

DISS. ETH NO. 24905

Event-Based CMOS Circuits for a Class of

Belief-Propagation Models

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

presented by

Chen-Han Chien

MSc. Electrical Engineering, National Tsing Hua University, Taiwan

born on 27.05.1984

citizen of Taiwan, Republic of China (R.O.C)

accepted on the recommendation of

PD. Dr. Shih-Chii Liu

Prof. Dr. Tobi Delbruck

Prof. Dr. Hans-Andrea Loeliger

2018

Acknowledgements

Pursuing a PhD in a foreign continent far away from home is a memorable

journey I could never imagine before. Along this journey, I am grateful to many

people, without whom I cannot reach this far.

First and foremost, I would like to thanks my supervisor PD Dr. Shih-Chii Liu for

her guidance, countless discussions and valuable suggestions on my research work

and academic writing skills. Apart from that, she gave me a timely support when my

research was not moving forward. I would also like to thank Prof. Tobi Delbruck for

his generous help and straightforward feedback on my research project, especially

during the circuit test on the USBAERmini2 board. I would also like to thank Prof.

Hsin Chen for introducing me to the Institute of Neuroinformatics. Without his

recommendation, this adventure would have never started.

I'm very grateful to Minhao Yang, with whom I had endless discussions about

circuits and have gained a much better understanding of many circuits thanks to his

profound technical knowledge. I also enjoy all the lunch time discussions with him

about topics in the life. I would also like to thank Adrain Huber for the feedback and

the translation of my thesis. My gratitude also goes to the people working in iniLabs

for the consistent technical support. Chenghan Li introduced me to the DVS and APS

technologies and provided me helpful feedback of my thesis. Luca Longinotti

developed the firmware of the motherboard and Vicente Villanueva provided

guidance on the PCB layout.

Last but not least, my parents are always my strongest support. I am grateful to

my parents, Chun-Hsun Chien (簡俊勳) and Su-Mei Kuo (郭素美), for their infinite

and eternal support. I want to express my heartfelt gratitude to my beloved wife Ho-

Hui Wang (王荷惠). Your unconditional love and company in this foreign country

make me never alone along this journey. You make me feel at home in a foreign

continent. I really enjoy the time in these years with your company, for which I am

endlessly grateful!

Abstract

Abstract Bayesian networks are often used to describe how brains can perform

inference. Methods of transforming these abstract models to spiking neural

networks that can perform inference are still scarce. A recently proposed model

called the event-based Belief-Propagation (BP) model shows how inference can be

carried out by using the distribution of interspike intervals in spike trains as the

messages. Because the simulation times of a factor graph that uses this model can

be very long, this thesis proposes an analog Very-Large-Scale Integration (aVLSI)

version of this model as one method of speeding up the computation times. The

electronic model will be a useful addition to the neuromorphic effort in building

spiking neural network systems.

This thesis describes one hardware implementation of this event-based BP model,

which uses both a Field-Programmable Gate Array (FPGA) and a mixed analog-digital

Application-Specific Integrated Circuit (ASIC) chip developed in a 0.35um CMOS

process technology. It describes the challenges in implementing the various circuit

blocks of this stochastic model which includes the critical hazard function needed for

the neuron to generate stochastic spikes following a defined probability distribution.

Many of these circuit blocks did not exist in any form at the start of the thesis

because most of the focus in the neuromorphic community is on spiking neural

network chips that do not include a stochastic component. Therefore, this thesis

presents possible solutions for implementing the event-based stochastic model in

hardware.

The hardware system developed in this work is based on an architecture of the

event-based BP model that is partitioned into a Landscape Sampling (LS) block and a

Random Sampling (RS) block. The input spike trains carrying the BP messages are

processed by the LS block that implements the constraint function of a defined factor

node. The LS block outputs a message-combined probability distribution that is used

by the RS block to produce the stochastic output spikes using the implemented

hazard function.

vi Abstract

The thesis considers the practical challenges of mapping the theoretical model

to aVLSI circuits, the possible methods for generating on-chip noise sources, and the

subsequent partitioning of the hardware system into an FPGA and an ASIC. The

factor graphs constructed by the event-based BP model under the constraints of the

hardware are validated through simulations and then applied in two tasks 1) object

tracking using an event-based Kalman filter and 2) data reconstruction using the

event-based Continuous Restricted Boltzmann Machine (CRBM). These applications

are examples of possible applications of the hardware system. The thesis shows the

capability of the final hardware system in implementing graphs with arbitrary

variable distributions for its inputs and using constraint functions such as “plus” and

“equality”. Measured results show that the BP hardware consumes 6.32 mW of

power with 0.046 mW of power per RS channel on the ASIC.

Zusammenfassung

Abstrakte Bayessche Netze werden häufig verwendet, um Inferenz in Gehirnen

zu erklären. Methoden, die solche abstrakten Modelle in gepulste neuronale Netze

übersetzen, sind jedoch noch selten anzutreffen. Ein kürzlich vorgeschlagenes

Modell, welches unter dem Namen ereignisbasiertes Belief-Propagation (BP)

bekannt ist, zeigt auf, wie Inferenz erfolgen kann, wobei die Zeitintervall-Verteilung

zwischen konsekutiven Pulsen die zu übertragende Nachricht darstellt. Da

Faktorgraphen, die solche Modelle verwenden, eine lange Simulationszeit aufweisen,

wird in dieser Arbeit eine analoge Very-Large-Scale Integration (VLSI) Variante dieses

Modells eingeführt, um die Berechnungszeit zu verkürzen. Das elektronische Modell

ist eine nützliche Ergänzung zu neuromorphen Ansätzen, gepulste neuronale Netze

zu entwickeln.

Diese Arbeit beschreibt eine Hardware-Implementierung dieses

ereignisbasierten BP-Modells, wobei sowohl ein Field-Programmable Gate Array

(FPGA) als auch ein Mixed Analog-Digital Application-Specific Integrated Circuit (ASIC)

Chip verwendet werden; der ASIC Chip ist für die 0.35um CMOS Prozesstechnologie

entworfen. Die Arbeit beschreibt weiterhin die Schwierigkeiten, die bei der

Implementierung der verschiedenen Schaltkreiskomponenten dieses stochastischen

Modells entstanden; dies beinhaltet die wichtige Ausfallrate, die vom Neuron

verwendet wird, um stochastische Pulse zu generieren, die einer definierten

Wahrscheinlichkeitsverteilung folgen. Viele dieser Schaltkreiskomponenten

existierten zu Beginn dieser Arbeit nicht, da ein Schwerpunkt innerhalb der

neuromorphen Entwicklergemeinschaft darin liegt, gepulste neuronale Netze zu

entwickeln, welche keine stochastischen Komponenten enthalten. Diese Arbeit zeigt

daher Möglichkeiten auf, um ereignisbasierte stochastische Modelle in Hardware zu

implementieren.

Das im Rahmen dieser Arbeit entwickelte Hardware-System basiert auf einer

Architektur des ereignisbasierten BP-Modells, welche in einen Landscape Sampling

(LS) Block und einen Random Sampling (RS) Block zerlegt ist. Die Eingangspulszüge,

die die BP-Nachrichten tragen, werden vom LS-Block verarbeitet, welcher die

viii Zusammenfassung

Nebenbedingungsfunktion eines definierten Faktorknotens implementiert. Der LS-

Block gibt eine Wahrscheinlichkeitsverteilung aus, die den verknüpften

Eingangsnachrichten in einen Knoten entspricht, und die im RS-Block dazu

verwendet wird, um stochastische Ausgangspulse mittels der implementierten

Ausfallrate zu erzeugen.

Diese Arbeit untersucht die praktischen Herausforderungen, die bei der

Abbildung des theoretischen Modells auf einen aVLSI-Schaltkreis entstehen, die

Möglichkeiten, um On-Chip Rauschquellen zu generieren, sowie die nachfolgende

Zerlegung des Hardware-Systems in eine FPGA- und eine ASIC-Komponente. Die

Faktorgraphen, welche im Rahmen des ereignisbasierten BP-Modells entwickelt

werden, und die Hardware-Beschränkungen berücksichtigen, werden mittels

Simulationen validiert. Sodann werden sie auf zwei Aufgaben angewendet: 1)

Objektverfolgung mittels eines ereignisbasierten Kalmanfilters; 2)

Datenrekonstruktion mittels einer ereignisbasierten Continuous-Restricted

Boltzmann-Maschine (CRBM). Diese Anwendungen sind Beispiele möglicher

Applikationen des Hardware-Systems. Diese Arbeit zeigt die Fähigkeit des

entwickelten Hardware-Systems auf, Graphen mit beliebigen Eingangs-

Zufallsvariablen-Wahrscheinlichkeitsverteilungen zu simulieren, die

Nebenbedingungsfunktionen wie "Plus" und "Gleichheit" benutzen. Messungen

ergeben, dass die BP-Hardware 6.32 mW Leistung aufnimmt, wobei 0.046 mW

Leistung pro RS-Kanal des ASICs aufgenommen werden.

Contents

Acknowledgements .. iii

Abstract .. v

Zusammenfassung ... vii

Contents .. ix

List of Figures .. xi

List of Tables .. xvii

Chapter 1 Introduction ... 1

1.1 Probability Inference in the Brain .. 1

1.2 Hardware Implementation of Artificial Neural Network 5

1.3 Thesis Contribution and Organization ... 6

Chapter 2 Structure of Belief-Propagation Model .. 9

2.1 Forney Factor Graph .. 9

2.2 Event-Based Belief-Propagation Model .. 12

2.2.1 Renewal Theory .. 12

2.2.2 Discrete-Time Approximation .. 14

2.2.3 Message Passing ... 15

Chapter 3 Event-Based Belief-Propagation Model Simulation......................... 19

3.1 Random Sampling Block Validation ... 19

3.2 Factor Node ... 23

3.3 Applications ... 30

3.3.1 Object Tracking ... 30

3.3.2 Data Reconstruction with an Event-Based CRBM 40

Chapter 4 Factor Node Hardware ... 49

4.1 System Architecture .. 49

x Contents

4.2 Landscape Sampling .. 50

4.3 Random Number Generator .. 52

4.3.1 Discrete-Value Approach .. 52

4.3.2 Measurement Results .. 55

4.4 Continuous-Input Random Sampling ... 58

4.4.1 Hazard Core .. 60

4.4.2 IV Converter .. 62

4.4.3 Comparator .. 63

4.4.4 Measurement Results .. 63

4.5 Discrete-Input Random Sampling .. 69

4.5.1 Hazard Core .. 71

4.5.2 IV Converter .. 73

4.5.3 Comparator .. 75

4.5.4 Spike Generator & Channel AER... 76

4.5.5 Reset Hazard ... 77

4.5.6 Channel Bias ... 78

4.5.7 Measurement Results .. 79

4.6 Test Results of Message Passing in VLSI Factor Graphs 88

Chapter 5 Conclusion and Future Work ... 97

5.1 Conclusions of Hardware Design ... 97

5.2 Hardware Improvements and Outlook .. 99

Appendix A Theoretical Basis ... 105

A.1 Recursive Form of the Hazard Function .. 105

A.2 Output ISI Probability Distribution .. 107

Bibliography ... 111

Curriculum vitae .. 119

List of Figures

Figure 2.1 A factor graph generated from the factorized joint probability in (2.1).

 .. 10

Figure 2.2 Symbols of specific factor nodes. The arrow indicates the direction of

message passing. The nodes define the (a) plus, (b) equality, and (c) gain

constraint functions with variables X, Y and Z. 11

Figure 2.3 Proposed message encoding principle for random number sequence.

Each spike of a train is provided with an analog label, whose value

corresponds to the length of the ISI preceding the spike, i.e. to the

difference in spike time between the considered spike and its

predecessor (see numbers above the spikes in arbitrary units). These

analog values are therefore samples of the ISI distribution underlying the

spike train. The spike train is renewal, i.e. all ISIs are independent

samples. .. 13

Figure 2.4 Concept of the event-based BP model. (a) Factor node with three edges

X, Y, Z, where the messages are passed along the arrows using spike

trains spikeX, spikeY and spikeZ. (b) Every input pair (x,y) samples the

function f while Z = z. .. 17

Figure 2.5 Proposed message passing scheme. The factor’s function f is

implemented in a LS block which produces the probability distribution of

message mZ used by the RS block to generate the spiking output. 18

Figure 3.1 (a) Output ISI distributions over 70,000 samples using different

equations to compute the hazard. pISI1 is obtained using the original

definition while pISI2a and pISI2b are obtained using the discrete recursive

form with different updating steps, Δt and 0.1Δt. (b) Corresponding

hazards for the three methods. The definitions of the subscripts are the

same as in (a). ... 22

Figure 3.2 (a) Unidirectional factor node with the equality constraint function. The

input spike trains are generated from two RS blocks. (b) Distribution of

message mX. The red curve shows the defined probability and the blue

curve shows the output ISI distribution from the spike train with 18,000

file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996861
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996861
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996861
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996862
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996862
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996862
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996863
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996864
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996864
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996864
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996864
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996865
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996865
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996865
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996866
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996866
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996866
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996866
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996866
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996866
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996867
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996867
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996867
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996867

xii List of Figures

samples. (c) Distribution of message mY (d) Distribution of message mZ

 .. 24

Figure 3.3 (a) Unidirectional factor node with the equality constraint function. The

input spike trains are generated from two RS blocks. (b) Distribution of

message mX. The red curve shows the defined probability and the blue

curve shows the output ISI distribution from the spike train with 11,000

samples. (c) Distribution of message mY (d) Distribution of message mZ

 .. 25

Figure 3.4 (a) Example network with two factor nodes and four semi-factor nodes.

(b) Expanded form for computing messages in both directions. (c)

Computing the marginal probability of variable X1 using one equality

constraint node to combine the messages from two directions. 27

Figure 3.5 KL divergences of the marginal probailities pX1 to pX4 in (a) trial 1 and (b)

trial 2. .. 29

Figure 3.6 Kalman filter represented by a FFG. The next state is updated by the

messages along the blue directions. The parameters in red indicates the

relative positions of the quantities computed in (3.5) and (3.6). 32

Figure 3.7 Structure of a DVS pixel. ... 33

Figure 3.8 Factor Graphs for the task of tracking the falling tennis ball. The graph

for (a) the position tracking and (b) the velocity tracking...................... 34

Figure 3.9 Screenshot of the DVS at a moment of the tennis ball falling. 37

Figure 3.10 Position of the ball as a function of time. Each red dot represents the

average of all event addresses in a 0.01 s time slice. Each blue dot

represents the average of ISIs in the spike train sest within the time

window W. .. 37

Figure 3.11 Probability distributions in different states. The tennis ball is placed

around pixel 120 in the beginning and starts falling freely toward pixel 1.

The histogram is obtained by (a) counting all addresses of the events

from the DVS and (b) the ISIs in the spike train sest in the time window W.

 .. 39

Figure 3.12 RBM with two visible and two hidden neurons. Neuron v0 and h0 are bias

neurons. .. 40

Figure 3.13 FFG of the hidden layer in a two-visible-two-hidden-neuron CRBM. 42

Figure 3.14 Data reconstruction in the event-based CRBM. (a) 2D training data. The

reconstruction from the (b) 1st epoch (c) 2nd epoch (d) 5th epoch and

(e) 15th epoch. ... 46

file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996867
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996867
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996868
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996868
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996868
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996868
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996868
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996868
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996869
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996869
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996869
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996869
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996870
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996870
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996871
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996871
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996871
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996871
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996871
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996872
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996873
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996873
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996874
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996875
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996875
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996875
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996875
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996876
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996876
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996876
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996876
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996876
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996877
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996877
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996878
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996879
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996879
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996879

List of Figures xiii

Figure 3.15 ISI distribution of (a) neuron v1 at 2nd epoch, (b) neuron v2 at 2nd epoch,

(c) neuron v1 at 5th epoch, (d) neuron v2 at 5th epoch, (e) neuron v1 at

15th epoch, and (f) v2 at 15th epoch. ... 47

Figure 3.16 ISI distribution of (a) neuron h1 at 2nd epoch, (b) neuron h2 at 2nd epoch,

(c) neuron h1 at 5th epoch, (d) neuron h2 at 5th epoch, (e) neuron h1 at

15th epoch, and (f) h2 at 15th epoch. .. 48

Figure 4.1 System architecture consists of two blocks. Left (dotted blue box), the LS

array with 16 channels and right (dotted red box), the RS array also with

16 channels. .. 50

Figure 4.2 Structure of one LS channel ... 51

Figure 4.3 Ring structure of the RNG with 12 cells. .. 53

Figure 4.4 (a) Quantization residue map. (b) Block diagram of one RNG cell. 53

Figure 4.5 One RNG cell. (a) Circuit structure. (b) Control signals. 54

Figure 4.6 Four phases of a RNG cell. .. 55

Figure 4.7 Distribution of the random outputs of cells 1, 2 and 3 in the RNG ring.56

Figure 4.8 Time-space correlogram of different cells or states. 57

Figure 4.9 Mutual information of the output sequences of cells 1 and 3, cells 2 and

3, cells 3 and 3 with the output sequence of cell 3 delayed from 0 to 49

states. The mutual information is normalized by the entropy of x3. 57

Figure 4.10 Output sequences of cell 1 in different trials. .. 58

Figure 4.11 Functional implementation of the theoretical continuous-input RS. The

variables within parentheses correspond to circuit variables in Figure

4.12. The gray block indicates the additional block needed for the VLSI

circuits. ... 59

Figure 4.12 Schematics of the continuous-input RS circuit. 60

Figure 4.13 Microphotograph of a test chip which holds various test circuits not used

in this work. The RS and RNG circuits are outlined in white rectangles.

 .. 64

Figure 4.14 Uniform input distribution p(t) by providing constant input current Ip.

The constant value of p(t), i.e. pc, is equal to 1/tISImax following the rule

that the total area underneath the curve is 1. 65

Figure 4.15 Measured p(t) (= pc) vs Ip for a constant Ip. The slope of each curve as

extracted from the fit (dotted line) denotes the factor α. Here, α values

are extracted for Vr = 50, 100, 150 mV. ... 65

Figure 4.16 Two output ISI distributions for two different input currents. The red line

represents the input distribution p(t). The input current Ip is (a) 1.25 nA

and (b) 2.5 nA. .. 67

file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996880
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996880
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996880
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996881
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996881
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996881
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996882
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996882
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996882
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996883
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996884
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996885
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996886
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996887
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996888
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996889
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996890
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996890
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996890
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996891
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996892
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996892
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996892
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996892
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996893
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996894
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996894
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996894
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996895
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996895
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996895
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996896
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996896
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996896
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996897
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996897
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996897

xiv List of Figures

Figure 4.17 The exponential probability distribution of the output ISIs. The initial

input current Ip(0) is (a) 21.4 nA and (b) 82.8 nA. The equivalent input

distributions p(t) are plotted in red. ... 68

Figure 4.18 Simulation results showing the reconstruction of a more complex

probability distribution from the hazard circuit. 69

Figure 4.19 Structure of one RS channel ... 70

Figure 4.20 CMOS circuit details of the Hazard Core block....................................... 72

Figure 4.21 CMOS circuit details of the IV Converter block 75

Figure 4.22 Circuit details of the Comp block ... 76

Figure 4.23 Circuit details of the Spike Generator & Channel AER block 77

Figure 4.24 CMOS circuit details of the Reset Hazard block 78

Figure 4.25 CMOS circuit details of the Channel Bias block 78

Figure 4.26 Chip microphotograph of the RS array with 16 RS channels, 16 RS DACs

for the reset currents, the RNG array for 16 random sources and the top-

level chip AER transmitter. The bias generator occupies the remaining

area. The chip areas is 2.16× 2.74 mm2 .. 80

Figure 4.27 Linearity of the current mirror array in the Hazard Core block. 81

Figure 4.28 Dependence of output ISIs on Vnx .. 82

Figure 4.29 Output ISI distributions pISI over 10,000 samples as simulated in MATLAB.

The uniform input probability pin is (a) 0.0625 and (b) 0.0039. (c) The

distribution of the random source NX2. ... 85

Figure 4.30 Output ISI distributions over 80,000 samples as measured from one RS

channel using a constant input N = (a) 64 and (b) 4. The corresponding

mathematical input probability pin is (a) 0.0625 and (b) 0.0039. (c) The KL

divergences of the output ISI distributions over the 80,000 samples with

the internal (RNG) and external (LFSR) random sources. 86

Figure 4.31 Effect of the calibration on the output ISI distributions. Given a constant

input N = 32, pISI is obtained from one RS channel over 80,000 samples.

The corresponding mathematical input probability pin is 0.031. 88

Figure 4.32 The PCB of the hardware system consisting of an FPGA LS an ASIC RS. The

occupied area of the PCB is 127× 118 mm2. The FPGA used is Lattice

Semiconductor LFE3-70EA-FN484. ... 89

Figure 4.33 (a) Factor graph consisting of two RS channels, one LS-RS-combined

channel, three variables X, Y, Z and the messages along the arrows. The

messages of (b) X (c) Y (d) Z along the arrows, with the theoretical

distribution in red and the output ISI distribution in blue over 100,000

samples. (e) KL divergences of the three messages as a function of the

number of ISIs. .. 94

file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996898
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996898
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996898
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996899
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996899
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996900
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996901
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996902
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996903
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996904
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996905
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996906
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996907
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996907
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996907
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996907
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996908
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996909
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996910
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996910
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996910
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996911
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996911
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996911
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996911
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996911
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996912
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996912
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996912
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996913
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996913
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996913
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996914
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996914
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996914
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996914
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996914
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996914

List of Figures xv

Figure 4.34 (a) Factor graph consisting of two RS channels, one LS-RS-combined

channel, three variables X, Y, Z and the messages along the arrows. The

messages of (b) X (c) Y (d) Z along the arrows, with the theoretical

distribution in red and the output ISI distribution in blue over 100,000

samples. (e) KL divergences of the three messages as a function of the

number of ISIs. .. 95

Figure 4.35 (a) Factor graph consisting of three RS channels, three LS-RS-combined

channels and variables U, V, W, X, Y, Z, and the messages passing along

the arrows. The messages of (b) W (c) X (d) Y (e) Z along the arrows with

the theoretical distribution in red and the output ISI distribution in blue

over 100,000 samples. (f) KL divergences of the four messages as a

function of the number of ISIs. ... 96

Figure 5.1 Modified Reset Hazard block. Irst is increased and Vsrc is set to Gnd. .. 101

Figure 5.2 Output ISI distributions over 100,000 ISIs as measured from a RS channel

using four different input distributions. Δt is set to 16 us. 102

Figure A.1 Input RSS probability distribution p(t) whose values are only changed on

time t = iΔt. ... 106

Figure A.2 nx(iΔt) is a sample on t = iΔt. Its value is samples uniformly between [0,1].

The probability of generating a spike on t = iΔt is equal to h(t)Δt. 107

file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996915
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996915
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996915
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996915
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996915
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996915
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996916
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996916
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996916
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996916
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996916
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996916
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996917
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996918
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996918
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996919
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996919
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996920
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996920

List of Tables

Table 3.1 KL divergence between the output ISI distribution and the input

distribution. (Δt = 1) ... 21

Table 3.2 Probability distributions of messages computed from the SPR and the

event-base BP model and their dependence on the number of ISIs. 28

Table 3.3 Parameters for object tracking ... 36

Table 3.4 Resolutions of the parameters in CRBM .. 44

Table 3.5 Parameters after learning .. 44

Table 4.1 Mapping the mathematical variables on the hardware......................... 62

Table 4.2 Physical values of the components and the parameters 66

Table 4.3 Mapping table of discrete-time RS ... 79

Table 4.4 System specification ... 93

file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996921
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996921
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996922
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996922
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996923
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996924
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996925
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996926
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996927
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996928
file:///C:/Users/shinta/Google%20雲端硬碟/My/Document_ETH&INI/Thesis/Event-Based%20CMOS%20Circuits%20for%20a%20Class%20of%20Belief-Propagation%20Models.docx%23_Toc506996929

Chapter 1 Introduction

In parallel with neural network modeling [1]–[4] efforts in the neuroscience field

to understand how brains compute, hardware engineers are developing dedicated

or general-purpose silicon neuron processors that allows these models to be

computed in parallel and in some cases with reduced power efficiency than running

on the computer. Stochastic models are promising candidates for explaining how

brains perform inference [5]–[13]. However, the hardware implementations of

stochastic models of brain computation are still relatively scarce. Among them, the

recently proposed event-based belief-propagation (BP) model uses biologically

plausible signals (spikes) and employ the local and parallel computation seen in

brains. This thesis revolved around the work in building a hardware system based on

a class of BP models aimed at speeding up the simulation time. Because of the use

of spikes in the model, the system can be interfaced with the event-based vision [14],

[15] and cochlea [16], [17] sensors being developed in the neuromorphic community.

1.1 Probability Inference in the Brain

Various studies [5]–[13] have reported experiments that show that the brain

processes information in a Bayesian way. The inference tasks in these experiments

include the cue combination task [5]–[8] and computing the a posteriori information

from the prior information and sensory input [9]–[13]. To give an example of how

humans perform inference, if a man wants to travel during the Christmas holidays

and wants to leave by sometime and has to be at his family home by 12 midnight, he

makes an estimation based on the information at hand. He can obtain the current

traffic news from the TV or radio, or he can use the information about the traffic

situation from the past two days and from the same time period in the previous year.

He can also use the current weather condition in his estimation. The information

obtained at hand will help him make a decision that will get him to the place in time

and with the least amount of hours on the highway. This example illustrates that the

information processed in the brain can be seen as a form of inference.

2 Chapter 1. Introduction

Many researchers have worked on Artificial Neural Network (ANN) models that

mimic the architecture of the neural brain in solving various problems. A well-known

model, for example, in machine learning is the Restricted Boltzmann Machine (RBM)

[2], [18] which is used for a classification task involving handwritten digits. This

stochastic model can learn a probability distribution of its inputs. An RBM has a two-

layered fully connected architecture (one visible and one hidden) with symmetric

weights and no interconnection within a layer. Since the neurons are not connected

within a layer, the output of each neuron is conditionally independent of one

another for a given input. The weights are updated using the training algorithm

called Contrastive Divergence (CD) [19]. One extension of the RBM is the Deep Belief

Network (DBN) [2] that consists of several stacks of RBMs whose outputs serve as

the inputs of the next layer. The RBM and DBN are suitable for learning the

probabilities of the input, either in a supervised or unsupervised manner. These

networks are widely used in speech recognition [20], [21], and feature extraction and

classification with unlabeled data [22]–[24]. Another variant of the RBM is the

Continuous RBM (CRBM) [25]. Compared to the binary output of RBM, this model

directly uses the analogue values of the output of the sigmoid as the input to the

next layer. The CRBM is suitable for modelling continuous asymmetric data [25], [26].

In addition, in some studies [27], [28], the RBM in a DBN is replaced by a CRBM if

continuous-valued inputs or real-valued neurons are required.

Spiking Neural Networks (SNNs), the next generation of the ANNs, have a bio-

inspired neural network structure that is closer to the architecture of spiking neurons

in the brain. In a SNN, neurons communicate by transmitting spikes (or events) to

each other [29]. Variants of SNNs are constructed based on different neuron models.

Some neuron models are based on biophysical and biochemical experiments, such

as the Hodgkin-Huxley model [4] that describes the dynamics of the ion channels and

their influence on the membrane potential of the neuron. The Hodgkin-Huxley

equation takes into account the membrane capacitance, ion currents, conductances,

and channel efficacies in describing the neuron responses to its inputs. Even if the

Hodgkin-Huxley model can successfully explain neuron’s response such as the

spiking properties under different stimuli, its complexity makes this model difficult

to scale up to a large network. The Izhikevich model [30], a simplified spiking model,

is capable of producing several spiking patterns, e.g. regular spiking, fast spiking and

bursting, by using only four parameters. Another simplified model called the Leaky

Integrate-and-Fire (LIF) model consists of simply a capacitor, a resistor and a

threshold detection. The membrane potential is described by the voltage output of

the resistive-capacitive circuit. Once the membrane potential crosses threshold, a

spike is triggered and the voltage is reset to a resting potential. The form of the spike

Probability Inference in the Brain 3

can reduced to a digital pulse. In a LIF, the neuron firing depends on the differential

equations governing the change in the membrane potential dependent on the

neuron parameters and its input. Instead of a voltage-dependent model, another

model called the Spike Response Model (SRM) [29], [31] uses the timing of the input

spikes since the last output spike to determine the change in the membrane

potential. Once the membrane potential crosses threshold, a next output spike is

triggered. In the SRM, the spike timing matters the most while the form of the spike

does not carry information.

In recent years, studies show that SNNs can perform well in various tasks, e.g.

classification [32]–[35], recognition [36], [37], reconstruction [1] or a decoder for

brain-machine interfaces [38]. Some studies also demonstrated that ANNs can be

converted to SNNs in the deep learning field. [39] demonstrated that a converted

spiking DBN can achieve the classification accuracy of > 94% on the MNIST dataset

consisting of 70,000 handwritten digits [40]. The accuracy of the event-driven DBN

is only 1% lower than that of the time-stepped DBN. This network has been trained

using CD to fuse in real-time, spiking inputs from Dynamic Vison Sensor (DVS) [14]

and AER-EAR silicon cochlea [16] in a multi-sensory classification task. [41] presents

an event-driven approach of CD that allows online training of the RBM. The

classification accuracy on the MNIST by using the event-driven CD (91.9%) is close to

the accuracy by using the standard CD (92.6%). In [42], a converted spike-based CNN

is implemented for object recognition. Compared to the original CNN, this study

shows that the spike-based CNN is two orders of magnitude more energy-efficient

with little loss in accuracy.

How neurons transmit information in spike trains is not yet fully understood. The

widely used coding schemes are either rate or temporal codes [29]. In rate coding,

the information is encoded in the average mean firing rate within a time window. It

is successfully used to explain the experimental results on motor systems such as the

stretch receptor in a muscle spindle [43]. Some SNN models [1], [37], [39], [41], [44]

use rate coding to pass information. However, if neurons in the brain really adopt

this coding scheme, spike timing plays no role in spike trains and the various activities

in different trials can only be considered as noise. Ideally, the mean firing rate can

be sufficiently measured in two consecutive spikes if the period of firing spikes is

constant. Due to noise, the mean firing rate has to be averaged within a time window.

However, rate coding hardly explains some behaviors such as human ability to

recognize images in a few hundred milliseconds [45], [46]. Some studies [47] argue

that rate coding is still plausible if a population of neurons is used. It allows

generating sufficient spikes in a short period so that neurons could respond quickly.

4 Chapter 1. Introduction

Another assumption is that the information is encoded in spike timings rather than

the rate. In temporal coding, the information is contained in the exact arrival time or

the first spike timing since the last spike. Many studies in biological experiments

[48]–[51] show that temporal coding can explain the quick responses of neurons to

stimuli. Some models are built based on temporal coding [32], [34]–[36].

A class of temporal coding uses InterSpike Intervals (ISIs) to encode information.

Some biological studies show that neurons could pass information using spikes

preceded by ISIs [52]–[54]. These studies evoke the question of what is the

algorithmic meaning of the ISIs and how they play a role during the information

processing in neurons. In [55], Steimer et al. proposed an event-based Belief-

Propagation (BP) model that uses ISIs in spike trains to pass information among

neurons. In this model, a spike is treated as a random sample, whose numerical value

is given by the spikes preceding ISI. Each spike train is assumed to follow a renewal

processes and hence the sequences corresponds to a sequence of independent

random numbers where each spike’s label corresponds to an ISI random number as

shown in Figure 2.3. This model can be interpreted as a class of graphical models,

which not only are a method of presenting variables’ dependencies but facilitate the

development of the algorithms for probability inference. Graphical models

implement the functionality of a system with multiple input variables where the

network function can be decomposed into a composition of functions on smaller

subset of variables. The Forney Factor Graph (FFG) [56], [57] is one instantiation of

graphical models where the nodes of the graph represent the functions of subsets

of variables; and messages are transferred between the nodes using methods such

as BP [57], [58]. The message-passing scheme in the algorithm of a BP model employs

local and parallel computation, which seems biologically plausible because a global

observation is not needed. Steimer’s model, a variant of a FFG, is an event-based BP

model that uses a temporal coding scheme based on ISIs in spike trains to

communicate messages between the nodes of the graph.

Research on SNN models is getting popular. It is not only because they are more

brain-inspired but because they provide an efficient transmission in terms of the

power dissipation and fault tolerance. In the simplified models such as LIF model,

spikes (or events) interpreted as digital pulses are transmitted in an asynchronous

fashion. That is, the outputs of neurons are silent if the input stimuli is not strong

enough to trigger a spike. In addition, a digital pulse can be transmitted a longer

distance better than an analog signal. It is especially useful when the voltage

headroom is decreasing along with the downsizing of transistors. These properties

allow to explore an avenue to feasible hardware implementations, e.g. silicon-based

Hardware Implementation of Artificial Neural Network 5

neuromorphic substrate [59], of large scale neural networks. The author describes

next the work on the hardware implementations of ANNs and SNNs.

1.2 Hardware Implementation of Artificial

Neural Network

Different from CPUs with a von Neumann structure [60], the massively parallel

operation of ANNs’ and SNNs’ hardware with a simple processing unit is able to solve

tasks more efficiently in real-time processing. In [61], [62], the nose-on-a-chip sensor

with CRBM allows diagnosing ventilator-associated pneumonia rapidly before going

to a doctor for further diagnosis. The functionality of the chip was verified in clinical

trials. The accuracy reaches 95.73% on 74 samples as experimental group and 43

samples as control group with 1.27 mW of power. A sparse SNN hardware [63] with

256 neurons is capable of learning and reconstructing images at high speed (140

Mpixel/s throughput) and low power (6.67 mW). In [64], by using the neural

engineering framework, the system can achieve a pattern recognition up to 96% on

the MNIST dataset. In [65], the CNNs simulated on the computer, Field-

Programmable Gate-Array (FPGA) implementation and Application Specific

Integrated Circuit (ASIC) are compared for the performance on the number of frames

processed per second (fps). It shows that with the same image size and the same

filter size, the performance (fps) of the ASIC CNN is better than the FPGA and the

FPGA is better than the computer. Minitaur [66], an event-driven neural network

hardware accelerator implemented on FPGA, performs 18.73 million postsynaptic

updates per second consuming just 1.5 W of power and reaches 92% accuracy on

the MNIST dataset and 71% accuracy on the 20 newsgroups classification data set.

The system also demonstrates a robustness to noise and maintains a 70% accuracy

even when the input contains 80% noise. In [67], an ASIC implementation of a spike-

based learning algorithm with 16 neurons and 128 synapses per neuron is capable

to classify complex patterns of mean firing rates in real time.

In addition, several groups have worked on large-scale general-purpose spiking

neuromorphic hardware. Neurogrid [68] integrates axons, synapses, and dendritic

trees in an analog manner within 16 Neurocores, each of which consists 256× 256

silicon neuron array. This board containing one million neurons allows for a

complexity of neural computation with only 3 W of power. SpiNNaker [69] is a

massively parallel ARM processor based system, where each board contains 48

nodes and each node has an 18 ARM processor, to provide a flexible simulator. ROLLS

[70] using long-term and short-term plasticity synapse with 256 neurons and 128K

analog synapses can perform simple classification tasks after training, such as the

6 Chapter 1. Introduction

classification of car and motorbike by using the average firing rate of the output

neurons. TrueNorth [71] with 1 million spiking digital neurons and 256 million digital

synapses can correctly classify moving pedestrians, cyclists and cars in real time. A

spiking RBM has been mapped on the neuromorphic TrueNorth system by using a

noisy threshold model to implement the Gibbs sampler on the digital neurons [72].

There are other ways of performing approximate inference in graphical models

through spiking neurons. One proposed method is that of neural sampling [73]–[76]

in a graph with binary nodes and where the nodes are represented by spiking

neurons. This form of sampling belongs to the Markov chain Monte Carlo (MCMC)

technique and is similar to Gibbs sampling. This sampling scheme has been

demonstrated on the SpiNNaker hardware system [77], [78]. These general-purpose

large-scale neuromorphic hardware provide a platform for various models

facilitating neural computations.

There are also other designs that implement graphical models. In [79], Loeliger

et al. demonstrated an analog circuit that implements the Sum-Product Rule (SPR)

where probabilities are represented by currents. The product term in the SPR is

achieved by using a current multiplier with the structure of a Gilbert multiplier and

operating in subthreshold regime or by using bipolar transistors. The summing term

is achieved by summing currents together. A Gilbert multiplier can be regarded as a

factor node whose constraint function is defined by the input connections of this

circuit. [79] demonstrates two example factor nodes, which are soft exclusive-or

gate and component-wise product, with two inputs distribution and one output

distribution represented by currents. The distributions used in this analog circuit are

not limited to binary distributions. A fundamental circuit architecture was presented

in [79], showing the concept of how a network can be built to process a multi-value

probability distribution (i.e. probability mass function). Another work [80]

implemented the min-sum (or max-product) algorithm in analog circuits, which also

use currents to represent distributions. By using min-sum algorithm, [80] claims that

standard CMOS technology (instead of BiCMOS) and the conventional biasing

method (i.e. transistors operated above threshold) can be used for realizing the

analog circuits so that the cost during manufacturing and the mismatch between

blocks can be reduced.

1.3 Thesis Contribution and Organization

As mentioned in the sections above, the increasing availability of different neural

network hardware platforms that are implemented through either custom mixed-

mode analog/digital or digital Very-Large-Scale Integration (VLSI) spiking neuron

Thesis Contribution and Organization 7

arrays or on FPGA have allowed the validation of various neuroscience and machine

learning spiking models for practical applications. The use of stochastic models

(mainly RBM and its variants are applied) on neuromorphic spiking platforms is still

relatively scarce although stochasticity by itself could be useful, e.g. to decorrelate

the firing of neurons in a population [81]. This thesis sets out to examine the

feasibility of realizing event-based probabilistic computation in hardware through

spiking events. The work described in this thesis is based on Steimer’s model [55]

that provides a link between both stochastic neural networks and FFGs to spiking

network computation. Because this stochastic model cannot be easily implemented

on the currently available spiking network hardware platforms, an explicit

implementation of the event-based message passing scheme is presented in this

thesis and was published in [82]. This analog VLSI (aVLSI) implementation is based

on direct correspondence between the fundamental equations from renewal theory

and the physical behavior of aVLSI circuit elements. This circuit can generate

sequences of arbitrarily distributed random numbers that are confined to the

positive real axis. In this thesis, the VLSI message-passing circuit in [82] is extended

to an ASIC chip with an array of 16 channels that produce output messages. The

calculations of the analog messages carried by the ISIs of the input spike trains and

the output of the factor functions are carried out using an FPGA for flexibility in

constructing graphs with different factor functions. The circuit details of the ASIC

chip in a 2-poly-4-metal 0.35um CMOS process are described in the thesis. Model

simulations in Matlab and measurements from the combined ASIC + FPGA system

used in the construction of example factor graphs are also presented in the thesis.

The thesis is organized as follows.

Chapter 2 first introduces the Forney Factor Graph (FFG) and some notions

related to this work. The chapter also describes the event-based belief propagation

model associated with the renewal theory, the discrete-time approximation and the

event-driven message-passing algorithm. It also presents the architecture of the

event-based factor node which is composed of two blocks, the Landscape Sampling

(LS) block and the Random Sampling (RS) block. The LS block receives the input

events and the constraint function is defined here. The RS block is used for

generating the output spikes based on the message-combined probability

distribution. The hardware implementation is based on the required two blocks in

this architecture.

Chapter 3 presents the model simulation results. Before realizing the event-

based BP model in hardware, the model validity is verified by building up factor

graphs with the architecture described in Chapter 2. The simulation is first don on

8 Chapter 1. Introduction

the RS block to demonstrate the feasibility of the discrete-time approximation.

Different equations used to compute the hazard are simulated. Among them, the

one suitable for the hardware can be determined by comparing their output ISI

distributions to the input probability distribution. Then, a single factor node

combining the LS and the RS blocks is simulated with several constraint functions

defined in this factor node. Finally, the chapter presents two applications: 1) object

tracking of a falling tennis ball by an event-based Kalman filter and 2) data

reconstruction by an event-based CRBM.

Chapter 4 elaborates on the hardware implementation of the event-based BP

model including the system architecture and circuit blocks. It describes in detail the

LS implemented on the FPGA and a random number generator circuit needed for

producing stochastic output events in this model. It also presents two variants of the

RS circuits. The measurement results on the ASIC and the entire system are described

here along with the detailed circuit descriptions. This chapter also gives examples of

networks using several factor nodes implemented on this hardware system.

Chapter 5 gives a conclusion of this thesis work and an outlook of possible future

directions on this work.

Chapter 2 Structure of Belief-

Propagation Model

This chapter first mentions some basic notions of the Forney Factor Graph (FFG)

that are useful for understanding the event-based Belief-Propagation (BP) model and

the work described in the later chapters. More details of FFGs can be found in [57],

[58]. Then, the event-based BP model proposed by Steimer et al. [55] is introduced.

The Matlab model and hardware system described in this thesis are both based on

the architecture introduced here. A part of the text in this chapter comes from the

paper (the title is “Hardware Implementation of an Event-Based Message Passing

Graphical Model Network”) published in the IEEE Transactions on Circuits and

Systems I (TCASI) in 2018 [83]. The author has only used the text related to the work

contributed by the author in the paper.

2.1 Forney Factor Graph

A FFG is a graph-based representation of a factorized joint probability

distribution, such that the nodes of the graph correspond to the nonnegative factors

of the factorization. The edges in turn correspond to those variables, on which the

factor functions they are connected to, depend on. An example of a factor graph

representing the factorized joint probability of the variables described in (2.1), is

shown in Figure 2.1. The nodes of the graph correspond to the individual factors (f1

to f6) of the factorization in (2.1) and the edges correspond to the variables. It is

assumed in the remainder of the thesis that the variables are discrete and therefore

only summations, rather than integrations, are needed for marginalization. The

marginal probability of each variable can be computed by summing over all variables

except for the desired variable. The marginal probability, e.g. of X3, is shown in (2.2)

with a normalizing factor described in (2.3).

              1 6 1 1 2 2 3 1 2 3 4 4 5 3 4 5 6 5 6, , , , , , ,f x x f x f x f x x x f x f x x x f x xK (2.1)

10 Chapter 2. Structure of Belief-Propagation Model

    
1 6

3

3 1 6

, ,

, , /
x x
except x

p x f x x Norm 
K

K (2.2)

  
1 6

1 6

, ,

, ,
x x

Norm f x x 
K

K (2.3)

Using the BP approach, marginalization can be performed in a more efficient way

than in (2.2), by exchanging 'messages' between adjacent nodes along the

connecting edge (variable). These messages can be interpreted as probability mass

functions that depend on the connecting variable and, for the graph in Figure 2.1,

are computed following the set of equations in (2.4). As Figure 2.1 shows, a message

m (blue arrows) which is sent from one factor to one of its neighbors is formed by

the product of all input messages into the sending node (except for the message

coming in along the same edge as m) and the factor function represented by the

sending node. The resulting product is then summed across all variables connected

to the sending node, except the variable (edge) the output message is passed along.

The method of computing output messages in this way is called the sum-product rule

(SPR). Note that in (2.4) the output message of each equation is equal to its right side

up to a scale factor NormXi, which is formed by summing along the output variable

Xi. The marginal probability of X3 in Figure 2.1, i.e. p(x3), is obtained by multiplying

the messages from the left and right sides of the edge associated with X3 as shown

in (2.5).

X1
f1 f3

f2 f4

f5 f6

mX3,a mX3,bmX1,a

mX2,a mX4,aX2 X4

X3 X5

mX5,b

X6

Figure 2.1 A factor graph generated from the factorized joint probability in

(2.1).

Forney Factor Graph 11

   

   

       

       

   

   

1 2

4 5

6

1, 1 1 1

2, 2 2 2

3, 3 3 1 2 3 1, 1 2, 2

,

3, 3 5 3 4 5 4, 4 5, 5

,

4, 4 4 4

5, 5 6 5 6

, ,

, ,

,

X a

X a

X a X a X a

x x

X b X a X b

x x

X a

X b

x

m x f x

m x f x

m x f x x x m x m x

m x f x x x m x m x

m x f x

m x f x x



















 (2.4)

      3 3, 3 3, 3X a X bp x m x m x (2.5)

Although the belief propagation approach presents an advantage in that the

bidirectional messages on all edges are formed by summations across only a subset

of all variables and can be computed in parallel, the massive cost involved in

computing the SPR is still required. This cost can be reduced by considering only

Gaussian distributed variables and restricting the defined constraint functions to a

few types, e.g. plus, equality, and gain as shown in [58]. Factor nodes for these

functions (see Figure 2.2) are described in (2.6), and the unidirectional output

messages, for instance, are computed as shown in (2.7). As a result, the mean and

variance of the distributions are the only parameters needed during message passing

and the message computation rules can easily be tabulated [57], [58]. This constraint

reduces the computational load. However, for messages of arbitrary distributions

and for more complex user-defined functions, the full calculation of the SPR is

needed.

+X

Y

Z
=X

Y

Z AX Z

 (a) (b) (c)

Figure 2.2 Symbols of specific factor nodes. The arrow indicates the direction

of message passing. The nodes define the (a) plus, (b) equality, and (c) gain

constraint functions with variables X, Y and Z.

12 Chapter 2. Structure of Belief-Propagation Model

    

   

, ,

(, ,) () ()

,

plus

equality

gain

f x y z z x y

f x y z x y y z

f x z Ax z



 



  

  

 

 (2.6)

       

           

     

, ,

, ,

,

Z plus X Y

x y

Z equality X Y X Y

x y

Z gain X X

x

m z f x y z m x m y

m z f x y z m x m y m z m z

z
m z f x z m x m

A



 

 
   

 







 (2.7)

2.2 Event-Based Belief-Propagation Model

This section introduces the main concept of the event-based BP model proposed

by Steimer et al. [55]. Instead of representing the SPR as a list of probabilities, [55]

showed how analog messages can be represented as a list of InterSpike Intervals (ISIs)

(i.e. ISI samples) of any two consecutive events in the input and output spike streams

of the factor nodes. This model avoids the normal expensive SPR computation. The

SPR summations are solved in an implicit way by means of Monte Carlo sampling. In

addition, the factor graph in this formulation is not limited to the use of Gaussian

messages. The event-based belief propagation approach bears some similarity to the

sequential Monte Carlo sampling method [84], [85], where many particles are used

to approximate the sampled input distribution. This message passing formulation is

inspired by experimental evidence that shows that populations of neurons can be

sensitive to the timing of their inputs and that the input to a neuron can depend on

the spike input frequency or the difference between the arrival time of spikes [46],

[86]. The mechanism of the event-based BP model in [55] is explained as follows.

2.2.1 Renewal Theory

The message is encoded in the ISIs of the spikes or events as shown in Figure 2.3.

Given a probability distribution representing a message, each ISI value is a random

sample from this distribution. Within a finite time window, W, the statistics

(empirical distribution) of the samples approximates the true ISI distribution

representing the message.

Event-Based Belief-Propagation Model 13

It is a stochastic, event-based process, called renewal process, such that the

temporal difference (ISI) between the times of occurrence of two successive events

(spikes) follows some given distribution. Importantly, for a process to be renewal,

two different ISIs must be statistically independent. In particular, this means that the

time of each spike depends only on the time of the latest previous spike and not on

the rest of the process’ history. In other words, the process is ‘renewed’ after each

spike, thereby explaining the term ‘renewal process’.

Besides the ISI distribution p(t-t0) (where t0 is the time of the last spike), renewal

theory is based on two other fundamental quantities, the survivor function S(t-t0)

and the hazard function h(t-t0). S(t-t0) is the process’ probability of ‘surviving’ until

time t without firing any further spike, given the last spike has happened at t0. The

equation is shown in (2.8). The hazard h(t-t0) in turn can be interpreted as a

conditional instantaneous firing rate, i.e. the probability of firing within an

infinitesimally small interval around t, given that the last spike occurred at t0. A

fundamental result of renewal theory establishes the relation in (2.9) between p(t-

t0), S(t-t0) and h(t-t0) [29], [87].

    
0

0 01
t

t
S t t p t t dt     (2.8)

      0 0 0p t t S t t h t t     (2.9)

Equation (2.9) has a quite straightforward interpretation; Given that the last

spike happened at t0, the probability of an ISI of length t-t0 is equal to the (joint)

probability of not firing until t, times the probability of firing at t. To avoid cluttered

notation, for the rest of the thesis it is assumed that the last spike has happened at

Time

8 2 4 6 12

6mX(x)

Figure 2.3 Proposed message encoding principle for random number

sequence. Each spike of a train is provided with an analog label, whose value

corresponds to the length of the ISI preceding the spike, i.e. to the difference in

spike time between the considered spike and its predecessor (see numbers

above the spikes in arbitrary units). These analog values are therefore samples

of the ISI distribution underlying the spike train. The spike train is renewal, i.e.

all ISIs are independent samples.

14 Chapter 2. Structure of Belief-Propagation Model

t0 = 0). Combined with (2.8) and (2.9) this allows for an alternative expression of the

hazard function in (2.10). The details of the derivation are given in Appendix A.1.

 
 

 

    
0

0

1

exp

t

t

p t
h t

p t dt

p t h t dt


 

  





 (2.10)

Equation (2.10) is this continuous recursive form of the hazard function

implemented in VLSI circuits, the output of which is then used as an instantaneous

firing rate input to a spike-generator circuit.

2.2.2 Discrete-Time Approximation

To generate independent output ISI samples based on the renewal theory, the

hazard value, h(t), is used to compare with the samples from a uniform random

variable. To realize this random variable on VLSI hardware, the current circuits in the

author’s best knowledge are clock-driven. Note that it is not claimed that all the

random number generators are clock-driven but those with a uniform distribution

are so (details in Chapter 5). Therefore, new random numbers are only sampled at

finite, discrete time steps, which undermine the continuous time assumption implicit

in (2.10). This section presents a condition imposed on the mean time tmean of the

input probability distribution p(t), defined in (2.11), and the time step Δt, which is

the period of the sampling clock of the random number generator, such that (2.10)

is still approximately valid. Here summarize the key properties of the discrete-time

approximation Please refer to Appendix A.2 for the detail definitions and

descriptions.

  
0

[]meant E T tp t dt


   (2.11)

In order to produce output spikes that follow a given instantaneous rate profile

(e.g. a hazard function), it is necessary to compare the product h(t)Δt with the sample

“nx(t)” of a uniform random variable “NX”, whose range is between [0,1], on time t

= iΔt, where i ∈ N0 = {{0} ∪ N}. The probability of generating a spike event is equal to

the probability of nx(iΔt) being smaller than h(iΔt)Δt, and is hence given in (2.12).

       Pr h i t t nx i t h i t t       (2.12)

Equation (2.12) is the discrete-time approximation of some instantaneous firing

rate, which is given by the hazard function. Using this comparison scheme, the

Event-Based Belief-Propagation Model 15

output ISI distribution pISI(nΔt), where an event happens on t = nΔt and no events

happen before t = nΔt, can be written as (2.13). Equation (2.13) is the finite time

approximation to (2.10). If Δt is small enough compared to tmean, pISI will approximate

p. In a case where p is a regularly-step-staircase (RSS) probability distribution (see

Figure A.1), pISI is even equal to p for any values of Δt is. For the derivation of (2.13)

in different conditions of p, please refer to Appendix A.2.

    

 

 

1,..., 1

() 1

, if

ISI

i n

mean

p n t t h n t t h i t t

p n t t t t

 

 
          

 

    


 (2.13)

2.2.3 Message Passing

The section first explains how the message passing using the event-based belied-

propagation model where a message is encoded in a number of ISIs in a spike train

can approximate the messages computed using the SPR and then gives an

architecture of a factor node.

Note that the values of ISIs dealt with in this thesis are in the range of natural

number, i.e. the value of each ISI ∈ N, where N = {1,2,3,…}, as shown in Figure 2.3.

Therefore, the probability distribution of a message such as mX(x) is a probability

mass function and the possible values of variable X is natural numbers. The real time

scale of an ISI in seconds is represented as tISI which is equal to the product of the

ISI’s value and time step Δt, i.e. tISI = ISIΔt. The maximum ISI in a spike train is defined

as ISImax in natural number and tISImax in real time scale.

The notion of the expectation of a random variable is introduced first. In (2.14)

the expectation of a random variable whose possible values are in nature numbers,

i.e. x ∈ N, is defined as the sum of the products of the random variable’s all possible

values and its probabilities [88]. Alternatively, summing all samples’ values and

divided by the total number of the samples, named Norm, is another solution to find

out the expectation if the number of sample approaches to the infinity. Otherwise,

the mean calculated using the samples is only an approximation on the expectation

with a finite number of samples. Similarly, the expectation of a function of two

random variables, whose samples are both natural numbers, is defined in (2.15). If

the two random variables are independent, the joint probability distribution p(x,y)

can be written as p(x)× p(y). The expectation of g(X,Y) can also be approximated

using the sample pairs (x,y) assuming that the number of sample pairs are sufficient.

16 Chapter 2. Structure of Belief-Propagation Model

   

all samples of x

x

E X xp x

x

Norm







 (2.14)

     

     

 

,

all sample pairs of (x,y)

, , ,

,

,

x y

x y

E g X Y g x y p x y

g x y p x p y

g x y

Norm

  











 (2.15)

        , ,Z X Y

x y

m z f x y z m x m y (2.16)

The form of (2.15) shows a similarity with the general form of the SPR described

in (2.16). Given a value of variable Z, e.g. z = i, the three-variable function f(x,y,z) is

simplified as a two-variable function fz=i(x,y). Computing mZ(i) now is similar to

computing the expectation of function fz=i(x,y). Therefore, mZ(i) can be approximated

using the samples pairs (x,y). By changing the value i from 1 to n and reusing the

samples pairs, an unnormalized message (or histogram) umZ(z), composed of

[umZ(1),umZ(2),…, umZ(n)], can be established as shown in (2.17). umZ(i) can be

understood as the value at i-th bin of the histogram. After normalization, message

mZ is obtained as shown in (2.19). Because messages mZ is a probability distribution

whose area in total has to be 1, the normalizing term Norm should be a sum of umZ

as shown in (2.18). Hence, it is necessary to compute Norm as well. Function F(x,y),

a sum of function f(x,y,z) with respect to variable Z, is used to obtain the value of

Norm from the samples pairs (x,y) as shown in (2.18). In addition, umZ and Norm can

be computed in parallel by sharing the same sample pairs.

         

         

         

1 1

all sample pairs of (x.y)

2 2

all sample pairs of (x.y)

all sample pairs of (x.y)

1 , ,

2 , ,

, ,

Z z X Y z

x y

Z z X Y z

x y

Z z n X Y z n

x y

um z f x y m x m y f x y

um z f x y m x m y f x y

um z n f x y m x m y f x y

 

 

 

  

  

  

 

 

 

M

 (2.17)

Event-Based Belief-Propagation Model 17

 

     

     

all sample pairs of (x,y)

, ,

,

(,)

Z

z

X Y

z x y

X Y

x y

Norm um z

f x y z m x m y

F x y m x m y

F x y

















 (2.18)

  
 Z

Z

um z
m z

Norm
 (2.19)

Figure 2.4(a) shows an example of a factor node block, where the ISIs in spike

trains spikeX and spikeY encode messages mX and mY. Therefore, samples described

above are represented by ISIs and the value i from 1 to n is represented by the ISI’s

value from 1 to ISImax. The ISIs from spikeX and spikeY are paired and sent to the

constraint function f(x,y,z). Given some ISI value i of variable Z, Figure 2.4(b) shows

the landscape of function fz=i(x,y) as an example (Note that Figure 2.4(b) is taken from

Steimer et al [55]). The value umZ(i) is computed using function fz=i(x,y) and the

sample pairs. Meanwhile, Norm is also computed using function F(x,y) and the ISI

pairs. By changing i from 1 to ISImax and divided by Norm, the output message mZ(z)

is obtained. Then, a spike train, spikeZ, which encodes message mZ in the ISIs are

generated using the discrete time approximation. With the sample-based approach,

the event-based BP model avoids using the SPR for computing messages.

f
spikeX

spikeY

spikeZ

 (a) (b)

Figure 2.4 Concept of the event-based BP model. (a) Factor node with three

edges X, Y, Z, where the messages are passed along the arrows using spike trains

spikeX, spikeY and spikeZ. (b) Every input pair (x,y) samples the function f while

Z = z.

18 Chapter 2. Structure of Belief-Propagation Model

The architecture of a factor node is described as follows. A unidirectional

message passing is composed of a Landscape Sampling (LS) block and a Random

Sampling (RS) block as shown in Figure 2.5. A complete factor node for this example

is made up of three such circuits in order to compute the messages in both directions

for all three variables. In the LS block, samples consist of pairs of the most recent

input ISIs of variables X and Y. These samples (x,y) are both sent to the factor’s

function, f(x,y,z) and the summation function F(x,y) in the LS block. The summation

function F(x,y) is the sum of f(x,y,z) with respect to the output variable, Z, and is used

as a normalizing term. Once all pairs in a time window, W, are computed, the

message-combined distribution mZ is computed from the histogram of f(x,y,z)

normalized by the value of F(x,y). The message mZ is then sent to the RS block that

generates the output spikes. The hazard function and a uniform random number

generator are required in this block.

Landscape
Sampling

message-combined
probability distribution mZ

Random
Sampling

spikeX

spikeY

spikeZ

Figure 2.5 Proposed message passing scheme. The factor’s function f is

implemented in a LS block which produces the probability distribution of

message mZ used by the RS block to generate the spiking output.

Chapter 3 Event-Based Belief-

Propagation Model Simulation

Before diving into the hardware implementation, the behavior of the event-

based Belief-Propagation (BP) model through simulations in Matlab is verified. First,

the RS block is simulated to confirm the validity of the discrete-time approximation.

Then a single factor node combining the Landscape Sampling (LS) block and the

Random Sampling (RS) block is simulated. Lastly, two applications are presented, one

is the event-based Kalman filter for object tracking and another is the event-based

Continuous Restricted Boltzmann Machine (CRBM).

3.1 Random Sampling Block Validation

As mentioned in Section 2.2.2, the output InterSpike Interval (ISI) distribution pISI

approximates the input probability distribution pin using (2.10) and (2.12). Also, in

Appendix A.2, different types of the input probability distribution pin(t) and different

methods to compute the hazard h(t) are discussed. In brief, the output ISI

distribution pISI can be equal to pin if pin(t) is a regularly-step-staircase (RSS)

probability distribution and the hazard is computed using the original definition (A.5)

or the continuous recursive form (A.6). If, on the other hand, pin(t) is not a RSS

probability distribution or the discrete recursive form (A.7) is used, pISI is only an

approximation of pin under the condition that time step Δt << tmean, where tmean is

defined as the mean time of pin(t) as shown in (2.11). Note that in the following

sections, the input probability distribution is represented as pin instead of p used in

Chapter 2 and Appendix. Literally, they are identical. The subscript is intended to

make the notation easier.

The influence on pISI using different equations to update hazard is demonstrated

through simulation. The three ways to update hazard are the original definition (A.5),

the continuous recursive form (A.6) and the discrete recursive form (A.7). First, a

discrete-value input signal representing a RSS pin is provided as shown in Figure 3.1(a).

It is a triangle waveform from t = 1Δt to 17Δt. In the following Matlab simulations, Δt

20 Chapter 3. Event-Based Belief-Propagation Model Simulation

is defined as 1. The output ISI distribution is obtained by counting the ISIs in the

output spike train with time window W = 1,000,000. Since the discrete-time

approximation described in Appendix A.2 does not consider the effect of the finite

number of samples, enough ISIs (= 70,000) are collected by setting a large W to

compute the histograms.

In Figure 3.1(a), pISI1 is the output ISI distribution using the original definition to

compute the hazard; pISI2a and pISI2b are the output ISI distributions using the discrete

recursive form with different updating steps, Δt and 0.1Δt, respectively. The purpose

of providing different updating steps is that continuous-time simulations are not

possible on the computer so pISI using the continuous recursive hazard is obtained

indirectly by reducing the time step. Note that if there is no spike after sequentially

providing the entire pin (which means the hazard is always smaller than the random

sample), the RS block is forced to generate a spike at ISI = 25.

From the shape of the output ISI distributions in Figure 3.1(a), it can be easily

seen that pISI1 is the most similar to pin. In addition, although both pISI2a and pISI2b have

distortions (some counts are located at ISI = 25), the latter is more similar to pin than

the former. Note that the Kullback-Leibler (KL) will be used to show the similarity of

two distributions later. Here the author briefly point out that the difference of pISI is

visible to the eye. The reason for the distortion is explained as follows. In the discrete

recursive form, it is assumed that the hazard value stays constant during the time

between two consecutive updates, i.e. t ∈ [iΔt,(i+1)Δt] or [0.1iΔt,0.1(i+1)Δt]

depending on the updating step, despite the fact that the hazard is continuously

changing. Therefore, the hazard computed from the discrete recursive form is

smaller than the one from the original definition as shown in Figure 3.1(b). In the

beginning, i.e. the first few bins, the difference of the hazard is not obvious. However,

the recursive property enlarges the difference, leading to distinct hazard values at

the end. It can be seen that hISI1 at ISI = 17Δt is 1 which guarantees a spike must be

produced (the range of the random sample nx is [0,1]) while hISI2a at ISI = 17Δt is only

0.64. Therefore, all pISI(t) in Figure 3.1(a) approximate pin(t) when t is small but some

of them, especially pISI2a, do not approximate well at the end.

Table 3.1 shows the Kullback-Leibler (KL) divergence [89] in different updating

steps. The definition of KL divergence, DKL(P∥Q), is shown in (3.1). It characterizes the

disparity between the empirical distribution Q(i) and the theoretical (or ideal)

distribution P(i). This disparity is caused by the finite set of samples that are used by

Q(i) for a representation of P(i). The Q in this case is represented as pISI and the P is

represented as pin.

Random Sampling Block Validation 21

    
 

 
|| logKL

i

P i
D P Q P i

Q i
 (3.1)

Table 3.1 shows that minimizing the updating step will help decrease the error

so that pISI approximates pin. When minimizing the updating step, the discrete

recursive form to compute the hazard approaches to the continuous recursive form.

The experimental results indicate that it is better to use either the original definition

or the continuous recursive form to update the hazard. If, on the other hand, the

discrete recursive form is used, the updating step has to be set as small as possible.

As the result, the original definition is used to compute the hazard in the simulations

and the continuous recursive form is used for the hardware implementation in

Chapter 4.

Output Hazard Updating Step KL Divergence

pISI1 Δt 1.37E-4

pISI2a Δt 0.081

pISI2b 0.1Δt 0.013

pISI2c 0.01Δt 0.0013

pISI2d 0.001Δt 3.04E-4

pISI2e 0.0001Δt 1.54E-4

Table 3.1 KL divergence between the output ISI distribution and the input

distribution. (Δt = 1)

22 Chapter 3. Event-Based Belief-Propagation Model Simulation

(a)

(b)

Figure 3.1 (a) Output ISI distributions over 70,000 samples using different

equations to compute the hazard. pISI1 is obtained using the original definition

while pISI2a and pISI2b are obtained using the discrete recursive form with

different updating steps, Δt and 0.1Δt. (b) Corresponding hazards for the three

methods. The definitions of the subscripts are the same as in (a).

0 8 16 24

0.00

0.04

0.08

0.12

p
ro

b
a

b
ili

ty

ISI

 pin

 pISI1

 pISI2a

 pISI2b

0 8 16 24

0.0

0.2

0.4

0.6

0.8

1.0

h
a

z
a

rd

ISI

 hISI1

 hISI2a

 hISI2b

Factor Node 23

3.2 Factor Node

The LS and RS blocks are combined to form a unidirectional factor node. The LS

takes input spikes and generates a message-combined probability distribution

according to the constraint function f. This message-combined probability

distribution is sent to the RS block which produces the output spikes. This section

models the functionality of the event-based BP model using different constraint

functions in a factor node and shows an example of a simple network.

The first factor node demonstrated in Figure 3.2(a) is the equality constraint

node whose function fequality is shown in (2.6). The arrows indicate the directions of

the message passing. Because the inputs of the factor node have to be spike streams,

two RS blocks in front of the equality constraint node is placed to generate the spike

trains carrying the corresponding messages mX and mY. Figure 3.2(b),(c) show the

defined probability distributions of the two messages in RS blocks in in red and the

output ISI distributions in blue

The output message mZ of the equality constraint node is shown in Figure 3.2(d).

The red curve shows the probability distribution computed from the SPR in (2.7) and

the blue curve shows the output ISI distribution by counting the ISIs in the spike train

of Z. As the result shown in (2.7), the output message is the product of two input

messages. Since a triangular-shaped distribution for message mX and a V-shaped

distribution for message mY is provided, message mZ should show a two-bump

distribution. As Figure 3.2(d) shows, the output ISI distribution approximates the SPR

result.

24 Chapter 3. Event-Based Belief-Propagation Model Simulation

The second factor node is the plus constraint function fplus shown in Figure 3.3(a).

Both message mX and mY are defined as uniform distributions ranging from [1,32] as

shown in Figure 3.3(b) and (c). In (2.7), the output distribution should be the result

of the convolution of two inputs. Therefore, message mZ should be a triangular-

shaped distribution. As Figure 3.3(d) shows, the output ISI distribution of message

mZ (the blue curve) approximates the SPR result (the red curve).

=X

Y

Z
mX

mY

(a) (b)

(c) (d)

Figure 3.2 (a) Unidirectional factor node with the equality constraint

function. The input spike trains are generated from two RS blocks. (b)

Distribution of message mX. The red curve shows the defined probability and

the blue curve shows the output ISI distribution from the spike train with 18,000

samples. (c) Distribution of message mY (d) Distribution of message mZ

0 16 32 48 64

0.00

0.01

0.02

0.03

0.04
 ideal

 ISI

m
X

ISI

0 16 32 48 64

0.00

0.01

0.02

0.03

0.04
 ideal

 ISI

m
Y

ISI

0 16 32 48 64

0.00

0.01

0.02

0.03

0.04
 ideal

 ISI
m

Z

ISI

Factor Node 25

Next, a simple network with two factor nodes and four RS blocks is constructed

as shown in Figure 3.4(a). This simulation demonstrates that a similar result can be

obtained using the event-based BP model. Because the messages in this network are

restricted to binary, the possible ISIs in a spike train are either 1 or 2, which maps

the value of 0 or 1 in the binary domain. One of the factor nodes is the equality

constraint node and the other is the xor constraint node defined in (3.2). The output

message can be computed using the SPR in (3.3).

    , ,xorf x y z x y z   (3.2)

+X

Y

Z
mX

mY

(a) (b)

(c) (d)

Figure 3.3 (a) Unidirectional factor node with the equality constraint

function. The input spike trains are generated from two RS blocks. (b)

Distribution of message mX. The red curve shows the defined probability and

the blue curve shows the output ISI distribution from the spike train with 11,000

samples. (c) Distribution of message mY (d) Distribution of message mZ

0 16 32 48 64

0.00

0.01

0.02

0.03

0.04
 ideal

 ISI

m
X

ISI

0 16 32 48 64

0.00

0.01

0.02

0.03

0.04
 ideal

 ISI

m
Y

ISI

0 16 32 48 64

0.00

0.01

0.02

0.03

0.04
 ideal

 ISI
m

Z

ISI

26 Chapter 3. Event-Based Belief-Propagation Model Simulation

 

 

       

       

1 1 1 2 2

2 1 2 2 1

Z X Y X Y

Z X Y X Y

m m m m m

m m m m m

   
   

   
 (3.3)

The network is further expanded to the one shown in Figure 3.4(b) in order to

obtain the output ISI messages from both directions. First, the spike trains with

messages mX1,a to mX4,a are generated using the four RS blocks. These spike trains are

sent to the xor and equality constraint node for producing the spike trains with

messages mX5,a and mX5,b, respectively. Next, the spike trains carrying messages mX5,a

and mX3,a are sent to the equality constraint node which generates the spike train

carrying message mX4,b and so on as Figure 3.4(b) shows. Finally, all messages of

variables X1 to X5 are obtained. With these messages, to compute the marginal

probability of any of the variables is possible using an equality constraint node as

shown in Figure 3.4(c) because the marginal probability of a variable is proportional

to the product of both directional messages (see (2.5)).

By setting the binary distributions of messages mx1,a to mx4,a in the RS blocks and

following the message passing described above, the marginal probabilities px1 to px4

can be obtained. Messages mx1,a to mx4,a are set as follows: [mx1,a,mx1,a,mx1,a,mx1,a] =

[(0.9,0.1),(0.9,0.1),(0.1,0.9),(0.9,0.1)]. The spike train that carries the binary message

only use two ISI values, i.e. ISI = 1 or 2. The binary value “0” is represented by ISI = 1

while the binary value “1” is represented by ISI = 2.

Table 3.2 shows the binary distributions of px1 to px4 computed by the SPR and

the ISI counting in the spike trains. In general, increasing the number of ISIs leads to

a better approximation between pISI and the theoretical probability distribution from

the SPR. Using the KL divergence to index the similarity of two distributions as shown

in Figure 3.5, the trend that increasing the number of ISIs leads to the decrease of

the KL divergence can be seen. The suddenly drops of the curves in Figure 3.5(a) are

because their ISI distributions just match the theoretical one in this trial. The positons

of these drops vary from trial to trial as shown in another trial of Figure 3.5(b).

Factor Node 27

=

X1 X2 X3 X4

X5

mX1,b mX2,b

mX5,bmX5,a

mX3,b mX4,b

mX1,a mX2,a mX3,a mX4,a

(a)

=

=

=
mX1,a

mX2,a

mX3,a

mX4,a

mX3,a

mX4,a

mX1,a

mX2,a

mX5,a

mX5,b

mX4,b

mX3,b

mX2,b

mX1,b

(b)

=

mX1,a

mX1,b

pX1

(c)

Figure 3.4 (a) Example network with two factor nodes and four semi-factor

nodes. (b) Expanded form for computing messages in both directions. (c)

Computing the marginal probability of variable X1 using one equality constraint

node to combine the messages from two directions.

28 Chapter 3. Event-Based Belief-Propagation Model Simulation

 SPR
Event-Based Model (# of ISIs)

100 1000 10000

px1 (0.9,0.1) (0.89,0.11) (0.902,0.098) (0.898,0.102)

px2 (0.9,0.1) (0.93,0.07) (0.896,0.104) (0.897,0.103)

px3 (0.82,0.18) (0.84,0.16) (0.834,0.166) (0.837,0.163)

px4 (0.82,0.18) (0.77,0.23) (0.841,0.159) (0.821,0.179)

Table 3.2 Probability distributions of messages computed from the SPR and

the event-base BP model and their dependence on the number of ISIs.

Factor Node 29

(a)

(b)

Figure 3.5 KL divergences of the marginal probailities pX1 to pX4 in (a) trial 1

and (b) trial 2.

100 1000 10000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

K
L
 d

iv
e
rg

e
n
c
e
 (

b
it
)

No. of ISI samples

 px1

 px2

 px3

 px4

100 1000 10000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

K
L
 d

iv
e
rg

e
n
c
e
 (

b
it
)

No. of ISI samples

 px1

 px2

 px3

 px4

30 Chapter 3. Event-Based Belief-Propagation Model Simulation

3.3 Applications

The model investigated in Section 3.2 is now applied to two specific problems:

The Kalman filter for object tracking and the CRBM for data reconstruction.

3.3.1 Object Tracking

Because of the ubiquitous noise in our environment, our observations

(measurements) or predictions of the targeted physical quantities such as the

position are both inaccurate. Such inaccuracy might propagate over time resulting in

a significant error. The Kalman filter [90], [91], a state-space model, provides a

method to estimate some physical quantities using the information coming from

both the prediction and measurement. The equation of the Kalman filter describing

the transition of the state is presented in (3.4),

1t t t t t t

t t t t

x F x B u w

z H x v

  

 
 (3.4)

where

xt: state vector at time t

ut: vector containing any control inputs

Ft: state transition matrix

Bt: control input matrix

wt: vector containing the process noise term

zt: vector of measurements

Ht: transition matrix mapping the state vector into the measurement domain

vt: vector containing the measurement noise term

Since the true state of the physical quantities (or the system) of interest cannot

be directly observed, Kalman filter provides an algorithm that computes the estimate

considering the information from the prediction, which is based the model of the

system, and the noisy measurement. The true state can be estimated using two

quantities, a posteriori estimate |
ˆ

t tx and a posteriori error covariance matrix Pt|t. The

process involves a prediction base on 1| 1
ˆ

t tx   and Pt-1|t-1 from previous time step to

Applications 31

compute | 1
ˆ

t tx  and Pt|t-1 as shown in (3.5) and an update from the measurement to

obtain |
ˆ

t tx and Pt|t as shown in (3.6).

| 1 1| 1

| 1 1| 1

ˆ ˆ
t t t t t t t

T

t t t t t t t

x F x B u

P F P F Q

  

  

 

 
 (3.5)

where

| 1
ˆ

t tx  : predicted state

Pt|t-1: predicted covariance matrix

Qt: covariance matrix of wt

 | | 1 | 1

| | 1 | 1

ˆ ˆ ˆ
t t t t t t t t t

t t t t t t t t

x x K z H x

P P K H P

 

 

  

 
 (3.6)

where

Kt: Kalman gain (=  
1

| 1 | 1

T T

t t t t t t t tP H H P H R


  )

Rt: covariance matrix of vt

In addition, the Kalman filter can be mapped into a Forney Factor Graph (FFG)

previously shown in [57]. Equation (3.4) can be interpreted as a FFG as shown in

Figure 3.6. 1| 1
ˆ

t tx   and Pt-1|t-1 in (3.5) and |
ˆ

t tx and Pt|t in (3.6) are computed in the

relative positions of the graph as shown in red. However, the state update is

computed in a different way in a FFG in [57], [58]. Assuming all the noise sources

have a Gaussian distribution, Loeliger et al. show that the messages in this network

can be represented by mean vector and covariance matrix. The message passing in

terms of computing the output message of a factor node can be computed using an

established table, where the required constraint functions such as plus, equality and

gain are described.

32 Chapter 3. Event-Based Belief-Propagation Model Simulation

In this section, an event-based Kalman filter is constructed using the factor nodes

in the event-based BP model described in Section 3.2. The event-based Kalman filter

is used for one-dimensional object tracking that tracks the position of a falling tennis

ball. The measurement is obtained from the Dynamic Vision Sensor (DVS) [14], an

event-based retina that generates events when any of the pixels detects a temporal

contrast change above a threshold. The DVS reduces data redundancy by producing

asynchronous scene reflectance temporal contrast address-events. Figure 3.7 shows

the structure of a DVS pixel. Incident light photocurrent is first generated by the

photodiode and is converted to a voltage logarithmically in the photoreceptor. After

a voltage amplifier amplifying the logarithmic voltage, the voltage change is

compared to the ON and OFF thresholds. Then, the AER logic produce an ON or OFF

event and reset the voltage amplifier. The AER representing Address Event

Representation (AER) [92]–[95] is a four-phase handshaking protocol developed for

transmitting and receiving the addressed-events asynchronously.

Ft +

Bt

+ =

+

Ht

zt

xt-1

ut

wt

vt

xt

1| 1

1| 1

ˆ
t t

t t

x

P

 

 

 
 
 

| 1

| 1

ˆ
t t

t t

x

P





 
 
 

|

|

ˆ
t t

t t

x

P

 
 
 

Figure 3.6 Kalman filter represented by a FFG. The next state is updated by

the messages along the blue directions. The parameters in red indicates the

relative positions of the quantities computed in (3.5) and (3.6).

Applications 33

The equations for calculating the position, s, and the velocity, v, in a state space

model with a constant acceleration is shown in (3.7). Note that Δtstate in (3.7) is

distinct from Δt. The former is the time interval between two consecutive states,

called the state step, and the latter is the minimum unit time of an ISI value that

associated to the previous simulations. Similar to Figure 3.6, the equation can be also

factorized as shown in Figure 3.8. Figure 3.8(a) shows the factor graph representing

variable s and Figure 3.8(b) shows the factor graph representing variable v.

2

1 1

1

0.5t t t state state

t t state

s s v t a t

v v a t

 



     

  
 (3.7)

In Figure 3.8(a), the position sest,t at state t is estimated according to the

prediction spre,t-1, which is also the estimation of previous state t-1, and the current

DVS measurement smea,t. The prediction noise nst is generated by a RS block that the

input probability distribution is defined as a Gaussian-distributed and the function fs

derived from (3.7) is defined in (3.8). Function fs is similar to a plus constraint

function that sums the input ISIs together. However, the number of inputs of the

factor node can be more than two because the message passing in this task is

unidirectional. The ISIs in vpre,t-1 has to multiply the state step Δtstate before summing.

The last term of (3.8) is a time-invariant value so that it can be treated as a bias term

inside the function instead of an input. Of course, a gain constraint node can also be

used to represent Δtstate. Velocity vpre,t-1 first goes to the gain node and the output

spike train of the gain node is then sent to the node with function fs for summing.

Here, all variables are put together in one node to simplify the network.

   2

, , 1 , 1 0.5s pre t pre t t pre t state statef s s ns v t a t          (3.8)

Photoreceptor

Voltage
Amplifer

A
ER

 Lo
gic

C
o

m
p

arato
rs

Photodiode

ON

OFF

ON/OFF
events

Reset

Figure 3.7 Structure of a DVS pixel.

34 Chapter 3. Event-Based Belief-Propagation Model Simulation

The measurement of the position smea,t is contributed by the DVS that producing

the events once detecting the temporal contrast. The information of the positon is

represented by the addresses of the events. Therefore, in this example, the value of

an ISI represents the address of an event. As shown in Figure 3.8(a), the addressed

fs =

A=1

spre,t-1

smea,t

spre,t

nst

vpre,t-1

sest,t

(a)

fv =

+A=1

vpre,t-1

vmea,t

vest,t

nvt

vpre,t

(b)

Figure 3.8 Factor Graphs for the task of tracking the falling tennis ball. The

graph for (a) the position tracking and (b) the velocity tracking.

Applications 35

events are first sent to a unity-gain (A = 1) node to compute the probability

distribution of the addresses and, then, the unity-gain node generates an output

spike train according to this distribution. Ideally, the DVS events’ addresses can

directly form a spike train where the addresses are represented as ISIs. Then the

equality constraint node in Figure 3.8(a) use this spike train as its input. However,

the number of events might not be sufficient when the tennis ball is just falling

because of a low velocity. The equality node is unable to compute the output

message. Therefore, a unity-gain node between the DVS events and the equality

node can keep producing output spikes within the defined time window.

In Figure 3.8(b), nvt is generated by a RS block that the input probability

distribution is defined as a Gaussian-distributed as well. Function fv is defined in (3.9).

Since a sensor that measures the velocity is unavailable, artificial data is used to

represent the measurement of the velocity vmea,t. The artificial data are obtained by

adding the values of the Gaussian noise on the theoretical velocity computed by (3.7).

If the velocity can be extracted from a future event-based sensor, this artificial block

can be possibly replaced.

   , , 1v pre t pre t t statef v v nv a t      (3.9)

Table 3.3 shows the parameters used for this tracking task. The state is updated

every 0.01 s meaning that the DVS events are collected during a duration of 0.01 s.

Because the position is estimated from the addresses of the DVS events in pixel

coordinates, i.e. an ISI represents the location of the pixel that produces the event,

the prediction is also computed in pixel coordinates for consistency. Therefore, the

unit of the acceleration is set as pixel/s2 instead of m/s2.The ratio of the two units is

computed according to the range of the falling distance covered by the 128 pixels of

the DVS sensor.

36 Chapter 3. Event-Based Belief-Propagation Model Simulation

Figure 3.9 shows a 0.01 s time slice of the DVS event output when the tennis ball

was falling. The events in white and black represent the OFF and ON temporal

contrast change events, respectively. Since only one-dimensional movement along

the y axis is considered, the events happening in the same row are all considered as

the same addressed event. The numbering of the DVS pixel along the y axis is 1 at

the bottom and 128 at the top as shown in Figure 3.9. The ON and OFF events

produced at the edge of the ball are due to the intensity contrast change. Both types

of events are considered in estimating the position. Figure 3.10 shows the measured

and estimated positions at different time (or states). A red dot represents the

average of all addresses of the DVS events within 0.01 s while a blue dot represents

the average of all ISIs in the spike train sest within the time window W. The ball is

placed and dropped around position 120 in the image. This value is used as the initial

predicted position. However, the measured position (~= 95) is far from it due to the

low velocity in the beginning. The events caused by the object movement are not

sufficient so that the random events of the DVS play a role. sest considers both the

prediction and the DVS measurement so the estimation curve (the blue curve)

approaches to the theoretically quadratic curve better than only the measurement

considered (the red curve).

Parameter Quantity Unit

ISI time step Δt 1

time window W 10000

state step Δtstate 0.01 s

DVS pixel number 128 pixel

falling distance 0.81 m

accerleration a
128

9.8 1549
0.81

 
pixel/s2

standard deviation of ns 2 pixel

standard deviation of nv 2 pixel/s

Table 3.3 Parameters for object tracking

Applications 37

Figure 3.9 Screenshot of the DVS at a moment of the tennis ball falling.

Figure 3.10 Position of the ball as a function of time. Each red dot represents

the average of all event addresses in a 0.01 s time slice. Each blue dot represents

the average of ISIs in the spike train sest within the time window W.

0.0 0.1 0.2 0.3 0.4 0.5

0

20

40

60

80

100

120

p
ix

e
l

time (s)

 dvs

 estimation

38 Chapter 3. Event-Based Belief-Propagation Model Simulation

Figure 3.11(a) shows the probability distribution of all addresses of the DVS

events at tstate = 0.02, 0.12, 0.22, 0.32 and 0.42 s, respectively, while Figure 3.11(b)

shows the probability distribution of all ISIs in the spike train sest in the same

condition of tstate. When tstate = 0.02s, the ball is about to fall. The probability

distribution (the red in Figure 3.11(a)) of the DVS events’ addresses at this tstate does

not reflect the position of the tennis ball due to the low velocity. However, the

estimated distribution shown in Figure 3.11(b) in red is relatively concentrated

because of considering both the prediction and the measurement using the equality

node. These random events from the DVS are thought to be filtered out by the

equality node. The reason is explained as follows. Because the output probability

distribution of the equality node theoretically is the product of the two input

distributions, those non-overlapped areas in the two input distributions will output

0 after the product. The initial predicted position is set to pixel 120. Therefore, the

random events are filtered out after the equality node. The measured distributions

in other states also show a little scatter in Figure 3.11(a) but these noise events are

again filtered out in the estimated distributions, i.e. the ISI distribution of spike train

sest, in Figure 3.11(b).

Applications 39

(a
)

(b
)

Fi
gu

re
 3

.1
1

P
ro

b
ab

ili
ty

 d
is

tr
ib

u
ti

o
n

s
in

 d
if

fe
re

n
t

st
at

e
s.

 T
h

e
te

n
n

is
 b

al
l i

s
p

la
ce

d
 a

ro
u

n
d

 p
ix

el
 1

2
0

 in
 t

h
e

b
eg

in
n

in
g

an
d

 s
ta

rt
s

fa
lli

n
g

fr
ee

ly
 t

o
w

ar
d

 p
ix

e
l

1
.

Th
e

h
is

to
gr

am
 i

s
o

b
ta

in
ed

 b
y

(a
)

co
u

n
ti

n
g

al
l

ad
d

re
ss

e
s

o
f

th
e

ev
en

ts
 f

ro
m

 t
h

e
D

V
S

an
d

 (
b

)
th

e
IS

Is
 i

n
 t

h
e

sp
ik

e
tr

ai
n

 s
es

t i
n

 t
h

e
ti

m
e

w
in

d
o

w
 W

.

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
0
.0

0
.1

0
.2

0
.3

probability

p
ix

e
l

 0
.0

2
s

 0
.1

2
s

 0
.2

2
s

 0
.3

2
s

 0
.4

2
s

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
0
.0

0
.1

0
.2

0
.3

probability

p
ix

e
l

40 Chapter 3. Event-Based Belief-Propagation Model Simulation

3.3.2 Data Reconstruction with an Event-Based CRBM

The second example is the event-based CRBM. This event-based version is

converted from the continuous-valued CRBM. That is, information is transmitted

using spike streams rather than continuous-valued variables. This section first briefly

introduces the CRBM by starting with the RBM.

The RBM is a fully-connected network with two layers of neurons, a visible and a

hidden layer. Figure 3.12 is an example of a RBM with two visible, two hidden and

two bias neurons (v0 and h0). There is a weight with each connection. For example,

w12 represents the bidirectional weight between neurons v1 and h2. Each neuron,

except for the bias neuron, generates a binary output sampled from some probability

distribution composed of two components, p(sj=0|s) and p(sj=1|s), as described in

(3.10). p(sj=1|s) , where s represents an output vector of the neurons in the previous

layer, indicates the probability of neuron sj generating an output sample of 1 under

the condition that every neuron in the previous layer contributes its “one” output

value to vector s. For example, p(h2=1|v=[v0,v1,v2]) means that the probability of

generating an output sample of 1 from neuron h2 is determined by the three output

values of neurons v0 to v2. The three values are multiplied with their weights and

then sent to a sigmoid function φj, the output of which is p(h2=1|v). Note that the

bias neuron always generates a constant output value of 1.

v1

v2

h1

h2

v0 h0

w12

w01

Figure 3.12 RBM with two visible and two hidden neurons. Neuron v0 and h0

are bias neurons.

Applications 41

 

   

 
 

1|

0 | 1 1|

1

1 exp

j j ij i

i

j j

j

p s s w s

p s s p s s

x
x





 
   

 

   


 



 (3.10)

In a RBM, the output is sampled from p(sj=1|s), which is the sigmoid output in

(3.10). Therefore, the output of a RBM neuron is either 0 or 1. A CRBM [25] is a

modified RBM model, where the output is not limited to the binary. Instead of using

the sampled value in RBM, neurons in a CRBM directly send the output of the sigmoid

to the next layer. A Gaussian noise is added to the input as shown in (3.11), where

σNj indicates a Gaussian noise source with mean of 0 and variance of σ; θL and θH are

the lower and upper bounds of the sigmoid; aj defines the slope of the sigmoid. In

the case that [θL,θH,aj] = [0,1,1], (3.11) is similar to (3.10) plus an input noise. The

stochastic behavior of a RBM is thought to originate from the sampling of the sigmoid

output while that of a CRBM is thought to originate from the input Gaussian noise.

 
 

(0,1)

1
()

1 exp

j j ij i j

i

j L H L

j

s w s N

x
a x

 

   

 
  

 

   
 


 (3.11)

The author chose the event-based BP model on a CRBM rather than a RBM

because a CRBM fits the coding scheme of the event-based BP model better. A

sample in the event-based BP model is represented as an ISI in the range of [1,ISImax].

while the sigmoid output of a CRBM is in the range of [θL,θH]. These two ranges can

be associated. For example, in the case that [1,ISImax] = [1,33] and [θL,θH] = [0,1], the

sigmoid outputs can be represented by ISIs with a 5-bit resolution (= (ISImax-1)/(θH,-

θL)). Of course, a RBM can also be implemented using the event-based BP model.

However, the outputs of a RBM are limited to only two ISI values, i.e. ISI = 1, 2, to

represent the binary values. No matter which model is implemented, the

architecture of a factor node in the event-based BP model does not change (the LS +

the RS block). Therefore, it is more efficient to implement a CRBM than a RBM

because more information is contained in the ISIs. [25] shows that a CRBM with

fewer neurons can do better than a RBM in a reconstruction task. The reason could

be that the output of the sigmoid is not quantized in a CRBM so more information is

preserved.

42 Chapter 3. Event-Based Belief-Propagation Model Simulation

Figure 3.13 shows the FFG of the hidden layer in a CRBM with two visible and

two hidden neurons. The inputs to the hidden layer are spike trains that the ISIs

represent the sigmoid outputs of the visible layer and the Gaussian noise sources.

The visible layer has a similar architecture to the hidden layer shown in Figure 3.13

except that the inputs come from the sigmoid outputs of the hidden layer. Ideally,

gain constraint nodes have to be added to the architecture in Figure 3.13 to

represent the weights, a plus constraint node for summing and a constraint node

with the sigmoid function according to (3.11) so that the internal messages are

transmitted by spikes. However, this implementation does not work when the

author looked into details. The reason is explained as follows.

In a RBM or a CRBM, the neurons in a layer are conditionally independent of each

other. That is, given an input vector, each neuron generates its output sample

independently of the other neurons in the same layer. The assumption of conditional

independence holds only if all neurons in a layer take in one input vector each time

and produce one output vector. For example, if there are 1000 input vectors, they

+
w11

w21

w01

v1

nh1

v2

+
w12

w22

w02

v1

nh2

v2

2D RS

h1

h2

Figure 3.13 FFG of the hidden layer in a two-visible-two-hidden-neuron CRBM.

Applications 43

are fed separately to the layer over 1000 time steps. Meanwhile, the neurons in this

layer generate 1000 output vectors in response to each input vector. However, a

factor node in the event-based BP model uses all the samples at once, builds up a

probability distribution from these samples, and then generates all output samples

through an output spike train. Therefore, the neurons in a layer cannot be

conditionally independent of one another.

To solve the problem that all input vectors represented as ISIs in spike trains are

sent to the factor nodes at once, a message-combined joint probability constructed

by input vectors is used. Then, this joint probability is sent to a multi-dimensional RS

block for producing output spike trains. In this example, the joint probability is two

dimensional because both the visible and hidden layers have only two neurons. The

entire layer is considered as one factor node (the red box in Figure 3.13) whose

constraint function is defined as (3.12) derived from (3.11). This factor node also has

two blocks, the LS and the RS blocks. The LS block is shown in the blue box containing

all operations and the RS block is a two-dimensional RS (2D RS) block. The hazard

function can be still used for generating the output spikes in 2D RS although it is

described for a one-dimensional probability distribution. The trick is to use the

definition of conditional probability described in (3.13). After the LS block (the blue

box in Figure 3.13), a two-dimensional probability distribution p(h1,h2) is obtained.

The marginal probability p(h1) and the conditional probability p(h2|h1) can be

computed according to p(h1,h2). Then, an ISI sample for neuron h1 is first generated

using p(h1). With the ISIh1, an ISI sample for neuron h2 can be generated using

p(h2|h1=ISIh1). By iterating this procedure, the output spike trains for both neurons

h1 and h2 is produced. In the implementation, the histograms of p(h1) and p(h2|h1)

are directly constructed instead of having p(h1,h2) first.

      1 2 1 2 1 1 1 1 2 2 2 2

0,1,2 0,1,2

, , , i i h i i h

i i

f v v h h h w v n h w v n  
 

 
      

 
  (3.12)

      , |p x y p x p y x (3.13)

This event-based CRBM is used to perform the same reconstruction task

described in [25] and redrawn in Figure 3.14(a). The parameters are first learned

from the CRBM and then used in the event-based CRBM. The bit resolution of the

parameters is limited after learning so that the performance of the model with lower

bit resolution parameters can be inspected. These lower bit resolution parameters

could be needed in a future hardware implementation. The bit resolutions are shown

in Table 3.4. The mapping of the sigmoid outputs [θL,θH] and the ISI values [1,ISImax]

is from [-1,1] to [1,65].

44 Chapter 3. Event-Based Belief-Propagation Model Simulation

Table 3.5 shows the parameter values after learning. The weights of the

interconnections are shown in blue and the slope of the sigmoid and the standard

deviation of the Gaussian noise in each neuron are shown in red. All noise sources

have a standard deviation of 0.1.

The reconstruction from different epochs are shown in Figure 3.14. In the

beginning, 1000 ISIsv1 and 1000 ISIsv2 form two output spike trains for two visible

neurons. Here, the sample number of 1000 is picked because the probability

distribution of each neuron can be demonstrated easily. Any number of samples is

possibly given. Both ISIs, shown in Figure 3.14(b), are generated randomly by a

uniform random variable whose values range from [1,65]. After the initial spike trains

are given, the model runs by itself without any new external inputs. That is, the

inputs in the second epoch come from the hidden layer and so on. In each epoch,

the factor node (either visible or hidden) generates two spike trains of 1000 ISIs each.

Parameter Resolution (bit)

Sigmoid output 5

Weight, w 8

Slope of the sigmoid, a 5

Table 3.4 Resolutions of the parameters in CRBM

2× 2 CRBM

h0

h1

ah1 (0.7188)

σh1 (0.1)

h2

ah2 (15.7813)

σh2 (0.1)

v0

NA
w01

(-0.3594)

w02

(-0.0586)

v1

av1 (2.1875)

σv1 (0.1)

w10

(0.2422)

w11

(1.1445)

w12

(0.3945)

v2

av2 (1.1875)

σv2 (0.1)

w20

(0.1016)

w21

(1.4531)

w22

(-0.5469)

Table 3.5 Parameters after learning

Applications 45

After a few iterations (Figure 3.14(c)-(e)), these ISIs converge to two groups similar

to the result in [25].

The training data in Figure 3.14(a) is generated by two 2-dimensional Gaussian

bumps, where the standard deviations of the two bumps are 0.25 and 0.08 along x

axis in Figure 3.14(a) and are 0.1 and 0.1 along y axis. Figure 3.15 shows the ISI

distributions of the visible neurons in different epochs. It can be seen that after 15

epochs, the ISI distributions of neuron v1 and v2 reflect the differences of the

standard deviations in training data.

The ISI distributions of the hidden neurons in different epochs are shown in

Figure 3.16. The distribution of neuron h2 is similar to a binary distribution where

most of the ISIs are located at two sides while the distribution of neuron h1 at the

end of the simulation looks like a Gaussian distribution. The reason for the distinct

distributions of two hidden neurons is: Neuron h2 help the visible layer identify two

separated groups and neuron h1 is to support the variation in each group. However,

to understand how ISIs are separated in two groups with different standard

deviations at the end of the simulation, it is needed to trace the computation along

with the iterations.

In this application, a CRBM is turned into an event-based CRBM by treating the

entire layer (both visible and hidden) as a factor node. In this way, a group of input

vectors, i.e. all ISIs in input spike trains, can be addressed at once. However, this

method limits the number of neurons in each layer. For example, if there are three

neurons, s1 to s3, in a layer, the joint probability represented by the definition of the

conditional probability is p(s1)× p(s2|s1)× p(s3|s1,s2). To store the values in memory is

expensive and the waiting time for the RS block to produce all output events

becomes longer. So far the solution to make the neurons in a layer conditionally

independent is unknown. Nevertheless, the RS block is still useful. In a RBM,

sampling on the sigmoid output is required. The RS block can be used to produce the

output sample of each neuron independently. Since each neuron only produces one

binary sample each time, the RS block can be reused for the other neurons.

46 Chapter 3. Event-Based Belief-Propagation Model Simulation

(a)

(b) (c)

(d) (e)

Figure 3.14 Data reconstruction in the event-based CRBM. (a) 2D training data.

The reconstruction from the (b) 1st epoch (c) 2nd epoch (d) 5th epoch and (e)

15th epoch.

0 20 40 60
0

20

40

60

IS
I v

2

ISIv1

0 20 40 60
0

20

40

60

IS
I v

2

ISIv1

0 20 40 60

20

40

60

IS
I v

2

ISIv1

0 20 40 60
0

20

40

60

IS
I v

2

ISIv1

Applications 47

(a) (b)

(c) (d)

(e) (f)

Figure 3.15 ISI distribution of (a) neuron v1 at 2nd epoch, (b) neuron v2 at 2nd

epoch, (c) neuron v1 at 5th epoch, (d) neuron v2 at 5th epoch, (e) neuron v1 at

15th epoch, and (f) v2 at 15th epoch.

0 20 40 60
0.00

0.02

0.04

p
ro

b
a
b
ili

ty

ISIv1

0 20 40 60
0.00

0.02

0.04

p
ro

b
a
b
ili

ty

ISIv2

0 20 40 60
0.00

0.02

0.04

p
ro

b
a
b
ili

ty

ISIv1

0 20 40 60
0.00

0.02

0.04

0.06
p
ro

b
a
b
ili

ty

ISIv2

0 10 20 30 40 50 60
0.00

0.04

0.08

p
ro

b
a
b
ili

ty

ISIv1

0 20 40 60
0.00

0.02

0.04

0.06

p
ro

b
a
b
ili

ty

ISIv2

48 Chapter 3. Event-Based Belief-Propagation Model Simulation

(a) (b)

(c) (d)

(e) (f)

Figure 3.16 ISI distribution of (a) neuron h1 at 2nd epoch, (b) neuron h2 at 2nd

epoch, (c) neuron h1 at 5th epoch, (d) neuron h2 at 5th epoch, (e) neuron h1 at

15th epoch, and (f) h2 at 15th epoch.

0 20 40 60
0.00

0.02

0.04

p
ro

b
a
b
ili

ty

ISIh1

0 20 40 60
0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty

ISIh2

0 20 40 60
0.00

0.02

0.04

0.06

p
ro

b
a
b
ili

ty

ISIh1

0 20 40 60
0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty

ISIh2

0 20 40 60
0.00

0.04

0.08

0.12

p
ro

b
a
b
ili

ty

ISIh1

0 20 40 60
0.0

0.1

0.2

0.3

0.4

0.5

p
ro

b
a
b
ili

ty

ISIh2

Chapter 4 Factor Node

Hardware

From the model simulations described in Chapter 3, it is confirmed that the

event-based Belief-Propagation (BP) model can be applied on the given examples.

This chapter describes the hardware realization of the event-based BP model. Since

the stochastic model cannot be easily implemented on the currently available spiking

network hardware platforms, a VLSI prototype is designed to demonstrate of this

model. A large part of this chapter comes from two papers, one (the title is “A

Neuromorphic VLSI Circuit for Spike-Based Random Sampling”) published in the IEEE

Transactions on Emerging Topics in Computing (TETC) in 2015 [82] and the other (the

title is “Hardware Implementation of an Event-Based Message Passing Graphical

Model Network”) published in the IEEE Transactions on Circuits and Systems I (TCASI)

in 2018 [83]. The author has only used the text related to the work contributed by

the author in the papers.

4.1 System Architecture

The hardware system of the event-based belief propagation model is shown in

Figure 4.1. It follows the system architecture described in Figure 2.5. The Landscape

Sampling (LS) block is implemented on an FPGA for flexibility and the Random

Sampling (RS) block is implemented as an ASIC designed in a 0.35um 2-poly 4-metal

CMOS process. With the 16 RS channels on the ASIC chip and the 16 LS channels on

the FPGA, factor graphs with up to a maximum of 16 output messages can be

configured using this system. The communication from the RS array to the LS array

is via the AER Transmitter block in the RS chip and the AER Receiver block in the LS

on the FPGA and using the asynchronous address event representation (AER)

protocol [92]–[95]. The connections between the AER Receiver and the LS channels

are defined in the Connection Table block of the FPGA. The Data Encoder block

combines the messages (mZ) of the individual LS channels into a single output stream

of pulses transmitted consecutively from each channel (see Section 4.2 for details).

50 Chapter 4. Factor Node Hardware

This single train of output pulses is then transmitted to the Data Decoder block

within the RS chip. This block remaps the output spike trains to the corresponding

RS channels. In addition, the system has two possible sources of random number

generators. The first is through the linear feedback shift registers (LFSRs) and off-

chip digital-to-analog converters (DACs) which convert the digital output of the LFSR

to analog signals, Vnx,s,ext, and the second is a pseudo random number generator

(RNG) [96] array on the chip providing individual uniform random variables, Vnx,s,int,

for the 16 RS channels. The LS array uses the main FPGA clock (Clkmain) for the FPGA

modules and also generates three different clocks (Clkh for the RS channels, ClkRNG

for the RNG array, and Clkconfig for the Data Decoder block) using a frequency-divider

module. The LS channels use the FPGA clock Clkmain to accelerate counting of the

InterSpike Interval (ISI) statistics and the RS channels use a frequency divided-down

clock Clkh needed for the longer time constants of the aVLSI circuits.

4.2 Landscape Sampling

Figure 4.2 shows the structure of one LS channel. The building blocks and signal

flow between the blocks follow the basic mechanism described in Section 2.2. The

A
ER

 R
eceiver

Landscape Sampling (LS) Array

LS Ch00

LS Ch01

LS Ch15

Random Sampling (RS) Array

Freq.
Divider

D
ata En

co
d

er

C
o

n
n

ectio
n

 Tab
le

RNG Array

Vnx,s,ext×16Clkmain

ClkRNG

Clkh

LFSR

Clkconfig

Vnx,s×16

Vnx,s,int×16

D
A

C

6
RS Ch00

RS Ch01

RS Ch15

A
ER

 Tran
sm

itter

D
ata D

eco
d

er

6

6

6

6

6

Chip Bias

RS DAC
Irst×16

Figure 4.1 System architecture consists of two blocks. Left (dotted blue box),

the LS array with 16 channels and right (dotted red box), the RS array also with

16 channels.

Landscape Sampling 51

LS channel is designed for a two-input-one-output or a one-input-one-output

message passing. The maximum input number is limited to two in the

implementation to reduce structural complexity. However, the input number can be

increased in future implementations.

The asynchronous spike trains, spikeX and spikeY, from the AER Receiver block

carry the messages, mX(x) and mY(y), of the two variables, X and Y. The Cnt ISIX and

Cnt ISIY modules in Figure 4.2 measure the ISIs of the spikes in the event streams of

X and Y respectively. The module starts a counter as soon as a spike arrives. The

counter increments in unit time steps, Δt, and stops when the next spike arrives. The

measured ISI value is then stored in the memory modules, Mem ISIX and Mem ISIY,

respectively. At the end of the time window defined in the Controller module, the

ISIs stored in the memory modules are transferred to the Function module which is

programmed with the desired factor’s constraint function f(x,y,z) and summation

function F(x,y). Function f(x,y,z) in the hardware implementation is limited to delta

functions. To ensure enough input samples for extracting the statistics of the

distribution, sample pairs (x,y) are generated from all combinations of ISIs in the

Mem ISIX and Mem ISIY modules. This method is slightly different from the pairing

method described in [55], where the samples consist of only pairings of the latest ISI

values. The histogram counts of f(x,y,z) and of F(x,y) for normalization are saved to

the Mem HistZ and Norm modules, respectively. Message mZ is stored in the Mem

MZ module after normalization. The index number of ISI bins, ind, is in the range of

ISI values varying from (ind = 1) to (ind = ISImax). The value in each mZ bin is

represented by 6 bits, the bit width of the Mem MZ module. The picture in the Mem

MZ module as shown in Figure 4.2 demonstrates an example of a possible probability

distribution of the message mZ. To consume less FPGA resource, the memory values

Cnt ISIX

Cnt ISIY

Mem ISIX f(x,y,z)
F(x,y)

Mem HistZ

Norm
Mem MZ

Controller

Mem ISIY

DataZ

spikeX

spikeY
6 bits

Clkmain Clkh

6

Figure 4.2 Structure of one LS channel

52 Chapter 4. Factor Node Hardware

in Mem MZ module are only updated every time the count of F(x,y) reaches 2k, where

k ∈ N. In this way, normalization only involves a bit shift. The DataZ module transmits

the value of the individual mZ bin in a sequential manner starting from ind = 1 to ind

= ISImax to the Data Encoder block in Figure 4.1. Each DataZ module in a channel

produces a 6-bit value. The Date Encoder block combines the 6-bit data value from

all 16 channels into a single output, i.e. [dataZ0,dataZ1,dataZ2,…,dataZ15],

corresponding to a 96-bit data stream. Once an output spike is generated from the

corresponding RS channel and sent back to the targeted LS channel through AER

interface, the DataZ module restarts to transmit the bin value from ind = 1. In

addition, the DataZ module only sends out the non-zero values stored in the Mem

MZ module. The distance between two non-zero values, i.e. the number of bins

between the two values, is recorded and used to calculate the correct value of an ISI.

The reason for implementing this scheme is related to the design of the RS channel

(see Section 4.5.1).

Note that ISImax is always an integer value while tISImax defined as ISImax× Δt

represents the actual ISI time in seconds. This definition is adopted throughout in

the following sections.

4.3 Random Number Generator

Before going to the circuit details of the RS block, this section describes a pseudo

RNG circuit [96] used for the RS block. The uniform property of the output

distribution of the RNG circuit, the simple structure, and a tunable range of the

output samples are the reasons that this circuit was chosen.

4.3.1 Discrete-Value Approach

The RNG circuit contains a number of cells in a ring structure as shown in Figure

4.3. The output of each cell is served as the input of the next cell and then the last

one comes back to the initial one as a ring. Each cell can be regarded as a random

variable that generates samples with a uniform distribution. The output samples is

computed based on the method of the delta-sigma automata that follows the rules

in (4.1), where xn(k) indicates the output value x in the n-th cell at the k-th state. The

value of cell n at state k+1 can be regards as a function of the values of cells n and n-

1 at the previous state k. In this function, the output is derived from the difference

between the summation of these two cells and the sign of them. The function f(x),

called quantization residue map as used in single-bit delta-sigma modulation, is

shown in Figure 4.4(a), where the input x represents the sum of the two cells and the

gray area depicts the range of the possible input and output values.

Random Number Generator 53

      

   

11n n nx k f x k x k

f x x sign x

  

 
 (4.1)

The block diagram in Figure 4.4(b) exhibits one RNG cell based on (4.1). The

output value will be updated iteratively. Figure 4.5(a) shows the details of the block

diagram, where Vin is related to xn-1 connected to the previous cell and VoutA is related

to xn connected to the next cell. The maximum and minimum values of the output

are controlled by VRNGp and VRNGn, respectively. Voltage Vm is set to the average of

VRNGp and VRNGn. The switches are controlled by the pulse signals with the patterns

shown in Figure 4.5(b), where a four-phase operation (i.e. phase a,b,c,d,a,b,…) is

repeated. Basically, an output sample is produced every cycle (i.e. four phases) that

means the cell moves to the next state k+1 after a cycle. However, the samples used

in the RS block are picked every two cycles that is controlled by signal PICK in Figure

4.5(b) and the value is represented as VoutB in Figure 4.5(a). The reason will be

explained in the measurement results in the next section.

In the four-phase operation, the RNG cell controlled by the switching signals has

different connections as shown in Figure 4.6. In the first phase (Figure 4.6(a)), the

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

RNG
Cell

Figure 4.3 Ring structure of the RNG with 12 cells.

1

1

f(x)

x

Z-1
xn-1(k)

xn(k)

xn(k+1)

 (a) (b)

Figure 4.4 (a) Quantization residue map. (b) Block diagram of one RNG cell.

54 Chapter 4. Factor Node Hardware

cell samples the values from the previous cell and itself by storing the charges on

capacitors C1 and C2. Here these two capacitors are set to the same values and the

virtual ground indicates Vm. In the second phase (Figure 4.6(b)), the sum of these two

values is executed by transferring the charge from capacitor C1 to C2. Later, in the

third phase (Figure 4.6(c)), the inverted sign of this summed value is computed by

using an inverter and storing in capacitor C1. Finally, in the fourth phase (Figure

4.6(d)), the combination of the sum and its inverted sign is executed. Therefore, a

voltage sample is produced on the forth phase of a cycle. The circuit operation in a

RNG cell follows the computation of the block diagram in Figure 4.4(b). Every cell has

the identical structure. The samples are collected and shown in the measurement

results.

VRNGn

VRNGp

Vm

Vm

Vm

Vin

Q1

Q2

ACC

nACC

nACC

nCOMP

nCOMP COMP

COMP

SEL

SEL

nSEL

nSEL

VoutB

nPICK

PICK

VoutA

C1

C2

C

(a)

SEL
ACC

COMP
Q1
Q2

PICK

a b c d

(b)

Figure 4.5 One RNG cell. (a) Circuit structure. (b) Control signals.

Random Number Generator 55

4.3.2 Measurement Results

The micrograph of the RNG in a test chip is shown in Figure 4.13. The first

measurement result presents the distributions of the output samples of three RNG

cells in a 12-cell ring structure in Figure 4.7. The maximum and minimum voltages,

i.e. VRNGp and VRNGn, are set to 2.55 and 0.55 V. The distributions of these three cells

approximate a uniform distribution with a little distortion at the values close to the

maximum and minimum voltages.

C1

C2

Vn-1
a Vn

a
C1

C2

Vn
b

 (a) (b)

C2

Vn
cC1 C1

C2

Vn
d

 (c) (d)

Figure 4.6 Four phases of a RNG cell.

56 Chapter 4. Factor Node Hardware

The second experiment shows the correlations between cells or states in X-Y

plots in Figure 4.8. The first row of Figure 4.8 shows the correlation of “cells 1 and

3”, “cells 2 and 3”, and “cells 3 and 3” that the sample sequences of the three cells,

i.e. x1, x2 and x3, are generated in parallel. The second row shows the correlations of

these three cells and cell 3 with x3 delayed one state. The third row shows the

correlations that x3 delayed two states. Each cell is highly uncorrelated to other cells

or states except the previous cell and state, i.e “x2(k) to x3(k+1)” and “x3(k) to x3(k+1)”.

This phenomenon is reasonable since the updated value in (4.1) is derived from both

of them. The pseudo-number generator can be achieved under this approach

choosing which cell desired and avoiding its neighbor state; that is, it is suggested to

pick [x1(k),x2(k),x3(k),…] and then jump to [x1(k+2),x2(k+2),x3(k+2),…]. Therefore, the

samples are picked every two cycles as described in Section 4.3.1.

Figure 4.9 describes the normalized mutual information [89] of the sample

sequences in three neighbor cells to show the independence between them. The

sample sequence x3 is delayed from 0 to 49 states and the normalized mutual

information is computed from x1 and the delayed x3, and so on. It is clear that the

normalized mutual information of x3 and itself without delaying is 1 so the first data

point of the third graph in Figure 4.9 is out of the range in y axis. Besides this data

point, only other two points show a higher mutual information, which are “x2 and

the one-state-delayed x3” and “x3 and the the one-state-delayed x3”. The results is

consistent with that in Figure 4.8.

Figure 4.7 Distribution of the random outputs of cells 1, 2 and 3 in the RNG

ring.

Random Number Generator 57

The last experiment shows if the sample sequence of a cell is deterministic. A

same initial value is given to all cells before closing the loop. Figure 4.10 shows that

after a few stats, the output patterns of cell 1 are distinct in different trials even

though the same initial condition is given. The variation is contributed by the noise

in the device, e.g. the kTC noise or thermal noise. Therefore, the pseudo RNG

employed in this thesis is not entirely deterministic, which is useful to run this circuit

Figure 4.8 Time-space correlogram of different cells or states.

Figure 4.9 Mutual information of the output sequences of cells 1 and 3, cells

2 and 3, cells 3 and 3 with the output sequence of cell 3 delayed from 0 to 49

states. The mutual information is normalized by the entropy of x3.

58 Chapter 4. Factor Node Hardware

for a long time. After describing the operation of the RNG circuit and showing the

measurement results of it, the next section describes how the RS block is

implemented, where the RNG will be part of the RS circuit.

4.4 Continuous-Input Random Sampling

To realize the RS block, two approaches have been implemented. This section

describes the first version of the RS block [82], which uses the continuous-value

signal as the input probability distribution, i.e. the time course of the input

probability distribution is a continuous value. In Section 4.5, the input signal is

changed to the discrete-value input which makes the implementation of the multi-

channel RS array easier. The circuit structure of the latter is also partially modified

because of the change in the design of the RS block.

Figure 4.10 Output sequences of cell 1 in different trials.

Continuous-Input Random Sampling 59

To implement ISI-based random sampling in an aVLSI circuit, the first problem to

address is how one can express the terms such as probabilities and distributions (i.e.

p(t), S(t) and h(t)) in (2.10) as corresponding variables in a VLSI circuit. As Section 3.1

shows, in order to make the discrete-time approximation valid, it is recommended

to either use the original definition or the continuous recursive form in (2.10) for the

hazard update. However, the original definition of the hazard requires a division. To

realize such a mathematical operation in a hardware is challenging. Instead, the

continuous recursive form can be implemented by an analog circuit. To simplify the

circuit design, the input probability distribution p(t), the hazard h(t) and the inverse

survivor function S-1(t) are all represented as currents Ip(t), Ih(t) and Is(t) respectively.

Figure 4.11 shows the functional blocks and Figure 4.12 shows the transistor circuit

schematics of Figure 4.11. The circuit is composed of an integrator, an exponential

operator, a current multiplier, a current-to-voltage (IV) converter, a RNG [96], and a

voltage comparator. Besides the RNG and the comparator, all of these components

serve the purpose of implementing (2.10). The details are described in the following

sections.

∫
exponent

block

uniform random variable

0 1

I-V
converter

(Vc(t)) S-1(t)
(Is(t))

p(t)
(Ip(t)) h(t)

(Ih(t))

h(t)
(Vh(t))

x/t
(Vnoise(t)-Vrefop)

R
e

se
t

spiking outputs

comparator

Figure 4.11 Functional implementation of the theoretical continuous-input RS.

The variables within parentheses correspond to circuit variables in Figure 4.12.

The gray block indicates the additional block needed for the VLSI circuits.

60 Chapter 4. Factor Node Hardware

4.4.1 Hazard Core

The Hazard Core block includes integrator, exponential operator and multiplier

in Figure 4.12. There are several mathematical operations needed in (2.10) that must

be physically implemented: Integration, the natural exponential function and

multiplication. The hazard is represented by a proportional current Ih(t), whereas Vc(t)

represents the integration of Ih(t) over time by a capacitor C. The Vc node drives the

gate of transistor M2 which is operated in the subthreshold regime [97], where there

is an exponential relationship between the input gate voltage Vc and the drain

current IM2(t). Finally, a current mode translinear multiplier composed of four

transistors (M3 to M6) [97] generates the product of the time-dependent input

current Ip(t) and IM2(t). Note that IM2(t) is the same as the survival current IS(t). This

product becomes the hazard current Ih(t) that charges Vc. The constant current IL is

used to normalize Ih(t).

ILIp(t)

Ih(t)

R
es

et

C

Ih2(t)

Vr

Vs

Vrefop

Vnx,s=Vnx+Vrefop

Vh,s=Vh+Vrefop rspiking outputs

M1 M2

M3

M4

M6

M5

M8 M9

M7

Comp

multiplier

exponential operator

Vc

Ih3(t)

IM2(t)

integrator

comparator RNG

IV converter

Figure 4.12 Schematics of the continuous-input RS circuit.

Continuous-Input Random Sampling 61

Transistor M1 as a switch resets Vc back to a reset value, Vr, once a spike event is

generated. A non-zero Vr is necessary to keep the transistors of the multiplier from

going out of saturation region right after reset. Another advantage of a non-zero Vr

is that it decreases the circuit time constant by bringing the currents in transistors

M2 to M5 quickly back to their operating ranges. Therefore, the hazard function is

implemented by a circuit block consisting of a capacitor C, six transistors (M1 to M6),

along with a Vr bias and a current bias IL. Mathematically, Ih(t) can be expressed as

(4.2), where κM2, I0,M2 represent the gate-coupling coefficient and off current of

transistor M2 in subthreshold respectively, and UT is the thermal voltage.

  
 

 0, 2 2

0

1
exp ' '

tp M M
h r h

L T

I t I
I t V I t dt

I U C

   
    

  
 (4.2)

To show its similarity with (2.10), this equation can be further reduced as (4.3),

where α, β and I1 are represented in (4.4) to (4.6).

       0
exp ' '

t

h p hI t I t I t dt     (4.3)

 2 1M

T L

I

CU I


  (4.4)

 2M

TCU


  (4.5)

2

1 0 exp M r

T

V
I I

U

 
  

 
 (4.6)

Hence, the probability density p(t) and the hazard h(t) are equivalent to αIp(t)

and βIh(t) respectively as shown in Table 4.1. Given a desired p(t), the appropriate

Ih(t) is given by the straightforward mapping from (2.10) to (4.3). This, however,

requires a determination of α, which is difficult, because κM2 cannot be reliably

measured in the fabricated circuit. Hence, in Section 4.4.4.1 a method that allows for

an indirect determination of α is presented based on the measured output spikes.

62 Chapter 4. Factor Node Hardware

4.4.2 IV Converter

Because the output of the RNG is a voltage and the output of the hazard block is

a current, an IV converter is utilized to convert Ih(t) to the voltage Vh(t) so that these

two variables can be compared.

First, the current Ih2(t) flowing through transistor M7 in Figure 4.12 has the same

magnitude as Ih(t) assuming no transistor mismatch. This current is further mirrored

as a current sink through transistors M8 and M9 before it is converted to a voltage

Vh(t) using an op-amp with a feedback resistor r. In addition, the current Ih3(t) to the

converter can be an amplified copy of Ih2(t) by increasing the bias voltage Vs. In

subthreshold regime of transistor M8 and M9, the relation of two currents is shown

in (4.7). Therefore, Vh(t) can be expressed by Vs, r, Ih(t) (assume Ih2 = Ih neglecting the

transistor mismatch) in (4.8). The purpose of including Vs is to adjust the effective

resistance Req after fabrication, rather than using the fixed resistance r:

    3 2 exp s
h h

T

V
I t I t

U

 
   

 
 (4.7)

   

 

exp s
h h

T

h eq

V
V t I t r

U

I t R

 
    

 

 

 (4.8)

Because of the reference voltage Vrefop, applied at the positive input of the op-

amp, the output of the converter is a shifted voltage Vh,s(t) = Vrefop+Vh(t). This offset

Vrefop is effectively cancelled by setting the minimum value of the RNG output Vnx,s(t)

to Vrefop. In a RNG (see Section 4.3.1), the possible value of Vnx,s(t) is in the range of

[VRNGn,VRNGp], which is determined by a lower bias VRNGn and a higher bias VRNGp. In

this case, VRNG,n = Vref,op. Note that Vnx(t) is the value without considering the offset,

Math. Symbol Phys. Symbol Parameter

p αIp
2 1M

T L

I

CU I


 

h βIh
2M

TCU


 

Table 4.1 Mapping the mathematical variables on the hardware

Continuous-Input Random Sampling 63

i.e. Vnx(t) = Vnx,s(t)-Vrefop. Therefore, the possible value of Vnx(t) ranges between

[0,Vnx,max], where Vnx,max = VRNGp-VRNGn.

4.4.3 Comparator

The comparator is an open-loop two-stage op-amp. Once Vh,s(t) is higher than

Vnx,s(t), a spike is generated and the system is reset. The pulse width of the spike

defines the settling time of the entire circuit during reset. The settling time is

determined by the time taken for the output of the multiplier, i.e. Vc, to return to its

initial value during reset. Therefore, the pulse width has to be adjustable in the

comparator. The probability of generating an event by comparing the outputs of the

IV converter and the RNG is shown in (4.9).

       
 

,max

Pr spike at time t
h

h nx

nx

V t
p V t V t

V
   (4.9)

In Section 2.2.2, the discrete-time approximation is used to generate spikes as

shown in (2.12). The probability of generating a spike event is h(t)Δt. Compare to

(4.9), the mathematical and physical relation is shown in (4.10). Then, (4.11) is

derived from (4.8), (4.10) and Table 4.1. This equation shows an important message

that Vs cannot be adjusted arbitrarily once Δt and Vnx,max are determined. Otherwise

the output ISI distribution does not approximate the input.

  
 

,max

h

nx

V t
h t t

V
  (4.10)

,maxexp s

eq nx

T

V
R r t V

U


 
     

 
 (4.11)

4.4.4 Measurement Results

The design of the continuous-input RS circuit in an aVLSI chip was done prior to

the design of the hardware system described in Section 4.1. The purpose is to ensure

that the analog VLSI circuit performs as expected and is feasible to implement as a

multi-channel RS chip. Therefore, the circuit in Figure 4.12 was fabricated in a 0.35

um 2-poly 4-metal CMOS technology before the hardware system. The

microphotograph of the chip is shown in Figure 4.13. Several test results are

presented in this section. First, the parameter α defined in (4.4) is measured and the

output of the RNG is characterized. Then, the circuits’ ability to sample reliably from

64 Chapter 4. Factor Node Hardware

two different input distributions p(t) that were specified through different externally

applied input currents Ip(t) is demonstrated.

4.4.4.1 Parameter α

Once a desired input probability distribution p(t) has been chosen, the scale of

the corresponding input current Ip(t) is determined by the choice of α. This section

presents a method for determining α based on the measured output spikes.

The case of a constant input current Ip corresponds to a uniform input

distribution p(t) with a constant value pc as shown in Figure 4.14. Because the area

underneath the curve has to be 1, pc is given by 1/tISImax , where tISImax indicate the

maximum ISI time in seconds, i.e. ISImax× Δt. For a value of Ip, tISImax can be measured

from the output by setting Vnx directly to Vnx,max. By doing so, it is guaranteed that all

ISIs of the output spikes should be tISImax and hence the value of tISImax has been

measured.

Figure 4.13 Microphotograph of a test chip which holds various test circuits

not used in this work. The RS and RNG circuits are outlined in white rectangles.

Continuous-Input Random Sampling 65

By sweeping through various Ip values while measuring the corresponding tISImax,

pc vs Ip can be plotted as shown in Figure 4.15. Based on the relation that p(t) = αIp(t),

the slope of this curve is equal to the value of parameter α and can be determined

by linear regression. The result of the described procedure is α = 4× 109 1/C at Vr =

50 mV as shown in Figure 4.15.

pc

tISImax

time

p(t)

Figure 4.14 Uniform input distribution p(t) by providing constant input current

Ip. The constant value of p(t), i.e. pc, is equal to 1/tISImax following the rule that

the total area underneath the curve is 1.

Figure 4.15 Measured p(t) (= pc) vs Ip for a constant Ip. The slope of each curve

as extracted from the fit (dotted line) denotes the factor α. Here, α values are

extracted for Vr = 50, 100, 150 mV.

66 Chapter 4. Factor Node Hardware

4.4.4.2 Empirical Output ISI Distribution

The results from specifying two different input distributions are presented. The

first is a uniform distribution and the second is an exponential distribution. Table 4.2

provides an overview over the used values of the adjustable circuit parameters

together with the sizes of various circuit components. For the circuit consisting of

transistors M3 to M6 in Figure 4.12 to act as a multiplier, these transistors need to be

operated in the subthreshold regime where the current is exponential to the gate

voltage. The currents in this region is usually in the pico to nano amp range.

Therefore, in this case, Ip(t) is restricted to a current range of (< 100nA).

Because in the circuit the shape of an input distribution is defined by a current

time course, a uniform distribution corresponds a constant input current. For Ip =

1.25 nA, the ISI probability distributions of the input, p(t), and output, pISI(t), are both

shown in Figure 4.16(a). The red line shows the input distribution p(t), while the

empirical output distribution pISI(t) is displayed as blue histogram bars, which were

obtained by normalizing the ISI histogram count. Given α = 4× 109 1/C from the slope

in Figure 4.15 with Vr = 50 mV, p(t) can be predicted to be αIp = 5 s-1. Because the

integration of p(t) over time should be 1, tISImax should be 0.2 s, which corresponds

to a firing rate ν = 2/tISImax = 10 Hz. In another trial based on the uniform distribution,

the input current Ip was set to 2.5 nA, which is equivalent to a predicted tISImax = 0.1

s and ν = 20Hz. The resulting p(t) and pISI(t) are shown in Figure 4.16(b).

Symbol Block Value Unit

Ip(t) Hazard Core <100 nA

C Hazard Core 12 pF

Vr Hazard Core 0.05 V

Vrefop IV Converter ~1 V

Vs IV Converter ~0.18 V

r IV Converter 500 kΩ

VRNGp RNG 2.6 V

VRNGn RNG 1 V

Vnx,max RNG 1.6 V

Δt RNG 64 us

Table 4.2 Physical values of the components and the parameters

Continuous-Input Random Sampling 67

In a second set of experiments, the input currents were based on decaying

exponentials rather than constants. The initial value Ip(0) was first set to 21.4 nA

which, using α = 4× 109 1/C, should induce a p(0) = ν = 86 s-1 (see Figure 4.17(a)). On

the other hand, setting Ip(0) = 82.8 nA in the second experiment predicts p(0) = ν =

311 s-1, the results of which are shown in Figure 4.17(b). Since Ip(0) is larger during

(a)

(b)

Figure 4.16 Two output ISI distributions for two different input currents. The

red line represents the input distribution p(t). The input current Ip is (a) 1.25 nA

and (b) 2.5 nA.

68 Chapter 4. Factor Node Hardware

the second experiment, the exponential decay time constant τ = 1/p(0) in Figure

4.17(b) is smaller compared to that of Figure 4.17(a).

Because more complex inputs could not be generated using the current

experimental setup, the circuit simulations is performed based on a bimodal Ip(t) (see

Figure 4.18, red line). In this case, the induced output ISI distribution pISI(t) can be

(a)

(b)

Figure 4.17 The exponential probability distribution of the output ISIs. The

initial input current Ip(0) is (a) 21.4 nA and (b) 82.8 nA. The equivalent input

distributions p(t) are plotted in red.

Discrete-Input Random Sampling 69

computed from the simulated hazard current Ih(t). In turn, the corresponding Ip,rec(t)

(blue line) can be reconstructed from pISI(t) and compared with the actual input

distribution Ip(t). More specifically, the reconstructed current Ip,rec(t) was given by

Ip,rec(t) = pISI(t)/α, where pISI(t) was obtained from a numerical evaluation based on

the hazard function h(t) = βIh(t). Rather than collecting actual, simulated ISIs in a

histogram, such a procedure was necessary due to the lengthy simulation time

needed to collect enough spikes for computing the output ISI distribution. As Figure

4.18 shows, the reconstructed Ip,rec(t) displays a similar waveform as the original

input Ip(t).

4.5 Discrete-Input Random Sampling

When using the continuous-input RS circuit described in Section 4.4 as one

channel to create a multiple-channel array, some difficulties were noticed. First, the

linear range of the multiplier composed of a translinear loop with four transistors

operated in the subthreshold regime (see Figure 4.12) is hard to define. To ensure

multiplication holds, the input current Ip has to be small in order to make the gate-

source voltage Vgs,M4 lower than the threshold voltage Vth,M4. However, Vth,M4 which

depends on the transistor doping varies from one channel to another. A general

range of Ip across channels is hard to find. The threshold voltages of the other three

Figure 4.18 Simulation results showing the reconstruction of a more complex

probability distribution from the hazard circuit.

70 Chapter 4. Factor Node Hardware

transistors also have similar problems. Namely, the current multiplier that fulfills

IM2× Ip = IL× Ih is only valid in a certain current range. In [17], the translinear loop is

used for the current multiplier in 64 channels. However, [17] limits the current ratio

such as Ip/IL in a small range of 1.11 and change the transistor sizes every four

channels. In this way, the current multiplier can be guaranteed to function as

expected. As the input of the RS circuit, Ip represents a regularly-step-staircase (RSS)

input probability distribution pin(t) which is unable to be limited in a small range. The

second difficulty is that an extra digital-to-analog converter (DAC) for Ip is required.

The LS channels implemented on the FPGA send out pin(t) as a sequence of bits

following the time step Δt (Section 4.2). Therefore, an extra DAC for each channel is

required to generate the analog current Ip from digital bits. This DAC consumes chip

resources. This chapter presents a modified version of the RS circuit to address the

two described difficulties so that a multi-channel implementation is feasible. In

addition, the channel AER in each RS channel is placed so that the channel can

communicate with chip-level AER block (see Figure 4.1). The circuit blocks are shown

in Figure 4.19.

The input of the RS circuit comes from the DataZ module of the LS (see Figure

4.2). The 6-bit data in each bin is represented as Bith[5:0] in Figure 4.19. Similar to

the structure of the continuous-input RS, the circuit includes a hazard function

generator, a comparator, and a reset, which are implemented by the Hazard Core,

Comp and Reset Hazard blocks (see Figure 4.19) respectively. Because the output of

the Hazard Core is a current in the aVLSI implementation while the comparator in

the Comp block is a voltage-input comparator, an IV Converter block is needed. In

addition, a channel AER represented as the Spike Generator & Channel AER block in

each RS channel is also required. This block not only communicates with the Chip

AER Transmitter block, it also controls the pulse width of the feedback spike signal

Hazard
Core

IV
Converter

Comp Spike
Generator

&
Channel

AER

Channel Bias

Sp0

nReqCR
Vh,s

Vnx,s

Ih2

VrefBitIV[7:0] Bits[2:0]Clkh

Ack
Bith[5:0]

Reset
Hazard

Vrst1,Vrst2

Irst Vsrc

Figure 4.19 Structure of one RS channel

Discrete-Input Random Sampling 71

Sp0 that defines the settling time of the entire circuit during reset The details of

blocks are explained as following subsections.

4.5.1 Hazard Core

This section describes the circuit modifications which improve on the multiplier

circuit and also avoid the use of the extra DAC. In the continuous-input RS circuit, the

input current Ip(t) can be a continuous-value signal. However, such flexibility is

unnecessary because the LS and RNG circuits are time stepped; that is, their outputs

are both discrete values that are updated on every iΔt, where i ∈ {0,1,2,…}. In

addition, note that Ip(t)/IL in (4.2) can be treated as a time-varying unit-less factor

N(t). The input probability distribution is therefore represented by N(t) instead of

Ip(t). The data from the LS FPGA block, i.e. Bith[5:0] in Figure 4.19, can be directly

used as a digital input of the multiplier. The structure of the multiplier is modified

from a translinear loop circuit to a switch-controlled current-mirror array (also called

a current-mode DAC). Using the current-mirror array, the reliability of the multiplier

is improved and the input range can be defined easily. The extra DAC is also now

unnecessary. In this approach, the hazard is still updated using the continuous

recursive form while the input is provided as discrete values, i.e. pin(t) is a RSS

probability distribution, as the condition in (A.6). The circuit details of the new

Hazard Core block are shown in Figure 4.20. Similar to the structure of the

continuous-input RS, capacitor C1 is used for the integration term and transistor Ma1

operates in the subthreshold regime to fulfill the exponential term.

The current-mode 6-bit DAC consists of switches Sh5 to Sh0 and transistors Mb1 to

Mb9. The transistor size ratios of transistor Mb1 to Mb9 with the same length are

[2:32:16:8:4:2:1:1:1]. The switches are controlled by a 6-bit RS input Bith[5:0]. The

currents in the branches with high input bits of Bith sum into a current splitter

composed of transistors Mc1 to Mc4. The remaining currents flow through transistor

Mc5. When all input bits are low (Bith = 0), the summed current, Ihsum, to the splitter

shrinks down to off-current level, resulting in a large time constant and slowing the

speed. Transistor Mb8 provides a offset current to the summed current to prevent

this situation. Transistor Mb9 is also added to deal with the case when all input bits

are high. Thus, including the default current from transistor Mb8, the possible 6-bit

values are shifted from [0,63] to [1,64]. That is, N(t) = Bith(t)+1. In Section 4.2, it is

described that the DataZ module in the LS channel only sends out non-zeros values

stored in the Mem MZ module. The reason for this scheme is to compensate for the

shifted value of N(t). For example, if there is a value “29” in the Mem MZ module,

72 Chapter 4. Factor Node Hardware

the DataZ module will send out the value of “28” as Bith such that N(t) will restore

the original value of “29”.

The current splitter ratio of the currents through transistors Mc1 and Mc2 and

through transistors Mc3 and Mc4 is [1:7]. The summed current, Ihsum, is divided into

Ih1, the feedback current for integration, and Ih2 for the IV Converter block. Due to

the current splitter ratio, Ih2 is 63×Ih1. This formulation simplifies the design of the IV

Converter block which will be explained in Section 4.5.2.

The other switch group in the blue box of Figure 4.20 controls the integrated

voltage on C1, i.e. Vc1, and therefore the drain current of transistor Ma1. When there

is no spike, Ih1 charges C1 continuously. Once a spike, Sp0, happens through the Spike

Generator & Channel AER block, the feedback loop is opened through Sp1, Sp2, nSp1

and nSp2. The latter signals are derived from the Sp0 using inverters with different

timing delays in order to minimize the charge injection effect on C1. As a result, Vc1

is reset to Vrst1 and Ih1 is shorted to Vrst2, provided from the Reset Hazard block

described in Section 4.5.5. Both Vrst1 and Vrst2 are generated by an input reset current

Irst as depicted in Figure 4.24. Therefore Irst sets the reset value of Vc1, and therefore

the initial drain current of Ma1. A small initial current corresponds to a longer

integration time to reach the same current value. Also, a small input N results in a

smaller Ihsum and a longer time to reach the same current value. Therefore, tISImax (=

ISImax× Δt) is defined both by Irst and N.

Vcas

nSp1 Sp1 nSp2 Sp2
Sp0

Vsrc Vsrc

Vrst1

Vrst2

Vb4

Vb5

C1

Ma1

Sp1

nSp1

Sp2

nSp2

nBith

Ih1 Ih2

Mb1 Mb2 Mb3 Mb4 Mb5 Mb6 Mb7 Mb8 Mb9

Mc1 Mc2 Mc5

Mc3 Mc4
Bith

Sh5 Sh0Sh1Sh2Sh3Sh4

Vc1

Vb3

Ihsum

Figure 4.20 CMOS circuit details of the Hazard Core block

Discrete-Input Random Sampling 73

In this design, Irst is set to ~256 pA so that Ih1, at N = 1, is only ~2 pA. This setting

not only reduces the final power consumption of the circuit but keeps Vc1 lower than

the threshold voltage of transistor Ma1 before reset. This condition guarantees that

the subthreshold voltage-to-current exponential equation is valid. In addition, an

offset voltage, Vsrc, is added to decrease the effect of the off currents from the

transistor switches during integration and to increase the accuracy of the initial

current of Ma1 during reset [98]. The hardware mapping equation of the circuit in

Figure 4.20 is shown in (4.12), where κMa1 is the gate-coupling coefficient of Ma1, N(t)

denotes the dynamic input in the range of [1,64] and the denominator of 128 comes

from the transistor sizing ratio of Mb1 to Mb9 and the current splitter. Ih1 and N are

proportional to h and pin respectively through (4.13) and (4.14). Note that N(t) is

updated from the LS channel on every iΔt. As shown in (4.14), for a fixed value of N,

the numerical value of the probability pin can still vary depending on Irst. The smaller

Irst, the smaller the pin is, therefore the larger tISI,max is. This also explains why tISI,max

is defined by both Irst and N from the theoretical perspective.

      1

1 1
0

1

exp ' '
128

a
tMrst

h h

T

I
I t N t I t dt

CU

  
     
   

 (4.12)

  1

1

1

() aM

h

T

h t I t
CU


  (4.13)

  1

1

()
128

aM rst
in

T

I
p t N t

CU


   (4.14)

4.5.2 IV Converter

As mentioned in Section 2.2, in order to generate random spikes, the value of h

has to be compared to samples in the range of [0,1/Δt] drawn from a uniform

distribution. These samples are represented as a voltage Vnx, which is updated on

every iΔt. On the chip, Ih1 needs to be converted to a voltage through a given

resistance Req for comparison to Vnx. However, implementing a physical linear

resistor on the chip for Ih1 is infeasible because of the large value of Req. For example,

given a constant input N, the maximum hazard current of Ih1 in (4.12) can be

computed as (4.15). This maximum value happens when Vh (= Ih1× Req) reaches Vnx,max

whereupon a spike is generated. The ISI value carried by this spike is then tISImax. If

the condition that [N,ISImax,Irst] = [64,16,256 pA] is set, then Ih1,max = 2048 pA

according to (4.15). Assume Vnx ranges from [0,1.25 V] so Vnx,max is 1.25 V. The

required Req as calculated by Vnx,max/Ih1,max, is equal to 610 MΩ.

74 Chapter 4. Factor Node Hardware

  1,max 1 m m
128

rst
h h ISI ax ax

I
I I t N ISI

 
    

 
 (4.15)

Such large Req is difficult to realize physically in a VLSI chip. The required

resistance, however, can be reduced by amplifying Ih1. It is similar to what was done

in the continuous-input RS circuit. The scheme in that is to provide a source voltage

Vs for a current mirror as shown in Figure 4.12 so that Ih2 can be amplified by

adjusting Vs. However, the gain of the amplified current varies between channels due

to process mismatch. To realize a multi-channel RS array, it is inconvenient to have

a separate voltage source per channel. Therefore, this section describes another

solution that not only reduces the value of the resistor that is physically implemented

on the chip but allows to calibrate the mismatch of the resistor channel by channel.

The current splitter, mentioned in Section 4.5.1 creates a current with an

amplification of Ih1, by first making Ih2 = 63× Ih1. Then Ih2 is amplified further by 32x

through a current mirror circuit leading to a resistor R1 of only 340 kΩ, which

occupies a layout area of 71× 28 um2. To calibrate the resistance variation due to

process mismatch, the output transistor of the 32x current mirror circuit is divided,

as shown in Figure 4.21, into several transistor branches which can be turned on or

off by switches SIV7 to SIV0. The ratio of Md1 to Md10 with the same length is

[4:128:64:32:16:8:4:2:1:1]. BitIV[7:0], shown in Figure 4.19, represents the 8 bits to

control the switches. The amplified current, Ihamp, is converted to a hazard voltage,

Vh, by the physical resistor R1. That is, Vh = Ihamp× R1 = Ih2× (1/4)× BitIV× R1 =

Ih1× (63/4)× BitIV× R1, where the value of 63 is contributed by the current splitter in

the Hazard Core block and the factor of 4 is from the transistor sizing ratio of Md1 to

Md10. Theoretically, Req = 63× 32× R1, where BitIV = 128.

In Figure 4.21, the output voltage Vh,s is compared with Vnx,s, a voltage-shifted

version of Vnx, in order to ease the design complexity of the RNG circuit and the

comparator. By definition, a spike is generated when Vh > Vnx. However, Vh,s, used for

comparison, is not only a shifted signal but has an opposite sign to Vh because Vh,s =

Vref-Vh, where Vref is a bias voltage. Theoretically, another current mirror stage is

needed to change the direction flow of Ihamp. However, adding one more stage not

only increases power dissipation but, more importantly, brings in more mismatch.

The details of how to use Vh,s and Vnx,s for comparison without adding one more stage

are as follows.

Discrete-Input Random Sampling 75

Vnx is generated from a uniform distribution in the range of [0,Vnx,max] while the

shifted-version Vnx,s (the practical output of the RNG) = Vnx+Vos, where Vos is an user-

defined offset voltage. That is, Vnx,s is in the range of [Vos, Vos+Vnx,max]. Then, the

derivation is given in (4.16). The reason for Pr(Vh>Vnx) = Pr(Vh>Vnx,max-Vnx) is that the

value of Vnx,max-Vnx still follows a uniform distribution in [0,Vnx,max]. Assigning Vref =

Vnx,max+Vos leads to the result in (4.16). According to the equation, the way to

generate a spike can be changed to compare Vh,s to Vnx,s. Once Vh,s is less than Vnx,s,

a spike is generated. Note that Vnx,s is produced by the RNG whose outputs range

between [VRNGn,VRNGp] (see Section 4.3.1). Therefore, Vos = VRNGn and Vnx,max = VRNGp-

VRNGp and Vref = VRNGp.

   

 

 

,max

, ,max ,

, ,

Pr Pr

Pr

Pr

h nx h nx nx

ref h s nx os nx s

h s nx s

V V V V V

V V V V V

V V

   

    

 

 (4.16)

4.5.3 Comparator

The Comp block shown in Figure 4.22 achieves three goals. First, it compares the

hazard value Vh,s to Vnx,s. Second, because the random samples are produced on

every iΔt, the comparison result (CR) should be aligned with this time interval. Third,

Vb1

Vb4

Ih2

Vsrc

Md2 Md5 Md8

Vref

Md1
Md3 Md4 Md6 Md7 Md9 Md10

R1Vh

Vh,s

BitIV nBitIV

SIV6 SIV5 SIV4 SIV3 SIV2 SIV1 SIV0SIV7

Ihamp

Figure 4.21 CMOS circuit details of the IV Converter block

76 Chapter 4. Factor Node Hardware

during the generation of the spike, the block should be disabled. That is, CR should

stay high when there is a spike.

The first goal is achieved using a simple two-stage op-amp. As shown in (4.16),

the compared result is high when Vh,s < Vnx,s. Therefore, Vh,s is connected to the

negative terminal of the comparator as shown in Figure 4.22. The second and third

goals are achieved by implementing a positive edge-triggered D flip-flop with a clock,

Clkh, and a feedback spike pulse, Sp0, as inputs. Clkh is generated from the LS array

with a period the same as Δt. The disable period is determined by the pulse width of

Sp0, which is generated from the Spike Generator & Channel AER block. The default

pulse width is set to 2× Δt.

4.5.4 Spike Generator & Channel AER

In this block as shown Figure 4.23, the channel AER communicates with the top

level AER Transmitter block (see Figure 4.1) through the nReq and Ack signals. The

nReq signal becomes low active if the output of the Comp block (CR) is high. The

channel AER is also using the same positive edge-triggered D flip-flop in Figure 4.22.

The output of the de-multiplexer, Sp0, has a pulse width that is determined by

selecting one of the outputs of six JK flip-flops. These gates produce outputs that are

multiples of either 1, 2, 4, 8, 16 or 32 periods of Clkh. Based on the circuit simulations,

D

Clk

nClr

Q

Clkh

nClr

Vnx,s

Vh,s

2-Stage Comp
CR

Positive Edge-Triggered DFF

Clk
nClr

D

Q

Sp0

Figure 4.22 Circuit details of the Comp block

Discrete-Input Random Sampling 77

a pulse width of two clock periods is sufficient to allow the voltages and currents of

the circuits in the Hazard Core block to return to their initial values.

4.5.5 Reset Hazard

The Reset Hazard block acts to bring Vc1 and the drain current of transistor Ma1

in the Hazard Core block (see Figure 4.20) back to their initial values. They are

controlled by Irst that is generated from an on-chip RS DAC. Each RS channel has a

DAC in order to control Irst independently. The structure of the Reset Hazard block is

shown in Figure 4.24. The two op-amps have the same design with a simple five-

transistor structure, where the current source is gate-controlled by Sp0. If there is no

spike pulse, the op-amps are turned off to save power. Transistor Ma2 is designed to

have the same dimension as transistor Ma1 in the Hazard Core block. The voltage

source Vsrc is also shared with the same bias in the Hazard Core block. Therefore, the

initial drain current of Ma1 should be expected to be Irst. The voltage Vc1 in the Hazard

Core block is reset to the initial voltage Vrst1. The second reset source Vrst2 is used to

sink the current Ih1. Two op-amps are required because if there is only one op-amp,

the feedback loop will continue to make Ih1 increase causing the op-amp to fail in

resetting Vc1.

J

K

Clk

nClk

nClr

Q

nQ

J

K

Clk

nClk

nClr

Q

nQ

J

K

Clk

nClk

nClr

Q

nQ

J

K

Clk

nClk

nClr

Q

nQ

J

K

Clk

nClk

nClr

Q

nQ

J

K

Clk

nClk

nClr

Q

nQ

JKFF

D

Clk

nClr

Q

0

1

2

3

4

5 Ack

nReq
CR

Sp0

Channel AER
Clkh BitS[2:0]

Figure 4.23 Circuit details of the Spike Generator & Channel AER block

78 Chapter 4. Factor Node Hardware

4.5.6 Channel Bias

The Channel Bias block shown in Figure 4.25 provides all required biases in the

RS channel. Some biases, i.e. Vb1 and Vb3, are generated by a common current source

Ib,src (Figure 4.25 (a)) from one shared on-chip DAC for all RS channels. The other

biases, i.e. Vb4 and Vb5, are generated by a PMOS chain as shown in Figure 4.25(b).

There are seven equal-dimension bulk-source-tied transistors connected from Vdd to

Gnd.

Vcas

Irst

Vsrc

Vb1

Vrst1

Vrst2

Ma2

Figure 4.24 CMOS circuit details of the Reset Hazard block

Vb3

Vb1

Ib,src

Vb4

Vb5

pmos x3

pmos x2

 (a) (b)

Figure 4.25 CMOS circuit details of the Channel Bias block

Discrete-Input Random Sampling 79

Table 4.3 shows the mapping of the parameters from the mathematical values

to the physical values in the hardware. Note that the mapping of the probability

distribution pin is dependent on both N and Irst as shown in (4.14). The relationship

between the hazard value, h, and the hazard current, Ih1, is defined in (4.13).

4.5.7 Measurement Results

The discrete-input RS circuit is chosen to realize the multi-channel RS ASIC chip.

The chip microphotograph is shown in Figure 4.26. Because tISImax of each channel is

controlled by Irst (see Section 4.5.1), 16 on-chip RS DACs is implemented, allowing to

tune the Irst value of each individual channel. The remaining subsections present the

detailed chip characterization results and measurements from the chip.

Math.

Symbol

Math.

Value

Physical

Symbol

Physical

Value
Unit

pin [0,1] N× Irst [1,64]× Irst

- Irst ~300 pA

h [0,1/Δt]=[0,1] Vh [0,1.25] V

- Vh,s [1.25,2.5] V

nx/Δt [0,1/Δt]=[0,1] Vnx [0,1.25] V

 Vnx,s [1.25,2.5] V

Δt 1 Δt 64 us

 pulse width of Sp0 128 us

 Clkh 0.0156 MHz

 Clkmain 0.5 MHz

 ClkRNG 0.5 MHz

 Clkconfig 1.56 MHz

 C1 4 pF

 R1 340 kΩ

 Vref 2.5 V

 Vsrc 0.3 V

Table 4.3 Mapping table of discrete-time RS

80 Chapter 4. Factor Node Hardware

4.5.7.1 Linearity of the Current Mirror Array

The linearity of the current mirror array (or the current-mode DAC) in the Hazard

Core block is estimated indirectly by measuring the output ISIs. In this experiment,

Vnx is set by an external voltage source instead of a RNG.

It is known that an output spike is generated when Vh > Vnx. By assigning a

constant value to the input N and assigning Vnx to Vnx,max, the output spikes are fired

constantly with a roughly fixed period, i.e. ISIs are constant. The ISI in this case is

ISImax. Averaging on these ISIs and changing the input N from 1 to 64 leads to the

result as shown in the red cure of Figure 4.27. The average ISI is inversely

proportional to N according to (4.15). After taking the reciprocal of the average ISI,

the linearity of the current mirror array is shown in the blue curve. As expected, the

change of the current multiplier from a translinear loop to a current mirror array

results in an improved linearity (i.e. the ratio of the maximum and minimum value of

N is increased to 64) and a well-defined input range.

Figure 4.26 Chip microphotograph of the RS array with 16 RS channels, 16 RS

DACs for the reset currents, the RNG array for 16 random sources and the top-

level chip AER transmitter. The bias generator occupies the remaining area. The

chip areas is 2.16× 2.74 mm2

Discrete-Input Random Sampling 81

4.5.7.2 Accumulation of the Hazard

This experiment shows how the hazard accumulates in the RS chip given a

uniform distribution, which means a constant input N, as an example. The relation

between the input probability and time in the time-course uniform distribution is

shown in Figure 4.14. To generate such distribution, it is only needed to provide a

constant input N and the system will go back to the initial state by itself once a spike

happens. It is not needed to cut the input value when the time reaches tISImax because

a spike must happen no longer than tISImax.

The value of the hazard h can be derived by measuring Vh. This voltage can be

indirectly estimated by measuring the output ISIs of one RS channel as a function of

Vnx as shown in Figure 4.28.Note that in this case Vnx is set by an external voltage

source instead of a RNG. Because an output spike is generated when Vh > Vnx, the

accumulation time of Vh increases as Vnx increases. When a spike is generated, Vh just

surpasses Vnx, i.e. Vh ~= Vnx. Therefore, Figure 4.28 also demonstrates how the hazard

accumulates over time in the case of a uniform input distribution. This can be seen

by reversing the x and y axes of the plot. The ISImax for each value of N happens when

Vh reaches Vnx,max (= 1.25 V). In Figure 4.28, the ISImax value (~= 32) for N = 64 (the red

curve) is a half of the one (~= 64) for N = 32 (the blue curve) and is a quarter of the

Figure 4.27 Linearity of the current mirror array in the Hazard Core block.

0 10 20 30 40 50 60 70

0

500

1000

1500

2000

 ISI

 1/ISIIS
I

(Δ
t)

N

0.00

0.01

0.02

0.03

1
/I

S
I

(1
/Δ

t)

82 Chapter 4. Factor Node Hardware

one (~= 128) for N = 16 (the yellow curve) and so on. The experimental result follows

the prediction in (4.15) that N× ISImax is a constant. Note that Vh and Vnx are used in

this section in order to facilitate the explanation on the accumulation of the hazard

instead of using Vh,s and Vnx,s. In fact, Vnx,s are provided in this experiment and Vnx are

obtained by subtract the offset Vos from Vnx,s.

The inset of Figure 4.28 shows an expanded view of the curves in the dotted box.

Here, it is clear that using the smallest value of N corresponding to a larger tISImax (=

ISImax× Δt) also means that the initial Vh is small. The small initial Vh causes that the

voltage changes very little over a large range of ISI values. To detect a small change

in Vh, a random source with high bit resolution is required. The required resolution

will be discussed in the next section.

4.5.7.3 Effect of the Non-Ideal Random Source

In the previous experiment, it is shown that Vh increases slowly in the constant

input case and is also possible to change slowly with other input waveforms.

Therefore, the random source generating samples of Vnx needs to have high

resolution and low distortion. In this experiment, whether the output ISI distribution

of the RS channel is affected by the non-ideal random source or not is tested. Again,

a uniform distribution is provided and the output ISI distribution by collecting the

Figure 4.28 Dependence of output ISIs on Vnx

0.00 0.25 0.50 0.75 1.00 1.25

0

50

100

150

200

250

300

0.00 0.05 0.10

0

50

100

IS
I

(Δ
t)

Vnx (V)

 N = 64

 N = 32

 N = 16

 N = 8

Discrete-Input Random Sampling 83

output ISIs is measured. Vnx(t) in this experiment is considered as independent

samples of a random source that are drawn on every iΔt.

Given a uniform input distribution, the output ISIs between 1 to ISImax should be

equiprobable. In the inset of Figure 4.28, it can be seen that Vh increases slowly

before the time reaches tISImax. During integration, Vh is continuously compared to

Vnx so the small changes of Vh could only be distinguished with a relatively high

accuracy Vnx.In this chip, the random source either comes from the internal on-chip

RNG or external off-chip LFSR. Both random sources applied on the chip are non-

ideal: The RNG circuit has a non-ideal uniform distribution. The distribution of the

RNG measured in [82] shows a Gaussian distortion similar to Figure 4.29(c). The LFSR

as implemented in the FPGA can only have finite resolution in the distribution values.

The effect of these non-idealities on the output ISI distribution is first explored in a

Matlab simulations of three forms of the random source: An ideal uniform random

source, NX1; a uniform random source, NX2 (Figure 4.29(c)), where a 0.03-sigma

Gaussian random value is added to the samples; and a random source with a 8-bit

resolution, NX3, i.e. the output of NX3 is quantized in one of the 8-bit values. The

impact of these different random sources on the output distribution is dependent

on the resolution of the ISI bins. In the case when ISImax = 16, corresponding to the

input probability pin = 0.0625 (in the Matlab simulations, Δt = 1 so tISImax = 16 and pin

= 1/16), the output ISI distributions pISI of all three sources as shown in Figure 4.29(a)

are very similar. However in the case of a large ISImax, corresponding to an even

smaller pin, only the distribution of NX1 is similar to the input as shown in Figure

4.29(b).

Figure 4.30 shows measured test results from one RS channel of the fabricated

chip. Note that Irst is tuned so that ISImax = 16 given a constant input N = 64 (pin =

0.0625). The bit resolution of the external LFSR random source is set to 14 bits. The

analog output after passing the LFSR output through a 14-bit off-chip DAC is used as

the random number output instead of the internal RNG output. When ISImax is small

(= 16), the output distributions from using either the external or internal random

sources looks similar to the input distribution as shown in Figure 4.30(a). When ISImax

is increased to 256, the 14-bit LFSR in Figure 4.30(b) performs much better than the

on-chip RNG output that is similar to the simulation results in Matlab. The KL

divergence (see (3.1), where P refers to pin and Q refers to pISI) generated by using

the external (LFSR) and the internal (RNG) random sources are shown in Figure

4.30(c). As expected, the value of the KL divergence increases with ISImax given a fixed

number of samples. However, the values using the internal random source is

consistently higher across all ISImax values. This observation suggests that the

84 Chapter 4. Factor Node Hardware

Gaussian distortion seen in the RNG distribution has a worse effect on the output ISI

distribution than the finite bit resolution of the LFSR.

This experiment demonstrates that the Gaussian distortion from the RNG affects

the output distribution as ISImax increases. It is difficult to reduce this non-ideality in

a simple way after fabrication. In contrast, the resolution of LFSR can be adjusted to

an arbitrary number of bits if the corresponding DAC can be found. A 14-bit LFSR

with ISImax = 128 leads to the KL divergence of 0.002 as shown in Figure 4.30(c).

Therefore, in the system level test combining the LS and RS array to form a message

passing network described in Section 4.6, the random sources are all provided from

the external LFSR.

Discrete-Input Random Sampling 85

(a)

(b)

(c)

Figure 4.29 Output ISI distributions pISI over 10,000 samples as simulated in

MATLAB. The uniform input probability pin is (a) 0.0625 and (b) 0.0039. (c) The

distribution of the random source NX2.

0 4 8 12 16

0.00

0.02

0.04

0.06

0.08

p
ro

b
a

b
ili

ty

ISI

 pin

 pISI,NX1

 pISI,NX2

 pISI,NX3

0 40 80 120 160 200 240 280

0.000

0.004

0.008

0.012

0.016

p
ro

b
a

b
ili

ty

ISI

 pin

 pISI,NX1

 pISI,NX2

 pISI,NX3

0.0 0.2 0.4 0.6 0.8 1.0
0.000

0.004

0.008

0.012

p
ro

b
a

b
ili

ty

NX2

86 Chapter 4. Factor Node Hardware

(a)

(b)

(c)

Figure 4.30 Output ISI distributions over 80,000 samples as measured from

one RS channel using a constant input N = (a) 64 and (b) 4. The corresponding

mathematical input probability pin is (a) 0.0625 and (b) 0.0039. (c) The KL

divergences of the output ISI distributions over the 80,000 samples with the

internal (RNG) and external (LFSR) random sources.

0 4 8 12 16

0.00

0.02

0.04

0.06

0.08

p
ro

b
a
b
ili

ty
 (

1
/Δ

t)

ISI (Δt)

 pin

 pISI with Vnx,int.

 pISI with Vnx,ext.

0 40 80 120 160 200 240 280

0.000

0.002

0.004

0.006

0.008

0.010

p
ro

b
a
b
ili

ty
 (

1
/Δ

t)

ISI (Δt)

 pin

 pISI with Vnx,int.

 pISI with Vnx,ext.

16 32 64 128 256 512 1024

10-4

10-3

10-2

10-1

100

101

K
L
 d

iv
e
rg

e
n
c
e

 (
b
it
)

ISImax

 Vnx,int.

 Vnx,ext.

Discrete-Input Random Sampling 87

4.5.7.4 Calibration of the Equivalent Resistance

In Section 4.5.2 the way to compute the resistance Req is presented by a special

case of (4.15). In fact, Req can be theoretically formulated. Combining (4.10) and

(4.13), (4.17) is obtained. Then, the resistance is shown in (4.18).

    1

1

,max 1

aMh
h

nx T

V
h t t I t t

V CU


     (4.17)

 1

,max

1 1

aMh
eq nx

h T

V
R V t

I CU


    (4.18)

In this equation, the value of Req is set by Vnx,max and Δt. The ratio of the current

mirror in the IV Converter block is calibrated by BitIV[7:0] so that the equivalent

resistance of the circuit (= R1× (63/4)× BitIV) matches the theoretical Req in (4.18).

Otherwise, the output ISI distribution does not approximate the input. Ideally, BitIV

= 128. Figure 4.31 demonstrates how the calibration affects the ISI output

distribution pISI. Given a uniform input distribution (N = 32), only pISI with BitIV = 107

is close to pin. For those BitIV < 107, the RS channel tends to generate spikes with

larger ISIs because the equivalent resistance is not big enough. On the other hand,

when BitIV > 107, more spikes are prone to be generated with smaller ISIs.

Because of circuit mismatch, the calibration has to be done separately in each

channel. A memory block that stores the value for each channel would have been

useful. Unfortunately, the author overlooked putting such block in this chip so only

maximally 6 out of the 16 channels that have similar values of BitIV can be chosen to

construct a factor graph.

88 Chapter 4. Factor Node Hardware

4.6 Test Results of Message Passing in VLSI

Factor Graphs

In the experiments demonstrated in this section, the results are obtained from

the complete system that the RS array is implemented as an ASIC chip and the LS

array is implemented on the FPGA. The architecture of the hardware system is shown

in Figure 4.1 and the PCB is shown in Figure 4.32. As the measurement results

presented in Section 4.5.7.3 and Section 4.5.7.4, the random source for each channel

comes from a 14-bit LFSR with an off-chip DAC and only 6 out of 16 RS channels can

be used. Also, ISImax of an ISI distribution is no more than 128. Each LS-RS-combined

channel represents a unidirectional factor node and several channels make up a

unidirectional factor graph. The results on a few factor graphs are presented here.

Note that the total time window, WT, is based on both the number of collected

samples and the mean of the ISI distribution, ISImean. For example, a uniform

distribution with ISImax = 32 has ISImean = 16.5. If collecting 100,000 samples is desired,

then the average WT is 16.5× 100000× Δt = 105.6 s for Δt = 64 us. The time window

W of the LS channel is defined as 1.05 s, and the Mem ISIX or Mem ISIY module has

Figure 4.31 Effect of the calibration on the output ISI distributions. Given a

constant input N = 32, pISI is obtained from one RS channel over 80,000 samples.

The corresponding mathematical input probability pin is 0.031.

0 8 16 24 32

0.00

0.01

0.02

0.03

0.04

p
ro

b
a

b
ili

ty
 (

1
/Δ

t)

ISI (Δt)

 pin

 pISI with BitIV = 87

 pISI with BitIV = 97

 pISI with BitIV = 107

 pISI with BitIV = 117

 pISI with BitIV = 127

Test Results of Message Passing in VLSI Factor Graphs 89

only 512 entries (see Figure 4.2). The output samples generated by the RS channel is

based on the message-combined distribution, which is computed using the (512)2

sample pairs and stored in the Mem MZ module. To obtain 100,000 output samples

in WT, the LS channel is reused several times until the number of output samples is

reached. In each new time window, the Mem ISIX, Mem ISIY and Mem MZ modules

are reset.

Note that the term of “ISIs” denotes ISI samples and the term of “ISI value”

denotes some bin value in an ISI distribution in the following measurements.

The first factor graph shown in Figure 4.33(a) is composed of two RS channels

and one LS-RS-combined channel. The two RS channels generate the output spike

trains spikeX and spikeY on the edges X and Y along the arrows based on the messages

mX, and mY defined in the channels. Messages mX, and mY are assigned to two

uniform distributions as shown in Figure 4.33(b),(c) in red and their ISI distributions

obtained by counting the ISIs of spikeX and spikeY are shown in blue. The constraint

function of the LS-RS-combined channel is assigned to a switching-gain function

Figure 4.32 The PCB of the hardware system consisting of an FPGA LS an ASIC

RS. The occupied area of the PCB is 127× 118 mm2. The FPGA used is Lattice

Semiconductor LFE3-70EA-FN484.

90 Chapter 4. Factor Node Hardware

defined in (4.19). The switching-gain node sets a gain of 1 on the ISIs of spikeX if the

ISIs of spikeY are between [1,8], and a gain of ½ if the ISIs of spikeY are between [9,16].

Figure 4.33(d) shows the theoretical distribution (the red curve) of messages mZ

computed using the SPR and the ISI distribution (the blue curve) obtained by

counting the ISIs of the output spike train spikeZ. The ISI distribution approximates

the theoretical distribution as expected. Because messages mX and mY are both

uniform, the probability value of message mZ for the ISI value between [1,16] is

approximately three times as large as the probability value for the ISI value between

[17,32]. Figure 4.33(e) shows the KL divergence of the three messages between the

theoretical and the ISI distribution as a function of the number of ISIs. The KL

divergence of message mY is the lowest value all the time. The reason is that ISImax (=

16) of message mY is the smallest among the three messages. Given the same

number of ISIs, the ISI distribution with a smaller ISImax can approximate the

theoretical one better because of more samples in each bin.

  
 

 

 if 1 y 8
, ,

0.5 if 9 y 16

x z
f x y z

x z





  
 

  

 (4.19)

The second experiment demonstrates that the constraint function can be

defined flexibly in the FPGA. The factor graph having the same structure to the first

graph is shown in Figure 4.34(a). Only the constraint function defined in the LS-RS-

combined channel is changed. Messages mX and mY are assigned to two uniform

distributions as shown in Figure 4.34(b),(c) in red and their ISI distributions obtained

by counting the ISIs of spikeX and spikeY are shown in blue. The constraint function f

of the switching node is set to function fA in (4.20) if the ISIs of spikeY are between

[1,8] while function f is set to function fB in (4.21) if the ISIs of spikeY are between

[9,16].

Because messages mX and mY are both uniform, the theoretical distribution of

message mZ computed using the SPR is a combination of a V-shaped distribution for

the ISI value between [1,16] and a triangular-shaped distribution for the ISI value

between [34,48] as shown in Figure 4.34(d) in red. The ISI distribution in blue also

shows the similar result to the theoretical one as expected. Figure 4.34(e) shows the

KL divergence of the three messages as a function of the number of ISIs. As the same

reason in the first factor graph, the KL divergence of message mY is the lowest value

all the time because of the smallest ISImax among the three messages.

Test Results of Message Passing in VLSI Factor Graphs 91

 

1, if 1 x 8 & z=1

 or if 9 x 15 & z=2

 or if 16 x 21 & z=3

 or if 22 x 26 & z=4

 or if 27 x 30 & z=5

 or if 31 x 33 & z=6

 or if 34 x 35 & z=7

 or if x=36 &
, ,Af x y z

 

 

 

 

 

 

 


z=8

 or if x=37 & z=10

 or if 38 x 39 & z=11

 or if 40 x 42 & z=12

 or if 43 x 46 & z=13

 or if 47 x 51 & z=14

 or if 52 x 57 & z=15

 or if 58 x 64 & z=16

0, else
















 

 

 

 

 

 












 (4.20)

 

1, if x=1 & z=34

 or if 2 x 3 & z=35

 or if 4 x 6 & z=36

 or if 7 x 10 & z=37

 or if 11 x 15 & z=38

 or if 16 x 21 & z=39

 or if 22 x 28 & z=40

 or if
, ,Bf x y z

 

 

 

 

 

 


29 x 36 & z=41

 or if 37 x 43 & z=42

 or if 44 x 49 & z=43

 or if 50 x 54 & z=44

 or if 55 x 58 & z=45

 or if 59 x 61 & z=46

 or if 62 x 63 & z=47

 or if x=64 & z=48

0, else





 


 

 

 

 

 

 
























 (4.21)

The third factor graph shown in Figure 4.35(a) consists of three RS channels and

three LS-RS-combined channels. The three RS channels generate the output spike

trains spikeU, spikeV and spikeW on the edges U, V and W along the arrows based on

92 Chapter 4. Factor Node Hardware

the messages mU, mV, and mW defined in the channels. Messages mU and mV are

assigned to the same uniform distribution with ISImax = 16 similar to the graph in

Figure 4.34(c). Message mW is assigned to a V-shaped distribution as shown in Figure

4.35(b) in red. The three LS-RS-combined channels are defined as a plus node, an

equality node and a half-wave rectified linear unit (ReLU) node. The first two

constraint functions are defined in (2.6) and the third one is defined in (4.22).

Because messages mU and mV are both uniform, the theoretical distribution of

message mX computed using the SPR is triangular shaped as shown in Figure 4.35(c)

in red. The ISI distribution (the blue curve) approximates the theoretical one as

expected. In addition, as the result in (2.7), message mY is the product of messages

mX and mW using the SPR. Therefore, the theoretical distribution of message mY is a

two-bump-shaped distribution as shown in Figure 4.35(d) in red and the ISI

distribution (the blue curve) also approximates the theoretical one. Finally, the half-

wave ReLU node shifts message mY toward the left with 10 ISI values to form

message mZ. The theoretical distribution of message mZ computed using the SPR is

shown in Figure 4.35(e) in red and the ISI distribution is shown in blue. Figure 4.35(f)

shows the KL divergence of the six messages as a function of the number of ISIs. The

KL divergences of messages mY and mZ are much larger than messages mW and mX

all the time. The reason is that the equality node filters out many input ISIs. Function

fequality (see (2.6)) compares the ISIs of spikeX and the ISIs of spikeW. If their values are

not the same, the sample pairs are discarded. In the experience, many pairs are

discarded. The histogram formed from the remaining ISIs is used to generate the

resulting output spike train spikeY. The resulting output ISI distribution has a worse

approximation to the theoretical distribution than other constraint functions such as

function fplus, where ISIs are not discarded. This error then propagates to the next

factor node for generating the spike train spikeZ.

  
 

0 if 10
,

10 if >10
rectifier

y
f y z

y z y


 

 
 (4.22)

The system specifications are given in Table 4.4. The power consumption of the

entire chip includes the power of the 16 on-chip DACs which are needed to adjust

the reset current, Irst, of each channel separately.

Test Results of Message Passing in VLSI Factor Graphs 93

Specification Quantity Unit

Process AMS 2P4M 0.35um

Chip Area 2.16× 2.74 mm2

Chip Area (One RS Channel) 0.78× 0.09 mm2

Number of Channel 16

Power of the RS chip 6.32 mW

Power of the RS single channel 0.046 mW

Supply Voltage 3.3 V

System Clock, Clkmain 10 MHz

System Clock, Clkh 0.0156 MHz

Δt 64 us

Time Window W 1.05 s

Mem ISI 7× 512 bit

Mem MZ 6× 128 bit

ISI Range 1 to 128 Δt

RS Input Range 0 to 63

Reset Current, Irst ~300 pA

Random Source Vnx,s Range 1.25 to 2.5 V

LFSR Resolution 14 bit

Table 4.4 System specification

94 Chapter 4. Factor Node Hardware

1
1/2

AX =
X

Y

Z
mX

mY

 (a) (b)

 (c) (d)

(e)

Figure 4.33 (a) Factor graph consisting of two RS channels, one LS-RS-

combined channel, three variables X, Y, Z and the messages along the arrows.

The messages of (b) X (c) Y (d) Z along the arrows, with the theoretical

distribution in red and the output ISI distribution in blue over 100,000 samples.

(e) KL divergences of the three messages as a function of the number of ISIs.

0 4 8 12 16 20 24 28 32

0.00

0.02

0.04

0.06

m
X
 (

1
/Δ

t)

ISI (Δt)

0 4 8 12 16 20 24 28 32

0.00

0.02

0.04

0.06

m
Y
 (

1
/Δ

t)

ISI (Δt)

0 4 8 12 16 20 24 28 32

0.00

0.02

0.04

0.06
m

Z
 (

1
/Δ

t)

ISI (Δt)

1000 10000 100000

10-4

10-3

10-2

10-1

K
L
 d

iv
e
rg

e
n
c
e
 (

b
it
)

No. of ISI samples

 X

 Y

 Z

Test Results of Message Passing in VLSI Factor Graphs 95

fA

fB

X

Y

Z
mX

mY

f =

 (a) (b)

 (c) (d)

(e)

Figure 4.34 (a) Factor graph consisting of two RS channels, one LS-RS-

combined channel, three variables X, Y, Z and the messages along the arrows.

The messages of (b) X (c) Y (d) Z along the arrows, with the theoretical

distribution in red and the output ISI distribution in blue over 100,000 samples.

(e) KL divergences of the three messages as a function of the number of ISIs.

0 16 32 48 64

0.000

0.005

0.010

0.015

p
X
 (

1
/Δ

t)

ISI (Δt)

0 4 8 12 16

0.00

0.02

0.04

0.06

p
Y
 (

1
/Δ

t)

ISI (Δt)

0 16 32 48 64

0.00

0.02

0.04

0.06
p

Z
 (

1
/Δ

t)

ISI (Δt)

100 1000 10000 100000

10-4

10-3

10-2

10-1

100

K
L
 d

iv
e
rg

e
n
c
e
 (

b
it
)

No. of ISI samples

 X

 Y

 Z

96 Chapter 4. Factor Node Hardware

+
U

V

X

=
W

Y
mU

mV mW

Z

(a)

 (b) (c)

 (d) (e)

(f)

Figure 4.35 (a) Factor graph consisting of three RS channels, three LS-RS-

combined channels and variables U, V, W, X, Y, Z, and the messages passing

along the arrows. The messages of (b) W (c) X (d) Y (e) Z along the arrows with

the theoretical distribution in red and the output ISI distribution in blue over

100,000 samples. (f) KL divergences of the four messages as a function of the

number of ISIs.

0 4 8 12 16 20 24 28 32

0.00

0.02

0.04

0.06

0.08

m
W

 (
1
/Δ

t)

ISI (Δt)

0 4 8 12 16 20 24 28 32

0.00

0.02

0.04

0.06

0.08

m
X
 (

1
/Δ

t)
ISI (Δt)

0 4 8 12 16 20 24 28 32

0.00

0.02

0.04

0.06

0.08

m
Y
 (

1
/Δ

t)

ISI (Δt)

0 4 8 12 16 20 24 28 32

0.00

0.02

0.04

0.06

0.08

m
Z
 (

1
/Δ

t)

ISI (Δt)

1000 10000 100000

10-3

10-2

10-1

K
L
 d

iv
e
rg

e
n
c
e
 (

b
it
)

No. of ISI samples

 W

 X

 Y

 Z

Chapter 5 Conclusion and

Future Work

This chapter presents conclusions on the study and the hardware

implementation of the event-based Belief-Propagation (BP) model. Section 5.1

describes the considerations in implementing the different components of the BP

model through aVLSI circuits and the theoretical approximations because of the

constraints of the hardware system. Section 5.2 describes the improvements on the

aVLSI design especially in consideration of a larger-scale multi-channel BP system in

the future.

5.1 Conclusions of Hardware Design

This thesis presented a hardware system that implements a set of unidirectional

factor nodes in the event-based BP model, where the messages are transmitted

using spikes. The system consists of two components: The first component, i.e. the

Landscape Sampling (LS) array, is implemented on an FPGA. This block records the

values of Interspike Intervals (ISIs) from the input spike trains and produces the

message-combined distributions using the recorded ISIs and the defined factor

constraint functions. The second component is the Random Sampling (RS) array that

can produce up to 16 output messages in the form of spike trains. This component

is implemented on an ASIC chip fabricated in a 0.35um CMOS process. The output

messages produced by this block are encoded in the ISIs of the output spike train

that are sampled from the message-combined distributions based on the renewal

theory.

Because the original definition of the hazard (A.5) requires a division which is

difficult in aVLSI circuits, the continuous recursive form (A.6) was come up with. To

ensure that the continuous recursive form leads to the same output ISI distribution

as using the original definition, we performed the discrete-time simulations

described in Chapter 3. The simulation results lead to the conclusion that if the input

probability distribution pin(t) is a regularly-step-staircase (RSS) distribution, using

98 Chapter 5. Conclusion and Future Work

either the original definition (A.5) or the continuous recursive form (A.6) of the

hazard makes the output ISI distribution pISI equal to pin. If, on the other hand, pin(t)

is not a RSS probability distribution or the discrete recursive form (A.7) is used, pISI

only approximates pin under the condition that the time step Δt << tmean, where tmean

is the mean time of pin(t) defined in (2.11). In the case where pISI only approximates

pin, pin(t) are limited to certain kinds of distributions with long tmean compared to Δt.

Binary probability distributions, for example, are unable to use the discrete-time

approximation. These simulations help the author determine the specifications of an

aVLSI circuit design that is used to realize the continuous recursive form of the hazard.

As presented in Chapter 4, the ASIC chip occupies the area of 2.16× 2.74 mm2 in

a 0.35 um 2-poly-4-metal CMOS technology and was mounted on a system board

with the FPGA of Lattice Semiconductor LFE3-70EA-FN484 that implements the LS

channels as shown in Figure 4.32. The power consumption of the ASIC chip is 6.32

mW with 0.046 mW per RS channel. The remaining power consumption of the ASIC

excluding the RS channels comes from the RS DACs and the bias generators.

The reason why the RS circuit is implemented in aVLSI is not only because analog

circuits are suitable for the continuous recursive form of the hazard but the

mathematical terms of the hazard function in (A.6) can easily be realized by analog

components, such as a current charging a capacitor (representing the integration)

and a transistor operating in subthreshold regime where the current is exponentially

dependent on the gate voltage. The multiplication term can be realized by the gain

function of a current-mirror circuit array. However, in the current system, the speed

of the ASIC is limited by the time constants needed for the analog circuits of the RS

channel. It is the reason why Δt is defined in the range of microseconds, i.e. Δt = 64

us.

Because of the clocked nature of both the LS FPGA and the RNG circuit, the ISI

samples in the implementation were constrained to integer values. However this

constraint allows the author to design a simple counter for a specific range of integer

values and also allowed one to compute the histograms of two functions f(x,y,z), the

message-combined distribution before normalization, and F(x,y), the normalization

term, in parallel (see Figure 4.2). The possible integer values of ISI in the hardware

system were in the range of [1,128] (i.e. tISI ∈ [Δt,128Δt], where time step Δt = 64us).

When increasing the maximum ISI, i.e. ISImax, an on-chip RNG with an ideal uniform

distribution or an off-chip LFSR with higher bits is needed. Defining ISImax = 128 and

using a 14-bit off-chip LFSR with a 14-bit off-chip DAC leads to an acceptable value

of the KL divergence of 0.002 (see Figure 4.30(c)).

Hardware Improvements and Outlook 99

The input distribution to the discrete-input version of the RS circuit cannot be

arbitrary because the ratio between the maximum and minimum values of pin(t) can

only go up to 64. In a RS channel, there are only two parameters, Irst and BitIV (see

Figure 4.19), that need adjusting. The reset current Irst is used to define ISImax while

BitIV is used to calibrate the equivalent resistance for converting the hazard current

Ih to the hazard voltage Vh. This calibrated resistance has to match the resistance Req

calculated in (4.18) so that pISI approximates pin well as measured by the KL

divergence.

In the event-based BP model, having a sufficient number of ISIs in spike trains is

significant for representing the carrying messages. To approximate a distribution

well, the value of ISImax determines the number of ISIs required. For example, a good

approximation (the KL divergence is 0.001) can be made over 1000 ISIs in a factor

graph with binary variables (i.e. ISImax = 2) (see Figure 3.5). However, if ISImax = 32,

the number of ISIs needs to increase to 16000 so that a similar KL divergence value

can be achieved. In Section 4.6, 100,000 ISIs is used to represent the messages. With

ISImax = 32, the time for collecting 100,000 sequential samples would take 105.6 s.

Since the implemented event-based BP hardware model in this thesis only

produces unidirectional messages, the messages for the opposite direction in a

bidirectional link between two nodes can be computed by reusing factor nodes.

Sometimes a delay node is needed to compute an output message correctly. For

example, in the event-based Kalman filter, the spike train carrying the messages of

the prediction and the spike train carrying the messages of the observation should

arrive at the equality node (see Figure 3.8) in the same time window so that the

correct distribution is reflected in the output spike train. The number of nodes in the

prediction and observation paths should be the same. If not, a delay node, i.e. a

unity-gain constraint node, should be added to the path with fewer nodes.

Some circuit constraints in terms of sample number, speed, a good random

source and the mismatch between channels can be possibly improved so that a

larger-scale multi-channel system is feasible. The modifications are discussed in the

next section.

5.2 Hardware Improvements and Outlook

Several improvements that address the constraints of this tested prototype

hardware system are proposed and discussed in this section. First, as mentioned in

Section 5.1, each RS channel need two parameters for channel calibration, i.e. Irst and

BitIV. The 8-bit parameter BitIV that is used to calibrate the equivalent resistance to

100 Chapter 5. Conclusion and Future Work

match the theoretical value can be stored in eight single bit latches for each channel.

Although calibration between channels is still necessary, the latches for all channels

only consume little resource. As for the other parameter Irst, 16 on-chip RS DACs are

implemented to generate 16 individual Irst for the RS channels in the current ASIC. A

large percentage of the overall chip power consumption is contributed by the RS

DACs (see Table 4.4). Irst defines the initial current of transistor Ma1 (see Figure 4.20).

In the Hazard Reset block (see Section 4.5.5), Irst first defines the reset voltage Vrst1

of the output buffer and then Vrst1 controls the gate of transistor Ma1. Once a spike

happens, the gate voltage of transistor Ma1 is reset to Vrst1 and the initial current of

transistor Ma1 is reset to Irst within the pulse width of the spike due to the strong

driving capacity of the output buffer for Vrst1. However, the mismatch of the

transistors in the buffer causes Vrst to vary between channels, resulting in different

initial currents of transistor Ma1 even though the same current Irst is provided. This is

the reason for separated RS DACs required. It is not feasible to have individual RS

DACs for all channels in a large-scale multi-channel implementation. The author

proposes a modification in the circuit to remove the individual DACs for Irst and a

global Irst is explained as follows.

The buffer in Figure 4.24 for producing Vrst1 is removed and the gate of the

transistor Ma1 in Figure 4.20 is controlled by Irst using a diode-connected transistor

Ma2 as shown in Figure 5.1. Because the transistor Ma1 has to be operated in the

subthreshold regime over a range of currents, the width/length ratio sizes of

transistors Ma1 and Ma2 has to be large. Because the area of the transistors are also

large, the process mismatch between these two transistors is low. In addition, adding

a cascade transistor above transistor Ma2 and placing transistors Ma1 and Ma2 close

enough in the layout, the error of the current mirror can be improved. In the current

ASIC, Irst was set to a small current value (~256 pA) in order to save the power. Such

a small current cannot support the operation of transistor Ma2 (see Figure 5.1) in a

saturation region, i.e. Vds > 100 mV. In addition, a buffer was required in the current

design due to the small value Irst. The source bias Vsrc was also added in order to

increase the precision of the initial current of transistor Ma1 to be Irst [98]. If Irst is

increased to a sufficient value, e.g. 100 times larger = 25.6 nA, the diode-connected

transistor Ma2 will be in saturation and Irst will be large enough to reset the gate of

transistor Ma1 within a period that is determined by the pulse width of the output

spike. Also, Vsrc can be set to Gnd; therefore, it can be removed. Moreover, increasing

Irst leads to another improvement: Speed.

Hardware Improvements and Outlook 101

Derived from (2.12), (4.13) and (4.15), Δt associated with the circuit parameters

can be represented as (5.1). This equation shows that Δt can be reduced by

increasing Irst and, therefore, the system speed can be increased. A simple

measurement from the current hardware system was done by reducing Δt by a

quarter in the FPGA and increasing Irst by 4x in the ASIC. Figure 5.2 shows that pISI

approximates pin for different input probability distributions. Collecting the same

number of ISIs is four times faster than before. Of course, increasing Irst will incur a

larger power consumption but the system needs a short time for collecting the same

number of samples, therefore, leading to approximately the same energy

consumption. Another solution to increasing the speed is to reduce the size of the

capacitor C1 according to (5.1). The drawback is that more kTC noise [99] will be

brought in during reset, leading to a noisy initial current flowing through transistor

Ma1. In the current design, capacitor C1 is at 4 pF, which can be possibly reduced.

1

1

max m

1281

a

T

M rst ax

C U
t

h I N ISI

 
  

  
 (5.1)

Irst

Vsrc

Ma2

Vcas

Vrst1

Figure 5.1 Modified Reset Hazard block. Irst is increased and Vsrc is set to Gnd.

102 Chapter 5. Conclusion and Future Work

For pISI to approximate pin, a number of ISIs is required especially when ISImax is

large. In Section 5.1, given a uniform pin and ISImax = 32, the time taken to collect

100,000 samples would take 105.6 s. This lengthy accumulation time can be reduced

by having multiple inputs or nodes representing one distribution. Similar to cortical

neurons which have a large number of input neurons [29], the time required to

collect 100,000 samples, for example, can be reduced to 1.056s with 100 inputs.

However, this means that the chip area of one RS channel will have to be reduced so

that more channels can be placed within a fixed chip area.

Similar to other stochastic models such as RBMs, the event-based BP VLSI model

requires a pseudo-number generator for the sampling process. Several aVLSI

implementations of pseudo-number generators have been proposed over the years

and have focused on either digital noise (noisy bits) [100], [101], uniform

distributions [102], or other types of predefined, fixed distributions [103]–[105], or

true random number generator circuits which generate discrete, Bernoulli and quasi-

continuous, exponential random variables [106]. In [107], a single-photon avalanche

Figure 5.2 Output ISI distributions over 100,000 ISIs as measured from a RS

channel using four different input distributions. Δt is set to 16 us.

0 4 8 12 16

0.00

0.02

0.04

0.06
p
ro

b
a
b
ili

ty
 (

1
/Δ

t)

ISI (Δt)

 pX,in

 pX,ISI

0 8 16 24 32

0.00

0.02

0.04

0.06

p
ro

b
a
b
ili

ty
 (

1
/Δ

t)

ISI (Δt)

 pY,in

 pY,ISI

0 8 16 24 32

0.00

0.02

0.04

0.06

p
ro

b
a
b
ili

ty
 (

1
/Δ

t)

ISI (Δt)

 pW,in

 pW,ISI

0 8 16 24 32

0.0

0.1

0.2

0.3

p
ro

b
a
b
ili

ty
 (

1
/Δ

t)

ISI (Δt)

 pZ,in

 pZ,ISI

Hardware Improvements and Outlook 103

diode (SPAD) was used as an aVLSI noise source and connected to a spike-response

neuron model [29] implemented on an FPGA. Digital random number generators

have been used as a cheap method of creating random connections for a network

using the Neural Engineering Framework [64]. However, previous approaches have

focused on random number generator in hardware that were based on fixed

predefined distributions. An on-chip pseudo-random generator [96] is used in the

continuous-Input RS circuit [82] described in Section 4.4, but because of the non-

ideal Gaussian nature of the output distribution caused by the switched capacitors,

the author uses an LFSR implemented on the FPGA for the results reported in Section

4.5.7.

A random number generator circuit that produces a less distorted uniform

distribution can be designed using larger component sizes in a future design. A

further option is to use a current-mode random number generator circuit so that the

IV converter is not required. However, amplifying the hazard current Ih1 is still

needed in order to reduce the time constant caused by parasitic impedance. The

result of the comparison between the hazard current and the current coding the

random number value would have to be completed within Δt. In addition, the output

distribution of this new random number circuit should be ideally uniform otherwise

there will be a similar problem to the case where the non-ideal Gaussian distribution

of the random number generator circuit changes the output ISI distribution.

A future extension of the current hardware would be to configure this system to

implement a network that performs inference on the output of event-based sensors

such as the DVS [15] and the cochlea which generates asynchronous outputs [108].

Similar to the model simulation applications in Section 3.3.1, this hardware system

can be combined with the DVS in a tracking task such as predicting the position of an

object across the field of view of the retina.

Appendix A Theoretical Basis

A.1 Recursive Form of the Hazard Function

The hazard h is defined as the function of the input probability p as shown in

(A.1). The product of the hazard h(t) and the interval dt, i.e. h(t)dt, represents the

probability of an event that happens between [t,t+dt] given that no events happen

before t. Here only t >= 0 is considered; that is, p(t) and h(t) only have values since t

>= 0. The hazard can also be represented as a continuous recursive form as shown in

(A.4). The derivation is shown as follows. First, the survival function S(t) that

describes the probability of no events happening before t is defined in (A.2). Then,

the hazard h(t) can be represented by only the survival function S(t) as shown in (A.2).

The result in (A.2) leads to (A.3). By replacing the denominator of (A.1) to (A.3), the

continuous recursive form of the hazard is obtained in (A.4). Therefore, the hazard

can be computed by either the original definition (A.1) or the continuous recursive

form (A.4). Their values are the same.

  
 

 
0

1
t

p t
h t

p t dt


  
 (A.1)

 
 

 
   

  

0
, where 1 ' '

log

tp t
h t S t p t dt

S t

d
S t

dt

  

 


 (A.2)

     0
exp ' '

t

S t h t dt  (A.3)

       0
exp ' '

t

h t p t h t dt  (A.4)

Now a particular case is considered where p(t) is a regularly-step-staircase (RSS)

probability distribution, whose value is only changed on time t = iΔt, where i ∈ N0 =

106 Appendix A Theoretical Basis

{{0} ∪ N} and Δt is defined as the time step, as shown in Figure A.1. The reason for

discussing this case is that this form of p(t) corresponds to how the equivalent signal

provided to the Random Sampling (RS) block.

To compute the hazard h(t) on t = nΔt, i.e. h(nΔt), (A.1) can be written as (A.5),

where the hazard can be computed using only the values of p(t) on t = 0, 1Δt, 2Δt, …,

nΔt. If using the continuous recursive form, h(nΔt) needs to be computed in

continuous time as shown in (A.6). The value of the hazard from (A.5) is equal to the

one from (A.6). However, if h(nΔt) is computed using the discrete form as shown in

(A.7), its value only approximates to the one from the original definition under the

condition that Δt << tmean, where tmean indicates the mean time of the RSS probability

distribution p(t) and is defined in (A.8). Therefore, it cannot be thought intuitively

that (A.5) will lead to the result of the discrete recursive form on (A.7).

  
 

 
 0,..., 1

, where (0) (0)
1

i n

p n t
h n t h p

p i t t
 


  

  
 (A.5)

       0
exp ' '

n t

h n t p n t h t dt


    (A.6)

      
 0,..., 1

exp , if mean

i n

h n t p n t h i t t t t
 

 
         

 
 (A.7)

t

p(t)

compute h(nΔt) here

Δt
t=nΔt

Figure A.1 Input RSS probability distribution p(t) whose values are only

changed on time t = iΔt.

Output ISI Probability Distribution 107

  
0

[]meant E T tp t dt


   (A.8)

A.2 Output ISI Probability Distribution

This section presents that the output InterSpike Interval (ISI) distribution pISI

approximates the input probability distribution p using the discrete-time

approximation. Given a uniform random variable “NX”, the probability of generating

a spike on t = iΔt is equal to h(iΔt)Δt (see Figure A.2 for the concept), and can be

written as (A.9), where “nx(iΔt)” indicate the only one sample from variable NX on t

= iΔt and variable NX only produces a new sample on t = iΔt. Thus, the hazard can be

seen as the instantaneous firing rate on t = iΔt.

       Pr h i t t nx i t h i t t       (A.9)

To generate a spike on t = nΔt implies that the hazard is smaller than nx when t

= iΔt, where i ∈ {0,…,n-1}, and surpasses nx on t = nΔt. Therefore, the probability of

an event happening on t = nΔt can be written as a series product of the probabilities

(1-h(iΔt)Δt) and h(nΔt)Δt as shown in (A.10), where pISI indicates the output ISI

distribution.

First, the condition where p(t) is a RSS probability distribution is discussed.

Replacing the hazard in (A.10) by (A.5) leads the result in (A.11) that shows pISI is

equal to p using either the original definition or the continuous recursive form of the

hazard. Second, it is assumed that p(t) is still a RSS probability distribution but the

hazard is computed using the discrete recursive form as (A.7). By replacing the

hazard in (A.10) by (A.7) and using the Taylor series in (A.13), (A.12) shows that pISI is

1

0

nx(iΔt)

h(iΔt)Δt

Pr=h(iΔt)Δt

Figure A.2 nx(iΔt) is a sample on t = iΔt. Its value is samples uniformly

between [0,1]. The probability of generating a spike on t = iΔt is equal to h(t)Δt.

108 Appendix A Theoretical Basis

only the approximation of p under the condition that Δt << tmean. Therefore, when

using the discrete-time approximation to generate output spikes whose ISIs encode

the input RSS probability distribution, it is recommended to compute the hazard

using the original definition or the continuous recursive form. Third, if p(t) is a

continuous-value probability distribution, pISI is only an approximation of p no matter

how the hazard is computed. The approximation is valid under the condition that Δt

<< tmean.

   
 

 
0,..., 1

() 1ISI

i n

p n t t h i t t h n t t
 

 
          

 
 (A.10)

  
 

 

  
 

 

 

 
 

  
 

 

 

 
 

 
 

0,..., 2 0,..., 1

0,1

0,..., 1

0,..., 2

1
() 1 0 1

1 0

1
1

1 1

1

1 0
1 0

1

1

ISI

i n i n

i

i n

i n

p t t
p n t t p t

p t

p n t t p n t t

p t t p t t

p i t t

p t
p t

p i t t

p i t t

   



 

 

  
            

   
       

        
   
   

   
 

       
 
 

  

  

 







K

K

 

 
 

 

0,..., 1

1
i n

p n t t

p i t t

p n t t

 

   
    

   
  

   
   

  



 (A.11)

    
 

    
 

   
  

 

   
 

0,..., 1

0,..., 1

2

0,..., 1

0,..., 1

() exp ln 1

exp ln 1

exp
2

exp , if

ISI

i n

i n

i n

i n

p n t t h n t t h i t t

h n t t h i t t

h i t t
h n t t h i t t

h n t t h i t t

 

 

 

 

  
            

  

 
        

 

   
          
  

  

 
        

 









L

 

 meant t

p n t t

 

  

 (A.12)

Output ISI Probability Distribution 109

  
2 3

1

log 1
2 3

n

n

x x x
x x

n





        L (A.13)

Bibliography

[1] J. Zylberberg, J. T. Murphy, and M. R. DeWeese, “A sparse coding model with
synaptically local plasticity and spiking neurons can account for the diverse
shapes of V1 simple cell receptive fields,” PLOS Comput. Biol., vol. 7, no. 10, p.
e1002250, Oct. 2011.

[2] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep
belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554, May 2006.

[3] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A
convolutional neural-network approach,” IEEE Trans. Neural Netw., vol. 8, no.
1, pp. 98–113, Jan. 1997.

[4] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current
and its application to conduction and excitation in nerve,” J. Physiol., vol. 117,
no. 4, pp. 500–544, Aug. 1952.

[5] M. O. Ernst and M. S. Banks, “Humans integrate visual and haptic information
in a statistically optimal fashion,” Nature, vol. 415, no. 6870, p. 429, Jan. 2002.

[6] S. Gepshtein and M. S. Banks, “Viewing geometry determines how vision and
haptics combine in size perception,” Curr. Biol., vol. 13, no. 6, pp. 483–488, Mar.
2003.

[7] D. Alais and D. Burr, “The ventriloquist effect results from near-optimal bimodal
integration,” Curr. Biol., vol. 14, no. 3, pp. 257–262, Feb. 2004.

[8] U. Beierholm, L. Shams, W. J. Ma, and K. Koerding, “Comparing Bayesian models
for multisensory cue combination without mandatory integration,” in Advances
in Neural Information Processing Systems 20, J. C. Platt, D. Koller, Y. Singer, and
S. T. Roweis, Eds. Curran Associates, Inc., 2008, pp. 81–88.

[9] P. Mamassian and M. S. Landy, “Observer biases in the 3D interpretation of line
drawings,” Vision Res., vol. 38, no. 18, pp. 2817–2832, Sep. 1998.

[10] P. Mamassian and M. S. Landy, “Interaction of visual prior constraints,” Vision
Res., vol. 41, no. 20, pp. 2653–2668, Sep. 2001.

[11] J. Feldman, “Bayesian contour integration,” Percept. Psychophys., vol. 63, no. 7,
pp. 1171–1182, Oct. 2001.

[12] Y. Weiss, E. P. Simoncelli, and E. H. Adelson, “Motion illusions as optimal
percepts,” Nat. Neurosci., vol. 5, no. 6, p. 598, Jun. 2002.

[13] K. P. Körding and D. M. Wolpert, “Bayesian integration in sensorimotor
learning,” Nature, vol. 427, no. 6971, p. 244, Jan. 2004.

112 Bibliography

[14] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128 x 128 120 dB 15 us latency
asynchronous temporal contrast vision sensor,” IEEE J. Solid-State Circuits, vol.
43, no. 2, pp. 566–576, Feb. 2008.

[15] R. Berner, C. Brandli, M. Yang, S. C. Liu, and T. Delbruck, “A 240x180 10mW 12us
latency sparse-output vision sensor for mobile applications,” in 2013
Symposium on VLSI Circuits, 2013, pp. C186–C187.

[16] S. C. Liu, A. van Schaik, B. A. Minch, and T. Delbruck, “Asynchronous binaural
spatial audition sensor with 2x64x4 channel output,” IEEE Trans. Biomed.
Circuits Syst., vol. 8, no. 4, pp. 453–464, Aug. 2014.

[17] M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, “A 0.5 V 55 uW 64 x 2 channel
binaural silicon cochlea for event-driven stereo-audio sensing,” IEEE J. Solid-
State Circuits, vol. 51, no. 11, pp. 2554–2569, Nov. 2016.

[18] P. Smolensky, “Information processing in dynamical systems: Foundations of
harmony theory,” Cambridge, MA, USA: MIT Press, 1986, pp. 194–281.

[19] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Comput., vol. 14, no. 8, pp. 1771–1800, Aug. 2002.

[20] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learning for
audio classification using convolutional deep belief networks,” in Advances in
Neural Information Processing Systems 22, Y. Bengio, D. Schuurmans, J. D.
Lafferty, C. K. I. Williams, and A. Culotta, Eds. Curran Associates, Inc., 2009, pp.
1096–1104.

[21] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition,” IEEE Trans. Audio
Speech Lang. Process., vol. 20, no. 1, pp. 30–42, Jan. 2012.

[22] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” Science, vol. 313, no. 5786, pp. 504–507, Jul. 2006.

[23] D. F. Wulsin, J. R. Gupta, R. Mani, J. A. Blanco, and B. Litt, “Modeling
electroencephalography waveforms with semi-supervised deep belief nets: fast
classification and anomaly measurement,” J. Neural Eng., vol. 8, no. 3, p.
036015, 2011.

[24] H. Larochelle and Y. Bengio, “Classification using discriminative restricted
Boltzmann machines,” in Proceedings of the 25th International Conference on
Machine Learning, New York, NY, USA, 2008, pp. 536–543.

[25] H. Chen and A. F. Murray, “Continuous restricted Boltzmann machine with an
implementable training algorithm,” IEE Proc. - Vis. Image Signal Process., vol.
150, no. 3, pp. 153–158, Jun. 2003.

[26] T. B. Tang and A. F. Murray, “Adaptive sensor modelling and classification using
a continuous restricted Boltzmann machine (CRBM),” Neurocomputing, vol. 70,
no. 7, pp. 1198–1206, Mar. 2007.

[27] J. Chao, F. Shen, and J. Zhao, “Forecasting exchange rate with deep belief
networks,” in The 2011 International Joint Conference on Neural Networks,
2011, pp. 1259–1266.

Bibliography 113

[28] Y. Chen, X. Zhao, and X. Jia, “Spectral-spatial classification of hyperspectral data
based on deep belief network,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
vol. 8, no. 6, pp. 2381–2392, Jun. 2015.

[29] W. Gerstner and W. M. Kistler, Spiking Neuron Models: Single Neurons,
Populations, Plasticity. Cambridge University Press, 2002.

[30] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Trans. Neural Netw.,
vol. 14, no. 6, pp. 1569–1572, Nov. 2003.

[31] W. Gerstner, “Time structure of the activity in neural network models,” Phys.
Rev. E, vol. 51, no. 1, pp. 738–758, Jan. 1995.

[32] Q. Yu, H. Tang, K. C. Tan, and H. Yu, “A brain-inspired spiking neural network
model with temporal encoding and learning,” Neurocomputing, vol. 138, pp. 3–
13, Aug. 2014.

[33] J. J. Wade, L. J. McDaid, J. A. Santos, and H. M. Sayers, “SWAT: A spiking neural
network training algorithm for classification problems,” IEEE Trans. Neural
Netw., vol. 21, no. 11, pp. 1817–1830, Nov. 2010.

[34] R. Gütig and H. Sompolinsky, “The tempotron: A neuron that learns spike
timing-based decisions,” Nat. Neurosci., vol. 9, no. 3, p. nn1643, Feb. 2006.

[35] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks with
ReSuMe: Sequence learning, classification, and spike shifting,” Neural Comput.,
vol. 22, no. 2, pp. 467–510, Oct. 2009.

[36] S. G. Wysoski, L. Benuskova, and N. Kasabov, “Fast and adaptive network of
spiking neurons for multi-view visual pattern recognition,” Neurocomputing,
vol. 71, no. 13, pp. 2563–2575, Aug. 2008.

[37] J. M. Brader, W. Senn, and S. Fusi, “Learning real-world stimuli in a neural
network with spike-driven synaptic dynamics,” Neural Comput., vol. 19, no. 11,
pp. 2881–2912, Sep. 2007.

[38] J. Dethier, P. Nuyujukian, S. I. Ryu, K. V. Shenoy, and K. Boahen, “Design and
validation of a real-time spiking-neural-network decoder for brain-machine
interfaces,” J. Neural Eng., vol. 10, no. 3, p. 036008, Jun. 2013.

[39] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-time
classification and sensor fusion with a spiking deep belief network,” Front.
Neurosci., vol. 7, 2013.

[40] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, Nov. 1998.

[41] E. Neftci, S. Das, B. Pedroni, K. Kreutz-Delgado, and G. Cauwenberghs, “Event-
driven contrastive divergence for spiking neuromorphic systems,” Front.
Neurosci., vol. 7, 2014.

[42] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural networks for
energy-efficient object recognition,” Int. J. Comput. Vis., vol. 113, no. 1, pp. 54–
66, May 2015.

[43] E. D. Adrian and Y. Zotterman, “The impulses produced by sensory nerve-
endings,” J. Physiol., vol. 61, no. 2, pp. 151–171, Apr. 1926.

[44] J. A. Pérez-Carrasco et al., “Mapping from frame-driven to frame-free event-
driven vision systems by low-rate rate coding and coincidence processing-

114 Bibliography

application to feedforward ConvNets,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 11, pp. 2706–2719, Nov. 2013.

[45] C. Keysers, D.-K. Xiao, P. Földiák, and D. I. Perrett, “The speed of sight,” J Cogn.
Neurosci., vol. 13, no. 1, pp. 90–101, Jan. 2001.

[46] F. Rieke, D. Warland, R. de R. van Steveninck, and W. Bialek, Spikes: Exploring
the Neural Code, Reprint edition. A Bradford Book, 1999.

[47] W. Gerstner, “Population dynamics of spiking neurons: fast transients,
asynchronous states, and locking,” Neural Comput., vol. 12, no. 1, pp. 43–89,
Jan. 2000.

[48] T. Gollisch and M. Meister, “Rapid neural coding in the retina with relative spike
latencies,” Science, vol. 319, no. 5866, pp. 1108–1111, Feb. 2008.

[49] P. Reinagel and R. C. Reid, “Temporal coding of visual information in the
thalamus,” J. Neurosci., vol. 20, no. 14, pp. 5392–5400, Jul. 2000.

[50] W. Bair and C. Koch, “Temporal precision of spike trains in extrastriate cortex
of the behaving macaque monkey,” Neural Comput., vol. 8, no. 6, pp. 1185–
1202, Aug. 1996.

[51] C. Weng et al., “Temporal precision in the neural code and the timescales of
natural vision,” Nature, vol. 449, no. 7158, p. 92, Sep. 2007.

[52] J. Y. Shih, C. A. Atencio, and C. E. Schreiner, “Improved stimulus representation
by short interspike intervals in primary auditory cortex,” J. Neurophysiol., vol.
105, no. 4, pp. 1908–1917, Apr. 2011.

[53] W. M. Usrey, J.-M. Alonso, and R. C. Reid, “Synaptic interactions between
thalamic inputs to simple cells in cat visual cortex,” J. Neurosci., vol. 20, no. 14,
pp. 5461–5467, Jul. 2000.

[54] W. M. Usrey, J. B. Reppas, and R. C. Reid, “Paired-spike interactions and
synaptic efficacy of retinal inputs to the thalamus,” Nature, vol. 395, no. 6700,
pp. 384–387, Sep. 1998.

[55] A. Steimer and R. Douglas, “Spike-based probabilistic inference in analog
graphical models using interspike-interval coding,” Neural Comput., vol. 25, no.
9, pp. 2303–2354, Sep. 2013.

[56] G. D. Forney, “Codes on graphs: Normal realizations,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 520–548, Feb. 2001.

[57] H. A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process. Mag., vol.
21, no. 1, pp. 28–41, Jan. 2004.

[58] H. A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang, “The factor
graph approach to model-based signal processing,” Proc. IEEE, vol. 95, no. 6, pp.
1295–1322, Jun. 2007.

[59] G. Indiveri et al., “Neuromorphic silicon neuron circuits,” Front. Neurosci., vol.
5, 2011.

[60] J. von Neumann, “First draft of a report on the EDVAC,” IEEE Ann. Hist. Comput.,
vol. 15, no. 4, pp. 27–75, 1993.

[61] J. H. Wang, C. T. Tang, and H. Chen, “An adaptable continuous restricted
boltzmann machine in VLSI for fusing the sensory data of an electronic nose,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 4, pp. 961–974, Apr. 2017.

Bibliography 115

[62] K. T. Tang et al., “A 0.5V 1.27mW nose-on-a-chip for rapid diagnosis of
ventilator-associated pneumonia,” in 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2014, pp. 420–421.

[63] P. Knag, J. K. Kim, T. Chen, and Z. Zhang, “A sparse coding neural network ASIC
with on-chip learning for feature extraction and encoding,” IEEE J. Solid-State
Circuits, vol. 50, no. 4, pp. 1070–1079, Apr. 2015.

[64] R. Wang, C. S. Thakur, G. Cohen, T. J. Hamilton, J. Tapson, and A. van Schaik,
“Neuromorphic hardware architecture using the neural engineering framework
for pattern recognition,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 3, pp.
574–584, Jun. 2017.

[65] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello,
“Hardware accelerated convolutional neural networks for synthetic vision
systems,” in Proceedings of 2010 IEEE International Symposium on Circuits and
Systems, 2010, pp. 257–260.

[66] D. Neil and S. C. Liu, “Minitaur, an event-driven FPGA-based spiking network
accelerator,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 22, no. 12, pp.
2621–2628, Dec. 2014.

[67] S. Mitra, S. Fusi, and G. Indiveri, “Real-time classification of complex patterns
using spike-based learning in neuromorphic VLSI,” IEEE Trans. Biomed. Circuits
Syst., vol. 3, no. 1, pp. 32–42, Feb. 2009.

[68] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip system for
large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5, pp. 699–716, May
2014.

[69] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker project,”
Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[70] N. Qiao et al., “A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128K synapses,” Front. Neurosci., vol. 9,
2015.

[71] F. Akopyan et al., “TrueNorth: Design and Tool Flow of a 65 mW 1 Million
Neuron Programmable Neurosynaptic Chip,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 34, no. 10, pp. 1537–1557, Oct. 2015.

[72] B. U. Pedroni et al., “Mapping generative models onto a network of digital
spiking neurons,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 4, pp. 837–854,
Aug. 2016.

[73] D. Pecevski, L. Buesing, and W. Maass, “Probabilistic inference in general
graphical models through sampling in stochastic networks of spiking neurons,”
PLOS Comput. Biol., vol. 7, no. 12, p. e1002294, Dec. 2011.

[74] L. Buesing, J. Bill, B. Nessler, and W. Maass, “Neural dynamics as sampling: A
model for stochastic computation in recurrent networks of spiking neurons,”
PLoS Comput. Biol., vol. 7, no. 11, p. e1002211, Nov. 2011.

[75] W. Maass, “Noise as a resource for computation and learning in networks of
spiking neurons,” Proc. IEEE, vol. 102, no. 5, pp. 860–880, May 2014.

116 Bibliography

[76] M. A. Petrovici, J. Bill, I. Bytschok, J. Schemmel, and K. Meier, “Stochastic
inference with deterministic spiking neurons,” ArXiv13113211 Cond-Mat
Physicsphysics Q-Bio Stat, Nov. 2013.

[77] D. R. Mendat, S. Chin, S. Furber, and A. G. Andreou, “Neuromorphic sampling
on the SpiNNaker and parallella chip multiprocessors,” in 2016 IEEE 7th Latin
American Symposium on Circuits Systems (LASCAS), 2016, pp. 399–402.

[78] D. R. Mendat, S. Chin, S. Furber, and A. G. Andreou, “Markov chain Monte Carlo
inference on graphical models using event-based processing on the spinnaker
neuromorphic architecture,” in 2015 49th Annual Conference on Information
Sciences and Systems (CISS), 2015, pp. 1–6.

[79] H. A. Loeliger, F. Lustenberger, M. Helfenstein, and F. Tarkoy, “Probability
propagation and decoding in analog VLSI,” IEEE Trans. Inf. Theory, vol. 47, no.
2, pp. 837–843, Feb. 2001.

[80] S. Hemati and A. H. Banihashemi, “Iterative decoding in analog CMOS,” in
Proceedings of the 13th ACM Great Lakes Symposium on VLSI, New York, NY,
USA, 2003, pp. 15–20.

[81] T. J. Hamilton, S. Afshar, A. van Schaik, and J. Tapson, “Stochastic electronics: A
neuro-inspired design paradigm for integrated circuits,” Proc. IEEE, vol. 102, no.
5, pp. 843–859, May 2014.

[82] C. H. Chien, S. C. Liu, and A. Steimer, “A neuromorphic VLSI circuit for spike-
based random sampling,” IEEE Trans. Emerg. Top. Comput., vol. PP, no. 99, pp.
1–1, 2016.

[83] C. H. Chien, L. Longinotti, A. Steimer, and S. C. Liu, “Hardware implementation
of an event-based message passing graphical model network,” IEEE Trans.
Circuits Syst. Regul. Pap., vol. PP, no. 99, pp. 1–14, 2018.

[84] A. Doucet, S. Godsill, and C. Andrieu, “On sequential Monte Carlo sampling
methods for Bayesian filtering,” Stat. Comput., vol. 10, no. 3, pp. 197–208, Jul.
2000.

[85] O. Cappe, S. J. Godsill, and E. Moulines, “An overview of existing methods and
recent advances in sequential Monte Carlo,” Proc. IEEE, vol. 95, no. 5, pp. 899–
924, May 2007.

[86] M. E. Larkum, J. J. Zhu, and B. Sakmann, “Dendritic mechanisms underlying the
coupling of the dendritic with the axonal action potential initiation zone of adult
rat layer 5 pyramidal neurons,” J. Physiol., vol. 533, no. Pt 2, pp. 447–466, Jun.
2001.

[87] D. R. Cox and P. A. W. Lewis, The Statistical Analysis of Series of Events.
Chapman and Hall, 1966.

[88] S. M. Ross, A First Course in Probability. Pearson Prentice Hall, 2010.
[89] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-

Interscience, 2006.
[90] R. E. Kalman, “A new approach to linear filtering and prediction problems,” J.

Basic Eng., vol. 82, no. 1, pp. 35–45, Mar. 1960.

Bibliography 117

[91] R. Faragher, “Understanding the basis of the Kalman filter via a simple and
intuitive derivation,” IEEE Signal Process. Mag., vol. 29, no. 5, pp. 128–132, Sep.
2012.

[92] K. A. Boahen, “A burst-mode word-serial address-event link-I: Transmitter
design,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 51, no. 7, pp. 1269–1280, Jul.
2004.

[93] K. A. Boahen, “A burst-mode word-serial address-event link-II: receiver design,”
IEEE Trans. Circuits Syst. Regul. Pap., vol. 51, no. 7, pp. 1281–1291, Jul. 2004.

[94] K. A. Boahen, “A burst-mode word-serial address-event link-III: analysis and test
results,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 51, no. 7, pp. 1292–1300, Jul.
2004.

[95] K. A. Boahen, “Communicating Neuronal Ensembles between Neuromorphic
Chips,” in Neuromorphic Systems Engineering, Springer, Boston, MA, 1998, pp.
229–259.

[96] G. Cauwenberghs, “Delta-sigma cellular automata for analog VLSI random
vector generation,” IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., vol.
46, no. 3, pp. 240–250, Mar. 1999.

[97] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbruck, and R. Douglas, Analog VLSI: Circuits
and Principles. Cambridge, Mass: A Bradford Book, 2002.

[98] B. Linares-Barranco and T. Serrano-Gotarredona, “On the design and
characterization of femtoampere current-mode circuits,” IEEE J. Solid-State
Circuits, vol. 38, no. 8, pp. 1353–1363, Aug. 2003.

[99] B. Razavi, Design of Analog CMOS Integrated Circuits. McGraw-Hill Education,
2000.

[100] W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated
analog/digital random noise source,” IEEE Trans. Circuits Syst. Fundam. Theory
Appl., vol. 44, no. 6, pp. 521–528, Jun. 1997.

[101] M. Bucci and R. Luzzi, “Fully digital random bit generators for cryptographic
applications,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 55, no. 3, pp. 861–875,
Apr. 2008.

[102] C.-C. Wang, J.-M. Huang, H.-C. Cheng, and R. Hu, “Switched-current 3-bit
CMOS 4.0-MHz wideband random signal generator,” IEEE J. Solid-State Circuits,
vol. 40, no. 6, pp. 1360–1365, Jun. 2005.

[103] P. Xu, Y. l Wong, T. K. Horiuchi, and P. A. Abshire, “Compact floating-gate true
random number generator,” Electron. Lett., vol. 42, no. 23, pp. 1346–1347, Nov.
2006.

[104] P. Dudek and V. D. Juncu, “An area and power efficient discrete-time chaos
generator circuit,” in Proceedings of the 2005 European Conference on Circuit
Theory and Design, 2005., 2005, vol. 2, p. II/87-II/90 vol. 2.

[105] J. Holleman, S. Bridges, B. P. Otis, and C. Diorio, “A 3 uW CMOS true random
number generator with adaptive floating-gate offset cancellation,” IEEE J. Solid-
State Circuits, vol. 43, no. 5, pp. 1324–1336, May 2008.

[106] B. Marr and J. Hasler, “Compiling probabilistic, bio-inspired circuits on a field
programmable analog array,” Front. Neurosci., vol. 8, 2014.

118 Bibliography

[107] T. Clayton et al., “An implementation of a spike-response model with escape
noise using an avalanche diode,” IEEE Trans. Biomed. Circuits Syst., vol. 5, no. 3,
pp. 231–243, Jun. 2011.

[108] M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, “A 0.5V 55uW 64x2-channel
binaural silicon cochlea for event-driven stereo-audio sensing,” in 2016 IEEE
International Solid-State Circuits Conference (ISSCC), 2016, pp. 388–389.

Curriculum vitae

Chen-Han Chien

Born: 27 May, 1984, Taiwan

Citizenship: Taiwan, Republic of China (R.O.C.)

Contact: shinta0527@gmail.com

Education

03.2012 - 02.2018 Ph.D student, Information Technology and Electrical

Engineering, Swiss Federal Institute of Technology in Zurich

(ETH Zurich), Switzerland

09.2006 - 10.2008 Master of Science, Electrical Engineering, National Tsing Hua

University (NTHU), Taiwan

09.2002 - 06.2006 Bachelor of Science, Electrical Engineering, National Tsing Hua

University (NTHU), Taiwan

Work Experience

03.2012 - 02.2017 Research PhD Student, Institute of Neuroinformatics, ETH

Zurich and UZH

02.2014 - 07.2014 Teaching Assistant for Neuromorphic Engineering, Institute of

Neuroinformatics, ETH Zurich and UZH

02.2010 - 02.2011 Hardware Engineer, ZyFLEX (subsidiary company of ZyXEL),

Taiwan

mailto:shinta0527@gmail.com

120 Curriculum vitae

10.2008 - 09.2009 Compulsory Military Service, Second Lieutenant of the Army,

Taiwan

09.2006 - 08.2007 Teaching Assistant for Analog IC Design, Department of

Electrical Engineering, National Tsing Hua University, Taiwan

IC Design Project

2016 Event Based CMOS Circuit for a Class of Belief-Propagation Models

2015 A Fully Differential LNA with 0.5V Supply Voltage in “A 0.5V 55uW 64x2-

channel Binaural Silicon Cochlea for Event-driven Stereo-audio Sensing”

project

2013 A Neuromorphic VLSI Circuit for Spike-Based Random Sampling

2008 A Stochastic System on a Chip basing on the Diffusion Network

2006 Delta-sigma Cellular Automata for Analog VLSI Random Vector Generation

Publication

C. H. Chien; L. Longinotti; A. Steimer; S. C. Liu, ‘Hardware Implementation of an

Event-Based Message Passing Graphical Model Network’, IEEE Trans. Circuits Syst.

Regul. Pap., vol. PP, no. 99, pp. 1–14, 2018.

C. H. Chien, S. C. Liu, and A. Steimer, “A neuromorphic VLSI circuit for spike-based

random sampling,” IEEE Trans. Emerg. Top. Comput., vol. PP, no. 99, pp. 1–1, 2016.

C. H. Chien, C. C. Lu and H. Chen, "Mapping the Diffusion Network into a stochastic

system in Very Large Scale Integration," in The 2010 International Joint Conference

on Neural Networks (IJCNN), 2010, pp. 1-7.

M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, “A 0.5 V 55 uW 64 x 2 channel binaural

silicon cochlea for event-driven stereo-audio sensing,” IEEE J. Solid-State Circuits, vol.

51, no. 11, pp. 2554–2569, Nov. 2016

M. Yang, C. H. Chien, T. Delbruck, and S. C. Liu, “A 0.5V 55uW 64x2-channel binaural

silicon cochlea for event-driven stereo-audio sensing,” in 2016 IEEE International

Solid-State Circuits Conference (ISSCC), 2016, pp. 388–389.

	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Probability Inference in the Brain
	1.2 Hardware Implementation of Artificial Neural Network
	1.3 Thesis Contribution and Organization

	Chapter 2 Structure of Belief-Propagation Model
	2.1 Forney Factor Graph
	2.2 Event-Based Belief-Propagation Model
	2.2.1 Renewal Theory
	2.2.2 Discrete-Time Approximation
	2.2.3 Message Passing

	Chapter 3 Event-Based Belief-Propagation Model Simulation
	3.1 Random Sampling Block Validation
	3.2 Factor Node
	3.3 Applications
	3.3.1 Object Tracking
	3.3.2 Data Reconstruction with an Event-Based CRBM

	Chapter 4 Factor Node Hardware
	4.1 System Architecture
	4.2 Landscape Sampling
	4.3 Random Number Generator
	4.3.1 Discrete-Value Approach
	4.3.2 Measurement Results

	4.4 Continuous-Input Random Sampling
	4.4.1 Hazard Core
	4.4.2 IV Converter
	4.4.3 Comparator
	4.4.4 Measurement Results
	4.4.4.1 Parameter α
	4.4.4.2 Empirical Output ISI Distribution

	4.5 Discrete-Input Random Sampling
	4.5.1 Hazard Core
	4.5.2 IV Converter
	4.5.3 Comparator
	4.5.4 Spike Generator & Channel AER
	4.5.5 Reset Hazard
	4.5.6 Channel Bias
	4.5.7 Measurement Results
	4.5.7.1 Linearity of the Current Mirror Array
	4.5.7.2 Accumulation of the Hazard
	4.5.7.3 Effect of the Non-Ideal Random Source
	4.5.7.4 Calibration of the Equivalent Resistance

	4.6 Test Results of Message Passing in VLSI Factor Graphs

	Chapter 5 Conclusion and Future Work
	5.1 Conclusions of Hardware Design
	5.2 Hardware Improvements and Outlook

	Appendix A Theoretical Basis
	A.1 Recursive Form of the Hazard Function
	A.2 Output ISI Probability Distribution

	Bibliography
	Curriculum vitae

