
DISS. ETH NO. 24863

MULTI-VIEW 3D RECONSTRUCTION
WITH GEOMETRY AND SHADING

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZÜRICH

(Dr. sc. ETH Zürich)

presented by

Silvano Galliani

Master of Science (M.Sc.), University of Saarland

born on 05.12.1982

citizen of Italy

accepted on the recommendation of

Prof. Dr. Konrad Schindler, examiner
ETH Zürich, Switzerland

Prof. Dr. Yasutaka Furukawa, co-examiner
Simon Fraser University, Burnaby, Canada

Prof. Dr. Gabriel Brostow, co-examiner
UCL London, United Kingdom

2018

IGP Mitteilungen Nr. 119

Multi-View 3D Reconstruction With Geometry And Shad-
ing
Silvano Galliani
Copyright ©12018, Silvano Galliani
Published by:
Institute of Geodesy and Photogrammetry
Swiss Federal Institute of Technology (ETH)
8093 Zürich, Switzerland
All rights reserved
978-3-03837-007-9

To my girls: Flora, Bianca and my boy Bruno. Thanks to my
families Galliani and Arata, but a special grazie is for Laura,

always with me.
To Konrad and all the colleagues who contributed in the

creation of a relaxing but productive working environment.
Last but not least to my roommate Wilfried, who did not live

to finish his PhD.

S O M M A R I O

La richiesta di catturare modelli 3D di oggetti reali è sempre au-
mentata in passato. Al giorno d’oggi sono numerosi gli eventi
che segnalano un interesse sempre più crescente in futuro: ef-
fetti speciali generati con il computer sono ampiamente utiliz-
zati e beneficiano molto di questo tipo di dati, le stampanti 3D
sono diventate più economiche e potrebbero essere presto pre-
senti in ogni abitazione. La realtà virtuale e aumentata sono
due mezzi di comunicazione simili tra loro che rivoluzioner-
anno la nostra vita quotidiana con lo stesso potere che ha avuto
Internet o i telefoni cellulari. Difficile è prevedere il reale im-
patto che avranno sulla società, quello che è veramente certo
è il ruolo centrale dei modelli 3D per le multiple applicazioni
che verranno create. Infine, la guida autonoma trasformerà il
mercato automobilistico con l’obbiettivo di ridurre il numero
di incidenti mortali. Per raggiungere questo obiettivo la visione
computazionale fornisce un modo affidabile e veloce per mis-
urare la strada e le auto circostanti. Pertanto, la ricostruzione
3D è stata e sarà uno degli argomenti più importanti della vi-
sione computazionale. In questa tesi ci occupiamo del prob-
lema di ricostruzione di una scena 3D o di un oggetto par-
tendo da immagini con una data posizione della fotocamera.
Proponiamo diversi contributi alla ricostruzione di oggetti in
3D da immagini multiple facendo utilizzo della geometria e
della obreggiatura. Innanzitutto ciò che proponiamo è un al-
goritmo molto parallelo che stima patch in 3D sull’oggetto uti-
lizzando una modifica dell’idea Patchmatch: uno schema ran-
domizzato per l’ottimizzazione di una funzione di similarità
locale. Lo schema di diffusione che proponiamo consente di
utilizzare un numero di thread pari alla metà del numero di
pixel. Questo lo rende perfettamente adatto per essere utiliz-
zato su GPU. Infatti noi proponiamo una implementazione ef-
ficiente che rendiamo pubblica come software open source. In
secondo luogo, proponiamo di imparare una similarità con una
rete neurale siamese a rami multipli. La rete risultante è invari-
ante al numero di input al momento della predizione e può
essere utilizzata per migliorare il risultato nel caso in cui ci
sia rumore sull’immagine di riferimento, come le specularità,
se utilizzata all’interno di un algoritmo per la ricostruzione

iv

3D da immagini multiple. Infine proponiamo di completare
una ricostruzione 3D da multiple immagini con un modello
di ombreggiatura basato sull’apprendimento automatico. Uti-
lizziamo un modello senza supervisione che utilizza una Rete
Neurale Convoluzionale che fa regressione sul vettone normale
alla superficie usando l’immagine come input. Ci asteniamo
dall’ utilizzare dati esterni, il nostro approccio è quello di uti-
lizzare un modello che sia su misura per ogni immagine di
ogni oggetto, imparando il modello senza supervision (o auto
supervisione).

iii

A B S T R A C T

The demand to capture 3D models of real-world objects was
always increasing in the past. Nowadays multiple are the
events that signal even greater interest in the present and
future: computer-generated special effects are extensively used
and highly benefit from such data, 3D printing has become
more affordable and could soon be present in every home.
Virtual and Augmented reality are two similar media for
communication which are going to revolutionize our daily life
with the same power such as internet and mobile phones. It’s
difficult to predict the real impact on the society, what is sure is
the central role of captured 3D models for the various new ap-
plication that will flourish. Last but not the least autonomous
driving is going to disrupt the car manufacturing business by
providing self-driving car with the goal to reduce the number
of deadly car accidents. To reach that goal, computer vision
offers a reliable way to measure the road and the surrounding
cars quickly. Therefore, 3D reconstruction has been and still is
one of the most critical topics of computer vision. In this thesis,
we deal with the problem of reconstructing a 3D scene or
object from many colored images with a given camera position,
by making use of geometry and shading.

We propose multiple contributions to multi-view 3D recon-
struction. First of all, we introduce a massively parallel algo-
rithm that fits 3D surface patches on the object by using a modi-
fication from the Patchmatch idea: a randomized scheme for the
optimization of a local similarity function. Our new diffusion
scheme allows using as many threads as half the number of pix-
els. This makes it ideally suitable to be used on GPU. Indeed
we introduce an efficient implementation that is released to the
public as open source software. Secondly, we use deep learn-
ing to learn a similarity function across multiple image patches
with a multi-branch Siamese neural network. The resulting net-
work is invariant at test time to the number of input and can
be used to overcome noise on the reference camera, such as
specularities, when used inside a multi-view-stereo pipeline.
Finally, we complement a 3D reconstruction from multi-view
stereo with a learned shading model. We use an unsupervised
Convolutional Neural Network to regress the surface normal

vi

from an input patch. We refrain from using external data; our
approach is to use the view-specific input normal originated
from our initial reconstruction as training, effectively making
use of unsupervised — or self-supervised — learning.

C O N T E N T S

1 introduction 1

1.1 Goal of the Thesis 2

1.2 Relevance to Society and Economy 4

1.2.1 Autonomous Driving 4

1.2.2 Virtual Reality 5

1.2.3 Augmented Reality 5

1.2.4 3D printing 6

1.3 Challenges 6

1.3.1 Specular Surfaces 6

1.3.2 Homogeneous surfaces 7

1.3.3 Occlusion 8

1.3.4 Solution to Problems 8

1.4 Contribution 8

1.5 Outline of the thesis 10

2 related works 12

2.1 Multi-View Stereo Reconstruction 12

2.1.1 Local vs. global matching. 12

2.1.2 Local multiview methods. 13

2.1.3 Points vs. surfaces. 14

2.1.4 Exhaustive vs. randomized search. 14

2.1.5 Patch Similarity Learning. 15

2.2 Normals and Shading in Multi-View Stereo 16

2.2.1 Normals in Multi-View Stereo. 16

2.2.2 Shading Cues in Multi-View Stereo. 17

2.2.3 Surface Normal Estimation. 17

2.2.4 Normal extrapolation from MVS. 18

2.2.5 Integrating Normals to Surfaces. 18

3 technical background 20

3.1 Image Generation 20

3.1.1 Pinhole Camera 20

3.1.2 Image Projection 21

3.1.3 Inverse Projection 23

3.1.4 Planes in Space and Homographies 23

3.2 Image based 3D reconstruction 24

3.2.1 Two view geometry 24

3.3 Convolutional Neural Networks 26

3.3.1 Deep Feedforward Neural Networks 26

viii

3.3.2 Convolutional Neural Networks 28

3.3.3 Gradient Descent 37

3.4 Multi-View Stereo Benchmarks 38

3.4.1 Middlebury Multi-view dataset 40

3.4.2 Strecha dataset 42

3.4.3 DTU dataset 43

3.4.4 Shortcoming and upcoming datasets 43

4 massively parallel multiview stereopsis

45

4.1 Patchmatch Stereo 47

4.1.1 Patchmatch for rectified stereo im-
ages. 47

4.1.2 Sequential propagation. 48

4.1.3 Plane parameterization. 48

4.2 Red-Black Patchmatch 49

4.2.1 Surface normal diffusion 49

4.2.2 Sparse matching cost 50

4.2.3 Implementation details 51

4.3 Multi-view Extension 52

4.3.1 Parametrization in scene space 52

4.3.2 Cost computation over multiple im-
ages 54

4.3.3 Fusion 55

4.4 Results 58

4.4.1 DTU Robot Image Dataset 58

4.4.2 Middlebury 61

4.4.3 Outdoor Images 61

4.4.4 KITTI 63

4.4.5 ETH3D 64

4.5 Conclusion 64

5 learned multi-patch similarity 69

5.1 n-way Patch Similarity with a Neural Net-
work 72

5.1.1 Network Architecture 73

5.2 Application to Multi-view Stereo 75

5.2.1 Training the Network. 75

5.3 Experiments and Results 77

5.3.1 Evaluation on the DTU dataset 78

5.3.2 Invariance to the number of input
patches. 83

5.3.3 Evaluation on the Fountain dataset 84

5.4 Conclusion 85

ix

6 normal prediction for improved multi-
view reconstruction 86

6.1 Method 88

6.1.1 Generation of normals for training 88

6.1.2 Normal prediction 89

6.1.3 Training data. 90

6.1.4 Unsupervised Normal Regression with
CNN. 91

6.1.5 Surface normal integration 93

6.1.6 Depth map fusion 94

6.2 Results 94

6.2.1 Normal prediction 96

6.2.2 Improved multi-view reconstruction 99

6.3 Conclusion 100

7 conclusion and outlook 101

7.1 Summary of Contributions 101

7.2 Outlook and Future Works 103

bibliography 107

x

L I S T O F F I G U R E S

Figure 1 Shading in a painting of Albrecht
Dürer. 3

Figure 2 Specular and diffuse components of a
specular object. 7

Figure 3 Homography mapping points on a plane
from an image to another. 23

Figure 4 Epipolar geometry of a stereo image
pair. 25

Figure 5 Plot of a simple 2-layer neural net-
work. 27

Figure 6 Original Lenet-5 network, used for zip
code recognition. 29

Figure 7 Sparse connectivity in a neural net-
work. 31

Figure 8 Parameter sharing of a convolutional
neural network. 32

Figure 9 Receptive field of a convolutional neural
network. 36

Figure 10 Gradient descent. 37

Figure 11 Architecture of Segnet for semantic seg-
mentation. 38

Figure 12 Architecture of a pixel-wise classification
of images by Long et al. [88]. 39

Figure 13 Objects used in the Middlebury Multi-
View Stereo benchmark [107]. 40

Figure 14 Position of cameras for the temple
dataset in [107]. 41

Figure 15 Frequency of submission on the Middle-
bury Multi-View benchmark. 41

Figure 16 Results of Gipuma on one of the 80

evaluated objects on the DTU bench-
mark [66]. 46

Figure 17 Visualization of the propagation scheme
of Gipuma. 49

Figure 18 Accuracy and completeness for increas-
ing number of iterations. 50

xi

Figure 19 Comparison across different GPUs or-
dered by release date. Note the similar
trend of GigaFLOPS (Left) w.r.t. Runtime
in second (Right). 52

Figure 20 Multi-view setup with four cameras and
homographies from reference camera Cr
to three other cameras. 54

Figure 21 Behavior of depthmap fusion w.r.t.
different values of fang, fdisp, fε see
Sec. 4.3.3. 56

Figure 22 Reconstruction results of two DTU
objects. From left to right: ground truth
point cloud, textured point cloud and
triangulated mesh surface. 57

Figure 23 Reconstruction results for our three dif-
ferent settings. 58

Figure 24 Ground truth surfaces and reconstruc-
tions for Temple Full and Dino Full of the
Middlebury multiview stereo evaluation
dataset [106]. 60

Figure 25 Screenshots from the Middlebury evalu-
ation. 62

Figure 26 Results on image 63 of the KITTI
dataset. 65

Figure 27 Results on image 76 of the KITTI
dataset. 66

Figure 28 Results on image 126 of the KITTI
dataset. 67

Figure 29 Gipuma result on aerial images. 68

Figure 30 Reconstruction robust on specular high-
lights. 70

Figure 31 Plot of similarity computation for stan-
dard multi-view stereo methods and
how it should be done. 71

Figure 32 The proposed network architecture
for multi-patch similarity computa-
tion. 74

Figure 33 Generation of training data. 76

Figure 34 Comparison of our methods w.r.t. ZNCC
and LIFT. 80

xii

Figure 35 Matching different numbers of views
with the similarity network can be done
without retraining. Result displayed
without sub-pixel refinement and box
filtering to accentuate differences. 84

Figure 36 The learned similarity generalizes to a
different test environment, seemingly as
well as the competing descriptors. 85

Figure 37 Illustration of our reconstruction method
that reconstruct missing part of a MVS
method. 87

Figure 38 CNN architecture for regression from
image patches to surface normals. 89

Figure 39 Comparison of different strategies for
normal prediction. 90

Figure 40 Normal prediction for a particularly dif-
ficult scene of the DTU dataset. 91

Figure 41 Visualization of the integration domain
Ω of our surface normals. 93

Figure 42 Our reconstruction with normal predic-
tion is able to complete parts missed both
by MVS and by the structured light scan-
ner used for the ground truth. 95

Figure 43 Quantitative comparison with our initial-
ization and other pure MVS methods [15,
37, 116]. Lower values are better. 96

Figure 44 Reconstruction improvements of our
method on three different objects. 98

L I S T O F TA B L E S

Table 1 Comparison of existing multi-view-
stereo datasets. 43

Table 2 GigaFLOPS for GPUs used during run-
time benchmark. 52

xiii

Table 3 Quantitative comparison with three dif-
ferent settings on the DTU dataset [66].
The quality metrics accuracy and com-
pleteness were computed in accordance
to [66], stating the mean and median er-
ror in millimeters. 60

Table 4 Quantitative evaluation on 20 objects
from the DTU dataset. 81

Table 5 Quantitative results of our method w.r.t.
SAD, ZNCC, SIFT, LIFT 82

xiv

1
I N T R O D U C T I O N

The main goal of computer vision is to automate to the pro-
cess of understanding the world by using images. By definition
images are created on the two-dimensional realm, where the
sensor perceives the appearance of a three-dimensional object.
But the aim is to invert this creation process by inferring the
original shape that explains the image. In other words, cameras
convert the 3D world to a 2D representation, while computer
vision wants to invert this process and obtain a 3D knowledge
of the object.

Unfortunately, this is an ill-posed for multiple factors.

First of all perspective projection of the object on the image
distorts the original 3D scene, making it impossible, except for
simple, known shapes, to reconstruct the original 3D object
from a single image.

Secondly, multiple objects aligned on the line of sight
between object and camera, also known as occlusion, destroy
valuable information for the final understanding of the object.

In the same way human visual system works with two
eyes, to improve the power to reconstruct and disambiguate
the understanding of the world it is common to use multiple
images captured simultaneously but from different point of
views. The simplest approach consists of using the so-called
(binocular) stereo reconstruction which analyzes two images
to measure the scene. The displacement of the cameras, or
distance of our eyes, allows to infer the 3D position of the scene
by triangulating rays on the image points that corresponds to
each other.

It is clear that, when using more than 2 images of a scene,
it is possible to improve not only accuracy by triangulating
multiple rays at the same time, but also the completeness of
the reconstruction by checking the coherence of redundant
observations. This is known in the literature as multi-view
stereo reconstruction. Continuing the parallel with the human
visual system, it is true that we have only two eyes, but our

1

capability to move our head helps to clarify our perception
of the world in case of doubt, effectively employing more
than two images to perceive the scene, even if not captured
simultaneously.

Along with stereo vision, the human visual system employs
other passive cues to perceive depth. We exclude here active
cues of our brain which are based on semantic and knowledge
interpretation. E.g., experience informs us that cars lie on top
of a street and constrains their shape and dimension.

A specific cue complementary to stereo reconstruction is sha-
ding. It is procured by the joint interaction of shape of the
object, its material properties — its color and how they reflect
light — and lights illuminating it. Shading is one of the most
powerful hint for our brain that helps to understand the world
we live in. It does not come as a surprise that painters and
illustrators utilize it to give the impression of depth on a two
dimensional painting, see figure 1.

Reconstruction methods based on lighting such that Shape
from Shading (SfS) try to revert the rendering process: from
shading information they derive the object properties that ex-
plain its representation.

Considering that color influences the appearance of objects,
textured regions cause serious problems for shading based re-
construction methods, since the decomposition of the observed
brightness into color and depth is ambiguous. Instead, (multi-
view) stereo relies on the abundance of unique texture on the
object which facilitates the matching of corresponding 2D im-
ages of the same 3D point, for successive triangulation and ex-
traction of depth information.

The opposite is true for homogeneous regions of the image:
they confuse stereo reconstruction methods, but at the same
time they are the perfect scenario for shading based reconstruc-
tion methods.

Given the advantage and drawback of both methods, in this
thesis we propose to combine multi-view stereo and shading to
improve the quality of the 3D reconstruction.

1.1 goal of the thesis

This dissertation considers the reconstruction of 3D surfaces
from multiple pictures of the same scene captured from dif-
ferent points of view. The main goal here is to obtain the 3D

2

Figure 1: Painting by Albrecht Dürer showing how shading can be
used to convey the depth information of an object. Source:
Wikimedia Common.

information of an object using only the information inside the
images and no additional restrictions or assumptions. We only
assume that the position and parameters of cameras is either
given or can be easily computed from Structure from Motion
(SfM) methods. The corner cases where SfM would fail (lack of
texture or presence of a symmetric object in the scene) might in-
dicate a difficult dataset to compute even for successive stereo
methods to be applied on the data.

The focus is not restricted only on geometric-based meth-
ods such as Multi-View Stereo Reconstruction (MVS) but also
on additional shape reconstruction techniques such as Shape
from Shading (SfS) which naturally complement classic feature
based triangulation.

This thesis investigates the creation of a symbiosis between
Multi-View Stereo Reconstruction and Shape from Shading.
The two methods can be fused in such a way that SfS helps to
correct the reconstruction in parts where MVS fails and vice
versa. During the exploration of this connection we will tackle
the following topics.

• A new Multi-View Stereo matching method. We will
make use of recent advances in parallel computing to
devise an algorithm, released as open source software
with name Gipuma, specifically tailored for accuracy,
speed and low memory consumption, see Chapter 4.

3

• We will analyze how to harness the potential of recent
deep learning techniques to create a new similarity func-
tion across multiple images. The new approach improves
accuracy and circumvents occlusion problems by conside-
ring the reference camera on par with the other views. See
Chapter 5.

• We will explore how to create a reflection model which
avoids any type of assumption of the scene, as opposed
to what it is common from classic SfS method. It is an self
supervised — or unsupervised — discriminative model
specifically tailored to each object and view. The proposed
shading model can be intertwined with classic stereo ba-
sed methods to obtain an improved reconstruction, see
Chapter 6.

1.2 relevance to society and economy

The reconstruction of the 3D position of objects has always
played a central role inside computer vision since more than
40 years. Multiple methods have been developed to improve
the accuracy and performance of reconstruction methods.

But it is only recently, perhaps in the last 5 years, thanks to
the maturity of the research and the increase of computational
power, that computer vision started to make a great impact on
our society. I will sketch here in particular how multi-view 3D
reconstruction empowers emerging areas of society and econ-
omy. However, I will refrain from commenting on more classic
applications such as visual effects for games and movies, dig-
ital mapping and land surveillance since they are not mainly
based on 3D imaging.

1.2.1 Autonomous Driving

Autonomous driving has the potential to reduce one the most
significant sources of disability and mortality worldwide: traffic
accidents. That’s why most major vehicle manufacturers are
investing in research and development departments to build a
car that exceeds or at least equates human performance. The
factors into play to reach this goal are multiples, but scene
understanding by means of images plays a central role.

A car must interpret the world it is living in to accelerate or
steer in a particular direction in order to reduce the risk of po-

4

tential danger for the passengers both in the same and on other
cards. Accurate and fast depth measurements are crucial to ac-
count for maneuvers with abrupt changes of direction. This is
not a trivial task first of all due to variable weather and lighting
conditions that potentially interfere with the 3D reconstruction.
Secondly, the strict timing requirement of the driving system
makes it even more challenging. Nevertheless, current trends
in depth reconstruction indicates that the technology is mature
enough to employ vision inside autonomous cars.

1.2.2 Virtual Reality

Virtual reality, another growing business, is seen by many as the
future revolution in our lives on par with the scope of personal
computers, internet and mobile phones. This type of technol-
ogy has the potential to disrupt our daily life in such an expo-
nential way that becomes difficult to predict. The multi-million
investments are the demonstration of how big companies com-
pete to prevail in this market.

The immersive virtual models where the users interact has
to be as similar to our reality as possible to create a lifelike ex-
perience. Rather than rely on artists to manually craft new and
different 3D models, it is cheaper to replicate our real-world by
automatic vision (or photogrammetric) measurements.

1.2.3 Augmented Reality

Augmented reality is symmetric and complementary to virtual
reality. It superimposes virtual objects over our world and aug-
ment it with additional information. It also has the potential to
become a revolutionary technology, but it appears more mature
to be used for practical real-life applications than Virtual Real-
ity. The factors limiting its mass deployments are indeed much
lowers. The rendered objects are only a small fraction of the vis-
ible field of view, thus reducing the computation requirements
and need for realism of the virtual object.

Also in this case, the accurate measurement of the real 3D
position of the surrounding objects is crucial. By placing virtual
object seamlessly inside our real-world we can partially fool the
human brain that would not be disturbed by the introduction
of a non-real part.

Indeed, the experience of a joint real/virtual reality would
get compromised in case the surrounding world is not correctly

5

measured. That’s where vision based reconstruction plays a
central role.

1.2.4 3D printing

With 3D printing, a recent technology, anyone with a virtual
3D model of an object can create itself a physical copy of the
model at hand. It empowers users to customize products, to
create new objects for personal use, or potentially to create
autonomously missing component of an existing object. E.g.,
it could duplicate a broken screw that has to fit on its nut.

For this type of application, measurement via images is cru-
cial, it allows to replicate a physical object on the computer,
its physical properties such as shape and also color. For this
type of application, the high quality and fidelity of the recon-
struction are top priorities while speed of the reconstruction is
pushed aside. We are willing to wait more to obtain a replica of
an object, but we wouldn’t accept compromise on the quality
of the reconstruction.

1.3 challenges

We will sketch here the major challenges to face when dealing
with Multi-View Reconstruction.

While at first the problem might look straightforward, there
are multiple difficulties originating first of all from the object
shape and secondly from the complexity of the interactions
between light sources, surface materials and object properties.
The main underlining assumption in MVS is that a “point” in
space appears similar from its projection on multiple cameras.
It is often true, except for three specific scene properties.

1.3.1 Specular Surfaces

Strongly specular objects violate our assumption: the object ap-
pearance depends on the angle between camera view and light
direction, meaning that specularity will be observed on one im-
age, but not the others, see Figure 30.

The simpler specular model is the Phong model [96], where it
becomes evident from its formulation (note V) the dependence
of the final image appearance w.r.t. the view position:

IPhong = kd(L ·N) + ks(V · R)α (1)

6

Figure 2: Top: Example of rendering of an object with specular com-
ponents. Bottom: Visualisation of vectors contributing to the
rendering of a Phong model. Source: Wikimedia Common.

here IPhong is the image, kd the albedo or intensity of the diffuse
component, ks the intensity of the specular component, L the
light vector, N the vector normal to the surface, V is the view
vector and R the reflection ray, see figure 2.

In order to guarantee an invariance of aspect w.r.t. the view
point, it is generally assumed that the scene is mostly Lamber-
tian, where the image appearance is assumed to not change
with respect to the camera position:

ILambert = kd(L ·N) . (2)

In practice, MVS, as opposed to two-view stereo reconstruc-
tion, benefits from the redundancy of evidence for 3D triangula-
tion which mitigates the artifacts obtained by specularities. This
assumption is validated empirically by the results obtained by
MVS on real world datasets where the reflectance of the major-
ity of surfaces is mostly Lambertian. Nevertheless, specularity
is still a major source of error for stereo reconstruction meth-
ods.

1.3.2 Homogeneous surfaces

Another big source of error, often the most problematic, is the
lack of texture on the scene, which prevents the similarity func-
tion to disambiguate the image of the same point in multiple

7

cameras, note the holes in the reconstruction of Figure 44. This
is often a problem on almost planar surfaces without texture.
Indeed, on some special cases, e.g. on curved surfaces, it is the
shading information which provides enough evidence to match
the appearance of the surface point across cameras, but only in
case the lights do not vary across cameras.

1.3.3 Occlusion

We observe occlusion when part of the object from one view is
blocked from the line of sight of another view. This is one of
the worse case scenarios: if data is completely missing on one
image it is unlikely to match it on the other image, unless the
occluded region is small, or the stereo algorithm is able to accu-
mulate evidence from the other views. Occlusion problems is
visible as an artifact on occlusion boundary, where, depending
on the type of matching function and approach used, the shape
of the object gets distorted in different ways.

1.3.4 Solution to Problems

To properly compensate for this type of error, the usual solu-
tion is to regularize the surface in a global context by imposing
smoothness from nearby correct points. E.g., a solution could be
found by fitting a plane, or a surface which interpolates nearby
points but minimizes the gradient of the resulting solution. The
ideal scenario is to always rely on the data, if available, and
avoid imposing arbitrary smoothness properties that might cre-
ate an incorrect reconstruction. That is what we will present in
Chapter 4, where we will make use of the redundant observa-
tions and refrain from “closing” holes in the reconstruction. In
Chapter 6 we will see how it is possible to derive an “interpola-
tor”, both object- and view- specific, which is able to complete
the surface in areas of homogeneous colour.

In Chapter 5 we will show how our proposed similarity func-
tion is able to correct for view-specific problems such as specu-
larities and partially also for occlusion.

1.4 contribution

The work presented in this thesis is based on the work pre-
sented in Galliani et al. [41], Galliani and Schindler [42] and

8

Hartmann et al. [53]. In the following I will anticipate the most
important contributions.

• Gipuma: Massively Parallel Multi-View Stereo Recon-
struction (Chapter 4, [41]).
We present a new, massively parallel method for high
quality multiview matching. Our work builds on the
Patchmatch Stereo idea [11]: starting from randomly
generated 3D planes in scene space, the best-fitting
planes are iteratively propagated and refined to obtain a
3D depth and normal field per view, such that a robust
photo-consistency measure over all images is maximized.
Our main novelties are on the one hand to formulate
Patchmatch Stereo in scene space, which makes it
possible to aggregate image similarity across multiple
views and obtain more accurate depth maps. And on
the other hand a modified, diffusion-like propagation
scheme that can be massively parallelized and delivers
dense multiview correspondence over ten 1.9-Megapixel
images in 1.5 seconds, on a consumer-grade GPU. Our
method uses a slanted support window and thus has no
fronto-parallel bias; it is completely local and parallel,
such that computation time scales linearly with image
size, and inversely proportional to the number of parallel
threads. Furthermore, it has low memory footprint (four
values per pixel, independent of the depth range). It
therefore scales exceptionally well and can handle mul-
tiple large images at high depth resolution. Experiments
on the DTU and Middlebury multiview datasets as
well as oblique aerial images show that our method
achieves very competitive results with high accuracy and
completeness, across a range of different scenarios.

• Learned Multi-Patch Similarity (Chapter 5, [53]).
Estimating a depth map from multiple views of a scene is
a fundamental task in computer vision. As soon as more
than two viewpoints are available, one faces the very ba-
sic question how to measure similarity across in more
than 2 image patches. Surprisingly, no direct solution ex-
ists, instead it is common to fall back to more or less ro-
bust averaging of two-view similarities. Encouraged by
the success of machine learning, and in particular convo-
lutional neural networks, we propose to learn a matching
function which directly maps multiple image patches to a

9

scalar similarity score. Experiments on several multi-view
datasets demonstrate that this approach has advantages
over methods based on pairwise patch similarity.

• Self-Supervised Normal Prediction for shading based
multi-view stereo refinement (Chapter 6 [42]).
We present a multi-view reconstruction method that
combines conventional multi-view stereo (MVS) with
appearance-based normal prediction, to obtain dense and
accurate 3D surface models. Reliable surface normals
reconstructed from multi-view correspondence serve as
training data for a convolutional neural network (CNN),
which predicts continuous normal vectors from raw
image patches. By training from known points in the
same image, the prediction is specifically tailored to the
materials and lighting conditions of the particular scene,
as well as to the precise camera viewpoint. It is therefore
a lot easier to learn than generic single-view normal es-
timation. The estimated normal maps, together with the
known depth values from MVS, are integrated to dense
depth maps, which in turn are fused into a 3D model.
Experiments on the DTU dataset show that our method
delivers 3D reconstructions with the same accuracy as
MVS, but with significantly higher completeness

1.5 outline of the thesis

Let us now provide a synopsis of this thesis.

Chapter 2 introduces the literature of Multi-View Stereo re-
construction related to this thesis including two main research
directions. First of all we will introduce the related works on
classic geometric based method for the 3D reconstruction from
multiple images. Then we will present extensions making use
of shading or assumption on surface normal.

Chapter 3 is pertinent to the necessary technical background
needed to understand the following chapters. A complete and
self-contained description of the major theoretical background
would be outside the scope of this thesis. We will tackle the nec-
essary topics to be able to understand the subsequent chapters.

We will start from camera model and stereo geometry to con-
tinue with Convolutional Neural Networks (CNN) and then we
will conclude by listing multiple MVS datasets and benchmarks

10

used with this thesis along with their properties and shortcom-
ings.

In chapter 4 we will introduce a novel algorithm for Multi-
View stereo specifically tailored to parallel computing architec-
tures. Experiments on Middlebury and DTU dataset will vali-
date the quality of the method. Chapter 5 concerns the compu-
tation of the similarity function across multiple views. Instead
of computing the pairwise similarity of the reference camera
w.r.t. the other views we propose to learn the multi-patch simi-
larity by means of a deep convolutional network. Experiments
will demonstrate the robustness of this method to noise on the
reference camera such as specularities. Subsequently, in 6 we
will introduce a discriminative shading model to complement
and improve an initial stereo reconstruction from multiple im-
ages. Experiments on the DTU dataset show that our method
delivers 3D reconstructions with the same accuracy as MVS, but
with significantly higher completeness. Finally, chapter 7 closes
this work by summarizing contents and giving some comments
along with an outlook on potential improvements.

11

2
R E L AT E D W O R K S

An enormous body of literature exists on multi-view stereo
reconstruction. Even if stereo methods dates back to at least
1974 [51], several new methods are proposed each year, as
demonstrated by the method listed in popular binocular or
multi-view stereo datasets [44, 102, 104, 106].

A big number of new multi-view stereo method are pub-
lished every year, making difficult to compile a complete sur-
vey of existing multi-view stereo. Even restricting to multi-view
stereo methods, it would be a formidable task to compile a com-
plete survey of existing methods.

In this chapter, we try to review the main methods closely
related to this thesis. In the first part, we introduce “classic”
multi-view stereo reconstruction making use of image match-
ing and ray triangulation to obtain the final reconstruction.

Then we introduce extensions which makes use of additional
information or assumption by using normals or shading infor-
mation to guide or refine the final reconstruction.

2.1 multi-view stereo reconstruction

2.1.1 Local vs. global matching.

Successful image matching has to strike a balance between
photo-consistency of the corresponding image locations and
regularity (typically piecewise smoothness) of the underlying
surface.

Early models usually were local, meaning that the correspon-
dence computation at a given location depends only on a local
neighborhood. Local methods range from simple block match-
ing to more sophisticated approaches that avoid a strong fronto-
parallel bias, either by directly warping the image to a common
plane [13, 31, 43], or using an oriented matching window that
adapts to the surface geometry [11, 29]. Moreover, to avoid the
characteristic fattening of foreground objects, it is common to
adapt either the window shape [39, 71] or the weight of pixels
within the window [125] at (putative) depth discontinuities.

12

Later research attempted to include the correlations induced
by the smoothness prior in a more principled way, which leads
to global methods that approximately maximize an objective
defined over all pixels, usually via discrete labeling, e.g. [32,
57, 81] or variational inference [80, 97].

Nowadays photographic images, even on mobile phones, rou-
tinely have on the order of 10 million pixels. Therefore, there is
a need for matching algorithms whose complexity is low —
ideally at most linear in the number of pixels. At the same
time, the large image dimensions also call for algorithms that
are memory-efficient, especially in the multiview case, where
evidence of multiple images is exploited to create the correct
match. Consequently, there has been a renewed interest in lo-
cal matching algorithms. In spite of their simplicity, modern
local matchers [11, 37, 99] are accurate enough to compete with
their global counterparts, as demonstrated for example by the
DTU [66] and KITTI [45] benchmarks.

2.1.2 Local multiview methods.

In their seminal work, Okutomi and Kanade [94] accumulate
Sum of Squared Difference (SSD) cost values from differ-
ent stereo pairs in a set of multiple images and select the
depth with the lowest cumulative cost. The plane-sweeping
method [22] is an early example of true multiview matching.
Evidence from multiple images is accumulated on a plane that
moves through the scene space along its normal. For every
cell on the plane, the position with the highest support is
chosen. More recently Gallup et al. [43] have proposed to align
the plane to the dominant orientation in the scene. Hu and
Mordohai [63] also start from plane-sweeping, and carefully
propagate the uncertainty to exploit it during the subsequent
fusion of multiple depth maps.

Furukawa and Ponce [37] relax the requirement to find a
correspondence for every single pixel. Instead, they start from
sparse, reliable seed patches and iteratively grow the set of
point matches from there, to obtain a quasi-dense oriented
point cloud. The method introduces several heuristic filters
and delivers quite impressive results. Tola et al. [116] directly
address the problem of high-resolution image sets by matching
a fast descriptor between pairs of images over the epipolar
line and reconstructing only points with a unique response.
Campbell et al. [15] explicitly address the problem of ambigu-

13

ous matching by considering multiple depths per point and
including an unknown state in their MRF optimization.

Many authors follow the philosophy of Kang et al. [72]: to
sidestep occlusions and aliasing along boundaries, select only a
best-matching subset of all available views (in the original work
50%); to preserve discontinuities and cope with untextured ar-
eas, start with a small window around a pixel and dynamically
increase it if there is a lack of texture.

2.1.3 Points vs. surfaces.

Multi-view stereo methods can be classified according to which
representation they are based on, following the taxonomy of
Seitz et al. [106]. In particular, the 3D scene can be represented
by voxels, level-sets, polygon meshes, or depth maps. In this
context it should be emphasized that depth maps are still
a point-wise representation — triangulating every pixel in a
depth map leads to a 3D point cloud, similar to those generated
with RGBD sensors or laser scanners. On the contrary, the three
other representations all must solve (at least implicitly) the
additional step from the point cloud to the underlying surface.
It may be useful for many applications but is a considerably
harder and less well-defined task. Moreover, some application
domains like industrial metrology or surveying, in fact, prefer
3D point clouds as a primary product. In our work we mainly
aim to recover depth maps, respectively oriented point clouds.
We see surface fitting as a subsequent step that is largely
independent of the matching — in fact the most popular
approaches [65, 75, 83] are rather agnostic about the preceding
matcher, and we found the widely used Poisson method [75]
to work well for our point clouds.

2.1.4 Exhaustive vs. randomized search.

Typically, matching algorithms require a large amount of
memory, because they keep track of the cost associated with
every possible disparity value, in order to select the most
suitable one, e.g. [32, 57, 71, 99]. Note that for a fixed depth
range the number of observable disparities grows linearly with
the image resolution, too. A recent exception from the strategy
of “comparing all possible disparities” is PatchMatch Stereo [11].
That method adopts a randomized, iterative algorithm for
approximate patch matching [7], which allows one to quickly

14

find a good solution within a vast search space without having
to browse through all possibilities. The resulting low memory
requirements (independent of the disparity range) make
Patchmatch Stereo well-suited for large images or memory-
constrained environments, including implementation on GPU
which modify the original sequential propagation scheme [5, 6,
55, 134]. Zheng et al. [134] employ the Patchmatch propagation
scheme for multiview reconstruction, but without considering
slanted surfaces. Their focus lies on view selection when
aggregating evidence over multiple cameras. A probabilistic
graphical model serves to jointly address view selection and
depth estimation. There are three other method that runs
Patchmatch Stereo in scene space. The first [108] is applied
only to pairwise stereo matching. The second [56] extend the
Patchmatch scheme with an additional Kanade-Lucas-Tomasi
(KLT) step to avoid unnecessary sampling iterations. Addition-
ally, the author alternates the reconstruction with refinement
of the camera position to improve the accuracy. The third [103]
extend Zheng et al. [134] with direct estimation of slanted
patches and the inclusion of a pixel-wise view selection in the
graphical model.

2.1.5 Patch Similarity Learning.

With the rise of machine learning for computer vision prob-
lems, it has also been proposed to learn the similarity measure
for (two-view) stereo. Early work still relied on hand-tuned
descriptors such as SIFT, the learning served to “distort” the
descriptor space so that nearby false matches get pushed
apart and the distance becomes more discriminative [127].
The advent of deep learning suggested that the bottleneck
might be the descriptors themselves rather than the distance
metric, so it was proposed to learn similarity directly from
raw images [131]. Closely related work started from separate
steps for descriptor learning and metric learning, and unified
them to effectively obtain a direct similarity prediction from
raw image data [49] as well. An extensive study of similarity
measures based on different CNN architectures is presented
in [130]. That work also showed that CNN-based similarities
outperform both classical descriptor spaces like SIFT [89] and
other learned descriptors such as [112]. Another strategy is to
learn patch descriptors, but freeze the distance measure used
to compare them. The recently proposed LIFT descriptor [111,

15

124] is learned with the help of a Siamese network, using a
loss function that ensures that descriptors of matching patches
end up having low Euclidean distance, whereas non-matching
descriptors have not. The learned output is a 128-dimensional
descriptor vector which corresponds to the size of a SIFT
descriptor vector [89] so that LIFT can serve as a drop-in
replacement for SIFT or similar hand-coded descriptors in
existing matching pipelines.

Yet, the learned descriptors still share the limitation of most
two-view stereo methods, that similarity is measured only for
image pairs, as a distance in descriptor space.

2.2 normals and shading in multi-view stereo

2.2.1 Normals in Multi-View Stereo.

Many multi-view stereo methods only estimate depth, e.g. [22,
94, 116]. If normal vectors are required, they are found in
post-processing by fitting local tangent planes to the point
cloud [59, 93]. There are however a number of MVS methods
that explicitly reconstruct the local tangent plane as part
of their internal parametrization, and thus directly deliver
surface normals on top of depth maps (respectively, 3D points).
Notable examples include the well-known PMVS method [37],
as well as the multi-view variant [41] of the PatchMatch stereo
algorithm [11]. Methods that directly deliver normals at the
reconstructed surface points naturally lend themselves to our
problem. We use [41], on the one hand for its computational
efficiency, and on the other hand because it provides an explicit
parameter to trade off completeness vs. accuracy and ensure
sufficiently clean training normals.

There are also methods which from the beginning constrain
MVS reconstruction with strong a-priori assumptions about the
surface normal. E.g., Zeisl et al. [132] focus on indoor scenarios
consisting only of horizontal floor and ceiling planes connected
by vertical walls. Furukawa et al. [38] go even further and as-
sume a Manhattan world [24]. At the extreme end of the spec-
trum (though somewhat outside the scope of our work) come
model-based methods, which align the images with an exist-
ing 3D template of the object and reconstruct by deforming the
template to better fit the geometric or photometric evidence, e.g.
[77, 119].

16

2.2.2 Shading Cues in Multi-View Stereo.

The first attempts to combine multi-view geometry and shad-
ing for 3D reconstruction date back at least 30 years [10]. Since
then, the topic has been somewhat overshadowed by the devel-
opment of pure stereo, respectively multi-view matching, but
has received constant attention [25, 36, 101]. The complex in-
terplay between surface orientation, light sources, and surface
BRDFs proved difficult to handle outside the lab, and most
works focus on one of these components. Wu et al. [121] assume
a Lambertian surface but consider general illumination, approx-
imating the incoming illumination with spherical harmonics.
Jin et al. [70] propose a joint variational framework for the es-
timation of shape, normal and a single light source, assuming
a Lambertian surface with piecewise constant albedo. Haines
and Wilson [48] integrate information from shading and stereo
via belief propagation to estimate fine surface details. Beeler et
al. [8] detect and eliminate ambient occlusion to improve sur-
face estimation. Langguth et al. [85] combine a shading term on
image gradient and stereo term in a joint optimization frame-
work. Mauer et al. [92] use a variational framework to jointly
estimate depth, illumination and albedo.

2.2.3 Surface Normal Estimation.

A number of recent works have posed surface normal predic-
tion as a machine learning problem. Fouhey et al. [33] mine for
distinctive, repeatedly occurring shape and appearance primi-
tives in indoor RGB-D data, and match those primitives to new
images to obtain a normal map. Later that method was aug-
mented with shape priors for rooms and an explicit model of
crease edges [34]. Ladicky et al. [84] directly predict normals
from image features extracted in a pixel’s neighborhood. They
turn normal estimation into a classification problem, by clus-
tering the normals to a discrete set of directions on the unit
sphere and interpolating between neighboring directions. In-
stead, Eigen and Fergus [30] learn a direct regression from im-
age to normal (alternatively also to depth or semantic label)
with a multi-scale convolutional architecture.

These methods are related to ours in that they pose normal
estimation as a learning problem, and in some cases also use
CNNs as regression engine. Beyond this technical similarity,
there are however two fundamental differences. On the one

17

hand, our model is more specific w.r.t. illumination and
reflectance: we do not learn a generic model that is supposed
to cover the shading behavior of “the world”, or at least of
an entire dataset; rather we rely on MVS to generate sparse
training data tailored to the specific image, such that for
that image the prediction is more accurate, while no external
training data is needed. On the other hand, our model is more
generic w.r.t. geometry. We rely only on the local shading and
the position in the image, but do not depend on the presence
of a few vanishing directions or recurrent geometric primitives
(such as for example those present in the NYU2 Dataset [110]).

Richter and Roth [100] also relax the requirement for exter-
nal training data and instead use synthetic training data. They
assume knowledge of the object’s silhouette in the image. The
distance from the silhouette is used to guess a rough initial nor-
mal map, which in turn serves to derive a quadratic approxi-
mation of the reflectance map and relight the synthetic training
data appropriately.

2.2.4 Normal extrapolation from MVS.

Few authors have explored the idea to use an incomplete cloud
of MVS points as reference for normal prediction. Xu et al. [123]
seemingly also use the appearance around known points/nor-
mals, together with smoothness of the normal field, to fill holes
in an image-based surface reconstruction. Unfortunately, no de-
tails are given in their paper. Ackermann et al. [1] use MVS
to bootstrap photometric stereo. Instead of directly modeling
lighting and reflectance, they extract per-pixel material coef-
ficients at the MVS points and predict unknown normals by
minimizing the photometric differences to the known points.

2.2.5 Integrating Normals to Surfaces.

Shading-based methods in most cases estimate normal vectors,
which still need to be integrated to surfaces. Reconstructing a
function from known gradients is a classic problem in computa-
tional geometry as well as in computer vision. Perhaps the most
popular method, already employed by Horn and Brooks [60], is
to solve the Poisson equation that arises as a necessary con-
dition in variational least-squares reconstruction. In this the-
sis we also follow this standard approach. It has also been at-
tempted to replace the least-squares error function by more ro-

18

bust norms to improve the robustness to outliers [2]. Some au-
thors prefer to use the computationally more efficient eikonal
equation [40, 58]. Further approaches include integration in the
frequency domain [35], which is limited to dense vector fields;
and direct line-by-line integration, which only works for noise-
free data [122].

Few are the work that approach the direct integration of sur-
face normals coming from multiple directions. The first in the
literature addressing the problem were Chang et al. [17]. They
use level sets to solve the Partial Differential Equation (PDE) re-
sulting from the solution of a variational formulation and apply
it to multi-view photometric stereo. Weinmann et al. [120] for-
mulate the problem with a variational approach to reconstruct
mirroring objects.

19

3
T E C H N I C A L B A C K G R O U N D

The purpose of this chapter is to familiarize the reader with
the concepts and notation used in the rest of this thesis. To this
end, we start by describing the modeling of image generation,
from the camera to the final image. Later we will sketch the ba-
sic concepts of 3D stereo reconstruction: search for correspon-
dence, 3D reconstruction, homographies. We will continue by
introducing Convolutional Neural Networks (CNN): basic com-
ponents, insights, and optimization. Finally, we will conclude
by listing multiple MVS datasets and benchmarks used with
this thesis, along with their properties and shortcomings.

3.1 image generation

In this section, we seek to provide a basic understanding of a
camera and how it provides a mapping between the 3D world
and the 2D image. For the sake of simplicity the usual model
employed makes use of many simplifications to make the prob-
lem tractable. First of all, we assume the image is free from
distortions caused by lenses, such as barrel or pincushion dis-
tortion. Minor geometric distortion, such as skewness of a pixel,
or uneven pixel dimensions can be incorporated inside the pro-
jection model in the form of an intrinsic matrix which can be
estimated during calibration. It is a well-known solved prob-
lem in computer vision; in fact, multiple methods can calibrate
a camera and correct for lens distortions, e.g., Heikkilä and Sil-
vén [54], Claus and Fitzgibbon [20]. In this section, we will only
sketch the basic concepts and notations, for a much more de-
tailed and complete description of projective geometry we re-
fer the reader to Hartley and Zisserman [52], from which the
image generation and reconstruction part are taken.

3.1.1 Pinhole Camera

The most convenient way to represent a projective camera is
to use linear algebra utilizing homogeneous coordinates which
denote points on the image plane using the projective space
P2. In this space, a point x = (x,y)T is represented as (x,y, 1)

20

which is also equivalent to (x,y,k) for k ∈ R,k 6= 0. Points
with k = 0 represent points at infinity and do not exist in the
Euclidean space.

In the same way we introduced projective space in 2D, we
can do it in 3D. The projective space P3 include all the point
of the Euclidean 3D space plus the one at infinity. Similarly, as
before, a 3D point X = (x,y, z) is represented as (x,y, z, 1) or
any equivalent representation (x,y, z,k) for k ∈ R,k 6= 0. For
the sake of clarity, it is assumed that k = 1 in case an equation
demands a homogeneous coordinate. We will see later how
homogeneous representations of points in 2D and 3D allow us
to model the pinhole camera as a linear mapping.

The goal of a camera is to map, or image, the 3D world onto a
2D plane, where the sensor lies. The most simple, and popular
model used to represent this mapping is the pinhole camera
model. It consists in an abstraction of a real camera but which
preserves the main geometric relations between the 3D world
and the final image.

It is commonly assumed that world and camera coordinates
coincide. Additionally, the camera center C is placed at the
coordinate origin, and the direction of the optical axis of the
camera is the positive Z-axis. In case multiple cameras are used
at the same time, the coordinate origin is at the camera center
of the reference camera.

3.1.2 Image Projection

The pinhole camera performs a mapping between the 3D point
(X, Y,Z)T to the point on the image plane (fX/Z, fY/Z)T : a map-
ping from the Euclidean space R3 to the Euclidean space R2.
The focal length f describes the distance of the image plane Z = f

to the camera center and is directly related to the field of view or
fov.

When homogeneous coordinates represent world and image
points the central projection is expressed very simply by a lin-
ear mapping between homogeneous coordinates:

fXfY
Z

 =

f 0 0 0

0 f 0 0

0 0 1 0

X

Y

Z

1

 (3)

21

Please note that equation (3) assumes that the origin of the
image planes is at the principal points. For historical reasons
in practice the origin lies at the bottom left of the image plane;
therefore the mapping becomes:

fX+Zpx

fY +Zpy

Z

 =

f 0 px 0

0 f py 0

0 0 1 0

X

Y

Z

1

 (4)

where p = (px,py) are the coordinates of the principal point
in the image.

The full map of the pinhole camera model is almost complete,
what is missing is the conversion between Euclidean coordi-
nates and image coordinates and a scaling factor taking into ac-
count the possibility to have non-square pixels. Therefore, the
projection reads as:

αxX+ Ys+Zqx

αyY +Zqy

Z

 = KX =

αx s qx 0

0 αy qy 0

0 0 1 0

X

Y

Z

1

 (5)

where αx = fmx and αy = fmy represent the focal length of
the camera in terms of pixel dimensions in the x and y direc-
tion. Additionally, the added parameter s is the skew parameter
which accounts for non-squared, skewed pixels. In practice, it is
often zero, but in certain instances, it can take positive values.

In general, points in 3D space are expressed on a Euclidean
frame in world coordinates, that’s why we need to include ro-
tation and translation to transform the point from the world
to the camera coordinates. This can be expressed through a

similarity transformation

(
R −RC
0 1

)
applied directly to the 3D

point, where C represents the camera center in the world coor-
dinate frame and R is a rotation matrix representing the rotation
of the camera coordinate frame.

Finally, the projection pipeline reads as

x = PX = KR[I|−C]X (6)

where K is referred to as the intrinsic matrix, and R[I|−C] is
the extrinsic matrix.

22

Left view

X

x'x

Right view

C CL R

π

H

Figure 3: Homography mapping points on a plane from an image to
another.

3.1.3 Inverse Projection

It is clear that the mapping between a 3D to a 2D point is essen-
tially in one direction, since one dimension gets lost. Therefore,
with a fixed camera, the projection of a 3D point is unique,
while back-projecting a 2D point from the image correspond
to an infinity of points lying on the ray passing by the point
on the image and the camera center. Only with an additional
knowledge of the depth d(x,y) is possible to uniquely invert
the projection process. The depth refers to the distance of the
3D point on this ray. More formally the ray can be expressed
by connecting the camera center C = −M−1p4 and the point at
infinity D = ((M−1x)T , 0)T as follows:

d = d

(
M−1x
0

)
+

(
M−1p4
1

)
=

(
M−1(dx − p4)

1

)
(7)

3.1.4 Planes in Space and Homographies

All image points of a plane are related to image points in
a second view by mean of a planar homography. It is usual
to say that the plane induces a unique homography between
two views. The homography is a projective transformation
that maps points from one image of the plane to another, see
Figure 3. It has many practical applications such as Image

23

Rectification or Panorama Stitching registration, and we will
see in Chapter 4 how it will be the core of our algorithm for
Multi-View Stereo reconstruction.

A plane is defined as:

πTX = 0 (8)

which express that point X is on plane π and where π =

(vT , 1)T .
Given the projection matrices for two views:

P = [I|0] P ′ = [A a] (9)

then the HomographyH induced by the plane is x ′ = Hx where:

H = A− avT . (10)

Let’s assume a stereo camera scenario where the first camera
is aligned with the world origin:

PE = K[I, 0]P ′E = K ′[R|t]. (11)

The plane has coordinate πE = (nT ,d)T such that points on
the plane obey the relation nT + d = 0. The expression for
the homography induced by the plane is the following. Using
Equation (10) and v = n/d the homography for the cameras
P = [I|0],P ′ = [R|t] is:

H = R− tNT/d. (12)

If we include also the intrinsic information on both cameras we
obtain PE = K[I|0],P ′E = K ′[R|t] and the final induced homogra-
phy is:

H = K ′(R− tNT/d)K−1. (13)

What we obtained is a family of homography parametrized by
n/d. It is defined by the plane, and the internal and external
parameters of the cameras.

3.2 image based 3d reconstruction

3.2.1 Two view geometry

After introducing the camera model let’s continue with the
stereo case, where we analyze how a point in 3D is related on

24

Left view

X

x
L

x
R

Right view

eL eR

X
1X

2
X

3

C CL R

epipolar
line

baseline

epipolar
plane

Figure 4: Epipolar geometry of a stereo image pair.

two views. This is expressed by the epipolar geometry which
constraints how a point should be located when seen by two
cameras.

Let’s examine two cameras, the epipolar geometry describes
the intrinsic projective geometry between two views.

Let’s take into consideration a point X in space imaged in
points xL and xR on the first and second camera respectively.
The image points xL and xR, the space point X and camera
centers CL and CR lie on the same plane, see Fig. 4. The epipolar
plane intersects both image planes in epipolar lines.

Given the point xl on the first camera, its corresponding point
must lie on the epipolar line of the right camera. Additionally,
assuming both cameras are looking at the scene, point x must
be in front of the cameras, therefore the point is further con-
strained by the epipole eR, the intersection point between the
line connecting the two cameras, the baseline and the epipolar
line. With those constraints, when finding the correspondence
from the left to the right image, the search is limited to a 1D
space. Indeed, the point in 3D can be parametrized w.r.t. the
distance µ over the ray connecting CL and X:

X(µ) =

(
M−1(uX − p4

1

)
(14)

Even if the literature on Multi-View Geometry (already when
the number of images is more than 2 we are talking about multi-
view) is vast, in the following we will not tackle directly the

25

analytic relation of an object as seen from multiple cameras
(the trifocal tensor for three views and the quadrifocal tensor
for four). It will be enough to consider the 2-views epipolar
geometry and extend it to a multi-camera setting.

3.3 convolutional neural networks

In this section, we will review the basic concepts important to
understand Convolutional Neural Networks (CNN).

First, we will start with a basic description of a generic neu-
ral network, we will continue then with Convolutional Neural
Networks. There is still a clear unbalance between the obvious
practical benefits of deep neural networks and their theoretical
understanding, it is nevertheless possible to point at reasons for
its recent success in computer vision, by reasoning on the way
convolution works on its data.

We will continue listing additional layers and their meaning
for CNN network. Finally, we will sketch the optimization ap-
proach used to optimize the network parameters.

As we restrict to the important presentation to understand
the following chapters, we refer to the book of Goodfellow et
al. [46] for a more detailed overview of deep learning, from
which this part is inspired.

3.3.1 Deep Feedforward Neural Networks

The goal of a Deep feedforward neural networks, also known as
feedforward neural network or Multi-Layer Perceptrons (MLP), is
to approximate an unknown function f∗. Feedforward neural
networks learn the parameter θ for the mapping y = f(x, θ)
from the input x to the output y which best approximates the
original function f∗. In case y is defined on a discrete domain
we are talking of classification, otherwise, for y defined on a
continuous domain, the network can perform regression.

They are known as feedforward because data flows from the
input to the output inside the direct acyclic graph (DAG) and
there is no feedback connection where the outputs of the model
are fed back to itself, see Fig. 5. The type of network which
deals with feedback connection is known as Recurrent Neural
Network (RNN), and it is often used in case the input data is a
sequence dependent on its past, like text or videos but it will
not be considered here.

26

W W'

X1

X2

X3

S1

S2

S3

S4

Y1

Y2

Figure 5: Graphical depiction of 2-layer neural network composed of
one hidden layer of 4 units and one output layer with 2 units
and three inputs. Adapted from Wikipedia.

27

It is known to be a network because it is composed of a
combination of different functions. The overall network is then
described by a direct acyclic graph which describes how the
functions are composed together. For example, f(x) might be
the result of the composition of multiple functions f1, f2, f3:

f(x) = f3(f2(f1(x))) (15)

This chain is a simple network where f1 is the first layer f2 the
second, and f3 the last, or output layer. It is a simple sequential
structure that has been used by many successful neural net-
works. Currently, the trend is to experiment with a more elab-
orate architecture of the network. The amount of layers, func-
tions in our example, determines the depth of the network, the
more the layers, the deeper the network, that’s why we are talk-
ing about deep learning.

network training During training we would like to ob-
tain parameters θ which best approximates f∗. This is done
thanks to a set of noisy observations of f∗(x) , the training data
evaluated at different points. So for each input x , we have an
output y. The other intermediate layers, often called hidden lay-
ers, are not explicitly fixed by the training data. It is the learn-
ing algorithm which must learn their behavior employing a
training algorithm, often simply an adaptation of the popular
gradient descent.

biological inspiration Neural network it is the most
successful computing system biologically inspired. Indeed, it
is composed of building blocks, or layers, which loosely emu-
late a simplified version of how the human brain is known to
work, hence the name neural. Nevertheless, the development
and research of neural network are mainly driven by advances
in machine learning and engineering disciplines rather than dis-
coveries in neuroscience.

3.3.2 Convolutional Neural Networks

The most successful type of network is the Convolutional Neural
Network (CNN). In this type of network at least one layer is
composed by convolutions instead of matrix multiplications.

Almost 30 years ago Lecun et al. [86] was the pioneer with
the very first CNN architecture, refined until 1998 [87] to ob-
tain Lenet-5, see Fig. 6. They demonstrated that CNN was able

28

Figure 6: Original Lenet-5 network, one of the first CNN architecture
with a successful application of handwritten zip code recog-
nition, original picture from Lecun et al.[87]

to recognize successfully handwritten zip codes. Even if this
application pales when compared to what CNN is capable of
doing nowadays, it was nevertheless an astonishing result at the
time of its publication. And more important, it became evident
CNNs were able to obtain competitive results on real-world ap-
plications and were not limited to application on synthetic data
inside research.

Nevertheless, it was only after 20 years, in 2010 [19] and
the advent of parallel computing on video cards which al-
lowed researchers to effectively start to explore and make
use of the power of CNN. But what is considered to be the
groundbreaking result, that exposed it to researchers was the
work of Krizhevsky et al. [82]. The network architecture they
proposed, named Alexnet, from the first name of the author,
was composed of many more layers and won by a large margin
the stiff Imagenet competition [28] for classification. From
that moment on until today, computer vision community and
machine learning started to explore and use CNN for different
applications, often overtaking classic techniques that did not
make use of a neural network. Even now what many research
works try to achieve is the answer to the following question:
Can CNN beat state of-the-art even on this specific application, and
which is the best architecture for our purpose?

The answer is almost always yes: CNN proves to be tremen-
dously successful in the field of natural language processing,
image and video recognition, image segmentation, and com-
puter vision in general. Unfortunately in 3D reconstruction
CNNs struggle to obtain competing results.

Even if there are no strong theoretical results which explains
why it is that successful, we can nevertheless identify three
main ideas of CNN which empower neural networks:

1. sparse interactions,

29

2. parameter sharing,

3. equivariant representation.

sparse interactions Standard neural networks connect
each layer by means of a matrix containing the parameters de-
scribing the interaction between each input unit and output
unit. Every input is connected to each output, see Figure 5.
Convolutional Neural Networks instead implements a sparse
interaction between input and output units, due to the small
support of the kernel weights see Figure 7. Indeed, usually the
convolutional kernel has size between 1x1 and rarely bigger
than 9x9 when compared to typical image dimension ranging
from 32x32 to 512x512. The result is effectively a reduction in
the number of parameters to learn for in the neural network
which in turns reduce the training time and improve the statis-
tical efficiency of the network.

parameter sharing Another unique feature of CNN is
the ability to share parameters when computing the output.
This is due to the fact that the same kernel is used to compute
output feature by shifting it over the input, or image. In other
words the kernel weights are not dependent on every location
but get shared across all the image. The result is a dramatic
reduction in parameter dimension as only one kernel matrix is
needed for all the image as opposed to one kernel matrix for ev-
ery pixel, see Figure 8. With input images of size up to 512x512
it amounts in a drastic reduction of memory requirement.

equivariant representation Parameter sharing on
convolution leads to another specific property: equivariance
to translation. In functions with this type of property if we
translate the input, the output changes in the same way. More
formally for a function y = f(x), if we shift the input by t

also the output is changed in the same way: y− t = f(x− t).
If we think again that the same weights get applied over all
the image, it becomes natural this kind of property to hold.
For example, it might be useful to have a layer which detect
edges on the image irrespective of where they appear. On some
other cases the position when a specific feature appears of the
image might be important for the final problem we are trying
to solve. For example let’s assume we would like to process
faces in images that are already cropped to be centered on an

30

W W'

X1

X2

X3

S1

S2

S3

S4

Y1

Y2

W'

Y1

Y2

W

X1

X2

X3

S1

S2

S3

S4

Figure 7: Sparse connectivity viewed from the input unit x2. Top:
when s is formed by a matrix multiplication connectivity
is dense and x2 is connected to all unit s. Bottom: In case s
is formed by convolution with kernel width 2, connectivity
is sparse and x2 gets connected only to s2 and s3. Adapted
from [46]

.

31

W W'

X1

X2

X3

S1

S2

S3

S4

Y1

Y2

W W'

X1

X2

X3

S1

S2

S3

S4

Y1

Y2

Figure 8: Parameter sharing: in red arrow is indicated the connection
using a particular parameter in two different models. x1.
Top: The red line is indicating the left weight of a 2-element
kernel in a convolutional layer. Ad you can see the same pa-
rameter is used also on input units x1 and x2. Bottom: The
red line indicated a specific weight of a weight matrix in a
fully connected model. Since there is no sharing, the param-
eter is used only to connect x2 with s2. Adapted from [46]

32

individual face, in this case we would like to extract different
features at different part of the face. A part of the network for
the eyes, a part for the eyebrows and so on.

3.3.2.1 Common Layers

Even if neural networks have demonstrated to be able to accom-
plish very complex tasks, e.g. image caption generation [117] or
text generation [47], the layer they are build with are all very
simple. This is a very surprising and interesting properties of
neural networks, simply by changing the order and parame-
ters of the same building blocks we are able to obtain com-
peting results on many applications. This makes the design of
neural network very elegant, considering how basic the build-
ing blocks are. Moreover, thanks to the help of common freely
available framework to create neural network, it allows almost
anyone to create from scratch new networks and to prototype
very quickly.

3.3.2.2 Rectified Linear Unit

In case we would only make use of matrix multiplications and
convolutions in our network, all linear operators, we would
only able to express a linear relation between the input and the
output. What proved to be really powerful in neural network
is the inclusion of a so-called non-linearity in the activation func-
tion, a function which breaks the linear relation between input
and output and allows approximating more complex functions.
Non-linearities in general proved to perform well in practice,
but they also allowed to state the most popular theorem for
neural networks.

The Universal approximation theorem proposed by Hornkit
et al. and Cybenko et al. [26, 61, 62] states that a feedforward
network with a linear output layer and at least one hidden
layer with a finite number of neurons and any squashing func-
tion (an activation function under mild assumptions such as the
sigmoid activation function) can approximate continuous func-
tions on compact subsets of Rn. In other words it states that
simple neural network can represent a wide variety of func-
tions, unfortunately it does not give any bound on the algorith-
mic learnability of the network parameters. While at first this
result might look to have a great practical value, it says that
a simple network can approximate almost any function but it
could take long time to train that network, so there might not

33

be any practical resources to train that simple network for the
desired output.

While at the beginning it looked like it was the specific choice
of the activation function giving the representational power to
the network, in a later work Hornik showed [61] that in reality
it is the feedforward architecture that give neural network the
potential of being universal approximators.

A sigmoid activation function was used in the theorem
because of multiple nice properties. First of all it is bounded,
differentiable everywhere and with non-negative derivative
at each point. In modern networks it is not used anymore
because it suffers from the problem of vanishing gradients due
to the small value of the derivative for low values of the input.
The most popular activation function without big drawback
is the Rectified Linear Unit (RELU). Its main benefits are to be
bounded, differentiable everywhere except zero and without
the vanishing gradient problem, the derivative being either 0
or 1. It is a simple operation which clips to zero any negative
value of the input:

RELU(x) = max{0, x}. (16)

With the addition of this simple nonlinear operation we are
able to increase the expressiveness of our network. RELU is the
most common one, but many other nonlinear operations have
been introduced and explored inside neural networks: i.e. tanh,
Leaky RELU [90], ELU [21] and SELU [78].

There is still no consensus on which one performs better,
only empirical observation of different results for each type of
network architecture. While some have been proved to perform
better on certain kind of application and dataset usually the
difference is minimal and will not affect the overall result of
the network.

3.3.2.3 Pooling

A standard convolutional layer is composed by a convolution
followed by a non-linear function such as RELU and then a
pooling operator. Pooling is an operation which substitute the
output of a net with a summary statistic of nearby output. The
most common one is the max-pooling operation which replace
the output within a rectangular window with the maximum
value contained in it. Alternatively, other pooling operations
have been proposed: averaging of the neighborhood as used in

34

Chapter 5, L2 norm of the window or weighted average based
on the distance from the central pixel.

invariance to translation This type of operation
helps to make a representation invariant w.r.t. small variation
of the input. Even if the input is translated by a small amount,
within the pooled rectangle, the pooled outputs do not change.
Invariance to translation might be a desirable characteristic
depending on whether it is important for our application to
detect which feature is present rather than where it is. For
example when performing classification of a dog we are not
interested in the position of the dog rather in understanding
that there is a nose. On the other hand in case we would like
to detect the pixel accurate position of the nose of the dog the
pooling operation might destroy our information.

size reduction It is important to apply pooling to reduce
the size of our network. E.g. if we are going to apply a max-
pooling operator with a window and stride 4 we reduce the
input size by a factor of 42 = 16. This results in faster training
time, smaller memory usage and improves the computational
efficiency.

multi-scale property Furthermore, pooling compen-
sates for the limited receptive field of the convolution by
downsampling the image. Each time pooling is applied, we
practically downscale the image. In this way, even with small
kernel windows, convolution inside CNNs is able to extract
features from the image even if they would not be visible
from the receptive field, see Figure 9. Consecutively chaining
convolution and pooling effectively creates a sort of multi-scale
network able to see the whole image, it creates what has always
been used in computer vision, a scale-space.

un-pooling If instead of pooling we apply its inverse we
are able to up-sample the input dimension. This allows us to
create typical encoder-decoder architectures with an output di-
mension of the same order of magnitude of the input but re-
taining the multi-scale properties mentioned before.

See for example two different architectures, Fig. 11 and
Fig. 12 where pooling plays an essential role and enable the
convolutions, even with kernel size 3x3, to capture information
from all the image.

35

Y1

Y2

X1

X2

X3

S1

S2

S3

S4

S1

S2

S3

S4

S4

Figure 9: In this network we show the receptive field of from the in-
put unit x2. Even if the direct connectivity of the convolu-
tion is sparse, the implicit connectivity inside the network
gets later the shallow layer. When combined with pooling,
unit in the deeper layer can be indirectly connected to all or
most of the input units. Adapted from [46]

36

Figure 10: Gradient descent algorithm uses the derivative of a func-
tion to move the solution downhill and closer to a mini-
mum. Source: Wikimedia.

3.3.3 Gradient Descent

As mentioned in Section 3.3.1 optimization is an important
component of Deep Learning. Optimization refers to the task
of minimizing (or maximizing) a function f(θ) by altering the
value of θ. Gradient descent [16] is a technique to minimize
functions by making use of the derivative of the function w.r.t.
the current solution to obtain an improved solution. The
algorithm start with an initial guess, an initialization, and
proceeds iteratively in steps by updating the solution following
the function downhill until a minimum is reached:

θ0 = θinit θn+1 = x− λ∇(f(θn)) (17)

where ∇ is the gradient operator and λ a parameter which tune
the length of the step at each iteration, see Figure 10. For certain
assumptions of the function f (for example f convex), and par-
ticular choices of λ convergence to a minimum is guaranteed.

stochastic gradient descent All of deep learning is
powered by one popular algorithm: stochastic gradient de-
scent. It shares the name with gradient descent but it includes
important modification to make it working with the large
training dataset typical used to obtain a good generalization.

37

Convolutional Encoder-Decoder

Pooling Indices

Input

Segmentation

Output

Conv + Batch Normalisation + ReLU
Pooling Upsampling Softmax

RGB Image

Figure 11: Architecture of Segnet by Badrinarayanan et al. [4] a net-
work which does pixel-wise classification of images. Note
the multi-scale structure of the network by means of pool-
ing.

The insight of stochastic gradient descent is that the gradient
is an expectation. Instead of using all the training samples to
compute the gradient, the main idea consists of sampling uni-
formly the training set to build a minibatch of examples. Each
minibatch size is typically relative small w.r.t. to the number of
samples. A minibatch size is typically from 1 to few hundred.
Nevertheless, each minibatch updates the current solution even
if the training set might contain billions of examples. In other
words the true gradient computed for the parameters θ on the
training set ∇f(θ, x) is approximated by a gradient over the
minibatch set B = {x1, ..., xm}:

θn+1 = θn − λ∇BiLBi(θ, x,y) (18)

where LBi(θ, x,y) is the loss function of the network with
training pair x,y in Bi computed with parameters θ and step
size λ, also known inside deep learning as learning rate.

Even if the shape of the function that is usually going to be
optimized in deep learning is unknown, today we know that
deep learning networks works very well when trained with
stochastic gradient descent. The optimization algorithm does
not have any guarantee to arrive at a local minimum in a few it-
erations, and not even that the local minimum is near the global
minimum, but it often finds a low value of the cost function fast
enough to be useful in practice.

3.4 multi-view stereo benchmarks

In this section we review the most popular Multi-View Stereo
datasets and benchmark used to compare different algorithm.

Science is based on progressive advancement of new works.
Even though each publication should contain enough informa-
tion to compare it to other existing methods, often the param-

38

96

38
4

25
6 40

96
40
96 21

21

backward/learning

forward/inference

pi
xe

lw
ise

 p
re

di
ct

ion

se
gm

en
ta

tio
n

g.t
.

25
6

38
4

Figure 12: Architecture of a pixel-wise classification of images by
Long et al. [88]. As in Fig. 11 the architecture makes use
of pooling to downsize the image to capture interaction
from all the image.

eters and data are so different that a fair comparison across
different methods becomes very difficult. What makes it eas-
ier is the use of a single test-bed. It allows a fair comparison
and speed up the job of researchers, free from the burden to
re-implement other publications.

Being able to directly rely on ready-made datasets speeds up
the experimental evaluation of algorithms and saves us from
the error prone process of data creation. Other than enabling a
more direct quantitative evaluation, a common dataset allows
a community of researcher to understand in deep specific falla-
cies of difficulties. Therefore, researchers understand more eas-
ily the specific features or failure cases of a method.

Even if a common dataset contains per se all the ingredi-
ents to foster a fair comparison, it is the only with an impartial
benchmark that we are able to truly compare and understand
differences across methods. A shared benchmark provides a di-
rect and fair error measure guaranteed by impartial “judges”
which maintain an online website with a ranking of different
approaches. The authors are therefore not only free from the
creation of new dataset but also from the choice of an eval-
uation protocol, which could be otherwise crafted to favor a
specific feature of the method.

We will start first with the popular multiview Middlebury
benchmark [107], we will continue with the discontinued Strecha
benchmark [114] and the DTU dataset [66]. At the end I’ll de-

39

Figure 13: The two objects used to compare methods in the Middle-
bury Multi-View Stereo benchmark [107]. The two objects
were selected to include different characteristics: sharp and
smooth features.

scribe future dataset and comment the difference and feature
of each one of those.

3.4.1 Middlebury Multi-view dataset

Seitz et al. [107] with Middlebury Multiview stereo benchmark are
the first to propose and online benchmark for the evaluation of
multi-view stereo algorithms in 2003. Even if multiple objects
were proposed in their original paper, the data is composed of
only two plaster reproduction of two objects: a temple and a
dinosaur model, see Fig. 13, of size 10cm× 16cm× 8cm and
7cm× 9cm× 7cm respectively.

image capture Images are captured with a robotic arm
which densely sample an half-sphere of one meters. Roughly
300 images at resolution 640× 480 are captured per object, but
images are distributed in 3 sets: full contains all the images, ring
only a selection of 47 objects and sparse ring samples only 16 ob-
jects, see Fig. 14. This split was probably done for two recons:
First of all to encourage researchers to show their results on dif-
ferent level of redundancy in the images. It was also probably
a requirement at the time to be able to work on a reduced set
of images due to the limited computing capabilities.

40

Figure 14: Position and orientation for the temple dataset. The dome
is not fully covered due to shadows. The blue and red
cameras indicate the set used for the ring dataset, while
the 16 red cameras show the position for the sparse ring
dataset

.

Figure 15: Frequency of submission on the Middlebury Multi-View
benchmark. Even if proposed in 2006 it is still actively
used.

41

ground truth recording Ground truth has been recon-
structed by mean of Cyberware Model 15 laser stripe scanner.
Per each object 200 individual scans were captured and merged
together to reduce occlusions and improve the overall accuracy
of the scan.

The reference model were aligned to the images in an iter-
ative optimization approach minimizing photo-consistency be-
tween images and the reference mesh. The output of the align-
ment process was translation, rotation and scale, introduced to
compensate for differences in calibration between images and
laser scan.

comments and success The benchmark has been used
for more than 10 years and 84 different methods have been
compared and measured one against each other, see Figure 15.
These numbers alone highlight the success of this benchmark,
despite the limited number of objects proposed. Nevertheless,
for a long period it has been the only way to directly evaluate
the performance of a MVS method w.r.t. to all past methods.

3.4.2 Strecha dataset

Strecha et al. [114] proposed in 2008 a new online evaluation
benchmark for MVS but specifically tailored to outdoor scenes
and high resolution imagery. They proposed an evaluation of
6 different outdoor scenes: building, facades and a fountain.
Each object is captured with 10 images with a resolution of
3072× 2048 (roughly 6 Megapixels). The increase in dimension
was a significant step forward w.r.t. Middlebury Benchmark
where the resolution of images was 640× 480. For this reason
this dataset fostered new type of algorithms focus on speed and
being able to handle large amount of data.

Nevertheless, the type of objects was too homogeneous and,
despite not being captured in controlled environment, it did
not provide any difficult challenge such as specularity, com-
plex object or surface reflectance function. Images are captured
manually but roughly trying to cover a circular trajectory from
around the object in order limit the number of occlusions.

Unfortunately the online benchmark has been discontinued,
that’s why it cannot be used a reference for current evaluation
of new algorithms.

42

Benchmark Setting Resolution Online Eval. 6DoF Motion MVS Stereo Video Varying FOV

Middlebury MVS [107] Laboratory 0.3 Mpx 3 3

DTU [66] Laboratory 2 Mpx 3

Strecha [114] Buildings 6 Mpx 3 3

ETH3D [105] Varied 0.4 / 24 Mpx 3 3 3 3 3 3

Tanks [79] Varied 2 / 8 Mpx 3 3 3 3

Table 1: Comparison of existing multi-view-stereo datasets. We dif-
ferentiate between different scene types (e.g., staged scenes
captured in a laboratory vs. synthetic scenes), whether the
camera undergoes a restricted or a full 6 degrees-of-freedom
(DoF) motion, whether cameras with different fields-of-view
(FOV) are used, if video is used or dataset includes picture
from multiple point of views(MVS).

3.4.3 DTU dataset

To compensate for the small image size and limited scene vari-
ability for the Middlebury Benchmark, Jensen et al. [67] pro-
posed a new DTU dataset, but did not include an online evalu-
ation, instead they release both images and ground truth data
to the public. To be able to quickly capture multiple objects
they made use of a programmable 6-axis robot arm. The robot
provided precise camera position due to high repeatability of
the robot arm. In other words they were able to program pre-
defined positions to be used for capturing data which can be
reproduced with high precision for each object. The robot was
moved on concentric spheres around the object to reconstruct
80 different objects: 59 objects contained 49 images captured in
a sphere with radius 50cm, while the others objects were cap-
tured with 64 images captured with an additional sphere of
radius 65cm. Additionally, each image was capture with 7 dif-
ferent illumination, created by varying the illumination patter
of multiple led on a plane. Ground truth was obtained by merg-
ing multiple scan from an accurate structured light scanner.

3.4.4 Shortcoming and upcoming datasets

Most of the shortcomings of the Middlebury Benchmark have
been addressed by the subsequent datasets, but none of them
was able to provide a decent substitute for the vision com-
munity which could be a reference for the development and
measurement of advancements in MVS methods. That’s why
recently at the same time Schöps et al. [105] and Knapitsch et
al. [79] proposed a new MVS stereo benchmark for real world

43

scenes and high resolution imagery and video, respectively
named ETH3D and Tanks. They both included stereo scenes,
and video captured with a camera with 6 degree of free-
dom. Tanks provide only images from video without camera
calibration but ETH3D include also picture from multiple
point of view, in the same way as Strecha dataset, see Table 1.
Furthermore, ETH3D include a stereo ring with lenses with
variable field of view, to potentially emulate mobile or robotic
application.

It is difficult to predict in advance whether both benchmark
will become popular, nevertheless it is true that any new deep
learning application is eager to make use of ready-made 3D
training data. That’s why both ETH3D and Tanks will provide
a valuable contribution to the computer vision community.

44

4
M A S S I V E LY PA R A L L E L M U LT I V I E W
S T E R E O P S I S

This chapter is based on Galliani et al. [41].

Reconstructing dense 3D shape from multiple images has
been a topic of interest in computer vision for many years. Since
camera pose estimation and multiview triangulation can be con-
sidered solved (at least for images that are suitable for subse-
quent dense reconstruction), the problem boils down to the fun-
damental task of image matching, i.e. establishing dense corre-
spondence between images. The majority of the literature deals
with the basic stereo setup with two images, e.g. [64, 71, 97, 99,
102]. It is evident that using more than two viewpoints will im-
prove both the accuracy of the reconstructed 3D points (by tri-
angulating from more rays) and the robustness against grossly
wrong matches (by checking the coherence of redundant obser-
vations). Moreover, using more than two viewpoints alleviates
the occlusion problem, and can reconstruct objects more com-
pletely, e.g. [15, 37]. On the other hand, the multiview setup
exacerbates the problem that already many successful stereo
methods do not scale up to realistic image sizes of several mil-
lion pixels. Nevertheless, guided by the quality metrics used in
standard benchmarks such as KITTI and Middlebury, most au-
thors concentrate on accuracy and pay limited attention to scal-
ability and runtime performance. Many existing algorithms be-
come impractical when moving to larger sets of high-resolution
images.

In this work we present a multiview matching method that
delivers dense, accurate 3D point clouds while at the same time
being efficient enough to handle large images. Our goal is a
fast matcher which is nevertheless very accurate. On the recent
DTU benchmark, our method reaches the best compromise be-
tween accuracy and completeness (the best accuracy with 2

nd-
best completeness, or the best completeness with 2

nd-best accu-
racy; see example in Fig. 16) still it can match ten 2-Megapixel
images in less than 2 seconds on a standard desktop PC.

45

Figure 16: Results on one of the 80 evaluated objects on the DTU
benchmark [66]. Top left: Ground truth point cloud; top
right: reconstructed point cloud with texture; bottom left:
color-coded surface normals; bottom right: reconstructed
surface.

contribution. We present Gipuma, a simple, yet power-
ful multiview variant of Patchmatch Stereo with a new, highly
parallel propagation scheme.

Our first contribution addresses computational efficiency:
standard Patchmatch is sequential in nature, since it propa-
gates information diagonally across the image pixel-by-pixel.
A little parallelisation can be achieved by procedures such as
aligning the propagation direction with the image axes and
running rows/columns in parallel [5, 6, 55, 134], but these
still do not fully harness the capabilities of current hardware.
Instead, we propose a new diffusion-like scheme that operates
on half of all pixels in an image in parallel with a red-black
(checkerboard) scheme. It turns out that this arguably more
local propagation, which is particularly suitable for modern
many-core GPUs, works as well as the standard Patchmatch
procedure, while being a lot faster.

The second contribution aims for accuracy and robustness:
we extend PatchMatch Stereo from a two-view to a multiview
matcher to better exploit the redundancy in multiview datasets.
The Patchmatch Stereo method by construction recovers also
a normal in disparity space at every pixel. The starting point

46

for our extension is the observation that one can just as well
define the normals in Euclidean 3D scene space. In that case
they immediately define a local tangent plane at every surface
point, and thus an associated homography (respectively, a pair
of slanted support windows) between any two images view-
ing the surface. The explicit estimation of the surface normal
makes it possible to utilize plane-induced homographies when
checking photo-consistency between different views. It avoids
epipolar rectification and allows one to aggregate evidence over
multiple images in generic configuration.

The described multiview setup still needs a reference image
to fix the parametrization of the surface. Hence, we first com-
pute depth using every image in turn as reference, and then
fuse the results into one consistent 3D reconstruction. However,
we prefer to carefully exploit the multiview information at the
level of photo-consistency, and then use a rather basic fusion
scheme to merge them into a consistent 3D point cloud. This
is in contrast to some other methods that start from efficiently
computable, but noisy depth maps and merge them with so-
phisticated fusion algorithms, which (at least implicitly) have
to solve the additional problem of surface fitting [65, 83, 128].

We will show in our experiments that our implementation
yields state-of-the-art multiview reconstruction on a variety of
datasets.

4.1 patchmatch stereo

We start by briefly reviewing the original Patchmatch Stereo
method [11], to set the scene for our extensions.

4.1.1 Patchmatch for rectified stereo images.

The core of Patchmatch stereo is an iterative, randomized algo-
rithm to find, for every pixel p, a plane πp in disparity space
such that the matching cost m in its local neighborhood is min-
imized. The cost at pixel p is given by a dissimilarity measure
ρ, accumulated over an adaptive weight window Wp around
the pixel. Let q denote the pixels in the reference image that
fall within the window, and let πp be a plane that brings each
pixel q in correspondence with a pixel location q ′πp in the other
image. Then the matching cost is

m(p,πp) =
∑

q∈Wp

w(p, q) ρ(q, q ′πp). (19)

47

The weight function w(p, q) = e−
‖Ip−Iq‖

γ can be seen as a
soft segmentation, which decreases the influence of pixels that
differ a lot from the central one. We use a fixed setting γ = 10

in all experiments.
The cost function ρ consists of a weighted combination of ab-

solute color differences and differences in gradient magnitude.
More formally, for pixels q and q ′πp with colors Iq and Iq ′

πp

ρ(q, q ′πp) = (1−α) ·min(‖Iq − Iq ′
πp
‖, τcol)

+α ·min(‖∇Iq −∇Iq ′
πp
‖, τgrad) ,

(20)

where α balances the contribution of the two terms and τcol
and τgrad are truncation thresholds to robustify the cost against
outliers. In all our experiments we set α = 0.9, τcol = 10 and
τgrad = 2.

4.1.2 Sequential propagation.

The Patchmatch solver initializes the plane parameters (dispar-
ity and normal) with random values. It then sequentially loops
through all pixels of the image, starting at the top left corner.
Good planes are propagated to the lower and right neighbors,
replacing the previous values if they reduce the cost over the
slanted support window. Additionally, it is proposed to also
propagate planes between the two views. The propagation is
interleaved with a refinement of the plane parameters (using
bisection). After finishing a pass through all pixels of the im-
age, the entire process is iterated with reversed propagation
direction. Empirically, 2-3 iterations are sufficient. For optimal
results the disparity image is cleaned up by (i) removing pixels
whose disparity values are inconsistent between the two views;
(ii) filling holes by extending nearby planes; and (iii) weighted
median filtering.

4.1.3 Plane parameterization.

In Patchmatch stereo, the πp are planes in disparity space,
i.e. 3D points P = [x,y,disp]> must fulfill the plane equation

ñ>P = −d̃ , disp = −
1

ñz
(d̃+ ñxx+ ñyy) , (21)

with normal vector ñ and distance d̃ to the origin. This defini-
tion yields an affine distortion of the support windows in the
rectified setup [55].

48

Figure 17: The propagation scheme. Top: Depth and normal are up-
dated in parallel for all red pixels, using black pixels as
candidates, and vice versa. Middle: Planes from a local
neighborhood (red points) serve as candidates to update
a given pixel (black). Bottom: Modified scheme for speed
setting, using only inner and outermost pixels of the pat-
tern.

4.2 red-black patchmatch

4.2.1 Surface normal diffusion

The standard Patchmatch procedure is to propagate informa-
tion diagonally across the image, alternating between a pass
from top left to bottom right and a pass in the opposite direc-
tion. The algorithm is sequential in nature, because every point
is dependent on the previous one. Although several authors
have proposed a parallel propagation scheme [5, 6, 55, 134], all
of them still inherited from the original Patchmatch that one
propagates sequentially across the whole image.

Instead, we propose a new diffusion-like scheme specifically
tailored to multi-core architectures such as GPU processors. We
partition the pixels into a “red” and “black” group in a checker-
board pattern, and simultaneously update all black and all red
ones in turn. Possible candidates for the update at a given pixel
are only points in a local neighborhood that belong to the re-
spective other (red/black) group, see Fig. 17.

The red-black (RB) scheme is a standard trick to parallelize
message-passing type updating schemes, c.f . the red-black
Gauss-Seidel method for linear equation solving. Red-black
acceleration has also been proposed for Belief Propagation [32].
In fact Patchmatch can be interpreted as a form of Belief
Propagation in the continuous space [9]. In contrast to these
applications of the RB-scheme we look beyond the immediate
neighbors. Our standard pattern uses 20 local neighbors for
propagation, Fig. 17. Thanks to the larger neighborhood we

49

Figure 18: Left: Accuracy and completeness for increasing number of
iterations for the object visualized on the right. Right: Re-
construction after iteration 2, 3, 4 and 8.

converge to a good solution already with a low number of
iterations, see Fig. 18. The depicted scheme turned out to be a
good compromise between the cost for each propagation step
and the number of iterations needed to diffuse the information
far enough. The number of iterations is fixed to 8 in all our
experiments. At this point the depth map has practically
converged and changes only marginally.

4.2.2 Sparse matching cost

We use a similar matching cost as proposed in the original
Patchmatch paper [11]. The only difference is that we consider
only intensity rather than color differences. The performance
improvement when using RGB is tiny and in our view does not
justify a threefold increase in runtime. To further speed up the
computation we follow the idea of the so-called Sparse Census
Transform [136] and use only every other row and column in
the window when evaluating the matching cost, resulting in a
4× gain. Empirically, we do not observe any decrease in match-
ing accuracy with this sparse cost.

The method is particularly useful for Patchmatch-type meth-
ods. Such methods require larger window sizes, because com-
pared to the disparity a larger neighborhood is needed to re-
liably estimate the normal. Depending on the image scale, the
necessary window size is typically at least 11x11 pixels, but can
reach up to 25x25 pixels.

50

4.2.3 Implementation details

We have implemented Gipuma in CUDA, and tested it on re-
cent gaming video cards for desktop computers. For our ex-
periments we use the Nvidia Titan X. Images are mapped to
texture memory, which provides hardware-accelerated bilinear
interpolation to warp the support window between views. To
limit the latency when reading from GPU memory we make
extensive use of shared memory and cache the support window
of the reference camera. We release our code as open-source
software under the GPLv3 license.

runtime . The runtime of our method is influenced mainly
by three factors: the number of images considered for matching,
the image resolution, and the size of the matching window
(which in practice is roughly proportional to the image size).

For images of resolution 1600× 1200 the runtime to generate
a single depthmap with 10 images and window size of 25 is 14

seconds, when using our fast setting as described in Sec. 4.4.1
and windows size 15 the runtime for the same number of im-
ages is 1.5 seconds.

To generate a Middlebury depthmap from 10 views with a
resolution of 640× 480 the runtime is 1.5 seconds.

algorithm scalability We show here how our method
scales with the improvement of GPU technology. Even if it is
difficult to quantify the improvement between successive gen-
eration of video cards, the (Giga) FLOPS is defined as:

FLOPS = sockets× cores

socket
× cycles

second
× FLOPs
cycle

(22)

and provides a generic unit of measure of computing. We plot
the runtime w.r.t. different generation of video cards along with
their GigaFLOPS, see Fig. 19. It shows first of all that our paral-
lel algorithm benefits directly from improvement of the under-
lining hardware. Then, when comparing the two plots, it shows
the same trend of improvement, highlighting the proportional
relation between GFLOPS and runtime of our method.

51

 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000

GTX980 TitanX GTX1080Ti TitanXp
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

GTX980 TitanX GTX1080Ti TitanXp

Figure 19: Comparison across different GPUs ordered by release date.
Note the similar trend of GigaFLOPS (Left) w.r.t. Runtime
in second (Right).

GPU GigaFLOPS

GTX 980 4358

Titan X 6144

GTX 1080Ti 10608

Titan Xp 10790

Table 2: GigaFLOPS for GPUs used during runtime benchmark.

4.3 multi-view extension

4.3.1 Parametrization in scene space

Disparity, by definition, is specific to a pair of rectified images.
Instead, we propose to operate with planar patches in Eu-
clidean scene space. This variant has several advantages. First,
it avoids epipolar rectification, respectively explicit tracing
of epipolar lines, which is a rather unnatural and awkward
procedure in the multiview setup. Second, it delivers, as a
by-product, a dense field of surface normals in 3D scene space.
This can be used to improve the subsequent point cloud fusion
(e.g. one can filter pixels with consistent depth but inconsistent
normal) as well as directly provide the necessary normal used
for surface reconstruction [76]. Then, it allows the data cost
to directly aggregate evidence from multiple views: the cost
per-pixel is computed by considering the cost of the reference
camera with respect to all the other selected views.

Finally, the modification comes at little extra cost: the
mapping between any two images is a plane-induced homog-
raphy [52], corresponding to a 3D matrix-vector multiplication,
see Fig. 20.

52

In the Euclidean scene-space the plane equation n>X = −d

holds for 3D object points X = [X, Y,Z]>. Finding the object
point amounts to intersecting the viewing ray with the plane
in space. W.l.o.g. one can place the reference camera at the
coordinate origin. With the intrinsic calibration matrix K, the
depth at a pixel x = [x,y]>= [K|0]X is then related to the plane
parameters by

Z =
−dc

[x−u, α(y−v), c] · n
, K =

c 0 u

0 c/α v

0 0 1

 . (23)

where u, v is the principal point in pixels and c, cα represent the
focal length of the camera in pixels.

The image point x in the reference camera K[I|0] is then re-
lated to the corresponding point x ′ in a different camera K

′[R|t]
via the plane-induced homography, as introduced in Chapter 3:

Hπ = K
′(R−

1

d
tn>)K−1 , x ′ = Hπx . (24)

initialization. When operating in scene space, one has to
take some care to ensure a correct, unbiased random initializa-
tion of the Patchmatch solver. To efficiently generate random
normals that are uniformly distributed over the visible hemi-
sphere we follow [91]. Two values q1 and q2 are picked from a
uniform distribution in the interval (−1, 1), until the two values
satisfy S = q21 + q

2
2 < 1. The mapping

n =
[
1− 2S , 2q1

√
1− S , 2q2

√
1− S

]> (25)

then yields unit vectors equally distributed over the sphere. If
the projection [u, v, c]>n onto the principal ray is positive, the
vector n is inverted.

Furthermore, one should account for the well-known fact
that the depth resolution is anisotropic: even if the matching
is parametrized in scene space, the similarity is nevertheless
measured in image space. It follows that the measurement
accuracy is approximately constant over the disparity range,
respectively inversely proportional to the depth. Therefore
it is advisable to uniformly draw samples from the range
of possible disparities and convert them to depth values (i.e.
supply a more densely sampled set of depths to chose from

53

X

Cr

C1

C2

C3x

x'

x''

x'''

Hπ,1

π

Hπ,2

Hπ,3

Figure 20: Multi-view setup with four cameras and homographies
from reference camera Cr to three other cameras.

in the near field, where they make a difference; and a sparser
set in the far field, where small variations do not produce an
observable difference). For the same reason, the search interval
for the plane refinement step should be set proportional to the
depth.

4.3.2 Cost computation over multiple images

When using multiple views, the question arises how to best
combine the pairwise dissimilarities between images into a uni-
fied cost. In our implementation, we only consider the pairwise
similarities between the reference image and all other overlap-
ping views, but not those between pairs of non-reference im-
ages.

view selection For a given reference image, we first ex-
clude all views whose viewing directions differ from the refer-
ence image by less than αmin or by more than αmax. The two
thresholds correspond to the empirical observation that base-
lines < αmax are too small for triangulation and lead to overly
high depth uncertainty, whereas baselines > αmax have too big
perspective distortions to reliably compare appearance [116].
The selection of αmin and αmax is dataset dependent.

In big datasets where the angle criteria still produces too
many views, we propose to randomly pick a subset S of views
within this selection only if the runtime performance is pre-
ferred over accuracy, see Sec. 4.4. When used, we set S = 9.

cost aggregation For a specific plane π, we obtain a cost
value mi from each of the N comparisons. There are different

54

strategies how to fuse these into a single multiview matching
cost.

One possible approach is to accumulate over all n cost values,
as proposed by Okutomi and Kanade [94]. However, if objects
are occluded in some views, these views will return a high cost
value even for the correct plane, and thereby blur the objective.
In order to robustly handle such cases we follow Kang et al. [72].
They propose to include only the best 50% of all N cost values,
assuming that at least half of the images should be valid for
a given point. We slightly change this and instead of the fixed
50% introduce a parameter K, which specifies the number of
individual cost values to be considered,

msrt = sort↑(m1 . . .mN) , mmv =

K∑
i=1

mi . (26)

The choice of K depends on different factors: in general,
a higher value will increase the redundancy and improve
the accuracy of the 3D point, but also the risk of including
mismatches and thereby compromising the robustness. Empiri-
cally, rather low values tend to work better, in our experiments
we use K = 3 or less for very sparse datasets.

4.3.3 Fusion

Like other multiview reconstruction schemes, we first compute
a depth map for each view by consecutively treating allN views
as the reference view. Then, the N depth maps are fused into
a single point cloud, in order to eliminate wrong depth values
and to reduce noise by averaging over consistent depth and
normal estimates. Our approach follows the philosophy to gen-
erate the best possible individual depth maps, and then merge
them into a complete point cloud straightforwardly. This allows
and additional higher lever of parallelism: it is possible to com-
pute independently each depthmap on a different GPU, poten-
tially reducing the cost of depthmap computation to a factor
equal to the number of GPU available.

consistency check Mismatches occur mainly in texture-
less regions and at occlusions, including regions outside of a
camera’s viewing frustum. Many such cases can be detected,
because the depths estimated w.r.t. different viewpoints are not
consistent with each other. To detect them, we again declare
each image in turn the reference view, convert its depth map
to a dense set of 3D points and reproject them to each of the

55

 0.195
 0.2

 0.205
 0.21

 0.215
 0.22

 0.225
 0.23

 0.235
 0.24

 0.245

10 20 30 40

Acc. fang

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

10 20 30 40

Com. fang

 0.23
 0.24
 0.25
 0.26
 0.27
 0.28
 0.29
 0.3

 0.31

0.1 0.2 0.3 0.4 0.5

Acc. fε

 0.3
 0.32
 0.34
 0.36
 0.38
 0.4

 0.42
 0.44
 0.46
 0.48
 0.5

0.1 0.2 0.3 0.4 0.5

Com. fε

 0.2
 0.22
 0.24
 0.26
 0.28
 0.3

 0.32
 0.34
 0.36

1 2 3 4 5

Acc. fcon

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1
 1.2

1 2 3 4 5

Com. fcon

Figure 21: Behavior of depthmap fusion w.r.t. different values of
fang, fdisp, fε see Sec. 4.3.3. Note how the consistency
check step has a great impact on the completeness or accu-
racy of the method. Left: Accuracy. Right: Completeness.
Top: Different values for the consistency check on the an-
gle between close 3D points. Middle: Parameter test over
multiple thresholds for the depth value in space. Bottom:
Consistency enforced over different number of images.

N − 1 other views, resulting in a 2D coordinate pi and a dis-
parity value d̂i per view. A match is considered consistent if
d̂i is equal to the disparity value di stored in the correspond-
ing depth map, up to a tolerance of fε pixels. The threshold
depends on the scale of the reconstructed scene. We further
exploit the estimated surface normals and also check that the
normals differ by at most fang, in our experiments set to 30◦. If
the depth in at least fcon other views is consistent with the ref-
erence view, the corresponding pixel is accepted. Otherwise, it
is removed. For all accepted points the 3D position and normal
are averaged directly in scene space over all consistent views to
suppress noise.

56

Figure 22: Reconstruction results of two DTU objects. From left to
right: ground truth point cloud, textured point cloud and
triangulated mesh surface.

accuracy vs . completeness The fusion parameters fε
, fang and fcon filter out 3D points that are deemed unreli-
able, and thus balance accuracy against completeness of the
multiview reconstruction. Different applications require a dif-
ferent trade-off (e.g., computer graphics applications often pre-
fer complete models, whereas in industrial metrology sparser,
but highly accurate reconstructions are needed). We explore dif-
ferent setting in our experiments, see Sec. 4.4. Note that the
fusion step is very fast (≈ 5 seconds for 49 depthmaps of size
1600× 1200) and does not change the depthmaps. One can thus
easily switch from a more accurate to a more complete recon-
struction, or even explore different levels interactively.

Consistency checking is an important step to remove out-
liers. For some applications, such as architectural surveying, the
main concern is a correct, outliers-free result, whereas missing
points and small holes are acceptable. In such cases it is recom-
mended to stop at this point and triangulate only the consis-
tent points into a 3D point cloud. In fact a main reason why in
these application fields 3D point clouds are preferred over sur-
face models is that the latter inherently rely on “guessing” the
missing geometry. If, on the contrary a complete and hole-free
model is preferred, such as in many computer graphics applica-
tions, the values that are missing due to the consistency check
can be filled in the Poisson reconstruction.

57

Figure 23: Reconstruction results for our three different settings.
From left to right: ours, ours comp, ours fast. Note how the
complete version is able to close the holes around the eye
but suffers from boundary artifacts along the crest. On
the other hand, the fast version, similar to the original,
presents bigger holes around the eye and on the right side
of the mantle.

4.4 results

We evaluate our multiview stereo GPU implementation on dif-
ferent datasets. We start with quantitative results on the recent
DTU dataset for large scale multiview stereo [66]. To put our
method in context we also evaluate on the Middlebury multi-
view benchmark [106], although the images in the dataset are
very small by today’s standards, and performance levels have
saturated. When a triangulated mesh is required, we directly
use our point cloud and normals with Screened Poisson recon-
struction [76] with the program provided by the authors.

Additional qualitative results on aerial images and on KITTI
dataset [45] are shown in Sec. 4.4.3 and 4.4.4 to demonstrate the
broad applicability of our method.

4.4.1 DTU Robot Image Dataset

As our main testbed, we use the recent DTU large scale multi-
view dataset [66]. It contains 80 different objects, each covered
by 49–64 images of resolution 1600× 1200 pixels. The captured
scenes have varying reflectance, texture and geometric proper-
ties and include fabric, print, groceries, fruit and metallic sculp-
tures, see Fig. 22. The images have been captured with different

58

lighting conditions, and with two different distances to the ob-
ject, using a robot arm to accurately position the cameras. We
use only the most diffuse lighting to select the same set of im-
ages as used by the other methods. The ground truth has been
acquired with a structured light scanner.

We followed the protocol specified by the authors of the
dataset, i.e. we compute the mean and median reconstruction
errors, both for the estimated 3D point cloud and for a trian-
gulated mesh derived from the points. Accuracy is defined
as the distance from the surface to the ground truth, and
completeness from the ground truth to the surface. In this way
completeness is expressed in mm and not as a percentage.

Compared to other methods, we achieve the highest accuracy,
marked as ours in Tab. 3, while at the same time delivering
the second-highest completeness, behind [15] which has much
lower accuracy. For this setting we employ fε = 0.1 and fcon = 3

for fusion.
There is always a trade-off between accuracy and complete-

ness, which depends on how strict one sets the thresholds for
rejecting uncertain matches. We thus also run our method with
different setting for the fusion, chosen to achieve high complete-
ness (ours comp in Tab. 3) with fε = 0.3 and fcon = 2. In that set-
ting we surpass [15] in terms of completeness, while still achiev-
ing the second best accuracy, slightly below [115] which is a lot
sparser. The runtime is ≈14 seconds per depthmap when the
number of selected views is 10, growing linearly as more views
are considered. The full reconstruction is obtained in 15 min-
utes.

speed settings To explore the behavior of our method
when tuned for high speed, we also tried an extreme setting. To
speed up the reconstruction we set the window size to 15, re-
strict the similarity computation in the window to every fourth
row and column, and use at most 10 (randomly chosen) views
within the view selection criteria for a depthmap. Furthermore,
we stop the propagation after 6 iterations instead of 8 and use
a reduced set of update candidates in the propagation step, as
depicted in Fig. 17. For fusion, we used the parameters fε = 0.3
and fcon = 3. With these settings, the method needs ≈1.5
seconds per depthmap on the GPU, respectively 5 minutes per
complete object (including disk I/O). These extreme settings
do lead to some loss in completeness, whereas the accuracy

59

Accuracy Completeness
Mean Med. Mean Med.

Po
in

ts

ours 0.273 0.196 0.687 0.260

ours comp 0.379 0.234 0.400 0.188

ours fast 0.289 0.207 0.841 0.285

tola [115] 0.307 0.198 1.097 0.456

furu [37] 0.605 0.321 0.842 0.431

camp [15] 0.753 0.480 0.540 0.179

Su
rf

ac
es

ours 0.363 0.215 0.766 0.329

ours comp 0.631 0.262 0.519 0.309
ours fast 0.358 0.221 0.939 0.350

tola [115] 0.488 0.244 0.974 0.382

furu [37] 1.299 0.534 0.702 0.405

camp [15] 1.411 0.579 0.562 0.322

Table 3: Quantitative comparison with three different settings on the
DTU dataset [66]. The quality metrics accuracy and complete-
ness were computed in accordance to [66], stating the mean
and median error in millimeters.

remains high. Even when tuned for speed the method is
competitive with the state of the art, see row ours fast in Tab. 3.

Fig. 23 presents a qualitative comparison of the three differ-
ent parameter settings presented.

Figure 24: Ground truth surfaces and reconstructions for Temple Full
and Dino Full of the Middlebury multiview stereo evalua-
tion dataset [106].

60

4.4.2 Middlebury

We evaluated our method also on the popular Middlebury mul-
tiview benchmark [106]. It was the first benchmark for multi-
view reconstruction, and by now is rather saturated. Moreover,
the images are rather small at 640× 480 pixels, and the dataset
consists of only two objects, in three different settings with vary-
ing number of views. Fig. 24 shows our reconstructions of the
two objects Dino and Temple (“full” setting with more than 300

views each).
On Dino we rank 4

th for the “full” version, 5
th for the “ring”

version, and 10
th for the “sparse” version. On Temple we rank

8
th on “full”, 7

th on “ring” and 5
th on “sparse”. For all six re-

constructions the completeness lies between 97.0 and 99.9%, see
Fig. 25. It is interesting to note that several methods perform
well only on one of the two objects, or even provide recon-
struction for only one of the 6 set of images provided, possi-
bly tuning their method for that specific challenge. A fair com-
parison is then among methods providing a reconstruction for
all the competitions. We achieve excellent performance on both
datasets, in terms of both accuracy and completeness. To gen-
erate a depthmap from 10 views for (resolution of 640× 480)
our method needs 1.5 seconds, with window size 11. The com-
plete reconstruction, including mesh triangulation, for the Dino
and Temple “full” version is obtained in 35 minutes, one of the
fastest available.

4.4.3 Outdoor Images

We have also tested our method on oblique aerial images from
the city of Enschede. Oblique viewing angles are becoming pop-
ular in aerial mapping to cover vertical structures such as build-
ing facades, and are an ideal testbed for us. Aerial mapping
images are routinely recorded in such a way that multiple over-
lapping views are available. They present a challenge for con-
ventional matching methods, because the depth range is much
larger compared to conventional nadir views. And they devi-
ate strongly from the fronto-parallel setup assumed by many
matching algorithms, but do tend to have piecewise constant
normals, e.g. on the ground, building walls, roofs etc. The re-
sults in Fig. 29 highlight the properties of Gipuma: planes in
general orientation are recovered without stair-casing artifacts
(see the reconstruction with color coded normals); matching

61

Figure 25: Screenshots from the Middlebury evaluation for Dino Full
and Temple Full sorted by accuracy at the standard thresh-
old of 90%. The proposed multi view stereo method is
highlighted in yellow. Top: Result at the time of submis-
sion to the website (November 2014). Bottom: Result as
of October 2017.

62

is less reliable on structures without well-defined normals (e.g.
trees in the near-field) but errors are detected and removed.

4.4.4 KITTI

We show additional results for the stereo dataset of the KITTI
Vision Benchmark Suite [45]. The KITTI Vision Benchmark
Suite [45] consists of 194 training and 195 test image pairs (rec-
tified) with a resolution of 1240×376 pixels. It is well-known to
provide a challenging, realistic test-bed due to outdoor lighting
conditions. The experiment thus emphasizes that our method
is not limited to (or even particularly tuned to) laboratory
settings, but rather can deal with general stereo and multiview
problems, also under uncontrolled lighting.

The dataset consists of outdoor images captured with a
stereo rig from a moving car. Images include rural areas as well
as streets around the city of Karlsruhe. Semi-dense ground
truth disparity maps are provided for non-occluded areas as
well as for the complete image (including regions that are
occluded in the second view).

multi-view kitti In addition to computing results with
the synchronous stereo pairs, we also process the data from
three consecutive time steps together to obtain a 6-view recon-
struction. This is possible, since the KITTI scenes are largely
static. The intrinsic calibration of the two cameras as well as
their relative pose are provided as part of the dataset. The rela-
tive rotation and translation of the stereo rig between consecu-
tive frames were kindly provided by the authors of [118], who
have in their work already computed the ego-motion of the
stereo camera system. A similar ego-motion estimate was also
described in [3].

qualitative results Exemplary reconstruction results
for both 2 and 6 views are shown, to highlight the improve-
ment obtained by collecting evidence from multiple images, see
Fig. 26, 27, 28. As for two views, we show disparity maps from
the left to the right image of the rig, at the second of the three
adjacent time steps (reprojected from the estimated 3D points).
We point out that the results were obtained without explicit
smoothness assumptions, and without any post-processing.
To reconstruct a single depthmap the computation takes ≈ 2.1
seconds for a stereo pair, respectively ≈ 6.5 seconds for six

63

views. We are not able to show quantitative results on this
dataset due to the lack of a smoothness assumption typical for
stereo reconstruction algorithms which is necessary to obtain a
dense stereo disparity.

4.4.5 ETH3D

Our method was run with default parameters on a recent multi-
view benchmark, ETH3D [105], providing very high resolution
images, multi camera videos with different field of views. To
our surprise Gipuma was not performing well, ranking only
4th out of 6 submissions. This results could be explained by
multiple factors. First of all probably the method was conceived
for and tested only on a specific type of dataset, namely lab set-
ting with a dense set of images covering the object. Little care
was taken in the automatic selection of the best views to be used
during fusion or matching, critical in Structure-From-Motion
type of dataset, such as ETH3D. Also, the type of matching
function, a simple combination of SAD and difference of gradi-
ents, is probably good enough for lab settings, but suffers on
real world scenarios, where might be required a more robust
similarity function.

We are nevertheless aware of the weakness of our method,
and welcome the result of ETH3D as an incentive to make our
method more robust for every type of scenario.

4.5 conclusion

We have presented Gipuma, a massively parallel multiview ex-
tension of Patchmatch stereo. The method features a new red-
black propagation scheme tailored to modern GPU processing,
and exploits multiview information during matching. Switch-
ing to a common 3D scene coordinate system, in which all cam-
era poses reside, makes it possible to directly integrate informa-
tion from multiple views in the matching procedure, via the pla-
nar homographies induced by a point and its associated normal
vector. Like the original Patchmatch stereo, the method is based
on slanted planes, and therefore allows slanted support win-
dows without fronto-parallel bias. It is thus particularly well-
suited for the frequent case of locally smooth scenes with large
depth range. As a by-product, the resulting multiview matcher
delivers not only dense depth maps, but also dense normal vec-

64

Figure 26: From top to bottom: Input image number 63 of KITTI train-
ing dataset. Ground truth disparity. Disparity with a stereo
pair. Disparity with six input images. Bottom left: Ground
truth point cloud. Bottom right: Reconstructed point cloud.

65

Figure 27: From top to bottom: Input image number 76 of KITTI train-
ing dataset. Ground truth disparity. Disparity with a stereo
pair. Disparity with six input images. Bottom left: Ground
truth point cloud. Bottom right: Reconstructed point cloud.

66

Figure 28: From top to bottom: Input image number 126 of KITTI train-
ing dataset. Ground truth disparity. Disparity with a stereo
pair. Disparity with six input images. Bottom left: Ground
truth point cloud. Bottom right: Reconstructed point cloud.

67

Figure 29: Point clouds generated from aerial images. Top: selection
of input images. Bottom: textured and normal color coded
point clouds.

tors in metric scene space. Our method achieves accurate and
complete reconstruction with low runtime.

The computational cost of the method scales linearly with the
number of pixels in an image. Its memory consumption is also
linear in the number of pixels, and independent of the disparity
range. These properties make it attractive for large images.

Gipuma is released to the community as open-source soft-
ware1.

1 http://github.com/kysucix/gipuma

68

5
L E A R N E D M U LT I - PAT C H S I M I L A R I T Y

This chapter is based on Hartmann et al. [53].

3D reconstruction from two or more images of the same
scene is a central problem in computer vision. Assuming that
the camera poses are already known, the problem reduces
to (multi-view) stereo matching, i.e., establishing dense point
correspondences between the images, which can then be
converted to 3D points by triangulating the corresponding
rays. The core of stereo matching itself is a function to measure
the similarity between points in different images, respectively
between the points surrounding image patches. Once such a
similarity measure is available, it can be computed for a list of
different putative correspondences to find the one with the
highest similarity.

For the classic two-view stereo case, the definition of a sim-
ilarity function is comparatively straight-forward: transform
the image intensities of the two patches such that more similar
ones end up closer to each other, according to some pre-defined
distance metric. Many methods have been proposed, includ-
ing simple sum-of-squared differences, (inverse) normalized
cross-correlation to afford invariance against linear brightness
changes, and even more robust measures like the Hamming
distance between Census descriptors. More recently it has also
been proposed to learn the distance metric discriminatively
from matching and non-matching training examples.

In practice, multi-view stereo is often the method of choice,
since the higher redundancy and larger number of viewpoints
allows for more robust 3D reconstruction. A host of rather suc-
cessful multi-view stereo methods exist (see benchmark results
such as [67, 104, 106, 113]). Surprisingly, these methods in fact
have no mechanism to measure the similarity between >2 im-
age patches that form a putative multi-view correspondence.
Instead, they heuristically form a consensus over the pair-wise
similarities, or a subset of them (most often the similarities
from all other stereo partners to a “reference image” in which
the depth map is parametrized) see Fig. 31. We note that the
same is true for “multi-view stereo” methods that reconstruct

69

Figure 30: Multi-view depth estimation. A conventional, pairwise
similarity like ZNCC (top) is unable to find the cor-
rect depth in corrupted regions, e.g. specular reflections;
whereas the proposed multi-view similarity (bottom) can
predict correct depth values.

implicit [129] or explicit [27] surfaces. These either reconstruct
points from two images and delay the multi-view integration to
the surface fitting stage; or they measure photo-consistency be-
tween pairs of images, or between some “mean” surface texture
and the individual images.

Here, we pose the question why not directly measure multi-view
similarity? Encouraged by the successes of learned similarity
measures, we propose a multi-stream (“Siamese”) convo-
lutional neural network architecture that takes as input a
number of n > 2 image patches, and outputs a scalar similarity
score. The network is learned directly from matching and
non-matching example patches, keeping decisions like the
right weighting of individual images or image pairs (e.g.,
to account for varying contrast) or the robustness of the
consensus mechanism (e.g., due to occlusions, specularities,
and other disturbances in individual images) implicit. An
alternative view of our work is as a multi-view extension
of learning-based stereo correspondence [124, 130, 131] to
more than two views. We posit that the learning-based stereo
should profit from the multi-view setup, precisely because the

70

Figure 31: Left: standard similarity comparison of most multi-view
stereo method. Right: how similarity computation should
be done w.r.t. to the reference camera, and how is it done
implicitly when our learned similarity is used.

additional images afford the necessary redundancy to detect
and resolve situations where two-view stereo struggles. To test
our similarity measure, we embed it into a standard depth
estimation setup, namely multi-view plane-sweeping [23]: for
each pixel in an image we compute similarity scores for a
range of depths along the ray, and pick the depth with the
highest similarity.

There are different strategies to cast stereo matching into
a machine learning problem. One can either fix the metric
(e.g., Euclidean distance) and learn to map image patches
to “descriptor vectors” that, according to that metric, have
small distance for matching patches and large distance for
non-matching patches [124]. For our case, that approach
does not resolve the problem of defining an n-view distance.
Alternatively, one can map raw patches to descriptors ac-
cording to some conventional recipe, e.g. SIFT, and train a
similarity/dissimilarity metric between them [127]. However,
given the spectacular improvements that learned features from
CNNs have brought to computer vision, we prefer to learn the
mapping end-to-end from raw pixel intensities to a similarity
score.

Conceptually, it is straight-forward to design a CNN for
multi-view similarity. A standard architecture to jointly pro-
cess two images with similar image statistics are “Siamese”

71

networks: the two inputs are passed through identical streams
with tied weights and then combined for the final decision
layers by simple addition or concatenation. We do the same
for n > 2 images and set up n parallel streams with tied
weights, without introducing additional free parameters. The
network is trained on a portion of the public DTU multi-view
dataset [67], and evaluated on the remaining part of it, as well
as on an unrelated public dataset. We will also show that it is
possible to vary the number n of input image patches at test
time without retraining the network. The comparison to other
conventional and learning-based approaches demonstrates the
benefit of evaluating direct multi-view similarity, especially
in the case when the reference view is corrupted, e.g., due to
specular reflection – see Figure 37.

5.1 n-way patch similarity with a neural network

We aim for a function that directly maps n > 2 image patches
pi to a scalar similarity score S(p1,p2, . . . ,pn). Our proposed so-
lution is to learn that function from example data, in the spirit
of what is sometimes called “metric learning”.1 As learning en-
gine, we use a convolutional neural network. We point out that
the strategy to learn a multi-patch similarity is generic, and not
limited to stereo correspondence. In fact, a main argument for
learning it is that a learned score can be tuned to different ap-
plications, just by choosing appropriate training data. In our
target application, the n patches are the reprojections of a can-
didate 3D point into n different views of the scene.

For our purposes, we make the assumption that every set of
patches in the training data is either “similar” or “dissimilar”,
and do not assign different degrees of similarity. I.e., we cast
the similarity as a binary classification problem. Conveniently,
this means that the similarity score is bounded between
0 (maximally dissimilar) and 1 (maximally similar). Such a
hard, discriminative approach reflects the situation of stereo
matching (and correspondence estimation in general), where
for any given pixel in a reference image there is only one
correct answer, namely the set of patches that correspond to
the ground truth depth. We note that for other applications, for
example image retrieval, the definition may not be suitable and
would have to be replaced with a more gradual, continuous

1 We refrain from using that name, since the learned similarity score is not
guaranteed to be a metric in the mathematical sense.

72

one (for which it is however not as straight-forward to generate
training labels).

5.1.1 Network Architecture

The network we use for learning a depth map is illustrated
in Figure 32. Its inputs are n image patches (w.l.o.g. we set
n = 5 for the remainder of the chapter) of size 32× 32 pixels.
The early layers process each patch separately with the same
set of weights, corresponding to an n-way Siamese network
architecture. Identical weights in the different branches are a
natural choice, since the result should not depend on the order
of the input patches. Note that the number of free weights to
be learned is independent of the number n of views.

Each branch starts with a convolutional layer with 32 filter
kernels of size 5× 5. Then follow a tanh non-linearity and a
max-pooling layer with kernel size 2× 2. That same sequence
is then repeated, this time with 64 filter kernels of size 5×5, and
max-pooling over 2× 2 neurons. From the resulting 5× 5× 64
layers the mean is taken over all n branches and passed through
two convolutional layers with 2048 filter kernels, each followed
by a ReLU non-linearity, and a final convolutional layer with 2
filter kernels. The final network output is the similarity score.

The described, fully convolutional architecture has the advan-
tage that it is much more efficient to compute for larger images
at test time than a per-pixel similarity. Due to the two pooling
layers, the network outputs a similarity score for every 4× 4
pixel region.

When designing the network, the straightforward approach
would be to concatenate the outputs of the individual branches,
instead of averaging them. We evaluate both options and find
their performance on par, see Tab. 5. Note that averaging the
branch outputs makes it possible to input a varying number of
views without retraining the network.

As usual, the exact network design is found empirically and
is somewhat hard to interpret. We tested several architectures
and found the described one to work best. Compared to
other current architectures for image analysis, our network
needs fewer convolutional layers, presumably because of the
small input patch size; and, interestingly, old-school tanh
non-linearities work better than ReLU in the early layers.

73

Figure 32: The proposed network architecture with five “Siamese”
branches. The inputs are the five patches, the output is
the similarity score that is used to select the correct depth
value. Because the network is fully convolutional, i.e. con-
tains only convolution and no fully connected layers, we
are able to apply the network on a larger image patch and
obtain directly the result for the corresponding shifted sim-
ilarity value. This greatly reduce the runtime when applied
on whole images by sharing the cost of convolution for
nearby points.

74

5.2 application to multi-view stereo

Having introduced the multi-view similarity computation, we
use it as a building block in a fairly standard multi-view stereo
pipeline [50], assuming known camera poses (e.g., from prior
structure-from-motion computation). As usual, one camera
is designated as the reference view for which the depth map
is computed. We emphasize that, other than in most existing
multi-view approaches, the reference view serves only to fix the
parametrization of the depth map. In our method, its patches
do not have a privileged role as the “source” templates to be
combined to the “target” patches of the stereo partners in a
pairwise fashion. Note, in a multi-view setup it can happen
that points are occluded in the reference view, but visible in
several other views. In that case the learned similarity score
may assign the highest similarity to a point that is invisible in
the reference image. If the final product of multi-view stereo is
a 3D point cloud, this behavior does not hurt (except that the
corresponding point on the occluder is missing).

To find the most likely depth for a given pixel, we discretize
the depth along the viewing direction of the reference view, as
in standard plane-sweep stereo. Matching then reduces to ex-
haustively testing all possible depth values and choosing the
one with the highest similarity. For a given patch in the ref-
erence view the matching patches in the other images are ex-
tracted. This is repeated for all planes, where each plane corre-
sponds to a discrete depth value. Each n-tuple of patches (in-
cluding the reference patch, which is the same for every depth)
is fed to the similarity network. Not surprisingly, rather larger
patches give more reliable similarity estimates, but there is a
trade-off against memory consumption and computational cost.
We found 32× 32 pixels to be a good compromise.

5.2.1 Training the Network.

Our network is implemented in Caffe [68], and learned from
scratch. As training data, we sample image patches from
49 scenes of the DTU dataset [67] (Fig. 33).

Positive samples (similarity 1) are selected using the ground
truth depth information. Negative samples are selected by
picking patches from depth planes 15 steps before or after
the ground truth. Note the power of the learning approach to
optimally tune to the application: patches on correct epipolar

75

Figure 33: Generating training data. The ground truth 3D point cloud
is processed using the visibility check of [74]. Points not
visible in the reference view are removed. Next, points are
randomly selected, projected into the image, and a patch
centered at the projection is cropped out.

lines are the only ones the network will ever see at test time
(assuming correct camera poses). Using only such patches for
training ensures that the model is “complete”, in the sense
that it sees all sorts of patch combinations that can occur along
epipolar lines; but at the same time it is also “tight” in the
sense that it does not contain irrelevant negatives that do not
correspond to any valid set of epipolar geometries and merely
blur the discriminative power of the similarity.

It is a recurring question what proportion of positive and neg-
ative samples to use in situations with very unbalanced class
distributions (for multi-view stereo, only one sample within
the entire depth range is positive for each pixel). For our case
it worked best to use a balanced training set in each training
batch, which also speeds up convergence. In total, we sample
14.7 million positive and 14.7 million negative examples. Learn-
ing is done by minimizing the softmax loss w.r.t. the true labels
with 500,000 iterations of standard Stochastic Gradient Descent
(SGD), with batch size 1024; starting from a base learning rate
of 0.001, that is reduced by a factor of 10 every 100,000 itera-
tions.

difference with respect to lift Let’s remark here a
major difference w.r.t. pure learning based descriptors such as
LIFT. Our method is trained directly on “real” points obtained
from ground truth (captured with an accurate structure light
scanner) and not on surface points results of a triangulation
of matched featured descriptor such as LIFT (results of a
Structure-From-Motion pipeline).

When using from data obtained from a Structure From Mo-
tion pipeline, we argue that the model is biased by the feature

76

descriptor used, effectively training only on specific areas of
the images rich of textures. The network then creates only a
learned version of the descriptor, since it has no access to other
part of the image, other then the ones detected by the descrip-
tor. Instead, by randomly using data from the ground truth,
the model makes use of every part of the image, even on parts
without a unique pattern, and let the data emerge a similarity
measure across images.

5.3 experiments and results

To evaluate our learned similarity measure, we conduct multi-
view depth estimation experiments on several scenes. In the
first experiment, we demonstrate the performance of our ap-
proach using the DTU [67] evaluation framework and compare
it to four existing baseline methods. Second, we test the sim-
ilarity network’s ability to generalize across different environ-
ments. Without retraining the network, we feed it with input
images having different lighting conditions, depth range, and
sensor characteristics than what was observed during training.

The way the similarity measure is employed to provide depth
map predictions is the same for all the compared approaches.
After picking a reference view, we find the four camera view-
points closest to it. These five images and their camera poses
are fed to a plane-sweeping routine – we use the publicly avail-
able code of [50]. The explored depth range is set according to
the given dataset, and warped views are generated for 256 uni-
formly sampled disparity levels. The SAD and ZNCC similarity
measures, already implemented in the plane-sweeping library,
are used to select the best depth estimate for each pixel posi-
tion in the reference view, based on the 4× 256 pairwise sim-
ilarity scores. To ensure a fair comparison with the proposed
approach, the same patch size of 32× 32 pixels is used.

For the other compared descriptors, SIFT [89] and LIFT [111,
124], we compute similarity via the pairwise (Euclidean) de-
scriptor distances from the warped images, and feed them to
the same decision mechanism to select the best per-pixel depth
estimate. These descriptors were designed to work with patch
size 64× 64 pixels, so we use these dimensions, even though
it gives them the advantage that they can base their predic-
tion on 4× more pixels. Note, the warping already corrects
for scale and orientation, so we skip the corresponding parts
and directly compute the descriptor entries from the warped

77

images. We point out that this comparison is not completely
fair, since the two descriptors were designed for sparse interest-
point matching, where some translational invariance is desir-
able. Still, we wanted to test against LIFT, as the most recent
learned, CNN-based descriptor. For completeness, we include
its hand-crafted counterpart.

In order to have a computationally efficient depth map pre-
diction with the proposed approach, we choose the input patch
size to be 128× 128 pixels. This allows the network to compute
the similarity scores for 25× 25 partially overlapping patches
(stride 4) of size 32× 32 in a single forward pass, filling up a
region of 100× 100 similarity scores (after upsampling). Doing
this for every depth of the sweeping plane, we obtain a list of
256 multi-view similarity scores per pixel, and simply pick the
depth with the highest score. To compute the 25× 25× 256 simi-
larity scores (covering an area of 100× 100 original pixels) takes
70ms, on an Intel i7 computer with Nvidia Titan X GPU using
Caffe in Linux.

Practical matching software does not return raw depth es-
timates, but improves them with different simple steps. The
plane-sweeping library [50] offers two such options: (i) interpo-
lation of the discrete depth levels to sub-pixel accuracy, and (ii)
box filtering to account for correlations between nearby depth
values. We tested both options and found them to consistently
improve the overall results, independent of the similarity mea-
sure. As we are primarily interested how well different similar-
ity metrics perform under realistic conditions, we enable sub-
pixel accuracy and box filtering in all following experiments.

5.3.1 Evaluation on the DTU dataset

The DTU Robot Image Data (DTU) contains more than 80 dif-
ferent indoor table-top scenes. Each DTU scene was recorded
from predetermined, known camera poses with the help of a
camera mounted on a robot arm, and a ground truth 3D point
cloud was generated by mounting a high-accuracy active stereo
sensor on the same robot arm. Images from 49 scenes are al-
ready used as our training data. Beyond those, also scenes that
share one or more objects with any of the training scenes are
excluded from testing, to avoid potential biases. For DTU, we
set the depth range to [0.45 . . . 1]m.

78

qualitative results . The four example objects we use in
the following are labeled BIRD, FLOWER, CAN, and BUDDHA.
The BIRD has a uniform color so the intensity differences are
largely due to the shading effects. The FLOWER is a difficult ob-
ject due to the thin structure and the small leaves. Underneath
the flowerpot, there is a newspaper with strong texture. The
CAN has a metallic surface with homogeneous texture, while
the background is rather strongly textured. The BUDDHA is
made out of porcelain, with significant specular reflections.

The provided color images are converted to grayscale before
processing, c.f . Fig. 34a-34d. The ground truth depth maps
have been generated by back-projecting ground truth 3D point
clouds and are sparse, c.f . Fig. 34e-34h, whereas the depth
maps from multi-view stereo are dense. We thus evaluate only
at the sparser ground truth depths. Also the difference plots
in Fig. 34i-34t show only the pixels for which ground truth is
available. Depth differences are color-coded on a logarithmic
scale, where dark blue corresponds to zero difference and dark
red denotes differences > 20mm.

For the BIRD the right wing, which is partly in shadow, is the
most difficult part. For all three methods there are errors at the
wing boundary, the largest errors are observed for LIFT. Note
also errors on the left wing boundary present in ZNCC and
LIFT but not in the proposed method. The most difficult object
is the FLOWER. Here the ZNCC and our approach again out-
perform LIFT. All three methods struggle with the dark, homo-
geneous soil in the flowerpot. On the leaves, as far as present
in the ground truth, our method has the smallest error, espe-
cially near the boundaries. For the CAN object, the homoge-
neous metal surface challenges the LIFT approach, whereas the
two others can resolve it correctly. For the BUDDHA the most
difficult parts for depth estimation are the small regions with
specular reflection. These can be seen in Figs. 30, 34d. In those
regions ZNCC and LIFT have large errors, while our direct
multi-view approach copes a lot better (Fig. 34l). Overall, the
examples suggest that our proposed similarity is more general:
the classic ZNCC method often works well, but struggles near
object boundaries. LIFT seems to have problems with certain
surfaces materials like the metal of the CAN, and both com-
petitors struggle with specularities (which, incidentally, are a
main problem of stereo reconstruction, especially in industrial
applications).

79

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)
Figure 34: Plane sweeping using three different patch similarity mea-

sures. Proposed learned multi-view similarity vs. pairwise
ZNCC and pairwise LIFT. Reference images (a-d). Ground
truth (e-h). Absolute deviations from ground truth for the
proposed method (i-k), ZNCC (m-p) and LIFT (q-t). Blue:
no difference, red: high difference.

80

Similarity #views Accuracy Completeness

Mean Median Mean Median

SAD 4×2 1.868 0.617 2.534 1.148

ZNCC 4×2 1.237 0.577 2.260 1.025

OUR stereo 4×2 1.339 0.453 2.964 1.391

OUR 5-view 5 1.356 0.472 2.126 0.868

Table 4: Quantitative results for 20 objects from the DTU datasets.
Four similarity measures are compared: sum of absolute dif-
ferences, zero-mean normalized cross correlation, proposed
similarity over 2 views, and proposed similarity over 5 views.

quantitative results . The authors of the DTU dataset
provide an evaluation framework in which, per object, the
groundtruth 3D point cloud is compared to the one constructed
from the depth estimates. For the evaluation we thus convert
the estimated depth maps to 3D point clouds by lifting them
with the known camera calibration. Note that we do not use
depthmap integration across multiple viewpoints. Accuracy
is defined as the average (truncated) distance from a recon-
structed point to the nearest ground truth point. Completeness
is defined inversely, as average distance from ground truth
points to the nearest model points, i.e., lower values are also
better.

We start with a comparison to standard similarity measures
for 20 scenes in Table 4. While the mean values describe the
overall performance, median values are less sensitive to outliers.
Note that, also for the mean, the per-point distances of outliers
are truncated at 20mm. To support the claim that direct multi-
view similarity is preferable to consensus over 2-view scores,
we also run our method in 2-view stereo mode and feed the
scores to the same consensus mechanism used for SAD and
ZNCC. Directly computing similarity over 5 input views deliv-
ers significantly better completeness at similar accuracy as the
best competitors. We did not run the full experiment with LIFT,
due to the excessive runtime of pixelwise CNN prediction with-
out a fully convolutional architecture.

In Table 5 we compare the accuracy and completeness of all
tested methods for the four example scenes. Differences are rel-
atively small between SAD and ZNCC, probably due to the
controlled lighting. The results for SIFT and LIFT are also quite

81

Similarity Accuracy Completeness

(5 views) Mean Median Mean Median

BIRD

SAD 2.452 0.380 4.035 1.105

ZNCC 1.375 0.365 4.253 1.332

SIFT 1.594 0.415 5.269 1.845

LIFT 1.844 0.562 4.387 1.410

OUR concat 1.605 0.305 4.358 1.133

OUR 1.881 0.271 4.167 1.044

FLOWER

SAD 2.537 1.143 2.768 1.407

ZNCC 2.018 1.106 2.920 1.467

SIFT 2.795 1.183 4.747 2.480

LIFT 3.049 1.420 4.224 2.358

OUR concat 2.033 0.843 2.609 1.267

OUR 1.973 0.771 2.609 1.208

CAN

SAD 1.824 0.664 2.283 1.156

ZNCC 1.187 0.628 2.092 1.098

SIFT 1.769 0.874 3.067 1.726

LIFT 2.411 1.207 3.003 1.823

OUR concat 1.082 0.477 1.896 0.833

OUR 1.123 0.478 1.982 0.874

BUDDHA

SAD 0.849 0.250 1.119 0.561

ZNCC 0.688 0.299 1.208 0.656

SIFT 0.696 0.263 1.347 0.618

LIFT 0.688 0.299 1.208 0.656

OUR concat 0.682 0.231 1.017 0.473

OUR 0.637 0.206 1.057 0.475

Table 5: Quantitative results for BIRD, FLOWER, CAN, and BUD-
DHA objects. Six similarity measures are compared: sum
of absolute differences, zero mean normal cross correlation,
SIFT, LIFT, proposed multi-view similarity using concatena-
tion, and proposed multi-view similarity using averaging.

82

similar, except for the CAN object where SIFT clearly outper-
forms its learned counterpart.

The proposed method achieves the best median accuracy and
median completeness in all the scenes, and the best mean ac-
curacy and completeness for three of them. Note that there is
virtually no difference between averaging and concatenation.
There seems to be no performance penalty for averaging, while
at the same time one gains the flexibility to use a variable num-
ber of input views. On the BIRD, our method ranks third in
accuracy and second in completeness. There are relatively big
differences between median and mean errors, apparently all
measures show quite good performance on the rather diffuse
surface, whereas outliers due to ambiguous texture inflate the
mean values.

Overall, the proposed multi-view patch similarity exhibits
the quantitatively and qualitatively best performance. In
particular, the experiments support our claim that learning
end-to-end multi-view similarity is preferable to comparing
learned per-patch descriptors with conventional Euclidean
distance, and to a consensus over learned 2-view similarities.

5.3.2 Invariance to the number of input patches.

We go on to demonstrate that the network architecture, in
which branches are averaged and convolutional weights are
shared, can be applied to different numbers of input views
without retraining. We run experiments with either three or
nine views, respectively patches. Both give reasonable depth
estimates (Fig. 35). As expected, the results with only three
views are a bit worse. However, using nine patches instead of
five further improves performance – although the similarity
network has only been trained with five. We speculate that
information how to correctly weight pixels at discontinuities,
occlusions etc. passes down the individual branches during
training, so that the parallel Siamese streams can also use it for
additional branches. On the other hand, averaging itself may
have a stronger denoising effect with more branches. Further
research is needed to clarify the underlying mechanisms.
Whatever the reason, in our view flexibility with respect to the
number of input views is an attractive and important feature
for real-world applications of multi-view stereo.

83

(a) input view (b) 3 views

(c) 5 views (d) 9 views

Figure 35: Matching different numbers of views with the similarity
network can be done without retraining. Result displayed
without sub-pixel refinement and box filtering to accentu-
ate differences.

5.3.3 Evaluation on the Fountain dataset

The images recorded with the robot for the DTU dataset are
all taken in an indoor laboratory environment, and there might
be the risk that the specific lighting and camera characteristics
of the dataset are captured in our trained network. Therefore,
we apply the learned multi-view similarity measure also to the
well-known Fountain dataset [113], without retraining it.

For the experiment we select five neighboring images and set
the depth range to [5 . . . 10]m. The depth maps in Fig. 36 show
the qualitative result for three different methods. Our method
works at least as well as ZNCC and SIFT, which are generic
and not learned from data while the network does not seem
to overfit to the DTU setting. The small support of the input
patch (32× 32 on 2MPix images) makes it unlikely is to learn
the scene specific image structure and overfit to that.

84

(a) ground truth (b) OUR

(c) SIFT (d) ZNCC

Figure 36: The learned similarity generalizes to a different test envi-
ronment, seemingly as well as the competing descriptors.

5.4 conclusion

We have proposed to directly learn a similarity / matching
score over a set of multiple patches with a discriminative learn-
ing engine, rather than heuristically assemble it from pairwise
comparisons. An n-way Siamese convolutional network, which
applies the same, learned transformation to all input patches
and combines the results, was identified as a suitable state-of-
the-art learning engine.

From a high-level perspective, machine learning for 3D vi-
sion started with very small steps like learning the distance met-
ric between given descriptors, or learning descriptor extraction
for pairwise matching. In our work, we have used the learned
similarity score for multi-view stereo matching, but we believe
that variants of it could also be beneficial for other applications
where similarity, respectively distance, between more than two
images must be assessed.

85

6
N O R M A L P R E D I C T I O N F O R I M P R O V E D
M U LT I - V I E W R E C O N S T R U C T I O N

This chapter is based on Galliani and Schindler [42].

The reconstruction of 3D surfaces from images is a cen-
tral problem of computer vision. The dominant approach
is multi-view stereo (MVS): densely match image points in
multiple views with known camera poses, then triangulate
the corresponding rays to 3D points. MVS algorithms have
greatly improved over the past decades and nowadays deliver
high-quality point clouds, respectively surfaces derived from
those point clouds [66, 106]. Yet MVS, being based on point
correspondences between different images, only works in areas
with sufficient texture. If no correspondence can be established,
the methods fails. Most commonly this happens in surface
regions with uniform albedo and on specular highlights,
where matching is ambiguous due to a lack of high-frequency
brightness/color variations. A further recurrent problem are
occlusions, where many viewing rays are blocked and do not
reach the surface point. In such regions the only options are to
either not reconstruct 3D points, leaving holes in the surface;
or to interpolate, which can lead to inaccurate or even totally
wrong results.

We propose to fill in the missing regions with the help of
shading information. As introduced in Chapter 1, complemen-
tary to MVS, shape reconstruction from shading requires only a
single view, and works best for uniform albedo. Yet, recovering
3D surface normals from shading has proved remarkably dif-
ficult in practice, mainly because a number of important influ-
ence factors are hard to model. In real data the illumination can
be quite complex and the illumination direction (s) are not ex-
actly known. Most importantly, the reflectance properties (the
bi-directional reflectance distribution function, or BRDF) of the
surfaces in the scene are usually unknown.

The starting point for the present chapter is that if one wants
to reconstruct surface shape from shading, it might not be
necessary to model the global illumination and the complete
reflectance distribution. Rather, one only needs to cover the

86

Figure 37: Illustration of our reconstruction method. Given an in-
put image (top left) and an incomplete normal map from
multi-view stereo (top right), we reconstruct the missing
normals by CNN regression on the image (bottom left).
The normal maps are then integrated to dense 3D models
(not shown). Bottom right: Ground truth.

specific illumination, viewpoint and surface properties that are
present in a given image. We exploit this by implicitly learning
the view-specific shading patterns in a discriminative manner.
Given that in most images there are pixels for which the
surface normals are known (from 3D points reconstructed via
multi-view stereo), we propose to learn a regression directly
from raw RGB patches to surface normal directions, using a
convolutional neural network (CNN).

In contrast to other recent work that predicts surface normals
in a purely data-driven fashion [30, 84, 100] we do not aim for
generality across different lighting and viewing conditions, and
thus do not need a diverse training set that covers all possible
conditions. Rather, we learn an individual, view-specific shad-
ing model per image, trained on reprojected 3D normals that
we reconstruct from high-confidence MVS points. Such a model

87

only needs to cover a subset of the BRDFs of (usually few) vis-
ible materials, under constant lighting, thus it can be expected
to predict more accurately. I.e., we argue that the image itself,
together with an incomplete range/disparity image, contains
sufficient information to predict surface orientation, without a
globally valid shading model.

Our method is able to estimate surface normals with an accu-
racy similar to (sometimes even slightly better than) that of the
training data. To complete the pipeline we integrate the dense
normal field per image, together with the known 3D points
from MVS, into a dense and hole-free depth map, and fuse the
depthmaps from multiple views to obtain a more complete 3D
model.

6.1 method

We start with an overview of our complete surface recon-
struction pipeline. As input data, we require multiple images
of the same scene, with known camera poses. The first step
is a MVS reconstruction with Gipuma, presented in Chap-
ter 4. That method been shown to deliver state-of-the-art
performance [41], and it returns point-wise normals in 3D
scene space as a byproduct; but other algorithms that provide
surface normals could be plugged in as well. The next step
is to predict normals for pixels where multi-view stereo
failed to compute a reliable depth. This is done separately for
every viewpoint. From the points reconstructed successfully
by MVS, we train a convolution neural network (CNN) to
perform regression from raw image patches to surface normals.
With the network, we densely predict all missing normals
(Sec. 6.1.2). The dense vector fields are turned into a 3D surface
model by first integrating them to depth maps with masked
Poisson reconstruction (Sec. 6.1.5) and then fusing the depth
and normal maps from multiple views.Optionally, the final
3D point cloud can also be turned into a triangulated surface
model with screened Poisson reconstruction [76].

6.1.1 Generation of normals for training

The first stage of our method is a standard MVS reconstruc-
tion to obtain an initial (incomplete) cloud of reliable 3D ob-
ject points. Among the many available algorithms we choose
Gipuma, see Chapter 4. We pick this method for two reasons.

88

Figure 38: CNN architecture for regression from image patches to
surface normals.

On the one hand, it computes and outputs, by construction, not
only 3D points but also explicit surface normals at those points.
Since our further processing needs those normals, PatchMatch
is a natural fit. On the other hand, the depthmap fusion relies
on a consensus mechanism that checks both the consistency
of the depth values and of the normal directions across several
views. As a result, points with unreliable normals are discarded
during fusion, which is important for our purposes, since those
normals will later serve as training data.

6.1.2 Normal prediction

The philosophy of our second, shading-based stage is to learn
the relation between surface normals and the appearance of the
corresponding surface patches. That relation can then be used
to predict surface normals at locations where no MVS points
could be reconstructed. As explained, we prefer to initially do
this on a per-image basis and again fuse the results afterwards.
Estimating the normals individually in each image simplifies
the learning problem, because in a single exposure the lighting
conditions are constant; and it also simplifies the implementa-
tion, because one can work on the pixel grid rather than discre-
tise the 3D scene surfaces.

89

Figure 39: Comparison of different strategies for normal prediction.
A model trained for a specific image (top right) works
better than one trained on multiple views of the same
scene (bottom left) or a generic model trained for a whole
database (bottom right).

We also experimented with a single model for all views, ef-
fectively trying to learn the shading variation for a given object,
under any viewpoint. This did not work well, see Fig. 39. We
see two possible reasons. On the one hand, the learning prob-
lem obviously gets a lot more complicated and ambiguous if
one has to cover two additional degrees of freedom (for the
viewing direction) in the BRDF. On the other hand, it may well
be that for certain materials the CNN also learns context and
texture cues that are not independent of the viewpoint.

6.1.3 Training data.

As part of the MVS reconstruction, we have a surface normal
map for each individual view, which holds, at every pixel, ei-
ther a normal vector in camera-centric coordinates or a flag
that no normal could be reconstructed. In order to ensure clean
training data for CNN training, we filter those surface normal
maps with the same fusion scheme used by Gipuma, see Sec-
tion 4.3.3. Our goal at this point is high precision even at the
cost of a bit lower recall, i.e. we try to ensure that only correct

90

Figure 40: Normal prediction for a particularly difficult scene (DTU
object 77). Even with few training points of a highly spec-
ular object the regressor is able to recover reasonable nor-
mals in many regions. Top left: input image. Top right:
training normals from MVS. Bottom left: predicted nor-
mals. Bottom right: ground truth.

and accurate normals are retained. As a first filter, we remove
all normals that did not survive the multi-view fusion (mean-
ing that they did not fit the consensus). For those pixels which
did contribute to the reconstruction of a 3D normal vector, we
reproject the 3D vector and replace the original entry. This can
be expected to improve the accuracy of the valid normals, be-
cause the inliers to the consensus voting are averaged during
fusion to suppress noise. On very slanted surfaces it can, in
rare cases, happen that the averaged normal points away from
the camera; such normals are discarded. The final normal maps
is sparse: have entries only where the original matcher found a
depth, and thus also a normal, and that depth and normal were
confirmed as correct and visible by a consensus over multiple
viewpoints.

6.1.4 Unsupervised Normal Regression with CNN.

Having found a set of reliable normal vectors to serve as train-
ing data, we learn, separately for each view, a different convolu-

91

tional neural network (CNN) to predict unknown surface nor-
mals. Note that no manually labeled training data is required,
the regressor is trained only from automatically reconstructed
MVS points. As input, the network takes 16 × 16 pixel RGB
patches, downsampled from 64× 64 pixel patches of the orig-
inal image. As output, it returns the estimated normal vector
at the center pixel of the patch, parameterized by two polar
angles θ and φ (a.k.a. azimuth and elevation, or yaw and tilt).
The patch size has been determined empirically: much smaller
patches do not work as well, it seems that they do not capture
sufficient shading information; larger patches slow down the
computation without improving performance.

As loss function, we directly minimize the minimal planar
angle α = 〈ntrue, npred〉 between the true normal and the pre-
dicted one. Our architecture follows the LeNet framework [87]:
a convolution layer with 16 kernels of window size 5 × 5,
followed by max-pooling over 2 × 2 blocks; a second convo-
lutional layer with 50 kernels of size 5 × 5, again followed
by 2× 2 max-pooling; a fully connected layer of 512 neurons,
with ReLU rectification and 50% drop-out; and a final fully
connected layer with 2 output neurons for the angles θ and
φ; See Fig. 38. The network is implemented in the Caffe
framework [69], and trained with stochastic gradient descent,
with a fixed momentum of 0.9 and a learning rate of 0.001.
Training and prediction take ≈30 min per view, on a single PC.

The following reason motivated us to use a CNN: the
perhaps biggest strength of CNNs and related deep learning
methods, and the main reason for their phenomenal success
in computer vision, has been the capability to learn good
image representations from raw RGB data. We feel that this
end-to-end learning, which relieves us from finding a suitable
feature set, is particularly useful for our problem. Compared
to well-researched vision tasks like pedestrian detection or
semantic segmentation, little is known about the right choice
of features for discriminative normal estimation, hence finding
good features might end up being a lengthy trial-and-error
process. We also point out that in the recent work of [133]
CNNs were shown to perform well (and superior to regression
forests) for a related regression task from visual appearance to
a spatial direction, namely image-based gaze estimation.

After training the regressor, we apply it to the same image,
and estimate normal vectors densely for all pixels except for
the training data, which already possess normals from MVS. To

92

Figure 41: Visualization of the integration domain Ω of our surface
normals. Points in A (corresponding to our self generated
training data) are used as Dirichlet boundary conditions.

avoid excessive extrapolation, we only predict inside the convex
hull of the training pixels.

6.1.5 Surface normal integration

The previous step yields a dense map of normals for every
viewpoint. Since our goal is 3D surface reconstruction, we need
to convert that normal map into a dense depth map, which
however is constrained to pass through the known depth val-
ues from MVS. We do this with a masked version of the 2D
Poisson equation. Formally, we face an interpolation problem:
interpolate depth values at all points not reconstructed by MVS,
such that they best agree with the predicted surface normals.
To distinguish points with known MVS depth from those with-
out one, we define two separate depth functions: fmvs for MVS
points is known, whereas f is the unknown to be recovered. The
domain of fmvs is only the discrete set A of MVS points, and f is
defined everywhere in the image plane Ω excepts at the points
A. The vector field g consists of the gradients of both functions,

∀x ∈ Ω : g(x) =

∇fmvs, if x ∈ A

∇f, else
(27)

Our task is to find an interpolant f over Ω\A that minimizes
the squared error

min
f

∫∫
Ω\A

‖∇f− g‖2 . (28)

This leads to the Poisson equation

∆f = divg , (29)

93

with div(·) the divergence operator and ∆(·) the Laplacian. The
MVS points in A each contribute a Dirichlet boundary condi-
tion, ensuring that the depth map will pass through fmvs. To-
gether with standard von Neumann boundary conditions at
the image border the equation has a unique solution. Since the
domain is irregular, one must fall back to an iterative solver
for (29), we use the Gauss-Seidel scheme with successive over-
relaxation [95, 126].

6.1.6 Depth map fusion

Our setting is that we have multiple overlapping views of a
scene — otherwise we could not perform MVS reconstruction.
Having recovered depth maps in all these views, the last step
is to fuse them into a consistent 3D model as Gipuma 4.3.3.

In many locations the appearance-based normal prediction
(and subsequent integration) yields comparable accuracy to
multi-view stereo, which uses similar fusion criteria. Obviously,
the fusion parameters fε, fang, fcon provide a simple interface
to tune accuracy vs. completeness of the reconstruction. With
strict values, fewer but more reliable points survive (e.g., for
applications in industrial metrology). With more generous
settings the completeness of the reconstruction increases, at
the cost of lower accuracy (e.g., for graphics and visualization
purposes).

6.2 results

To validate our method, we use a subset of 14 objects from the
extensive DTU multi-view stereo dataset [66]. The reason we’re
using only such a subset, even if the dataset provides more
than 80 objects, is mainly due to the fact that the current CNN
implementation for normal prediction is not tuned for speed.
Training the network from scratch on each image takes roughly
30 minutes, which means that the runtime to complete a full ob-
ject with 49 views is one day. Which such timing, processing the
whole dataset takes too much time. The dataset is, to our knowl-
edge, the only large MVS testbed that is publicly available. It
features a variety of objects and materials, and provides com-
plete coverage with 49 images per scene. Ground truth of ade-
quate density has been recorded with a structured light scanner.
The large selection of shapes and materials, ranging from sim-
ple diffuse surfaces to specular plastic and metal objects, is well-

94

Figure 42: Top: Normal prediction: input image, training points,
reconstruction, ground truth. Bottom: Reconstruction
closeup of the peppers after normal integration and depth
fusion. From left to right: Input. Our result. Difference.
Ground truth. Our reconstruction with normal prediction
is able to complete parts missed both by MVS and by the
structured light scanner used for the ground truth.

95

Figure 43: Quantitative comparison with our initialization and other
pure MVS methods [15, 37, 116]. Lower values are better.

suited to test our normal prediction under realistic conditions.
Importantly, the dataset is difficult enough to challenge multi-
view stereo: even state-of-the-art methods, including the one
that we use for MVS [41], do not manage to reconstruct large
parts of some scenes. And it is also complex enough to defy
shading methods based on simple Lambertian reflectance, with
materials of different color, texture and specularity. We use the
variant of the data recorded under standard (relatively diffuse)
lighting conditions, because this is the only one for which mul-
tiple recent works have reported results. In principle it would
be possible (and potentially beneficial) for our method to in-
clude images with various lighting conditions, in the hope that
a certain illumination is better suited for certain parts of the
scene than others.

We first evaluate the surface normal prediction separately,
and then present an end-to-end comparison with the final 3D
reconstructions.

6.2.1 Normal prediction

To quantify the accuracy of the normals predicted by the CNN,
we measure the angular error w.r.t. to ground truth normal
derived from the reference point cloud. As a first step, we

96

compare the error on the “test” normals predicted by the
regression to the one for the “training” normals estimated
by MVS. Ideally, these errors should be similar, meaning that
the appearance-based predictions would be as good as the
multi-view estimates. We observe, not surprisingly, that the
relation depends a lot on the difficulty of the scene. For simple,
piecewise planar objects with little reflection, the predicted
normals are even slightly more accurate than the training
normals. Presumably, this is so because the learning problem is
easy, and the “averaging” over training samples from the same
surface reduces noise. E.g., although the MVS result is rather
sparse in Fig. 37, it is sufficient to obtain sensible predictions
for most of the object. The corresponding mean and median
errors are 13◦ and 9◦, respectively, for the MVS points; and 12◦,
respectively 6◦ for the CNN prediction.

On the contrary, specular materials and complicated surface
geometry, e.g. sharp creases, make the prediction more diffi-
cult. The most difficult object in the DTU database is the coffee-
maker in Fig. 40. Even in that case, the appearance-based regres-
sion surprisingly gives reasonable predictions in many parts.
However, the mean and median errors rise from 13◦ and 10◦ at
the MVS points to 17◦ and 12◦ for the predicted ones.

In Fig. 42 the shiny surface of the peppers poses a serious
problem for both MVS and for the structured light scanner that
acquired the ground truth. Our method is able to predict nor-
mals in these areas. While the mean and median errors are
significantly higher than at the MVS points (17◦ and 10◦, com-
pared to 8◦ and 6◦), they are still good enough to reconstruct
an important part of the missing surfaces to a depth accuracy
of 0.3 pixels in disparity. Note that especially on the yellow
pepper our reconstruction is also a lot more complete than the
ground truth from the structured light scanner, which fails on
very specular surfaces, too.

Over all 14 objects, the mean angular error is 11◦ for the
training normals from MVS, and 18◦ for the predicted normals.
The mean-of-median over all objects is 9◦ for the MVS normals
and 16◦ for the predicted ones. The mean is consistently only
a bit above the median, which indicates a relatively even error
distribution not contaminated by many large outliers.

97

Figure 44: Reconstruction improvements of our method on three dif-
ferent objects. Top: Challenging object with multiple colors
and with specularities. Middle: Object with homogeneous
colour. Bottom: Vase with over-exposed and homogeneous
white areas. For each object: Top-Left: MVS reconstruction.
Top-Right: Improvement. Bottom-Left: Difference. Bottom
Right: Ground Truth.

98

6.2.2 Improved multi-view reconstruction

Our overall goal is a better reconstruction of 3D point clouds,
respectively surfaces. We thus go on to quantify the accuracy
and completeness of the resulting 3D models. As baselines, we
use the initial MVS reconstruction without normal prediction,
as well as three further MVS methods for which results on DTU
are available.

To ensure a fair comparison to pure MVS, we set the same
fusion parameters (Sec. 6.1.6) both for fusing MVS depthmaps
and for fusing depthmaps after normal integration. I.e., points
found with shading are added to the MVS reconstruction only
if they fulfill the same strict reliability criteria.

Fig. 43 shows quantitative results averaged over all recon-
structed objects. The proposed prediction and integration of the
normals improves the mean completeness of the MVS initializa-
tion by 14 %, at the cost of a negligible increase in accuracy (ac-
curacy is measured only at the reconstructed points, hence an
improvement is virtually impossible when adding additional
points to an existing, sparse reconstruction). Moreover, our re-
sults compare favorably w.r.t. other methods. In terms of accu-
racy, we are on par with the best result by [116], but with much
higher completeness (≈ 83% better). In terms of completeness,
we are second best, narrowly behind [15], which however has a
lot lower accuracy (61% higher error).

Any multi-view reconstruction method can trade off accu-
racy against completeness. Tuning for high accuracy means
strict consistency checks that reject many points and drive
down completeness. Conversely, tuning for completeness
means accepting more points, even if they have higher error.
We thus also compute the overall quality of a reconstruction,
defined as the geometric mean of accuracy and completeness
Q =

√
acc2 + prec2, similar in spirit to the F1-score. On that

measure our method clearly performs best, leading by 11%
over the MVS initialization, and 30% over the next best method.

We end with some qualitative examples to illustrate where
the proposed normal prediction can help. Overall, the experi-
ments confirm the intuition that the prediction will fill in holes
in homogeneous areas, where MVS struggles. A prime exam-
ple is the bunny in Fig. 44. MVS does alright on the fur, but can
only reconstruct the textured part of the earmuffs. Still, there
are enough points on the earmuffs to learn the normal predic-
tion, hence a good part of the untextured orange plastic gets

99

filled in. The white stripes on the vases in Fig. 44, also challenge
MVS. This is an example for a material with a non-lambertian
shading component, nevertheless the prediction fills in a large
part of the missing surface. The plastic packaging in Fig. 44 is
even more challenging, with multiple colors as well as specu-
larity. Note how the regression predicts adequate normals for
different parts including the blue area at the bottom, the yel-
low/white area in the center, and even the shadow area on the
red object behind the bag.

6.3 conclusion

We have described a method to densify multi-view stereo re-
constructions with the help of shading cues. Like some other
recent methods, we sidestep analytic shading models. Instead,
we view surface normal estimation as a discriminative unsu-
pervised regression problem and train a CNN to predict nor-
mal vectors from raw image patches. The basic insight is that
the regression problem can be greatly simplified if one sacri-
fices generality and learns an individual predictor for the fixed
illumination, viewpoint and scene properties of each specific
image. The prediction is embedded in a conventional multi-
view reconstruction pipeline: point successfully reconstructed
via Gipuma form the training set for normal estimation, and
the resulting dense normal maps are integrated to depth maps
to improve the 3D model.

A main message of our approach is that even a rather small
number of training examples are enough to learn normal
estimation from raw intensities, if the problem is tightly
constrained. For a particular view of a particular scene, it is
indeed possible to infer shape, with an accuracy similar to the
one of MVS.

So far our method only fills in missing depth measurements.
The original MVS points are not modified, and depth map fu-
sion is done in a separate step. In future work we plan to in-
vestigate an early fusion, which directly reconstructs the 3D
surface from multiple normal maps and sparse depth measure-
ments. Additionally, in the future we plane also to make a more
complete comparison of our view-specific normal prediction
w.r.t. recent state-of-the-art generic models for normal predic-
tion.

100

7
C O N C L U S I O N A N D O U T L O O K

The goal of this thesis has been set as to investigate the possible
convergence of two complementary 3D reconstruction methods:
Shape from Shading and Multi-View Stereo Reconstruction. In
this chapter, we first encapsulate our major contributions. Then
we’ll examine the limitations and possible future direction of
this work.

7.1 summary of contributions

In this thesis, we have considered the problem of recon-
structing the surface of a static object or scene by combining
geometric based stereo reconstruction and shading based
stereo reconstruction. We have investigated and contributed to
the major steps that occur within popular 3D reconstruction
pipelines and presented a shading based refinement method.

In Chapter 4 we propose Gipuma, a new massively paral-
lel method for high-quality multiview matching. The starting
point was Patchmatch stereo [12]: starting from randomly gen-
erated 3D planes in scene space, the best-fitting planes are itera-
tively propagated and refined to obtain a 3D depth and normal
field per view, such that a robust photo-consistency measure
over all images is maximized. We introduce two main novel-
ties.

First of all a new formulation for Patchmatch Stereo in scene
space. Working on the disparity space prohibits to directly com-
pare similarity across multiple views, since image rectification
involves by definition two cameras. Instead, we aggregate im-
age similarity across multiple views to obtain a robust corre-
spondence.

Moreover, we modify the inherently sequential algorithm of
Patchmatch and propose a red-black scheme for the diffusion
of putative depth values. Our method is massively parallel
and delivers dense multiview correspondence over 10 1.9-
Megapixel images in 1.5 seconds, on a consumer-grade GPU.
We fit patches on the scene space and use a slanted support
window to avoid fronto-parallel bias. Our method is local and

101

parallel so that computation is linear w.r.t. image size and
inversely proportional to the number of threads. Furthermore,
it has low memory footprint (four values per pixel, indepen-
dent of the depth range: 2 for unit normal, 1 for depth and
1 for cost). Therefore, it scales exceptionally well, can handle
multiple large images at high depth resolution or can be used
in mobile applications due to the low memory consumption.
Experiments on the DTU and Middlebury multiview datasets
as well as oblique aerial images show that our method achieves
very competitive results with high accuracy and completeness,
across a range of different scenarios.

The similarity measure described in Chapter 4 followed the
general trend of rather successful multi-view stereo methods
(see benchmark results such as [67, 104, 106, 113]). It means it
heuristically forms a consensus over pair-wise similarities, or a
subset of them, from all other stereo partners to a “reference
image” in which the depthmap is computed. To directly mea-
sure multi-view similarity, in Chapter 5 we propose to learn
a matching function which maps multiple image patches to a
scalar similarity score. To that end, we introduce a multi-stream
“Siamese” convolutional neural network architecture that takes
as input more than two images and outputs a scalar similarity
score. We train our network using image patches around pro-
jected 3D points measured from a structured light scanner [67].
It is in contrast with other (pairwise) learned based similarity
networks such as LIFT [111, 124] which trains from 3D point ex-
tracted with a Structure from Motion pipeline, effectively learn-
ing the feature used to match the 3D points, usually SIFT [89].

The network has two important properties. First of all, thanks
to shared convolution weights and to mean pooling of different
network branches, our network becomes invariant to the num-
ber of input patches at test time. Thus, it allows training the
network only once with a fixed number of input patches and
predict with the number of patches at hand.

Secondly, when applied inside a multi-view stereo pipeline
such as plane sweeping [23], it highlights the independence
of the similarity measure w.r.t. the reference camera. That
is observed in case of noise in front of the camera such as
specularity, where traditional similarity measures fail, while
we can obtain the correct reconstruction, see Fig. 30.

102

Starting from a 3D reconstruction obtained from Gipuma [41],
presented in Chapter 4, we presented in Chapter 6 an unsuper-
vised discriminative shading model used to complete the result.
Reliable surface normals obtained directly from Gipuma, serve
as training data for an unsupervised — or self-supervised
— convolutional neural network, which predicts continuous
normal vectors from raw image patches.

The estimated dense normal maps, together with the sparse
known depth values from MVS, are integrated with a Poisson
equation to a dense depth map. The resulting noisy depth maps
are in turn fused into a 3D model (in the same way depth maps
of Gipuma are fused together, see 4.3.3) to aggregate evidence
and remove spurious depths.

In contrast to other recent work that predicts surface normals
in a purely data-driven fashion [30, 84, 100] we do not aim
for generality across different lighting and viewing conditions,
and thus do not need a diverse training set that covers all pos-
sible conditions. Rather, we learn an individual, view-specific
shading model per image, trained on reprojected 3D normals
that we reconstruct from high-confidence MVS points. In other
words, the prediction is specifically tailored to the materials
and lighting conditions of the particular scene, as well as to the
correct camera viewpoint.

Experiments on the DTU dataset show that our method de-
livers 3D reconstructions with the same accuracy as MVS, but
with significantly higher completeness.

7.2 outlook and future works

Even if we provide multiples advances and insights within this
thesis, capturing accurate 3D models of real-world objects or
scenes remains an unsolved task. We will discuss here some
possibilities for future work.

In Chapter 4 we present Gipuma, a massively multi-view
stereo method which provides highly accurate reconstruction
with low runtime. Even if we showed to be accurate, it could
be improved in many ways. The selection of views used to
compare the similarity is rather primitive (it takes into con-
sideration the angle between the patch normal and the cam-
era view) and it is fixed for all the cameras. A better per-pixel
algorithm could be used instead, taking as inspiration the op-
timization framework of Zheng et al. [135] that could increase
the accuracy of the reconstruction around occlusion boundaries

103

or tilted surfaces, where the selection of the correct views dur-
ing occlusion is crucial. The randomized optimization could
include the size of the support windows as an additional vari-
able, to obtain a sort of multi-scale result and potentially get
finer results around small structures and overcome error inside
homogeneous regions.

The original patch refinement step is a simple bisection
search around the current solution, exponentially decreasing
the search radius. Even if it proved to be reliable, it would be
interesting to compare it with a proper optimization scheme
such as gradient descent or a KLT refinement step as [56] with
the potential to reduce runtime and improve reconstruction.

To take advantage of the parallel nature and low memory
consumption of Gipuma, a possible continuation of the method
might be to input a multi-camera video sequence of deform-
ing surfaces. Starting from the initial reconstruction at the first
time step, it could reason on subsequent frames and jointly
compute 3D reconstruction and scene flow. In this case, the
method would impose not only locally spatial smoothness (as
it is the case when fitting patches in 3D space) but also tem-
poral smoothness, effectively fitting patches in the space-time
dimension.

Despite its power, Gipuma has various limitations. The main
one is its generic approach: computing the depth map for each
image limits the method for large scenes. A solution might be at
least to try to cluster the scene in smaller parts, such that each
one would not contain too many images. Another limitation lies
in the implementation of the method. Since it’s programmed
completely on the GPU, it has strong memory limitations.

It still has to be tested how fast the method can be. It showed
impressive numbers for runtime and accuracy on large images,
but we don’t know if it can be pushed to be used for real-time
applications such as SLAM methods for robotics.

Both Gipuma 4 and the shading based surface refinement
presented in Chapter 6 use the same fusion approach to merge
depthmaps for the final reconstruction. The common pipeline
includes conversion to a final triangulated mesh in a separate
step with common surface fitting methods [14, 76].

Instead, depthmap fusion and mesh reconstruction could be
merged in a single optimization step. We would directly fit a
smooth surface on the 3D points, making use of the redundancy
across views and the uncertainty estimation obtained directly

104

from the image similarity measure. Otherwise, we could start
with a rough initial triangulated mesh by common methods [14,
76] and refine it by minimizing a photometric error function
over the images.

A similar surface fitting could be used for the dense but un-
reliable normals obtained with the shading based method of
Chapter 6. In this case, rather than directly integrating normal
maps in 2D, and fuse afterward the depth location in space, it
would be better to keep the putative rays of the normal predic-
tion in 3D and directly fit a smooth surface. The result would
be a multi-view normal integration with a redundancy of noisy
normal predictions and anchored on fixed 3D points.

We plan in the future to include a comparison of our
method w.r.t. simpler interpolation schemes to inpaint the
surface normal image.

Shading based refinement is still an open topic [85, 92], in
this direction it would be interesting to continue exploring
the potential of deep learning methods for the separation of
shading and reflectance from the images [98, 109]. It is still not
clear how well neural network are able to generalize in such a
way that they could be used for every lighting configuration.
Nevertheless, it would be worth exploring this direction as a
tool to obtain additional object properties such as color and
reflectance function from the surface.

It would be interesting to include the multi-patch similarity
network of Chapter 5 inside the error computation of Gipuma.
An interesting direction would be to stick to the idea of a view
specific model but use it in similarity learning and incremen-
tally refine the network in a multi-view stereo dataset, as soon
as more images arrive, with application to video scenes. The
similarity function would be effectively fine-tuned to match the
images of the specific scene it is looking at.

To validate the effective generalization power of the similar-
ity measure, in future work we plan to perform a quantitative
comparison of a reconstruction of a dataset obtained with a
model trained on another dataset, see Chapter 5. That’s a cru-
cial missing experiment for a proper scientific corroboration of
our generality claim.

The architecture of the network could be modified to include
occlusion and visibility of patches or even the underlining sur-
face orientation. In this case, it could to be interesting to include

105

it in inside the random sampling of Gipuma to guide the other-
wise randomized selection of normals.

Our similarity network is just the starting point to include
learning based approach inside multi-view stereo reconstruc-
tion. Recently, bolder ideas have emerged, all the way to learn-
ing an end-to-end mapping from images to (volumetric, low-
resolution) 3D models [18, 73]. While we do not see a reason
to replace the geometrically transparent and well-understood
Structure from Motion pipeline with a learned black-box pre-
dictor, we do agree that certain steps of the pipeline lack a prin-
cipled solution and might be best explored with deep learning.

106

B I B L I O G R A P H Y

[1] Jens Ackermann, Martin Ritz, André Stork, and Michael
Goesele. “Removing the example from example-based
photometric stereo.” In: Trends and Topics in Computer
Vision. Springer, 2010, pp. 197–210.

[2] Amit Agrawal, Ramesh Raskar, and Rama Chellappa.
“What is the range of surface reconstructions from a gra-
dient field?” In: ECCV 2006 ().

[3] Hernan Badino and Takeo Kanade. “A Head-Wearable
Short-Baseline Stereo System for the Simultaneous Esti-
mation of Structure and Motion.” In: IAPR MVA 2011 ().
url: http://www.lelaps.de/papers/badino_mva12.
pdf.

[4] Vijay Badrinarayanan, Alex Kendall, and Roberto
Cipolla. “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation.” In: arXiv
preprint arXiv:1511.00561 (2015).

[5] Christian Bailer, Manuel Finckh, and Hendrik PA
Lensch. “Scale robust multi view stereo.” In: ECCV 2012
().

[6] Linchao Bao, Qingxiong Yang, and Hailin Jin. “Fast
Edge-Preserving PatchMatch for Large Displacement
Optical Flow.” In: CVPR 2014 ().

[7] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and
Dan B Goldman. “PatchMatch: A Randomized Corre-
spondence Algorithm for Structural Image Editing.” In:
SIGGRAPH 2009 ().

[8] Thabo Beeler, Derek Bradley, Henning Zimmer, and
Markus Gross. “Improved reconstruction of deforming
surfaces by cancelling ambient occlusion.” In: ECCV
2012 ().

[9] Frederic Besse, Carsten Rother, Andrew Fitzgibbon, and
Jan Kautz. “PMBP: PatchMatch Belief Propagation for
Correspondence Field Estimation.” In: BMVC 2012 ().

[10] Andrew Blake, Andrew Zisserman, and Greg Knowles.
“Surface descriptions from stereo and shading.” In: Im-
age and Vision Computing 3.4 (1985), pp. 183–191.

107

http://www.lelaps.de/papers/badino_mva12.pdf
http://www.lelaps.de/papers/badino_mva12.pdf

[11] Michael Bleyer, Christoph Rhemann, and Carsten
Rother. “PatchMatch Stereo - Stereo Matching with
Slanted Support Windows.” In: BMVC 2011 (). url:
http://publik.tuwien.ac.at/files/PubDat_201949.

pdf.

[12] Michael Bleyer, Christoph Rhemann, and Carsten
Rother. “PatchMatch Stereo - Stereo Matching with
Slanted Support Windows.” In: BMVC 2011 (). url:
http://publik.tuwien.ac.at/files/PubDat_201949.

pdf.

[13] Peter Burt, Lambert Wixson, and Garbis Salgian. “Elec-
tronically directed "focal" stereo.” In: ICCV 1995 ().

[14] Fatih Calakli and Gabriel Taubin. “SSD: Smooth signed
distance surface reconstruction.” In: Computer Graphics
Forum. Vol. 30. 7. Wiley Online Library. 2011, pp. 1993–
2002.

[15] Neill DF Campbell, George Vogiatzis, Carlos Hernán-
dez, and Roberto Cipolla. “Using multiple hypotheses
to improve depth-maps for multi-view stereo.” In: ECCV
2008 ().

[16] Augustin Cauchy. “Méthode générale pour la résolution
des systemes d¿équations simultanées.” In: Comp. Rend.
Sci. Paris 25.1847 (1847), pp. 536–538.

[17] Ju Yong Chang, Kyoung Mu Lee, and Sang Uk Lee.
“Multiview normal field integration using level set
methods.” In: Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on. IEEE. 2007, pp. 1–8.

[18] C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese.
“3D-R2N2: A Unified Approach for Single and Multi-
view 3D Object Reconstruction.” In: ECCV 2016 ().

[19] Dan Claudiu Cireşan, Ueli Meier, Luca Maria Gam-
bardella, and Jürgen Schmidhuber. “Deep, big, simple
neural nets for handwritten digit recognition.” In:
Neural computation 22.12 (2010), pp. 3207–3220.

[20] David Claus and Andrew W Fitzgibbon. “A rational
function lens distortion model for general cameras.”
In: Computer Vision and Pattern Recognition, 2005. CVPR
2005. IEEE Computer Society Conference on. Vol. 1. IEEE.
2005, pp. 213–219.

108

http://publik.tuwien.ac.at/files/PubDat_201949.pdf
http://publik.tuwien.ac.at/files/PubDat_201949.pdf
http://publik.tuwien.ac.at/files/PubDat_201949.pdf
http://publik.tuwien.ac.at/files/PubDat_201949.pdf

[21] Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. “Fast and accurate deep network learning
by exponential linear units (elus).” In: arXiv preprint
arXiv:1511.07289 (2015).

[22] Robert T Collins. “A space-sweep approach to true
multi-image matching.” In: CVPR 1996 ().

[23] Robert T Collins. “A space-sweep approach to true
multi-image matching.” In: CVPR. IEEE. 1996, pp. 358–
363.

[24] James M Coughlan and Alan L Yuille. “The Manhattan
world assumption: Regularities in scene statistics which
enable Bayesian inference.” In: NIPS 2000 ().

[25] James Edwin Cryer, Ping-Sing Tsai, and Mubarak Shah.
“Integration of shape from shading and stereo.” In: Pat-
tern Recognition 28.7 (1995), pp. 1033–1043.

[26] George Cybenko. “Approximation by superpositions of
a sigmoidal function.” In: Mathematics of Control, Signals,
and Systems (MCSS) 2.4 (1989), pp. 303–314.

[27] Amaël Delaunoy, Emmanuel Prados, Pau Gargallo I
Piracés, Jean-Philippe Pons, and Peter Sturm. “Min-
imizing the multi-view stereo reprojection error for
triangular surface meshes.” In: BMVC 2008 ().

[28] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. “Imagenet: A large-scale hierarchical im-
age database.” In: Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on. IEEE. 2009,
pp. 248–255.

[29] Frédéric Devernay and Olivier Faugeras. “Computing
differential properties of 3-D shapes from stereoscopic
images without 3-D models.” In: CVPR 1994 ().

[30] David Eigen and Rob Fergus. “Predicting Depth, Surface
Normals and Semantic Labels with a Common Multi-
Scale Convolutional Architecture.” In: ICCV 2015 ().

[31] Nils Einecke and Julian Eggert. “Stereo image warping
for improved depth estimation of road surfaces.” In: In-
telligent Vehicle Symposium 2013 ().

[32] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. “Effi-
cient Belief Propagation for Early Vision.” In: IJCV 70.1
(2006).

109

[33] David F Fouhey, Arpan Gupta, and Martial Hebert.
“Data-driven 3D primitives for single image understand-
ing.” In: ICCV 2013 ().

[34] David Ford Fouhey, Abhinav Gupta, and Martial Hebert.
“Unfolding an indoor origami world.” In: ECCV 2014 ().

[35] Robert T Frankot and Rama Chellappa. “A method
for enforcing integrability in shape from shading
algorithms.” In: IEEE TPAMI 10.4 (1988), pp. 439–451.

[36] Pascal Fua and Yvan G Leclerc. “Object-centered surface
reconstruction: Combining multi-image stereo and shad-
ing.” In: IJCV 16.1 (1995), pp. 35–56.

[37] Yasutaka Furukawa and Jean Ponce. “Accurate, Dense,
and Robust Multiview Stereopsis.” In: IEEE TPAMI 32.8
(2010), pp. 1362–1376. issn: 0162-8828. doi: http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2009.161.

[38] Yasutaka Furukawa, Brian Curless, Steven M Seitz, and
Richard Szeliski. “Manhattan-world stereo.” In: CVPR
2009 ().

[39] Andrea Fusiello, Vito Roberto, and Emanuele Trucco.
“Efficient stereo with multiple windowing.” In: CVPR
1997 ().

[40] Silvano Galliani, Michael Breuß, and Yong Chul Ju. “Fast
and Robust Surface Normal Integration by a Discrete
Eikonal Equation.” In: BMVC 2012 ().

[41] Silvano Galliani, Katrin Lasinger, and Konrad Schindler.
“Massively Parallel Multiview Stereopsis by Surface Nor-
mal Diffusion.” In: ICCV 2015.

[42] Silvano Galliani and Konrad Schindler. “Just look at the
image: viewpoint-specific surface normal prediction for
improved multi-view reconstruction.” In: CVPR 2016.

[43] David Gallup, J-M Frahm, Philippos Mordohai, Qingx-
iong Yang, and Marc Pollefeys. “Real-time plane-
sweeping stereo with multiple sweeping directions.” In:
CVPR 2007 ().

[44] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are
we ready for Autonomous Driving? The KITTI Vision
Benchmark Suite.” In: CVPR 2012 ().

[45] Andreas Geiger, Philip Lenz, and Raquel Urtasun. “Are
we ready for Autonomous Driving? The KITTI Vision
Benchmark Suite.” In: CVPR 2012 ().

110

https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.161
https://doi.org/http://doi.ieeecomputersociety.org/10.1109/TPAMI.2009.161

[46] Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
Deep Learning. http://www.deeplearningbook.org. MIT
Press, 2016.

[47] Alex Graves. “Generating sequences with recurrent neu-
ral networks.” In: arXiv preprint arXiv:1308.0850 (2013).

[48] T. S. F. Haines and R. C. Wilson. “Integrating Stereo with
Shape-from-Shading derived Orientation Information.”
In: BMVC 2007 ().

[49] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul
Sukthankar, and Alexander C. Berg. “MatchNet: Uni-
fying Feature and Metric Learning for Patch-Based
Matching.” In: CVPR 2015.

[50] C. Häne, L. Heng, G. H. Lee, A. Sizov, and M. Pollefeys.
“Real-Time Direct Dense Matching on Fisheye Images
Using Plane-Sweeping Stereo.” In: 3DV 2014.

[51] Marsha J Hannah. “Computer Matching of Areas in
Stereo Images.” PhD thesis. Stanford University, 1974.

[52] Richard Hartley and Andrew Zisserman. Multiple View
Geometry. second. Cambridge University Press, 2004.

[53] Wilfried Hartmann, Silvano Galliani, Michal Havlena,
Konrad Schindler, and Luc Van Gool. “Learned multi-
patch similarity.” In: ICCV 2017 ().

[54] Janne Heikkilä and Olli Silvén. “A four-step camera cal-
ibration procedure with implicit image correction.” In:
CVPR. Vol. 97. 1997, pp. 1106–1112.

[55] Philipp. Heise, Sebastian Klose, Brian Jensen, and Alois
Knoll. “PM-Huber: PatchMatch with Huber Regular-
ization for Stereo Matching.” In: ICCV 2013 (). doi:
10.1109/ICCV.2013.293.

[56] Philipp Heise, Brian Jensen, Sebastian Klose, and
Alois Knoll. “Variational patchmatch multiview re-
construction and refinement.” In: Proceedings of the
IEEE International Conference on Computer Vision. 2015,
pp. 882–890.

[57] Heiko Hirschmüller. “Stereo Processing by Semi-Global
Matching and Mutual Information.” In: IEEE TPAMI
30.2 (2008), pp. 328–341.

[58] Jeffrey Ho, Jongwoo Lim, Ming-Hsuan Yang, and David
Kriegman. “Integrating surface normal vectors using
fast marching method.” In: ECCV 2006 ().

111

http://www.deeplearningbook.org
https://doi.org/10.1109/ICCV.2013.293

[59] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and
W. Stuetzle. “Surface reconstruction from unorganized
points.” In: Computer Graphics 26.2 (1992), pp. 71–78.

[60] Berthold KP Horn and Michael J Brooks. “The varia-
tional approach to shape from shading.” In: CVGIP 33.2
(1986), pp. 174–208.

[61] Kurt Hornik. “Approximation capabilities of multilayer
feedforward networks.” In: Neural networks 4.2 (1991),
pp. 251–257.

[62] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
“Multilayer feedforward networks are universal approx-
imators.” In: Neural networks 2.5 (1989), pp. 359–366.

[63] Xiaoyan Hu and Philippos Mordohai. “Least Commit-
ment, Viewpoint-Based, Multi-view Stereo.” In: 3DIM-
PVT 2012 ().

[64] Stephen S. Intille and Aaron F. Bobick. “Disparity-space
images and large occlusion stereo.” English. In: ECCV
1994 (). doi: 10.1007/BFb0028349. url: http://dx.doi.
org/10.1007/BFb0028349.

[65] M. Jancosek and T. Pajdla. “Multi-view reconstruction
preserving weakly-supported surfaces.” In: CVPR 2011
(). issn: 1063-6919.

[66] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and Aanæ s
H. “Large Scale Multi-view Stereopsis Evaluation.” In:
CVPR 2014 ().

[67] R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs.
“Large Scale Multi-view Stereopsis Evaluation.” In:
CVPR 2014.

[68] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. “Caffe: Convolutional
Architecture for Fast Feature Embedding.” In: arXiv
preprint arXiv:1408.5093 (2014).

[69] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadar-
rama, and Trevor Darrell. “Caffe: Convolutional
Architecture for Fast Feature Embedding.” In: arXiv
preprint arXiv:1408.5093 (2014).

112

https://doi.org/10.1007/BFb0028349
http://dx.doi.org/10.1007/BFb0028349
http://dx.doi.org/10.1007/BFb0028349

[70] Hailin Jin, Daniel Cremers, Dejun Wang, Emmanuel Pra-
dos, Anthony Yezzi, and Stefano Soatto. “3-d reconstruc-
tion of shaded objects from multiple images under un-
known illumination.” In: IJCV 76.3 (2008), pp. 245–256.

[71] Takeo Kanade and Masatoshi Okutomi. “A stereo match-
ing algorithm with an adaptive window: Theory and ex-
periment.” In: IEEE TPAMI 16.9 (1994), pp. 920–932.

[72] Sing Bing Kang, R. Szeliski, and Jinxiang Chai. “Han-
dling occlusions in dense multi-view stereo.” In: CVPR
2001 (). issn: 1063-6919.

[73] Abhishek Kar, Christian Häne, and Jitendra Malik.
“Learning a Multi-View Stereo Machine.” In: arXiv
preprint arXiv:1708.05375 (2017).

[74] Sagi Katz, Ayellet Tal, and Ronen Basri. “Direct Visibility
of Point Sets.” In: ACM SIGGRAPH 2007.

[75] Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe. “Poisson surface reconstruction.” In: Eurograph-
ics Symposium on Geometry Processing 2006 ().

[76] Michael Kazhdan and Hugues Hoppe. “Screened
poisson surface reconstruction.” In: ACM Transactions
on Graphics 32.3 (2013), p. 29.

[77] Ira Kemelmacher-Shlizerman and Steven M Seitz. “Face
reconstruction in the wild.” In: ICCV 2011 ().

[78] Günter Klambauer, Thomas Unterthiner, Andreas
Mayr, and Sepp Hochreiter. “Self-Normalizing Neural
Networks.” In: arXiv preprint arXiv:1706.02515 (2017).

[79] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen
Koltun. “Tanks and Temples: Benchmarking Large-Scale
Scene Reconstruction.” In: 36.4 (2017).

[80] Kalin Kolev, Maria Klodt, Thomas Brox, and Daniel Cre-
mers. “Continuous global optimization in multiview 3d
reconstruction.” In: International Journal of Computer Vi-
sion 84.1 (2009), pp. 80–96.

[81] Vladimir Kolmogorov and Ramin Zabih. “Computing
Visual Correspondence with Occlusions using Graph
Cuts.” In: ICCV 2001 ().

[82] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
“Imagenet classification with deep convolutional neural
networks.” In: Advances in neural information processing
systems. 2012, pp. 1097–1105.

113

[83] Patrick Labatut, Jean-Philippe Pons, and Renaud
Keriven. “Efficient Multi-View Reconstruction of
Large-Scale Scenes using Interest Points, Delaunay
Triangulation and Graph Cuts.” In: ICCV 2007 ().

[84] L’ubor Ladický, Bernhard Zeisl, and Marc Pollefeys.
“Discriminatively Trained Dense Surface Normal
Estimation.” In: ECCV 2014 ().

[85] Fabian Langguth, Kalyan Sunkavalli, Sunil Hadap, and
Michael Goesele. “Shading-aware multi-view stereo.” In:
European Conference on Computer Vision. Springer. 2016,
pp. 469–485.

[86] Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. “Backpropagation applied to hand-
written zip code recognition.” In: Neural computation 1.4
(1989), pp. 541–551.

[87] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. “Gradient-based learning applied to document
recognition.” In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324.

[88] Jonathan Long, Evan Shelhamer, and Trevor Darrell.
“Fully convolutional networks for semantic segmenta-
tion.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2015, pp. 3431–3440.

[89] D. Lowe. “Distinctive Image Features from Scale-
Invariant Keypoints.” In: IJCV 60.2 (2004), pp. 91–
110.

[90] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng.
“Rectifier nonlinearities improve neural network acous-
tic models.” In: Proc. ICML. Vol. 30. 1. 2013.

[91] George Marsaglia. “Choosing a Point from the Surface
of a Sphere.” In: Annals of Mathematical Statistics 43.2
(1972), pp. 645–646. doi: 10.1214/aoms/1177692644. url:
http://dx.doi.org/10.1214/aoms/1177692644.

[92] Daniel Maurer, Yong Chul Ju, Michael Breuß, and
Andrés Bruhn. “Combining Shape from Shading and
Stereo: A Variational Approach for the Joint Estimation
of Depth, Illumination and Albedo.” In: BMVC. 2016.

114

https://doi.org/10.1214/aoms/1177692644
http://dx.doi.org/10.1214/aoms/1177692644

[93] N. J. Mitra, A. Nguyen, and L. Guibas. “Estimating sur-
face normals in noisy point cloud data.” In: Int’l J Com-
putational Geometry & Applications 14.4/5 (2004), pp. 261–
276.

[94] M. Okutomi and T. Kanade. “A multiple-baseline
stereo.” In: IEEE TPAMI 15.4 (1993), pp. 353–363. issn:
0162-8828. doi: 10.1109/34.206955.

[95] James M Ortega and Werner C Rheinboldt. Iterative solu-
tion of nonlinear equations in several variables. Vol. 30. Siam,
1970.

[96] Bui Tuong Phong. “Illumination for computer generated
pictures.” In: Communications of the ACM 18.6 (1975),
pp. 311–317.

[97] R. Ranftl, S. Gehrig, T. Pock, and H. Bischof. “Pushing
the limits of stereo using variational stereo estimation.”
In: Intelligent Vehicles Symposium 2012 (). issn: 1931-0587.
doi: 10.1109/IVS.2012.6232171.

[98] Konstantinos Rematas, Tobias Ritschel, Mario Fritz, Efs-
tratios Gavves, and Tinne Tuytelaars. “Deep reflectance
maps.” In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 2016, pp. 4508–4516.

[99] Christoph Rhemann, Asmaa Hosni, Michael Bleyer,
Carsten Rother, and Margrit Gelautz. “Fast Cost-
Volume Filtering for Visual Correspondence and
Beyond.” In: CVPR 2011 ().

[100] Stephan R Richter and Stefan Roth. “Discriminative
Shape from Shading in Uncalibrated Illumination.” In:
CVPR 2015 ().

[101] Dimitrios Samaras, Dimitris Metaxas, Pascal Fua, and
Yvan G Leclerc. “Variable albedo surface reconstruction
from stereo and shape from shading.” In: CVPR 2000 ().

[102] Daniel Scharstein and Richard Szeliski. “A Taxonomy
and Evaluation of Dense Two-Frame Stereo Correspon-
dence Algorithms.” In: IJCV 47.1-3 (2002), pp. 7–42. issn:
0920-5691. doi: 10.1023/A:1014573219977. url: http:
//dx.doi.org/10.1023/A:1014573219977.

[103] Johannes Lutz Schönberger, Enliang Zheng, Marc Polle-
feys, and Jan-Michael Frahm. “Pixelwise View Selection
for Unstructured Multi-View Stereo.” In: European Con-
ference on Computer Vision (ECCV). 2016.

115

https://doi.org/10.1109/34.206955
https://doi.org/10.1109/IVS.2012.6232171
https://doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1023/A:1014573219977

[104] Thomas Schöps, Johannes SchÃ¶nberger, Silvano Gal-
liani, Torsten Sattler, Konrad Schindler, Marc Pollefeys,
and Andreas Geiger. “A Multi-View Stereo Bench-
mark with High-Resolution Images and Multi-Camera
Videos.” In: CVPR 2017.

[105] Thomas Schöps, Johannes L Schönberger, Silvano Gal-
liani, Torsten Sattler, Konrad Schindler, Marc Pollefeys,
and Andreas Geiger. “A Multi-View Stereo Bench-
mark with High-Resolution Images and Multi-Camera
Videos.” In: ().

[106] Steven M Seitz, Brian Curless, James Diebel, Daniel
Scharstein, and Richard Szeliski. “A comparison
and evaluation of multi-view stereo reconstruction
algorithms.” In: CVPR 2006 ().

[107] Steven M Seitz, Brian Curless, James Diebel, Daniel
Scharstein, and Richard Szeliski. “A comparison
and evaluation of multi-view stereo reconstruction
algorithms.” In: CVPR. 2006.

[108] Shuhan Shen. “Accurate Multiple View 3D Reconstruc-
tion Using Patch-Based Stereo for Large-Scale Scenes.”
In: IEEE TIP 22.5 (2013), pp. 1901–1914. issn: 1057-7149.
doi: 10.1109/TIP.2013.2237921.

[109] Jian Shi, Yue Dong, Hao Su, and X Yu Stella. “Learning
Non-Lambertian Object Intrinsics across ShapeNet Cat-
egories Supplementary Material.” In: ().

[110] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and
Rob Fergus. “Indoor Segmentation and Support Infer-
ence from RGBD Images.” In: ECCV 2012 ().

[111] Edgar Simo-Serra, Eduard Trulls, Luis Ferraz, Iasonas
Kokkinos, Pascal Fua, and Francesc Moreno-Noguer.
“Discriminative Learning of Deep Convolutional
Feature Point Descriptors.” In: ICCV 2015.

[112] K. Simonyan, A. Vedaldi, and A. Zisserman. “Learning
Local Feature Descriptors Using Convex Optimisation.”
In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 36.8 (2014), pp. 1573–1585.

[113] C. Strecha, W. V. Hansen, L. J. V. Gool, P. Fua, and
U. Thoennessen. “On benchmarking camera calibration
and multi-view stereo for high resolution imagery.” In:
CVPR 2008 ().

116

https://doi.org/10.1109/TIP.2013.2237921

[114] Christoph Strecha, Wolfgang von Hansen, Luc J. Van
Gool, Pascal Fua, and Ulrich Thoennessen. “On bench-
marking camera calibration and multi-view stereo for
high resolution imagery.” In: CVPR 2008 ().

[115] Engin Tola, V. Lepetit, and P. Fua. “DAISY: An Efficient
Dense Descriptor Applied to Wide-Baseline Stereo.” In:
IEEE TPAMI 32.5 (2010), pp. 815–830. issn: 0162-8828.
doi: 10.1109/TPAMI.2009.77.

[116] Engin Tola, Christoph Strecha, and Pascal Fua. “Efficient
large-scale multi-view stereo for ultra high-resolution
image sets.” English. In: MVA 23.5 (2012), pp. 903–920.
issn: 0932-8092. doi: 10.1007/s00138-011-0346-8. url:
http://dx.doi.org/10.1007/s00138-011-0346-8.

[117] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. “Show and tell: A neural image caption
generator.” In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2015, pp. 3156–3164.

[118] Christoph Vogel, Konrad Schindler, and Stefan Roth.
“Piecewise Rigid Scene Flow.” In: ICCV 2013 ().

[119] Christian Wallraven, Volker Blanz, and Thomas Vetter.
“3D-Reconstruction of Faces: Combining Stereo with
Class-Based Knowledge.” In: DAGM 1999 ().

[120] Michael Weinmann, Aljosa Osep, Roland Ruiters, and
Reinhard Klein. “Multi-view normal field integration for
3d reconstruction of mirroring objects.” In: Proceedings of
the IEEE international conference on computer vision. 2013,
pp. 2504–2511.

[121] Chenglei Wu, B. Wilburn, Y. Matsushita, and C.
Theobalt. “High-quality shape from multi-view stereo
and shading under general illumination.” In: CVPR
2011 ().

[122] Zhongquan Wu and Lingxiao Li. “A line integra-
tion based method for depth recovery from surface
normals.” In: ICPR 1988 ().

[123] Songhua Xu, Athinodoros Georghiades, Holly Rush-
meier, Julie Dorsey, and Leonard McMillan. “Image
guided geometry inference.” In: 3D Data Process-
ing, Visualization, and Transmission, Third International
Symposium on. IEEE. 2006, pp. 310–317.

117

https://doi.org/10.1109/TPAMI.2009.77
https://doi.org/10.1007/s00138-011-0346-8
http://dx.doi.org/10.1007/s00138-011-0346-8

[124] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pas-
cal Fua. “LIFT: Learned Invariant Feature Transform.”
In: CoRR abs/1603.09114 (2016).

[125] Kuk-Jin Yoon and In So Kweon. “Adaptive support-
weight approach for correspondence search.” In: IEEE
TPAMI 28.4 (2006), pp. 650–656.

[126] David M Young. Iterative solution of large linear systems.
Elsevier, 2014.

[127] Jie Yu, Qi Tian, Jaume Amores, and Nicu Sebe. “To-
ward robust distance metric analysis for similarity
estimation.” In: CVPR 2006.

[128] C. Zach. “Fast and high quality fusion of depth maps.”
In: 3DPVT 2008 ().

[129] Christopher Zach. “Fast and high quality fusion of
depth maps.” In: 3DPVT 2008.

[130] S. Zagoruyko and N. Komodakis. “Learning to compare
image patches via convolutional neural networks.” In:
CVPR 2015.

[131] J. Zbontar and Y. LeCun. “Computing the stereo match-
ing cost with a convolutional neural network.” In: CVPR
2015.

[132] Bernhard Zeisl, Christopher Zach, and Marc Pollefeys.
“Stereo Reconstruction of Building Interiors with a Ver-
tical Structure Prior.” In: 3DIMPVT 2011 ().

[133] Xucong Zhang, Yusuke Sugano, Mario Fritz, and An-
dreas Bulling. “Appearance-based Gaze Estimation in
the Wild.” In: CVPR 2015 ().

[134] Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-
Michael Frahm. “PatchMatch Based Joint View Selection
and Depthmap Estimation.” In: CVPR 2014 ().

[135] Enliang Zheng, Enrique Dunn, Vladimir Jojic, and Jan-
Michael Frahm. “Patchmatch based joint view selection
and depthmap estimation.” In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition.
2014, pp. 1510–1517.

[136] Christian Zinner, Martin Humenberger, Kristian
Ambrosch, and Wilfried Kubinger. “An optimized
software-based implementation of a census-based
stereo matching algorithm.” In: Advances in Visual
Computing. 2008, pp. 216–227.

118

	Dedication
	Sommario
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Goal of the Thesis
	1.2 Relevance to Society and Economy
	1.2.1 Autonomous Driving
	1.2.2 Virtual Reality
	1.2.3 Augmented Reality
	1.2.4 3D printing

	1.3 Challenges
	1.3.1 Specular Surfaces
	1.3.2 Homogeneous surfaces
	1.3.3 Occlusion
	1.3.4 Solution to Problems

	1.4 Contribution
	1.5 Outline of the thesis

	2 Related Works
	2.1 Multi-View Stereo Reconstruction
	2.1.1 Local vs. global matching.
	2.1.2 Local multiview methods.
	2.1.3 Points vs. surfaces.
	2.1.4 Exhaustive vs. randomized search.
	2.1.5 Patch Similarity Learning.

	2.2 Normals and Shading in Multi-View Stereo
	2.2.1 Normals in Multi-View Stereo.
	2.2.2 Shading Cues in Multi-View Stereo.
	2.2.3 Surface Normal Estimation.
	2.2.4 Normal extrapolation from MVS.
	2.2.5 Integrating Normals to Surfaces.

	3 Technical Background
	3.1 Image Generation
	3.1.1 Pinhole Camera
	3.1.2 Image Projection
	3.1.3 Inverse Projection
	3.1.4 Planes in Space and Homographies

	3.2 Image based 3D reconstruction
	3.2.1 Two view geometry

	3.3 Convolutional Neural Networks
	3.3.1 Deep Feedforward Neural Networks
	3.3.2 Convolutional Neural Networks
	3.3.3 Gradient Descent

	3.4 Multi-View Stereo Benchmarks
	3.4.1 Middlebury Multi-view dataset
	3.4.2 Strecha dataset
	3.4.3 DTU dataset
	3.4.4 Shortcoming and upcoming datasets

	4 Massively Parallel Multiview Stereopsis
	4.1 Patchmatch Stereo
	4.1.1 Patchmatch for rectified stereo images.
	4.1.2 Sequential propagation.
	4.1.3 Plane parameterization.

	4.2 Red-Black Patchmatch
	4.2.1 Surface normal diffusion
	4.2.2 Sparse matching cost
	4.2.3 Implementation details

	4.3 Multi-view Extension
	4.3.1 Parametrization in scene space
	4.3.2 Cost computation over multiple images
	4.3.3 Fusion

	4.4 Results
	4.4.1 DTU Robot Image Dataset
	4.4.2 Middlebury
	4.4.3 Outdoor Images
	4.4.4 KITTI
	4.4.5 ETH3D

	4.5 Conclusion

	5 Learned Multi-Patch Similarity
	5.1 n-way Patch Similarity with a Neural Network
	5.1.1 Network Architecture

	5.2 Application to Multi-view Stereo
	5.2.1 Training the Network.

	5.3 Experiments and Results
	5.3.1 Evaluation on the DTU dataset
	5.3.2 Invariance to the number of input patches.
	5.3.3 Evaluation on the Fountain dataset

	5.4 Conclusion

	6 Normal Prediction for Improved Multi-View Reconstruction
	6.1 Method
	6.1.1 Generation of normals for training
	6.1.2 Normal prediction
	6.1.3 Training data.
	6.1.4 Unsupervised Normal Regression with CNN.
	6.1.5 Surface normal integration
	6.1.6 Depth map fusion

	6.2 Results
	6.2.1 Normal prediction
	6.2.2 Improved multi-view reconstruction

	6.3 Conclusion

	7 Conclusion and Outlook
	7.1 Summary of Contributions
	7.2 Outlook and Future Works

	Bibliography

