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Abstract 

Abstract Bayesian networks are often used to describe how brains can perform 

inference. Methods of transforming these abstract models to spiking neural 

networks that can perform inference are still scarce. A recently proposed model 

called the event-based Belief-Propagation (BP) model shows how inference can be 

carried out by using the distribution of interspike intervals in spike trains as the 

messages. Because the simulation times of a factor graph that uses this model can 

be very long, this thesis proposes an analog Very-Large-Scale Integration (aVLSI) 

version of this model as one method of speeding up the computation times. The 

electronic model will be a useful addition to the neuromorphic effort in building 

spiking neural network systems. 

This thesis describes one hardware implementation of this event-based BP model, 

which uses both a Field-Programmable Gate Array (FPGA) and a mixed analog-digital 

Application-Specific Integrated Circuit (ASIC) chip developed in a 0.35um CMOS 

process technology. It describes the challenges in implementing the various circuit 

blocks of this stochastic model which includes the critical hazard function needed for 

the neuron to generate stochastic spikes following a defined probability distribution. 

Many of these circuit blocks did not exist in any form at the start of the thesis 

because most of the focus in the neuromorphic community is on spiking neural 

network chips that do not include a stochastic component. Therefore, this thesis 

presents possible solutions for implementing the event-based stochastic model in 

hardware. 

The hardware system developed in this work is based on an architecture of the 

event-based BP model that is partitioned into a Landscape Sampling (LS) block and a 

Random Sampling (RS) block. The input spike trains carrying the BP messages are 

processed by the LS block that implements the constraint function of a defined factor 

node. The LS block outputs a message-combined probability distribution that is used 

by the RS block to produce the stochastic output spikes using the implemented 

hazard function. 
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The thesis considers the practical challenges of mapping the theoretical model 

to aVLSI circuits, the possible methods for generating on-chip noise sources, and the 

subsequent partitioning of the hardware system into an FPGA and an ASIC. The 

factor graphs constructed by the event-based BP model under the constraints of the 

hardware are validated through simulations and then applied in two tasks 1) object 

tracking using an event-based Kalman filter and 2) data reconstruction using the 

event-based Continuous Restricted Boltzmann Machine (CRBM). These applications 

are examples of possible applications of the hardware system. The thesis shows the 

capability of the final hardware system in implementing graphs with arbitrary 

variable distributions for its inputs and using constraint functions such as “plus” and 

“equality”. Measured results show that the BP hardware consumes 6.32 mW of 

power with 0.046 mW of power per RS channel on the ASIC.  

 

 



 

Zusammenfassung 

Abstrakte Bayessche Netze werden häufig verwendet, um Inferenz in Gehirnen 

zu erklären. Methoden, die solche abstrakten Modelle in gepulste neuronale Netze 

übersetzen, sind jedoch noch selten anzutreffen. Ein kürzlich vorgeschlagenes 

Modell, welches unter dem Namen ereignisbasiertes Belief-Propagation (BP) 

bekannt ist, zeigt auf, wie Inferenz erfolgen kann, wobei die Zeitintervall-Verteilung 

zwischen konsekutiven Pulsen die zu übertragende Nachricht darstellt. Da 

Faktorgraphen, die solche Modelle verwenden, eine lange Simulationszeit aufweisen, 

wird in dieser Arbeit eine analoge Very-Large-Scale Integration (VLSI) Variante dieses 

Modells eingeführt, um die Berechnungszeit zu verkürzen. Das elektronische Modell 

ist eine nützliche Ergänzung  zu neuromorphen Ansätzen, gepulste neuronale Netze 

zu entwickeln.  

Diese Arbeit beschreibt eine Hardware-Implementierung dieses 

ereignisbasierten BP-Modells, wobei sowohl ein Field-Programmable Gate Array 

(FPGA) als auch ein Mixed Analog-Digital Application-Specific Integrated Circuit (ASIC) 

Chip verwendet werden; der ASIC Chip ist für die 0.35um CMOS Prozesstechnologie 

entworfen. Die Arbeit beschreibt weiterhin die Schwierigkeiten, die bei der 

Implementierung der verschiedenen Schaltkreiskomponenten dieses stochastischen 

Modells entstanden; dies beinhaltet die wichtige Ausfallrate, die vom Neuron 

verwendet wird, um stochastische Pulse zu generieren, die einer definierten 

Wahrscheinlichkeitsverteilung folgen. Viele dieser Schaltkreiskomponenten 

existierten zu Beginn dieser Arbeit nicht, da ein Schwerpunkt innerhalb der 

neuromorphen Entwicklergemeinschaft darin liegt, gepulste neuronale Netze zu 

entwickeln, welche keine stochastischen Komponenten enthalten. Diese Arbeit zeigt 

daher Möglichkeiten auf, um ereignisbasierte stochastische Modelle in Hardware zu 

implementieren.  

Das im Rahmen dieser Arbeit entwickelte Hardware-System basiert auf einer 

Architektur des ereignisbasierten BP-Modells, welche in einen Landscape Sampling 

(LS) Block und einen Random Sampling (RS) Block zerlegt ist. Die Eingangspulszüge, 

die die BP-Nachrichten tragen, werden vom LS-Block verarbeitet, welcher die 
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Nebenbedingungsfunktion eines definierten Faktorknotens implementiert. Der LS-

Block gibt eine Wahrscheinlichkeitsverteilung aus, die den verknüpften 

Eingangsnachrichten in einen Knoten entspricht, und die im RS-Block dazu 

verwendet wird, um stochastische Ausgangspulse mittels der implementierten 

Ausfallrate zu erzeugen.  

Diese Arbeit untersucht die praktischen Herausforderungen, die bei der 

Abbildung des theoretischen Modells auf einen aVLSI-Schaltkreis entstehen, die 

Möglichkeiten, um On-Chip Rauschquellen zu generieren, sowie die nachfolgende 

Zerlegung des Hardware-Systems in eine FPGA- und eine ASIC-Komponente. Die 

Faktorgraphen, welche im Rahmen des ereignisbasierten BP-Modells entwickelt 

werden, und die Hardware-Beschränkungen berücksichtigen, werden mittels 

Simulationen validiert. Sodann werden sie auf zwei Aufgaben angewendet: 1) 

Objektverfolgung mittels eines ereignisbasierten Kalmanfilters; 2) 

Datenrekonstruktion mittels einer ereignisbasierten Continuous-Restricted 

Boltzmann-Maschine (CRBM). Diese Anwendungen sind Beispiele möglicher 

Applikationen des Hardware-Systems. Diese Arbeit zeigt die Fähigkeit des 

entwickelten Hardware-Systems auf, Graphen mit beliebigen Eingangs-

Zufallsvariablen-Wahrscheinlichkeitsverteilungen zu simulieren, die 

Nebenbedingungsfunktionen wie "Plus" und "Gleichheit" benutzen. Messungen 

ergeben, dass die BP-Hardware 6.32 mW Leistung aufnimmt, wobei 0.046 mW 

Leistung pro RS-Kanal des ASICs aufgenommen werden. 
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Chapter 1 Introduction 

In parallel with neural network modeling [1]–[4] efforts in the neuroscience field 

to understand how brains compute, hardware engineers are developing dedicated 

or general-purpose silicon neuron processors that allows these models to be 

computed in parallel and in some cases with reduced power efficiency than running 

on the computer. Stochastic models are promising candidates for explaining how 

brains perform inference [5]–[13]. However, the hardware implementations of 

stochastic models of brain computation are still relatively scarce. Among them, the 

recently proposed event-based belief-propagation (BP) model uses biologically 

plausible signals (spikes) and employ the local and parallel computation seen in 

brains. This thesis revolved around the work in building a hardware system based on 

a class of BP models aimed at speeding up the simulation time. Because of the use 

of spikes in the model, the system can be interfaced with the event-based vision [14], 

[15] and cochlea [16], [17] sensors being developed in the neuromorphic community. 

1.1 Probability Inference in the Brain 

Various studies [5]–[13] have reported experiments that show that the brain 

processes information in a Bayesian way. The inference tasks in these experiments 

include the cue combination task [5]–[8] and computing the a posteriori information 

from the prior information and sensory input [9]–[13]. To give an example of how 

humans perform inference, if a man wants to travel during the Christmas holidays 

and wants to leave by sometime and has to be at his family home by 12 midnight, he 

makes an estimation based on the information at hand. He can obtain the current 

traffic news from the TV or radio, or he can use the information about the traffic 

situation from the past two days and from the same time period in the previous year. 

He can also use the current weather condition in his estimation. The information 

obtained at hand will help him make a decision that will get him to the place in time 

and with the least amount of hours on the highway. This example illustrates that the 

information processed in the brain can be seen as a form of inference.  



2 Chapter 1. Introduction 

Many researchers have worked on Artificial Neural Network (ANN) models that 

mimic the architecture of the neural brain in solving various problems. A well-known 

model, for example, in machine learning is the Restricted Boltzmann Machine (RBM) 

[2], [18] which is used for a classification task involving handwritten digits. This 

stochastic model can learn a probability distribution of its inputs. An RBM has a two-

layered fully connected architecture (one visible and one hidden) with symmetric 

weights and no interconnection within a layer. Since the neurons are not connected 

within a layer, the output of each neuron is conditionally independent of one 

another for a given input. The weights are updated using the training algorithm 

called Contrastive Divergence (CD) [19]. One extension of the RBM is the Deep Belief 

Network (DBN) [2] that consists of several stacks of RBMs whose outputs serve as 

the inputs of the next layer. The RBM and DBN are suitable for learning the 

probabilities of the input, either in a supervised or unsupervised manner. These 

networks are widely used in speech recognition [20], [21], and feature extraction and 

classification with unlabeled data [22]–[24]. Another variant of the RBM is the 

Continuous RBM (CRBM) [25]. Compared to the binary output of RBM, this model 

directly uses the analogue values of the output of the sigmoid as the input to the 

next layer. The CRBM is suitable for modelling continuous asymmetric data [25], [26]. 

In addition, in some studies [27], [28], the RBM in a DBN is replaced by a CRBM if 

continuous-valued inputs or real-valued neurons are required. 

Spiking Neural Networks (SNNs), the next generation of the ANNs, have a bio-

inspired neural network structure that is closer to the architecture of spiking neurons 

in the brain. In a SNN, neurons communicate by transmitting spikes (or events) to 

each other [29]. Variants of SNNs are constructed based on different neuron models. 

Some neuron models are based on biophysical and biochemical experiments, such 

as the Hodgkin-Huxley model [4] that describes the dynamics of the ion channels and 

their influence on the membrane potential of the neuron. The Hodgkin-Huxley 

equation takes into account the membrane capacitance, ion currents, conductances, 

and channel efficacies in describing the neuron responses to its inputs. Even if the 

Hodgkin-Huxley model can successfully explain neuron’s response such as the 

spiking properties under different stimuli, its complexity makes this model difficult 

to scale up to a large network. The Izhikevich model [30], a simplified spiking model, 

is capable of producing several spiking patterns, e.g. regular spiking, fast spiking and 

bursting, by using only four parameters. Another simplified model called the Leaky 

Integrate-and-Fire (LIF) model consists of simply a capacitor, a resistor and a 

threshold detection. The membrane potential is described by the voltage output of 

the resistive-capacitive circuit. Once the membrane potential crosses threshold, a 

spike is triggered and the voltage is reset to a resting potential. The form of the spike 
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can reduced to a digital pulse. In a LIF, the neuron firing depends on the differential 

equations governing the change in the membrane potential dependent on the 

neuron parameters and its input. Instead of a voltage-dependent model, another 

model called the Spike Response Model (SRM) [29], [31] uses the timing of the input 

spikes since the last output spike to determine the change in the membrane 

potential. Once the membrane potential crosses threshold, a next output spike is 

triggered. In the SRM, the spike timing matters the most while the form of the spike 

does not carry information.  

In recent years, studies show that SNNs can perform well in various tasks, e.g. 

classification [32]–[35], recognition [36], [37], reconstruction [1] or a decoder for 

brain-machine interfaces [38]. Some studies also demonstrated that ANNs can be 

converted to SNNs in the deep learning field. [39] demonstrated that a converted 

spiking DBN can achieve the classification accuracy of > 94% on the MNIST dataset 

consisting of 70,000 handwritten digits [40]. The accuracy of the event-driven DBN 

is only 1% lower than that of the time-stepped DBN. This network has been trained 

using CD to fuse in real-time, spiking inputs from Dynamic Vison Sensor (DVS) [14] 

and AER-EAR silicon cochlea [16] in a multi-sensory classification task. [41] presents 

an event-driven approach of CD that allows online training of the RBM. The 

classification accuracy on the MNIST by using the event-driven CD (91.9%) is close to 

the accuracy by using the standard CD (92.6%). In [42], a converted spike-based CNN 

is implemented for object recognition. Compared to the original CNN, this study 

shows that the spike-based CNN is two orders of magnitude more energy-efficient 

with little loss in accuracy. 

How neurons transmit information in spike trains is not yet fully understood. The 

widely used coding schemes are either rate or temporal codes [29]. In rate coding, 

the information is encoded in the average mean firing rate within a time window. It 

is successfully used to explain the experimental results on motor systems such as the 

stretch receptor in a muscle spindle [43]. Some SNN models [1], [37], [39], [41], [44] 

use rate coding to pass information. However, if neurons in the brain really adopt 

this coding scheme, spike timing plays no role in spike trains and the various activities 

in different trials can only be considered as noise. Ideally, the mean firing rate can 

be sufficiently measured in two consecutive spikes if the period of firing spikes is 

constant. Due to noise, the mean firing rate has to be averaged within a time window. 

However, rate coding hardly explains some behaviors such as human ability to 

recognize images in a few hundred milliseconds [45], [46]. Some studies [47] argue 

that rate coding is still plausible if a population of neurons is used. It allows 

generating sufficient spikes in a short period so that neurons could respond quickly. 
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Another assumption is that the information is encoded in spike timings rather than 

the rate. In temporal coding, the information is contained in the exact arrival time or 

the first spike timing since the last spike. Many studies in biological experiments 

[48]–[51] show that temporal coding can explain the quick responses of neurons to 

stimuli. Some models are built based on temporal coding [32], [34]–[36].  

A class of temporal coding uses InterSpike Intervals (ISIs) to encode information. 

Some biological studies show that neurons could pass information using spikes 

preceded by ISIs [52]–[54]. These studies evoke the question of what is the 

algorithmic meaning of the ISIs and how they play a role during the information 

processing in neurons. In [55], Steimer et al. proposed an event-based Belief-

Propagation (BP) model that uses ISIs in spike trains to pass information among 

neurons. In this model, a spike is treated as a random sample, whose numerical value 

is given by the spikes preceding ISI. Each spike train is assumed to follow a renewal 

processes and hence the sequences corresponds to a sequence of independent 

random numbers where each spike’s label corresponds to an ISI random number as 

shown in Figure 2.3. This model can be interpreted as a class of graphical models, 

which not only are a method of presenting variables’ dependencies but facilitate the 

development of the algorithms for probability inference. Graphical models 

implement the functionality of a system with multiple input variables where the 

network function can be decomposed into a composition of functions on smaller 

subset of variables. The Forney Factor Graph (FFG) [56], [57] is one instantiation of 

graphical models where the nodes of the graph represent the functions of subsets 

of variables; and messages are transferred between the nodes using methods such 

as BP [57], [58]. The message-passing scheme in the algorithm of a BP model employs 

local and parallel computation, which seems biologically plausible because a global 

observation is not needed. Steimer’s model, a variant of a FFG, is an event-based BP 

model that uses a temporal coding scheme based on ISIs in spike trains to 

communicate messages between the nodes of the graph.  

Research on SNN models is getting popular. It is not only because they are more 

brain-inspired but because they provide an efficient transmission in terms of the 

power dissipation and fault tolerance. In the simplified models such as LIF model, 

spikes (or events) interpreted as digital pulses are transmitted in an asynchronous 

fashion. That is, the outputs of neurons are silent if the input stimuli is not strong 

enough to trigger a spike. In addition, a digital pulse can be transmitted a longer 

distance better than an analog signal. It is especially useful when the voltage 

headroom is decreasing along with the downsizing of transistors. These properties 

allow to explore an avenue to feasible hardware implementations, e.g. silicon-based 
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neuromorphic substrate [59], of large scale neural networks. The author describes 

next the work on the hardware implementations of ANNs and SNNs.  

1.2 Hardware Implementation of Artificial 

Neural Network 

Different from CPUs with a von Neumann structure [60], the massively parallel 

operation of ANNs’ and SNNs’ hardware with a simple processing unit is able to solve 

tasks more efficiently in real-time processing. In [61], [62], the nose-on-a-chip sensor 

with CRBM allows diagnosing ventilator-associated pneumonia rapidly before going 

to a doctor for further diagnosis. The functionality of the chip was verified in clinical 

trials. The accuracy reaches 95.73% on 74 samples as experimental group and 43 

samples as control group with 1.27 mW of power. A sparse SNN hardware [63] with 

256 neurons is capable of learning and reconstructing images at high speed (140 

Mpixel/s throughput) and low power (6.67 mW). In [64], by using the neural 

engineering framework, the system can achieve a pattern recognition up to 96% on 

the MNIST dataset. In [65], the CNNs simulated on the computer, Field-

Programmable Gate-Array (FPGA) implementation and Application Specific 

Integrated Circuit (ASIC) are compared for the performance on the number of frames 

processed per second (fps). It shows that with the same image size and the same 

filter size, the performance (fps) of the ASIC CNN is better than the FPGA and the 

FPGA is better than the computer. Minitaur [66], an event-driven neural network 

hardware accelerator implemented on FPGA, performs 18.73 million postsynaptic 

updates per second consuming just 1.5 W of power and reaches 92% accuracy on 

the MNIST dataset and 71% accuracy on the 20 newsgroups classification data set. 

The system also demonstrates a robustness to noise and maintains a 70% accuracy 

even when the input contains 80% noise. In [67], an ASIC implementation of a spike-

based learning algorithm with 16 neurons and 128 synapses per neuron is capable 

to classify complex patterns of mean firing rates in real time. 

In addition, several groups have worked on large-scale general-purpose spiking 

neuromorphic hardware. Neurogrid [68] integrates axons, synapses, and dendritic 

trees in an analog manner within 16 Neurocores, each of which consists 256× 256 

silicon neuron array. This board containing one million neurons allows for a 

complexity of neural computation with only 3 W of power. SpiNNaker [69] is a 

massively parallel ARM processor based system, where each board contains 48 

nodes and each node has an 18 ARM processor, to provide a flexible simulator. ROLLS 

[70] using long-term and short-term plasticity synapse with 256 neurons and 128K 

analog synapses can perform simple classification tasks after training, such as the 
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classification of car and motorbike by using the average firing rate of the output 

neurons. TrueNorth [71] with 1 million spiking digital neurons and 256 million digital 

synapses can correctly classify moving pedestrians, cyclists and cars in real time. A 

spiking RBM has been mapped on the neuromorphic TrueNorth system by using a 

noisy threshold model to implement the Gibbs sampler on the digital neurons [72]. 

There are other ways of performing approximate inference in graphical models 

through spiking neurons. One proposed method is that of neural sampling [73]–[76] 

in a graph with binary nodes and where the nodes are represented by spiking 

neurons. This form of sampling belongs to the Markov chain Monte Carlo (MCMC) 

technique and is similar to Gibbs sampling. This sampling scheme has been 

demonstrated on the SpiNNaker hardware system [77], [78]. These general-purpose 

large-scale neuromorphic hardware provide a platform for various models 

facilitating neural computations. 

There are also other designs that implement graphical models. In [79], Loeliger 

et al. demonstrated an analog circuit that implements the Sum-Product Rule (SPR) 

where probabilities are represented by currents. The product term in the SPR is 

achieved by using a current multiplier with the structure of a Gilbert multiplier and 

operating in subthreshold regime or by using bipolar transistors. The summing term 

is achieved by summing currents together. A Gilbert multiplier can be regarded as a 

factor node whose constraint function is defined by the input connections of this 

circuit. [79] demonstrates two example factor nodes, which are soft exclusive-or 

gate and component-wise product, with two inputs distribution and one output 

distribution represented by currents. The distributions used in this analog circuit are 

not limited to binary distributions. A fundamental circuit architecture was presented 

in [79], showing the concept of how a network can be built to process a multi-value 

probability distribution (i.e. probability mass function). Another work [80] 

implemented the min-sum (or max-product) algorithm in analog circuits, which also 

use currents to represent distributions. By using min-sum algorithm, [80] claims that 

standard CMOS technology (instead of BiCMOS) and the conventional biasing 

method (i.e. transistors operated above threshold) can be used for realizing the 

analog circuits so that the cost during manufacturing and the mismatch between 

blocks can be reduced. 

1.3 Thesis Contribution and Organization 

As mentioned in the sections above, the increasing availability of different neural 

network hardware platforms that are implemented through either custom mixed-

mode analog/digital or digital Very-Large-Scale Integration (VLSI) spiking neuron 
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arrays or on FPGA have allowed the validation of various neuroscience and machine 

learning spiking models for practical applications. The use of stochastic models 

(mainly RBM and its variants are applied) on neuromorphic spiking platforms is still 

relatively scarce although stochasticity by itself could be useful, e.g. to decorrelate 

the firing of neurons in a population [81]. This thesis sets out to examine the 

feasibility of realizing event-based probabilistic computation in hardware through 

spiking events. The work described in this thesis is based on Steimer’s model [55] 

that provides a link between both stochastic neural networks and FFGs to spiking 

network computation. Because this stochastic model cannot be easily implemented 

on the currently available spiking network hardware platforms, an explicit 

implementation of the event-based message passing scheme is presented in this 

thesis and was published in [82]. This analog VLSI (aVLSI) implementation is based 

on direct correspondence between the fundamental equations from renewal theory 

and the physical behavior of aVLSI circuit elements. This circuit can generate 

sequences of arbitrarily distributed random numbers that are confined to the 

positive real axis. In this thesis, the VLSI message-passing circuit in [82] is extended 

to an ASIC chip with an array of 16 channels that produce output messages. The 

calculations of the analog messages carried by the ISIs of the input spike trains and 

the output of the factor functions are carried out using an FPGA for flexibility in 

constructing graphs with different factor functions. The circuit details of the ASIC 

chip in a 2-poly-4-metal 0.35um CMOS process are described in the thesis. Model 

simulations in Matlab and measurements from the combined ASIC + FPGA system 

used in the construction of example factor graphs are also presented in the thesis. 

The thesis is organized as follows.  

Chapter 2 first introduces the Forney Factor Graph (FFG) and some notions 

related to this work. The chapter also describes the event-based belief propagation 

model associated with the renewal theory, the discrete-time approximation and the 

event-driven message-passing algorithm. It also presents the architecture of the 

event-based factor node which is composed of two blocks, the Landscape Sampling 

(LS) block and the Random Sampling (RS) block. The LS block receives the input 

events and the constraint function is defined here. The RS block is used for 

generating the output spikes based on the message-combined probability 

distribution. The hardware implementation is based on the required two blocks in 

this architecture.  

Chapter 3 presents the model simulation results. Before realizing the event-

based BP model in hardware, the model validity is verified by building up factor 

graphs with the architecture described in Chapter 2. The simulation is first don on 
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the RS block to demonstrate the feasibility of the discrete-time approximation. 

Different equations used to compute the hazard are simulated. Among them, the 

one suitable for the hardware can be determined by comparing their output ISI 

distributions to the input probability distribution. Then, a single factor node 

combining the LS and the RS blocks is simulated with several constraint functions 

defined in this factor node. Finally, the chapter presents two applications: 1) object 

tracking of a falling tennis ball by an event-based Kalman filter and 2) data 

reconstruction by an event-based CRBM. 

Chapter 4 elaborates on the hardware implementation of the event-based BP 

model including the system architecture and circuit blocks. It describes in detail the 

LS implemented on the FPGA and a random number generator circuit needed for 

producing stochastic output events in this model. It also presents two variants of the 

RS circuits. The measurement results on the ASIC and the entire system are described 

here along with the detailed circuit descriptions. This chapter also gives examples of 

networks using several factor nodes implemented on this hardware system. 

Chapter 5 gives a conclusion of this thesis work and an outlook of possible future 

directions on this work. 

 



 

Chapter 2 Structure of Belief-

Propagation Model 

This chapter first mentions some basic notions of the Forney Factor Graph (FFG) 

that are useful for understanding the event-based Belief-Propagation (BP) model and 

the work described in the later chapters. More details of FFGs can be found in [57], 

[58]. Then, the event-based BP model proposed by Steimer et al. [55] is introduced. 

The Matlab model and hardware system described in this thesis are both based on 

the architecture introduced here. A part of the text in this chapter comes from the 

paper (the title is “Hardware Implementation of an Event-Based Message Passing 

Graphical Model Network”) published in the IEEE Transactions on Circuits and 

Systems I (TCASI) in 2018 [83]. The author has only used the text related to the work 

contributed by the author in the paper. 

2.1 Forney Factor Graph 

A FFG is a graph-based representation of a factorized joint probability 

distribution, such that the nodes of the graph correspond to the nonnegative factors 

of the factorization. The edges in turn correspond to those variables, on which the 

factor functions they are connected to, depend on. An example of a factor graph 

representing the factorized joint probability of the variables described in (2.1), is 

shown in Figure 2.1. The nodes of the graph correspond to the individual factors (f1 

to f6) of the factorization in (2.1) and the edges correspond to the variables. It is 

assumed in the remainder of the thesis that the variables are discrete and therefore 

only summations, rather than integrations, are needed for marginalization. The 

marginal probability of each variable can be computed by summing over all variables 

except for the desired variable. The marginal probability, e.g. of X3, is shown in (2.2) 

with a normalizing factor described in (2.3). 

              1 6 1 1 2 2 3 1 2 3 4 4 5 3 4 5 6 5 6, , , , , , ,f x x f x f x f x x x f x f x x x f x xK   (2.1) 
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Using the BP approach, marginalization can be performed in a more efficient way 

than in (2.2), by exchanging 'messages' between adjacent nodes along the 

connecting edge (variable). These messages can be interpreted as probability mass 

functions that depend on the connecting variable and, for the graph in Figure 2.1, 

are computed following the set of equations in (2.4). As Figure 2.1 shows, a message 

m (blue arrows) which is sent from one factor to one of its neighbors is formed by 

the product of all input messages into the sending node (except for the message 

coming in along the same edge as m) and the factor function represented by the 

sending node. The resulting product is then summed across all variables connected 

to the sending node, except the variable (edge) the output message is passed along. 

The method of computing output messages in this way is called the sum-product rule 

(SPR). Note that in (2.4) the output message of each equation is equal to its right side 

up to a scale factor NormXi, which is formed by summing along the output variable 

Xi. The marginal probability of X3 in Figure 2.1, i.e. p(x3), is obtained by multiplying 

the messages from the left and right sides of the edge associated with X3 as shown 

in (2.5). 

X1
f1 f3

f2 f4

f5 f6

mX3,a mX3,bmX1,a

mX2,a mX4,aX2 X4

X3 X5

mX5,b

X6

 

Figure 2.1 A factor graph generated from the factorized joint probability in 

(2.1). 
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      3 3, 3 3, 3X a X bp x m x m x   (2.5) 

Although the belief propagation approach presents an advantage in that the 

bidirectional messages on all edges are formed by summations across only a subset 

of all variables and can be computed in parallel, the massive cost involved in 

computing the SPR is still required. This cost can be reduced by considering only 

Gaussian distributed variables and restricting the defined constraint functions to a 

few types, e.g. plus, equality, and gain as shown in [58]. Factor nodes for these 

functions (see Figure 2.2) are described in (2.6), and the unidirectional output 

messages, for instance, are computed as shown in (2.7). As a result, the mean and 

variance of the distributions are the only parameters needed during message passing 

and the message computation rules can easily be tabulated [57], [58]. This constraint 

reduces the computational load. However, for messages of arbitrary distributions 

and for more complex user-defined functions, the full calculation of the SPR is 

needed. 

 

+X

Y

Z
=X

Y

Z AX Z

 

                       (a)                                           (b)                                           (c) 

Figure 2.2 Symbols of specific factor nodes. The arrow indicates the direction 

of message passing. The nodes define the (a) plus, (b) equality, and (c) gain 

constraint functions with variables X, Y and Z. 
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  (2.7) 

2.2 Event-Based Belief-Propagation Model 

This section introduces the main concept of the event-based BP model proposed 

by Steimer et al. [55]. Instead of representing the SPR as a list of probabilities, [55] 

showed how analog messages can be represented as a list of InterSpike Intervals (ISIs) 

(i.e. ISI samples) of any two consecutive events in the input and output spike streams 

of the factor nodes. This model avoids the normal expensive SPR computation. The 

SPR summations are solved in an implicit way by means of Monte Carlo sampling. In 

addition, the factor graph in this formulation is not limited to the use of Gaussian 

messages. The event-based belief propagation approach bears some similarity to the 

sequential Monte Carlo sampling method [84], [85], where many particles are used 

to approximate the sampled input distribution. This message passing formulation is 

inspired by experimental evidence that shows that populations of neurons can be 

sensitive to the timing of their inputs and that the input to a neuron can depend on 

the spike input frequency or the difference between the arrival time of spikes [46], 

[86]. The mechanism of the event-based BP model in [55] is explained as follows. 

2.2.1 Renewal Theory 

The message is encoded in the ISIs of the spikes or events as shown in Figure 2.3. 

Given a probability distribution representing a message, each ISI value is a random 

sample from this distribution. Within a finite time window, W, the statistics 

(empirical distribution) of the samples approximates the true ISI distribution 

representing the message. 
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It is a stochastic, event-based process, called renewal process, such that the 

temporal difference (ISI) between the times of occurrence of two successive events 

(spikes) follows some given distribution. Importantly, for a process to be renewal, 

two different ISIs must be statistically independent. In particular, this means that the 

time of each spike depends only on the time of the latest previous spike and not on 

the rest of the process’ history. In other words, the process is ‘renewed’ after each 

spike, thereby explaining the term ‘renewal process’. 

Besides the ISI distribution p(t-t0) (where t0 is the time of the last spike), renewal 

theory is based on two other fundamental quantities, the survivor function S(t-t0) 

and the hazard function h(t-t0). S(t-t0) is the process’ probability of ‘surviving’ until 

time t without firing any further spike, given the last spike has happened at t0. The 

equation is shown in (2.8). The hazard h(t-t0) in turn can be interpreted as a 

conditional instantaneous firing rate, i.e. the probability of firing within an 

infinitesimally small interval around t, given that the last spike occurred at t0. A 

fundamental result of renewal theory establishes the relation in (2.9) between p(t-

t0), S(t-t0) and h(t-t0) [29], [87]. 

    
0

0 01
t

t
S t t p t t dt       (2.8) 

      0 0 0p t t S t t h t t       (2.9) 

Equation (2.9) has a quite straightforward interpretation; Given that the last 

spike happened at t0, the probability of an ISI of length t-t0 is equal to the (joint) 

probability of not firing until t, times the probability of firing at t. To avoid cluttered 

notation, for the rest of the thesis it is assumed that the last spike has happened at 

Time

8 2 4 6 12

6mX(x)

 

Figure 2.3 Proposed message encoding principle for random number 

sequence. Each spike of a train is provided with an analog label, whose value 

corresponds to the length of the ISI preceding the spike, i.e. to the difference in 

spike time between the considered spike and its predecessor (see numbers 

above the spikes in arbitrary units). These analog values are therefore samples 

of the ISI distribution underlying the spike train. The spike train is renewal, i.e. 

all ISIs are independent samples. 
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t0 = 0). Combined with (2.8) and (2.9) this allows for an alternative expression of the 

hazard function in (2.10). The details of the derivation are given in Appendix A.1. 
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  (2.10) 

Equation (2.10) is this continuous recursive form of the hazard function 

implemented in VLSI circuits, the output of which is then used as an instantaneous 

firing rate input to a spike-generator circuit. 

2.2.2 Discrete-Time Approximation 

To generate independent output ISI samples based on the renewal theory, the 

hazard value, h(t), is used to compare with the samples from a uniform random 

variable. To realize this random variable on VLSI hardware, the current circuits in the 

author’s best knowledge are clock-driven. Note that it is not claimed that all the 

random number generators are clock-driven but those with a uniform distribution 

are so (details in Chapter 5). Therefore, new random numbers are only sampled at 

finite, discrete time steps, which undermine the continuous time assumption implicit 

in (2.10). This section presents a condition imposed on the mean time tmean of the 

input probability distribution p(t), defined in (2.11), and the time step Δt, which is 

the period of the sampling clock of the random number generator, such that (2.10) 

is still approximately valid. Here summarize the key properties of the discrete-time 

approximation Please refer to Appendix A.2 for the detail definitions and 

descriptions.  

  
0

[ ]meant E T tp t dt


     (2.11) 

In order to produce output spikes that follow a given instantaneous rate profile 

(e.g. a hazard function), it is necessary to compare the product h(t)Δt with the sample 

“nx(t)” of a uniform random variable “NX”, whose range is between [0,1], on time t 

= iΔt, where i ∈ N0 = {{0} ∪ N}. The probability of generating a spike event is equal to 

the probability of nx(iΔt) being smaller than h(iΔt)Δt, and is hence given in (2.12). 

       Pr h i t t nx i t h i t t         (2.12) 

Equation (2.12) is the discrete-time approximation of some instantaneous firing 

rate, which is given by the hazard function. Using this comparison scheme, the 
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output ISI distribution pISI(nΔt), where an event happens on t = nΔt and no events 

happen before t = nΔt, can be written as (2.13). Equation (2.13) is the finite time 

approximation to (2.10). If Δt is small enough compared to tmean, pISI will approximate 

p. In a case where p is a regularly-step-staircase (RSS) probability distribution (see 

Figure A.1), pISI is even equal to p for any values of Δt is. For the derivation of (2.13) 

in different conditions of p, please refer to Appendix A.2. 
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2.2.3 Message Passing 

The section first explains how the message passing using the event-based belied-

propagation model where a message is encoded in a number of ISIs in a spike train 

can approximate the messages computed using the SPR and then gives an 

architecture of a factor node.  

Note that the values of ISIs dealt with in this thesis are in the range of natural 

number, i.e. the value of each ISI ∈ N, where N = {1,2,3,…}, as shown in Figure 2.3. 

Therefore, the probability distribution of a message such as mX(x) is a probability 

mass function and the possible values of variable X is natural numbers. The real time 

scale of an ISI in seconds is represented as tISI which is equal to the product of the 

ISI’s value and time step Δt, i.e. tISI = ISIΔt. The maximum ISI in a spike train is defined 

as ISImax in natural number and tISImax in real time scale. 

The notion of the expectation of a random variable is introduced first. In (2.14) 

the expectation of a random variable whose possible values are in nature numbers, 

i.e. x ∈ N, is defined as the sum of the products of the random variable’s all possible 

values and its probabilities [88]. Alternatively, summing all samples’ values and 

divided by the total number of the samples, named Norm, is another solution to find 

out the expectation if the number of sample approaches to the infinity. Otherwise, 

the mean calculated using the samples is only an approximation on the expectation 

with a finite number of samples. Similarly, the expectation of a function of two 

random variables, whose samples are both natural numbers, is defined in (2.15). If 

the two random variables are independent, the joint probability distribution p(x,y) 

can be written as p(x)× p(y). The expectation of g(X,Y) can also be approximated 

using the sample pairs (x,y) assuming that the number of sample pairs are sufficient.  
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The form of (2.15) shows a similarity with the general form of the SPR described 

in (2.16). Given a value of variable Z, e.g. z = i, the three-variable function f(x,y,z) is 

simplified as a two-variable function fz=i(x,y). Computing mZ(i) now is similar to 

computing the expectation of function fz=i(x,y). Therefore, mZ(i) can be approximated 

using the samples pairs (x,y). By changing the value i from 1 to n and reusing the 

samples pairs, an unnormalized message (or histogram) umZ(z), composed of 

[umZ(1),umZ(2),…, umZ(n)], can be established as shown in (2.17). umZ(i) can be 

understood as the value at i-th bin of the histogram. After normalization, message 

mZ is obtained as shown in (2.19). Because messages mZ is a probability distribution 

whose area in total has to be 1, the normalizing term Norm should be a sum of umZ 

as shown in (2.18). Hence, it is necessary to compute Norm as well. Function F(x,y), 

a sum of function f(x,y,z) with respect to variable Z, is used to obtain the value of 

Norm from the samples pairs (x,y) as shown in (2.18). In addition, umZ and Norm can 

be computed in parallel by sharing the same sample pairs. 
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Figure 2.4(a) shows an example of a factor node block, where the ISIs in spike 

trains spikeX and spikeY encode messages mX and mY. Therefore, samples described 

above are represented by ISIs and the value i from 1 to n is represented by the ISI’s 

value from 1 to ISImax. The ISIs from spikeX and spikeY are paired and sent to the 

constraint function f(x,y,z). Given some ISI value i of variable Z, Figure 2.4(b) shows 

the landscape of function fz=i(x,y) as an example (Note that Figure 2.4(b) is taken from 

Steimer et al [55]). The value umZ(i) is computed using function fz=i(x,y) and the 

sample pairs. Meanwhile, Norm is also computed using function F(x,y) and the ISI 

pairs. By changing i from 1 to ISImax and divided by Norm, the output message mZ(z) 

is obtained. Then, a spike train, spikeZ, which encodes message mZ in the ISIs are 

generated using the discrete time approximation. With the sample-based approach, 

the event-based BP model avoids using the SPR for computing messages. 

 

f
spikeX

spikeY

spikeZ

 

                             (a)                                                                     (b) 

Figure 2.4 Concept of the event-based BP model. (a) Factor node with three 

edges X, Y, Z, where the messages are passed along the arrows using spike trains 

spikeX, spikeY and spikeZ. (b) Every input pair (x,y) samples the function f while 

Z = z. 
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The architecture of a factor node is described as follows. A unidirectional 

message passing is composed of a Landscape Sampling (LS) block and a Random 

Sampling (RS) block as shown in Figure 2.5. A complete factor node for this example 

is made up of three such circuits in order to compute the messages in both directions 

for all three variables. In the LS block, samples consist of pairs of the most recent 

input ISIs of variables X and Y. These samples (x,y) are both sent to the factor’s 

function, f(x,y,z) and the summation function F(x,y) in the LS block. The summation 

function F(x,y) is the sum of f(x,y,z) with respect to the output variable, Z, and is used 

as a normalizing term. Once all pairs in a time window, W, are computed, the 

message-combined distribution mZ is computed from the histogram of f(x,y,z) 

normalized by the value of F(x,y). The message mZ is then sent to the RS block that 

generates the output spikes. The hazard function and a uniform random number 

generator are required in this block. 

 

 

 

Landscape 
Sampling

message-combined 
probability distribution mZ

Random 
Sampling

spikeX

spikeY

spikeZ

 

Figure 2.5 Proposed message passing scheme. The factor’s function f is 

implemented in a LS block which produces the probability distribution of 

message mZ used by the RS block to generate the spiking output. 



 

Chapter 3 Event-Based Belief-

Propagation Model Simulation 

Before diving into the hardware implementation, the behavior of the event-

based Belief-Propagation (BP) model through simulations in Matlab is verified. First, 

the RS block is simulated to confirm the validity of the discrete-time approximation. 

Then a single factor node combining the Landscape Sampling (LS) block and the 

Random Sampling (RS) block is simulated. Lastly, two applications are presented, one 

is the event-based Kalman filter for object tracking and another is the event-based 

Continuous Restricted Boltzmann Machine (CRBM).  

3.1 Random Sampling Block Validation 

As mentioned in Section 2.2.2, the output InterSpike Interval (ISI) distribution pISI 

approximates the input probability distribution pin using (2.10) and (2.12). Also, in 

Appendix A.2, different types of the input probability distribution pin(t) and different 

methods to compute the hazard h(t) are discussed. In brief, the output ISI 

distribution pISI can be equal to pin if pin(t) is a regularly-step-staircase (RSS) 

probability distribution and the hazard is computed using the original definition (A.5) 

or the continuous recursive form (A.6). If, on the other hand, pin(t) is not a RSS 

probability distribution or the discrete recursive form (A.7) is used, pISI is only an 

approximation of pin under the condition that time step Δt << tmean, where tmean is 

defined as the mean time of pin(t) as shown in (2.11). Note that in the following 

sections, the input probability distribution is represented as pin instead of p used in 

Chapter 2 and Appendix. Literally, they are identical. The subscript is intended to 

make the notation easier. 

The influence on pISI using different equations to update hazard is demonstrated 

through simulation. The three ways to update hazard are the original definition (A.5), 

the continuous recursive form (A.6) and the discrete recursive form (A.7). First, a 

discrete-value input signal representing a RSS pin is provided as shown in Figure 3.1(a). 

It is a triangle waveform from t = 1Δt to 17Δt. In the following Matlab simulations, Δt 
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is defined as 1. The output ISI distribution is obtained by counting the ISIs in the 

output spike train with time window W = 1,000,000. Since the discrete-time 

approximation described in Appendix A.2 does not consider the effect of the finite 

number of samples, enough ISIs (= 70,000) are collected by setting a large W to 

compute the histograms. 

In Figure 3.1(a), pISI1 is the output ISI distribution using the original definition to 

compute the hazard; pISI2a and pISI2b are the output ISI distributions using the discrete 

recursive form with different updating steps, Δt and 0.1Δt, respectively. The purpose 

of providing different updating steps is that continuous-time simulations are not 

possible on the computer so pISI using the continuous recursive hazard is obtained 

indirectly by reducing the time step. Note that if there is no spike after sequentially 

providing the entire pin (which means the hazard is always smaller than the random 

sample), the RS block is forced to generate a spike at ISI = 25.  

From the shape of the output ISI distributions in Figure 3.1(a), it can be easily 

seen that pISI1 is the most similar to pin. In addition, although both pISI2a and pISI2b have 

distortions (some counts are located at ISI = 25), the latter is more similar to pin than 

the former. Note that the Kullback-Leibler (KL) will be used to show the similarity of 

two distributions later. Here the author briefly point out that the difference of pISI is 

visible to the eye. The reason for the distortion is explained as follows. In the discrete 

recursive form, it is assumed that the hazard value stays constant during the time 

between two consecutive updates, i.e. t ∈ [iΔt,(i+1)Δt] or [0.1iΔt,0.1(i+1)Δt] 

depending on the updating step, despite the fact that the hazard is continuously 

changing. Therefore, the hazard computed from the discrete recursive form is 

smaller than the one from the original definition as shown in Figure 3.1(b). In the 

beginning, i.e. the first few bins, the difference of the hazard is not obvious. However, 

the recursive property enlarges the difference, leading to distinct hazard values at 

the end. It can be seen that hISI1 at ISI = 17Δt is 1 which guarantees a spike must be 

produced (the range of the random sample nx is [0,1]) while hISI2a at ISI = 17Δt is only 

0.64. Therefore, all pISI(t) in Figure 3.1(a) approximate pin(t) when t is small but some 

of them, especially pISI2a, do not approximate well at the end. 

Table 3.1 shows the Kullback-Leibler (KL) divergence [89] in different updating 

steps. The definition of KL divergence, DKL(P∥Q), is shown in (3.1). It characterizes the 

disparity between the empirical distribution Q(i) and the theoretical (or ideal) 

distribution P(i). This disparity is caused by the finite set of samples that are used by 

Q(i) for a representation of P(i). The Q in this case is represented as pISI and the P is 

represented as pin.  
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    
 

 
|| logKL

i

P i
D P Q P i

Q i
   (3.1) 

Table 3.1 shows that minimizing the updating step will help decrease the error 

so that pISI approximates pin. When minimizing the updating step, the discrete 

recursive form to compute the hazard approaches to the continuous recursive form. 

The experimental results indicate that it is better to use either the original definition 

or the continuous recursive form to update the hazard. If, on the other hand, the 

discrete recursive form is used, the updating step has to be set as small as possible. 

As the result, the original definition is used to compute the hazard in the simulations 

and the continuous recursive form is used for the hardware implementation in 

Chapter 4. 

 

Output Hazard Updating Step KL Divergence 

pISI1 Δt 1.37E-4 

pISI2a Δt 0.081 

pISI2b 0.1Δt 0.013 

pISI2c 0.01Δt 0.0013 

pISI2d 0.001Δt 3.04E-4 

pISI2e 0.0001Δt 1.54E-4 

Table 3.1 KL divergence between the output ISI distribution and the input 

distribution. (Δt = 1) 
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(a) 

 

(b) 

Figure 3.1 (a) Output ISI distributions over 70,000 samples using different 

equations to compute the hazard. pISI1 is obtained using the original definition 

while pISI2a and pISI2b are obtained using the discrete recursive form with 

different updating steps, Δt and 0.1Δt. (b) Corresponding hazards for the three 

methods. The definitions of the subscripts are the same as in (a). 
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3.2 Factor Node 

The LS and RS blocks are combined to form a unidirectional factor node. The LS 

takes input spikes and generates a message-combined probability distribution 

according to the constraint function f. This message-combined probability 

distribution is sent to the RS block which produces the output spikes. This section 

models the functionality of the event-based BP model using different constraint 

functions in a factor node and shows an example of a simple network. 

The first factor node demonstrated in Figure 3.2(a) is the equality constraint 

node whose function fequality is shown in (2.6). The arrows indicate the directions of 

the message passing. Because the inputs of the factor node have to be spike streams, 

two RS blocks in front of the equality constraint node is placed to generate the spike 

trains carrying the corresponding messages mX and mY. Figure 3.2(b),(c) show the 

defined probability distributions of the two messages in RS blocks in in red and the 

output ISI distributions in blue  

The output message mZ of the equality constraint node is shown in Figure 3.2(d). 

The red curve shows the probability distribution computed from the SPR in (2.7) and 

the blue curve shows the output ISI distribution by counting the ISIs in the spike train 

of Z. As the result shown in (2.7), the output message is the product of two input 

messages. Since a triangular-shaped distribution for message mX and a V-shaped 

distribution for message mY is provided, message mZ should show a two-bump 

distribution. As Figure 3.2(d) shows, the output ISI distribution approximates the SPR 

result.  
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The second factor node is the plus constraint function fplus shown in Figure 3.3(a). 

Both message mX and mY are defined as uniform distributions ranging from [1,32] as 

shown in Figure 3.3(b) and (c). In (2.7), the output distribution should be the result 

of the convolution of two inputs. Therefore, message mZ should be a triangular-

shaped distribution. As Figure 3.3(d) shows, the output ISI distribution of message 

mZ (the blue curve) approximates the SPR result (the red curve). 

=X

Y

Z
mX

mY

 

(a)                                                                   (b) 

 

(c)                                                                   (d) 

Figure 3.2 (a) Unidirectional factor node with the equality constraint 

function. The input spike trains are generated from two RS blocks. (b) 

Distribution of message mX. The red curve shows the defined probability and 

the blue curve shows the output ISI distribution from the spike train with 18,000 

samples. (c) Distribution of message mY (d) Distribution of message mZ 
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Next, a simple network with two factor nodes and four RS blocks is constructed 

as shown in Figure 3.4(a). This simulation demonstrates that a similar result can be 

obtained using the event-based BP model. Because the messages in this network are 

restricted to binary, the possible ISIs in a spike train are either 1 or 2, which maps 

the value of 0 or 1 in the binary domain. One of the factor nodes is the equality 

constraint node and the other is the xor constraint node defined in (3.2). The output 

message can be computed using the SPR in (3.3). 

    , ,xorf x y z x y z     (3.2) 

+X

Y

Z
mX

mY

 

(a)                                                                   (b) 

 

(c)                                                                    (d) 

Figure 3.3 (a) Unidirectional factor node with the equality constraint 

function. The input spike trains are generated from two RS blocks. (b) 

Distribution of message mX. The red curve shows the defined probability and 

the blue curve shows the output ISI distribution from the spike train with 11,000 

samples. (c) Distribution of message mY (d) Distribution of message mZ 
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  (3.3) 

The network is further expanded to the one shown in Figure 3.4(b) in order to 

obtain the output ISI messages from both directions. First, the spike trains with 

messages mX1,a to mX4,a are generated using the four RS blocks. These spike trains are 

sent to the xor and equality constraint node for producing the spike trains with 

messages mX5,a and mX5,b, respectively. Next, the spike trains carrying messages mX5,a 

and mX3,a are sent to the equality constraint node which generates the spike train 

carrying message mX4,b and so on as Figure 3.4(b) shows. Finally, all messages of 

variables X1 to X5 are obtained. With these messages, to compute the marginal 

probability of any of the variables is possible using an equality constraint node as 

shown in Figure 3.4(c) because the marginal probability of a variable is proportional 

to the product of both directional messages (see (2.5)). 

By setting the binary distributions of messages mx1,a to mx4,a in the RS blocks and 

following the message passing described above, the marginal probabilities px1 to px4 

can be obtained. Messages mx1,a to mx4,a are set as follows: [mx1,a,mx1,a,mx1,a,mx1,a] = 

[(0.9,0.1),(0.9,0.1),(0.1,0.9),(0.9,0.1)]. The spike train that carries the binary message 

only use two ISI values, i.e. ISI = 1 or 2. The binary value “0” is represented by ISI = 1 

while the binary value “1” is represented by ISI = 2.  

Table 3.2 shows the binary distributions of px1 to px4 computed by the SPR and 

the ISI counting in the spike trains. In general, increasing the number of ISIs leads to 

a better approximation between pISI and the theoretical probability distribution from 

the SPR. Using the KL divergence to index the similarity of two distributions as shown 

in Figure 3.5, the trend that increasing the number of ISIs leads to the decrease of 

the KL divergence can be seen. The suddenly drops of the curves in Figure 3.5(a) are 

because their ISI distributions just match the theoretical one in this trial. The positons 

of these drops vary from trial to trial as shown in another trial of Figure 3.5(b). 
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=
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(c) 

Figure 3.4 (a) Example network with two factor nodes and four semi-factor 

nodes. (b) Expanded form for computing messages in both directions. (c) 

Computing the marginal probability of variable X1 using one equality constraint 

node to combine the messages from two directions. 
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 SPR 
Event-Based Model (# of ISIs) 

100 1000 10000 

px1 (0.9,0.1) (0.89,0.11) (0.902,0.098) (0.898,0.102) 

px2 (0.9,0.1) (0.93,0.07) (0.896,0.104) (0.897,0.103) 

px3 (0.82,0.18) (0.84,0.16) (0.834,0.166) (0.837,0.163) 

px4 (0.82,0.18) (0.77,0.23) (0.841,0.159) (0.821,0.179) 

Table 3.2 Probability distributions of messages computed from the SPR and 

the event-base BP model and their dependence on the number of ISIs. 
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(a) 

 

(b) 

Figure 3.5 KL divergences of the marginal probailities pX1 to pX4 in (a) trial 1 

and (b) trial 2. 

100 1000 10000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

K
L
 d

iv
e
rg

e
n
c
e
 (

b
it
)

No. of ISI samples

 px1

 px2

 px3

 px4

100 1000 10000
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

K
L
 d

iv
e
rg

e
n
c
e
 (

b
it
)

No. of ISI samples

 px1

 px2

 px3

 px4



30 Chapter 3. Event-Based Belief-Propagation Model Simulation 

3.3 Applications 

The model investigated in Section 3.2 is now applied to two specific problems: 

The Kalman filter for object tracking and the CRBM for data reconstruction. 

3.3.1 Object Tracking 

Because of the ubiquitous noise in our environment, our observations 

(measurements) or predictions of the targeted physical quantities such as the 

position are both inaccurate. Such inaccuracy might propagate over time resulting in 

a significant error. The Kalman filter [90], [91], a state-space model, provides a 

method to estimate some physical quantities using the information coming from 

both the prediction and measurement. The equation of the Kalman filter describing 

the transition of the state is presented in (3.4), 

 
1t t t t t t

t t t t

x F x B u w

z H x v

  

 
  (3.4) 

where  

xt: state vector at time t 

ut: vector containing any control inputs 

Ft: state transition matrix 

Bt: control input matrix 

wt: vector containing the process noise term  

zt: vector of measurements 

Ht: transition matrix mapping the state vector into the measurement domain 

vt: vector containing the measurement noise term 

Since the true state of the physical quantities (or the system) of interest cannot 

be directly observed, Kalman filter provides an algorithm that computes the estimate 

considering the information from the prediction, which is based the model of the 

system, and the noisy measurement. The true state can be estimated using two 

quantities, a posteriori estimate |
ˆ

t tx  and a posteriori error covariance matrix Pt|t. The 

process involves a prediction base on 1| 1
ˆ

t tx    and Pt-1|t-1 from previous time step to 
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compute | 1
ˆ

t tx   and Pt|t-1 as shown in (3.5) and an update from the measurement to 

obtain |
ˆ

t tx  and Pt|t as shown in (3.6). 

 
| 1 1| 1

| 1 1| 1

ˆ ˆ
t t t t t t t

T

t t t t t t t

x F x B u

P F P F Q

  

  

 

 
  (3.5) 

where  

| 1
ˆ

t tx  : predicted state  

Pt|t-1: predicted covariance matrix  

Qt: covariance matrix of wt  

 
 | | 1 | 1

| | 1 | 1

ˆ ˆ ˆ
t t t t t t t t t

t t t t t t t t

x x K z H x

P P K H P

 

 
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 
  (3.6) 

where  

Kt: Kalman gain (=  
1

| 1 | 1

T T

t t t t t t t tP H H P H R


   )  

Rt: covariance matrix of vt  

In addition, the Kalman filter can be mapped into a Forney Factor Graph (FFG) 

previously shown in [57]. Equation (3.4) can be interpreted as a FFG as shown in 

Figure 3.6. 1| 1
ˆ

t tx    and Pt-1|t-1 in (3.5) and |
ˆ

t tx  and Pt|t in (3.6) are computed in the 

relative positions of the graph as shown in red. However, the state update is 

computed in a different way in a FFG in [57], [58]. Assuming all the noise sources 

have a Gaussian distribution, Loeliger et al. show that the messages in this network 

can be represented by mean vector and covariance matrix. The message passing in 

terms of computing the output message of a factor node can be computed using an 

established table, where the required constraint functions such as plus, equality and 

gain are described. 
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In this section, an event-based Kalman filter is constructed using the factor nodes 

in the event-based BP model described in Section 3.2. The event-based Kalman filter 

is used for one-dimensional object tracking that tracks the position of a falling tennis 

ball. The measurement is obtained from the Dynamic Vision Sensor (DVS) [14], an 

event-based retina that generates events when any of the pixels detects a temporal 

contrast change above a threshold. The DVS reduces data redundancy by producing 

asynchronous scene reflectance temporal contrast address-events. Figure 3.7 shows 

the structure of a DVS pixel. Incident light photocurrent is first generated by the 

photodiode and is converted to a voltage logarithmically in the photoreceptor. After 

a voltage amplifier amplifying the logarithmic voltage, the voltage change is 

compared to the ON and OFF thresholds. Then, the AER logic produce an ON or OFF 

event and reset the voltage amplifier. The AER representing Address Event 

Representation (AER) [92]–[95] is a four-phase handshaking protocol developed for 

transmitting and receiving the addressed-events asynchronously. 
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Figure 3.6 Kalman filter represented by a FFG. The next state is updated by 

the messages along the blue directions. The parameters in red indicates the 

relative positions of the quantities computed in (3.5) and (3.6). 
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The equations for calculating the position, s, and the velocity, v, in a state space 

model with a constant acceleration is shown in (3.7). Note that Δtstate in (3.7) is 

distinct from Δt. The former is the time interval between two consecutive states, 

called the state step, and the latter is the minimum unit time of an ISI value that 

associated to the previous simulations. Similar to Figure 3.6, the equation can be also 

factorized as shown in Figure 3.8. Figure 3.8(a) shows the factor graph representing 

variable s and Figure 3.8(b) shows the factor graph representing variable v.  

 
2

1 1

1

0.5t t t state state

t t state

s s v t a t

v v a t

 



     
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  (3.7) 

In Figure 3.8(a), the position sest,t at state t is estimated according to the 

prediction spre,t-1, which is also the estimation of previous state t-1, and the current 

DVS measurement smea,t. The prediction noise nst is generated by a RS block that the 

input probability distribution is defined as a Gaussian-distributed and the function fs 

derived from (3.7) is defined in (3.8). Function fs is similar to a plus constraint 

function that sums the input ISIs together. However, the number of inputs of the 

factor node can be more than two because the message passing in this task is 

unidirectional. The ISIs in vpre,t-1 has to multiply the state step Δtstate before summing. 

The last term of (3.8) is a time-invariant value so that it can be treated as a bias term 

inside the function instead of an input. Of course, a gain constraint node can also be 

used to represent Δtstate. Velocity vpre,t-1 first goes to the gain node and the output 

spike train of the gain node is then sent to the node with function fs for summing. 

Here, all variables are put together in one node to simplify the network.  

   2

, , 1 , 1 0.5s pre t pre t t pre t state statef s s ns v t a t            (3.8) 
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Figure 3.7 Structure of a DVS pixel. 
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The measurement of the position smea,t is contributed by the DVS that producing 

the events once detecting the temporal contrast. The information of the positon is 

represented by the addresses of the events. Therefore, in this example, the value of 

an ISI represents the address of an event. As shown in Figure 3.8(a), the addressed 

fs =

A=1

spre,t-1

smea,t

spre,t

nst

vpre,t-1

sest,t

 

(a) 

 

fv =

+A=1

vpre,t-1

vmea,t

vest,t

nvt

vpre,t

 

(b) 

Figure 3.8 Factor Graphs for the task of tracking the falling tennis ball. The 

graph for (a) the position tracking and (b) the velocity tracking. 
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events are first sent to a unity-gain (A = 1) node to compute the probability 

distribution of the addresses and, then, the unity-gain node generates an output 

spike train according to this distribution. Ideally, the DVS events’ addresses can 

directly form a spike train where the addresses are represented as ISIs. Then the 

equality constraint node in Figure 3.8(a) use this spike train as its input. However, 

the number of events might not be sufficient when the tennis ball is just falling 

because of a low velocity. The equality node is unable to compute the output 

message. Therefore, a unity-gain node between the DVS events and the equality 

node can keep producing output spikes within the defined time window. 

In Figure 3.8(b), nvt is generated by a RS block that the input probability 

distribution is defined as a Gaussian-distributed as well. Function fv is defined in (3.9). 

Since a sensor that measures the velocity is unavailable, artificial data is used to 

represent the measurement of the velocity vmea,t. The artificial data are obtained by 

adding the values of the Gaussian noise on the theoretical velocity computed by (3.7). 

If the velocity can be extracted from a future event-based sensor, this artificial block 

can be possibly replaced. 

   , , 1v pre t pre t t statef v v nv a t        (3.9) 

Table 3.3 shows the parameters used for this tracking task. The state is updated 

every 0.01 s meaning that the DVS events are collected during a duration of 0.01 s. 

Because the position is estimated from the addresses of the DVS events in pixel 

coordinates, i.e. an ISI represents the location of the pixel that produces the event, 

the prediction is also computed in pixel coordinates for consistency. Therefore, the 

unit of the acceleration is set as pixel/s2 instead of m/s2.The ratio of the two units is 

computed according to the range of the falling distance covered by the 128 pixels of 

the DVS sensor. 
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Figure 3.9 shows a 0.01 s time slice of the DVS event output when the tennis ball 

was falling. The events in white and black represent the OFF and ON temporal 

contrast change events, respectively. Since only one-dimensional movement along 

the y axis is considered, the events happening in the same row are all considered as 

the same addressed event. The numbering of the DVS pixel along the y axis is 1 at 

the bottom and 128 at the top as shown in Figure 3.9. The ON and OFF events 

produced at the edge of the ball are due to the intensity contrast change. Both types 

of events are considered in estimating the position. Figure 3.10 shows the measured 

and estimated positions at different time (or states). A red dot represents the 

average of all addresses of the DVS events within 0.01 s while a blue dot represents 

the average of all ISIs in the spike train sest within the time window W. The ball is 

placed and dropped around position 120 in the image. This value is used as the initial 

predicted position. However, the measured position (~= 95) is far from it due to the 

low velocity in the beginning. The events caused by the object movement are not 

sufficient so that the random events of the DVS play a role. sest considers both the 

prediction and the DVS measurement so the estimation curve (the blue curve) 

approaches to the theoretically quadratic curve better than only the measurement 

considered (the red curve). 

Parameter Quantity Unit 

ISI time step Δt 1  

time window W 10000  

state step Δtstate 0.01 s 

DVS pixel number 128 pixel 

falling distance 0.81 m 

accerleration a 
128

9.8 1549
0.81

    
pixel/s2 

standard deviation of ns 2 pixel 

standard deviation of nv 2 pixel/s 

Table 3.3 Parameters for object tracking 
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Figure 3.9 Screenshot of the DVS at a moment of the tennis ball falling. 

 

Figure 3.10 Position of the ball as a function of time. Each red dot represents 

the average of all event addresses in a 0.01 s time slice. Each blue dot represents 

the average of ISIs in the spike train sest within the time window W.  
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Figure 3.11(a) shows the probability distribution of all addresses of the DVS 

events at tstate = 0.02, 0.12, 0.22, 0.32 and 0.42 s, respectively, while Figure 3.11(b) 

shows the probability distribution of all ISIs in the spike train sest in the same 

condition of tstate. When tstate = 0.02s, the ball is about to fall. The probability 

distribution (the red in Figure 3.11(a)) of the DVS events’ addresses at this tstate does 

not reflect the position of the tennis ball due to the low velocity. However, the 

estimated distribution shown in Figure 3.11(b) in red is relatively concentrated 

because of considering both the prediction and the measurement using the equality 

node. These random events from the DVS are thought to be filtered out by the 

equality node. The reason is explained as follows. Because the output probability 

distribution of the equality node theoretically is the product of the two input 

distributions, those non-overlapped areas in the two input distributions will output 

0 after the product. The initial predicted position is set to pixel 120. Therefore, the 

random events are filtered out after the equality node. The measured distributions 

in other states also show a little scatter in Figure 3.11(a) but these noise events are 

again filtered out in the estimated distributions, i.e. the ISI distribution of spike train 

sest, in Figure 3.11(b).  
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3.3.2 Data Reconstruction with an Event-Based CRBM 

The second example is the event-based CRBM. This event-based version is 

converted from the continuous-valued CRBM. That is, information is transmitted 

using spike streams rather than continuous-valued variables. This section first briefly 

introduces the CRBM by starting with the RBM.  

The RBM is a fully-connected network with two layers of neurons, a visible and a 

hidden layer. Figure 3.12 is an example of a RBM with two visible, two hidden and 

two bias neurons (v0 and h0). There is a weight with each connection. For example, 

w12 represents the bidirectional weight between neurons v1 and h2. Each neuron, 

except for the bias neuron, generates a binary output sampled from some probability 

distribution composed of two components, p(sj=0|s) and p(sj=1|s), as described in 

(3.10). p(sj=1|s) , where s represents an output vector of the neurons in the previous 

layer, indicates the probability of neuron sj generating an output sample of 1 under 

the condition that every neuron in the previous layer contributes its “one” output 

value to vector s. For example, p(h2=1|v=[v0,v1,v2]) means that the probability of 

generating an output sample of 1 from neuron h2 is determined by the three output 

values of neurons v0 to v2. The three values are multiplied with their weights and 

then sent to a sigmoid function φj, the output of which is p(h2=1|v). Note that the 

bias neuron always generates a constant output value of 1. 

 

v1

v2

h1

h2

v0 h0

w12

w01

 

Figure 3.12 RBM with two visible and two hidden neurons. Neuron v0 and h0 

are bias neurons. 
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  (3.10) 

In a RBM, the output is sampled from p(sj=1|s), which is the sigmoid output in 

(3.10). Therefore, the output of a RBM neuron is either 0 or 1. A CRBM [25] is a 

modified RBM model, where the output is not limited to the binary. Instead of using 

the sampled value in RBM, neurons in a CRBM directly send the output of the sigmoid 

to the next layer. A Gaussian noise is added to the input as shown in (3.11), where 

σNj indicates a Gaussian noise source with mean of 0 and variance of σ; θL and θH are 

the lower and upper bounds of the sigmoid; aj defines the slope of the sigmoid. In 

the case that [θL,θH,aj] = [0,1,1], (3.11) is similar to (3.10) plus an input noise. The 

stochastic behavior of a RBM is thought to originate from the sampling of the sigmoid 

output while that of a CRBM is thought to originate from the input Gaussian noise.  
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The author chose the event-based BP model on a CRBM rather than a RBM 

because a CRBM fits the coding scheme of the event-based BP model better. A 

sample in the event-based BP model is represented as an ISI in the range of [1,ISImax]. 

while the sigmoid output of a CRBM is in the range of [θL,θH]. These two ranges can 

be associated. For example, in the case that [1,ISImax] = [1,33] and [θL,θH] = [0,1], the 

sigmoid outputs can be represented by ISIs with a 5-bit resolution (= (ISImax-1)/(θH,-

θL)). Of course, a RBM can also be implemented using the event-based BP model. 

However, the outputs of a RBM are limited to only two ISI values, i.e. ISI = 1, 2, to 

represent the binary values. No matter which model is implemented, the 

architecture of a factor node in the event-based BP model does not change (the LS + 

the RS block). Therefore, it is more efficient to implement a CRBM than a RBM 

because more information is contained in the ISIs. [25] shows that a CRBM with 

fewer neurons can do better than a RBM in a reconstruction task. The reason could 

be that the output of the sigmoid is not quantized in a CRBM so more information is 

preserved.  
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Figure 3.13 shows the FFG of the hidden layer in a CRBM with two visible and 

two hidden neurons. The inputs to the hidden layer are spike trains that the ISIs 

represent the sigmoid outputs of the visible layer and the Gaussian noise sources. 

The visible layer has a similar architecture to the hidden layer shown in Figure 3.13 

except that the inputs come from the sigmoid outputs of the hidden layer. Ideally, 

gain constraint nodes have to be added to the architecture in Figure 3.13 to 

represent the weights, a plus constraint node for summing and a constraint node 

with the sigmoid function according to (3.11) so that the internal messages are 

transmitted by spikes. However, this implementation does not work when the 

author looked into details. The reason is explained as follows. 

 

In a RBM or a CRBM, the neurons in a layer are conditionally independent of each 

other. That is, given an input vector, each neuron generates its output sample 

independently of the other neurons in the same layer. The assumption of conditional 

independence holds only if all neurons in a layer take in one input vector each time 

and produce one output vector. For example, if there are 1000 input vectors, they 

+
w11

w21

w01

v1

nh1

v2

+
w12

w22

w02

v1

nh2

v2

2D RS

h1

h2

 

Figure 3.13 FFG of the hidden layer in a two-visible-two-hidden-neuron CRBM. 
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are fed separately to the layer over 1000 time steps. Meanwhile, the neurons in this 

layer generate 1000 output vectors in response to each input vector. However, a 

factor node in the event-based BP model uses all the samples at once, builds up a 

probability distribution from these samples, and then generates all output samples 

through an output spike train. Therefore, the neurons in a layer cannot be 

conditionally independent of one another.  

To solve the problem that all input vectors represented as ISIs in spike trains are 

sent to the factor nodes at once, a message-combined joint probability constructed 

by input vectors is used. Then, this joint probability is sent to a multi-dimensional RS 

block for producing output spike trains. In this example, the joint probability is two 

dimensional because both the visible and hidden layers have only two neurons. The 

entire layer is considered as one factor node (the red box in Figure 3.13) whose 

constraint function is defined as (3.12) derived from (3.11). This factor node also has 

two blocks, the LS and the RS blocks. The LS block is shown in the blue box containing 

all operations and the RS block is a two-dimensional RS (2D RS) block. The hazard 

function can be still used for generating the output spikes in 2D RS although it is 

described for a one-dimensional probability distribution. The trick is to use the 

definition of conditional probability described in (3.13). After the LS block (the blue 

box in Figure 3.13), a two-dimensional probability distribution p(h1,h2) is obtained. 

The marginal probability p(h1) and the conditional probability p(h2|h1) can be 

computed according to p(h1,h2). Then, an ISI sample for neuron h1 is first generated 

using p(h1). With the ISIh1, an ISI sample for neuron h2 can be generated using 

p(h2|h1=ISIh1). By iterating this procedure, the output spike trains for both neurons 

h1 and h2 is produced. In the implementation, the histograms of p(h1) and p(h2|h1) 

are directly constructed instead of having p(h1,h2) first.  

      1 2 1 2 1 1 1 1 2 2 2 2

0,1,2 0,1,2

, , , i i h i i h

i i

f v v h h h w v n h w v n  
 

 
      

 
    (3.12) 

      , |p x y p x p y x   (3.13) 

This event-based CRBM is used to perform the same reconstruction task 

described in [25] and redrawn in Figure 3.14(a). The parameters are first learned 

from the CRBM and then used in the event-based CRBM. The bit resolution of the 

parameters is limited after learning so that the performance of the model with lower 

bit resolution parameters can be inspected. These lower bit resolution parameters 

could be needed in a future hardware implementation. The bit resolutions are shown 

in Table 3.4. The mapping of the sigmoid outputs [θL,θH] and the ISI values [1,ISImax] 

is from [-1,1] to [1,65].  
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Table 3.5 shows the parameter values after learning. The weights of the 

interconnections are shown in blue and the slope of the sigmoid and the standard 

deviation of the Gaussian noise in each neuron are shown in red. All noise sources 

have a standard deviation of 0.1. 

 

The reconstruction from different epochs are shown in Figure 3.14. In the 

beginning, 1000 ISIsv1 and 1000 ISIsv2 form two output spike trains for two visible 

neurons. Here, the sample number of 1000 is picked because the probability 

distribution of each neuron can be demonstrated easily. Any number of samples is 

possibly given. Both ISIs, shown in Figure 3.14(b), are generated randomly by a 

uniform random variable whose values range from [1,65]. After the initial spike trains 

are given, the model runs by itself without any new external inputs. That is, the 

inputs in the second epoch come from the hidden layer and so on. In each epoch, 

the factor node (either visible or hidden) generates two spike trains of 1000 ISIs each. 

Parameter Resolution (bit) 

Sigmoid output 5 

Weight, w 8 

Slope of the sigmoid, a 5 

Table 3.4 Resolutions of the parameters in CRBM 

2× 2 CRBM 

h0 

 

 

h1 

ah1 (0.7188) 

σh1 (0.1) 

h2 

ah2 (15.7813) 

σh2 (0.1) 

v0 

 

 

NA 
w01 

(-0.3594) 

w02 

(-0.0586) 

v1 

av1 (2.1875) 

σv1 (0.1) 

w10 

(0.2422) 

w11 

(1.1445) 

w12 

(0.3945) 

v2 

av2 (1.1875) 

σv2 (0.1) 

w20 

(0.1016) 

w21 

(1.4531) 

w22 

(-0.5469) 

Table 3.5 Parameters after learning 
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After a few iterations (Figure 3.14(c)-(e)), these ISIs converge to two groups similar 

to the result in [25].  

The training data in Figure 3.14(a) is generated by two 2-dimensional Gaussian 

bumps, where the standard deviations of the two bumps are 0.25 and 0.08 along x 

axis in Figure 3.14(a) and are 0.1 and 0.1 along y axis. Figure 3.15 shows the ISI 

distributions of the visible neurons in different epochs. It can be seen that after 15 

epochs, the ISI distributions of neuron v1 and v2 reflect the differences of the 

standard deviations in training data. 

The ISI distributions of the hidden neurons in different epochs are shown in 

Figure 3.16. The distribution of neuron h2 is similar to a binary distribution where 

most of the ISIs are located at two sides while the distribution of neuron h1 at the 

end of the simulation looks like a Gaussian distribution. The reason for the distinct 

distributions of two hidden neurons is: Neuron h2 help the visible layer identify two 

separated groups and neuron h1 is to support the variation in each group. However, 

to understand how ISIs are separated in two groups with different standard 

deviations at the end of the simulation, it is needed to trace the computation along 

with the iterations.  

In this application, a CRBM is turned into an event-based CRBM by treating the 

entire layer (both visible and hidden) as a factor node. In this way, a group of input 

vectors, i.e. all ISIs in input spike trains, can be addressed at once. However, this 

method limits the number of neurons in each layer. For example, if there are three 

neurons, s1 to s3, in a layer, the joint probability represented by the definition of the 

conditional probability is p(s1)× p(s2|s1)× p(s3|s1,s2). To store the values in memory is 

expensive and the waiting time for the RS block to produce all output events 

becomes longer. So far the solution to make the neurons in a layer conditionally 

independent is unknown. Nevertheless, the RS block is still useful. In a RBM, 

sampling on the sigmoid output is required. The RS block can be used to produce the 

output sample of each neuron independently. Since each neuron only produces one 

binary sample each time, the RS block can be reused for the other neurons.  
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(a) 

 

(b)                                                                   (c) 

 

(d)                                                                   (e) 

Figure 3.14 Data reconstruction in the event-based CRBM. (a) 2D training data. 

The reconstruction from the (b) 1st epoch (c) 2nd epoch (d) 5th epoch and (e) 

15th epoch. 
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(a)                                                                   (b) 

 

(c)                                                                   (d) 

 

(e)                                                                   (f) 

Figure 3.15 ISI distribution of (a) neuron v1 at 2nd epoch, (b) neuron v2 at 2nd 

epoch, (c) neuron v1 at 5th epoch, (d) neuron v2 at 5th epoch, (e) neuron v1 at 

15th epoch, and (f) v2 at 15th epoch. 
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(a)                                                                   (b) 

 

(c)                                                                   (d) 

 

(e)                                                                   (f) 

Figure 3.16 ISI distribution of (a) neuron h1 at 2nd epoch, (b) neuron h2 at 2nd 

epoch, (c) neuron h1 at 5th epoch, (d) neuron h2 at 5th epoch, (e) neuron h1 at 

15th epoch, and (f) h2 at 15th epoch. 
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Chapter 4 Factor Node 

Hardware 

From the model simulations described in Chapter 3, it is confirmed that the 

event-based Belief-Propagation (BP) model can be applied on the given examples. 

This chapter describes the hardware realization of the event-based BP model. Since 

the stochastic model cannot be easily implemented on the currently available spiking 

network hardware platforms, a VLSI prototype is designed to demonstrate of this 

model. A large part of this chapter comes from two papers, one (the title is “A 

Neuromorphic VLSI Circuit for Spike-Based Random Sampling”) published in the IEEE 

Transactions on Emerging Topics in Computing (TETC) in 2015 [82] and the other (the 

title is “Hardware Implementation of an Event-Based Message Passing Graphical 

Model Network”) published in the IEEE Transactions on Circuits and Systems I (TCASI) 

in 2018 [83]. The author has only used the text related to the work contributed by 

the author in the papers. 

4.1 System Architecture 

The hardware system of the event-based belief propagation model is shown in 

Figure 4.1. It follows the system architecture described in Figure 2.5. The Landscape 

Sampling (LS) block is implemented on an FPGA for flexibility and the Random 

Sampling (RS) block is implemented as an ASIC designed in a 0.35um 2-poly 4-metal 

CMOS process. With the 16 RS channels on the ASIC chip and the 16 LS channels on 

the FPGA, factor graphs with up to a maximum of 16 output messages can be 

configured using this system. The communication from the RS array to the LS array 

is via the AER Transmitter block in the RS chip and the AER Receiver block in the LS 

on the FPGA and using the asynchronous address event representation (AER) 

protocol [92]–[95]. The connections between the AER Receiver and the LS channels 

are defined in the Connection Table block of the FPGA. The Data Encoder block 

combines the messages (mZ) of the individual LS channels into a single output stream 

of pulses transmitted consecutively from each channel (see Section 4.2 for details). 
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This single train of output pulses is then transmitted to the Data Decoder block 

within the RS chip. This block remaps the output spike trains to the corresponding 

RS channels. In addition, the system has two possible sources of random number 

generators. The first is through the linear feedback shift registers (LFSRs) and off-

chip digital-to-analog converters (DACs) which convert the digital output of the LFSR 

to analog signals, Vnx,s,ext, and the second is a pseudo random number generator 

(RNG) [96] array on the chip providing individual uniform random variables, Vnx,s,int, 

for the 16 RS channels. The LS array uses the main FPGA clock (Clkmain) for the FPGA 

modules and also generates three different clocks (Clkh for the RS channels, ClkRNG 

for the RNG array, and Clkconfig for the Data Decoder block) using a frequency-divider 

module. The LS channels use the FPGA clock Clkmain to accelerate counting of the 

InterSpike Interval (ISI) statistics and the RS channels use a frequency divided-down 

clock Clkh needed for the longer time constants of the aVLSI circuits. 

 

4.2 Landscape Sampling 

Figure 4.2 shows the structure of one LS channel. The building blocks and signal 

flow between the blocks follow the basic mechanism described in Section 2.2. The 
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Figure 4.1 System architecture consists of two blocks. Left (dotted blue box), 

the LS array with 16 channels and right (dotted red box), the RS array also with 

16 channels. 
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LS channel is designed for a two-input-one-output or a one-input-one-output 

message passing. The maximum input number is limited to two in the 

implementation to reduce structural complexity. However, the input number can be 

increased in future implementations. 

 

The asynchronous spike trains, spikeX and spikeY, from the AER Receiver block 

carry the messages, mX(x) and mY(y), of the two variables, X and Y. The Cnt ISIX and 

Cnt ISIY modules in Figure 4.2 measure the ISIs of the spikes in the event streams of 

X and Y respectively. The module starts a counter as soon as a spike arrives. The 

counter increments in unit time steps, Δt, and stops when the next spike arrives. The 

measured ISI value is then stored in the memory modules, Mem ISIX and Mem ISIY, 

respectively. At the end of the time window defined in the Controller module, the 

ISIs stored in the memory modules are transferred to the Function module which is 

programmed with the desired factor’s constraint function f(x,y,z) and summation 

function F(x,y). Function f(x,y,z) in the hardware implementation is limited to delta 

functions. To ensure enough input samples for extracting the statistics of the 

distribution, sample pairs (x,y) are generated from all combinations of ISIs in the 

Mem ISIX and Mem ISIY modules. This method is slightly different from the pairing 

method described in [55], where the samples consist of only pairings of the latest ISI 

values. The histogram counts of f(x,y,z) and of F(x,y) for normalization are saved to 

the Mem HistZ and Norm modules, respectively. Message mZ is stored in the Mem 

MZ module after normalization. The index number of ISI bins, ind, is in the range of 

ISI values varying from (ind = 1) to (ind = ISImax). The value in each mZ bin is 

represented by 6 bits, the bit width of the Mem MZ module. The picture in the Mem 

MZ module as shown in Figure 4.2 demonstrates an example of a possible probability 

distribution of the message mZ. To consume less FPGA resource, the memory values 
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Figure 4.2 Structure of one LS channel 
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in Mem MZ module are only updated every time the count of F(x,y) reaches 2k, where 

k ∈ N. In this way, normalization only involves a bit shift. The DataZ module transmits 

the value of the individual mZ bin in a sequential manner starting from ind = 1 to ind 

= ISImax to the Data Encoder block in Figure 4.1. Each DataZ module in a channel 

produces a 6-bit value. The Date Encoder block combines the 6-bit data value from 

all 16 channels into a single output, i.e. [dataZ0,dataZ1,dataZ2,…,dataZ15], 

corresponding to a 96-bit data stream. Once an output spike is generated from the 

corresponding RS channel and sent back to the targeted LS channel through AER 

interface, the DataZ module restarts to transmit the bin value from ind = 1. In 

addition, the DataZ module only sends out the non-zero values stored in the Mem 

MZ module. The distance between two non-zero values, i.e. the number of bins 

between the two values, is recorded and used to calculate the correct value of an ISI. 

The reason for implementing this scheme is related to the design of the RS channel 

(see Section 4.5.1). 

Note that ISImax is always an integer value while tISImax defined as ISImax× Δt 

represents the actual ISI time in seconds. This definition is adopted throughout in 

the following sections. 

4.3 Random Number Generator 

Before going to the circuit details of the RS block, this section describes a pseudo 

RNG circuit [96] used for the RS block. The uniform property of the output 

distribution of the RNG circuit, the simple structure, and a tunable range of the 

output samples are the reasons that this circuit was chosen. 

4.3.1 Discrete-Value Approach 

The RNG circuit contains a number of cells in a ring structure as shown in Figure 

4.3. The output of each cell is served as the input of the next cell and then the last 

one comes back to the initial one as a ring. Each cell can be regarded as a random 

variable that generates samples with a uniform distribution. The output samples is 

computed based on the method of the delta-sigma automata that follows the rules 

in (4.1), where xn(k) indicates the output value x in the n-th cell at the k-th state. The 

value of cell n at state k+1 can be regards as a function of the values of cells n and n-

1 at the previous state k. In this function, the output is derived from the difference 

between the summation of these two cells and the sign of them. The function f(x), 

called quantization residue map as used in single-bit delta-sigma modulation, is 

shown in Figure 4.4(a), where the input x represents the sum of the two cells and the 

gray area depicts the range of the possible input and output values. 
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The block diagram in Figure 4.4(b) exhibits one RNG cell based on (4.1). The 

output value will be updated iteratively. Figure 4.5(a) shows the details of the block 

diagram, where Vin is related to xn-1 connected to the previous cell and VoutA is related 

to xn connected to the next cell. The maximum and minimum values of the output 

are controlled by VRNGp and VRNGn, respectively. Voltage Vm is set to the average of 

VRNGp and VRNGn. The switches are controlled by the pulse signals with the patterns 

shown in Figure 4.5(b), where a four-phase operation (i.e. phase a,b,c,d,a,b,…) is 

repeated. Basically, an output sample is produced every cycle (i.e. four phases) that 

means the cell moves to the next state k+1 after a cycle. However, the samples used 

in the RS block are picked every two cycles that is controlled by signal PICK in Figure 

4.5(b) and the value is represented as VoutB in Figure 4.5(a). The reason will be 

explained in the measurement results in the next section. 

In the four-phase operation, the RNG cell controlled by the switching signals has 

different connections as shown in Figure 4.6. In the first phase (Figure 4.6(a)), the 
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Figure 4.3 Ring structure of the RNG with 12 cells. 
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Figure 4.4 (a) Quantization residue map. (b) Block diagram of one RNG cell. 
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cell samples the values from the previous cell and itself by storing the charges on 

capacitors C1 and C2. Here these two capacitors are set to the same values and the 

virtual ground indicates Vm. In the second phase (Figure 4.6(b)), the sum of these two 

values is executed by transferring the charge from capacitor C1 to C2. Later, in the 

third phase (Figure 4.6(c)), the inverted sign of this summed value is computed by 

using an inverter and storing in capacitor C1. Finally, in the fourth phase (Figure 

4.6(d)), the combination of the sum and its inverted sign is executed. Therefore, a 

voltage sample is produced on the forth phase of a cycle. The circuit operation in a 

RNG cell follows the computation of the block diagram in Figure 4.4(b). Every cell has 

the identical structure. The samples are collected and shown in the measurement 

results. 
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Figure 4.5 One RNG cell. (a) Circuit structure. (b) Control signals. 
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4.3.2 Measurement Results 

The micrograph of the RNG in a test chip is shown in Figure 4.13. The first 

measurement result presents the distributions of the output samples of three RNG 

cells in a 12-cell ring structure in Figure 4.7. The maximum and minimum voltages, 

i.e. VRNGp and VRNGn, are set to 2.55 and 0.55 V. The distributions of these three cells 

approximate a uniform distribution with a little distortion at the values close to the 

maximum and minimum voltages.  
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Figure 4.6 Four phases of a RNG cell. 
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The second experiment shows the correlations between cells or states in X-Y 

plots in Figure 4.8. The first row of Figure 4.8 shows the correlation of “cells 1 and 

3”, “cells 2 and 3”, and “cells 3 and 3” that the sample sequences of the three cells, 

i.e. x1, x2 and x3, are generated in parallel. The second row shows the correlations of 

these three cells and cell 3 with x3 delayed one state. The third row shows the 

correlations that x3 delayed two states. Each cell is highly uncorrelated to other cells 

or states except the previous cell and state, i.e “x2(k) to x3(k+1)” and “x3(k) to x3(k+1)”. 

This phenomenon is reasonable since the updated value in (4.1) is derived from both 

of them. The pseudo-number generator can be achieved under this approach 

choosing which cell desired and avoiding its neighbor state; that is, it is suggested to 

pick [x1(k),x2(k),x3(k),…] and then jump to [x1(k+2),x2(k+2),x3(k+2),…]. Therefore, the 

samples are picked every two cycles as described in Section 4.3.1.  

Figure 4.9 describes the normalized mutual information [89] of the sample 

sequences in three neighbor cells to show the independence between them. The 

sample sequence x3 is delayed from 0 to 49 states and the normalized mutual 

information is computed from x1 and the delayed x3, and so on. It is clear that the 

normalized mutual information of x3 and itself without delaying is 1 so the first data 

point of the third graph in Figure 4.9 is out of the range in y axis. Besides this data 

point, only other two points show a higher mutual information, which are “x2 and 

the one-state-delayed x3” and “x3 and the the one-state-delayed x3”. The results is 

consistent with that in Figure 4.8. 

 

Figure 4.7 Distribution of the random outputs of cells 1, 2 and 3 in the RNG 

ring. 
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The last experiment shows if the sample sequence of a cell is deterministic. A 

same initial value is given to all cells before closing the loop. Figure 4.10 shows that 

after a few stats, the output patterns of cell 1 are distinct in different trials even 

though the same initial condition is given. The variation is contributed by the noise 

in the device, e.g. the kTC noise or thermal noise. Therefore, the pseudo RNG 

employed in this thesis is not entirely deterministic, which is useful to run this circuit 

 

Figure 4.8 Time-space correlogram of different cells or states. 

 

Figure 4.9 Mutual information of the output sequences of cells 1 and 3, cells 

2 and 3, cells 3 and 3 with the output sequence of cell 3 delayed from 0 to 49 

states. The mutual information is normalized by the entropy of x3. 
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for a long time. After describing the operation of the RNG circuit and showing the 

measurement results of it, the next section describes how the RS block is 

implemented, where the RNG will be part of the RS circuit. 

 

4.4 Continuous-Input Random Sampling 

To realize the RS block, two approaches have been implemented. This section 

describes the first version of the RS block [82], which uses the continuous-value 

signal as the input probability distribution, i.e. the time course of the input 

probability distribution is a continuous value. In Section 4.5, the input signal is 

changed to the discrete-value input which makes the implementation of the multi-

channel RS array easier. The circuit structure of the latter is also partially modified 

because of the change in the design of the RS block. 

 

Figure 4.10 Output sequences of cell 1 in different trials. 
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To implement ISI-based random sampling in an aVLSI circuit, the first problem to 

address is how one can express the terms such as probabilities and distributions (i.e. 

p(t), S(t) and h(t)) in (2.10) as corresponding variables in a VLSI circuit. As Section 3.1 

shows, in order to make the discrete-time approximation valid, it is recommended 

to either use the original definition or the continuous recursive form in (2.10) for the 

hazard update. However, the original definition of the hazard requires a division. To 

realize such a mathematical operation in a hardware is challenging. Instead, the 

continuous recursive form can be implemented by an analog circuit. To simplify the 

circuit design, the input probability distribution p(t), the hazard h(t) and the inverse 

survivor function S-1(t) are all represented as currents Ip(t), Ih(t) and Is(t) respectively. 

Figure 4.11 shows the functional blocks and Figure 4.12 shows the transistor circuit 

schematics of Figure 4.11. The circuit is composed of an integrator, an exponential 

operator, a current multiplier, a current-to-voltage (IV) converter, a RNG [96], and a 

voltage comparator. Besides the RNG and the comparator, all of these components 

serve the purpose of implementing (2.10). The details are described in the following 

sections. 
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Figure 4.11 Functional implementation of the theoretical continuous-input RS. 

The variables within parentheses correspond to circuit variables in Figure 4.12. 

The gray block indicates the additional block needed for the VLSI circuits. 
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4.4.1 Hazard Core 

The Hazard Core block includes integrator, exponential operator and multiplier 

in Figure 4.12. There are several mathematical operations needed in (2.10) that must 

be physically implemented: Integration, the natural exponential function and 

multiplication. The hazard is represented by a proportional current Ih(t), whereas Vc(t) 

represents the integration of Ih(t) over time by a capacitor C. The Vc node drives the 

gate of transistor M2 which is operated in the subthreshold regime [97], where there 

is an exponential relationship between the input gate voltage Vc and the drain 

current IM2(t). Finally, a current mode translinear multiplier composed of four 

transistors (M3 to M6) [97] generates the product of the time-dependent input 

current Ip(t) and IM2(t). Note that IM2(t) is the same as the survival current IS(t). This 

product becomes the hazard current Ih(t) that charges Vc. The constant current IL is 

used to normalize Ih(t). 
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Figure 4.12 Schematics of the continuous-input RS circuit. 
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Transistor M1 as a switch resets Vc back to a reset value, Vr, once a spike event is 

generated. A non-zero Vr is necessary to keep the transistors of the multiplier from 

going out of saturation region right after reset. Another advantage of a non-zero Vr 

is that it decreases the circuit time constant by bringing the currents in transistors 

M2 to M5 quickly back to their operating ranges. Therefore, the hazard function is 

implemented by a circuit block consisting of a capacitor C, six transistors (M1 to M6), 

along with a Vr bias and a current bias IL. Mathematically, Ih(t) can be expressed as 

(4.2), where κM2, I0,M2 represent the gate-coupling coefficient and off current of 

transistor M2 in subthreshold respectively, and UT is the thermal voltage. 
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To show its similarity with (2.10), this equation can be further reduced as (4.3), 

where α, β and I1 are represented in (4.4) to (4.6). 
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Hence, the probability density p(t) and the hazard h(t) are equivalent to αIp(t) 

and βIh(t) respectively as shown in Table 4.1. Given a desired p(t), the appropriate 

Ih(t) is given by the straightforward mapping from (2.10) to (4.3). This, however, 

requires a determination of α, which is difficult, because κM2 cannot be reliably 

measured in the fabricated circuit. Hence, in Section 4.4.4.1 a method that allows for 

an indirect determination of α is presented based on the measured output spikes. 
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4.4.2 IV Converter 

Because the output of the RNG is a voltage and the output of the hazard block is 

a current, an IV converter is utilized to convert Ih(t) to the voltage Vh(t) so that these 

two variables can be compared. 

First, the current Ih2(t) flowing through transistor M7 in Figure 4.12 has the same 

magnitude as Ih(t) assuming no transistor mismatch. This current is further mirrored 

as a current sink through transistors M8 and M9 before it is converted to a voltage 

Vh(t) using an op-amp with a feedback resistor r. In addition, the current Ih3(t) to the 

converter can be an amplified copy of Ih2(t) by increasing the bias voltage Vs. In 

subthreshold regime of transistor M8 and M9, the relation of two currents is shown 

in (4.7). Therefore, Vh(t) can be expressed by Vs, r, Ih(t) (assume Ih2 = Ih neglecting the 

transistor mismatch) in (4.8). The purpose of including Vs is to adjust the effective 

resistance Req after fabrication, rather than using the fixed resistance r: 
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Because of the reference voltage Vrefop, applied at the positive input of the op-

amp, the output of the converter is a shifted voltage Vh,s(t) = Vrefop+Vh(t). This offset 

Vrefop is effectively cancelled by setting the minimum value of the RNG output Vnx,s(t) 

to Vrefop. In a RNG (see Section 4.3.1), the possible value of Vnx,s(t) is in the range of 

[VRNGn,VRNGp], which is determined by a lower bias VRNGn and a higher bias VRNGp. In 

this case, VRNG,n = Vref,op. Note that Vnx(t) is the value without considering the offset, 
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Table 4.1 Mapping the mathematical variables on the hardware 
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i.e. Vnx(t) = Vnx,s(t)-Vrefop. Therefore, the possible value of Vnx(t) ranges between 

[0,Vnx,max], where Vnx,max = VRNGp-VRNGn. 

4.4.3 Comparator 

The comparator is an open-loop two-stage op-amp. Once Vh,s(t) is higher than 

Vnx,s(t), a spike is generated and the system is reset. The pulse width of the spike 

defines the settling time of the entire circuit during reset. The settling time is 

determined by the time taken for the output of the multiplier, i.e. Vc, to return to its 

initial value during reset. Therefore, the pulse width has to be adjustable in the 

comparator. The probability of generating an event by comparing the outputs of the 

IV converter and the RNG is shown in (4.9). 
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In Section 2.2.2, the discrete-time approximation is used to generate spikes as 

shown in (2.12). The probability of generating a spike event is h(t)Δt. Compare to 

(4.9), the mathematical and physical relation is shown in (4.10). Then, (4.11) is 

derived from (4.8), (4.10) and Table 4.1. This equation shows an important message 

that Vs cannot be adjusted arbitrarily once Δt and Vnx,max are determined. Otherwise 

the output ISI distribution does not approximate the input. 
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4.4.4 Measurement Results 

The design of the continuous-input RS circuit in an aVLSI chip was done prior to 

the design of the hardware system described in Section 4.1. The purpose is to ensure 

that the analog VLSI circuit performs as expected and is feasible to implement as a 

multi-channel RS chip. Therefore, the circuit in Figure 4.12 was fabricated in a 0.35 

um 2-poly 4-metal CMOS technology before the hardware system. The 

microphotograph of the chip is shown in Figure 4.13. Several test results are 

presented in this section. First, the parameter α defined in (4.4) is measured and the 

output of the RNG is characterized. Then, the circuits’ ability to sample reliably from 
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two different input distributions p(t) that were specified through different externally 

applied input currents Ip(t) is demonstrated. 

 

4.4.4.1 Parameter α 

Once a desired input probability distribution p(t) has been chosen, the scale of 

the corresponding input current Ip(t) is determined by the choice of α. This section 

presents a method for determining α based on the measured output spikes.  

The case of a constant input current Ip corresponds to a uniform input 

distribution p(t) with a constant value pc as shown in Figure 4.14. Because the area 

underneath the curve has to be 1, pc is given by 1/tISImax , where tISImax indicate the 

maximum ISI time in seconds, i.e. ISImax× Δt. For a value of Ip, tISImax can be measured 

from the output by setting Vnx directly to Vnx,max. By doing so, it is guaranteed that all 

ISIs of the output spikes should be tISImax and hence the value of tISImax has been 

measured. 

 

Figure 4.13 Microphotograph of a test chip which holds various test circuits 

not used in this work. The RS and RNG circuits are outlined in white rectangles. 
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By sweeping through various Ip values while measuring the corresponding tISImax, 

pc vs Ip can be plotted as shown in Figure 4.15. Based on the relation that p(t) = αIp(t), 

the slope of this curve is equal to the value of parameter α and can be determined 

by linear regression. The result of the described procedure is α = 4× 109 1/C at Vr = 

50 mV as shown in Figure 4.15. 

 

pc

tISImax

time

p(t)

 

Figure 4.14 Uniform input distribution p(t) by providing constant input current 

Ip. The constant value of p(t), i.e. pc, is equal to 1/tISImax following the rule that 

the total area underneath the curve is 1. 

 

Figure 4.15 Measured p(t) (= pc) vs Ip for a constant Ip. The slope of each curve 

as extracted from the fit (dotted line) denotes the factor α. Here, α values are 

extracted for Vr = 50, 100, 150 mV. 
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4.4.4.2 Empirical Output ISI Distribution 

The results from specifying two different input distributions are presented. The 

first is a uniform distribution and the second is an exponential distribution. Table 4.2 

provides an overview over the used values of the adjustable circuit parameters 

together with the sizes of various circuit components. For the circuit consisting of 

transistors M3 to M6 in Figure 4.12 to act as a multiplier, these transistors need to be 

operated in the subthreshold regime where the current is exponential to the gate 

voltage. The currents in this region is usually in the pico to nano amp range. 

Therefore, in this case, Ip(t) is restricted to a current range of (< 100nA). 

 

Because in the circuit the shape of an input distribution is defined by a current 

time course, a uniform distribution corresponds a constant input current. For Ip = 

1.25 nA, the ISI probability distributions of the input, p(t), and output, pISI(t), are both 

shown in Figure 4.16(a). The red line shows the input distribution p(t), while the 

empirical output distribution pISI(t) is displayed as blue histogram bars, which were 

obtained by normalizing the ISI histogram count. Given α = 4× 109 1/C from the slope 

in Figure 4.15 with Vr = 50 mV, p(t) can be predicted to be αIp = 5 s-1. Because the 

integration of p(t) over time should be 1, tISImax should be 0.2 s, which corresponds 

to a firing rate ν = 2/tISImax = 10 Hz. In another trial based on the uniform distribution, 

the input current Ip was set to 2.5 nA, which is equivalent to a predicted tISImax = 0.1 

s and ν = 20Hz. The resulting p(t) and pISI(t) are shown in Figure 4.16(b). 

Symbol Block Value Unit 

Ip(t) Hazard Core <100 nA 

C Hazard Core 12 pF 

Vr Hazard Core 0.05 V 

Vrefop IV Converter ~1 V 

Vs IV Converter ~0.18 V 

r IV Converter 500 kΩ 

VRNGp RNG 2.6 V 

VRNGn RNG 1 V 

Vnx,max RNG 1.6 V 

Δt RNG 64 us 

Table 4.2 Physical values of the components and the parameters 
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In a second set of experiments, the input currents were based on decaying 

exponentials rather than constants. The initial value Ip(0) was first set to 21.4 nA 

which, using α = 4× 109 1/C, should induce a p(0) = ν = 86 s-1 (see Figure 4.17(a)). On 

the other hand, setting Ip(0) = 82.8 nA in the second experiment predicts p(0) = ν = 

311 s-1, the results of which are shown in Figure 4.17(b). Since Ip(0) is larger during 

 

(a) 

 

(b) 

Figure 4.16 Two output ISI distributions for two different input currents. The 

red line represents the input distribution p(t). The input current Ip is (a) 1.25 nA 

and (b) 2.5 nA. 
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the second experiment, the exponential decay time constant τ = 1/p(0) in Figure 

4.17(b) is smaller compared to that of Figure 4.17(a). 

 

Because more complex inputs could not be generated using the current 

experimental setup, the circuit simulations is performed based on a bimodal Ip(t) (see 

Figure 4.18, red line). In this case, the induced output ISI distribution pISI(t) can be 

 

(a) 

 

(b) 

Figure 4.17 The exponential probability distribution of the output ISIs. The 

initial input current Ip(0) is (a) 21.4 nA and (b) 82.8 nA. The equivalent input 

distributions p(t) are plotted in red. 
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computed from the simulated hazard current Ih(t). In turn, the corresponding Ip,rec(t) 

(blue line) can be reconstructed from pISI(t) and compared with the actual input 

distribution Ip(t). More specifically, the reconstructed current Ip,rec(t) was given by 

Ip,rec(t) = pISI(t)/α, where pISI(t) was obtained from a numerical evaluation based on 

the hazard function h(t) = βIh(t). Rather than collecting actual, simulated ISIs in a 

histogram, such a procedure was necessary due to the lengthy simulation time 

needed to collect enough spikes for computing the output ISI distribution. As Figure 

4.18 shows, the reconstructed Ip,rec(t) displays a similar waveform as the original 

input Ip(t). 

 

 

4.5 Discrete-Input Random Sampling 

When using the continuous-input RS circuit described in Section 4.4 as one 

channel to create a multiple-channel array, some difficulties were noticed. First, the 

linear range of the multiplier composed of a translinear loop with four transistors 

operated in the subthreshold regime (see Figure 4.12) is hard to define. To ensure 

multiplication holds, the input current Ip has to be small in order to make the gate-

source voltage Vgs,M4 lower than the threshold voltage Vth,M4. However, Vth,M4 which 

depends on the transistor doping varies from one channel to another. A general 

range of Ip across channels is hard to find. The threshold voltages of the other three 

 

Figure 4.18 Simulation results showing the reconstruction of a more complex 

probability distribution from the hazard circuit. 
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transistors also have similar problems. Namely, the current multiplier that fulfills 

IM2× Ip = IL× Ih is only valid in a certain current range. In [17], the translinear loop is 

used for the current multiplier in 64 channels. However, [17] limits the current ratio 

such as Ip/IL in a small range of 1.11 and change the transistor sizes every four 

channels. In this way, the current multiplier can be guaranteed to function as 

expected. As the input of the RS circuit, Ip represents a regularly-step-staircase (RSS) 

input probability distribution pin(t) which is unable to be limited in a small range. The 

second difficulty is that an extra digital-to-analog converter (DAC) for Ip is required. 

The LS channels implemented on the FPGA send out pin(t) as a sequence of bits 

following the time step Δt (Section 4.2). Therefore, an extra DAC for each channel is 

required to generate the analog current Ip from digital bits. This DAC consumes chip 

resources. This chapter presents a modified version of the RS circuit to address the 

two described difficulties so that a multi-channel implementation is feasible. In 

addition, the channel AER in each RS channel is placed so that the channel can 

communicate with chip-level AER block (see Figure 4.1). The circuit blocks are shown 

in Figure 4.19. 

 

The input of the RS circuit comes from the DataZ module of the LS (see Figure 

4.2). The 6-bit data in each bin is represented as Bith[5:0] in Figure 4.19. Similar to 

the structure of the continuous-input RS, the circuit includes a hazard function 

generator, a comparator, and a reset, which are implemented by the Hazard Core, 

Comp and Reset Hazard blocks (see Figure 4.19) respectively. Because the output of 

the Hazard Core is a current in the aVLSI implementation while the comparator in 

the Comp block is a voltage-input comparator, an IV Converter block is needed. In 

addition, a channel AER represented as the Spike Generator & Channel AER block in 

each RS channel is also required. This block not only communicates with the Chip 

AER Transmitter block, it also controls the pulse width of the feedback spike signal 

Hazard 
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IV 
Converter

Comp Spike 
Generator

&
Channel 

AER

Channel Bias

Sp0

nReqCR
Vh,s
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Vrst1,Vrst2
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Figure 4.19 Structure of one RS channel 
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Sp0 that defines the settling time of the entire circuit during reset The details of 

blocks are explained as following subsections. 

4.5.1 Hazard Core 

This section describes the circuit modifications which improve on the multiplier 

circuit and also avoid the use of the extra DAC. In the continuous-input RS circuit, the 

input current Ip(t) can be a continuous-value signal. However, such flexibility is 

unnecessary because the LS and RNG circuits are time stepped; that is, their outputs 

are both discrete values that are updated on every iΔt, where i ∈ {0,1,2,…}. In 

addition, note that Ip(t)/IL in (4.2) can be treated as a time-varying unit-less factor 

N(t). The input probability distribution is therefore represented by N(t) instead of 

Ip(t). The data from the LS FPGA block, i.e. Bith[5:0] in Figure 4.19, can be directly 

used as a digital input of the multiplier. The structure of the multiplier is modified 

from a translinear loop circuit to a switch-controlled current-mirror array (also called 

a current-mode DAC). Using the current-mirror array, the reliability of the multiplier 

is improved and the input range can be defined easily. The extra DAC is also now 

unnecessary. In this approach, the hazard is still updated using the continuous 

recursive form while the input is provided as discrete values, i.e. pin(t) is a RSS 

probability distribution, as the condition in (A.6). The circuit details of the new 

Hazard Core block are shown in Figure 4.20. Similar to the structure of the 

continuous-input RS, capacitor C1 is used for the integration term and transistor Ma1 

operates in the subthreshold regime to fulfill the exponential term.  

The current-mode 6-bit DAC consists of switches Sh5 to Sh0 and transistors Mb1 to 

Mb9. The transistor size ratios of transistor Mb1 to Mb9 with the same length are 

[2:32:16:8:4:2:1:1:1]. The switches are controlled by a 6-bit RS input Bith[5:0]. The 

currents in the branches with high input bits of Bith sum into a current splitter 

composed of transistors Mc1 to Mc4. The remaining currents flow through transistor 

Mc5. When all input bits are low (Bith = 0), the summed current, Ihsum, to the splitter 

shrinks down to off-current level, resulting in a large time constant and slowing the 

speed. Transistor Mb8 provides a offset current to the summed current to prevent 

this situation. Transistor Mb9 is also added to deal with the case when all input bits 

are high. Thus, including the default current from transistor Mb8, the possible 6-bit 

values are shifted from [0,63] to [1,64]. That is, N(t) = Bith(t)+1. In Section 4.2, it is 

described that the DataZ module in the LS channel only sends out non-zeros values 

stored in the Mem MZ module. The reason for this scheme is to compensate for the 

shifted value of N(t). For example, if there is a value “29” in the Mem MZ module, 
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the DataZ module will send out the value of “28” as Bith such that N(t) will restore 

the original value of “29”. 

 

The current splitter ratio of the currents through transistors Mc1 and Mc2 and 

through transistors Mc3 and Mc4 is [1:7]. The summed current, Ihsum, is divided into 

Ih1, the feedback current for integration, and Ih2 for the IV Converter block. Due to 

the current splitter ratio, Ih2 is 63×Ih1. This formulation simplifies the design of the IV 

Converter block which will be explained in Section 4.5.2. 

The other switch group in the blue box of Figure 4.20 controls the integrated 

voltage on C1, i.e. Vc1, and therefore the drain current of transistor Ma1. When there 

is no spike, Ih1 charges C1 continuously. Once a spike, Sp0, happens through the Spike 

Generator & Channel AER block, the feedback loop is opened through Sp1, Sp2, nSp1 

and nSp2. The latter signals are derived from the Sp0 using inverters with different 

timing delays in order to minimize the charge injection effect on C1. As a result, Vc1 

is reset to Vrst1 and Ih1 is shorted to Vrst2, provided from the Reset Hazard block 

described in Section 4.5.5. Both Vrst1 and Vrst2 are generated by an input reset current 

Irst as depicted in Figure 4.24. Therefore Irst sets the reset value of Vc1, and therefore 

the initial drain current of Ma1. A small initial current corresponds to a longer 

integration time to reach the same current value. Also, a small input N results in a 

smaller Ihsum and a longer time to reach the same current value. Therefore, tISImax (= 

ISImax× Δt) is defined both by Irst and N. 
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Figure 4.20 CMOS circuit details of the Hazard Core block 
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In this design, Irst is set to ~256 pA so that Ih1, at N = 1, is only ~2 pA. This setting 

not only reduces the final power consumption of the circuit but keeps Vc1 lower than 

the threshold voltage of transistor Ma1 before reset. This condition guarantees that 

the subthreshold voltage-to-current exponential equation is valid. In addition, an 

offset voltage, Vsrc, is added to decrease the effect of the off currents from the 

transistor switches during integration and to increase the accuracy of the initial 

current of Ma1 during reset [98]. The hardware mapping equation of the circuit in 

Figure 4.20 is shown in (4.12), where κMa1 is the gate-coupling coefficient of Ma1, N(t) 

denotes the dynamic input in the range of [1,64] and the denominator of 128 comes 

from the transistor sizing ratio of Mb1 to Mb9 and the current splitter. Ih1 and N are 

proportional to h and pin respectively through (4.13) and (4.14). Note that N(t) is 

updated from the LS channel on every iΔt. As shown in (4.14), for a fixed value of N, 

the numerical value of the probability pin can still vary depending on Irst. The smaller 

Irst, the smaller the pin is, therefore the larger tISI,max is. This also explains why tISI,max 

is defined by both Irst and N from the theoretical perspective. 

      1

1 1
0

1

exp ' '
128

a
tMrst

h h

T

I
I t N t I t dt

CU

  
     
   

   (4.12) 

  1

1

1

( ) aM

h

T

h t I t
CU


    (4.13) 

  1

1

( )
128

aM rst
in

T

I
p t N t

CU


     (4.14) 

4.5.2 IV Converter 

As mentioned in Section 2.2, in order to generate random spikes, the value of h 

has to be compared to samples in the range of [0,1/Δt] drawn from a uniform 

distribution. These samples are represented as a voltage Vnx, which is updated on 

every iΔt. On the chip, Ih1 needs to be converted to a voltage through a given 

resistance Req for comparison to Vnx. However, implementing a physical linear 

resistor on the chip for Ih1 is infeasible because of the large value of Req. For example, 

given a constant input N, the maximum hazard current of Ih1 in (4.12) can be 

computed as (4.15). This maximum value happens when Vh (= Ih1× Req) reaches Vnx,max 

whereupon a spike is generated. The ISI value carried by this spike is then tISImax. If 

the condition that [N,ISImax,Irst] = [64,16,256 pA] is set, then Ih1,max = 2048 pA 

according to (4.15). Assume Vnx ranges from [0,1.25 V] so Vnx,max is 1.25 V. The 

required Req as calculated by Vnx,max/Ih1,max, is equal to 610 MΩ. 
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Such large Req is difficult to realize physically in a VLSI chip. The required 

resistance, however, can be reduced by amplifying Ih1. It is similar to what was done 

in the continuous-input RS circuit. The scheme in that is to provide a source voltage 

Vs for a current mirror as shown in Figure 4.12 so that Ih2 can be amplified by 

adjusting Vs. However, the gain of the amplified current varies between channels due 

to process mismatch. To realize a multi-channel RS array, it is inconvenient to have 

a separate voltage source per channel. Therefore, this section describes another 

solution that not only reduces the value of the resistor that is physically implemented 

on the chip but allows to calibrate the mismatch of the resistor channel by channel. 

The current splitter, mentioned in Section 4.5.1 creates a current with an 

amplification of Ih1, by first making Ih2 = 63× Ih1. Then Ih2 is amplified further by 32x 

through a current mirror circuit leading to a resistor R1 of only 340 kΩ, which 

occupies a layout area of 71× 28 um2. To calibrate the resistance variation due to 

process mismatch, the output transistor of the 32x current mirror circuit is divided, 

as shown in Figure 4.21, into several transistor branches which can be turned on or 

off by switches SIV7 to SIV0. The ratio of Md1 to Md10 with the same length is 

[4:128:64:32:16:8:4:2:1:1]. BitIV[7:0], shown in Figure 4.19, represents the 8 bits to 

control the switches. The amplified current, Ihamp, is converted to a hazard voltage, 

Vh, by the physical resistor R1. That is, Vh = Ihamp× R1 = Ih2× (1/4)× BitIV× R1 = 

Ih1× (63/4)× BitIV× R1, where the value of 63 is contributed by the current splitter in 

the Hazard Core block and the factor of 4 is from the transistor sizing ratio of Md1 to 

Md10. Theoretically, Req = 63× 32× R1, where BitIV = 128. 

In Figure 4.21, the output voltage Vh,s is compared with Vnx,s, a voltage-shifted 

version of Vnx, in order to ease the design complexity of the RNG circuit and the 

comparator. By definition, a spike is generated when Vh > Vnx. However, Vh,s, used for 

comparison, is not only a shifted signal but has an opposite sign to Vh because Vh,s = 

Vref-Vh, where Vref is a bias voltage. Theoretically, another current mirror stage is 

needed to change the direction flow of Ihamp. However, adding one more stage not 

only increases power dissipation but, more importantly, brings in more mismatch. 

The details of how to use Vh,s and Vnx,s for comparison without adding one more stage 

are as follows. 
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Vnx is generated from a uniform distribution in the range of [0,Vnx,max] while the 

shifted-version Vnx,s (the practical output of the RNG) = Vnx+Vos, where Vos is an user-

defined offset voltage. That is, Vnx,s is in the range of [Vos, Vos+Vnx,max]. Then, the 

derivation is given in (4.16). The reason for Pr(Vh>Vnx) = Pr(Vh>Vnx,max-Vnx) is that the 

value of Vnx,max-Vnx still follows a uniform distribution in [0,Vnx,max]. Assigning Vref = 

Vnx,max+Vos leads to the result in (4.16). According to the equation, the way to 

generate a spike can be changed to compare Vh,s to Vnx,s. Once Vh,s is less than Vnx,s, 

a spike is generated. Note that Vnx,s is produced by the RNG whose outputs range 

between [VRNGn,VRNGp] (see Section 4.3.1). Therefore, Vos = VRNGn and Vnx,max = VRNGp-

VRNGp and Vref = VRNGp. 
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4.5.3 Comparator 

The Comp block shown in Figure 4.22 achieves three goals. First, it compares the 

hazard value Vh,s to Vnx,s. Second, because the random samples are produced on 

every iΔt, the comparison result (CR) should be aligned with this time interval. Third, 
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Figure 4.21 CMOS circuit details of the IV Converter block 
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during the generation of the spike, the block should be disabled. That is, CR should 

stay high when there is a spike. 

 

The first goal is achieved using a simple two-stage op-amp. As shown in (4.16), 

the compared result is high when Vh,s < Vnx,s. Therefore, Vh,s is connected to the 

negative terminal of the comparator as shown in Figure 4.22. The second and third 

goals are achieved by implementing a positive edge-triggered D flip-flop with a clock, 

Clkh, and a feedback spike pulse, Sp0, as inputs. Clkh is generated from the LS array 

with a period the same as Δt. The disable period is determined by the pulse width of 

Sp0, which is generated from the Spike Generator & Channel AER block. The default 

pulse width is set to 2× Δt. 

4.5.4 Spike Generator & Channel AER 

In this block as shown Figure 4.23, the channel AER communicates with the top 

level AER Transmitter block (see Figure 4.1) through the nReq and Ack signals. The 

nReq signal becomes low active if the output of the Comp block (CR) is high. The 

channel AER is also using the same positive edge-triggered D flip-flop in Figure 4.22. 

The output of the de-multiplexer, Sp0, has a pulse width that is determined by 

selecting one of the outputs of six JK flip-flops. These gates produce outputs that are 

multiples of either 1, 2, 4, 8, 16 or 32 periods of Clkh. Based on the circuit simulations, 
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Figure 4.22 Circuit details of the Comp block 
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a pulse width of two clock periods is sufficient to allow the voltages and currents of 

the circuits in the Hazard Core block to return to their initial values. 

 

4.5.5 Reset Hazard 

The Reset Hazard block acts to bring Vc1 and the drain current of transistor Ma1 

in the Hazard Core block (see Figure 4.20) back to their initial values. They are 

controlled by Irst that is generated from an on-chip RS DAC. Each RS channel has a 

DAC in order to control Irst independently. The structure of the Reset Hazard block is 

shown in Figure 4.24. The two op-amps have the same design with a simple five-

transistor structure, where the current source is gate-controlled by Sp0. If there is no 

spike pulse, the op-amps are turned off to save power. Transistor Ma2 is designed to 

have the same dimension as transistor Ma1 in the Hazard Core block. The voltage 

source Vsrc is also shared with the same bias in the Hazard Core block. Therefore, the 

initial drain current of Ma1 should be expected to be Irst. The voltage Vc1 in the Hazard 

Core block is reset to the initial voltage Vrst1. The second reset source Vrst2 is used to 

sink the current Ih1. Two op-amps are required because if there is only one op-amp, 

the feedback loop will continue to make Ih1 increase causing the op-amp to fail in 

resetting Vc1. 
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Figure 4.23 Circuit details of the Spike Generator & Channel AER block 
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4.5.6 Channel Bias 

The Channel Bias block shown in Figure 4.25 provides all required biases in the 

RS channel. Some biases, i.e. Vb1 and Vb3, are generated by a common current source 

Ib,src (Figure 4.25 (a)) from one shared on-chip DAC for all RS channels. The other 

biases, i.e. Vb4 and Vb5, are generated by a PMOS chain as shown in Figure 4.25(b). 

There are seven equal-dimension bulk-source-tied transistors connected from Vdd to 

Gnd. 
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Figure 4.24 CMOS circuit details of the Reset Hazard block 
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Figure 4.25 CMOS circuit details of the Channel Bias block 
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Table 4.3 shows the mapping of the parameters from the mathematical values 

to the physical values in the hardware. Note that the mapping of the probability 

distribution pin is dependent on both N and Irst as shown in (4.14). The relationship 

between the hazard value, h, and the hazard current, Ih1, is defined in (4.13). 

 

4.5.7 Measurement Results 

The discrete-input RS circuit is chosen to realize the multi-channel RS ASIC chip. 

The chip microphotograph is shown in Figure 4.26. Because tISImax of each channel is 

controlled by Irst (see Section 4.5.1), 16 on-chip RS DACs is implemented, allowing to 

tune the Irst value of each individual channel. The remaining subsections present the 

detailed chip characterization results and measurements from the chip.  

Math. 

Symbol 

Math. 

Value 

Physical 

Symbol 

Physical 

Value 
Unit 

pin [0,1] N× Irst [1,64]× Irst  

-  Irst ~300 pA 

h [0,1/Δt]=[0,1] Vh [0,1.25] V 

-  Vh,s [1.25,2.5] V 

nx/Δt [0,1/Δt]=[0,1] Vnx [0,1.25] V 

  Vnx,s [1.25,2.5] V 

Δt 1 Δt 64 us 

  pulse width of Sp0 128 us 

  Clkh 0.0156 MHz 

  Clkmain 0.5 MHz 

  ClkRNG 0.5 MHz 

  Clkconfig 1.56 MHz 

  C1 4 pF 

  R1 340 kΩ 

  Vref 2.5 V 

  Vsrc 0.3 V 

Table 4.3 Mapping table of discrete-time RS 
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4.5.7.1 Linearity of the Current Mirror Array 

The linearity of the current mirror array (or the current-mode DAC) in the Hazard 

Core block is estimated indirectly by measuring the output ISIs. In this experiment, 

Vnx is set by an external voltage source instead of a RNG. 

It is known that an output spike is generated when Vh > Vnx. By assigning a 

constant value to the input N and assigning Vnx to Vnx,max, the output spikes are fired 

constantly with a roughly fixed period, i.e. ISIs are constant. The ISI in this case is 

ISImax. Averaging on these ISIs and changing the input N from 1 to 64 leads to the 

result as shown in the red cure of Figure 4.27. The average ISI is inversely 

proportional to N according to (4.15). After taking the reciprocal of the average ISI, 

the linearity of the current mirror array is shown in the blue curve. As expected, the 

change of the current multiplier from a translinear loop to a current mirror array 

results in an improved linearity (i.e. the ratio of the maximum and minimum value of 

N is increased to 64) and a well-defined input range. 

 

Figure 4.26 Chip microphotograph of the RS array with 16 RS channels, 16 RS 

DACs for the reset currents, the RNG array for 16 random sources and the top-

level chip AER transmitter. The bias generator occupies the remaining area. The 

chip areas is 2.16× 2.74 mm2 
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4.5.7.2 Accumulation of the Hazard 

This experiment shows how the hazard accumulates in the RS chip given a 

uniform distribution, which means a constant input N, as an example. The relation 

between the input probability and time in the time-course uniform distribution is 

shown in Figure 4.14. To generate such distribution, it is only needed to provide a 

constant input N and the system will go back to the initial state by itself once a spike 

happens. It is not needed to cut the input value when the time reaches tISImax because 

a spike must happen no longer than tISImax. 

The value of the hazard h can be derived by measuring Vh. This voltage can be 

indirectly estimated by measuring the output ISIs of one RS channel as a function of 

Vnx as shown in Figure 4.28.Note that in this case Vnx is set by an external voltage 

source instead of a RNG. Because an output spike is generated when Vh > Vnx, the 

accumulation time of Vh increases as Vnx increases. When a spike is generated, Vh just 

surpasses Vnx, i.e. Vh ~= Vnx. Therefore, Figure 4.28 also demonstrates how the hazard 

accumulates over time in the case of a uniform input distribution. This can be seen 

by reversing the x and y axes of the plot. The ISImax for each value of N happens when 

Vh reaches Vnx,max (= 1.25 V). In Figure 4.28, the ISImax value (~= 32) for N = 64 (the red 

curve) is a half of the one (~= 64) for N = 32 (the blue curve) and is a quarter of the 

 

Figure 4.27 Linearity of the current mirror array in the Hazard Core block. 
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one (~= 128) for N = 16 (the yellow curve) and so on. The experimental result follows 

the prediction in (4.15) that N× ISImax is a constant. Note that Vh and Vnx are used in 

this section in order to facilitate the explanation on the accumulation of the hazard 

instead of using Vh,s and Vnx,s. In fact, Vnx,s are provided in this experiment and Vnx are 

obtained by subtract the offset Vos from Vnx,s. 

 

The inset of Figure 4.28 shows an expanded view of the curves in the dotted box. 

Here, it is clear that using the smallest value of N corresponding to a larger tISImax (= 

ISImax× Δt) also means that the initial Vh is small. The small initial Vh causes that the 

voltage changes very little over a large range of ISI values. To detect a small change 

in Vh, a random source with high bit resolution is required. The required resolution 

will be discussed in the next section. 

4.5.7.3 Effect of the Non-Ideal Random Source 

In the previous experiment, it is shown that Vh increases slowly in the constant 

input case and is also possible to change slowly with other input waveforms. 

Therefore, the random source generating samples of Vnx needs to have high 

resolution and low distortion. In this experiment, whether the output ISI distribution 

of the RS channel is affected by the non-ideal random source or not is tested. Again, 

a uniform distribution is provided and the output ISI distribution by collecting the 

 

Figure 4.28 Dependence of output ISIs on Vnx 
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output ISIs is measured. Vnx(t) in this experiment is considered as independent 

samples of a random source that are drawn on every iΔt.  

Given a uniform input distribution, the output ISIs between 1 to ISImax should be 

equiprobable. In the inset of Figure 4.28, it can be seen that Vh increases slowly 

before the time reaches tISImax. During integration, Vh is continuously compared to 

Vnx so the small changes of Vh could only be distinguished with a relatively high 

accuracy Vnx.In this chip, the random source either comes from the internal on-chip 

RNG or external off-chip LFSR. Both random sources applied on the chip are non-

ideal: The RNG circuit has a non-ideal uniform distribution. The distribution of the 

RNG measured in [82] shows a Gaussian distortion similar to Figure 4.29(c). The LFSR 

as implemented in the FPGA can only have finite resolution in the distribution values. 

The effect of these non-idealities on the output ISI distribution is first explored in a 

Matlab simulations of three forms of the random source: An ideal uniform random 

source, NX1; a uniform random source, NX2 (Figure 4.29(c)), where a 0.03-sigma 

Gaussian random value is added to the samples; and a random source with a 8-bit 

resolution, NX3, i.e. the output of NX3 is quantized in one of the 8-bit values. The 

impact of these different random sources on the output distribution is dependent 

on the resolution of the ISI bins. In the case when ISImax = 16, corresponding to the 

input probability pin = 0.0625 (in the Matlab simulations, Δt = 1 so tISImax = 16 and pin 

= 1/16), the output ISI distributions pISI of all three sources as shown in Figure 4.29(a) 

are very similar. However in the case of a large ISImax, corresponding to an even 

smaller pin, only the distribution of NX1 is similar to the input as shown in Figure 

4.29(b). 

Figure 4.30 shows measured test results from one RS channel of the fabricated 

chip. Note that Irst is tuned so that ISImax = 16 given a constant input N = 64 (pin = 

0.0625). The bit resolution of the external LFSR random source is set to 14 bits. The 

analog output after passing the LFSR output through a 14-bit off-chip DAC is used as 

the random number output instead of the internal RNG output. When ISImax is small 

(= 16), the output distributions from using either the external or internal random 

sources looks similar to the input distribution as shown in Figure 4.30(a). When ISImax 

is increased to 256, the 14-bit LFSR in Figure 4.30(b) performs much better than the 

on-chip RNG output that is similar to the simulation results in Matlab. The KL 

divergence (see (3.1), where P refers to pin and Q refers to pISI) generated by using 

the external (LFSR) and the internal (RNG) random sources are shown in Figure 

4.30(c). As expected, the value of the KL divergence increases with ISImax given a fixed 

number of samples. However, the values using the internal random source is 

consistently higher across all ISImax values. This observation suggests that the 
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Gaussian distortion seen in the RNG distribution has a worse effect on the output ISI 

distribution than the finite bit resolution of the LFSR. 

This experiment demonstrates that the Gaussian distortion from the RNG affects 

the output distribution as ISImax increases. It is difficult to reduce this non-ideality in 

a simple way after fabrication. In contrast, the resolution of LFSR can be adjusted to 

an arbitrary number of bits if the corresponding DAC can be found. A 14-bit LFSR 

with ISImax = 128 leads to the KL divergence of 0.002 as shown in Figure 4.30(c). 

Therefore, in the system level test combining the LS and RS array to form a message 

passing network described in Section 4.6, the random sources are all provided from 

the external LFSR. 
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Figure 4.29 Output ISI distributions pISI over 10,000 samples as simulated in 

MATLAB. The uniform input probability pin is (a) 0.0625 and (b) 0.0039. (c) The 

distribution of the random source NX2. 
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(a) 

 

(b) 

 

(c) 

Figure 4.30 Output ISI distributions over 80,000 samples as measured from 

one RS channel using a constant input N = (a) 64 and (b) 4. The corresponding 

mathematical input probability pin is (a) 0.0625 and (b) 0.0039. (c) The KL 

divergences of the output ISI distributions over the 80,000 samples with the 

internal (RNG) and external (LFSR) random sources. 
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4.5.7.4 Calibration of the Equivalent Resistance 

In Section 4.5.2 the way to compute the resistance Req is presented by a special 

case of (4.15). In fact, Req can be theoretically formulated. Combining (4.10) and 

(4.13), (4.17) is obtained. Then, the resistance is shown in (4.18). 

    1

1

,max 1

aMh
h

nx T

V
h t t I t t

V CU


       (4.17) 

 1

,max

1 1

aMh
eq nx

h T

V
R V t

I CU


      (4.18) 

In this equation, the value of Req is set by Vnx,max and Δt. The ratio of the current 

mirror in the IV Converter block is calibrated by BitIV[7:0] so that the equivalent 

resistance of the circuit (= R1× (63/4)× BitIV) matches the theoretical Req in (4.18). 

Otherwise, the output ISI distribution does not approximate the input. Ideally, BitIV 

= 128. Figure 4.31 demonstrates how the calibration affects the ISI output 

distribution pISI. Given a uniform input distribution (N = 32), only pISI with BitIV = 107 

is close to pin. For those BitIV < 107, the RS channel tends to generate spikes with 

larger ISIs because the equivalent resistance is not big enough. On the other hand, 

when BitIV > 107, more spikes are prone to be generated with smaller ISIs. 

Because of circuit mismatch, the calibration has to be done separately in each 

channel. A memory block that stores the value for each channel would have been 

useful. Unfortunately, the author overlooked putting such block in this chip so only 

maximally 6 out of the 16 channels that have similar values of BitIV can be chosen to 

construct a factor graph. 
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4.6 Test Results of Message Passing in VLSI 

Factor Graphs 

In the experiments demonstrated in this section, the results are obtained from 

the complete system that the RS array is implemented as an ASIC chip and the LS 

array is implemented on the FPGA. The architecture of the hardware system is shown 

in Figure 4.1 and the PCB is shown in Figure 4.32. As the measurement results 

presented in Section 4.5.7.3 and Section 4.5.7.4, the random source for each channel 

comes from a 14-bit LFSR with an off-chip DAC and only 6 out of 16 RS channels can 

be used. Also, ISImax of an ISI distribution is no more than 128. Each LS-RS-combined 

channel represents a unidirectional factor node and several channels make up a 

unidirectional factor graph. The results on a few factor graphs are presented here. 

Note that the total time window, WT, is based on both the number of collected 

samples and the mean of the ISI distribution, ISImean. For example, a uniform 

distribution with ISImax = 32 has ISImean = 16.5. If collecting 100,000 samples is desired, 

then the average WT is 16.5× 100000× Δt = 105.6 s for Δt = 64 us. The time window 

W of the LS channel is defined as 1.05 s, and the Mem ISIX or Mem ISIY module has 

 

Figure 4.31 Effect of the calibration on the output ISI distributions. Given a 

constant input N = 32, pISI is obtained from one RS channel over 80,000 samples. 

The corresponding mathematical input probability pin is 0.031. 
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only 512 entries (see Figure 4.2). The output samples generated by the RS channel is 

based on the message-combined distribution, which is computed using the (512)2 

sample pairs and stored in the Mem MZ module. To obtain 100,000 output samples 

in WT, the LS channel is reused several times until the number of output samples is 

reached. In each new time window, the Mem ISIX, Mem ISIY and Mem MZ modules 

are reset.  

 

Note that the term of “ISIs” denotes ISI samples and the term of “ISI value” 

denotes some bin value in an ISI distribution in the following measurements. 

The first factor graph shown in Figure 4.33(a) is composed of two RS channels 

and one LS-RS-combined channel. The two RS channels generate the output spike 

trains spikeX and spikeY on the edges X and Y along the arrows based on the messages 

mX, and mY defined in the channels. Messages mX, and mY are assigned to two 

uniform distributions as shown in Figure 4.33(b),(c) in red and their ISI distributions 

obtained by counting the ISIs of spikeX and spikeY are shown in blue. The constraint 

function of the LS-RS-combined channel is assigned to a switching-gain function 

 

Figure 4.32 The PCB of the hardware system consisting of an FPGA LS an ASIC 

RS. The occupied area of the PCB is 127× 118 mm2. The FPGA used is Lattice 

Semiconductor LFE3-70EA-FN484. 
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defined in (4.19). The switching-gain node sets a gain of 1 on the ISIs of spikeX if the 

ISIs of spikeY are between [1,8], and a gain of ½  if the ISIs of spikeY are between [9,16].  

Figure 4.33(d) shows the theoretical distribution (the red curve) of messages mZ 

computed using the SPR and the ISI distribution (the blue curve) obtained by 

counting the ISIs of the output spike train spikeZ. The ISI distribution approximates 

the theoretical distribution as expected. Because messages mX and mY are both 

uniform, the probability value of message mZ for the ISI value between [1,16] is 

approximately three times as large as the probability value for the ISI value between 

[17,32]. Figure 4.33(e) shows the KL divergence of the three messages between the 

theoretical and the ISI distribution as a function of the number of ISIs. The KL 

divergence of message mY is the lowest value all the time. The reason is that ISImax (= 

16) of message mY is the smallest among the three messages. Given the same 

number of ISIs, the ISI distribution with a smaller ISImax can approximate the 

theoretical one better because of more samples in each bin.  

  
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  (4.19) 

The second experiment demonstrates that the constraint function can be 

defined flexibly in the FPGA. The factor graph having the same structure to the first 

graph is shown in Figure 4.34(a). Only the constraint function defined in the LS-RS-

combined channel is changed. Messages mX and mY are assigned to two uniform 

distributions as shown in Figure 4.34(b),(c) in red and their ISI distributions obtained 

by counting the ISIs of spikeX and spikeY are shown in blue. The constraint function f 

of the switching node is set to function fA in (4.20) if the ISIs of spikeY are between 

[1,8] while function f is set to function fB in (4.21) if the ISIs of spikeY are between 

[9,16].  

Because messages mX and mY are both uniform, the theoretical distribution of 

message mZ computed using the SPR is a combination of a V-shaped distribution for 

the ISI value between [1,16] and a triangular-shaped distribution for the ISI value 

between [34,48] as shown in Figure 4.34(d) in red. The ISI distribution in blue also 

shows the similar result to the theoretical one as expected. Figure 4.34(e) shows the 

KL divergence of the three messages as a function of the number of ISIs. As the same 

reason in the first factor graph, the KL divergence of message mY is the lowest value 

all the time because of the smallest ISImax among the three messages.  



Test Results of Message Passing in VLSI Factor Graphs 91 

 

 

1,       if 1 x 8     & z=1

    or if 9 x 15   & z=2

    or if 16 x 21 & z=3

    or if 22 x 26 & z=4

    or if 27 x 30 & z=5

    or if 31 x 33 & z=6

    or if 34 x 35 & z=7

    or if x=36           & 
, ,Af x y z

 

 

 

 

 

 

 


z=8

    or if x=37           & z=10

    or if 38 x 39 & z=11

    or if 40 x 42 & z=12

    or if 43 x 46 & z=13

    or if 47 x 51 & z=14

    or if 52 x 57 & z=15

    or if 58 x 64 & z=16

0, else
















 

 

 

 

 

 












   (4.20) 

 

 

1,      if x=1             & z=34

    or if 2 x 3     & z=35

    or if 4 x 6     & z=36

    or if 7 x 10   & z=37

    or if 11 x 15 & z=38

    or if 16 x 21 & z=39

    or if 22 x 28 & z=40

    or if 
, ,Bf x y z

 

 

 

 

 

 


29 x 36 & z=41

    or if 37 x 43 & z=42

    or if 44 x 49 & z=43

    or if 50 x 54 & z=44

    or if 55 x 58 & z=45

    or if 59 x 61 & z=46

    or if 62 x 63 & z=47

    or if x=64           & z=48

0, else





 


 

 

 

 

 

 
























  (4.21) 

The third factor graph shown in Figure 4.35(a) consists of three RS channels and 

three LS-RS-combined channels. The three RS channels generate the output spike 

trains spikeU, spikeV and spikeW on the edges U, V and W along the arrows based on 
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the messages mU, mV, and mW defined in the channels. Messages mU and mV are 

assigned to the same uniform distribution with ISImax = 16 similar to the graph in 

Figure 4.34(c). Message mW is assigned to a V-shaped distribution as shown in Figure 

4.35(b) in red. The three LS-RS-combined channels are defined as a plus node, an 

equality node and a half-wave rectified linear unit (ReLU) node. The first two 

constraint functions are defined in (2.6) and the third one is defined in (4.22). 

Because messages mU and mV are both uniform, the theoretical distribution of 

message mX computed using the SPR is triangular shaped as shown in Figure 4.35(c) 

in red. The ISI distribution (the blue curve) approximates the theoretical one as 

expected. In addition, as the result in (2.7), message mY is the product of messages 

mX and mW using the SPR. Therefore, the theoretical distribution of message mY is a 

two-bump-shaped distribution as shown in Figure 4.35(d) in red and the ISI 

distribution (the blue curve) also approximates the theoretical one. Finally, the half-

wave ReLU node shifts message mY toward the left with 10 ISI values to form 

message mZ. The theoretical distribution of message mZ computed using the SPR is 

shown in Figure 4.35(e) in red and the ISI distribution is shown in blue. Figure 4.35(f) 

shows the KL divergence of the six messages as a function of the number of ISIs. The 

KL divergences of messages mY and mZ are much larger than messages mW and mX 

all the time. The reason is that the equality node filters out many input ISIs. Function 

fequality (see (2.6)) compares the ISIs of spikeX and the ISIs of spikeW. If their values are 

not the same, the sample pairs are discarded. In the experience, many pairs are 

discarded. The histogram formed from the remaining ISIs is used to generate the 

resulting output spike train spikeY. The resulting output ISI distribution has a worse 

approximation to the theoretical distribution than other constraint functions such as 

function fplus, where ISIs are not discarded. This error then propagates to the next 

factor node for generating the spike train spikeZ. 
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The system specifications are given in Table 4.4. The power consumption of the 

entire chip includes the power of the 16 on-chip DACs which are needed to adjust 

the reset current, Irst, of each channel separately. 
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Specification Quantity Unit 

Process AMS 2P4M 0.35um  

Chip Area 2.16× 2.74 mm2 

Chip Area (One RS Channel) 0.78× 0.09 mm2 

Number of Channel 16  

Power of the RS chip 6.32 mW 

Power of the RS single channel 0.046 mW 

Supply Voltage 3.3 V 

System Clock, Clkmain 10 MHz 

System Clock, Clkh 0.0156 MHz 

Δt 64 us 

Time Window W 1.05 s 

Mem ISI 7× 512 bit 

Mem MZ 6× 128 bit 

ISI Range 1 to 128 Δt 

RS Input Range 0 to 63  

Reset Current, Irst ~300 pA 

Random Source Vnx,s Range 1.25 to 2.5 V 

LFSR Resolution 14 bit 

Table 4.4 System specification 
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Figure 4.33 (a) Factor graph consisting of two RS channels, one LS-RS-

combined channel, three variables X, Y, Z and the messages along the arrows. 

The messages of (b) X (c) Y (d) Z along the arrows, with the theoretical 

distribution in red and the output ISI distribution in blue over 100,000 samples. 

(e) KL divergences of the three messages as a function of the number of ISIs. 
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Figure 4.34 (a) Factor graph consisting of two RS channels, one LS-RS-

combined channel, three variables X, Y, Z and the messages along the arrows. 

The messages of (b) X (c) Y (d) Z along the arrows, with the theoretical 

distribution in red and the output ISI distribution in blue over 100,000 samples. 

(e) KL divergences of the three messages as a function of the number of ISIs. 
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Figure 4.35 (a) Factor graph consisting of three RS channels, three LS-RS-

combined channels and variables U, V, W, X, Y, Z, and the messages passing 

along the arrows. The messages of (b) W (c) X (d) Y (e) Z along the arrows with 

the theoretical distribution in red and the output ISI distribution in blue over 

100,000 samples. (f) KL divergences of the four messages as a function of the 

number of ISIs. 
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Chapter 5 Conclusion and 

Future Work 

This chapter presents conclusions on the study and the hardware 

implementation of the event-based Belief-Propagation (BP) model. Section 5.1 

describes the considerations in implementing the different components of the BP 

model through aVLSI circuits and the theoretical approximations because of the 

constraints of the hardware system. Section 5.2 describes the improvements on the 

aVLSI design especially in consideration of a larger-scale multi-channel BP system in 

the future. 

5.1 Conclusions of Hardware Design 

This thesis presented a hardware system that implements a set of unidirectional 

factor nodes in the event-based BP model, where the messages are transmitted 

using spikes. The system consists of two components: The first component, i.e. the 

Landscape Sampling (LS) array, is implemented on an FPGA. This block records the 

values of Interspike Intervals (ISIs) from the input spike trains and produces the 

message-combined distributions using the recorded ISIs and the defined factor 

constraint functions. The second component is the Random Sampling (RS) array that 

can produce up to 16 output messages in the form of spike trains. This component 

is implemented on an ASIC chip fabricated in a 0.35um CMOS process. The output 

messages produced by this block are encoded in the ISIs of the output spike train 

that are sampled from the message-combined distributions based on the renewal 

theory.  

Because the original definition of the hazard (A.5) requires a division which is 

difficult in aVLSI circuits, the continuous recursive form (A.6) was come up with. To 

ensure that the continuous recursive form leads to the same output ISI distribution 

as using the original definition, we performed the discrete-time simulations 

described in Chapter 3. The simulation results lead to the conclusion that if the input 

probability distribution pin(t) is a regularly-step-staircase (RSS) distribution, using 
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either the original definition (A.5) or the continuous recursive form (A.6) of the 

hazard makes the output ISI distribution pISI equal to pin. If, on the other hand, pin(t) 

is not a RSS probability distribution or the discrete recursive form (A.7) is used, pISI 

only approximates pin under the condition that the time step Δt << tmean, where tmean 

is the mean time of pin(t) defined in (2.11). In the case where pISI only approximates 

pin, pin(t) are limited to certain kinds of distributions with long tmean compared to Δt. 

Binary probability distributions, for example, are unable to use the discrete-time 

approximation. These simulations help the author determine the specifications of an 

aVLSI circuit design that is used to realize the continuous recursive form of the hazard. 

As presented in Chapter 4, the ASIC chip occupies the area of 2.16× 2.74 mm2 in 

a 0.35 um 2-poly-4-metal CMOS technology and was mounted on a system board 

with the FPGA of Lattice Semiconductor LFE3-70EA-FN484 that implements the LS 

channels as shown in Figure 4.32. The power consumption of the ASIC chip is 6.32 

mW with 0.046 mW per RS channel. The remaining power consumption of the ASIC 

excluding the RS channels comes from the RS DACs and the bias generators.  

The reason why the RS circuit is implemented in aVLSI is not only because analog 

circuits are suitable for the continuous recursive form of the hazard but the 

mathematical terms of the hazard function in (A.6) can easily be realized by analog 

components, such as a current charging a capacitor (representing the integration) 

and a transistor operating in subthreshold regime where the current is exponentially 

dependent on the gate voltage. The multiplication term can be realized by the gain 

function of a current-mirror circuit array. However, in the current system, the speed 

of the ASIC is limited by the time constants needed for the analog circuits of the RS 

channel. It is the reason why Δt is defined in the range of microseconds, i.e. Δt = 64 

us. 

Because of the clocked nature of both the LS FPGA and the RNG circuit, the ISI 

samples in the implementation were constrained to integer values. However this 

constraint allows the author to design a simple counter for a specific range of integer 

values and also allowed one to compute the histograms of two functions f(x,y,z), the 

message-combined distribution before normalization, and F(x,y), the normalization 

term, in parallel (see Figure 4.2). The possible integer values of ISI in the hardware 

system were in the range of [1,128] (i.e. tISI ∈ [Δt,128Δt], where time step Δt = 64us). 

When increasing the maximum ISI, i.e. ISImax, an on-chip RNG with an ideal uniform 

distribution or an off-chip LFSR with higher bits is needed. Defining ISImax = 128 and 

using a 14-bit off-chip LFSR with a 14-bit off-chip DAC leads to an acceptable value 

of the KL divergence of 0.002 (see Figure 4.30(c)). 
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The input distribution to the discrete-input version of the RS circuit cannot be 

arbitrary because the ratio between the maximum and minimum values of pin(t) can 

only go up to 64. In a RS channel, there are only two parameters, Irst and BitIV (see 

Figure 4.19), that need adjusting. The reset current Irst is used to define ISImax while 

BitIV is used to calibrate the equivalent resistance for converting the hazard current 

Ih to the hazard voltage Vh. This calibrated resistance has to match the resistance Req 

calculated in (4.18) so that pISI approximates pin well as measured by the KL 

divergence.  

In the event-based BP model, having a sufficient number of ISIs in spike trains is 

significant for representing the carrying messages. To approximate a distribution 

well, the value of ISImax determines the number of ISIs required. For example, a good 

approximation (the KL divergence is 0.001) can be made over 1000 ISIs in a factor 

graph with binary variables (i.e. ISImax = 2) (see Figure 3.5). However, if ISImax = 32, 

the number of ISIs needs to increase to 16000 so that a similar KL divergence value 

can be achieved. In Section 4.6, 100,000 ISIs is used to represent the messages. With 

ISImax = 32, the time for collecting 100,000 sequential samples would take 105.6 s. 

Since the implemented event-based BP hardware model in this thesis only 

produces unidirectional messages, the messages for the opposite direction in a 

bidirectional link between two nodes can be computed by reusing factor nodes. 

Sometimes a delay node is needed to compute an output message correctly. For 

example, in the event-based Kalman filter, the spike train carrying the messages of 

the prediction and the spike train carrying the messages of the observation should 

arrive at the equality node (see Figure 3.8) in the same time window so that the 

correct distribution is reflected in the output spike train. The number of nodes in the 

prediction and observation paths should be the same. If not, a delay node, i.e. a 

unity-gain constraint node, should be added to the path with fewer nodes. 

Some circuit constraints in terms of sample number, speed, a good random 

source and the mismatch between channels can be possibly improved so that a 

larger-scale multi-channel system is feasible. The modifications are discussed in the 

next section. 

5.2 Hardware Improvements and Outlook 

Several improvements that address the constraints of this tested prototype 

hardware system are proposed and discussed in this section. First, as mentioned in 

Section 5.1, each RS channel need two parameters for channel calibration, i.e. Irst and 

BitIV. The 8-bit parameter BitIV that is used to calibrate the equivalent resistance to 
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match the theoretical value can be stored in eight single bit latches for each channel. 

Although calibration between channels is still necessary, the latches for all channels 

only consume little resource. As for the other parameter Irst, 16 on-chip RS DACs are 

implemented to generate 16 individual Irst for the RS channels in the current ASIC. A 

large percentage of the overall chip power consumption is contributed by the RS 

DACs (see Table 4.4). Irst defines the initial current of transistor Ma1 (see Figure 4.20). 

In the Hazard Reset block (see Section 4.5.5), Irst first defines the reset voltage Vrst1 

of the output buffer and then Vrst1 controls the gate of transistor Ma1. Once a spike 

happens, the gate voltage of transistor Ma1 is reset to Vrst1 and the initial current of 

transistor Ma1 is reset to Irst within the pulse width of the spike due to the strong 

driving capacity of the output buffer for Vrst1. However, the mismatch of the 

transistors in the buffer causes Vrst to vary between channels, resulting in different 

initial currents of transistor Ma1 even though the same current Irst is provided. This is 

the reason for separated RS DACs required. It is not feasible to have individual RS 

DACs for all channels in a large-scale multi-channel implementation. The author 

proposes a modification in the circuit to remove the individual DACs for Irst and a 

global Irst is explained as follows.  

The buffer in Figure 4.24 for producing Vrst1 is removed and the gate of the 

transistor Ma1 in Figure 4.20 is controlled by Irst using a diode-connected transistor 

Ma2 as shown in Figure 5.1. Because the transistor Ma1 has to be operated in the 

subthreshold regime over a range of currents, the width/length ratio sizes of 

transistors Ma1 and Ma2 has to be large. Because the area of the transistors are also 

large, the process mismatch between these two transistors is low. In addition, adding 

a cascade transistor above transistor Ma2 and placing transistors Ma1 and Ma2 close 

enough in the layout, the error of the current mirror can be improved. In the current 

ASIC, Irst was set to a small current value (~256 pA) in order to save the power. Such 

a small current cannot support the operation of transistor Ma2 (see Figure 5.1) in a 

saturation region, i.e. Vds > 100 mV. In addition, a buffer was required in the current 

design due to the small value Irst. The source bias Vsrc was also added in order to 

increase the precision of the initial current of transistor Ma1 to be Irst [98]. If Irst is 

increased to a sufficient value, e.g. 100 times larger = 25.6 nA, the diode-connected 

transistor Ma2 will be in saturation and Irst will be large enough to reset the gate of 

transistor Ma1 within a period that is determined by the pulse width of the output 

spike. Also, Vsrc can be set to Gnd; therefore, it can be removed. Moreover, increasing 

Irst leads to another improvement: Speed. 
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Derived from (2.12), (4.13) and (4.15), Δt associated with the circuit parameters 

can be represented as (5.1). This equation shows that Δt can be reduced by 

increasing Irst and, therefore, the system speed can be increased. A simple 

measurement from the current hardware system was done by reducing Δt by a 

quarter in the FPGA and increasing Irst by 4x in the ASIC. Figure 5.2 shows that pISI 

approximates pin for different input probability distributions. Collecting the same 

number of ISIs is four times faster than before. Of course, increasing Irst will incur a 

larger power consumption but the system needs a short time for collecting the same 

number of samples, therefore, leading to approximately the same energy 

consumption. Another solution to increasing the speed is to reduce the size of the 

capacitor C1 according to (5.1). The drawback is that more kTC noise [99] will be 

brought in during reset, leading to a noisy initial current flowing through transistor 

Ma1. In the current design, capacitor C1 is at 4 pF, which can be possibly reduced. 
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Figure 5.1 Modified Reset Hazard block. Irst is increased and Vsrc is set to Gnd. 
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For pISI to approximate pin, a number of ISIs is required especially when ISImax is 

large. In Section 5.1, given a uniform pin and ISImax = 32, the time taken to collect 

100,000 samples would take 105.6 s. This lengthy accumulation time can be reduced 

by having multiple inputs or nodes representing one distribution. Similar to cortical 

neurons which have a large number of input neurons [29], the time required to 

collect 100,000 samples, for example, can be reduced to 1.056s with 100 inputs. 

However, this means that the chip area of one RS channel will have to be reduced so 

that more channels can be placed within a fixed chip area. 

Similar to other stochastic models such as RBMs, the event-based BP VLSI model 

requires a pseudo-number generator for the sampling process. Several aVLSI 

implementations of pseudo-number generators have been proposed over the years 

and have focused on either digital noise (noisy bits) [100], [101], uniform 

distributions [102], or other types of predefined, fixed distributions [103]–[105], or 

true random number generator circuits which generate discrete, Bernoulli and quasi-

continuous, exponential random variables [106]. In [107], a single-photon avalanche 

 

 

Figure 5.2 Output ISI distributions over 100,000 ISIs as measured from a RS 

channel using four different input distributions. Δt is set to 16 us. 
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diode (SPAD) was used as an aVLSI noise source and connected to a spike-response 

neuron model [29] implemented on an FPGA. Digital random number generators 

have been used as a cheap method of creating random connections for a network 

using the Neural Engineering Framework [64]. However, previous approaches have 

focused on random number generator in hardware that were based on fixed 

predefined distributions. An on-chip pseudo-random generator [96] is used in the 

continuous-Input RS circuit [82] described in Section 4.4, but because of the non-

ideal Gaussian nature of the output distribution caused by the switched capacitors, 

the author uses an LFSR implemented on the FPGA for the results reported in Section 

4.5.7.  

A random number generator circuit that produces a less distorted uniform 

distribution can be designed using larger component sizes in a future design. A 

further option is to use a current-mode random number generator circuit so that the 

IV converter is not required. However, amplifying the hazard current Ih1 is still 

needed in order to reduce the time constant caused by parasitic impedance. The 

result of the comparison between the hazard current and the current coding the 

random number value would have to be completed within Δt. In addition, the output 

distribution of this new random number circuit should be ideally uniform otherwise 

there will be a similar problem to the case where the non-ideal Gaussian distribution 

of the random number generator circuit changes the output ISI distribution.  

A future extension of the current hardware would be to configure this system to 

implement a network that performs inference on the output of event-based sensors 

such as the DVS [15] and the cochlea which generates asynchronous outputs [108]. 

Similar to the model simulation applications in Section 3.3.1, this hardware system 

can be combined with the DVS in a tracking task such as predicting the position of an 

object across the field of view of the retina.  

 





 

Appendix A Theoretical Basis 

A.1 Recursive Form of the Hazard Function 

The hazard h is defined as the function of the input probability p as shown in 

(A.1). The product of the hazard h(t) and the interval dt, i.e. h(t)dt, represents the 

probability of an event that happens between [t,t+dt] given that no events happen 

before t. Here only t >= 0 is considered; that is, p(t) and h(t) only have values since t 

>= 0. The hazard can also be represented as a continuous recursive form as shown in 

(A.4). The derivation is shown as follows. First, the survival function S(t) that 

describes the probability of no events happening before t is defined in (A.2). Then, 

the hazard h(t) can be represented by only the survival function S(t) as shown in (A.2). 

The result in (A.2) leads to (A.3). By replacing the denominator of (A.1) to (A.3), the 

continuous recursive form of the hazard is obtained in (A.4). Therefore, the hazard 

can be computed by either the original definition (A.1) or the continuous recursive 

form (A.4). Their values are the same. 
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Now a particular case is considered where p(t) is a regularly-step-staircase (RSS) 

probability distribution, whose value is only changed on time t = iΔt, where i ∈ N0 = 
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{{0} ∪ N} and Δt is defined as the time step, as shown in Figure A.1. The reason for 

discussing this case is that this form of p(t) corresponds to how the equivalent signal 

provided to the Random Sampling (RS) block. 

 

To compute the hazard h(t) on t = nΔt, i.e. h(nΔt), (A.1) can be written as (A.5), 

where the hazard can be computed using only the values of p(t) on t = 0, 1Δt, 2Δt, …, 

nΔt. If using the continuous recursive form, h(nΔt) needs to be computed in 

continuous time as shown in (A.6). The value of the hazard from (A.5) is equal to the 

one from (A.6). However, if h(nΔt) is computed using the discrete form as shown in 

(A.7), its value only approximates to the one from the original definition under the 

condition that Δt << tmean, where tmean indicates the mean time of the RSS probability 

distribution p(t) and is defined in (A.8). Therefore, it cannot be thought intuitively 

that (A.5) will lead to the result of the discrete recursive form on (A.7). 
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Figure A.1 Input RSS probability distribution p(t) whose values are only 

changed on time t = iΔt. 
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A.2 Output ISI Probability Distribution 

This section presents that the output InterSpike Interval (ISI) distribution pISI 

approximates the input probability distribution p using the discrete-time 

approximation. Given a uniform random variable “NX”, the probability of generating 

a spike on t = iΔt is equal to h(iΔt)Δt (see Figure A.2 for the concept), and can be 

written as (A.9), where “nx(iΔt)” indicate the only one sample from variable NX on t 

= iΔt and variable NX only produces a new sample on t = iΔt. Thus, the hazard can be 

seen as the instantaneous firing rate on t = iΔt. 

 

       Pr h i t t nx i t h i t t         (A.9) 

To generate a spike on t = nΔt implies that the hazard is smaller than nx when t 

= iΔt, where i ∈ {0,…,n-1}, and surpasses nx on t = nΔt. Therefore, the probability of 

an event happening on t = nΔt can be written as a series product of the probabilities 

(1-h(iΔt)Δt) and h(nΔt)Δt as shown in (A.10), where pISI indicates the output ISI 

distribution. 

First, the condition where p(t) is a RSS probability distribution is discussed. 

Replacing the hazard in (A.10) by (A.5) leads the result in (A.11) that shows pISI is 

equal to p using either the original definition or the continuous recursive form of the 

hazard. Second, it is assumed that p(t) is still a RSS probability distribution but the 

hazard is computed using the discrete recursive form as (A.7). By replacing the 

hazard in (A.10) by (A.7) and using the Taylor series in (A.13), (A.12) shows that pISI is 

1

0

nx(iΔt)

h(iΔt)Δt

Pr=h(iΔt)Δt

 

Figure A.2 nx(iΔt) is a sample on t = iΔt. Its value is samples uniformly 

between [0,1]. The probability of generating a spike on t = iΔt is equal to h(t)Δt. 
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only the approximation of p under the condition that Δt << tmean. Therefore, when 

using the discrete-time approximation to generate output spikes whose ISIs encode 

the input RSS probability distribution, it is recommended to compute the hazard 

using the original definition or the continuous recursive form. Third, if p(t) is a 

continuous-value probability distribution, pISI is only an approximation of p no matter 

how the hazard is computed. The approximation is valid under the condition that Δt 

<< tmean. 
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