNR×NB are the channel matrices from stationsA andB to

the relay, respectively. The additive noise vector at the relay is nR ∼ CN (0, σ2INR). The

relay decodes the received signals and extracts the data bits contained inxA andxB. In this

multiuser detection scenario, the receiver structures forchannel estimation and decoding can
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Fig. 6.2:Re-encoding and retransmission at the relay in the BRC phase.

be found in, e.g., [120, 207, 240]. In order to guarantee the decoded data at the relay to be

correct, error-detecting codes, e.g., cyclic redundancy check (CRC) codes, can be applied in

the data. In the following, we focus on the BRC phase and assume the data transmitted from

stationsA andB in the MAC phase have already been decoded by the relay.

In the BRC phase, the decoded data from stationsA andB are re-encoded and retransmit-

ted. Fig. 6.2 shows the transmitter structure with spatial multiplexing. The bit sequences

{bA} and{bB} respectively denote the decoded data bits from stationsA andB, where each

elementbA, bB ∈ {0, 1}, and their length isLb,A andLb,B, respectively. After being processed

by the convolutional encoders with coding raterA andrB, the output coded bit sequences are

respectively denoted as{dA} and{dB}, where each of their elementsdA, dB ∈ {0, 1}. The

two sequences are bitwise interleaved to form the code sequences{cA} and {cB}. Then

the bit-interleaved codewords are respectively partitioned into groups ofmA andmB bits.

Each bit group of{cA} and{cB} is mapped to a complex symbol within theMA-ary and

MB-ary quadrature amplitude modulation (QAM) or phase-shiftkeying (PSK) symbol al-

phabets, whereMA = 2mA andMB = 2mB . In order to guarantee the length of sequence

{sA} and {sB} to be equal, we requireLb,A/(rAmA) = Lb,B/(rBmB). The two symbol

sequences{sA} and {sB} are added together element-wise to form the symbol sequence

{sR}, i.e., {sR} = {sA + sB}. The resulting complex symbol sequence is further grouped

into blocks of sizeNR and each block forms one transmit symbol vectorsR at the relay,

namelysR = [sR,1, · · · , sR,NR]
T = [sA,1, · · · , sA,NR]

T + [sB,1, · · · , sB,NR]
T = sA + sB, where

sR, sA, sB ∈ CNR×1. Furthermore, we haveE(sAs
H
A ) = PA/NRINR, E(sBs

H
B ) = PB/NRINR

andPA + PB = PR, wherePR is the transmit power constraint at the relay in the BRC phase.

StationsA andB both know the modulation schemes and the power allocation ofsA andsB.

At a given time slotk in the BRC phase, the signals received at stationsA andB are

yA,k = HA,ksR,k + nA,k = HA,ksA,k︸ ︷︷ ︸
SI for stationA

+HA,ksB,k + nA,k, (6.2)

yB,k = HB,ksR,k + nB,k = HB,ksA,k + HB,ksB,k︸ ︷︷ ︸
SI for stationB

+nB,k, (6.3)
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whereHA,k ∈ CNA×NR andHB,k ∈ CNB×NR denote the channel from the relay to stationsA

andB, respectively.nA,k ∼ CN (0, σ2
AINA) andnB,k ∼ CN (0, σ2

BINB) are the additive noise

vectors. SincesA,k (resp.sB,k) is modulated from the data of stationA (resp. stationB), the

received signal part containing the known data is calledself-interference(SI) for its receiver

in (6.2) and (6.3).

If the channel knowledge from the relay to its receiver is available, the SI is “harm-

less” since it can be canceled at the receiver without actually degrading the system per-

formance [193]. On the other hand, we observe that the SI alsocontains the channel infor-

mation and can be utilized for channel estimation at the receivers. Before we discuss the

details of the SI-aided channel estimation schemes, we present the channel models in Sec-

tion 6.2.1 and Section 6.2.2. The discussion is based on a flatfading channel, which can

be generalized to orthogonal frequency division multiplexing (OFDM) transmission systems

straightforwardly. We only consider the channelHB and the receiver of stationB in the

following sections. The same discussions also apply toHA and the receiver of stationA.

6.2.1 Block-Fading Channel Model

The block-fading channel model has been introduced in [25] to model the slowly varying

fading in a low-mobility environment. This model is particularly relevant in wireless com-

munication situations involving slow time-frequency hopping (e.g., Global System for Mo-

bile Communications (GSM), Enhanced Data GSM Environment (EDGE)) or multicarrier

modulation systems using OFDM. In the block-fading channelmodel, the channel remains

constant for thecoherence intervalof L time slots, whereL ≥ NR. The channels in different

coherence intervals are independent. We denote the transmitted symbol vectors from the re-

lay during one coherence interval assR,1, · · · , sR,L ∈ CNR×1. We omit the time index of the

channel in the coherence interval and denote it asHB. The correspondingNB × L received

signal matrixYB = [yB,1, · · · ,yB,L] at stationB can be expressed as

YB = HBSR +NB (6.4)

= HBSB +HBSA +NB︸ ︷︷ ︸
V

(6.5)

whereSR = [sR,1, · · · , sR,L], SA = [sA,1, · · · , sA,L] andSB = [sB,1, · · · , sB,L] are theNR × L

transmitted symbol matrices, andNB = [nB,1, · · · ,nB,L] is theNB × L matrix of additive

noise. The received signals except the SI is denoted asV in (6.5).
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Fig. 6.3:Pilot-aided channel estimation in block-fading channel

The traditional way of estimating the block-fading channelis by transmitting pilot se-

quences as shown in Fig. 6.3. As the beginning of each coherence interval, the pilot se-

quences that occupyLp time slots are transmitted from the relay, whereLp ≥ NR. The pilot

sequence matrixP ∈ C
NR×Lp is known to the receivers. The corresponding received signal

matrix at StationB can be expressed as

Y
(p)
B = HBP+N

(p)
B (6.6)

The LS method estimates the channel matrixHB as

ĤB = Y
(p)
B P† (6.7)

whereP† = PH(PPH)−1 is the pseudoinverse ofP. Subject to the transmitting training

power constraint:

‖P‖2F = LpPR. (6.8)

It has been shown in [26] that the optimal training matrix satisfies the following equation

PPH =
LpPR

NR
INR . (6.9)

Therefore, any training matrix with orthogonal rows of the same normLpPR/NR is optimal

for the LS channel estimation.

The linear MMSE channel estimate of the channelHB based on the received signalY
(p)
B

can be expressed as

ĤB = Y
(p)
B (PHRHP+ σ2

BNBILp)
−1PHRH (6.10)

whereRH = E
(
HH

B HB

)
. The optimal training matrix for MMSE channel estimation de-

pends on the channel correlation matrixRH and its property has been characterized in [26].

However, when the channel is uncorrelated, i.e., whenRH is a scaled identity matrix, or-
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thogonal training matrices are optimal in minimizing the MSE of the channel estimation

error.

6.2.2 Time-Varying Channel Model

In mobile communications, the channel often changes fast due to Doppler effects. The chan-

nel gains in the time-varying channel model are assumed to change in each time slot but are

correlated with each other according to some statistical factors. We consider the transmis-

sion of a frame ofK symbol vectors:sR,1, · · · , sR,K ∈ CNR×1. TheK × NRK data matrix

SR is defined as

SR =




sTR,1 0T · · · 0T

0T sTR,2 · · · 0T

...
...

. . .
...

0T 0T · · · sTR,K




(6.11)

=




sTA,1 0T · · · 0T

0T sTA,2 · · · 0T

...
...

. . .
...

0T 0T · · · sTA,K




+




sTB,1 0T · · · 0T

0T sTB,2 · · · 0T

...
...

. ..
...

0T 0T · · · sTB,K




(6.12)

= SA + SB. (6.13)

where0 represents anNR × 1 all-zero vector. We respectively denote the received signal

matrix and the noise matrix at stationB asYB = [yB,1, · · · ,yB,K ]
T ∈ CK×NB andN B =

[nB,1, · · · ,nB,K ]
T ∈ CK×NB. Furthermore, we stack the channel matrices in thoseK time

slots and defineHB = [HB,1, · · · ,HB,K ]
T ∈ C

NRK×NB. Therefore, we can write the system

model as

YB = SRHB +N B (6.14)

= (SA + SB)HB +N B. (6.15)

Using pilot sequences to estimate the time-varying channelis shown in Fig. 6.4, where the

pilot sequences are placed with each other for a certain distance and the estimated channel

in those time slots are interpolated to get the estimate of the channel state information (CSI)

at the data positions [59].
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Fig. 6.4:Pilot-aided channel estimation in time-varying channel

6.3 SI-Aided Joint ML Channel Estimation and Data

Detection

In this section, we propose the SI-aided joint ML channel estimation and data detection

scheme that determines the channel and data symbols together. Such scheme assumes that

the receiver has noa priori knowledge about the channel. The channel estimates and the

detected data are obtained solely based on the received signals with the help of the known

data symbols contained in the SI. No pilots are transmitted,and this scheme exploits the

property that the transmitted symbols belong to finite alphabets.

6.3.1 Block-Fading Channel

Since the noise termNB in (6.5) is Gaussian, the probability density function (PDF) of the

received signalYB conditioned on the channelHB and the symbol matrixSA can be written

as [181]

p(YB | HB,SA) =
1

(πσ2
B)

NBL
exp

(
− 1

σ2
B

‖YB −HB(SA + SB)‖2F
)
. (6.16)

The ML estimation of the channelHB and the symbol matrixSA can be obtained by max-

imizing p(YB | HB,SA) over all possibleSA andHB jointly. That is, we want to find the

channel matrixHB and the symbol matrixSA that optimally solve the following minimization

problem

min
SA,HB

‖YB −HB(SA + SB)‖2F . (6.17)

SinceSA is the modulated transmit symbol matrix, it belongs to a finite discrete symbol space

depending on its modulation scheme and the coherence interval, while the channel matrix

HB is chosen by Nature and is without constraint. The problem (6.17) is a least squares

problem inHB and aninteger least-squaresproblem inSA +SB [33]. SinceHB andSA +SB
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are independent of each other, the problem (6.17) can be equivalently expressed as [8]

min
SA

{
min
HB

‖YB −HB(SA + SB)‖2F
}
. (6.18)

In order to solve the inner minimization, we reformulate theobjective function as

‖YB −HB(SA + SB)‖2F = ‖ vec [YB −HB(SA + SB)] ‖2 (6.19)

=
∥∥vec(YB)−

(
(SA + SB)

T ⊗ INB

)
vec(HB)

∥∥2 , (6.20)

For each possibleSA, the correspondinĝHB that minimizes (6.20) is given by

vec(ĤB) =
(
(SA + SB)

T ⊗ INB

)†
vec(YB). (6.21)

By enumerating all possibleSA and computing the value of the objective function in (6.18)

for eachSA and its correspondinĝHB obtained by (6.21), we can find the pair(ŜA, ĤB)

that jointly minimizes the objective function of (6.18). Since each entry ofSA usesMA-ary

QAM or PSK modulation, the joint ML detector must search through all MNRL
A possible

SA candidates, which grows exponentially with the coherence intervalL. In addition, each

calculation of (6.21) involves matrix manipulation of sizeNBL×NBNR. The computational

complexity may be prohibitive whenL is large.

6.3.1.1 Unique Identifiability

Compared to semi-blind estimation schemes, the proposed scheme does not transmit pilots

but utilizes the SI in the received signal. In traditional blind channel estimation schemes,

the channel and the transmitted data symbols cannot be uniquely identified for conventional

modulation schemes [11, 29], and some pilots are still required to be transmitted in order to

uniquely determine the channel. For example, suppose onlySA is transmitted at the relay

and each element of it is modulated using BPSK modulation. For its corresponding channel

estimateĤB, both(SA, ĤB) and(−SA,−ĤB) are possible candidate pairs. This is because

ĤBSA = (−ĤB)(−SA) (6.22)

and they produce the same value for the log-likelihood function ‖YB − ĤBSA‖2F . This am-

biguity problem cannot be solved unless additional knowledge is available. Unlike those

schemes, the known symbolSB contained in the SI implicitly helps to resolve the ambigu-

ity problem, because the known data symbolSB in our proposed scheme offers the phase
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reference for the data symbols to be detected. Moreover, we have the following lemma:

Lemma 6.3.1.The data symbol matrixSA and the corresponding channelHB are uniquely

identifiable unless there exists an invertible matrixP ∈ CNR×NR and another data symbol

matrix candidatĕSA such thatP(SA + SB) = S̆A + SB, i.e.,(P− INR)SB +PSA = S̆A.

In some special cases, e.g., all the entries ofSA contain the same data symbol and so do

all the entries ofSB, the data symbol matrixSA is not uniquely identifiable. However, due to

interleaving, the probability that such cases happen is very low when the coherence time is

long enough.

6.3.1.2 Cramér-Rao Lower Bound for Joint Channel and Data Symbol Estimation

With SI

We denotes = vec(SA) andh = vec(HB). Furthermore, we defineθ = [sT ,hT ]T as the

complex random parameter vector to be estimated. The Cramér-Rao lower bound on the

channel estimate MSE for unbiased estimators that jointly estimate the channel and data

symbols according to the system model (6.5) is summarized bythe following lemma:

Lemma 6.3.2.Without loss of generality, we assume the channel to be uncorrelated Rayleigh

fading, i.e., each entry ofHB is an independent and identically distributed (i.i.d.)CN (0, 1)

random variable. For any unbiased joint channel and data symbol estimator with the channel

outputĥ, we have

E
(
‖h− ĥ‖2

)

NBNR
≥
(
1 +

PRL

NRσ
2
B

)−1

. (6.23)

Proof. See Appendix 6.8.1.

6.3.2 Time-Varying Channel

Following the same discussions on the block-fading channel, we can derive the joint ML

channel estimation and data detection schemes for the time-varying channel. According

to (6.15), the ML estimation of the channelHB and the transmitted symbolSA can be ob-

tained by solving the following problem

min
SA,HB

‖YB − (SA + SB)HB‖2F . (6.24)
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The objective function of (6.24) can be written as

‖YB − SRHB‖2F = ‖ vec(YB)− (INB ⊗ (SA + SB)) vec(HB)‖2. (6.25)

The difference in the expression (6.25) and (6.20) is due to the different system modeling

in (6.14) and (6.4). Furthermore, the size of matrixINB ⊗ (SA + SB) in (6.25) isNBK ×
NBNRK. SinceNBK < NBNRK, there are multiple solutions ofHB that minimizes (6.25)

for each givenSA. However, any of those solutions for the givenSA produces the same value

for the objective function in (6.24). So we only need to test the following solution

vec(ĤB) = (INB ⊗ (SA + SB))
† vec(YB). (6.26)

By enumerating all possibleSA, we can determine data symbol matrixSA that solves (6.24).

The number ofSA candidates isMNRK
A , which grows exponentially with the frame length

K.

6.4 SI-Aided Linear Channel Estimator

If the coherence intervalL or the frame lengthK is large, the computational complexity of

the SI-aided joint ML detector proposed in Section 6.3 is prohibitive. In reality, practical

receiver structures usually separate channel estimation and data detection. The most com-

monly used method to obtain channel knowledge is by transmitting pilots, which is called

pilot-aided channel estimation. However, pilots consume system resources. In this section,

we propose the SI-aided linear channel estimator that exploits SI for channel estimation with-

out using pilots. Moreover, we provide its performance analysis, and compare it with that

of the pilot-aided channel estimator. Taking into account the SI-aided channel estimation

errors, we also propose an optimized power allocation of thedata symbols at the relay to

provide fairness for the different receiving stations in the BRC phase.

6.4.1 SI-Aided Linear Channel Estimation Algorithm

Linear channel estimation is widely adopted due to its simplicity. The least square (LS)

and the linear minimum mean square error (LMMSE) algorithmsare the two most com-

monly used linear channel estimation algorithms [26]. We only discuss the LMMSE channel

estimation algorithm due to its better performance. For block-fading channels, the linear
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estimate of the channel based on the received signal matrixYB in (6.5) can be obtained as

HB,lin = YBW (6.27)

whereW ∈ CL×NR. The LMMSE channel estimator is the optimal linear estimator that

minimizes the following objective functionJmse [129]:

Jmse = E
(
‖HB −YBW‖2F

)

= tr(RH)− tr(RHSBW)− tr(WHSH
B RH)

+ tr
(
WH(SH

B RHSB +RHSA + σ2
BNBIL)W

)
(6.28)

whereRH = E
(
HH

B HB

)
andRHSA = E

(
SH

A HH
B HBSA

)
. Here we utilized the fact that

SA andNB are independent with the channelHB and both have zero-mean. For spatially

correlated channels,RH andRHSA contain the channel correlation information.

The optimum solution that minimizesJmse is W⋆ = argminW Jmse, and it can be calcu-

lated by setting∂Jmse/∂W = 0. The solution can be explicitly expressed as

W⋆ =
(
SH

B RHSB +RHSA + σ2
BNBIL

)−1
SH

B RH. (6.29)

For notational coherence with following sections, the LMMSE channel estimate is denoted

as

Ĥ
(1)
B = YB

(
SH

B RHSB +RHSA + σ2
BNBIL

)−1
SH

B RH. (6.30)

The LMMSE channel estimator only utilizes the first and second order statistical knowledge

of the channel, where in (6.30) the second-order statistical information ofHB andHBSA is

contained inRH andRHSA , respectively.

Similarly, the SI-aided LMMSE channel estimate in time-varying channel (6.15) is ob-

tained as

Ĥ
(1)

B = RHSH
B

(
SBRHSH

B +RSAH + σ2
BNBIK

)−1
YB (6.31)

whereRH = E
(
HBH

H
B

)
andRSAH = E

(
SAHBH

H
B SH

A

)
.

6.4.2 MSE of the Channel Estimate

The MSE is a key performance measure of channel estimates. Due to space constraints, we

only discuss the MSE for block-fading channels here. We assume each element ofHB to be

an i.i.d.CN (0, 1) random variable, and defineΦHB = E
(
(vecHB)(vecHB)

H
)
= INR ⊗ INB .
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The LMMSE channel estimation error is̃HB = HB − Ĥ
(1)
B , and the error covariance matrix

is defined asΦH̃B
= E

(
(vec H̃B)(vec H̃B)

H
)

. The MSE of the estimated channel isσ2
H̃B

=

tr(ΦH̃B
)/(NRNB).

The covariance matrixΦH̃B
can be calculated according to [129] as

ΦH̃B
= ESB,HB

(
(vec H̃B)(vec H̃B)

H
)

(6.32)

= ESB

((
Φ−1

HB
+ (SB ⊗ INB)Φ

−1
V (SH

B ⊗ INB)
)−1
)

(6.33)

= ESB

((
INR +

1

PA + σ2
B

SBS
H
B

)−1
)

⊗ INB . (6.34)

In (6.32), we emphasize that the expectation is taken with respect to the distribution ofSB

andHB. Since they are independent, we can first take expectations with respect toHB and

obtain (6.33). To obtain (6.34), we usedΦV = E
(
(vecV)(vecV)H

)
= E

(
ST

AS
∗
A

)
⊗ INB +

E
(
(vecNB)(vecNB)

H
)
= (PA + σ2

B)IL ⊗ INB according to (6.5). In general, the covariance

matrix ΦH̃B
depends on the distribution ofSB, and therefore depends on the modulation

schemes. However, due to interleaving, each entry ofSB is i.i.d. and has powerPB/NR.

According to the law of large numbers [181], we have

lim
L→∞

1

L
SBS

H
B =

PB

NR
INR. (6.35)

That is, when the coherence intervalL is large enough, the covariance matrixΦH̃B
is

ΦH̃B

L→∞
=

(
INR +

PBL

NR(PA + σ2
B)
INR

)−1

⊗INB =

(
1 +

PBL

NR(PA + σ2
B)

)−1

INR⊗INB . (6.36)

So the MSE of the channel estimates can be expressed as

σ2
H̃B

=

(
1 +

PBL

NR(PA + σ2
B)

)−1

. (6.37)

Simulations in Section 6.6.1 show that the value ofL does not have to be very large in order

to satisfy (6.37). For realistic modulation schemes and practical values ofL, equation (6.37)

matches well with the simulated MSE of the SI-aided LMMSE channel estimates.
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6.4.3 Comparison With Pure Pilot-Aided Channel Estimation

Suppose the length of the pilot sequence isLp in each coherence interval, the MSE of the

pure pilot-aided channel estimates using the LMMSE algorithm can be expressed as [26]

σ2
p =

(
1 +

PRLp

NRσ
2
B

)−1

. (6.38)

The MSE of the SI-aided LMMSE channel estimates in (6.37) is smaller than that of the

pilot-aided channel estimates whenσ2
H̃B

< σ2
p. That is, when

Lp <
PBL

PR(PA/σ2
B + 1)

. (6.39)

Interestingly, the condition (6.39) does not depend on the number of antennasNR andNB,

and only depends on the power allocation and coherence interval L. Moreover, ifL is long

enough, the SI-aided channel estimate will eventually outperform the pure pilot-aided chan-

nel estimates.

6.4.4 Applications to Optimized Power Allocation at Relay

When the SI-aided channel estimation is applied, the power allocationPA andPB at the relay

determines the decoding performance at stationsA andB simultaneously. In order to find

the power allocation that optimizes the decoding performance, we need to first calculate the

effective SNRs at the receivers after SI cancelation.

After removing the SI from the received signal matrix, the remaining signal to be decoded

can be expressed as

ȳB = yB − Ĥ
(1)
B sB = Ĥ

(1)
B sA + H̃BsB + H̃BsA + nB︸ ︷︷ ︸

n

. (6.40)

Equation (6.40) describes a system with a known channelĤ
(1)
B and noisen. SinceĤ(1)

B is

the LMMSE estimation of the channelHB, the channel estimation error̃HB has zero-mean

entries and is uncorrelated witĥH(1)
B . According to the orthogonality principle [129], the

variance of each entry in̂H(1)
B is σ2

Ĥ
(1)
B

= σ2
HB

− σ2
H̃B

, whereσ2
HB

= 1 is the variance of each
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entry inHB. The variance of the noise termn in (6.40) can be calculated as

σ2
n =

1

NB
tr E

(
nnH

)
(6.41)

≈ 1

NB
tr
(
E
(
H̃H

B H̃B

)
E
(
sBs

H
B

))
+

1

NB
tr
(
E
(
H̃H

B H̃B

)
E
(
sAs

H
A

))
+ σ2

B (6.42)

= (PB + PA)σ
2
H̃B

+ σ2
B (6.43)

whereσ2
H̃B

in (6.43) can be calculated according to (6.37). Here we usedthe fact that the

entries insB and sA are uncorrelated. The approximation in (6.42) is becausesB and sA

contribute to the channel estimate. However, the correlation betweeñHB andsB (andsA) is

very small whenL is large, so we neglect the approximation errors and treat (6.43) as the

accurate value ofσ2
n in the following derivations of theapproximateeffective SNR.

Treatingn as Gaussian noise in (6.40), the effective SNR at stationB can be calculated as

SNRB,eff =
σ2

Ĥ
(1)
B

PA

σ2
n

=
(1− σ2

H̃B
)PA

(PB + PA)σ2
H̃B

+ σ2
B

. (6.44)

Similarly, the effective SNR at stationA can be expressed as

SNRA,eff =
(1− σ2

H̃A
)PB

(PB + PA)σ2
H̃A

+ σ2
A

. (6.45)

Since the performance at stationsA andB is equally important to us, we choosefairnessas

the optimization criterion, i.e., we findPA andPB that maximize the minimum of the bit-error

rate (BER) performance stationsA andB:

maximize min(BERA, BERB)

subject to PB + PA = PR

(6.46)

The BER performance is a monotonically decreasing functionof the effective SNR, i.e.,

BERA = QA(SNRA,eff) andBERB = QB(SNRB,eff). This problem cannot be solved analyti-

cally due to the functionmin in (6.46). However, if the analytical expressions ofQA(·) and

QB(·) are known, numerical methods, such as bisection method [33], can be applied to solve

this problem since there is actually only one variable in theoptimization problem (6.46).

When the same modulation and coding schemes are applied to stationsA andB, we have

QA(·) = QB(·), and optimizing BER performance is equivalent to optimizing the effective

SNR. The optimization problem (6.46) cna be further simplified to finding the power alloca-

174



6.5 SI-Aided Iterative Receiver for Channel Estimation andData Detection

Fig. 6.5: Iterative receiver structure for channel estimation and data detection at stationB.

tionPA andPB that maximize the minimum of the effective SNRs of stationsA andB:

maximize min(SNRB,eff , SNRA,eff)

subject to PB + PA = PR

(6.47)

Similarly, the bisection method can be applied to solve the problem (6.47).

6.5 SI-Aided Iterative Receiver for Channel Estimation and

Data Detection

In order to approach the capacity of the MIMO channel, channel coding is an integral part of

MIMO transmission systems. Joint data detection and channel decoding is computationally

infeasible and has to be approximated by separate iterativeMIMO symbol demapping and

channel decoding [107]. When channel estimation is considered, a channel estimator must

be included in the receiver structure, which, together withthe MIMO demapper, forms the

“inner decoder” of the receiver. When pilot-aided channel estimation is applied, the channel

estimator generates the channel estimates based on the pilot symbols and the feedback from

the channel decoder, and pass it on to the MIMO demapper [31].Although an optimum

receiver design requires joint channel estimation and datademapping [225], the complex-
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ity of such method is very high. Compared to the separate and iterative channel estimation

scheme, the joint channel estimation and data demapping scheme achieves almost the same

performance unless the Doppler shift is very large [196]. Such a structure that separates

channel estimation and data detection is one of the most widely used practical receiver struc-

tures [228]. Moreover, when the initial channel estimate isalready available, the subsequent

iterations of channel estimation and decoding is optional depending on the performance re-

quirements at the receiver.

Similar to the pilot-aided iterative receiver structure, we can propose the SI-aided itera-

tive receiver structure. The SI-aided iterative receiver structure for channel estimation and

data detection obtains the initial channel knowledge with the assistance of the known data

symbols in SI and subsequently improves the channel estimates by the decoded data. The

SI-aided channel estimate obtained in Section 6.4 can be further improved utilizing the data

symbol estimates fed back from the decoder. This leads to theiterative receiver structure

where the SI-aided linear channel estimate serves as the initial channel estimate. The iter-

ative receiver is composed of the channel estimator, the MIMO symbol demapper and the

channel decoder. Such decomposition enables the receiver to achieve near-optimum per-

formance [196] while allowing low-complexity implementation of each component. Corre-

sponding to the transmitter structure in Fig. 6.2, the blockdiagram for the iterative receiver

structure at stationB is shown in Fig. 6.5. Compared to conventional iterative receivers with

pilot-aided channel estimation, only minor modification isneeded, except for the channel

estimator, to construct the SI-aided iterative receivers.In particular, the impact of the SI has

to be canceled by the MIMO demapper in the process of demapping. We consider a coded

system with convolutional codes. Other channel codes can also be applied straightforwardly.

In this section, we discuss each component of the iterative receiver in detail, and summarize

the working process of the receiver in the end.

6.5.1 Channel Estimator

Since the initial SI-aided LMMSE channel estimation and itsperformance have been dis-

cussed in Section 6.4, we only discuss the decision-directed channel estimation in subse-

quent iterations. After the first iteration of decoding, thechannel decoder feeds back the soft

information that represents the reliability for each codedbit. Taking into account the soft

feedback, the unknown data symbols can be reconstructed. Following similar discussions

as in Section 6.4.1, the block-fading channel in (6.5) can bere-estimated in thelth iteration
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(l ≥ 2) as:

Ĥ
(l)
B = YB

(
E
(
SH

R RHSR

)
+ σ2

BNBIL
)−1

E
(
SH

R

)
RH. (6.48)

Suppose each elementsA of SA is modulated within theMA-ary modulation constella-

tion set {S1, · · · , SMA}, we defineE(sA) =
∑MA

m=1 SmP (sA = Sm) and E(|sA|2) =
∑MA

m=1 |Sm|2P (sA = Sm). The a priori symbol probabilityP (sA = Sm) is based on the

feedback from the channel decoder. For matrices in (6.48),E(·) can be calculated element-

wise. Moreover,E(SR) = E(SA) + SB, and

E
(
SH

R RHSR

)
= E

(
(SA + SB)

H
RH (SA + SB)

)
(6.49)

= SH
B RHSB + E

(
SH

A RHSA

)
+ SH

B RHE(SA) + E(SH
A )RHSB. (6.50)

We denote[X]ij as the entry in theith row andjth column of the matrixX, and[X]i is the

ith column of the matrixX. Then we have

[
E
(
SH

A RHSA

)]
ij
=




NBE (

∑
k |[SA]ki|2) , for i = j,

E([SA]
H
i )RHE([SA]j), for i 6= j,

(6.51)

where we utilized the fact that the transmitted symbols at different time slots are independent.

Similarly, for the time-varying channel, we can obtain thelth iteration channel estimate as

Ĥ
(l)

B = RHE(SH
R )
(
E(SRRHSH

R ) + σ2
BNBIK

)−1
YB (6.52)

wherel ≥ 2, and the termE(SRRHSH
R ) can be calculated as follows:

E
(
SH

R RHSR

)
= SH

B RHSB + E
(
SH

A RHSA

)
+ SH

B RHE(SA) + E(SH
A )RHSB. (6.53)

The entry in theith row and thejth column of the termE
(
SH

A RHSA

)
can be calculated as

[
E
(
SH

A RHSA

)]
ij
=




E (
∑

k |[SA]ki|2) , for i = j,

E([SA]
H
i )RHE([SA]j), for i 6= j.

(6.54)

6.5.2 SI-Aware MIMO Demapper

In the lth iteration demapping (l ≥ 1), the soft-output MIMO demapper accepts the channel

estimatêH(l)
B,k from the channel estimator and generates the log-likelihood ratio (LLR) values

for each coded bits upon receivingyB,k according to (6.3). For simplicity, we omit the time
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indices and only discuss the optimum maximuma posterioriprobability (MAP) demapper

in detail.

Since each entry of the symbol vectorsA is modulated using2mA-ary QAM or PSK modu-

lation schemes, the whole symbol vectorsA can be considered as being modulated from the

mANR coded bitscA,1, · · · , cA,mANR . For eachcA,i of themANR coded bits associated with

the received signalyB, the soft-output MAP demapper computes thea posterioriLLR value

λp(cA,i) as the output, which can be expressed as

λp(cA,i) = ln
p(cA,i = 1|yB)

p(cA,i = 0|yB)
= ln

∑
sA∈C1

i
f(yB|sA)

∏mANR

j=1 P (cA,j = cj(sA))
∑

sA∈C0
i
f(yB|sA)

∏mANR

j=1 P (cA,j = cj(sA))
(6.55)

whereC1
i andC0

i represent the set of transmit symbol vectors whoseith bit labeling is 1 and

0, respectively. The functioncj(sA) denotes thejth bit associated with the labeling ofsA.

Furthermore,

ln f(yB|sA) = −‖yB − Ĥ
(l)
B (sA + sB)‖2
σ2
n

. (6.56)

In the calculations of (6.56),̂H(l)
B is thelth iteration channel estimate from the channel es-

timator. In themismatched detection, the MIMO demapper assumes the channel estimate

to be perfect andσ2
n = σ2

B. When channel estimation errors are considered, they can be

treated as additional noise. Following the same derivations as (6.43), the equivalent noise

varianceσ2
n can be calculated asσ2

n = (PB + PA)σ
2
H̃B

+ σ2
B, whereσ2

H̃B
is given by (6.37)

in the initial SI-aided LMMSE channel estimation; in the subsequent iterations, we have

σ2
H̃B

≈ (1 + (PA + PB)L/(NRσ
2
B))

−1. The probability terms in (6.55) represent thea priori

probability and is calculated according to the channel decoder feedback{λa(cA)} as

P (cA,j = cj(sA)) =
exp(cj(sA)λa(cA,j))

1 + exp(λa(cA,j))
. (6.57)

The detailed calculations of thea posterioriLLR valueλp(cA,i) can be found in [107].

6.5.3 Convolutional Decoder

The soft-input soft-output channel decoder for convolutional codes is realized using the

BCJR algorithm [14]. In every iteration, based on the outputof the MIMO demapper, the

channel decoder computes thea posterioriLLR values for each information bit and coded

bit. Soft information on coded bits is fed back to the MIMO symbol demapper and the chan-

nel estimator. In order to avoid error propagation, thea priori information at the input of
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the channel decoder is subtracted from the output, and only theextrinsicinformation is fed

back. In the final iteration, the decoder outputs the hard decisions on the information bits.

The overall workflow of the receiver is summarized in Algorithm 6.

Algorithm 6 Workflow of SI-aided iterative receiver

Initialize: 1. ObtainH(1)
B from (6.30) for block-fading channel or from (6.31) for time-

varying channel.
2. Set{λa(cA)} = {0} andl = 0.

repeat
Updatel = l + 1.
In thelth iteration (l ≥ 1):
1. The MIMO demapper calculates{λp(cA)} from (6.55) usingH(l)

B .
2. Calculate{λe(cA)} = {λp(cA)− λa(cA)}, deinterleave it and obtain{λa(dA)}.
3. Feed{λa(dA)} to the channel decoder.
4. The channel decoder computesλp(dA) using the BCJR algorithm [14].
5. Calculate{λe(dA)} = {λp(dA)− λa(dA)}, interleave it and obtain{λa(cA)}.
6. Feed{λa(cA)} to the MIMO demapper and the channel estimator.
7. The channel estimator calculatesH(l+1)

B from (6.48) for block-fading channel or
from (6.52) for time-varying channel.

until BER(l) − BER(l−1) ≤ ǫ, or maximum number of iteration is reached.

6.6 Simulation Results

In this section, we show the performance of the proposed SI aided channel estimation

schemes in the BRC phase of two-way DF relaying systems. In particular, we compare

it with the conventional pilot-aided channel estimation scheme.

6.6.1 MSE Performance in Block-Fading Channel

Fig. 6.6 shows the MSE performance of channel estimation at stationB in the BRC phase,

whereNA = NB = NR = 2 andPA = PB = PR/2. Every entry ofHB is an i.i.d.CN (0, 1)

random variable, and the system is uncoded. When pilot-aided channel estimation scheme

is applied, orthogonal pilot sequences of lengthNR obtained from the columns of Hadamard

matrices are transmitted at each transmit antenna of the relay, which corresponds to the min-

imum length pilot sequences [26]. In addition, we consider agenie-aidedcase, where we

assume the genie at the receiver of stationB knowsSR perfectly and calculates the channel es-

timate according tôHB = YB(S
H
R RHSR + σ2

BNBIL)
−1SH

R RH. The MSE of this genie-aided
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channel estimation serves as a lower bound for the decision-directed channel estimation in

Section 6.5.1.

Fig. 6.6(a) shows how the MSE changes withPR/σ
2
B whenL = 10. Each entry insA

and sB uses 4QAM Gray modulation. The “lin. SI-aided” channel estimate corresponds

to the channel obtained from (6.30), and the “ML SI-aided” channel estimate denotes the

channel estimate obtained from the joint ML channel estimation and data detection scheme

in Section 6.3.1. Compared with the pilot-aided scheme, theSI-aided linear channel esti-

mate has lower MSE whenPR/σ
2
B ≤ 4dB, but its MSE does not decrease further asPR/σ

2
B

increases because the estimation error is mainly due to the unknown data in the received

signal. The ML SI-aided channel estimate outperforms the pure pilot-aided channel estimate

whenPR/σ
2
B ≥ 3dB. It approaches the genie-aided channel estimate and the Cramér-Rao

lower bound whenPR/σ
2
B ≥ 15dB.

Fig. 6.6(b) shows how the MSE of the SI-aided linear channel estimation changes withL

whenPR/σ
2
B = 10dB. BPSK, 4QAM and 16QAM with Gray mapping are applied on the

entries ofsA andsB. For L ≥ 16, the simulated SI-aided linear channel estimation MSE

fits quite well with the theoretical MSE (6.37). This shows itis reasonable to calculate

the SI-aided linear channel estimation MSE according to (6.37) whenL is not too short.

Furthermore, we observe that the SI-aided linear channel estimate outperforms the pilot-

aided channel estimate whenL > 24 in Fig. 6.6(b). This confirms our theoretical calculation

in (6.39), which simplifies toL > Lp(PR/σ
2
B +2) = 24 whenPB = PA = PR/2 andLp = 2.

6.6.2 SI-Aided Iterative Channel Estimation in Block-Fadi ng Channel

Fig. 6.7 shows the BER and MSE performance of the iterative receiver discussed in Sec-

tion 6.5. We consider a MIMO-OFDM system with 64 subcarriers, where 50 subcarriers

in each OFDM symbol transmit data and pilots. Each subcarrier corresponds to an i.i.d.

Rayleigh fading channel, where the channel remains constant for L = 32 time slots. The

transmitted bits are encoded by a rate 1/2 convolutional encoder with constraint length of 9

and a generator(561, 753)8 in octal representation. The codeword length is 6400. The con-

volutional code is taken from the Universal Mobile Telecommunications System (UMTS)

standard [62], and the coded bits are modulated to 4QAM symbols with Gray mapping. The

parameters for the convolutional code and the OFDM system are summarized in Table 6.1;

The length of the pilot sequences applied at each subcarrierin each coherence interval

is NR. This wastes2/32 = 6.25% of the bandwidth. Longer pilot sequences can obtain

better estimates of the channel, but at the price of more system resources. In order to make
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Fig. 6.7:Pilot-aided and SI-aided iterative channel estimation at station B in block-fading
channel under the same average power constraint and transmitting the same amount
of data symbols. Coherence intervalL = 32 time slots,NA = NR = NB = 2 and
PA = PB = PR/2. The length of pilot sequences isNR.
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Table 6.1:Simulation Parameters
convolutional coding rate 1/2

convolutional encoder constraint length 9 bits
convolutional code generator polynomial(561, 753)8

interleaver type random
codeword length 6400

number of subcarriers 64
payload (including pilots) subcarriers 50

modulation scheme 4QAM

fair comparisons between the SI-aided and the pilot-aided cases, simulations are performed

under the same average transmit power constraint and transmitting the same amount of data

similar to [147]. Fig. 6.7(a) shows that the BER performanceof the SI-aided scheme is

better than that of the pilot-aided scheme whenPR/σ
2
B < 11dB in the first iteration, and

outperforms that of the pilot-aided scheme in the considered BER range in the sixth iteration.

WhenBER = 10−5, the SI-aided scheme is 0.6dB better than the pilot-aided scheme and its

gap to the perfect channel state information (CSI) case is only about 0.2dB. Fig. 6.7(b) shows

the MSE performance of the SI-aided and the pilot-aided iterative channel estimation. We

observe that the SI-aided channel estimates have lower MSE than the pilot-aided estimates

whenPR/σ
2
B < 11dB in the first iteration. WhenPR/σ

2
B > 7dB, the SI-aided channel

estimates approach the genie-aided estimates in the sixth iteration, which shows the decoding

errors do not severely affect channel estimation then. The pilot-aided scheme approaches the

genie-aided estimates in the sixth iteration only whenPR/σ
2
B > 8dB.

6.6.3 Power Allocation in BRC Phase

Fig. 6.8 shows the optimized power allocation ofPA/PR in the BRC phase of two-way DF re-

laying systems when the SI-aided channel estimation schemeis applied. HerePR = 10mW

andPR/σ
2
A = 8dB. The power allocation ofPA is obtained by solving (6.47). Fig. 6.8(a)

shows the power allocation ofPA whenL = 32. The figure shows that the optimized

fraction PA/PR decreases withPR/σ
2
B whenPR/σ

2
B < 9dB, and remains constant when

PR/σ
2
B > 9dB. This is because the SI-aided linear channel estimate is not sensitive toPR/σ

2
B

as shown in Fig. 6.6(a). When the link to stationB is weak, allocating more power toPA

is more effective to improveSNRB,eff . However, whenPR/σ
2
B andPR/σ

2
A are comparable,

power allocation should be chosen by considering both the data power and the accuracy

of channel estimate. In the symmetric scenario thatPR/σ
2
B = 8dB, the power allocation
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Fig. 6.9:Comparison of channel estimation MSE at stationB. Time-varying channel.NR =
NB = 2 andPA = PB = PR/2. fDTs = 0.005. PR/σ

2
B = 8dB. Distance between

neighboring pilots is 15 time slots. Each pilot sequence haslengthNR.

PA/PR = 0.5. The corresponding BER performance is shown in Fig. 6.8(b).Since we want

to guarantee fairness between the two receivers,max(BERA,BERB) is compared between

the equal power allocation case and the optimized power allocation case, and the optimized

power allocation has lowermax(BERA,BERB) in each iteration. This verifies our assump-

tion that by optimizing the effective SNR the correspondingBER performance can also be

optimized.

6.6.4 SI-Aided Channel Estimation in Time-Varying Channel

In the simulations for time-varying channel, we assume the channel is Rayleigh fading and

follow Jakes’ two dimensional isotropic scattering model [116]. hn1,m1,k1 denotes the chan-

nel coefficient between them1th transmit antenna and then1th receive antenna at thek1th

time slot. The transmit and receive antennas are assumed to be spaced sufficiently far apart

and the channel is uncorrelated across antennas. The channel gain temporal autocorrelation

function is

E(hn1,m1,k1h
∗
n2,m2,k2) = δn1,n2δm1,m2J0(2πfDTs(k1 − k2)) (6.58)

whereδn1,n2 = 1 if n1 = n2, andδn1,n2 = 0 otherwise.J0 is the zeroth-order Bessel function

of the first kind.fD is the maximum Doppler shift andTs is the symbol duration. The channel
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PR/σ

2
B = 8dB, and frame lengthK = 128 time slots. Pilot sequences are placed

every 16 time slots, and each pilot sequence has lengthNR.

gain temporal autocorrelation function depends onfDTs, which is determined by the relative

velocity between the transmitter and receiver.

Fig. 6.9 compares the MSE of the SI-aided and the pilot-aidedchannel estimation at station

B in a time-varying channel withfDTs = 0.005. In such a system,PR/σ
2
B = 8dB and

the distance between neighboring pilots is 15 time slots if pilot-aided channel estimation is

applied. Each pilot has lengthNR = 2. Therefore, about2/15 = 13.3% of the bandwidth

is wasted for transmitting pilots. An interesting observation is that the MSE of the SI-aided

linear channel estimate decreases with the increase of frame lengthK. WhenK = 35, the

initial SI-aided channel estimation outperforms the pilot-aided channel estimation in terms

of MSE. Unlike the coherence interval in block-fading channel that is determined by the

physical channel itself, the observation frame lengthK can be chosen by the receiver. In

order to obtain better SI-aided channel estimates, largerK can be chosen. The price to pay

is the higher computational complexity for channel estimation.

In Fig. 6.10, we show the BER performance vs.fDTs in a system withPR/σ
2
B = 8dB and

K = 128 time slots. The parameters for the OFDM system and coding have already been

stated in Section 6.6.2. In the pilot-aided channel estimation scheme, pilots are placed every
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16 or 17 time slots of each frame in each subcarrier. This corresponds to the optimum pilot

symbol spacing for the time-varying channel withfDTs = 0.005 in the turbo-coded system

of [233]. The pilots altogether occupy 18 time slots in each subcarrier, which corresponds

to 18/128 = 14% of the bandwidth. At the sixth iteration, the SI-aided scheme shows much

better BER performance compared to the pilot-aided scheme in Fig. 6.10. For example, when

fDTs = 0.005, the pilot-aided case achieves BER of2.8×10−5 and the BER for the SI-aided

case is only3.4 × 10−6. For both schemes, the BER performance degrades whenfDTs is

high because the pilots or SI is not sufficient to track the channel changes then. However,

due to the error-correcting capacities of channel coding and the decision-directed channel

estimation, there is no severe BER performance degradationin the sixth iteration.

6.7 Chapter Summary and Conclusions

We proposed two novel SI-aided channel estimation schemes for the BRC phase of the two-

way DF relaying protocol. The channel estimates of the proposed schemes are obtained by

exploiting the known data symbols in the SI that are inherentin the considered two-way

DF relaying scenario. No pilot sequences are required to be transmitted from the relay, so

the bandwidth efficiency is further improved. To the best of our knowledge, this is the first

scheme thatutilizesSI for channel estimation instead of simply canceling it out.

Besides proposing the ideas of exploiting SI to estimate thechannel, we provided the

whole SI-aided iterative receiver structure. The performance analysis and simulation results

showed that when the coherence interval in block-fading channels or the observation frame

length in time-varying channels is long enough, the SI-aided channel estimation can eventu-

ally outperform the pilot-aided channel estimation in manyrealistic scenarios. Our proposed

scheme is particularly suitable for systems with large number of antennas and subcarriers or

with high mobility stations, where the resource consumed byconventional pilot-aided chan-

nel estimation had been considered as a big hindrance for thepractical implementation of

the system.

6.8 Appendices

6.8.1 Proof of the Cramér-Rao Bound

Since the diagonal elements of the inverse of the Fisher information matrix (FIM) corre-

sponds to the Cramér-Rao bounds of the parameters we wish to estimate, we first calculate
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the FIM. We denotẽs = vec(SB) andy = vec(YB). The derivation follows that in [246].

Under the regularity conditions [129], the FIMJ is defined as

J = E

{
∂ ln p(y, θ)

∂θ∗

(
∂ ln p(y, θ)

∂θ∗

)H
}

(6.59)

where the expectation is taken overp(y, θ, s̃). The Fisher information matrixJ can be

written as

J = E

{
∂ ln p(y | θ)

∂θ∗

(
∂ ln p(y | θ)

∂θ∗

)H
}

+ E

{
∂p(θ)

∂θ∗

(
∂p(θ)

∂θ∗

)H
}
. (6.60)

According to (6.16), the log-likelihood function can be written as

ln p(y | θ) = Const− σ−2
B ‖y− (IL ⊗HB)(s+ s̃)‖2 (6.61)

= Const− σ−2
B

∥∥y−
(
(SA + SB)

T ⊗ INB

)
h
∥∥2 . (6.62)

J can be calculated by taking partial derivatives ofln p(y | θ) with respect tos andh

according to (6.61) and (6.62), respectively.

∂ ln p(y | θ)
∂s∗

= −σ−2
B (IL ⊗HB)

H (y − (IL ⊗HB)(s+ s̃)) (6.63)

∂ ln p(y | θ)
∂h∗ = −σ−2

B

(
(SA + SB)

T ⊗ INB

)H (
y−

(
(SA + SB)

T ⊗ INB

)
h
)
. (6.64)

Therefore,

E

{
∂ ln p(y | θ)

∂s∗

(
∂ ln p(y | θ)

∂s∗

)H
}

= E
{
σ−2

B (IL ⊗HB)
H(IL ⊗HB)

}

=
NB

σ2
B

INRL, (6.65)

E

{
∂ ln p(y | θ)

∂h∗

(
∂ ln p(y | θ)

∂h∗

)H
}

= E
{
σ−2

B

(
(SA + SB)

T ⊗ INB

)H (
(SA + SB)

T ⊗ INB

)}

=
PRL

NRσ2
B

INRNB, (6.66)

E

{
∂ ln p(y | θ)

∂s∗

(
∂ ln p(y | θ)

∂h∗

)H
}

= E
{
σ−2

B (IL ⊗HB)
H
(
(SA + SB)

T ⊗ INB

)}

= 0NRL×NRNB . (6.67)

188



6.8 Appendices

In (6.67), we utilized the fact that each entry ofHB and(SA + SB) are independent. Fur-

thermore, according to the independence ofs andh, we havep(θ) = p(s)p(h). Since

each entry ofs is modulated using QAM or PSK modulation with equal probability and

each entry ofHB is an i.i.d. CN (0, 1) random variable, we havep(s) = Const and

ln p(h) = Const− hHh. So we obtain

E

{
∂p(θ)

∂θ∗

(
∂p(θ)

∂θ∗

)H
}

=

(
0NRL×NRL 0NRL×NRNB

0NRNB×NRL E(hhH)

)
=

(
0NRL×NRL 0NRL×NRNB

0NRNB×NRL INRNB

)
.

(6.68)

So the FIM can be written as

J =

(
J1,1 J1,2

J H
1,2 J2,2

)
(6.69)

where

J1,1 =
NB

σ2
B

INRL (6.70)

J1,2 = 0NRL×NRNB (6.71)

J2,2 = (1 +
PRL

NRσ2
B

)INRNB . (6.72)

The diagonal elements of the inverse ofJ1,1 corresponds to the Cramér-Rao bounds of data

symbolss, and the diagonal elements of the inverse ofJ2,2 corresponds to the Cramér-Rao

bounds of channelh.

6.8.2 Calculation of a posteriori LLR Values

Thea posterioriLLR valueλp(cA,i) for ith bit cA,i of themANR coded bits associated with

the observationyB of the received signal can be expressed as

λp(cA,i) = ln
p(cA,i = 1|yB)

p(cA,i = 0|yB)
(6.73)

= ln

∑
sA∈C1

i
p(sA|yB)∑

sA∈C0
i
p(sA|yB)

(6.74)

= ln

∑
sA∈C1

i
f(yB|sA)P(sA)∑

sA∈C0
i
f(yB|sA)P(sA)

(6.75)

= ln

∑
sA∈C1

i
f(yB|sA)

∏mANR

j=1 P (cA,j = cj(sA))
∑

sA∈C0
i
f(yB|sA)

∏mANR

j=1 P (cA,j = cj(sA))
(6.76)
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According to (6.57), thea posterioriLLR at the output of the soft demapper can be written

as

λp(cA,i) = ln
p(cA,i = 1)

p(cA,i = 0)
+ ln

∑
sA∈C1

i
f(yB|sA)

∏mANR

j=1,j 6=iP (cA,j = cj(sA))
∑

sA∈C0
i
f(yB|sA)

∏mANR

j=1,j 6=iP (cA,j = cj(sA))
(6.77)

= ln
p(cA,i = 1)

p(cA,i = 0)
+ ln

∑
sA∈C1

i
f(yB|sA)

∏mANR

j=1,j 6=i exp(cj(sA)λa(cA,j))
∑

sA∈C0
i
f(yB|sA)

∏mANR

j=1,j 6=i exp(cj(sA)λa(cA,j))
(6.78)

= λa(cA,i) + λe(cA,i) (6.79)

whereλa(cA,i) andλe(cA,i) denote thea priori information and theextrinsicinformation for

cA,i, respectively. The extrinsic informationλe(cA,i) in (6.79) can be calculated by using the

max-staroperator as

λe(cA,i) = max*
sA∈C1

i

(
ln f(yB|sA) +

mANR∑

j=1,j 6=i

exp(cj(sA)λa(cA,j))

)

− max*
sA∈C0

i

(
ln f(yB|sA) +

mANR∑

j=1,j 6=i

exp(cj(sA)λa(cA,j))

)
(6.80)

wheremax*(x, y) = max(x, y)+ln (1 + exp(−|x− y|)). For multiple arguments, it follows

the recursive relationshipmax*(x, y, z) = max*(max*(x, y), z).
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Chapter 7

Achievable Rates of Bidirectional

Broadcast Channels With

Self-Interference Aided Channel

Estimation

The self-interference (SI)-aided channel estimation has been proposed for the two-way

decode-and-forward (DF) relaying protocol in Chapter 6, where we discussed the practi-

cal coding and modulation schemes and the transceiver structures. The SI, which contains

the known data symbols at the receiving stations, is utilized to estimate the channel from

the relay to its corresponding receiver in the broadcast (BRC) phase. In this way, the SI can

play a similar role as the pilot sequences for channel estimation at the receiving stations.

Such a SI-aided channel estimation scheme has been shown to be able to achieve excel-

lent channel estimation performance in realistic scenarios. Compared to the pure pilot-aided

channel estimation scheme, the SI is inherent in the two-wayrelaying protocols and does not

occupy the system resources. The SI-aided channel estimation can achieve higher spectral

efficiency compared to the pure pilot-aided channel estimation scheme. In order to quan-

tify the spectral efficiency improvement in the BRC phase channel with SI-aided channel

estimation compared to the conventional pure pilot-aided channel estimation, we calculate

in this chapter the theoretical achievable rates of the bidirectional broadcast channel in the

BRC phase of two-way DF relaying systems when the SI-aided channel estimation scheme

is applied. The spectral efficiency improvement for systemsemploying this SI-aided channel

estimation scheme is quantified by comparing its achievablerates to that of the conventional

pilot-aided channel estimation scheme. Both the theoretical Gaussian codebook and the prac-

tical symbol modulation schemes, such as the quadrature amplitude modulation (QAM), are
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Fig. 7.1:MIMO two-way DF relaying system, where the dashed arrows represent the trans-
mission in the MAC phase, and the solid arrows represent the transmission in the
BRC phase.

considered.

7.1 Introduction

The two-way decode-and-forward (DF) relaying protocol considers the scenario that two

half-duplex wireless stations,A andB, exchange data via another half-duplex wireless relay

R, as shown in Fig. 7.1. Compared to traditional relaying schemes that require four phases,

i.e., channel uses, to achieve the bidirectional communication, the two-way relaying protocol

consists of the following two phases: the multiple access (MAC) phase and the broadcast

(BRC) phase, which can be separated in time (TDD) or in frequency (FDD) (see Chapter 2).

The core idea of the two-way DF relaying protocol is theself-interference(SI) cancellation

in the broadcast (BRC) phase. That is, the relay combines thedecoded data information from

the two user stations. So each receiving user station knows part of the data information in the

combined data from the relay. The back-propagated known data information that was from

the receiving station itself in the MAC phase is called the SI, and it does not interfere with

the decoding at the receivers in the BRC phase.

When thesuperposition coding(SPC) scheme is applied, the relay combines the data

information on the symbol level, and the SI contains the known data symbols in this case (see

Chapter 4). Instead of simply canceling the SI, we proposed apractical approach to utilize

the SI for channel estimation in the BRC phase of two-way DF relaying systems in Chapter 6

when the SPC scheme is applied. There, the SI plays a similar role in the process of channel

estimation, and the SI-aided channel estimation scheme is shown to be able to achieve similar

bit error rate (BER) performance as traditional pilot-aided channel estimation schemes in the

considered scenario. Thus, the resources occupied by pilotsequences are released, and the

spectral efficiency can be further improved.
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In the two-way DF relaying systems, the relay fully decode the received data from the

stationsA andB in the MAC phase. The transmission data rate pair of stationA andB is

an achievable rate pair of the two-way DF relaying system if it is achievable by both the

MAC and BRC phases, i.e., we can determine the achievable rate pairs of the two-way DF

relaying system by determining those for the MAC and BRC phases separately. However, the

MAC phase is a conventional multiple access channel, where the optimal coding schemes are

known, e.g., ref. [78]. Compared to the MAC phase, the BRC phase is a new area of research.

Leaving aside the constraints of the MAC phase, we assume themessages from the stations

A andB have been perfectly decoded at the relay. Thus in the BRC phase, the messages at

the relay to be transmitted to stationA are perfectly known to stationB and vice versa for

the messages intended for stationB. Such a channel is called thebidirectional broadcast

channel[170].

As we know, channel estimation is an integral part of wireless transmission schemes and

it is particularly important for systems with multiple antennas. Traditional channel esti-

mation schemes transmit orthogonal pilot sequences on different transmit antennas before

sending data. The algorithms used for traditional pilot-aided channel estimation schemes

are summarized in [26], where the linear least square (LS) and minimum mean square er-

ror (MMSE) approaches are the two major algorithms. The authors of [97] computed a

lower bound on the capacity of a point-to-point block-fading multiple-input multiple-output

(MIMO) channel that is estimated by the pilot-aided scheme.The authors of [280] also

studied the block-fading MIMO channel with coherence timeT . However, neither the trans-

mitter nor the receiver has the channel state information. The asymptotic capacity of this

channel at high signal-to-noise ratio (SNR) is derived. Assuming that the transmitter hasM

antennas and the receiver hasN antennas, the corresponding capacity gain for this nonco-

herent channel turns out to beM∗(1 − M∗/T ) bits/s/Hz for every 3-dB increase in SNR,

whereM∗ = min(M,N, ⌊T/2⌋). Compared to the capacity gain of the coherent multiple

antenna channel, which ismin(M,N) bits/s/Hz for every 3-dB increase in SNR, the capac-

ity of the noncoherent channel also depends on the coherencetime. The authors of [16]

considered a continuously time-varying (Rayleigh fading)channel model and computed the

achievable rate for a typical coded modulation transmission system operating on flat fading

MIMO channels and using a perfect interleaver to combat the bursty nature of the channel.

Their derivations showed the link between the LMMSE channelestimation and the average

mutual information with respect to the channel dynamics. The achievable rate of the system

was also optimized with respect to the amount of training information needed.

In [282], the authors proposed to transmit low-power orthogonal pilot signals concurrently
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with the data. A capacity lower bound for systems employing this pilot-embedding scheme

has been shown in [45,46]. All those channel estimation schemes rely on an initial estimate

of the MIMO channel, based on the transmission of pilot sequences.

The purpose of this chapter is to quantify the spectral efficiency improvement by com-

puting achievable rates of the bidirectional broadcast channel when the SI-aided channel

estimation scheme is applied. The achievable rates serve astheoretical performance limits

of the system and enable quantitative comparisons to traditional pilot-aided schemes. Note

that in order to calculate the achievable rates, the codes have to be decoded with error rate

approaching zero. We consider a block-fading channel modelfor the BRC phase, i.e., the

BRC phase contains a number of coherence intervals. Each coherence interval containsT

time slots. The idea is to consider each time slot of the coherence interval as one use of

T parallel channels with different signal-to-noise ratios (SNRs). The quality of the channel

estimates determines the SNR for each of the parallel channels. Codes with different rates

are allocated to those parallel channels according to the SNRs. We first exploit the SI to get

an initial estimate of the channel and use it to decode the unknown data in the firstTs time

slots of each coherence interval, whereTs ≥ NR. After the unknown data in those time slots

are fully decoded, the data-aided approach is applied, where the decoded data are utilized to

re-estimate the channel and help to provide better channel estimates for the following time

slots. As the channel estimation quality improves, codes with higher rates can be allocated

in subsequent time slots of the coherence interval. We calculate the achievable rates for the

bidirectional broadcast channel when the relay employs Gaussian codebooks or quadrature

amplitude modulation (QAM) for retransmission.

Our Contributions: The contributions of this chapter can be summarized as follows:

• We derive of the achievable rates and present the quantification of the spectral effi-

ciency improvement of the BRC phase channel in MIMO two-way DF relaying sys-

tems from the information theoretic perspective when the SI-aided channel estimation

scheme is applied. Both theoretical Gaussian codebooks andpractical QAM code-

books are considered.

The remainder of this chapter is organized as follows: in Section 7.2, we introduce the

system model and briefly summarize the two-way relaying technique. The SI-aided channel

estimation scheme is described in Section 7.3. The achievable rates for systems employing

SI-aided channel estimation schemes are compared with systems employing traditional pilot-

aided schemes, and the simulation results are presented in Section 7.4. Finally, conclusions

are drawn in Section 7.5.
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7.2 System Model

We consider a relaying system where two wireless stationsA andB exchange data via a half-

duplex DF relay. We assume that there is no direct connectionbetween stationA andB (for

example, due to shadowing or too large distance between them). The number of antennas at

stationA, the relayR and stationB are denoted asNA, NR andNB, respectively.

When the two-way relaying technique [193] is applied, the data of stationA andB are

exchanged in the MAC and BRC phases as shown in Fig. 7.1. In theMAC phase, stationA

andB transmit simultaneously to the relay. The data symbol vectors transmitted at station

A andB in one time slot are denoted asxA ∈ CNA×1 andxB ∈ CNB×1, whereE{xAx
H
A } =

QA/NAINA andE{xBx
H
B } = QB/NBINB. The received signalyR at the relay can be expressed

as

yR = GAxA +GBxB + vR (7.1)

whereGA ∈ CNR×NA andGB ∈ CNR×NB are respectively the channel matrices from station

A and B to the relay. QA andQB are the transmit power constraints at stationA and B

in the MAC phase. The additive noise vector at the relay isvR ∼ CN (0, σ2INR). This is a

conventional multiple access scenario. The receiver structure for decoding the data contained

in xA andxB can be found in e.g., [240].

Since we focus on transmission schemes in the BRC phase, we assume the relay perfectly

decodes what it receives in the MAC phase. In the BRC phase, weconsider the superposition

coding scheme [193]. The relay remodulates the decoded datafrom stationA andB sepa-

rately into symbol vectorssA ∈ CNR×1 andsB ∈ CNR×1, wheresA andsB are the normalized

transmit signal vectors at the relay that contain the same data asxA andxB, respectively.

Furthermore, we haveE{sAs
H
A } = INR andE{sBs

H
B } = INR. Here we assume the relay does

not know the channel to the two stations in the BRC phase. Thisis the case in FDD systems

without channel feedback from the stations. The relay then adds the two symbol vectors

together and retransmits the sum vector:

s =

√
PA

NR
sA +

√
PB

NR
sB. (7.2)

In order to satisfy the power constraint, we requirePA + PB = PR, wherePR is the transmit

power constraint at the relay in the BRC phase. The modulation schemes and the power

allocation ofsA andsB used at the relay are known to both stationA andB.

Note thatsA is already known to stationA, andsB is known to stationB. The received

signal part that contains the known data transmitted by the receiving station itself is the SI

195



Chapter 7 Rates of Bidirectional Broadcast Channels With SI-Aided Channel Estimation

for the receiver. For example, the signal received at station A can be written as

yA = HAs+ vA (7.3)

=

√
PA

NR
HAsA

︸ ︷︷ ︸
SI for stationA

+

√
PB

NR
HAsB + vA. (7.4)

Similarly, the signal received at stationB is

yB = HBs+ vB (7.5)

=

√
PA

NR
HBsA +

√
PB

NR
HBsB

︸ ︷︷ ︸
SI for stationB

+vB. (7.6)

HereHA ∈ CNA×NR andHB ∈ CNB×NR respectively denote the channel matrices from the

relay to stationA andB. vA ∼ CN (0, σ2
AINA) andvB ∼ CN (0, σ2

BINB) are the additive noise

vectors at the receivers of stationA andB, respectively.

The SI is “harmless” because it can be canceled at the receiver if the channel knowledge

is available. The remaining part after canceling the SI onlycontains the unknown data trans-

mitted from the other side. The decoding performance at the receivers is highly dependent

on the accuracy of the channel knowledge. However, in reality the channel knowledge is

not available at the receivers for free, and it has to be estimated. In traditional pilot-aided

channel estimation schemes, the relay transmits orthogonal pilot sequencesSt before trans-

mitting data as shown in Fig. 7.2a. The pilot sequences occupy Tt ≥ NR time slots, where

St ∈ CNR×Tt andStS
H
t = PRTt/NRINR. The receiver correlates the received signals with the

pilot sequences and obtains the channel estimates.

Since the pilot sequences do not carry data information, pilot-aided channel estimation

schemes waste part of system resources. On the other hand, weobserve that the SI also

contains the information about the channel. In the following, we derive an achievable rate of

the system in the BRC phase when the SI-aided channel estimation scheme is applied. We

only calculate the achievable rate at the receiver of station A, while the same discussions also

apply to the receiver of stationB.
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Fig. 7.2:Channel estimation schemes

7.3 Achievable Rates of SI-Aided Channel Estimation

Scheme

We consider a block-fading channel model, i.e., the channels in the BRC phase remain con-

stant for a coherence interval ofT time slots and change independently between different

coherence intervals. Each entry of the channel matricesHA andHB is an i.i.d.CN (0, 1) ran-

dom variable. We assume that the transmitted data symbols from the relay are uncorrelated

in space and time. This is easily satisfied by most communication systems since the data bits

are usually interleaved before transmission to break the correlations between neighboring

data. The idea of the SI-aided channel estimation scheme is to exploit the SI to get an initial

estimate of the channel, and use the initial channel estimate to decode the unknown data in

the firstTs time slots, whereTs ≥ NR. After the data in the firstTs time slots are decoded,

the decoded data are utilized to re-estimate the channel andhelp to provide better channel es-

timates for decoding the data in the following time slots. Asthe channel estimates improve,

higher rate codes can be allocated in subsequent time slots of the coherence interval.
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7.3.1 Initial Channel Estimate Using SI

In the SI-aided channel estimation scheme as shown in Fig. 7.2b, no pilot sequence is used.

To emphasize the time reference, we rewrite the received signal at stationA as

yA,k =

√
PA

NR
HAsA,k +

√
PB

NR
HAsB,k + vA,k (7.7)

where the indexk denotes thekth time slot,k ≤ Ts. In order to estimate the channelHA for

decoding the datasB,k at time slotk, we utilize the received signals in the remaining time

slots i 6= k, i ∈ {1, · · · , T}. As we will see later, estimating the channel only based on

the received signals of the remaining time slots avoids the correlation between the estimated

channel and the datasB,k, which facilitates the derivation of achievable rates of the system.

The signal received in the remaining time slots, i.e., the signals of the whole coherence

interval except thekth time slot, can be expressed as

ȲA = HA

(√
PA

NR
S̄A +

√
PB

NR
S̄B

)
+ V̄A, (7.8)

=

√
PA

NR
HAS̄A +

√
PB

NR
HAS̄B + V̄A

︸ ︷︷ ︸
W

. (7.9)

HereȲA = [yA,1, · · · ,yA,k−1,yA,k+1, · · · ,yA,T ] is theNA × (T − 1) received signal matrix.

Similarly, S̄A, S̄B andV̄A areNR × (T − 1) matrices denoting the signals transmitted from

the relay and the noise matrices at stationA in the whole coherence interval except thekth

time slot, respectively.

In (7.9),S̄A andȲA are both known to the receiver of stationA. Also based on the statistics

of W, we can get a first estimate ofHA and use it for decodingsB,k in (7.7). By treating the

unknown noisy symbol matrixW as noise and using the Bayesian Gauss-Markov Theorem

in [129] (see Appendix 7.6.1), we can obtain a linear minimummean square error (LMMSE)

estimate of the channel as

H̄A = ȲA

[
PA

NR
S̄H

A RhS̄A +Rw

]−1
(√

PA

NR
S̄H

A

)
Rh

=

√
NR

PA
ȲA

[
S̄H

A S̄A +
NR(PB + σ2

A)

PA
IT−1

]−1

S̄H
A . (7.10)

Here we haveRh = E
{
hhH

}
= INR andRw = E

{
wwH

}
= (PB + σ2

A)IT−1, wherehH
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andwH represent the rows ofHA andW, respectively. In (7.10), we used the property that

HA andS̄B are independent. In addition, we denote the estimation error asH̃A = HA − H̄A.

Let h̃H denote the rows of̃HA. The covariance matrix of̃h is [129]

Rh̃ = EHA,S̄A

{
h̃h̃H

}
(7.11)

= ES̄A

{[
R−1

h +
PA

NR
S̄AR

−1
w S̄H

A

]−1
}

(7.12)

= ES̄A

{[
INR +

PA

NR(PB + σ2
A)
S̄AS̄

H
A

]−1
}
. (7.13)

The mean square error (MSE) of the estimated channel isσ2
H̃A

= trRh̃/NR. When the entries

of S̄A andS̄B are i.i.d. Gaussian, i.e., when we use a Gaussian codebook for transmitting data

symbols, the MSE of the channel estimate can be expressed as [224]

σ2
H̃A

=
1

NR
trRh̃

=
1

NR

∞∫

0

[
1 +

PA

NR(PB + σ2
A)
x

]−1

×
NR−1∑

k=0

k!
[
LT−1−NR
k (x)

]2

(k + T − 1−NR)!
xT−1−NRe−xdx (7.14)

whereLi
j(x) are the associated Laguerre polynomials.

After we get the channel estimatēHA, we remove the SI from the received signal matrix

as if the channel estimatēHA is the real channel matrix. The remaining signal at time slotk

can be expressed as

ȳA,k = yA,k −
√

PA

NR
H̄AsA,k (7.15)

=

√
PB

NR
H̄AsB,k +

√
PA

NR
H̃AsA,k +

√
PB

NR
H̃AsB,k + vA,k

︸ ︷︷ ︸
n

. (7.16)

SinceH̄A is the LMMSE estimation of the channelH, the channel estimation error̃HA has

zero-mean entries and is uncorrelated withH̄A andsB,k. Thus, the noise termn in (7.16) is

uncorrelated with the datasB,k and has zero-mean entries. The noise variance at time slotk
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is

σ2
n =

1

NA
tr E

{
nnH

}

=
1

NA
E tr

[
PA

NR
H̃H

A H̃AsA,ks
H
A,k

]
+

1

NA
E tr

[
PB

NR
H̃H

A H̃AsB,ks
H
B,k

]
+

1

NA
E tr

[
vA,kv

H
A,k

]

=
PA

NANR
tr
[
E
(
H̃H

A H̃A

)
E
(
sA,ks

H
A,k

)]
+

PB

NANR
tr
[
E
(
H̃H

A H̃A

)
E
(
sB,ks

H
B,k

)]
+ σ2

A

= (PA + PB)σ
2
H̃A

+ σ2
A. (7.17)

Here we used the fact that the entries insA,k andsB,k are uncorrelated and alsõHA is uncor-

related withsA,k andsB,k. This is becausēHA is obtained using the received signals in time

slotsi 6= k, i ∈ {1, · · · , T}. Eq. (7.16) describes a system with a known channelH̄A and

noisen with varianceσ2
n. According to [97, Theorem 1] (see Appendix 7.6.2), the worst

case noisen has a zero-mean Gaussian distribution. An achievable rate of such a system can

be calculated by substitutingn with a Gaussian noise with the same varianceσ2
n.

7.3.2 Improving Channel Estimation by Data-Aided Approach

The initial channel estimation using SI is subject to the residual error due to the unknown

data part̄SB. Thus the MSE of the channel estimateH̄A can still be high. On the other hand,

after decoding the symbols in the first several time slots, wecan re-estimate the channel by

exploiting the decoded data. This is the commonly useddata-aidedapproach. Note that the

data-aided approach can only be started after the unknown data in the firstTs ≥ NR time slots

have been decoded. An initial channel estimate is indispensable to the data-aided approach.

Suppose the data in the firstk − 1 time slots have been decoded. Let

S =

√
PA

NR
SA[k−1] +

√
PB

NR
SB[k−1] (7.18)

whereSA[k−1] = [sA,1, · · · , sA,k−1] andSB[k−1] = [sB,1, · · · , sB,k−1] denote the matrices com-

posed of the transmitted signals in the firstk − 1 time slots. The received signal matrix in

the firstk − 1 time slots is denoted asY = [yA,1, · · · ,yA,k−1]. The MMSE channel estimate

based onS andY can be written as

ĤA = Y
(
σ2

AIk−1 + SHS
)−1

SH . (7.19)

We also define the channel estimation error asȞA = HA − ĤA. Let ȟH denote the rows of
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ȞA. The covariance matrixRȟ of ȟ is

Rȟ = E
{
ȟȟH

}
= E

{(
INR +

1

σ2
A

SSH

)−1
}

(7.20)

where we used the property that each entry inSA[k−1] andSB[k−1] is uncorrelated in space

and time. So the MSE of the channel estimation error is

σ2
ȞA

=
1

NR
tr E

{
ȟȟH

}
. (7.21)

After canceling the SI, the received signal vector at time slot k is

ŷA,k =

√
PB

NR
ĤAsB,k +

√
PA

NR
ȞAsA,k +

√
PB

NR
ȞAsB,k + vA,k

︸ ︷︷ ︸
ň

. (7.22)

This describes a system with known channelĤA and noise term̌n. We have the covariance

matrix of the noise vectořn as

E
(
ňňH

)
=
[
(PA + PB)σ

2
ȞA

+ σ2
A

]
INA . (7.23)

So the noise variance is

σ2
ň = (PA + PB)σ

2
ȞA

+ σ2
A. (7.24)

Again, for a system described in (7.22), the worst case for noise termň is whenň is Gaussian.

An achievable rate can be calculated by assumingň ∼ CN (0, σ2
ňINA).

7.3.3 Achievable Rates of Bidirectional Broadcast Channel

In this section, we derive achievable rates of the bidirectional broadcast channel when the

SI-aided channel estimation scheme is applied. The idea is that we can allocate codes with

different rates on different time slots of the coherence intervals, as shown in Fig. 7.3. Each

time slot of a coherence interval can be considered as one useof T parallel channels with

different SNRs. At the beginning of each coherence interval, only SI is available for channel

estimation and the system model is shown in (7.16). Here the effective SNR is low. Low

rate codes are allocated at those time slots so that they can be fully decoded after many

channel uses, i.e., coherence intervals. After the data at the beginning time slots of each

coherence interval are decoded, the data-aided approach can be used to improve the channel
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Fig. 7.3:Rate allocation in the time slots. Different hatching represents different code rate.
Note coding is spread across many different coherence intervals.
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estimation and the effective SNR, where the system model is shown in (7.22). Thus higher

rate codes can be allocated at those time slots. Since we assume the channel changes inde-

pendently between different coherence intervals, each coherence interval can be considered

as a realization of theT parallel channels. According to channel coding theorem in afast

fading channel, those codes can be decodedwithout error after many independent realiza-

tions of those parallel channels. This method is also used in[46] to derive an achievable rate

of the pilot-embedding schemes when data-aided approach isapplied. Note this decoding

scheme is different from [279], where we were interested in apractical scheme for improving

the BER performance and the coded bits were spread across thewhole coherence interval.

There we utilized the error-correcting capability of convolutional codes in each iteration to

correct the errors contained in the unknown data, and the decoded data might contain errors

in each iteration.

Assuming the initial SI estimated channelH̄A is used to decode the data in the firstTs

time slots, the following expression gives an average achievable rate expression for the data

decoded at stationA in the BRC phase

CA =
0.5

T

{
Ts∑

k=1

I(yA,k; sB,k|H̄A) +

T∑

k=Ts+1

I(yA,k; sB,k|ĤA)

}

where the factor 0.5 is due to the fact that the rate can only beachieved after both the MAC

and BRC phases, and the length of the two phases are equal. In the expression ofCA, the first

term is the mutual information conveyed by the data symbols decoded by using the channel

estimated purely by SI, and the second term represents the mutual information conveyed by

the data symbols decoded by using the data-aided approach. When a Gaussian codebook is

used, we can write

CGau
A =

0.5Ts

T
E log det

(
INA + ρ0

H̄AH̄
H
A

NR

)
+

0.5

T

T∑

k=Ts+1

E log det

(
INA + ρk

ĤAĤ
H
A

NR

)
(7.25)

whereρ0 = PB/σ
2
n andρk = PB/σ

2
ň according to (7.17) and (7.24). However, the optimum

choice of codebook ofsA,k and sB,k is still an open question. This is because Gaussian

codebooks maximize the mutual information only if the channel is perfectly known at the

receiver. When the channel has to be estimated, Gaussian codebooks do not necessarily lead

to the lowestσ2
H̃A

in the channel estimation in (7.16).

For QAM modulations, no explicit expression for mutual information is available. How-
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ever, it can be obtained by Monte Carlo simulations by using the following expression

CQAM
A =

0.5Ts

T
E

{
log

p(yA,k|sB,k, H̄A)∑
sB,k

p(yA,k|sB,k, H̄A) · p(sB,k)

}

+
0.5

T

T∑

k=Ts+1

E

{
log

p(yA,k|sB,k, ĤA)∑
sB,k

p(yA,k|sB,k, ĤA) · p(sB,k)

}
.

Here it is assumed thatsB,k is chosen from a QAM constellation with equal probabilities.

According to (7.16) and (7.22), we have

p(yA,k|sB,k, H̄A) =
1

(πσ2
n)

NA
exp

(
− 1

σ2
n

‖yA,k − H̄AsB,k‖2
)
,

p(yA,k|sB,k, ĤA) =
1

(πσ2
ň)

NA
exp

(
− 1

σ2
ň

‖yA,k − ĤAsB,k‖2
)
.

Here we choose the noise vectorsn ∼ CN (0, σ2
nINA) and ň ∼ CN (0, σ2

ňINA) in order to

calculate the achievable rates following the discussions in Section 7.3.

7.4 Simulation Results

In this section, we compare the average achievable rates of the SI-aided channel estimation

scheme with that of the traditional pilot-aided channel estimation scheme by using Monte

Carlo simulations. The data-aided approach is utilized to improve the channel estimation in

both cases. We consider a two-way relaying system whereNA = NR = NB = 2. We only

consider the BRC phase and equal power is allocated for transmission to stationA andB, i.e.,

PA = PB = PR/2. The firstNR rows of the Hadamard matrix are taken as the pilot sequences

in the pilot-aided scheme. In Fig. 7.4, SNR= PR/σ
2
A = PR/σ

2
B = 10dB, and we plot the

average sum rate of stationA andB. We can observe that the achievable rate increases with

the coherence time. On the one hand, this is because the initial channel estimate gets better

in the SI-aided channel estimation when the coherence interval gets longer; on the other

hand, better channel estimate can be obtained at the end of each coherence interval in the

data-aided approach as the coherence time increases. In Fig. 7.5, we show how the average

achievable rate changes with the SNR forT = 30, where SNR= PR/σ
2
A = PR/σ

2
B. We can

observe that the gains of the SI-aided channel estimation scheme remain nearly as constants

in the considered SNR range. This is due to the fact that the received power of both SI and

the noise termW in (7.9) increase as SNR increases. In 4QAM modulations, we can also

observe that the SI-aided channel estimation can achieve nearly the same rates at high SNR
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as when perfect channel knowledge is available at the receivers.
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7.5 Chapter Summary and Conclusions

We derived achievable rate expressions for bidirectional broadcast channels of two-way re-

laying systems when the SI-aided channel estimation schemeis applied. This scheme utilizes

the SI to obtain an initial estimate of the channel and use data-aided approaches to improve

the channel estimates. Simulation results showed that our scheme can achieve higher rates

compared to traditional pilot-aided channel estimation schemes. The gain is relatively high

in the low SNR regime. In high SNR regime, the performance of the SI-aided channel esti-

mation scheme for 4QAM modulations is nearly as good as when perfect channel knowledge

is available at the receivers.

7.6 Appendices

7.6.1 Bayesian Gauss-Markov Theorem

Theorem 7.6.1( [129] P391). If the data are described by the Bayesian linear model from

x = Hθ +w (7.26)

wherex is anN × 1 data vector,H is a knownN × p observation matrix,θ is a p × 1

random vector of parameters whose realization is to be estimated and has meanE {θ} and

covariance matrixCθθ, andw is anN × 1 random vector with zero mean and covariance

matrixCw and is uncorrelated withθ (the joint PDFp(w, θ) is otherwise arbitrary), then

the LMMSE estimator ofθ is

θ̂ = E {θ}+CθθH
T (HCθθH

T +Cw)
−1(x−HE {θ}) (7.27)

= E {θ}+ (C−1
θθ +HTC−1

w H)−1HTC−1
w (x−HE {θ}). (7.28)

The performance of the estimator is measured by the errorǫ = θ − θ̂ whose mean is zero

and whose covariance matrix is

Cǫ = Ex,θ(ǫǫ
T ) (7.29)

= Cθθ −CθθH
T (HCθθH

T +Cw)
−1HCθθ (7.30)

= (C−1
θθ +HTC−1

w H)−1. (7.31)
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The error covariance matrix is also the minimum MSE matrixM
θ̂

whose diagonal elements

yield the minimum Bayesian MSE

[M
θ̂
]ii = [Cǫ]ii (7.32)

= Bmse(θ̂i). (7.33)

7.6.2 Worst-Case Uncorrelated Additive Noise

Theorem 7.6.2( [97]). Consider the matrix-valued additive noise known channel

x =

√
ρ

M
sH+ v, (7.34)

whereH ∈ C
M×N is the known channel, and where the signals ∈ C

1×M and the additive

noisev ∈ C1×N satisfy the power constraints

E

{
1

M
ssH
}

= 1 and E

{
1

N
vvH

}
= 1 (7.35)

and are uncorrelated:

E
{
sHv

}
= 0M×N . (7.36)

LetRv = E
{
vHv

}
andRs = E

{
sHs
}

. Then the worst-case noise has a zero-mean Gaus-

sian distribution,v ∼ CN (0, Rv,opt), whereRv,opt is the minimizing noise covariance in

Cworst = min
Rv,tr(Rv)=N

max
Rs,tr(Rs)=M

E log2 det
(
IN +

ρ

M
R−1

v HHRsH
)
. (7.37)

We also have the minimax property

Iv∼CN (0,Rv,opt),s(x; s) ≤ Iv∼CN (0,Rv,opt),s∼CN (0,Rs,opt)(x; s) = Cworst ≤ Iv,s∼CN (0,Rs,opt)(x; s),

(7.38)

whereRs,opt is the maximizing signal covariance matrix in(7.37). When the distribution

on H is left rotationally invariant, i.e., whenp(ΘH) = p(H) for all Θ such thatΘΘH =

ΘHΘ = IM , then

Rs,opt = IM . (7.39)
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When the distribution onH is right rotationally invariant, i.e. whenp(HΘ) = p(H) for all

Θ such thatΘΘH = ΘHΘ = IN , then

Rv,opt = IN . (7.40)
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Chapter 8

Asymmetric Data Rate Transmission in

Two-Way Relaying Systems With

Network Coding

In two-way decode-and-forward (DF) relaying systems, the major problem faced by the net-

work coding scheme is how to transmit with asymmetric data rates to the user stations ac-

cording to their individual link qualities in the broadcast(BRC) phase. This chapter proposes

a novel transmission strategy to solve this problem. The idea is toutilize the bit-level self-

interference (SI) when the network coding scheme is applied. In the proposed scheme, the

weaker link receiver exploits thea priori bit information in each received data symbol, so

that it only needs to decode on a subset of the signal constellation. Subject to the same

bit error rate constraint, the weaker link receiver can decode at lower signal-to-noise ratio

(SNR) compared to the stronger link. The signal labeling used for mapping bits to symbols

at the relay is shown to be crucial for the performance at the receivers, and we provide the

criteria and methods for finding the optimized signal labeling schemes. Simulations show

that the proposed transmission scheme can be applied to practical scenarios with asymmetric

channel qualities, and the optimized labeling schemes are able to significantly outperform

conventional ones at both receivers.

8.1 Introduction

The two-way relayingprotocol [193] considers the scenario that two half-duplexwireless

stations exchange data via another half-duplex wireless relay. Such a relaying protocol has

been shown to be able to compensate for a large portion of the spectral efficiency loss that
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is due to the half-duplex constraint of practical relays. Weconsider two-way decode-and-

forward (DF) relaying systems in this chapter, where the data from the two stations are

exchanged in two phases: the multiple-access (MAC) phase and the broadcast (BRC) phase.

In the MAC phase, the two stations transmit their data to the relay and the relay decodes

the received signal; the decoded data are combined at the relay and are retransmitted to the

two stations in the BRC phase (see Chapter 2). The basic idea of the two-way relaying

protocol is that the back-propagated known data in the received signals at the user stations,

which is called self-interference (SI), can be canceled anddoes not degrade the decoding

performance at the receivers. There are two major practicaldata-combining schemes, i.e.,

the superposition coding(SPC) scheme [193] and thenetwork codingscheme [260]. The

SPC scheme combines the decoded data on the symbol level at the relay, and the network

coding scheme combines the decoded data on the bit level (seeChapter 4). Traditional two-

way relaying schemes simplycancelthe SI instead ofutilize it. In Chapter 6, we proposed

a channel estimation scheme to utilize the SI when the SPC scheme is applied in two-way

DF relaying systems, where we showed that the SI can play a similar role as pilot sequences

for channel estimation. In the SPC scheme, the SI is on the symbol level. How to utilize

the bit-level SI when the network coding scheme is applied atthe relay is the topic of this

chapter.

When the network coding scheme is applied in the BRC phase of two-way DF relaying

systems, the relay combines the data on the bit level using the XOR operation before mod-

ulation. Compared to the SPC scheme, the network coding scheme does not split the power

for transmitting the two sets of data, which avoids the signal-to-noise ratio (SNR) degra-

dation after the SI cancellation [88]. However, the networkcoding scheme requires that

both receiving stations decode the combined data bits from the same transmit symbols in the

BRC phase. It was shown in [170] that network coding is optimal for transmitting the same

amount of data to both stations in symmetric channel conditions, i.e., when the channel qual-

ities from the relay to the two stations are equal. However, asymmetric channel conditions

are very common in reality, where the channel quality from the relay to one user station is

much better than the channel to the other. In such a situation, it is not preferable for the relay

to transmit at a data rate according to the weak link channel since it sacrifices the strong link

user. When the channel qualities to the two stations are asymmetric, how to transmit data,

so that the data rates from the relay are not limited by the weaker link of the two stations,

is an important problem for practical systems. From the information theoretic aspects, it

was shown in [170] and [264] that by using random coding approaches, it is possible for the

relay to transmit information rates equal to the individuallink capacities simultaneously to
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the two receiving stations. Moreover, the authors of [265] and [15] respectively proposed

schemes of combining channel coding for binary transmission and lattice coding with net-

work coding in two-way relaying systems and derived the achievable rate regions for each

case. However, real-world applications call for practicaland low-complexity transmission

schemes, especially for multi-antenna systems.

On the other hand, the data traffic in real-world two-way relaying systems may not always

be symmetric. For example, consider a scenario that a dedicated relay station facilitates the

exchange of data between a base station and a mobile station in a cellular system. Usually

the mobile station has less data to transmit to the base station in the uplink than the base

station has for the downlink. In this case, combining equal amount of data at the relay is not

preferable in practice either.

In this chapter, we propose a novel transmission scheme for the BRC phase of two-way

DF relaying systems when network coding is applied. In the proposed scheme, the data

rates transmitted by the relay to the two receiving stationscan be adjusted according to

their individual link qualities subject to certain criterion, such as the bit error rate (BER)

constraints. We call itasymmetric data rate transmission. The proposed scheme has low

complexity and can be applied to systems with single or multiple antennas. The core idea

is to utilize the bit-level SI when the network coding schemeis applied. In the proposed

scheme, the relay combines the data in such a way that some bits in each transmit symbol

area priori known to the weaker link receiver. That receiver can hence exploit the known

bits and only needs to decode on a subset of the transmit signal constellation. Therefore,

the a priori bit information is translated into the coding gain, and enables the weaker link

receiver to achieve the same decoding performance as the stronger link. We show that the

signal labelingat the relay, i.e., the assignment of bit patterns to each symbol in the signal

constellation, plays an important role in the system performance. The criteria and methods

for finding the optimized labeling schemes are also proposed. Furthermore, we show an

example of systems with 8PSK constellation on each transmitantenna. The optimization

criteria are the mutual information and the error floor when the received SNR is high. We

provide the optimized labeling schemes with their performance results. To the best of our

knowledge, this is the first scheme that exploits thea priori bit information on the symbol

level for network coding schemes in two-way DF relaying systems.

Our Contributions: The contributions of this chapter can be summarized as follows.

• We propose a practical coding and modulation scheme for the BRC phase transmission

in two-way DF relaying systems when the network coding scheme is applied at the

relay. The proposed scheme is able to transmit with asymmetric data rates from the
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Fig. 8.1:Two-way DF relaying system. The dashed arrows represent thetransmission in the
MAC phase, and the solid arrows represent the transmission in the BRC phase.

relay to the receivers according to their individual link qualities. It overcomes the

traditional problem that the transmission rates of the network coding scheme is limited

by the weakest link.

• We provide the criteria and methods for finding the optimizedsignal labeling schemes

that map bits to symbols at the relay, which is crucial for theperformance of the pro-

posed scheme.

• To the best of our knowledge, this is the first scheme that exploits the bit-level SI for

network coding schemes in two-way DF relaying systems.

The rest of this chapter is organized as follows: the two-wayDF relaying protocol with

network coding is recapitulated in Section 8.2. The detailsof the proposed transmission

scheme are discussed in Section 8.3, where we provide the transceiver structures and show

how they work. The criterion and method for designing optimized labeling schemes are

discussed in Section 8.4. Simulation results that compare the decoding performance of the

optimized labeling with that of conventional ones are presented in Section 8.5. Conclusions

are drawn in Section 8.6.

8.2 System Model

We consider a relaying system where two wireless stationsA andB exchange data via a half-

duplex relay as shown in Fig. 8.1. We assume that there is no direct connection between

stationsA andB (e.g., due to shadowing). The number of antennas at stationA, the relayR

and stationB areNA,NR andNB, respectively.GA ∈ CNR×NA andGB ∈ CNR×NB respectively

denote the channel matrices from stationsA andB to the relay in the MAC phase.HA ∈
CNA×NR andHB ∈ CNB×NR denote the channel matrices from the relay to stationsA andB in

the BRC phase, respectively. StationA wants to send the bit sequence{bA} to stationB, and

stationB wants to send the bit sequence{bB} to stationA.
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When the two-way DF relaying protocol is applied, the bit sequences{bA} and{bB} are

respectively modulated and transmitted to the relay by stationsA andB in the MAC phase.

The receiver structure at the relay can be found in, e.g., [240].1 In the following, we focus on

the BRC phase and assume the MAC phase has been completed, i.e., the bit sequences{bA}
and{bB} have already been transmitted to the relay.

In the BRC phase, we apply network coding [260] at the relay toretransmit the data. The

basic idea is that the relay combines the decoded bit sequences on the bit level using the

XOR operation, and remodulates the combined bit sequence into transmit symbols, i.e.,

{bA ⊕ bB} = {bR} 7−→ {sR}. (8.1)

At one time slot, the received signals at stationA andB are

yA = HAsR + nA (8.2)

yB = HBsR + nB (8.3)

wherenA ∼ CN (0, σ2
AINA) andnB ∼ CN (0, σ2

BINB) are the additive noise vectors at stations

A andB, respectively. The two stations demodulate the received signals and reveal the un-

known data bits by XOR-ing the decoded data{b̂R} with their own transmitted data on the

bit level. That is,

{b̂B} = {b̂R ⊕ bA}, at stationA;

{b̂A} = {b̂R ⊕ bB}, at stationB.

Since both receiving stations have to decode the data contained in the symbolsR, it was

conventionally thought that the relay must transmit at a data rate that can be supported by

both links. This sacrifices the stronger link, and is not desirable in practice. In the following,

we propose a practical scheme that can transmit with asymmetric data rates simultaneously

from the relay to the two stations according to their individual link qualities in the BRC

phase.
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Fig. 8.2:Transmitter and receiver diagrams for asymmetric data ratetransmission in the
BRC phase. The box-plus “⊞” module at the receiver side is defined in (8.13).
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8.3 Transceiver Structures for Asymmetric Data Rate

Transmission

The transmitter and receiver diagrams of the proposed scheme are shown in Fig. 8.2. We

assume the link from the relay to stationA has better channel quality, e.g., higher signal-

to-noise ratio (SNR), than the link to stationB in the BRC phase. The aim of the proposed

scheme is to utilize the stronger link to transmit more data bits per channel use to stationA,

while at the same time transmitting to stationB at a data rate that can be supported by its

link.2 We assume the channel matricesHA andHB are respectively known to stationsA and

B. The relay only knows the receive SNRs at the two stations. The system diagram in Fig. 8.2

applies bit-interleaved coded modulation with iterative decoding (BICM-ID). However, the

proposed idea can actually be applied to both coded and uncoded systems.

8.3.1 Transmission Strategy at the Relay

Fig. 8.2(a) shows the proposed transmitter structure at therelay R. The information bit

sequences{bA} and{bB} decoded in the MAC phase are encoded individually by a convo-

lutional encoder with coding rater. Here we assume the two sequences are encoded by the

same encoder for ease of implementation at the relay. Without loss of generality, we con-

sider a spatial-multiplexing structure withNR independent data streams. Similar discussions

apply to less data streams, e.g., transmittingmin(NR, NA, NB) streams to enable efficient

decoding. In each transmission, the relay sendsr · mNR information bits to stationA and

r · nNR information bits to stationB simultaneously, wheren < m. The relay determines

m andn according to the knowledge of the average receive SNRs atA andB. The transmit

symbol on each relay antenna belongs to theM-ary QAM or PSK symbol alphabets, where

M = 2m.

The transmitter works as follows: the output bits of the convolutional encoders are bitwise

interleaved to form the code sequences{cA} and{cB}, wherecA, cB ∈ {0, 1}. Then the

bit-interleaved codewords are respectively partitioned into groups ofnNR andmNR bits.

Each pair of the two corresponding bit groups is denoted ascA = [cnNR
A , · · · , c1A]T andcB =

1A simpler, albeit suboptimal, approach is to transmit{bA} and{bB} separately to the relay as in [260].
2This requires more data bits{dB} to be available at the relay for the BRC phase transmission. Hence, it may

require stationB to use more temporal or spectral resources, e.g., more subcarriers in OFDMA systems, to
transmit those data bits to the relay in the MAC phase. This can be motivated by e.g., the relay has a buffer
and accumulated the data decoded from the MS. Another way to motivate this is that in a OFDMA system,
the MS use more subcarriers to transmit to the relay while theBS use less subcarriers to transmit to the
relay in the MAC phase.
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[cmNR
B , · · · , c1B]T , respectively. For eachcA, we insert(m − n)NR dummyzeros in it and

obtain

c̃A = [0, · · · , 0︸ ︷︷ ︸
(m−n)NR

, cnNR
A , · · · , c1A]T .

Those dummy zeros contain no information. Their positions are fixed and known to both

stationsA andB. After inserting zeros, the corresponding bits ofc̃A andcB are combined

into cR = [cmNR
R , · · · , c1R]T using the XOR operation, i.e.,

cR = cB ⊕ c̃A (8.4)

= [cmNR
B , · · · , cnNR+1

B︸ ︷︷ ︸
(m−n)NR

, cnNR
B ⊕ cnNR

A , · · · , c1B ⊕ c1A]
T . (8.5)

Due to the dummy zeros iñcA, [cmNR
B , · · · , cnNR+1

B ] are kept unchanged after the XOR oper-

ation whencR is generated, and those bits are known to stationB.

Each of the combined bit groupcR is mapped to anNR dimensional complex symbol

vectorsR = [sR,1, · · · , sR,NR]
T = µ(cR) on the relay antennas by the mapper, whereµ(·)

denotes the mapping function. Each elementsR,i, i ∈ {1, · · · , NR}, belongs to theM-ary

QAM or PSK symbol alphabetsA = {a1, · · · , aM}, whereM = 2m. TheNR dimensional

signal constellation is denoted asX , i.e.,

X = {s | s = µ(c), ∀ c ∈ {0, 1}mNR} = ANR

and |X | = 2mNR. Furthermore,E(sRs
H
R ) = PR/NRINR, wherePR is the average transmit

power constraint at the relay in the BRC phase. Here we allocate equal power on each data

symbol at the relay antennas. Both the encoding scheme and the mapping schemeµ(·) at the

relay are known to stationsA andB. Note we only require there to be one-to-one mapping

between each bit blockc ∈ {0, 1}mNR and the symbol vectors ∈ X , which is different from

the usual schemes that map bits separately to symbols on eachantenna.

8.3.2 Decoding Strategies at the Receivers

Upon receivingyA andyB as in (8.2) and (8.3), stationsA andB demodulate the received

signals, and reveal the unknown data based on the bits contained insR and their own data

bits. The receiver structures are shown in Fig. 8.2(b) and Fig. 8.2(c). There are two important

issues in the design of the receivers: firstly, in order to make it possible for the weaker link

receiverB to decode at lower SNR, we mustexploitits a priori known bits contained incR in
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the demapping process; secondly, we use the box-plus “⊞” module defined in Section 8.3.2.2

to convert the log-likelihood ratios (LLRs) of{cR} to that of {cA} or {cB} between the

demapper and the channel decoder, so that the reliability information for the decoded bits

is kept intact in the iterative process.

8.3.2.1 Exploiting a priori bit information at station B

The transmit symbol vectorsR contains differentusefulbits for stationsA andB: in order to

obtaincB, every bitciR, ∀ i ∈ {1, · · · , mNR}, is useful for stationA according to (8.5) and

needs to be decoded, whereas the useful bits for stationB areciR, i ∈ {1, · · · , nNR}, because

the(m− n)NR bits [cmNR
B , · · · , cnNR+1

B ] in (8.5) area priori known at its receiver. Instead of

decoding every bit incR and discarding the known bits, we propose to exploit thisa priori bit

information, so that the receiverB only needs to demap on the subset of the transmit signal

constellation whose labels contain[cmNR
B , · · · , cnNR+1

B ] at the corresponding positions.

An motivating example with 8PSK (m = 3) transmission is given in Fig. 8.3, where

NR = 1 and two labeling schemes for the transmit symbolsR are shown: the Gray labeling

in Fig. 8.3(a) and the set partitioning (SP) labeling [231] in Fig. 8.3(b). We assumen = 2

andc3B = 0. Since stationB knowsc3B = 0, it only needs to consider the symbols whose 3rd

bit is 0 (indicated by circles in Fig. 8.3) for the demapping process. Given the known bits

[cmNR
B , · · · , cnNR+1

B ], we define the subset of symbol constellation, whose labels contain those

known bits at the corresponding positions, asS(cmNR
B , · · · , cnNR+1

B ) ⊂ X , i.e.,

S(cmNR
B , · · · , cnNR+1

B ) =
{
s | cmNR(s) = cmNR

B , · · · , cnNR+1(s) = cnNR+1
B , s ∈ X

}
(8.6)

wherecj(s) denotes thejth bit associated with the label of symbols. Given c3B = 0 in

Fig. 8.3, the subset to be demapped at stationB can be denoted asS(0). Fig. 8.3 also

shows that different labeling schemes lead to different subsets for the givena priori bits

and influence the decoding performance at the receivers. Given c3B = 0 for SP labeling,

the components inS(0) are same as those of QPSK, and the minimum Euclidean distance

(MED) between symbols inS(0) is increased compared to that of the original 8PSK. This

leads to better decoding performance at stationB when it demaps only onS(0) instead of on

X . However, the MED ofS(0) for Gray labeling is not increased, and simulations show that

demapping only onS(0) in Gray labeling does not improve the decoding performance.How

to find the optimized labeling schemes will be discussed in Section 8.4.

The demappers at stationsA and B work as follows. In each iteration, the soft-output

demapper of stationA calculates thea posterioriLLR valuesΛA(c
i
R) for each of the coded

217



Chapter 8 Asymmetric Data Rate Transmission With Network Coding

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1
Q

ua
dr

at
ur

e

In−Phase

Constellation for Gray 8−PSK

000

001

011

010

110

111

101

100

 

 
bit c

3
 = 0

bit c
3
 = 1

(a) 8PSK with Gray labeling

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Q
ua

dr
at

ur
e

In−Phase

Constellation for SP 8−PSK

000

100

010

110

001

101

011

111

 

 
bit c

3
 = 0

bit c
3
 = 1

(b) 8PSK with SP labeling

Fig. 8.3:8PSK labeling schemes, single transmit antenna case.
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bit ciR, i ∈ {1, · · · , mNR} associated withyA [107]:

ΛA(c
i
R) = ln

p(ciR = 1|yA)

p(ciR = 0|yA)
(8.7)

≈ min
sR∈X 0

i

‖yA −HAsR‖2
σ2

A

− min
sR∈X 1

i

‖yA −HAsR‖2
σ2

A

(8.8)

whereX 1
i andX 0

i represent the sets of transmit symbol vectors whoseith bit labeling is

1 and 0, respectively. Similarly, thea posterioriLLR valuesΛB(c
i
R) for the coded bitsciR,

i ∈ {1, · · · , nNR} are calculated at the demapperB as

ΛB(c
i
R) = ln

p(ciR = 1|yB)

p(ciR = 0|yB)
(8.9)

≈ min
sR∈S0

i

‖yB −HBsR‖2
σ2

B

− min
sR∈S1

i

‖yB −HBsR‖2
σ2

B

(8.10)

whereS1
i andS0

i represent the sets of transmit symbol vectors whoseith bit labeling is 1 and

0 in the constellation subsetS(cmNR
B , · · · , cnNR+1

B ), respectively.

In order to avoid error propagation, thea priori LLRsγA(c
i
R) andγB(c

i
R) from the feedback

of the channel decoders are subtracted fromΛA(c
i
R) andΛB(c

i
R) to generate theextrinsic

LLRs λA(c
i
R) andλB(c

i
R) as:

λA(c
i
R) = ΛA(c

i
R)− γA(c

i
R), i ∈ {1, · · · , mNR}, (8.11)

λB(c
i
R) = ΛB(c

i
R)− γB(c

i
R), i ∈ {1, · · · , nNR}. (8.12)

8.3.2.2 LLR values of {cA} and {cB}

The output of the demappers are the LLR values for{cR}. They must be converted to the LLR

values for{cA} and{cB} for channel decoding. This is accomplished by the “⊞” module.

The sign of each LLR value shows the estimate that the corresponding bit is 1 or 0, and its

absolute value represents the reliability of such estimation. Fori ∈ {1, · · · , nNR}, we have

ciB ⊕ ciA = ciR. The bitciB (resp.ciA) differs with ciR only whenciA = 1 (resp.ciB = 1). Given

the LLR valueλ of ciR and the known bitc (i.e.,ciA or ciB), the LLR value of the unknown bit

(i.e.,ciB or ciA) can be calculated as

λ⊞ c =




λ, if c = 0,

−λ, if c = 1.
(8.13)
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That is, the “⊞” module flips the sign ofλ according to the corresponding input bitc. Since

each bitc is perfectly known, it does not change the reliability of thedecoded bits.

After the “⊞” module, the LLR values for{cA} and{cB} are given to the input of the

convolutional decoder, where the BCJR algorithm [14] is applied. Similar to the demapper,

extrinsicLLR values for the coded bits are generated at the output of convolutional decoders.

The feedback LLR values for{cR} are calculated according to the outputs of the channel de-

coder and the bit sequence{c̃A} and{cB} again using the “⊞” module. In the final iteration,

the decoder outputs the hard decisions on the information bits. The overall workflow of the

iterative receivers is summarized in Algorithm 7.

Algorithm 7 Workflow of receivers at stationsA andB
Initialize: 1. Obtain{c̃A} and{cB} at A andB.

2. Set{γA(cR)} = {0} and{γB(cR)} = {0}.
3. Setl = 0.

repeat
Updatel = l + 1; In thelth iteration (l ≥ 1):

1. ConstructS(cmNR
B , · · · , cnNR+1

B ) according to (8.6) at stationB;
2. CalculateλA(c

i
R) andλB(c

i
R) according to (8.7)–(8.12) at stationsA andB;

3. CalculateλA(c
i
B) = λA(c

i
R) ⊞ c̃iA, ∀ i ∈ {1, · · · , mNR} andλB(c

i
A) = λB(c

i
R) ⊞ ciB,

∀ i ∈ {1, · · · , nNR} according to (8.13);
4. Deinterleave{λA(cB)} and{λB(cA)}; feed them to channel decoders;
5. Interleave the channel decoder outputs;
6. CalculateγA(c

i
R) = γA(c

i
B) ⊞ c̃iA, ∀ i ∈ {1, · · · , mNR} andγB(c

i
R) = γB(c

i
B) ⊞ ciB,

∀ i ∈ {1, · · · , nNR} according to (8.13);
7. FeedγA(cR) andγB(cR) to the demappers;

until BER(l) − BER(l−1) ≤ ǫ, or maximum number of iteration is reached.
Generate the output information bits{b̂A} and{b̂B}.

8.4 Optimized Signal Labeling

This section discusses the criteria and methods for finding the optimized signal labeling of

the transmit symbol constellation at the relay. We considertwo criteria: one is based on the

error bound of the decoding performance at receivers in highSNR regime, and the other is

based on the mutual information in coded modulations. Both single and multiple antenna

transmissions are considered. For simplicity, we assumeNA = NB , N .
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8.4.1 Optimization Criterion Based on Error Bounds

For BICM-ID systems, the asymptotic decoding performance at the receivers in high SNR

regime can be characterized by thepairwise error probability(PEP). Letc and ĉ denote

two transmit codewords with Hamming distanced. P(c → ĉ) denotes the PEP that the

decoder chooseŝc instead of the transmitted bit sequencec. Assuming perfect interleaving

and averaged over all symbols and bit positions,P(c → ĉ) at receiverA can be bounded

using the union bound by [36]

P(c → ĉ) ≤ Ed (8.14)

=





1

mNR · 2mNR

mNR∑

i=1

1∑

b=0

∑

sR∈X (b)
i

∑

ŝR∈X (b̄)
i

P(sR → ŝR)





d

(8.15)

whereb̄ = 1 − b for b ∈ {0, 1}, andP(sR → ŝR) denotes the PEP between symbol vector

sR andŝR in the symbol constellation.X (b)
i andX (b̄)

i in (8.15) denote the two sets of symbol

vectors that only differ on theirith bit labeling. In high SNR regime and after a sufficient

number of iterations, we assume the channel decoder feeds back perfect information about

the other unknown bits of each symbol vector. That is why we only consider the PEP between

symbol vectorssR andŝR that only differ by one bit in their labeling.

According to the signal model at stationsA in (8.2), the conditional the PEP thatŝR is

selected whensR is transmitted for a given channel matrix realizationHA can be expressed

as

P(sR → ŝR | HA) = Q

(√
1

2σ2
A

‖HA(sR − ŝR)‖2
)

(8.16)

The expression in (8.16) can be bounded by the Chernoff boundas

P(sR → ŝR | HA) ≤ exp

(
− 1

4σ2
A

‖HA(sR − ŝR)‖2
)

(8.17)

We can now average this conditional PEP over the statistics of the channel matrixHA.

Assuming that the channel path coefficients inHA are i.i.d. CN (0, 1) random variables,

i.e., complex-valued zero-mean Gaussian spatially white channel, the average of the PEP

in (8.17) over the statistics of the channel path coefficients yields the upper bound on the
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average PEP as [222]

P(sR → ŝR) ≤ EHA

{
exp

(
− 1

4σ2
A

‖HA(sR − ŝR)‖2
)}

(8.18)

=
1

{
det
[
INR +

1
4σ2

A
(sR − ŝR)(sR − ŝR)H

]}NA
(8.19)

=

(
1 +

1

4σ2
A

‖sR − ŝR‖2
)−NA

(8.20)

At high SNR regime, i.e., when‖sR − ŝR‖2/(4σ2
A) ≫ 1, the PEP in (8.18) may be upper

bounded by

P(sR → ŝR) ≤ (4σ2
A)

NA · 1

‖sR − ŝR‖2NA
(8.21)

By substituting (8.21) in (8.15), we can show thatE may be upper bounded in i.i.d.

Rayleigh fading channels by the Chernoff bound as,

E ≤ cD ·D (8.22)

wherecD is a constant that is not related to the labeling, and

D =
1

mNR · 2mNR

mNR∑

i=1

1∑

b=0

∑

sR∈X (b)
i

∑

ŝR∈X (b̄)
i

1

‖sR − ŝR‖2NA
(8.23)

whereD provides a measure for the decoding error bound in high SNR regime. By minimiz-

ing D in (8.23), we correspondingly minimize the error bound ofP(c → ĉ) in high SNR at

receiverA in (8.15).

Following the same discussions as for the error bounds at receiverA, a similar measure for

the decoding performance at receiverB in high SNR regime can be derived. For givenn and

thea priori known bitsc(a) = [cmNR
B , · · · , cnNR+1

B ], the demapping at stationB is performed

onS(c(a)), which is a subset of the constellationX . We define

DS(c
(a)) =

1

nNR · 2nNR

nNR∑

i=1

1∑

b=0

∑

sR∈S(b)
i

∑

ŝR∈S(b̄)
i

1

‖sR − ŝR‖2NB
(8.24)

whereS(b)
i andS(b̄)

i in (8.24) denote the two sets of symbol vectors that only differ on their

ith bit labeling within the subsetS(c(a)). Since the bits[cmNR
B , · · · , cnNR+1

B ] are random in

the system, all of their possible realizations must be considered. For givenn, the worst-case
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PEP bound, which determines the decoding performance in high SNR regime at stationB,

can be minimized by minimizing the following measure

Dn
S = max

c(a)
DS(c

(a)), (8.25)

for all possible realizations of[cmNR
B , · · · , cnNR+1

B ], where ciB ∈ {0, 1}, i = nNR +

1, · · · , mNR.

8.4.2 Optimization Criterion Based on Mutual Information

Another criterion for optimizing the signal labeling at therelay is based on themutual in-

formationbetween the transmitted signal and the received signal, which is also called the

constellation constrained capacity. For a given constellation and the number ofa priori

known bitsn in each transmit symbol, our goal is to maximize the mutual information be-

tween the transmit symbol vector and the received signals atstationsA andB. Unlike the

criterion based on the error bounds, the mutual informationcriterion is an information theo-

retical criterion. In order to achieve the mutual information, capacity-achieving codes, such

as turbo codes, are usually required to be applied in the system. Nevertheless, the mutual

information provides an optimization criterion for the system performance limit.

According to the signal model at stationsA in (8.2), the mutual information between the

transmitted symbol vectorsR at the relay and the received signal vectoryA with the given

channel matrixHA can be expressed as

I(sR;yA|HA) = H(sR|HA)−H(sR|yA,HA) (8.26)

= H(sR)−H(sR|yA,HA) (8.27)

whereH(sR) is the entropy of the transmitted symbol vector. Under the assumption that

each symbol vector is transmitted with equal probability, we haveH(sR) = log |X | = mNR,

where|X | denotes the cardinality of the constellationX . By using Bayes’ rule and observing

that the a priori probabilities for all symbol vectorssR are equal, we have

H(sR|yA,HA) = EsR,yA

[
log

1

p(sR|yA,HA)

]
(8.28)

= EsR,yA

[
log

∑
šR∈X p(yA |̌sR,HA)

p(yA|sR,HA)

]
. (8.29)
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So for the given channelHA, we have

I(sR;yA|HA) = H(sR)−H(sR|yA,HA) (8.30)

= mNR − EsR,yA

[
log

∑
šR∈X p(yA |̌sR,HA)

p(yA|sR,HA)

]
(8.31)

Here the noise vector at stationA is Gaussian, i.e.,nA ∼ CN (0, σ2
AINA). So we have

p(yA|sR,HA) =
1

(πσ2
A)

NA
exp

(
− 1

σ2
A

‖yA −HAsR‖2
)
. (8.32)

For a fast fading channel, the ergodic mutual informationI(sR;yA) can be expressed as

I(sR;yA) = EHA {I(sR;yA|HA)} (8.33)

= mNR − EsR,yA,HA

[
log

∑
šR∈X p(yA |̌sR,HA)

p(yA|sR,HA)

]
(8.34)

Here the expectation is taken with respect to the equally generated symbol vectorsR, the

Rayleigh fading channelHA and the correspondingly received signalyA according to (8.2).

For a given constellation, there is no closed-form expression for the mutual information.

However, the mutual information can be evaluated by Monte Carlo simulations according

to (8.34). In order to find the signal labeling that maximize the mutual informationI(sR;yA),

we can equivalently define the cost function as

D = EsR,yA,HA

[
log

∑
šR∈X p(yA |̌sR,HA)

p(yA|sR,HA)

]
, (8.35)

which is to be minimized. Note the mutual information and thecorresponding cost function

D depends on the noise varianceσ2
A, i.e., the SNR at stationA. Since we generate the signal

sR equally likely, we can write

EsR,yA,HA[·] =
1

|X |
∑

sR∈X
EyA,HA [·]. (8.36)

whereHA is generated according to an i.i.d. Rayleigh fading channel.

Following the same discussions as for the mutual information between the transmitted

symbol and the received signal at receiverA, the mutual information between the transmitted

symbol and the received signal at receiverB can also be derived. For givenn and thea

priori known bitsc(a) = [cmNR
B , · · · , cnNR+1

B ], the mutual information between the transmitted
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symbolsR and the received signalyB at receiverB can be expressed as

I(sR;yB|c(a)) = H(sR|c(a))−H(sR|yB, c
(a)) (8.37)

= nNR − EsR,yB,HB

[
log

∑
šR∈S(c(a)) p(yB |̌sR,HB)

p(yB|sR,HB)

]
(8.38)

Here the noise vector at stationB is Gaussian, i.e.,nB ∼ CN (0, σ2
BINA). So we have

p(yB|sR,HB) =
1

(πσ2
B)

NB
exp

(
− 1

σ2
B

‖yB −HBsR‖2
)
. (8.39)

The realizations ofc(a) happens with equal probability, the mutual informationI(sR;yB|c(a))
averaged over all the possible realizations ofc(a) can be expressed as

I(sR;yB) = Ec(a)

{
I(sR;yB|c(a))

}
(8.40)

=
1

2(m−n)NR

∑

c(a)

[
I(sR;yB|c(a))

]
. (8.41)

In order to maximize the mutual informationI(sR;yB), we can equivalently define the cost

function

Dn
S = Ec(a),sR,yB,HB

[
log

∑
šR∈S(c(a)) p(yB |̌sR,HB)

p(yB|sR,HB)

]
(8.42)

where the transmit symbol vectorsR is chosen in the constellation subsetS(c(a)) with equal

probability, and

Ec(a),sR,yA,HA
[·] = 1

|S(c(a))|
∑

sR∈S(c(a))
EyA,HA,c(a)[·]. (8.43)

8.4.3 Optimized Labeling

8.4.3.1 Optimized Labeling for Criterion Based on Error Bounds

In a two-way relaying system, the decoding performance at stationsA andB have to be both

considered. This is amulti-objective optimizationproblem. For givenm andn, we propose

to find labeling schemes that minimize the cost functionD + w ·Dn
S for the criterion based

on the error bounds, whereD andDn
S are defined in (8.23) and (8.25), respectively.w > 0

is the weighting factor. When the constellation size is large, search exhaustively for the

optimum labeling that minimizes the cost function becomes impossible. So we applied the

binary switching algorithm [200] to search for the optimized labeling (see Appendix 8.7.1).
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Table 8.1:Optimized 8PSK labeling scheme,NR = 2

0 7→ (x3, x4) 1 7→ (x6, x0) 2 7→ (x7, x7) 3 7→ (x1, x3)
4 7→ (x7, x0) 5 7→ (x2, x4) 6 7→ (x4, x3) 7 7→ (x6, x7)
8 7→ (x1, x1) 9 7→ (x4, x4) 10 7→ (x5, x3) 11 7→ (x1, x7)
12 7→ (x5, x5) 13 7→ (x0, x0) 14 7→ (x1, x6) 15 7→ (x4, x2)
16 7→ (x7, x1) 17 7→ (x2, x5) 18 7→ (x3, x3) 19 7→ (x5, x0)
20 7→ (x3, x5) 21 7→ (x6, x1) 22 7→ (x7, x6) 23 7→ (x2, x3)
24 7→ (x5, x6) 25 7→ (x0, x1) 26 7→ (x1, x0) 27 7→ (x5, x4)
28 7→ (x1, x2) 29 7→ (x4, x5) 30 7→ (x5, x2) 31 7→ (x0, x7)
32 7→ (x5, x1) 33 7→ (x0, x4) 34 7→ (x1, x4) 35 7→ (x4, x7)
36 7→ (x0, x5) 37 7→ (x4, x0) 38 7→ (x3, x7) 39 7→ (x0, x2)
40 7→ (x7, x5) 41 7→ (x2, x0) 42 7→ (x3, x0) 43 7→ (x7, x3)
44 7→ (x2, x1) 45 7→ (x6, x4) 46 7→ (x6, x3) 47 7→ (x3, x6)
48 7→ (x1, x5) 49 7→ (x4, x1) 50 7→ (x5, x7) 51 7→ (x0, x3)
52 7→ (x3, x1) 53 7→ (x0, x6) 54 7→ (x7, x2) 55 7→ (x4, x6)
56 7→ (x3, x2) 57 7→ (x6, x5) 58 7→ (x7, x4) 59 7→ (x2, x7)
60 7→ (x6, x6) 61 7→ (x2, x2) 62 7→ (x2, x6) 63 7→ (x6, x2)

Herew is set to be 1.

Considering the case that the relay employs 8PSK constellation on each antenna, we se-

lected the labeling schemes that work well for bothn = 2 and 1. WhenNR = 1, we found

the optimized labeling scheme as shown in Fig. 8.4(a). WhenNR = 2, the 8PSK symbol on

each antenna is indicated as in Fig. 8.4(b), and the optimized labeling assignment is shown in

Table 8.1, which shows howcR in decimal format is mapped to the symbol vector[xi, xj ]
T on

the two antennas. For example,cR = 000000 is mapped to the symbol vectorsR = [x3, x4]
T .

8.4.3.2 Optimized Labeling for Criterion Based on Mutual Information

For a given transmit symbol vector constellationX at the relay, the mutual information

I(sR;yA) between the transmit symbol vectorsR and the received signalyA does not depend

on the signal labeling. For the given number ofa priori known bitsn in each transmit

symbol vector, we only need to find the signal labeling that leads to the minimum of the cost

functionDn
S in (8.42). When the constellation is large, it is difficult tosearch exhaustively

for the optimum labeling that minimizes the cost functionDn
S in (8.42). So we applied the

binary switching algorithm [200] to search for the optimized labeling (see Appendix 8.7.1).

Since it only finds local minimum of cost functions, several round of random initialization

is required to search for the global optimum. It is found thatset-partitioning (SP) labeling

(as shown in Fig. 8.3(b)) is optimum for the 8PSK constellation, i.e., it has higher mutual
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Table 8.2:Required SNR for decoding at BER= 10−4

Labeling,NR = 1 A, 1.5bpt B, 1bpt B, 0.5bpt
Gray 15.3dB 15.9dB 17dB
SP 13.5dB 10.3dB 8.7dB

Opt. 10dB 9dB 8.7dB

Labeling,NR = 2 A, 3bpt B, 2bpt B, 1bpt
Gray 12.6dB 13dB 14dB
SP 10.7dB 7.3dB 5.5dB

Opt. 6.7dB 5dB 3.1dB

information than other labeling schemes whenn = 1, 2 for the 8PSK constellation. In fact,

SP labeling itself is a local minimum of the cost function.

8.5 Simulation Results

In this section, we show the performance of the proposed asymmetric data rate transmission

scheme. In particular, we compare the performance of the optimized labeling schemes with

conventional ones (Gray and SP labeling on each antenna). Atthe relay transmitter, we use a

convolutional encoder with coding rater = 1/2 and generator(4, 7)8 in octal representation.

The interleaver length is 12000 bits. The data from the relayis transmitted using the OFDM

technique with 1024 subcarriers. Each subcarrier corresponds to a Rayleigh fading channel

and the channel of each subcarrier remains constant for two OFDM symbols.

The simulated BER performance is shown in Fig. 8.5. The transmission on each relay

antenna employs 8PSK symbols (m = 3). Since the transmissions to stationsA andB do not

interfere with each other, we show their performance in the same figures. The “SNR” on the

x-axis representsPR/σ
2
A for transmission to StationA andPR/σ

2
B for transmission to Station

B. The comparison of the required SNR at BER= 10−4 is also shown in Table 8.2. Note the

optimized labeling is found by minimizing its error bound atthe high SNR regime.

Fig. 8.5(a) considers the caseNA = NR = NB = 1, where the information data rate to

StationA is r · mNR = 1.5bits/transmission (bpt), and the data rate to StationB is 1bpt

(n = 2) in Fig. 8.5(a). With the SP and the optimized labeling, Fig.8.5(a) shows that Station

B can decode at lower SNR compared to StationA by exploiting thea priori bit information

subject to certain BER constraints. When BER= 10−4, the required SNR at StationB is

3.2dB lower than that of StationA for SP labeling. The optimized labeling outperforms the

SP labeling by achieving lower BER at the high SNR regime (seeFig. 8.5(a)). However,
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it may lead to worse BER in low SNR. With Gray labeling, the decoding performance at

StationB does not improve compared to StationA . This is because the average Euclidean

distance betweenX (0)
i andX (1)

i is larger wheni = 2 and 3 than wheni = 1 for Gray labeling.

Fig. 8.5(b) shows the BER performance at stationsA andB whenNA = NR = NB = 2.

The information data rate to StationA is r · mNR = 3bpt, and the data rate to StationB is

2bpt (n = 2) or 1bpt (n = 1). Similar to Fig. 8.5(a), Gray labeling does not provide decoding

benefits at StationB compared to StationA. Compared to Fig. 8.5(a), the advantage of the

optimized labeling to the SP labeling is more obvious. Subject to BER= 10−4, the optimized

labeling achieves coding gains of 4dB to the SP labeling for transmission to StationA. The

BER bounds of 2bpt and 1bpt transmission for the optimized labeling converge at sufficiently

high SNR in Fig. 8.5(b), which are lower than that of SP and Gray labeling.

The comparison of the mutual information for different labeling schemes using 8PSK con-

stellation is shown in Fig. 8.6. Here we assume the channelsHA andHB are i.i.d. Rayleigh

fading. For the transmission to stationA, the mutual information only depends on the trans-

mit symbol constellation and not on the signal labeling. Forthe transmission to stationB, the

SP labeling outperforms other signal labeling schemes in the simulations. Fig. 8.6 compares

the mutual information the SP labeling scheme and the Gray labeling forn = 1 and 2. For

the SISO case (NR = NB = 1) as in Fig. 8.6(b), the SP labeling outperforms the Gray label-

ing by about 4dB whenn = 2 and the mutual information equals 1 bit. Whenn = 1 and the

mutual information equals 0.5 bits, the SP labeling outperforms the Gray labeling by about

8dB for the SISO case (NR = NB = 1). Similar observations can be obtained for the MIMO

case (NR = 2) in Fig. 8.6(b).

8.6 Chapter Summary and Conclusions

In this chapter, we proposed a novel asymmetric data rate transmission scheme for the BRC

phase of two-way DF relaying systems when network coding is applied. The idea is to exploit

thea priori bit information in the transmit symbols at the weaker link sothat it can decode

at lower SNR compared to the stronger link. The signal labeling is shown the be crucial for

the proposed scheme. We presented two criteria: one is basedon the decoding error bound

at high SNR, and the other is based on the mutual information to the weaker link receiver in

the BRC phase. The methods to find the optimized signal labeling were also presented for

systems with single or multiple antennas. We also showed that the optimized labeling can

significantly outperform the conventional ones in such scenario.
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8.7 Appendices

8.7.1 Binary Switching Algorithm

When the number of constellation points is large, the optimization of index assignments for

a given constellation based on some criterion may be intractable if an exhaustive search has

to be applied. The binary switching algorithm (BSA) was proposed for index optimization

in vector quantization [273]. In the communication systems, the BSA can be applied for the

index assignment problem so that an average cost is optimized [201]. However, since the

BSA only finds a local optimum that depends on the initial mapping given to the input of

the algorithm, several executions of the algorithm with random initial mappings as input are

required to generate the presumed global optimum.

The BSA works as follows: First give an initial signal labeling for a given constellation

to the BSA as an input. Calculate the cost of each symbol and the total cost for the signal

labeling according to the cost functions defined in Section 8.4 based on the error bounds

or the mutual information. Generate an ordered list of the symbols, sorted by decreasing

costs. Pick the symbol with the highest cost in the list, which has the strongest contribution

to a “bad” performance. Try to switch the index of this symbolwith the index of another

symbol, such that the decrease of the total cost due to switchis as large as possible. If no

switch partner can be found for the symbol with the highest cost, the symbol with the second

highest cost will be tried to be switched next. This process continues for symbols in the list

with decreasing costs until a symbol is found that allows a switch that lowers the total cost.

After a switch is performed, a new ordered list of symbols is generated, and the algorithm

continues as described above until no further reduction of the total cost is possible. Since the

BSA only finds a local optimum, several algorithm executionswith random initial mappings

may yield the presumed global optimum.

The BSA algorithm for finding the optimized labeling based onthe error bounds is sum-

marized in Algorithm 8. The BSA algorithm for finding the optimized labeling based on the

mutual information is summarized in Algorithm 9. We only discuss the BSA for finding the

optimized labeling according to the cost function at station B.
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Algorithm 8 Binary switching algorithm for finding the optimized labeling based on the
error bounds

Inputm, n, NR, NB, the constellation points and initial labeling.
repeat

1. Calculatedk =
∑

ŝR
‖sR − ŝR‖−2NB , wheresR ∈ X is thekth (1 ≤ k ≤ 2mNR)

symbol vector in the constellation according to the currentlabeling assignment.̂sR is
the symbol vector whose labeling differs with that ofsR by one bit (in the bit position
1, . . . , nNR).
2. Calculated =

∑
k dk.

3. Sortdk in descending order. Let̃k = π(k) represent the ordered list of indices (i.e.,
1̃ = π(1) is the index of the biggestdk and2̃m = π(2m) is the index of the smallestdk )
for k = 1 : 2mNR do

Try: Swap the symbol vectors corresponding to the labeling ofk̃ andk′, ∀k′ 6= k̃,
and recalculatedj =

∑
ŝR
‖sR − ŝR‖−2NB using the new labeling for eachsR ∈ X .

Calculated(k′) =
∑

j dj.
if mink′(d(k

′)) < d then
Swap the symbol vectors corresponding to the labeling ofk̃ andkmin, wherekmin =
argmink′ d(k

′). Use it as the new labeling scheme.
jump out of thefor loop.

end if
end for

until k = 2mNR andmink′(d(k
′)) > d (i.e., we come to the smallestdk and there is no

labeling to be switched for decreasing the total cost.)
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Algorithm 9 Binary switching algorithm for finding the optimized labeling based on the
mutual information

Inputm, n, NR, NB, the constellation points and initial labeling.
repeat

1. Calculatedk = EyB,HB

[
log

∑
šR

p(yB |̌sR,HB)

p(yB|sR,HB)

]
, wheresR ∈ X is thekth (1 ≤ k ≤ 2mNR)

symbol vector in the constellation according to the currentlabeling assignment.̌sR is the
symbol vector whose labeling differs with that ofsR only in the bit position1, . . . , nNR.
2. Calculated =

∑
k dk.

3. Sortdk in descending order. Let̃k = π(k) represent the ordered list of indices (i.e.,
1̃ = π(1) is the index of the biggestdk and2̃m = π(2m) is the index of the smallestdk )
for k = 1 : 2mNR do

Try: Swap the symbol vectors corresponding to the labeling ofk̃ andk′, ∀k′ 6= k̃, and

recalculatedj = EyB,HB

[
log

∑
šR

p(yB |̌sR,HB)

p(yB|sR,HB)

]
using the new labeling for eachsR ∈ X .

Calculated(k′) =
∑

j dj.
if mink′(d(k

′)) < d then
Swap the symbol vectors corresponding to the labeling ofk̃ andkmin, wherekmin =
argmink′ d(k

′). Use it as the new labeling scheme.
jump out of thefor loop.

end if
end for

until k = 2mNR andmink′(d(k
′)) > d (i.e., we come to the smallestdk and there is no

labeling to be switched for decreasing the total cost.)
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Chapter 9

Conclusions and Outlooks

This dissertation has considered the communication technologies in relaying systems with

multiple antennas, especially in the MIMO two-way relayingsystems. Both information-

theoretic aspects and practical communication strategieshave been proposed and analyzed.

For the information-theoretic analysis, an analytical framework for the coverage of MIMO

relaying systems based on an outage capacity criterion has been proposed. For MIMO two-

way relaying systems, different data combining schemes at the relay have been compared

based on their achievable rates. In addition, optimal time-division (TD) strategies for MIMO

two-way decode-and-forward (DF) relaying systems have been proposed, which consider-

ably increases the achievable rate regions of the system compared to the equal TD strategy.

For the practical transmission schemes, we proposed the self-interference (SI) aided channel

estimation and data detection schemes for the broadcast phase of two-way DF relaying sys-

tems. Such schemes exploit the SI in two-way DF relaying systems when the superposition

coding (SPC) scheme is applied. When the network coding scheme is applied in two-way

DF relaying systems, we proposed an asymmetric data rate transmission scheme that utilizes

the known data bits at the receivers. Such a scheme exploits thea priori known bits at the

weak link receiver in the BRC phase.

9.1 Conclusions

After introducing the motivation of the dissertation in Chapter 1, the state-of-the-art sum-

mary of recent developments in modern wireless communications has been presented in

Chapter 2, where we focused on three topics, namely, multi-antenna communications, relay

communications and the two-way relaying communication. Those topics laid the founda-

tion for the following discussions on MIMO relaying systemsand MIMO two-way relaying

systems in the rest of the dissertation.

235



Chapter 9 Conclusions and Outlooks

Extending the coverage of cellular systems by placing dedicated relay stations has been

an important motivation for incorporating relaying communication into cellular networks.

An analytical framework for investigating the coverage extension in cellular systems using

MIMO relays has been presented in Chapter 3, where we proposed the concepts ofcoverage

angleandcircular coverage rangeto describe the relation between the number of relay and

the coverage extension in a cellular relaying network. The quality of service (QoS) require-

ment that determines the circular coverage range is based onan achievable outage capacity

at the mobile stations. According to the QoS requirement, weprovided upper and lower

bounds, as well as an approximation, for the maximum circular coverage range when uni-

form power is allocated at the transmitters. Those proposals were verified by simulations.

In general, there are two ways of extending the coverage of cellular network: the first is

to use more relay stations and the second is to place more antennas at those stations. Our

simulations also showed that if the first hop channel is already very good, as is the case for

most relaying systems, placing more antennas at the base station does not provide substantial

additional coverage extension. In addition, if the channelknowledge is available at the trans-

mitters for MIMO relaying systems, additional coverage range can be achieved by using the

optimum transmit signal covariance matrices.

In modern wireless communication systems, e.g., cellular systems and wireless local

area networks (WLAN), bidirectional information flows are common transmission scenar-

ios where the two-way relaying protocols can be applied. Thetransmission strategies and

the achievable rates for MIMO two-way amplify-and-forward(AF) and decode-and-forward

(DF) relaying protocols have been discussed in Chapter 4. Equal time (or frequency) re-

sources are allocated to the multiple access (MAC) and broadcast (BRC) phases. For the

MIMO two-way DF relaying protocol, we discussed the different data combining schemes

at the relay in the BRC phase, i.e., the superposition coding(SPC) scheme and the network

coding scheme. Furthermore, we presented a method for characterizing the capacity region

in the BRC phase channel, i.e., the bidirectional broadcastchannel, and calculating the maxi-

mum achievable sum rate of MIMO two-way DF relaying systems.We showed that the two-

way relaying protocol achieves substantial improvement inthe spectral efficiency compared

to conventional unidirectional relaying protocols whether or not the channel knowledge is

available at the relay. By comparing the achievable sum rates when the channel knowledge

is and is not available at the relay, we found that their difference increases with increasing ra-

tio between number of relay antennas and number of node antennas. We further showed that

the network coding scheme achieves nearly the optimal sum rate when the transmit channel

knowledge is available at the relay. Whether the transmit channel knowledge is or is not
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available at the relay, the two-way DF relaying protocol cansignificantly outperforms the

two-way AF relaying protocol.

For the two-way DF relaying protocol, the MAC and BRC phase share the time (or fre-

quency) resources. The allocation of the time (or frequency) resources among the MAC

and BRC phases is called thetime-division(TD) strategies. Chapter 4 considered equal TD

strategies. In Chapter 5, the optimum TD strategies for MIMOtwo-way DF relaying sys-

tems were discussed. The methods that maximizes the achievable rate regions under the

peak power constraint and the average power constraint wereproposed. Simulation results

showed that the achievable rate region can be significantly increased by choosing the opti-

mum TD strategies. At high signal-to-noise ratio (SNR), theoptimum TD strategies improve

the ergodic sum rate when the MAC phase is the bottleneck of the system, e.g., when the sum

of the number of antennas at the user stations is larger than that of the relay. Otherwise, the

gain in ergodic sum rate by using the optimum TD strategies issmall. However, the average

achievable rate of one user given the QoS requirement of the other can still be increased a

lot by using optimum TD strategies under both peak power and average power constraints.

In wireless communications, we are not only interested in the performance limits described

from the information-theoretic aspects, but also practical transmission schemes that can be

applied to real-world systems. The received data at the userstations contain the known data

calledself-interference(SI). The SI is unique in the two-way relaying protocols. TheSI may

be in the form of data symbols for the SPC scheme, or it may be inthe form of data bits

when the network coding scheme is applied. When the SPC scheme is applied in the two-

way DF relaying protocol, we proposed the novel SI-aided channel estimation schemes for

the BRC phase in Chapter 6. The channel estimates of the proposed schemes are obtained

by exploiting the known data symbols in the SI that are inherent in the considered two-way

DF relaying scenario. The proposed SI-aided channel estimation can be applied without

pilots, which achieves higher bandwidth efficiency. On the other hand, the SI can also be

used together with pilots to offer superior channel estimation performances than schemes

that purely based on pilots. To the best of our knowledge, this is the first scheme thatutilizes

SI for channel estimation. Besides proposing the ideas of exploiting SI to estimate the chan-

nel, we provided the whole SI-aided iterative receiver structure. The performance analysis

and simulation results showed that when the coherence interval in block-fading channels or

the observation frame length in time-varying channels is long enough, the SI-aided chan-

nel estimation can eventually outperform the pure pilot-aided channel estimation in realistic

scenarios. Our proposed scheme is particularly suitable for systems with large number of

antennas and subcarriers or with high mobility stations, where the resource consumed by
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conventional pilot-aided channel estimation had been considered as a big hindrance for the

practical implementation of the system. We showed how SI-aided linear channel estimator

could be integrated in commonly used receivers, e.g., the iterative receiver structure for chan-

nel estimation and data detection. Considering SI, we showed that only small modifications

to existing receiver structures are required. The proposedscheme is particularly interesting

for multi-carrier systems because SI can track the channel in all subcarriers, and there is no

need of doing interpolations in time and frequency as for pilot-aided schemes.

In Chapter 7, we derived achievable rate expressions for bidirectional broadcast channels

of two-way relaying systems when the SI-aided channel estimation scheme is applied. This

scheme utilizes the SI to obtain an initial estimate of the channel and use data-aided ap-

proaches to improve the channel estimates. Simulation results showed that our scheme can

achieve higher rates compared to traditional pilot-aided channel estimation schemes. The

gain is relatively high in the low SNR regime. In high SNR regime, the performance of

the SI-aided channel estimation scheme for 4QAM modulations is nearly as good as when

perfect channel knowledge is available at the receivers.

We proposed a novel asymmetric data rate transmission scheme for the BRC phase of

two-way DF relaying systems when network coding is applied in Chapter 8. The idea is

to exploit thea priori bit information in the transmit symbols at the weaker link sothat it

can decode at lower SNR compared to the stronger link. We alsoshowed that the optimized

labeling can significantly outperform the conventional ones in such scenario. We discussed

two optimization criteria in this chapter: one is based on the error bound when the receive

SNR is asymptotically high, and the other is based on the mutual information when practi-

cal modulation schemes are applied. For the error bound criterion, we proposed optimized

symbol labeling for 8PSK modulations considering both SISOand MIMO systems found by

using the binary switching algorithm. For the mutual information criterion, we showed that

the set-partitioning (SP) labeling is optimal compared to other labeling schemes.

9.2 Future Work

Many aspects of the analysis and design of communication techniques in spectrally efficient

MIMO relaying systems have been elaborated in this dissertation. However, much work re-

mains to be done for the real-world implementation of MIMO relaying networks, especially

MIMO two-way relaying networks. The future work on this research subject may include

the following categories.
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For the analysis of coverage in cellular MIMO relaying networks, the impact of intracell

and intercell interference may be considered in the future work. In this case, neighboring

cells or different relay stations in the same cell may use thesame frequency channel to serve

their mobile users at the same time. Under this circumstance, multiple base stations or relay

stations may transmit to the same user simultaneously, and coordination between those base

or relay stations may be necessary. This will make the coverage analysis more complicated.

For the transmission techniques in MIMO two-way relaying system, the following topics

may be important for further research:

• When the network coding scheme is applied in the BRC phase of two-way DF relaying

systems, we only require the combined bit information afterthe XOR operation. It may

be suboptimum to separately decode the two sets of data from the two user stations in

the MAC phase as revealed by [161]. The lattice coding schemeproposed in [161]

is of theoretical value. Practical coding design combiningthe network coding in the

MAC phase, especially for wireless fading channels, may be the future direction of

research.

• For two-way DF relaying systems, the relay has the soft bit information available after

decoding in the MAC phase is completed. Such information is lost if only the XOR-ed

bits after hard decision are transmitted back to the two userstations in the BRC phase.

Transmission schemes that can retain the soft decoding information for the BRC phase

transmission may further improve the system performance.

• For practical implementation of two-way relaying systems,synchronization for the

transmission of the user stations in the MAC phase is an important issue. However,

most previous work only considers perfect synchronization. Practical synchronization

schemes for the two-way relaying systems are called for in future research.
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Acronyms

3GPP Third Generation Partnership Project

4G Fourth Generation

AF Amplify-and-Forward

APP A Posteriori Probability

AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv

BER Bit Error Rate

BICM-ID Bit-Interleaved Coded Modulation with Iterative Decod-

ing

BLAST Bell Laboratories Layered Space-Time

BPSK Binary Phase-Shift Keying

BRC Broadcast

BS Base Station

BSA Binary Switching Algorithm

CDMA Code Division Multiple Access

CF Compress-and-Forward

CRC Cyclic Redundancy Check

CSI Channel State Information

CSIT Channel State Information at the Transmitter

D-BLAST Diagonal-Bell Laboratories Layered Space-Time

DAF Decode-Amplify-Forward

DemF Demodulate-and-forward

DF Decode-and-Forward

DFD Division Free Duplex
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Acronyms

DFE Decision Feedback Equalizer

DMT Diversity-Multiplexing Tradeoff

DPC Dirty Paper Coding

DUSTM Differential Unitary Space-Time Modulation

EASY-C (Enablers for Ambient Services and Systems Part C

EDGE Enhanced Data GSM Environment

EF Estimate-and-Forward

FDD Frequency-Division Duplexing

FIM Fisher Information Matrix

GSM Global System for Mobile Communications

i.i.d. independent and identically distributed

IEEE Institute of Electrical and Electronics Engineers

IST WINNER Information Society Technologies Wireless World Ini-

tiative New Radio

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

LMMSE Linear Minimum Mean Square Error

LS Least-Square

LTE Long Term Evolution

MAC Multiple Access

MANET Mobile Ad Hoc Network

MAP Maximum A Posteriori Probability

MARC Multi-Access Relay Channel

MED Minimum Euclidean Distance

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MS Mobile Station
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Acronyms

MSE Mean Square Error

MTS Mobile Telephone Service

ODMA Opportunity Driven Multiple Access

OFDM Orthogonal Frequency Division Multiplex

OFDMA Orthogonal Frequency Division Multiple Access

OSTBC Orthogonal Space-Time Block Codes

PDF Probability Density Function

PEP Pairwise Error Probability

PHY Physical Layer

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QoS Quality of Service

QPSK Quadrature Phase-Shift Keying

RACooN Radio Access with Cooperative Nodes

RS Relay Station

SI Self-Interference

SIMO Single-Input Multiple-Output

SINR Signal-to-Interference-plus-Noise Ratio

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

SP Set Partitioning

SPC Superposition Coding

STBC Space-Time Block Codes

STTC Space-Time Trellis Codes

SVD Singular Value Decomposition

TD Time-Division

TDD Time-Division Duplexing

TDMA Time Division Multiple Access
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Acronyms

UMTS Universal Mobile Telecommunications System

V-BLAST Vertical-Bell Laboratories Layered Space-Time

WF Water-filling

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

XOR Exclusive or

ZF Zero-Forcing
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Notation

N,R,C The set of all natural, real and complex numbers, respec-

tively.

RN
+ The set of allN-dimensional nonnegative real numbers.

CM×N The set ofM ×N matrices with complex entries.

x Vectorx, boldface lowercase letters denote vectors.

‖x‖ Euclidean norm of vectorx, i.e.,‖x‖ =
√
xHx.

X Matrix X, boldface uppercase letters denote matrices.

XT Transpose of the matrixX.

XH Complex conjugate and transpose (Hermitian) of the

matrixX.

X∗ Element-wise conjugate of the matrixX.

X−1 Inverse of the matrixX.

X† Moore-Penrose pseudo-inverse of the matrixX.

det(X) Determinant of the matrixX.

tr(X) Trace of the matrixX.

‖X‖F Frobenius norm of matrixX.

[X]ij i, jth component of the matrixX.

X � 0 Matrix X is positive semidefinite.

I or IN Identity matrix and identity matrix of dimensionN×N ,

respectively.

vec(X) Vector obtained by stacking the columns of the matrix

X.

x Scalarx.

{a} The sequence composed of elementsa.

(x)+ Positive part of the real scalarx, i.e.,(x)+ = max{0, x}.

I(x; y) Mutual information between random variablesx andy.

H(x) Entropy of random variablesx.
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Notation

CN (m,K) Circularly symmetric complex Gaussian vector distribu-

tion with meanm and covariance matrixK.

E [·] Mathematical expectation.

Ex {y} The expectation ofy with respect to the random variable

x.

P(·) Probability.

p(x) Probability density function of the random variablex.

O (g(x)) Landau symbol to denote that, iff(x) = O (g(x)), then

for sufficiently large values ofx, f(x) is at most a con-

stant multiplied byg(x) in absolute value.

Q(x) The Q-function, i.e.,Q(x) = 1√
2π

∫∞
x

exp(−t2/2) dt.

G(·, ·) The regularized incomplete gamma function.

γ(·, ·) The lower incomplete Gamma function.

Γ(·) The Gamma function.

|A| Cardinality of the setA, i.e., number of elements inA.

arg Argument.

max, min Maximum and minimum.

sup, inf Supremum (lowest upper bound) and infimum (highest

lower bound).

lim Limit.

log(·) Logarithm (with base 2 unless otherwise stated).

ln(·) Natural logarithm.

max* The max-star operator, wheremax*(x, y) =

max(x, y) + ln (1 + exp(− |x− y|)).
conv C The convex hull of setC.

⊗ Kronecker product.

⊕ Exclusive OR.

≈ Approximately equal to.

≫ Much greater than.

∼ Distributed according to or asymptotically equivalent to.

∝ Equal up to a scaling factor (proportional).

7→ Map to.

∇ Gradient.

246



Bibliography

[1] “Generalized linear precoder and decoder design for MIMO channels using the

weighted MMSE criterion.”

[2] “IEEE 802.11n pre-draft,” IEEE 802.11n Task Group, pre-release.

[3] “IEEE Std 802.16e: Air interface for fixed and mobile broadband wireless access

systems,” IEEE WirelessMAN 802.16, Tech. Rep., Feb. 2006.

[4] “IEEE 802.11s project,” http://www.open80211s.org, 2009.

[5] “IEEE Std 802.16j: Air interface for broadband wirelessaccess systems – multihop

relay specification,” IEEE 802.16 Relay Task Group, Tech. Rep., June 2009.

[6] “Evolved universal terrestrial radio access (E-UTRA);LTE physical layer; general

description,” ETSI, Tech. Rep., Mar. 2010, v9.1.0.

[7] I. Abou-Faycal and M. Médard, “Optimal uncoded regeneration for binary antipodal

signaling,” inProc. IEEE Intl. Conf. on Commun. (ICC), vol. 2, Paris, France, Jun.

20–24, 2004, pp. 742–746.

[8] M. Abuthinien, S. Chen, A. Wolfgang, and L. Hanzo, “Jointmaximum likelihood

channel estimation and data detection for MIMO systems,” inProc. IEEE Intl. Conf.

on Commun. (ICC), Glasgow, UK, June 24–28, 2007.

[9] R. Ahlswede, “Multi-way communication channels,” inProc. 2nd IEEE Int. Sympo-

sium on Inf. Theory, Thakadsor, Armenian SSR, Sept. 1971, pp. 23–52.

[10] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information flow,”IEEE

Trans. Inform. Theory, vol. 46, no. 4, pp. 1204–1216, July 2000.

[11] J. Akhtman and L. Hanzo, “Maximum-likelihood enhancedsphere decoding for

MIMO-OFDM,” in OFDM and MC-CDMA: A Primer. John Wiley & Sons, 2006,

pp. 253–302.

[12] S. Alamouti, “A simple transmit diversity technique for wireless communications,”

IEEE J. Select. Areas Commun., vol. 16, pp. 1451–1458, Oct. 1998.

247



Bibliography

[13] J. B. Andersen, “Array gain and capacity for known random channels with multiple

element arrays at both ends,”IEEE J. Select. Areas Commun., vol. 18, no. 11, pp.

2172–2178, Nov. 2000.

[14] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,”IEEE Trans. Inform. Theory, vol. 20, pp. 284–287,

Mar. 1974.

[15] I.-J. Baik and S.-Y. Chung, “Network coding for two-wayrelay channels using lat-

tices,” in Proc. IEEE Intl. Conf. on Commun. (ICC), Beijing, China, May 19–23,

2008.

[16] J. Baltersee, G. Fock, and H. Meyr, “Achievable rate of MIMO channels with data-

aided channel estimation and perfect interleaving,”IEEE J. Select. Areas Commun.,

vol. 19, no. 12, pp. 2358–2368, Dec. 2001.

[17] X. Bao and J. Li, “Efficient message relaying for wireless user cooperation: decode-

amplify-forward (DAF) and hybrid DAF and coded-cooperation,” IEEE Trans. Wire-

less Commun., vol. 6, no. 11, pp. 3975–3984, 2007.

[18] D. Baumet al., “Final report on link level and system level channel models,” Tech.

Rep. IST-WINNER D 5.4, Nov. 2005.

[19] A. Behbahani, R. Merched, and A. Eltawil, “Optimizations of a MIMO relay net-

work,” IEEE Trans. Signal Process., vol. 56, no. 10, pp. 5062–5073, Oct. 2008.

[20] T. Beniero, S. Redana, J. Hamalainen, and B. Raaf, “Effect of relaying on coverage

in 3gpp lte-advanced,” in69th IEEE Veh. Tech. Conf. (VTC), Barcelona, Spain, April

26–29, 2009.

[21] S. Berger and A. Wittneben, “Cooperative distributed multiuser MMSE relaying in

wireless ad-hoc networks,” inProc. Asilomar Conf. Signals, Syst., Comput., Pacific

Grove, CA, Oct. 30–Nov. 3, 2005.

[22] ——, “Experimental performance evaluation of multiuser zero forcing relaying in

indoor scenarios,” inProc. 61th IEEE Veh. Tech. Conf. (VTC), May 2005.

[23] D. P. Bertsekas,Nonlinear Programming, 2nd ed. Athena Scientific, 1999.

[24] E. Biglieri, R. Calderbank, and A. Constantinides,MIMO wireless communications.

Cambridge University Press, 2007.

[25] E. Biglieri, J. Proakis, S. Shamai, and D. di Elettronica, “Fading channels:

Information-theoretic and communications aspects,”IEEE Trans. Inform. Theory,

vol. 44, no. 6, pp. 2619–2692, Oct. 1998.

248



Bibliography

[26] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: A

study of estimator tradeoffs and optimal training signals,” IEEE Trans. Signal Pro-

cess., vol. 54, no. 3, pp. 884–893, Mar. 2006.

[27] H. Bölcskei, D. Gesbert, and A. J. Paulraj, “On the capacity of OFDM-based spatial

multiplexing systems,”IEEE Trans. Commun., vol. 50, no. 2, pp. 225–234, Feb. 2002.

[28] H. Bölcskei, R. U. Nabar, O. Oyman, and A. J. Paulraj, “Capacity scaling laws in

MIMO relay networks,”IEEE Trans. Wireless Commun., vol. 5, no. 6, pp. 1433–1444,

June 2006.

[29] H. Bölcskei, R. W. Heath Jr., and A. J. Paulraj, “Blind channel identification and

equalization in OFDM-based multi-antenna systems,”IEEE Trans. Signal Process.,

vol. 50, no. 1, pp. 96–109, Jan. 2002.

[30] H. Bölcskei and A. J. Paulraj,“The Communications Handbook”, 2nd ed. CRC

Press, 2002, ch. Multiple-input multiple-output (MIMO) wireless systems, pp. 90.1 –

90.14.

[31] J. Bonnet and G. Auer, “Optimized iterative channel estimation for OFDM,” inProc.

64th IEEE Veh. Tech. Conf. (VTC), Montreal, Canada, Sept. 25–28, 2006.

[32] M. Borgmann and H. Bölcskei, “On the capacity of noncoherent wideband MIMO-

OFDM systems,” inProc. IEEE Int. Symposium on Inf. Theory, Adelaide, Australia,

Sept. 2005, pp. 651–655.

[33] S. Boyd and L. Vandenberghe,Convex Optimization. Cambridge University Press,

2004.

[34] D. Brennan, “Linear diversity combining techniques,”Proceedings of the IRE, vol. 47,

no. 6, pp. 1075–1102, June 1959.

[35] A. G. C. Berrou and P. Thitimajshima, “Near shannon limit error-correcting coding

and decoding: Turbo-codes.”

[36] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved coded modulation,”IEEE Trans.

Inform. Theory, vol. 44, no. 3, pp. 927–945, May 1998.

[37] A. Chakrabarti, A. De Baynast, A. Sabharwal, and B. Aazhang, “Low density parity

check codes for the relay channel,”IEEE J. Select. Areas Commun., vol. 25, no. 2, pp.

280–290, 2007.

[38] R. W. Chang, “Synthesis of band-limited orthogonal signals for multichannel data

transmission,”Bell System Techn. J., vol. 45, pp. 1775–1796, Dec. 1966.

249



Bibliography

[39] L. Chebli, C. Hausl, G. Zeitler, and R. Koetter, “Cooperative uplink of two mobile sta-

tions with network coding based on the WiMAX LDPC code,” inProc. IEEE Global

Commun. Conf. (GLOBECOM), Honolulu, USA, Nov. 30 – Dec. 4, 2009.

[40] C.-J. Chen and L.-C. Wang, “Coverage and capacity enhancement in multiuser MIMO

systems with scheduling,” inProc. IEEE Global Commun. Conf. (GLOBECOM), Dal-

las, TX, Nov. 29 – Dec. 3, 2004.

[41] D. Chen and J. Laneman, “The diversity-multiplexing tradeoff for the multiaccess

relay channel,” inProc. Conf. on Information Sciences and Systems (CISS), March

22–24, 2006, pp. 1324–1328.

[42] ——, “Modulation and demodulation for cooperative diversity in wireless systems,”

IEEE Trans. Wireless Commun., vol. 5, no. 7, p. 1785, July 2006.

[43] S. Chen, M. A. Beach, and J. P. McGeehan, “Division-freeduplex for wireless appli-

cations,”Electron. Lett., vol. 34, no. 2, pp. 147–148, Jan. 1998.

[44] W. Chen, L. Dai, K. Letaief, and Z. Cao, “A unified cross-layer framework for re-

source allocation in cooperative networks,”IEEE Trans. Wireless Commun., vol. 7,

no. 8, pp. 3000–3012, Aug. 2008.

[45] M. Coldrey and P. Bohlin, “Training-based MIMO systems– part I: Performance

comparison,”IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5464 – 5476, Nov.

2007.

[46] ——, “Training-based MIMO systems: Part II – improvements using detected symbol

information,” IEEE Trans. Signal Process., vol. 56, no. 1, pp. 296 – 303, Jan. 2008.

[47] M. Costa, “Writing on dirty paper,”IEEE Trans. Inform. Theory, vol. 29, no. 3, pp.

439–441, May 1983.

[48] T. M. Cover and A. El Gamal, “Capacity theorems for the relay channel,”IEEE Trans.

Inform. Theory, vol. 25, pp. 572–584, Sept. 1979.

[49] T. M. Cover and J. A. Thomas,Elements of Information Theory. John Wiley & Sons,

1991.

[50] CTIA, “CTIA semi-annual wireless industry survey,” http://www.ctia.org, 2009.

[51] T. Cui, T. Ho, and J. Kliewer, “Memoryless relay strategies for two-way relay chan-

nels,” IEEE Trans. Commun., vol. 57, no. 10, pp. 3132–3143, Oct. 2009.

[52] T. Cui, F. Gao, T. Ho, and A. Nallanathan, “Distributed space¨ctime coding for two-

way wireless relay networks,”IEEE Trans. Signal Process., vol. 57, no. 2, pp. 658–

671, Feb. 2009.

250



Bibliography

[53] T. Cui, F. Gao, and C. Tellambura, “Differential modulation for two-way wireless

communications: a perspective of differential network coding at the physical layer,”

IEEE Trans. Commun., vol. 57, no. 10, pp. 2977–2987, Oct. 2009.

[54] O. Damen, A. Chkeif, and J.-C. Belfiore, “Lattice code decoder for space-time codes,”

IEEE Commun. Lett., vol. 4, no. 5, pp. 161–163, May 2000.

[55] Z. Dawy, S. Davidovíc, and I. Oikonomidis, “Coverage and capacity enhancement of

CDMA cellular systems via multihop transmission,” inProc. IEEE Global Commun.

Conf. (GLOBECOM), San Francisco, CA, Dec. 1–5, 2003.

[56] X. Deng, A. M. Haimovich, and J. Garcia-Frias, “Decision directed iterative chan-

nel estimation for MIMO systems,” inProc. IEEE Intl. Conf. on Commun. (ICC),

Anchorage, AK, May 11–15, 2003.

[57] A. Dinnis and J. Thompson, “Increasing high data rate coverage in cellular systems

using relaying,” in60th IEEE Veh. Tech. Conf. (VTC), vol. 5, Los Angeles, CA, Sep.

26–29, 2004, pp. 3424–3428.

[58] M. Dohler and Y. Li,Cooperative Communications: Hardware, Channel and PHY.

John Wiley & Sons, 2010.

[59] M. Dong, L. Tong, and B. Sadler, “Optimal insertion of pilot symbols for transmis-

sions over time-varying flat fading channels,”IEEE Trans. Signal Process., vol. 52,

no. 5, pp. 1403–1418, May 2004.

[60] M. Effros, T. Ho, and S. Kim, “A tiling approach to network code design for wireless

networks,” inProc. Inform. Theory Workshop (ITW), Punta del Este, Uruguay, Mar.

13 – 17, 2006, pp. 62–66.

[61] P. Elia, K. Kumar, S. Pawar, P. Kumar, and H.-F. Lu, “Explicit space-time codes

achieving the diversity-multiplexing gain tradeoff,”IEEE Trans. Inform. Theory,

vol. 52, no. 9, pp. 3869–3884, 2006.

[62] ETSI, “Universal mobile telecommunications system (UMTS): Multiplexing and

channel coding (TDD),” Tech. Rep. 3GPP TS 25.222 version 8.4.0, Mar. 2009.

[63] K. Fan, “Minimax theorems,”Proceedings of the National Academy of Sciences of the

United States of America, vol. 39, no. 1, pp. 42–47, Jan. 15, 1953.

[64] R. F. H. Fischer, C. Windpassinger, A. Lampe, and J. B. Huber, “Space-time transmis-

sion using Tomlinson-Harashima precoding,” inProc. 4th ITG Conference on Source

and Channel Coding, pp. 139–147.

251



Bibliography

[65] G. J. Foschini, “Layered space-time architecture for wireless communication in a fad-

ing environment when using multi-element antennas,”Bell System Techn. J., vol. 1,

no. 2, pp. 41–59, Autumn 1996.

[66] G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading en-

vironment when using multiple antennas,”Wireless Personal Communications, vol. 6,

no. 3, pp. 311–335, Mar. 1998.

[67] G. Foschini, G. Golden, R. Valenzuela, and P. Wolniansky, “Simplified processing

for high spectral efficiency wireless communication employing multi-element arrays,”

IEEE J. Select. Areas Commun., vol. 17, no. 11, pp. 1841–1852, Nov. 1999.

[68] A. Fujiwara, S. Takeda, H. Yoshino, and T. Otsu, “Area coverage and capacity en-

hancement by multihop connection of CDMA cellular network,” in Proc. 56th IEEE

Veh. Tech. Conf. (VTC), Vancouver, Canada, Sept. 24–28, 2002.

[69] K. Fukuda, “The CDD solver,” http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.

html, Aug. 2005.

[70] R. G. Gallager, “Low density parity check codes,” MIT Press, Cambridge, Mass, 1963,

monograph.

[71] F. Gao, T. Cui, and A. Nallanathan, “On channel estimation and optimal training de-

sign for amplify and forward relay networks,”IEEE Trans. Wireless Commun., vol. 7,

no. 5, pp. 1907–1916, May 2008.

[72] ——, “Optimal training design for channel estimation indecode-and-forward relay

networks with individual and total power constraints,”IEEE Trans. Signal Process.,

vol. 56, no. 12, pp. 5937–5949, Dec. 2008.

[73] F. Gao, R. Zhang, and Y.-C. Liang, “On channel estimation for amplify-and-forward

two-way relay networks,” inProc. IEEE Global Commun. Conf. (GLOBECOM), New

Orleans, LA, Nov. 30 – Dec. 4, 2008.

[74] M. Gastpar and M. Vetterli, “On the capacity of wirelessnetworks: The relay case,”

in Proc. IEEE INFOCOM, New York, USA, Jun. 23–27 2002, pp. 1577–1586.

[75] D. Gesbert, M. Kountouris, R. Heath, C. Chae, and T. Salzer, “From single user to

multiuser communications: Shifting the MIMO paradigm,”IEEE Signal Processing

Mag., vol. 24, no. 5, pp. 36–46, 2007.

[76] G. Golden, G. Foschini, R. Valenzuela, and R. Wolniansky, “Detection algorithm and

initial laboratory results using V-BLAST space-time communication architecture,”

Electron. Lett., vol. 35, no. 1, pp. 14–15, Jan. 1999.

252



Bibliography

[77] A. Goldsmith,Wireless Communications. New York, NY, USA: Cambridge Univer-

sity Press, 2005.

[78] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath,“Capacity limits of MIMO

channels,”IEEE J. Select. Areas Commun., vol. 21, no. 5, pp. 684–702, June 2003.

[79] J. S. Gomadam, K.S., “Duality of MIMO multiple access channel and broadcast chan-

nel with amplify-and-forward relays,”IEEE Trans. Commun., vol. 58, no. 1, pp. 211–

217, Jan. 2010.

[80] K. Gomadam and S. Jafar, “Optimal relay functionality for SNR maximization in

memoryless relay networks,”IEEE J. Select. Areas Commun., vol. 25, no. 2, pp. 390–

401, 2007.

[81] D. Gore, A. Gorokhov, and A. Paulraj, “Joint MMSE versusV-BLAST and antenna

selection,” inProc. Asilomar Conf. Signals, Syst., Comput., vol. 1, Pacific Grove, CA,

Nov. 3–6, 2002, pp. 505–509.

[82] D. Gore, J. Heath, R.W., and A. Paulraj, “On performanceof the zero forcing receiver

in presence of transmit correlation,” inProc. IEEE Int. Symposium on Inf. Theory,

Lausanne, Switzerland, June 30 – July 5, 2002.

[83] M. Grossglauser and D. Tse, “Mobility increases the capacity of ad-hoc wireless net-

works,” IEEE/ACM Transactions on Networking, vol. 10, no. 4, pp. 477–486, Aug.

2002.

[84] D. Gündüz, E. Tuncel, and J. Nayak, “Rate regions for theseparated two-way relay

channel,” in46th Allerton Conf. Comm., Contr. and Comp., Allerton House, Monti-

cello, Illinois, Sept. 23–26, 2008.

[85] D. Gündüz, A. Goldsmith, and H. V. Poor, “MIMO two-way relay channel: Diversity-

multiplexing trade-off analysis,” inProc. Asilomar Conf. Signals, Syst., Comput., Pa-

cific Grove, CA, 2008.

[86] D. Gündüz, A. Yener, A. Goldsmith, and H. V. Poor, “The multi-way relay channel,”

in Proc. IEEE Int. Symposium on Inf. Theory, Seoul, South Korea, June 28 – July 3,

2009, pp. 339–343.

[87] P. Gupta and P. Kumar, “The capacity of wireless networks,” IEEE Trans. Inform.

Theory, vol. 46, no. 2, pp. 388–404, Mar. 2000.

[88] I. Hammerstroem, M. Kuhn, C. Esli, J. Zhao, A. Wittneben, and G. Bauch, “MIMO

two-way relaying with transmit CSI at the relay,” inProc. IEEE Int. Workshop on

Signal Process. Advances for Wireless Comm. (SPAWC), Helsinki, Finland, Jun. 17–

20, 2007.

253



Bibliography

[89] I. Hammerstroem and A. Wittneben, “Power allocation schemes for amplify-and-

forward MIMO-OFDM relay links,” IEEE Trans. Wireless Commun., vol. 6, no. 8,

pp. 2798–2802, 2007.

[90] Y. Han, S. H. Ting, C. K. Ho, and W. H. Chin, “Performance bounds for two-way

amplify-and-forward relaying,”IEEE Trans. Wireless Commun., vol. 8, no. 1, pp. 432–

439, Jan. 2009.

[91] H. Harashima and H. Miyakawa, “Matched-transmission technique for channels with

intersymbol interference,”IEEE Trans. Commun., vol. 20, no. 4, pp. 774–780, 1972.

[92] M. Hartl, C. Rauch, C. Sattler, and A. Baier, “Trial of a hybrid DVB-H / GSM mobile

broadcast system,” in14th IST Summit on Mob. and Wirel. Comm., Dresden, Germany,

Jun. 19–23, 2005.

[93] M. O. Hasna and M. S. Alouini, “Harmonic mean and end-to-end performance of

transmission systems with relays,”IEEE Trans. Commun., vol. 52, no. 1, pp. 130–

135, Jan. 2004.

[94] M. Hasna and M.-S. Alouini, “End-to-end performance oftransmission systems with

relays over rayleigh-fading channels,”IEEE Trans. Wireless Commun., vol. 2, pp.

1126–1131, Nov. 2003.

[95] M. Hasna and M. Alouini, “A performance study of dual-hop transmissions with fixed

gain relays,”IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1963–1968, Nov. 2004.

[96] B. Hassibi and B. M. Hochwald, “High-rate codes that arelinear in space and time,”

IEEE Trans. Inform. Theory, vol. 48, no. 7, pp. 1804–1824, July 2002.

[97] ——, “How much training is needed in multiple-antenna wireless links,”IEEE Trans.

Inform. Theory, vol. 49, no. 4, pp. 951–963, Apr. 2003.

[98] C. Hausl, “Joint network-channel coding for the multiple-access relay channel based

on turbo codes,”Europ. Trans. Telecommun., vol. 20, no. 2, pp. 175–181, 2009.

[99] C. Hausl and J. Hagenauer, “Iterative network and channel decoding for the two-way

relay channel,” inProc. IEEE Intl. Conf. on Commun. (ICC), vol. 4, Istanbul, Turkey,

June 11–15, 2006, pp. 1568–1573.

[100] S. He, J. K. Tugnait, and X. Meng, “On superimposed training for MIMO channel

estimation and symbol detection,”IEEE Trans. Signal Process., vol. 55, no. 6, pp.

3007–3021, June 2007.

[101] X. He and A. Yener, “On the role of feedback in two-way secure communication,” in

Proc. Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Oct. 26 – Oct. 29,

2008.

254



Bibliography

[102] R. W. Heath and A. J. Paulraj, “Linear dispersion codesfor MIMO systems based

on frame theory,”IEEE Trans. Signal Process., vol. 50, no. 10, pp. 2429–2441, Oct.

2002.

[103] C. K. Ho, B. Farhang-Boroujeny, and F. Chin, “Added pilot semi-blind channel esti-

mation scheme for OFDM in fading channels,” inProc. IEEE Global Commun. Conf.

(GLOBECOM), vol. 5, San Antonio, TX, Nov. 25–29, 2001, pp. 3075–3079.

[104] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong, “A Random

Linear Network Coding Approach to Multicast,”IEEE Trans. Inform. Theory, vol. 52,

no. 10, pp. 4413–4430, 2006.

[105] B. M. Hochwald, C. B. Peel, and A. L. Swindlehurst, “A vector-perturbation technique

for near-capacity multiantenna multiuser communication–part ii: Perturbation,”IEEE

Trans. Commun., vol. 53, no. 3, pp. 537–544, 2005.

[106] B. M. Hochwald and W. Sweldens, “Differential unitaryspace-time modulation,”

IEEE Trans. Commun., vol. 48, no. 12, pp. 2041–2052, Dec. 2000.

[107] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna

channel,”IEEE Trans. Commun., vol. 51, no. 3, pp. 389–399, Mar. 2003.

[108] P. Hoeher and J. Lodge, “Turbo DPSK: Iterative differential PSK demodulation and

channel decoding,”IEEE Trans. Commun., vol. 47, no. 6, pp. 837–843, June 1999.

[109] P. Hoeher and F. Tufvesson, “Channel estimation with superimposed pilot sequence,”

in Proc. IEEE Global Commun. Conf. (GLOBECOM), Rio de Janeiro, Brazil, Dec.

5–9, 1999, pp. 2162–2166.

[110] H. Hu, H. Yanikomeroglu, D. D. Falconer, and S. Periyalwar, “Range extension with-

out capacity penalty in cellular networks with digital fixedrelays,” in Proc. IEEE

Globecom’04, Dallas, TX, Nov. 29 – Dec. 3, 2004.

[111] B. Hughes, “Differential space-time modulation,”IEEE Trans. Inform. Theory,

vol. 46, no. 7, pp. 2567–2578, Nov. 2000.

[112] T. E. Hunter and A. Nosratinia, “Diversity through coded cooperation,”IEEE Trans.

Wireless Commun., 2004, submitted.

[113] ——, “Cooperative diversity through coding,” inProc. IEEE Int. Symposium on Inf.

Theory, Lausanne, Switzerland, June 30 – July 5, 2002, p. 220.
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