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Abstract

This thesis examines the vibration behavior of rotor—stator systems coupled
by intermediate viscous liquids. This problem is of particular importance in
the design of pump-turbines, where the runner (rotor) is coupled to the head
cover (stator) via the surrounding water. The elasticity of the rotor and the
stator, their relative rotational motion and the various damping mechanisms
contribute to the complexity of the vibration problem. We study this rotor—
stator coupling on a simplified model, consisting of a circular stator disc
(clamped at the outer circumference) and a ring-shaped rotor disc (clamped
at the inner circumference) separated by an axial gap.

In a first part, we present a concise theory of the dynamics of small per-
turbations (first order) which are superimposed on a stationary bias motion
(zero order). The theory is systematically deduced from fundamental princi-
ples of continuum mechanics and presented in weak variational form, which
is best suited for its implementation in the finite element framework. Special
attention is paid to the correct linearization of the governing equations and
the coupling condition between solid and liquid.

The second part of the work is devoted to the experimental modal anal-
ysis of the rotor—stator system with the use of a specially engineered test
bench. The test bench enables the measurement of eigenfrequencies, damp-
ing factors and mode shapes of rotor and stator. We have applied the laser
interferometer technique to precisely measure the vibrations and therefore
have developed a special mechanism for the vibration measurements on ro-
tating parts. The measurements collected over a wide range of parameters
form a substantial and unique experimental database for the verification of
current and future simulation models.

In the third part, we describe a new physically-based simulation technique
for the prediction of modal parameters of fluid-coupled rotor—stator systems.
We discretize the derived perturbation equations with the finite element
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method and solve the resulting eigenvalue problem numerically using the
simulation software COMSOL Multiphysics. Both the stationary bias motion
and the viscosity of the liquid are included in the model. As solutions we
directly obtain the angular eigenfrequencies, the damping factors and the
complex eigenforms of the respective vibration modes. The simulation model
not only predicts the vibrational behavior of the system, but also provides
valuable insights into the underlying mechanisms.

The vibration modes can be characterized by an azimuthal wave number,
a radial index as well as the relative motion between rotor and stator (vari-
cose or sinuous). Modes with a non-zero azimuthal wave number appear
in pairs of co- and counter-rotating modes (relative to the rotation of the
rotor). In the inertial frame of reference, a higher frequency is observed for
the co-rotating mode compared to the counter-rotating mode. The differ-
ence in frequency is approximately proportional to the rotor speed and the
mode's azimuthal wave number. This frequency split effect, caused by the
stationary bias motion, is excellently mapped by the simulation model. For
the more challenging characterization of the damping, we have also found
a good agreement between simulation and experiment over a wide range of
parameters.



Zusammenfassung

Die vorliegende Arbeit untersucht das Schwingungsverhalten von Rotor—
Stator-Systemen, die lber viskose Fliissigkeiten gekoppelt sind. Mit dieser
Problemstellung ist man insbesondere bei der Auslegung von Pumpturbi-
nen konfrontiert, bei denen der Laufer (Rotor) iiber das umgebende Wasser
mit der Turbinenriickwand (Stator) gekoppelt ist. Die Nachgiebigkeit von
Rotor und Stator, deren rotative Relativbewegung, sowie die verschiedenen
Dampfungsmechanismen, tragen zur Komplexitit dieses Schwingungspro-
blems bei. Wir studieren die Grundlagen dieser Rotor-Stator-Kopplung an
einem vereinfachten Modell, bestehend aus einer kreisférmigen Statorschei-
be (aussen eingespannt) und einer ringférmigen Rotorscheibe (innen einge-
spannt), getrennt lber einen axialem Fluidspalt.

Im ersten Teil erarbeiten wir die theoretischen Grundlagen zur Dyna-
mik kleiner Stérungen erster Ordnung, die einer stationdren Grundbewegung
nullter Ordnung iiberlagert sind. Die Formulierung der Stérungsgleichungen
in variationeller Form, direkt abgeleitet aus dem Prinzip der virtuellen Ar-
beit/Leistung, bietet die Grundlage fiir die folgende Implementierung mittels
der Finite-Elemente-Methode. Der korrekten Linearisierung der Grundglei-
chungen und der Kopplungsbedingung zwischen Festkérper und Flissigkeit
kommt dabei eine besondere Aufmerksamkeit zu.

Der zweite Teil der Arbeit widmet sich der experimentellen Modalanaly-
se des Rotor—Stator-Systems mit einem eigens dazu entwickelten Versuchs-
stand. Dieser Versuchsstand ermoglicht eine hochgenaue Bestimmung der
Eigenfrequenz, des Abklingfaktors sowie der (komplexen) Eigenformen von
Rotor und Stator. Die Schwingungen werden elektromagnetisch angeregt
und, sowohl beim Stator als auch beim Rotor, interferometrisch gemessen.
Um die Messung mit dem Laservibrometer auch rotorseitig zu realisieren,
wurde ein spezieller Mechanismus entwickelt, bei dem der messende Laser-
strahl korperfest auf dem Rotor mitgefiihrt wird. Der grosse Umfang der
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X Zusammenfassung

gewonnenen Daten bildet eine einzigartige Grundlage fiir die Verifikation
von aktuellen und zukiinftigen Simulationsmodellen.

Im dritten Teil beschreiben wir eine neuartige Simulationsmethode fiir die
Vorhersage von modalen Parametern fliissigkeitsgekoppelter Rotor—Stator-
Systeme. In der Simulationssoftware COMSOL Multiphysics werden die her-
geleiteten Stdrungsgleichungen mittels Finite-Elemente-Methode diskreti-
siert und das resultierende Eigenwertproblem numerisch gelost. Hierbei ge-
hen sowohl die stationare Grundbewegung wie auch die Viskositat der Flis-
sigkeit in die Modellierung ein. Als Losungen erhalten wir direkt die Eigen-
frequenzen, die Abklingfaktoren sowie die komplexen Eigenformen der ent-
sprechenden Schwingungsmoden. Mit diesem Simulationsmodell erhélt man
nicht nur eine Vorhersage des Schwingungsverhaltens, sondern gewinnt auch
wertvolle Einblicke in die zu Grunde liegenden Mechanismen.

Die gefundenen Schwingungsformen konnen tber eine Umfangswellen-
zahl, einen radialen Index sowie lber die Relativbewegung zwischen Rotor
und Stator charakterisiert werden (varicose oder sinuous). Moden mit nicht
verschwindender Umfangswellenzahl treten paarweise als mit- und gegenro-
tierende Moden auf (relativ zur Drehrichtung des Rotors). Dabei misst man
im Intertialsystem bei der mitrotierenden Mode eine hohere Frequenz als
bei der gegenrotierenden. Diese Frequenzdifferenz ist naherungsweise pro-
portional zur Drehzahl des Rotors und der Umfangswellenzahl des Modes.
Der Effekt, hervorgerufen durch die stationdre Grundbewegung, wird mit
dem Simulationsmodell sehr gut abgebildet. Auch bei der herausfordernden
Modellierung der Dampfung, finden wir Giber einen grossen Parameterbereich
eine gute Ubereinstimmung zwischen Simulation und Experiment.
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Introduction

1.1 Background and Motivation

The worldwide production and storage of electric energy faces substantial
challenges. To avert global warming, a major reduction of the greenhouse
gas emissions is inevitably required. Substitution of fossil energy with re-
newable energy (e.g., from wind, water and solar power) can contribute to a
reduction in carbon dioxide emissions. In addition, we see a stagnation—or
in some countries even a phase out—of the nuclear power production. This
is due to the disposal problematic and the inherent risks of this technology;
especially in the light of the catastrophic accident on the Fukushima Daiichi
power plant in 2011.

Unfortunately, a drawback of many renewable energy technologies is
the intermittent power production. This volatility limits their potential to
substitute nonrenewable energies that produce continuous base-load power.
A common approach to balance the loads is the use of pumped-storage
hydroelectricity. Such pumped-storage power plants mainly consist of two
water reservoirs at different elevations, connected by intermediate pumps
and turbines. When the electrical supply is high, the plant obtains electricity
from the grid and pumps water from the lower to the higher reservoir. In
case of electrical demand, the plant releases the stored water (and thus
energy) in turbine operation and supplies electricity to the grid.

Pumped-storage systems are now operational for over a century, but the
emerging transition to renewable energies changes their requirements. For
example, to compensate the load volatility, the market demands systems
with an extended operating range (e.g., variable rotation speeds) and with
the capability for faster and more frequent changes of the operating points
(e.g., from pump to turbine operation). To meet these enhanced require-
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stay

labyrinth
vanes

seal  guide

runner

band .
bottom labyrinth
=1 rotor ring runner seal
] stator
I water blades tube

Fig. 1.1: Cross section of a vertical pump-turbine. The blue arrows indi-
cate the direction of rotation and of fluid flow in turbine opera-
tion.

ments, an increased knowledge of the underlying physics and the limiting
factors is necessary.

The most common hydraulic machines used for pumped-storage appli-
cations are of Francis type. Fig.|1.1 shows a cross section of a pump-turbine
with the most important components labeled. The function of this radial
machine is described for turbine operation as follows: Swirling water flow
enters the turbine radially through a spiral case and exits axially through the
centric draft tube. During the flow through the turbine, the fluid generates
work on the rotating runner by the change of angular momentum between
the inlet and the outlet flow. The runner drives an electric generator that
transforms the mechanical power into electrical power. The guide vanes
between the spiral casing and the runner are used for turbine control. Large
hydraulic turbines generate an output up to 800 MW using runners with
diameters of approximately 10m. A special feature of the pump-turbine
is that same machine can run in both pump and turbine operation. In
pump operation, the direction of rotation and flow is reversed, and as a
consequence, the runner must generate work on the fluid.




1.1. Background and Motivation 3

A key factor in the design of the hydraulic machines is their vibrational
behavior. Various mechanisms can excite resonances which lead to an am-
plification of vibration amplitudes (e.g., the rotor—stator interaction of guide
vanes and runner blades (Dubas, 1984)). It is evident to suppress resonance,
as it leads to fatigue, shortens the lifetime, or even endangers the structural
integrity of the system. Therefore, a prediction of resonance frequencies
and corresponding damping factors, as well as an understanding of the un-
derlying mechanisms is of capital importance. This knowledge may then be
used to develop designs that meet the increased requirements.

However, the detailed characterization of the vibrational behaviour of
pump-turbines is still a challenging topic. The complexity arises from the
specific design of the hydraulic machine. From a detailed inspection of
Fig. 1.1, we notice that the runner is submerged in water, and consequently,
this water couples the flexible rotor with the adjacent flexible stator struc-
tures. Particularly, we recognize a small clearance between runner crown
(rotor) and head cover (stator) as well as between runner band (rotor) and
bottom ring (stator). As a result, the rotor and stator cannot be analysed
independently but must rather be considered in the combined rotor—stator
system.

The present thesis investigates the complex coupling mechanism between
rotor and stator caused by an intermediate viscous liquid. The sources of
complexity of the coupling problem are multifarious. We may name the
following challenges:

e The rotor—stator system consists of both rotating and non-rotating
parts.

e Both rotor and stator are elastic structures that influence the vibration
of the system.

e The intermediate liquid that couples the rotor and the stator is gov-
erned by nonlinear equations of motion (Navier-Stokes equations).

e Besides the resonance frequency, the characterization of the damping
is also of great interest.
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1.2 Literature Survey

Vibration of Elastic Structures in Contact with Fluid

Early works on the vibration of elastic structures in contact with liquids date
back to Lamb (1920). He has investigated the flexural vibration of a thin
circular plate which is clamped at its circumference and in contact with a
half space of water. The derived analytical model estimates the vibration
frequency of the first axisymmetrical mode as well as the damping due to
the radiation of sound into the far field. He argues that the frequency of
the fluid-loaded plate is lower compared to the unloaded plate because of
the additional mass of the water. Later, McLachlan (1932) has considered
flexural vibrations of a free circular plate submerged in a fluid. He has found
that the frequency reduction, compared to the vibration in vacuum, may be
marginal for air but is significant for water.

More recently, research has focused on the analytical treatment of special
cases or on numerical methods, such as the Ritz and Galerkin methods. For
example, Amabili and Kwak (1996) have reconsidered Lamb'’s problem by
applying the Rayleigh—Ritz solution to additionally compute the change of
the mode shape of the fluid-loaded plate. The analytical treatment of special
cases includes, for instance, annular plates (Amabili et al., 1996), circular
plates on a sloshing liquid (Kwak and Kim, 1991; Amabili, 2001), cylindrical
shells partially filled with liquid (Chiba, 1996) or infinite plates (Hagedorn,
1994; Grosh and Pinsky, 1994).

Jeong and Kim (2005) have investigated the vibration of a confined prob-
lem, where a circular plate is clamped at its circumference and partitions a
water-filled rigid cylindrical cavity in two halves. They have formulated an
analytical model with an incompressible fluid and derived a finite element
model with a compressible fluid. These two formulations are in good agree-
ment for the non-axisymmetrical modes in the low-frequency range. The
analytical model overestimates the frequency of the higher-order modes and
the axisymmetrical modes, because it neglects the compressibility of the
fluid.

The works cited above all describe the solid—fluid interaction from a
solid-mechanics perspective. This means that the authors mainly focus on
the elastic structure and the change in frequency caused by the fluid loading.
The quiescent fluid (no bias motion) is assumed to be inviscid (irrotational
flow), where the motion can be described by a velocity potential obeying
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the Laplace equation (incompressible) or the wave equation (compressible).
These works do neither consider the damping due to fluid’s viscosity nor the
influence of a bias motion of the fluid or solid.

Using the same methodology, the coupling of multiple elastic structures
by an intermediate inviscid liquid has been studied. For instance, Jeong
(2003) and Jhung et al.| (2003) have examined the vibration of a system
consisting of a lower and an upper circular plate coupled by the intermediate
fluid. In the investigated low-frequency range, the mode shapes of the
lower and upper plates are of the same form, which is characterized by an
azimuthal wave number (number of nodal diameters) and a radial index
(number of nodal circles). For a given pair of azimuthal wave number
and radial index, the coupled system comprises two different modes: (i) a
sinuous mode, where the motions of the two plates are in the same direction,
and (ii) a varicose mode, where the motions of the plates are in opposite
directions. The fluid motion of these two mode types is rather different:
Whereas the fluid motion of the sinuous mode is mainly in axial direction,
the varicose mode shows large radial velocity components. The squeezing
flow for the varicose mode is caused by the opposing movement of the
plates, leads to an increased apparent mass, and, as a result, has a lower
eigenfrequency compared to the sinuous mode. A similar phenomena has
also been reported by Jeong (1998), who has investigated the fluid coupling
between two coaxial cylindrical shells.

Hydrodynamic Stability of Flows with Compliant Walls

Another perspective to the solid—fluid interaction problem is provided by the
hydrodynamic stability theory. This field of fluid dynamics studies the sta-
bility of laminar flows, which are governed by the nonlinear Navier—Stokes
equations. For example, the dynamics of small perturbations superimposed
on a plane, viscous, stationary, parallel bias flow is described by the cele-
brated Orr—Sommerfeld equation (see, e.g., Drazin and Reid (2004, p. 156),
Criminale et al. (2003, p. 13) and Schmid and Henningson (2001, p. 57)).
Even though the hydrodynamic stability theory is mainly concerned with
the conditions for the onset of instability (because linear instability is an
important path to turbulence), the dedicated tools and methods may also
be used to study the damping in sub-critical conditions.

As an example, Davis and Carpenter (1997) and |Larose and Grotberg
(1997) have incorporated an elastic wall model into the Orr—Sommerfeld



6 Chapter 1. Introduction

equation to investigate the stability of a plane channel flow with compliant
walls. Among other types of instability, they describe a flutter instability
which is characteristic to a flow with compliant walls. More complex ge-
ometries have also been examined, such as the effect of wall compliance to
the stability of Taylor—Couette flow in the gap between rotating cylinders
(Guaus et al., 2009), or the stability of a rotating-disk boundary-layer flow
over a compliant wall (Cooper and Carpenter, 1997a,b).

Vibrational Analysis of Hydraulic Turbines

Dubas and Schuch| (1987) have initiated the numerical modeling of the vi-
brational behaviour of real turbines using the finite element method. They
have modeled a Francis runner with shell elements to compute its eigen-
frequencies in vacuum. At that time, computing power was limited and
a realistic modeling of the surrounding water not realizable. Instead, the
frequency of the submerged structure was estimated from the frequency in
vacuum by empirical correction factors.

A landmark in the computation of eigenfrequencies of runners including
added-mass effects is the work by Jacquet-Richardet and Dal-Ferro (1996).
They have modeled both fluid and structure domains with finite elements,
where the fluid has been assumed to be inviscid, incompressible and at rest
(Laplace equation). The computational effort could be reduced by exploiting
cyclic symmetries of the investigated centrifugal pump runner.

With increasing computational power, larger and more detailed models
have become feasible. For instance, Liang et al. (2007) have computed
eigenfrequencies of a complete, non-rotating Francis runner submerged in
water. They included the compressibility of water by using acoustic ele-
ments (wave equation). The eigenfrequencies of the numerical modal anal-
ysis shows a good agreement with the experimental study performed by
Rodriguez et al. (2006). Additionally, Lais et al. (2009) have described
a harmonic response analysis of an immersed runner with the excitation
pattern computed by computational fluid dynamics (CFD).

Coutu et al. (2008) have performed a root cause analysis of a Francis
runner, which failed within two weeks of operation. The reason for the failure
was high cycle fatigue due to resonance, because the eigenfrequency of the
built-in runner surrounded by water was to close to the excitation frequency
resulting from the rotor—stator interaction pattern. The authors concluded
(i) that the method with empirical correction factors (the method available
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at the time of development of the machine) is not sufficient to predict
the eigenfrequencies of the built-in runner and (ii) that an eigenfrequency
analysis with acoustic elements would have averted the problem. As a result,
the eigenfrequency analysis—with acoustic elements modeling the quiescent
liquid—has become the state-of-the-art method to predict the vibrational
behavior of hydraulic machines during its design stage.

More recently, several attempts were made to enhance models for a bet-
ter prediction of the vibrational behavior. The attempts were aimed to take
further, probably relevant, effects into account, such as the rotation of the
runner, the bias fluid motion, large vibration amplitudes, the damping of
the vibration or the coupling of rotor and stator. For instance, Dompierre
and Sabourin (2010) described a transient two-way solid—fluid coupled sim-
ulation of Francis turbine to study the resonance of the system. Therefore,
a computational fluid dynamics solver and a structural finite element code
were coupled to simulate the fluid and solid motion in the time domain. Ba-
sically, such a simulation takes many relevant effects directly into account
(e.g., rotation of runner, bias fluid motion, large vibration amplitudes). But
it is not feasible for the design of a machine, because the simulation is ex-
tremely laborious and computationally expensive. For example, to resolve
one single vibration mode in a time frame of 0.286 s in physical time, a com-
putational time of 95 days was necessary. Furthermore, Krey et al. (2011)
have investigated the coupling of runner and head cover of a Francis type
pump-turbine with a transient finite element simulation. The intermedi-
ate liquid was modeled using acoustic elements by neglecting viscosity and
advection terms due to bias fluid motion. To include the rotation of the
runner, a rotating frame of reference was defined together with an acoustic
rotor—stator interface.

Simplified Disk Models

Real water turbines are large and complex systems which makes them not
suitable to study fundamental vibration phenomena. A promising approach
for basic research is to reduce the (geometric) complexity of the model,
where, for example, rotor and stator parts are represented as circular disks.

Hengstler (2013) has followed this approach and experimentally investi-
gated the vibration of a stator disk submerged in swirling flow of water. He
has observed that degenerated disk modes show a frequency split roughly
proportional to the swirling speed of the water. This means that a pair of



8 Chapter 1. Introduction

modes, for which the frequencies coincide for the quiescent fluid, have dif-
ferent frequencies in the case of fluid motion. Additionally, the mode shapes
of the non-rotating disk are no longer stationary but rotate in the two dif-
ferent directions. In the inertial reference frame, the mode shape with the
higher frequency rotates with the direction of fluid flow (co-rotating) and
the one with lower frequency against the fluid flow (counter-rotating). The
influence of the gap width between stator disk and the rigid stator wall on
the eigenfrequencies was also investigated in this work.

Later on, the vibration of a rotating disk submerged in a confined water
cavity has been examined. Presas et al. (2014) have presented an experi-
mental test bench, where the vibration on the rotating disk is excited using
patches of piezoelectric transducers (Presas et al., 2015c, 2017) and mea-
sured with accelerometers placed at selected locations. Measurements with
this setting also show a frequency split of mode pairs with non-zero az-
imuthal wave number, which are related to co- and counter-rotating mode
shapes (Presas et al., 2015a). As they measured the vibration in the rotor-
fixed reference frame, the lower frequency is now related to the co-rotating
mode and the higher frequency to the counter-rotating mode. Valentin et al.
(2016) presented a simple simulation approach to predict the eigenfrequency
split measured in the test bench. They formulated the finite element model
in a rotating frame of reference related to an averaged motion of the liquid.
The liquid is modeled with acoustic elements, albeit without including the
necessary gyroscopic terms (e.g., centrifugal and Coriolis terms). Addition-
ally, they only considered the relative angular velocity between the rotor and
liquid, which also leads to incorrect gyroscopic terms for the solid motion.
These oversimplifications are a consequence of the limitations of the com-
mercial finite element software used for the study. Further investigations
on the same test bench have addressed the influence of the axial gap (Pre-
sas et al., 2016) and the coupling of the rotor disk with the elastic casing
(Presas et al., 2015b).

Recently, Valentin et al. (2015, 2017) did an experimental study of a
stator disk vibrating in a cylindrical cavity filled with quiescent liquid and
covered with a compliant plate. The focus of the study was on the coupling
of the stator disk with the elastic cover plate by the intermediate liquid.
They have observed that the stator disk and cover plate build a system with
a common eigenfrequency and that the eigenfrequency of the system with
a compliant cover is larger compared to the one with a stiff cover. Bassio
et al.| (2017) have performed a numerical study of the same setup using



1.2. Literature Survey 9

acoustic elements to model the water. They investigated the influence of
the eigenfrequency on several parameters such as the radial gap width, the
axial gap width or the liquid's speed of sound.

Vibration of Rotating Disks

The transverse vibrations of unconstrained rotating disks has been theo-
retically studied by Lamb and Southwell (1921). They have provided an
approximation of the vibration frequency which is derived from the two ex-
treme cases, namely (i) a flexural plate at rest (by neglecting membrane
forces) and (ii) a thin membrane rotating (by neglecting flexural forces).
Their model predicts an increase of the eigenfrequency with the rotation
speed due to the stress stiffening effect. Later, Southwell (1922) consid-
ered the rotating disk clamped at the center and Tobias and Arnold (1957)
studied rotating disks with imperfections.

Fluid Flow Near Rotating Disks

In his famous work, von Karman| (1921) has found the similarity solution for
the laminar flow in a fluid half space in contact with an infinitely extended
rotating wall. The rotating disk acts as centrifugal pump with an radial out-
flow and an axial inflow. The work also provides the driving torque of a disk
with finite radius as well as an approximation for the turbulent flow regime.
The stability and transition of this flow has been investigated by Kobayashi
et al. (1980) with a linear stability analysis together with experiments. At
the onset of instability, the experiments showed a regular pattern of spiral
vortices appearing around the circumference. Batchelor (1951) generalized
Karman's similarity solutions for the flow confined between a rotor and a
stator disk. This torsional Couette flow is characterized by a secondary flow
which is superposed to the primary flow in azimuthal direction. Schouveiler
et al. (2001) experimentally studied the laminar—turbulent transition of this
flow and observed different types of instability which evolve as circular or
spiral rolls. Subsequently, |Cros et al. (2003) additionally investigated the
effect of wall compliance on this transition.
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1.3 Aim and Scope

The long-term objectives of the project are validated tools and methods that
allow a reliable prediction of the vibrational characteristics of real turbines
at the design stage. To take a stride towards this goal, a comprehensive
knowledge about the fundamentals of the rotor—stator coupling is crucial.
In the present thesis, we focus on the rotor—stator coupling with an axial
clearance, such as between the runner crown and the head cover. To study
the fundamentals, we work on strongly simplified models, where the runner
crown (rotor) and head cover (stator) are represented as circular disks. The
abstraction from a real turbine to the simplified disk model is illustrated in
Fig. 1.2

It is the idea to gain knowledge about the coupling phenomena on the
simplified model, where the geometrical aspect of the complexity is elimi-
nated but other substantial aspects are still part of the model. The com-
plexity of the disk model particularly includes (i) a combination of rotating
and non-rotating parts, (ii) deformability of rotor and stator, and (iii) a vis-
cous liquid which couples rotor and stator. The disk model therefore allows
to study the coupling phenomena on simpler experimental setups and sim-
ulation models. It is the aim, to afterwards transfer the derived concepts
into the development process of real turbines. This important process of

shaft 2y Abstraction
\ stator
head | _— disk
cover :
P rotor
P stator
[ water
runner |
crown |
Concretization
pump-turbine simplified disk model

Fig. 1.2: Abstraction of the complex pump-turbine with a simplified disk
model.
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concretization is challenging, but will not be part of the present thesis. In
an overall view, we are confident that the approach with the ‘detour’ via the
simplified model is faster, more robust and provides more reliable concepts.
The literature survey has revealed various gaps in knowledge of liquid-
coupled vibration problems. For example, there is an insufficient experi-
mental data base that covers liquid-coupled systems with rotation and/or
investigates its damping mechanisms. Additionally, there are no simulation
tools available to efficiently compute the influence of the bias motion on the
vibration frequency or the damping due to the viscous liquid. The present
work addresses these topics and tries to bridge the lack of understanding.
With regard to the state of the art and the comments about our focus on
simplified disk models, we formulate the following research questions:

e What are the fundamental mechanisms and features that characterize
the vibration of elastic rotor—stator systems coupled by viscous liquids?

e How do important parameters such as the stiffness of rotor and stator,
the gap width between rotor and stator, and the rotor speed influence
the resonance frequency and damping of the system?

e How can rotor—stator systems coupled by viscous liquids be modeled
to predict the resonance frequency and damping characteristics?

1.4 General Methods and Assumptions

We anchor the work on the tree pillars of science, namely theory, experiment
and simulation. Fig.|1.3]illustrates their interplay and emphasizes that these
methods are not disjoint but overlap. For example, a comparison of exper-
iment with simulation reveals the quality of the derived model and gives a
feedback about the assumptions made (validation). In addition, a validated
simulation model can provide insights, which would not have been accessible
with experimental techniques. In the present thesis we will intensively make
use of this interplay.

In the following, we state general assumptions for the rotor—stator cou-
pling with viscous liquids that we apply to the entire thesis:

e We study the rotor—stator coupling by liquids on a strongly simplified
model, where the rotor and the stator are modelled as elastic disks.
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e We assume small vibration amplitudes which are governed by lin-
earized equations of motions (perturbation theory).

e We neglect nonlinear effects such as streaming (second-order effect)
or large deformations.

e The fluid flow is assumed to be incompressible (bias flow and first-
order perturbation).

e The solid structures are assumed to behave linearly elastic.

1.5 Outline

The present thesis is outlined as follows: Chapter |2 provides the theoretical
background of the thesis. The governing equations for the solid and fluid are
derived in the weak variational form, which build the basis for the simulation
models in Chapter 3| and |6. Special attention is paid on the formulation of
the fluid—solid interaction as well as on the linearization of the equations
about the bias motion. Chapter |3 describes a semi-analytical model con-
sisting of two parallel plates with an intermediate viscous liquid. This is

1 Introduction

\

5 Measurements and Modal Analysis Theory

\ 3 Semi-analytical Model
~
= N
K S
5 £
o <

2 Theoretical Background

4 Experimental Test Bench L . .
6 Finite Element Simulations

7 Comparison of Experiment with Simulation
8 Conclusions and Outlook

Fig. 1.3: The interplay between theory, experiment and simulation with
references to the individual chapters of this thesis.
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probably the simplest model to study the coupling of elastic structures by a
liquid. With this sandwich model, we investigate fundamental phenomena
of the coupled vibration, such as characteristic mode shapes, added mass
effects and damping mechanisms.

Chapter 4 documents the experimental test bench for the characteriza-
tion of the rotor—stator coupling by liquids. We discuss the general design
concept and the specific realization of the test bench, which mainly consists
of a rigid casing filled with liquid, a stator disk clamped to the casing and
a rotor disk clamped to a driven rotor shaft. The control of the test bench,
the excitation and measurement of the vibrations, the signal processing, the
data acquisition as well as the data storage are discussed in detail. Chap-
ter 5 presents test bench measurements and modal analysis theory. We
describe the preparation of the samples and of the test bench, a single scan
measurement as well as the series of measurements performed with the test
bench. Additionally, the theoretical basics of the modal analysis with rotat-
ing components are reviewed and the adaptions to our symmetric problem
are discussed. In the same chapter, we show the measured mode shapes as
well as the experimental results for the eigenfrequency and damping.

The finite element simulations of the simplified disk model are covered
in Chapter 6l This includes a description of the finite element model and
its implementation in COMSOL Multiphysics. The chapter also presents
simulation results of the bias motion, mode shapes of the vibration and some
features of the perturbation motion. In Chapter 7| we show the comparison
of experiment with simulation and discuss the results. Finally, in Chapter 8
we provide the conclusions and outlook of the work.






Theoretical
Background

This chapter provides the theoretical foundations of the dynamics of solid—
fluid coupled systems. This includes the governing equations of the solid
and the fluid as well as a description of the coupling between these two.
The equations are derived in a general form, from which the specific forms
of Chapter 3| (semi-analytical model) and Chapter 6| (finite element model)
are deduced.

We assume small vibration amplitudes and hence apply the perturbation
method, where the total motion is decomposed into a bias motion (zero
order) and a linear perturbation (first order). This method is widely used in
engineering, for instance, to investigate the generation and propagation of
sound (Howe, 2003), or to study the linear stability of fluid flows (Drazin
and Reid, 2004; Schmid and Henningson, 2001; Criminale et al., 2003).
Special consideration is required when linearizing the governing equations:
For the solid equations, the general non-linear framework is necessary prior
to the linearization to take the effect of bias-stress effects into account
(Bonet and Wood, 2008, pp. 218; Bremer, 2008, pp. 159). For the fluid
equations in Eulerian representation, the material time derivative of the
velocity field needs to be linearized. Moreover, at the solid—fluid interface,
the linearization of the boundary conditions leads to an interaction between
fluid bias motion and solid perturbation (Benjamin, 1960).

We formulate the mechanical principles of the continua in variational
form based on the work by Hellinger (1914) (see Eugster and dell'lsola (2017,
2018a,b) for a commented English translation thereof). This is motivated
by the later implementation of the equations in the finite element framework
COMSOL Multiphysics, where the physics can be described directly in the
weak form. Additionally, the variational principles are more descriptive than
the classical balance laws. Note that many derivations in this chapter make
use of the Gateaux derivative which is defined in Appendix A.1l

15
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2.1 Governing Equations of the Solid

2.1.1 System and Kinematics

This section introduces the system and the kinematics to describe the solid
body motion according to Fig. [2.1. We follow the textbooks by Chadwick
(1976, pp. 50); Odgen (1984, pp. 73); Haupt (2002, pp. 7) as well as the
work by Eugster and Glocker (2017) and adopt their terminology. However,
in contrast to these publications—and other standard works in continuum
mechanics—we explicitly allow the reference configuration to be time de-
pendent. This leads to additional terms in the expressions for the particle
velocity and acceleration that take rotordynamic effects of rotating struc-
tures into account. We typeset quantities in the deformed configuration
in lower case letters and those in the reference configuration in upper case
letters, or, alternatively, we tag them with a subscript or superscript ‘0"

A solid body B is a set of particles that can be bijectively placed into
a subset of a physical space, here represented by the three-dimensional Eu-
clidean vector space E3. The Euclidean vector space is inertial and equipped
with an orthonormal base (el, ek, el) and an origin O, forming the I-
system.

The time parameter family of placements into the deformed configura-
tion B, C E3 is defined as the function k : B x R — B, together with its
inverse

z=kr(X,t), X=r (1), (2.1)

where X € B denotes a specific particle and x its position vector in the
deformed configuration with respect to O. This time evolution of placements
is called the motion of B in the deformed configuration. The trajectory,
velocity and acceleration of a particle X in the deformed configuration then
are, respectively,

2(t) = k(X,0), #(t) = 0w(X,1), &(t) = 02k(X,1), (2.2)

where we use partial time derivatives since the particle X remains fixed. In
Eulerian representation, the velocity and acceleration fields read,

& =v(z,t) = 8tn(n_1(:v, t),t), &= a’(z,t):= Gfm(n_l(w,t),t),
x x

(2.3)
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Fig. 2.1: Placements of solid body B into the deformed configuration B,
and the reference configuration BY of Euclidean vector space E3.

where we eliminated X using (2.1),. The region occupied by the image B; =
(B, t) can be written as the disjoint union B; = B,UJdB; of the interior B,
and the boundary 0B; of the deformed configuration, respectively.

As we will formulate constitutive equations later on, we rely on a strain
free reference configuration. We therefore define a time parameter family
of placements into the reference configuration T_ﬁ? C E3 as the function
K : B x R — BY together with its inverse

X =K(x,t), X=K'(X,1), (2.4)

where X denotes the position vector in the reference configuration with
respect to O. Here, we explicitly include the time dependence and call the
time evolution of placements the motion of 95 in the reference configura-
tion. The particle trajectory, velocity and acceleration of a particle X in the
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reference configuration then write as, respectively,
X(t) = K(%,t), X(t)=0K(X,t), X(t)=0'K(X,t). (25)

The motion in the reference configuration shall be strain free for all times.
We therefore restrict the motion (2.5)) to that of a rigid body with particle
velocity and acceleration fields

j(:‘/p—f—.fZX’r'pX7 X:AP—FQXTP_)(—F.QX(QXT‘P)()7 (26)

where Vp and Ap denote the particle velocity and acceleration of an ar-
bitrary reference point P, {2 the angular velocity of the rigid body motion,
and rpx the particle position vector with respect to P.

It is convenient to express the motion in the deformed configuration in
terms of the reference position X rather than the particle X. Using (2.4),
together with (2.1);, we eliminate X and define the deformation as the
function & : @? x R — B, together with its inverse

r=¢(X,t)=r(K '(X,t),t), X=¢(at):= Kk (z1),1t).
X x
(27)
The relative motion between deformed and reference configuration is called
displacement and is defined as the function u : BY x R — E3 with

u(X,t) = &(X,t) — X. (2.8)

We now express the kinematic quantities of (2.2) in Lagrangian represen-
tation, this is, in terms of X and w. By applying the chain rule, with X
remaining fixed, the velocity and acceleration fields become

t=V(X,t)=Diu= X + Ou +(0xu)X, 2.9
(X,1) =Diu= X : (Oxu) (2.9)
=Vl .yl _ oy
= Al = gl = Al

i=A%X,t):=DPu:= X + 0Pu +20,(0xu)X
+

[(0x0xu)X]X + (Oxuw)X,  (2.10)
—_— —
=AY =AY
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where (Oxu)X = Du(X)[X] and [(0x0xu)X]X = D?>u(X)[X] are ge-
ometrically defined by the Giteaux derivative (A.1). The operators Dj
and D§2 operate on u and formally define the material time derivative for
the solid body.

The deformation in the vicinity of & = £(X,t) is described by the
deformation gradient, defined by the two-point tensor

G(X,t) := Ox€(X, 1), (2.11)

which linearly maps tangent vectors in the reference configuration dX to
tangent vectors in the deformed configuration dez = GdX. We assume a
positive volume ratio

J(X,t):=detG(X,t) >0 VX € BY W, (2.12)

so that G is invertible. The displacement gradient is the two-point tensor
given by

H(X,t) :=0xu(X,t) = G(X,t) - L (2.13)
We define the Green—Lagrange strain tensor as
1 1
E(X,t) := §(GTG ~I)= 5(HT+ H-+H'H), (2.14)

which measures the difference of squared lengths of tangent vectors in the
deformed and reference configuration by ||dz|* — [|dX||?> = 2(EdX) - d X.
Generalized forces measures acting on the solid body B are denoted by

df(z,t), df(z,t), or  dF(X,t), dF(X,¢t), (2.15)

depending on whether expressed in the deformed or reference configuration.
Note that generalized forces can either be represented by vector quanti-
ties (df, dF) in N or by tensor quantities (df, dF) in Nm. We further
distinguish between volume body forces bdv or BdV, surface traction
forces tda or T dA, inertia forces (—p°a®)dv or (—p§5A®)dV and in-
ternal forces, which we subsequently express in terms of stress contributions
—odv or —PdV.

2.1.2 Principle of Virtual Work

In the present section we introduce the governing equation for the motion of
the solid body 8. For this, we apply the principle of virtual work, from which
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the scalar equation of motion in variational form results. For a comprehen-
sive analysis of this topic, we refer to the fundamental works by Eugster
(2015)) and Eugster and Glocker (2017)).

First, we define the variational family of virtual placements K : 5 X
R x R — Bf with the variational parameter €. These virtual placements
are arbitrary besides the prerequisite that the actual placement k(X,t) is
revealed by setting € = ¢q, that is, K(X,t,e0) = k(X,t). The Gateaux
derivative (A.1) then defines the virtual displacement of particle %

O0k(X,t) := DK(eg)[0e] = 0-K(X,t,e0) - de, (2.16)

where de := £ —¢g( denotes the variation of €. As a result of the arbitrariness
of the virtual placements, the virtual displacements become arbitrary in
direction—a fact that is used in the principle of virtual work to test the force
contributions. We express the virtual displacement fields in terms of the
position fields in the deformed and the reference configuration, respectively,
as

da(x,t) = or(k 1z, t),t), O0&6(X,t) :=0r(K "(X,t),t). (2.17)

—— ———
X x

The variation of the displacement field (2.8) is

du(X,t) := Du[0€] = lim (§+e66 - X) - (£—X)

e—0 &

= §¢(X, 1),
(2.18)
and thus equals the virtual displacement (2.17),.

Now, we state the principle of virtual work according to Eugster and
Glocker (2017): Let df,..,dftot, - .. be the totality of forces acting on the
body expressed in the deformed configuration B, and dFo;, dFior, ... be
the same expressed in the reference configuration @?. In order that the
solid body 9 is in dynamical equilibrium, the overall virtual work Wi
performed by (df;., dftot,.-.) or (dFtot, dFtot,...), must vanish for all
virtual displacement fields dx or du and gradients thereof, that is,

0=0Wiot = ﬁ oz - df o +[ (Oz0x) : dfot Yoz, Vi
B B
= | ou - dFtOt +/ (8)(511,) : dFtot V(Su, Vt.
BY BY

(2.19)
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The totality of forces must include all forces, namely the inertia forces, the
internal forces, and the external forces. Accordingly, we can write the total
virtual work as

SWior = W™ - gIymt 4 sppext, (2.20)

with the virtual work contributions further specified in the following para-
graphs.

Virtual Work Contribution of Inertia Forces

The inertia forces contribute to the virtual work by

SWdyn . — ~dz-(—0°a’)dv
(2.21)
= [ du-(—0yA%)dV,

BY

where the first line is expressed in the deformed configuration and the second
line in the reference configuration, using the acceleration terms defined in
(2.3)2 and (2.10).

Virtual Work Contribution of Internal Forces

We call a force internal with respect to the body 93, if the force only interacts
with particles of the body itself and not with the environment. According
to Eugster and Glocker (2017), we consider stress as the internal forces
modeling the small range interactions. The virtual work contribution by the
internal forces is then given by

STyt ::/ —(0z02) : o dv
o (2.22)

= / —(0xdu) : PdV = —0E : SdV,
BY BY

where, in the deformed configuration, 0,0« denotes the spatial gradient of
the virtual displacement field and o the symmetric Cauchy stress tensor;
and in the reference configuration, dxdu denotes material gradient of the
virtual displacement field, P the first Piola—Kirchhoff stress tensor, JE the
variation of the Green—Lagrange strain tensor and S the symmetric second
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Piola—Kirchhoff stress tensor. The variation of the Green—Lagrange strain
tensor is obtained by

0E(X,t) := DE[6G] = %(GT(SG +0GTG)

1 (2.23)
:= DE[§H] = 5(5HT+ SH +H'0H + dH H),
either using the variation of the deformation gradient
dG(X,t) := DG[o€] = 0x0€(X 1), (2.24)
or the variation of the displacement gradient
dH(X,t) := DH[du] = 0xdu(X,t) = 6G(X,1). (2.25)

Now, we specify the constitutive equations describing the material be-
haviour of the solid body. Following Haupt (2002, p. 346), we assume the
material to be Green elastic or hyperelastic, so that we can state a scalar-
valued strain energy function Wg(E) to deduce the second Piola—Kirchhoff

stress from
dWg
S(E) = .

We further assume the material to be isotropic and linear-elastic, for which
the strain energy function is expressed by

(2.26)

S

Wg(E) == 1°E : E + %(E :1)%, (2.27)

with A® defining the first Lamé constant and p° the second Lamé constant,
also known as shear modulus (Haupt, 2002, p. 365). If we evaluate (2.26))
using (2.27)), we find the second Piola—Kirchoff stress for an isotropic, linear-
elastic material by

S =2°E + M(E: I)L (2.28)

The relations between the Young’s modulus E and the Poisson’s ratio v to
the Lamé constants read
E vE

SR 7 M (e (T 22
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Virtual Work Contribution of External Forces

We call a force external with respect to the solid body 9B, if the force
interacts with the environment and not with particles of the body itself.
The virtual work contribution of these external forces then write as

SWext .= ox-bdv + oz - tda
e OB (2.30)
= (5u-BdV+/ ou- TdA,
BO oBO

where the body volume forces b or B act on the interior and the surface
traction forces ¢ or T at the boundary of the solid body *B. Again, in the
first line, the forces are represented in the deformed configuration, and in
the second line, the same forces are given in the reference configuration.

As a summary, we assemble the contributions of the inertia forces (2.21)),
the internal forces (2.22) and external forces (2.30) and write out the prin-
ciple of virtual work in the reference configuration as

0= 6Wtot = / ou - (-Q%AS> dVv
BY
+/ —SE:SdV (2.31)
BY

+/ 5u'BdV+/ ou-TdA Vou, Vt.
B0 B

2.1.3 Perfect Bilateral Constraints

So far we have not considered any kinematic constraints on the motion of the
solid body. In the present section we discuss perfect bilateral constraints on
the displacement field which may be equivalently represented in local strong
form or in the weak variational form, namely,

0=g'(u) < 0=00:= [ 6u-g"(u)dV  You.  (2.32)
BY

Therein, g"(w) is a scalar-valued constraint function at the displacement
level and éu an arbitrary test function called virtual force. The forces which
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ensure the constraint (2.32) are called constrained forces and denoted as
dFCOl’l

We now formulate the principle of d’Alembert—Lagrange, which is the
constitutive law for the constraint forces of the perfect bilateral constraint at
position level: The virtual work 6W<S" generated by constraint forces d F“"

vanishes for all virtual displacements du,q,, admissible with the constraint,
that is

0=40Wi = /'BO OUpdm - AF" Youaqm, Vi, (2.33)
or in local form
0 = dwsgy, = dUadm - AF" VoUadm, V. (2.34)

Furthermore, we find the admissible variations of (2.32) using the Gateaux
derivative (A.1) as

O = 695(1111(“) = Dg#(u)[éuddm] = [aug#(’u’)] : 5uadm

2.35
= 0Undm * [Oug" (u)] VoUadm - ( )

A comparison of (2.34) and (2.35), with the fact that both equations hold
for all duyqm, reveals the form of the constraint force

AF" = p[D,g" (w)] AV, (2.36)

where J,,g*(u) represents the generalized force direction and p is a scalar
Lagrange multiplier. The vector-valued force direction, defined as the gra-
dient 9,¢*(w), may be found, again, by applying the Giteaux derivative
(A.1) on the constraint function (2.32)), that is

0 = Dg(w)[@] = [Dugh(w)] -G V. (2.37)

Instead of (2.32) we could also define constraints on the field of the
displacement gradient H = Jxwu, again equivalently in local strong form or
in the weak variational form, by

0=G*(H) < 0=460":= op - GH(H)dV Vou.  (2.38)
The formalism is the same as sketched out above and leads to constraint
stresses of the form

dF°" = plogGH (H)]dV, (2.39)

where the gradient 9gG*(H) represents the tensor-valued stress direction.
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2.1.4 Linearization

The governing equation (2.31) derived above is non-linear. For the pertur-
bation method, we separate the total process g into a bias process g (zero
order) and linear perturbation process § (first order), that is,

We derive the equation for the linear perturbations § by linearizing the gov-
erning equations about the bias solution q. The procedure of linearization
by applying the Gateaux derivative (A.1), is described by Bonet and Wood
(2008, pp. 218). Accordingly, linearization is a strict use of the Gateaux
derivative on the non-linear equations at the bias solution @ into the direc-
tion of the disturbances §.

We apply the linearization procedure to (2.31) and derive the linearized
principle of virtual work

0= Wit = W™ 4 WM L st Vou, Vi, (2.41)

with the different contributions given in the following. Firstly, we deduce
the linearized virtual work contribution of the inertia forces

SWm = D(SWdyn(ﬂ)[a} - B0 D{ou - (—0y A%)Hw)[a] dV

:/7 —bu - 05 {024 + 20,(x i) X

+ [(0x0x @) X] X + (Oxa) X} dV. (2.42)

from (2.21)) using (2.10). Secondly, we derive the linearized virtual work
contribution of the internal forces from (2.22)

SWint .= DSWint(@)[4) = [ D{—0E: S}(w)[a]dV
B
:/ —0E: DS(w)[@dV + [ —DOE(@)[d]: SdV
BY BY
:/ faE:de+/ —0E:Sdv, (2.43)
BY BY

by using the Gateaux derivative together with the product rule. The second
integral in the last line describes the influence of bias forces that arise from
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the gross body motion of the reference configuration or other prestressing
effects (Bremer, 1988, pp. 194); (Bremer and Pfeiffer, 1992, pp. 103); (Bre-
mer, 2008, pp. 159). It remains to provide the missing quantities: The bias
variation of the Green—Lagrange strain is given by

G

- _ 1 T =31 H T
OE :=0E(u) = 5((5H +H+H /H+/H H) =sym[(I+H)'5H],

(2.44)
and the perturbation variation of the Green—Lagrange strain by

- 1 - . .
OE := DOE(a)[d] = §(HT5H +0H"H) =sym(H"0H),  (2.45)
where bias and perturbation displacement gradients are defined as
H:=0xu(X,t), H:=0xu(X,t). (2.46)

The bias stress and the bias Green—Lagrange strain read

S:=S(a@)=2uE+\E: DI, E:=E(a)= %(I‘{T+I'{+FITFI). (2.47)

The perturbation stress writes as

S := DS(@)[d] = 2uE + MN(E : DI (2.48)

using the linear perturbation Green—Lagrange strain

G
- S —~ L
HA+AH+H'H+HH) =sym[(I+H)"H)].
(2.49)

E := DE(u)[d] =

N =

Finally, the linearized virtual work contribution of the external forces
SWt .= DSW™Y(B, T)|B, T)

= [ D{éu-B}(B)[B]dV + D{éu- T}(T)[T]dA
BY B¢

= 5u-1§dv+/ du- TdA. (2.50)
BO 9BY

is deduced from (2.30)).
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To summarize, we combine the linearized contributions (2.42)), (2.43)
and (2.50) and write the linearized principle of virtual work for the solid
body as

0 = 6T = / “bu- g3 {0%a + 20,(0x @) X
B
_ - - = 2.51
+/ —6E:SdV+/ —0E :SdV (2.51)
BY BY

+ 6u-BdV—|—/ du-TdA You, Vi.
BO oBY

2.1.5 Boundary Value Problem

In the present section we derive the boundary value problem corresponding
to the equation of motion (2.31)) given in weak variational form. This is
mainly an exercise in integration by parts in the three-dimensional domain.
Using the general relation for the contraction of tensors

(AB): C =tr[(AB)'C] = tr[BT(ATC)| =B : (ATC), (2.52)
we can rewrite the virtual work contribution of the internal force (2.22) as
1
SE:S = §(GT5G +06GTG):S =sym(G'6G):S = (G'6G): S

=0G : (GS) = (Oxd0u) : (GS). (2.53)
Additionally, we find from Gauss's divergence theorem that

/ _(9xc): BdV = / c-[(0xB) : 1] dV—/ c-(BN)dA Ve, VB,

BY BY

OB
(2.54)
where IN denotes the outward unit vector normal to the boundary sur-
face OB{. By combining (2.53) and (2.54) we rewrite (2.31)) as

0= §Wpoy = / Su- {[9x(GS)] : T+ B — g A%}V
59

+/ Su-[T — (GS)N]dA  Vou. (2.55)
oBY
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EB

Fig. 2.2: Placement of fluid body § in the current configuration F; of
Euclidean vector space E3.

As this equation must hold for all Ju, we can state the boundary value
problem

0pA°=[0x(GS)]: I+ B in BY
(2.56)
T=(GS)N on OBY.

2.2 Governing Equations of the Fluid

2.2.1 System and Kinematics

Similar to definitions for the solid body motion in §2.1.1, we introduce the
system and kinematics for the fluid body motion according to Fig. 2.2, In
contrast to the solid body, we do not rely on a reference configuration to
describe the constitutive equations. Furthermore, we choose an Eulerian
representation of the kinematics, where the velocity field in the current
configuration is the primary variable.

A fluid body § is a set of particles that can be bijectively placed into a
subset of a physical space, again represented by the three-dimensional Eu-
clidean vector space E3. The Euclidean vector space is inertial and equipped
with an orthonormal base (el,el, el) and an origin O, forming the I-
system.
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_ The time parameter family of placements into the current configuration
JF, C E3 is defined as the function & : § x R — J; together with its inverse

z=r(X,t), X=r (1), (2.57)

where X € 23 denotes a specific particle and « its position vector in the de-
formed configuration with respect to O. This time evolution of placements
is called the motion of § in the current configuration. The trajectory, ve-
locity and acceleration of a particle X in the deformed configuration then
write as, respectively,

z(t) = k(X,t), #(t) = k(X 1), &(t) =0 k(X,1), (2.58)

where we use partial time derivatives because the particle X is kept fixed.
The region occupied by the image F; = k(J,t) can be written as the disjoint
union F; = F; UIF; of the interior F; and the boundary 0F; of the current
configuration, respectively.
Using (2.57))2 we eliminate the particle X from (2.58), and define the
velocity field in Eulerian description
& = v(z,t) = Or(k "z, 1),1). (2.59)
——
X
Applying the chain rule, by keeping the particle X fixed, we derive the
acceleration field
#=af(x,t) = Dlv=0,v+ (0,v)% = dyv + (0yv)v. (2.60)

The operator Df operating on v formally defines the material derivative for
the fluid body.

The rate for deformation in the vicinity of x is described by the spatial
velocity gradient, defined as the tensor

Wz, t) := 0yv(x,t). (2.61)
The symmetric part of 1 denotes the spatial strain rate tensor
1
d(z,t) ;== sym[l(z, t)] = 5(1 +17), (2.62)

which will be used to describe the constitutive equation for the fluid. The
skew-symmetric part of 1 is called the spatial spin tensor and is defined by

w(z,t) := skw[l(z,t)] = %(l 1. (2.63)
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Every skew-symmetric second-order tensor in the three-space can be ex-
pressed by a corresponding axial vector. We use this fact to define the
vorticity vector m(x,t) by the relation

we = %(n X ¢) Ye. (2.64)

Forces acting on the fluid body § are generally denoted as df(z,t) or
df(z,t), depending on whether represented as vector or tensor quantity. We
distinguish between volume body forces bdv, surface traction forces tda,
inertia forces (—ofa’) dv and internal forces, which we subsequently express
in terms of the Cauchy stress contribution —o dw.

2.2.2 Principle of Virtual Power

In §2.1.2) we introduced the concept of virtual displacements, and with this
the principle of virtual work for the solid body. In the present section we do
the equivalent to derive the equations of motion for the fluid body §. For
a fluid, it is more convenient to work on the velocity level instead of the
position level. We therefore define virtual velocities and state the governing
equation for the fluid formulated by the principle of virtual power.

We adopt the definitions of the family of virtual placements K(X,t,¢)
and the virtual displacement 0k (X,t) from §?2.1.2 also to the fluid body.
Furthermore, we denote the set of all families of virtual placements H, such
that

KX, t,e)eH < k(X t) =0.K(X,t,e0)- 0¢ (2.65)

holds. For every time instant ty € R, we then define the subset H(ty) C
H as the families of placements K(X,t,¢) where the virtual displacements
0k (X, to) vanish for tg, that is,

K(X,to,€) € Hty) 1= {K(X,t,¢) € H | 0-K(X, to,e0) = 0} € H. (2.66)

With the virtual placements of the restricted set H(¢), marked by an under-
bar, we define the virtual velocity of particle X as

SR(X,t) = 0,0-K(X, 1, 20) - 0. (2.67)

Although we select the virtual displacements from the restricted set H(¢),
the virtual velocities are still arbitrary in direction. We express the virtual
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velocity fields in terms of the position fields in the current configuration by

dv(x,t) := Sk(k ™ (x,t),1). (2.68)
x

Now, we formulate the principle of virtual power, which is equivalent
to the principle of virtual work (2.19), but expressed on velocity level: Let
(df o, dftot) be the totality of forces acting on the body expressed in the
current configuration F;. In order that the fluid body § is in dynamical
equilibrium, the overall virtual power § P performed by (df,.;, dftot), must
vanish for all virtual velocities dv and gradients thereof, that is,

0= éptot = [ é'v . dftot + / ((%Q’U) : dftot VQ'U, Vt. (269)

Fi Fe

Again, the totality of forces must include all forces, namely the inertia forces,
the internal forces, and the external forces. Accordingly, we can write the
total virtual power as

0 = §Pioy = OPY™ 4 §P™ 4 5Pt Vi, Vi, (2.70)

with the virtual power contributions further specified in the following para-
graphs. The definition of the virtual velocities via the subset of virtual
displacements ensures that the principles of virtual work and power are
equivalent.

Virtual Power Contributions of Inertia Forces

The inertia forces contribute to the virtual power by

spdn .= / —dv - 0 [0hv + (9,v)v] dv, (2.71)

F

with the acceleration term defined in (2.60)).

Virtual Power Contributions of Internal Forces

Analogous to §2.1.2, we define internal forces with respect to the fluid body
$ and include the virtual power contribution by the internal forces as

gpint ::/ —d4d : o dv, (2.72)
Fe
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with the symmetric Cauchy stress tensor o and the variation of the strain
rate defined by

1
dd(x, t) == DA[J]] = 5(QlT + 41). (2.73)
Herein, the variation of the spatial velocity gradient is given by

l(z,t) := Dl[ov] = I dv. (2.74)

Virtual Power Contributions of External Forces

We define external forces with respect to the fluid body § analogously to
§[2.1.2| and include the virtual power contribution by the external forces by

éPEXt — / é’U . bdov +/ é’U . tda. (275)
T 9T

In summary, we assemble the contributions of the inertia forces (2.71),
the internal forces (2.72) and (2.75) and write out the principle of virtual
power in the current configuration as

0= 8P, = / 50 o [Bv+ (9pv)v] dv
Ty
+/ —d : odv (2.76)
T

+ dv-bdv+ dv-tda Vév, Vt.
Ty F,

2.2.3 Perfect Bilateral Constraints

Similar to §2.1.3 we now introduce kinematic constraints on the motion
of the fluid body. Perfect bilateral constraints on the velocity field may be
equivalently represented in local strong form or in the weak variational form,
namely,

0=9"(v) & 0=00":=[ op-+"(v)dv Vo . (2.77)
Fu
Therein, v*(v) is a scalar-valued constraint function at the velocity level and
Sp an arbitrary test function called virtual force. The forces which ensure
the constraint (2.77) are denoted as df°".
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The principle of Jourdain is the constitutive law for the constraint forces
of perfect bilateral constraints at velocity level and is formulated as follows:
The virtual power §PSS" generated by the constraint forces df°" vanishes
for all virtual velocities §v.qm admissible with the constraint, that is

0=0PSh = | 0aam - Af™  Vivaaw, ¥, (278)

or in local form
0 = dpian, = 0Vadm - df°" V0Vadm, V. (2.79)

Furthermore, we find the admissible variations of (2.77) using the Gateaux
derivative (A.1) as

0= Q’yéfdm(v) = Dy (v)[0Vadm] = [0u7" (V)] - IVadm

2.80
- évadm . [8117#(”)] vé'vadm- ( )

A comparison of (2.79) and (2.80), with the fact that both equations hold
for all dv,qm, reveals the form of the constraint force

df" = pu[0yy* (v)] do, (2.81)

where 9,7*(v) represents the generalized force direction and p is a scalar
Lagrange multiplier. The vector-valued force direction, defined as the gradi-
ent 9,7"(v), may be found, again, by applying the Gateaux derivative (A.1)
on the constraint function (2.77)), that is

0= Dy ()[8] = [0y (v)] - & V. (2.82)

Instead of (2.77) we could also define constraints on the field of the
velocity gradient 1 = J,v, again equivalently in local strong form or in the
weak variational form, by

0=T"1) < 0=01":= [ op-TH(1)dv Vopu. (2.83)
Fe

The formalism is the same as sketched out above and leads to constraint
stresses of the form
dfe" = ploir*(1)] dw, (2.84)

where the gradient 9T (1) represents the tensor-valued stress direction.
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Incompressibility Constraint

We now apply the findings for the perfect constraints to define the incom-
pressibility constraint for the fluid motion. We model the fluid flow as
incompressible, that is, a motion with a divergence-free velocity field

0=(0zv): I=1:T=TP(1) & 0=0II":= / —op-TP(1)dv Vop,
T
(2.85)

where we define the constraint function T'?(1) at the velocity level and in-
troduce an arbitrary test function dp called virtual pressure. We reconsider
(2.72), the virtual power contribution of internal forces,

g
SPt = / —od : (T +¢)dv, (2.86)
Fe

where we have split the total Cauchy stress o into an impressed stress T
and a constraint stress ¢, which enforces (2.85) to hold.
The principle of Jourdain reveals the specific form of the constraint stress

S = 7p(alrp)7 (287)

with the Lagrange multiplier p recognized as pressure. The stress direction
OI'? is found by applying the Giteaux derivative to (2.85); as

DU = @r#) 1= tim SV IZL gy g g
e—0 £
(2.88)
which yields g)I'? =T and finally
¢ =—pL (2.89)

In accordance to White (2005, p. 66), we model the impressed stress as
Newtonian fluid

7 =2ufd + X(d: DI, (2.90)

with the first viscosity juf and the second viscosity Af. For an incompressible
flow, where the incompressibility condition (2.85) holds, the second term
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vanishes, because 0 =T?(1) =1:I=(d+w) : I =d : I. We collect the
results from (2.85)), (2.89) and (2.90)) and write out the total stress as

o=7+¢=2 d+ N (d: DI—p@AI") =2u'd—pl. (2.91)
0

The weak variational equation describing the incompressible flow of a
Newtonian fluid then writes as

O:éptot—F(SHp = / —Qv-gf[ﬁtv+(8wv)v] dv

F,

+ / —od : (2ufd — pI)dv
e (2.92)
+ dv-bdv + dv-tda

—|—/ —op(1:T)dv Yov, Vop, Vt,
Ft

where the equation of motion (2.76) and the constraint equation (2.85),
are combined into one.

2.2.4 Linearization

In the same way as in §2.1.4, we linearize the governing equations of the fluid
by applying the Gateaux derivative at the bias solution g into the direction
of the disturbance §. We apply the linearization procedure to (2.92) and
derive the linearized equations of motion as

0 = §P,o + 0117 = PV 4 g P L 5P L GTIP Vow, Vop, Vi, (2.93)

with the different contributions given in the following. The linearized virtual
power contribution of the inertia forces from (2.71) yields

8P = DEPYN(0)a] = | D{-bv- o0+ (Dpv)ol} (D))o dv
= / —5v- o[04 + (94 0)% + (9,8) 8] do. (2.94)
Fi
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From (2.72)), we derive the linearized virtual power contribution of the in-
ternal forces

§P™ = DSP'™(,p)[6,p] = , Pi-od: (2u'd — pI)}(, p)[5, 5] dv

:/ —od : (2ufd — pI) dv (2.95)
Fe

with the perturbation velocity gradient and the perturbation strain rate,
respectively, defined as

1:=0,4, d:= %(TJFTT). (2.96)

The linearized virtual power contribution of the external forces writes as

Pt .= DS P (b, t)[b, {|

= [ D{dv-b}(b)[bldv+ [ D{ov-t}(f)[f]da
Tt 0T

= [ dv-bdv+ dv - tda, (2.97)
Ft 0T

and the linearized incompressibility constraint from (2.85) is given by

SIIP := DOIIP(%)[0] = i D{—ép-TP()}M)[1] dv

- / —op(1: 1) dv. (2.98)
Tt

Finally, we assemble the linearized contributions (2.94), (2.95), (2.97)
and (2.98) of the fluid body to

0 = Pyt + 117 = / —0v - 0 [0,5 + (0,0) T + (0,7) 0] dv
T

+ / —od : (2pfd — pI)do
e (2.99)
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2.2.5 Boundary Value Problem

Similar to the derivation in §2.1.5| we can rewrite (2.92) as
0=0P = / —0w - {0.[(2ufd) — pI] : T4 b — o' [0, v + (Dpv)v]} dv
Fi

+ dv-[t—(2u'd—ph)n]da  Viw, (2.100)
oF,

where n denotes the outward unit vector normal to the boundary surface
0F;. This leads to the boundary value problem corresponding to (2.92)

0'[0;v + (0pv)v] = —0pp + 11 [05(0xv)] : T+ b in ¥
(2.101)
t=2u'd—phn on 0F;

together with the incompressibility condition 0 = (9,v) : I. This equation
is widely known as Navier—Stokes equation (White, 2005, p. 68).

2.3 Coupling of Solid with Fluid

2.3.1 Total System

In the preceding sections we considered the equations of motion for a solid
body and a fluid body separately. However, out main focus lies on solid—fluid
coupled systems and we therefore need to treat the coupling between these
two. This section derives the equations of motion for the total system by
combining the solid equations of §2.1| and the fluid equations of §2.2, The
explicit coupling between solid and fluid is then covered in the subsequent
section.

The total system T := B U F, formed by the union of the solid and the
fluid body, occupies the region T, := B, U F, in the physical space. We
call the surface 0J; := 9B, N 0F;, build by the intersection of the solid and
fluid boundary, the interface. To clearly distinguish between the quantities,
we indicate solid quantities with a superscript ‘s’ and fluid quantities with
a superscript ‘.

First, we would like to clarify that the principle of virtual work stated
in §2.1.2| and the principle of virtual power formulated in §2.2.2| can be
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regarded as equivalent, that is,
0=0Wiot = | dx-dfo, +/ (0gox) « dfyor Vox (2.102a)
Tt

Tt
)
0= éptot = [ é'U . d-ftot +[ (8z§’0) : dftot VQ’U (2102b)

Tt Tt

The principle of virtual power is convenient for a kinematics described at
velocity level, what is true for the fluid motion. We therefore apply the
principle of virtual power for both solid and fluid, building the total system.

In §2.1.2 and §[2.2.2] we introduced the concept of internal and external
forces, which are defined as internal or external with respect to a specific
system. Considering this, we rewrite the contributions to the virtual power
of the external forces. The contribution with respect to the solid body B
from (2.30)) then writes as

SPB — évs-bsdv+/ 6v°-t*da+ [ dv°- t°da, (2.103)

B, OBN\OT, a9,

the one with respect to the fluid body § from (2.75)) writes as

oPtS — [ sof . bf du + / vt tTda+ [ dof - tTda. (2.104)
Fy dF\O7, a7,

Note that we separated the integrals over the interface 9J; from the integrals

over the remaining surface. The integrals over the interface 0J,—that are

external with respect to the solid body % or the fluid body §—become

internal with respect to the total system ¥. We therefore write out the

virtual power contribution of the external forces for the total system as

SPetY = dv° - b dv —|—/ 0v° - t°da
Be B\, (2.105)
+ Qvf~bfdv+/ sof - tf da,
F, 8F\0T,

and the virtual power contribution of the internal forces of the total system

éPintT — / 7éds : a-s dv +/ é/vs . ts da
By 974

(2.106)
+/ —6d: o’fdv+/ dof - tf da.
Ty 0J¢
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At the interface 0J;, the surface traction force t°da is then exerted from
the fluid to the solid and t' da is exerted from the solid to the fluid.

For completeness, we provide the contribution of the inertia forces for
the total system as

édenT = éden‘B + éden&'

= / —0v°* - (0°a®) dv —l—/ —0v° - (ofa’) dv. (2.107)
By T

2.3.2 Interface Condition

This section addresses the conditions on the kinematics and the constraint
forces for the coupling between a solid and a fluid body, as depicted in
Fig. 2.3. For the fluid to stick at the solid, the velocities of solid and fluid
particles must be equal for all particles at the interface 9J;, that is,

:Ef

—_—
0 = v*(X°,t) — o (z°(X5,1), 1)
= X + 0pus (X5, t) + [0xus (X5, 1) X
— o (X° + us( X5 1), 1) = y*(us v), (2.108)
N————

xf

where (2.9) and (2.59) were used to define the vector-valued constraint
function v*(u®, v%) in terms of the solid displacement u*(X®,¢) and the
fluid velocity vf(xf, ). This perfect bilateral constraint can be equivalently
represented in the local strong form or in the weak variational form, that is,

0=*(uSd) & 0=01":= [ du-v,(uSo)da  Vop,

9T,

(2.109)
where dp is an arbitrary vector-valued test function that denotes the virtual
traction vector.

The constraint forces #*da and #f da, acting on the interface 9J;, are
internal forces with respect to the total system ¥ and must therefore satisfy
the variational law of interaction. In accordance with Eugster and Glocker
(2017), we define the variational law of interaction as follows: Let df™*
denote the internal forces with respect to a subsystem & C T. Further, let
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) N

(a) T \

03y

Fig. 2.3: (a) Kinematics of the interface 9J; = 9B+ N OF: between the
solid body B and the fluid body §. (b) Constraint surface trac-
tion forces acting on the solid and fluid boundary at a shared
point P € 9J;.

Ov,ig define the rigid virtual velocity field by
30, 1) = dvo(t) + 802(t) x =, (2.110)

where dvq is the virtual velocity of the origin O and 0f2 is the virtual
rotation velocity. Then, for any subsystem & C T, the virtual work done by

the internal forces dfi’ﬂtﬁ must vanish for all rigid virtual velocities dvyig,
that is,
0=0P3" = /x vsig - df ™ Vv, YK CT. (2.111)

If we apply (2.111) to any subsystem X of the interface 9J; we find
0= éPrii‘“gtﬁ = / OV - (E°+ t) da Vovyig, YK C 0T, (2.112)
XK

We are free to select the rigid virtual body motion and therefore choose
082 = 0 and §vp arbitrary, which yields

rig

0= PR = Gy - / (+t)da  Vovy, VK C 87, (2.113)
X
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As this must hold for any subsystem X C 07;, the expression in the bracket
must vanish and we find
o=t =t (2.114)

with the constraint force ¢ = (0,v*)p defined by force directions 0 sy*
and the vector-valued Lagrange multiplier pt.

2.3.3 Linearization

Again, we apply the Gateaux derivate (A.1) to (2.109) at the bias solution @®
and @' in the direction of the perturbations @° and & to find the linearized
constraint

0 = 01" := DOIIH (@, o) [@°, &)

= D{op - v*(u, 'vf)}[ﬂsa ﬁf] da
07

:/ Sp - 5* da, (2.115)
9T

where

T 1= Dy (@, o) [, ]
= 0,@°(X°,t) + [Ox a5 (X5, 1)) X

— [0.8 (X + @*(X5,t), )] a5 (X5, 1) — o1 (X° + a°(X5,t), 1)
(2.116)
defines the linearized constraint function. Note the term (9,9)@® charac-
terizing the interaction of the velocity gradient of the fluid bias motion with
the displacement of the solid perturbation motion, also found by Benjamin
(1960); Landahl (1962); |Carpenter and Morris (1990).






Semi-analytical
Model

The semi-analytical sandwich model presented in this chapter is probably the
simplest system of two elastic structures coupled by a viscous liquid. Despite
the simplicity, the proposed model features several general phenomena of
the liquid coupling (e.g., effects of viscosity or bias motion) and is therefore
well suited to study the fundamental vibration mechanisms.

3.1 Sandwich Model

3.1.1 Model and Assumptions

Fig. |3.1 shows the semi-analytical sandwich model, which is composed of
a bottom solid layer of thickness h~, a top solid layer of thickness h* and
a viscous liquid layer filling the gap width g. We only consider motion in
the (el, el)-plane and assume periodicity in the el-direction. Whereas the
bottom solid layer has no bias motion, we allow a bias velocity 95" of the
top solid layer. In the liquid layer, a plane Couette flow evolves with the
linear velocity profile

s+

o (2) = U; <1+2;>, (3.1)

which holds for a laminar bias flow (White, 2005, pp. 98).
The bias motion of the solid and liquid shall be disturbed by small,
wave-shaped perturbations

Q(w, 2, t) = R{G(2) ST} = R{G(2) ST ) (32)

where G(x, z,t) denotes an arbitrary perturbation quantity, §(z) its complex
amplitude, k € R the longitudinal wave number and w = (w" +jé') € C
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Fig. 3.1: Plane semi-analytical sandwich model.

the complex angular eigenfrequency. The real part w" := R{w} refers to
the (real) angular eigenfrequency and the imaginary part §" := S{w} to the
damping factor.

Note that by choosing a real wave number k£ and solving for a com-
plex eigenfrequency w, we are considering the temporal problem of spatial-
periodic perturbations that oscillate and fade out in time. We could also
choose a real frequency w and solve for a complex wave number k, which
would state the spatial problem of time-periodic perturbations that decay in
space.

3.1.2 Governing Equations

Solid Layers

The perturbation equations of the solid layers are derived from the bound-
ary value problem (2.56)) by linearization about the strain-free bias motion.
Thereby, we neglect body forces and apply (2.28) for an isotropic, linear
elastic material. The acceleration terms, which include the bias motion ¥3,
are derived in §|A.2.5/ and given by (A.40). In Cartesian coordinates, the
perturbation equations for the displacements (@S, @) then read

0°(0F +205,0,0, + 03 02) 05, = p*(02402)05, + (X +p°) (05105, + 0,0, T3,
0% (02 4205010, +0520%) S, = (02 4+02)0S + (N + 1) (0,0, 15 +00S).
(3.3)
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We apply the wave ansatz (3.2)) and rewrite the equations as

(—w? +208 kw —0S2kH)aS, = c3 (D2 —k*)aS, + (c1—c3)(—k*aS, —jkD.as),
(—w? + 205 kw —0S2k2) 05 = c3(D? —k*)aS + (c1—c3)(—jkD. 0S5 +D?as),

(3.4)
where D, :=d/dz and

o XS H42us E(l1-v) o — [ E
= 0° - (1+v)(1—2v)’ 2 05 2(1+v)es’

(3.5)

denote the dilatational and distortional wave speeds, respectively.

Fluid Layer

The perturbation equation of the liquid layer is derived from the incom-
pressible Navier-Stokes equations (2.101) by linearization about the plane,
parallel bias flow of (z). After eliminating the perturbation pressure  and
the longitudinal perturbation velocity of,, we may write the perturbation
equation as

d2*f
29,0, — uf (82 + 82)%5"

f _f 2 | g2yf _ f
0=o (at +Ua:81?)(6z +8z)vz -0 dz2 2l

(3.6)

expressed in the transversal perturbation velocity ©f. If we apply the wave

ansatz (3.2)), we find the celebrated Orr—Sommerfeld equation

2f

d-vl . N
Sk — (D2 k)| o, | (37)

0= |o'(jw = 3ik) (D2 = k*) + o

where again D, := d/dz. For a discussion of the equation and the details
about its derivation, we refer to the textbooks by Drazin and Reid (2004,
p. 156), Criminale et al. (2003, p. 13), as well as Schmid and Henningson
(2001, p. 57).

3.1.3 Implementation

The perturbation equations (3.4) and (3.7)), together with conditions for
the interfaces and boundaries, can be assembled to a general eigenvalue



top solid layer

Chapter 3. Semi-analytical Model

mid fluid layer

bottom solid layer

46

top solid layer mid fluid layer bottom solid layer top solid layer mid fluid layer bottom solid layer
a0 U Wil wil of a0 Wi wil a0 wil, wid of @ Wi, wid
A AN A N A A AN A N A
stoof
a s s—_ fp2oft
G e —p DI, 0= g%t
T T : T T T « vz
_ 1 1 + 1 1 1 U
Bx% asy 1 — a1 1 1 1 0=25%; — ot
o e — L — )
st 1 1 1 1 st
EN% 817 AS L AS, 1 us) ! ! ! “ 0=05%t
-||11|||_||| |||1|||_|||_.|||/o\m<m\\m$
@i s 1 I 1 1 1 =0 22
811 Az 1 T —ag) 1 1 1
| o _L_we_ ] PN EUPEE RPN R
I 1 I
1 1 1
! ! ! 0= — o
1 1 1 A
1 1 1 0=o" — '+
1 1 1 - x
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1 - e
1 1 1 0= — o
! ! ! = :
1 1 1 - S
1 1 1 0=t —of
1 1 1
L L L e af
o ! [P 0=031 -0,
By By
|||1|||_|||_.|||“AQHQ§
s 1 ogs Tt 1ips 1 1 s
211 492 T2 1 | B3y | B3y 0=5+_5-
Ilqlll._-lll o | p— g g | Aoy [ oo} #z zz
T 1 | 1 1 1 .
as;tass 1 1 1 1 1 1 =55
s ag | I i i1 i i 0=0%
——mr = - -] F-—a--- P R E LT
1 1 1 1 1 I 1 i 1 1
1 1 1 1 1 [ 1 T 1
L L L L L L L T L

Fig. 3.2: Graphical representation of A — wB with coefficients defined in §/A.3/ The gray stripes indicate the
matrix rows defining the interface and boundary conditions.
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problem. After discretization it takes the form
[A —wBlg, (3.8)

where A and B are coefficient matrices, w = (w"+jd") € C is the eigenvalue
and § the corresponding complex eigenvector containing the discretized
forms of @5, 45 and of. Fig. 3.2 shows the structure of A — wB and §A.3
defines its coefficients. We apply the Chebyshev collocation method to dis-
cretize the equations at the Gauss—Lobatto points (Malik, 1990; Weder,
2012). Peyret (2002, pp. 50) defines the corresponding discretized repre-
sentation of the differential operator D,. It is a full matrix reflecting the
spectral properties of the collocation method. MATLAB (Mathworks, 2016)
together with the Multiprecision Computing Toolbox (Advanpix, 2016) is
used to solve the resulting numerical eigenvalue problem in quadruple pre-
cision.

4
@@ 3 Xll“ (b) 10
2 | § 8
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3 250 __— Rayleigh-Lamb
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Fig. 3.3: Spectrum of (a) angular eigenfrequency w" and (b,c) damping
factor 0" as a function of wave number k of modes in the low-
frequency range. Longitudinal modes ‘=’ and ‘&’ (blue dashed
line), varicose mode ‘" (red solid line), sinuous mode ‘" (or-
ange solid line) and Rayleigh-Lamb waves (gray solid lines).
Markers indicate the selected parameters for the plotting the
mode shapes and velocity profiles in Figs 3.4 and 3.5,
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3.2 Results

In the present section we show the results of the sandwich model, where
we have used E = 210GPa, v = 0.3, ¢° = 7850kg/m?, h~ = ht =
2mm as parameters for the solid layers (steel) and uf = 1.002mPa - s,
of =998.2kg/m?3, g = 5mm for the liquid layer (water).

3.2.1 Modal Parameters without Bias Motion

We start with the results for the sandwich model without bias motion, this
is 15~ = v°T = of(2) = 0m/s. Fig. 3.3/ shows the spectrum of the angular
eigenfrequency w" and the damping factor 6" as a function of the wave num-
ber k. For comparison, we also plot the Rayleigh—Lamb frequency spectrum
of a single solid plate with the same properties (Mindlin, 1960; Graff, 1975,
pp. 453). In this low-frequency range, we recognize three modes, which we
discuss in more detail by considering the mode shapes (@5, 45) in Fig. 3.4

z

and the profiles of the liquid perturbation velocity (¢f,9f) in Fig. 3.5,

T vz

Longitudinal Mode

The longitudinal modes of the sandwich structure are labeled with ‘=’
or ‘2, depending on the relative motion between the top and bottom solid
plate. They show a linear w"(k) relation which nearly coincides with the
longitudinal Rayleigh—Lamb spectrum. The motion of the elastic plates
is primarily in the el-direction. Due to the longitudinal motion of the
solid/liquid interface, a Stokes boundary layer is formed in the liquid (White,
2005, pp. 131). Outside of the small viscous boundary layer with frequency
dependent thickness 6 ~ 6.5+/uf/(wrof), the liquid is at rest. Accordingly,
only a small fraction of the liquid mass participates on the longitudinal vi-
bration, and thus, the angular eigenfrequency w" only insignificantly changes
compared to the longitudinal mode of the single plate (less than 0.1% in
the plotted range). On the other hand, we found that the boundary layer
formed is responsible for the viscous damping. The damping factor §" in-
creases almost proportionally to v/w'. In the frequency range plotted, we
further find a Stokes layermuch smaller then the gap width, that is 6 < g.
The longitudinal modes ‘=%’ and ‘*’ then become degenerate by sharing
the same frequency.
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Sinuous Mode

The sinuous mode, labeled with “11", shows a nearly quadratic w' (k) relation.
The mode shape is characterized by a symmetrical deformation of the solid
plates with respect to the center axis and by a liquid motion predominantly
in the el-direction. The angular eigenfrequency of the sandwich structure
is reduced by approximately 7.6% compared to the antisymmetric Rayleigh—
Lamb mode. We find a similar frequency reduction, when we think of adding
the liquid mass to the single solid layers, without changing their stiffness
properties. The damping factor of the sinuous mode is low, because there
is only a weak boundary layer formed.

Varicose Mode

The varicose mode, labeled with ‘1]’, also shows a nearly quadratic w"(k)
relation. The mode shape is characterized by an antisymmetrical defor-
mation of the solid plates with respect to the center axis. This causes a
squeezed liquid motion along the el-direction, flowing from the narrowing
to the widening of the gap. In the low-wavenumber regime, the distance
between the narrowing and widening is large (~ 7/k) and, therefore, the
acceleration of the liquid is correspondingly large. This results in a strong
reduction of the eigenfrequency w", because the liquid is pumped as a bulk
along the extensive el-direction. A Stokes boundary layer is formed by the
bulk motion of the liquid. This is another mechanism than in the longitudi-
nal mode, where the boundary layer is directly formed by the motion of the
solid boundary. This viscous boundary is responsible for the large damping
factor 0" compared to the sinuous mode.

3.2.2 Modal Parameters with Bias Motion

Finally, we discuss the influence of the bias motion on the modal parameters.
Fig. 3.6/ shows the angular eigenfrequency jw" and the damping factor "
of varicose and sinuous modes in function of the bias velocity of the top
solid plate ©3t. We distinguish between right propagating modes with pos-
itive wave number kT > 0 and left propagating modes with negative wave
number £~ < 0. With increasing bias velocity, we observe that the angular
frequency of the right propagating modes increase, whereas the frequency of
the left propagating modes decrease. The difference in frequency between
left and right propagating modes is nearly proportional to the bias velocity.
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Fig. 3.4: Real part of mode shapes of (a) longitudinal mode ‘=%, (b) sin-

uous mode ‘1" and (c) varicose mode ‘4. The solid layers
are deformed according to the perturbation displacement field
(45, 4%). The blue arrows indicate the perturbation velocity
field (0%, 0) in the fluid.
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This frequency split effect is due to the average bias velocity to the right
direction.

The damping factors of the sinuous modes ‘?Ti’ are nearly independent
of the direction of propagation, whereas the varicose modes “NE" show
different damping factors for right and left propagating modes. We believe
that this is a numerical effect, because due to symmetry reasoning, the
damping factor should not depend on the direction of propagation.
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Experimental
Test Bench

This chapter documents the test bench that was engineered to experimen-
tally study the rotor—stator coupling by liquids. As described in §[1.4, we
investigate the coupling on a strong simplified model, where the rotor and
the stator are represented by circular disks.

Following the concepts of design theory, we first formulate the func-
tional requirements for the test bench. We then present the general design
concept that meets these requirements and give some reasoning about the
chosen measurement techniques. The specific realization of the test bench
is discussed in more detail than by Weder et al.| (2016). This includes the
geometry, the excitation and measurement of the vibrations, as well as the
monitoring and operation of the test bench. Thereby, we focus on the polar
scan unit for measuring the vibrations on the rotor using self-tracking laser
Doppler velocimetry.

4.1 Functional Requirements

In the present section, we formulate the functional requirements of the test
bench that constitute its design guide lines. As overriding principle we
require the design as simple and ideal as possible on one hand, and to be
able to sufficiently characterize the vibration on the other. Our intention is
to achieve comprehensive and conclusive measurements (Chapter|5) that can
be well compared with results of the related simulation models (Chapter [6)).
With this principle in mind, we impose the following requirements:

Small amplitude vibrations We are interested in small-amplitude vibra-
tions, where a linearized model is expected to be sufficient. We there-
fore rely on a vibration measurement technique with a high amplitude
resolution.

55
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Mode shapes To sufficiently characterize the vibration, the test bench
must be able to measure the mode shapes of the rotor and the stator
as well as the correct phase relation between them.

Boundary conditions The boundary conditions for the rotor, the stator
and the liquid should be designed as ideal as possible. Well defined
boundary conditions make the comparison between the results of the
experimental test bench and the simulations more conclusive.

Influence of excitation and measurement The rotor and the stator are
compliant and lightweight structures. The stiffness and mass prop-
erties should not be significantly changed by the vibration excitation
and the measurement.

Axially symmetrical geometry The relevant parts of the test bench shall
be designed with axial symmetry. With this, we can use a rotationally
symmetric geometry for the simulation model of Chapter |6 which
significantly reduces the model complexity and the computation time.

Automatic measurements The measurements should be automatized to
reduce the influence of the test operator so that we can expect a
higher reproducibility and more reliable results.

Stiff test bench The test bench stiffness has to be chosen so that its
eigenfrequencies are beyond the eigenfrequencies of the rotor—stator
system.

Variation of parameters The parameters stator disk thickness hg, rotor
disk thickness hg, gap width g and rotor angular speed (g must be
adjustable. The major parameters and their ranges of variation are
listed in Tab. 4.1.

4.2 Design Concept and Realization

4.2.1 Design Concept

In general, we use modal analysis to experimentally characterize the dynam-
ics of the system (Ewins, 2000): The structure under investigation is excited
by an external forcing at one point (input) and its dynamical response is
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Tab. 4.1: Major parameters of the experimental test bench and their
ranges of variation.

parameter variable range unit
stator clamping diameter Dg 250 mm
stator disk thickness hs {1,1.5} mm
gap width g [1,15] mm
rotor disk thickness hr {1,1.5,2} mm
rotor clamping diameter dr 30 mm
rotor outer diameter Dgr 200 mm
rotor angular speed Or [0,50] rad/s
excitation angular frequency @ [0,5000]  rad/s

then measured at other points (outputs). The resulting frequency response
functions (outputs/input) contain the eigenfrequency, damping and mode
shapes which characterize the dynamics of the system.

Before we explain the test bench in detail, we briefly sketch the overall
design concept. A schematic representation of the design concept is given
in Fig. |4.1. The casing is a stiff structure acting as a fluid cavity and
rigid support for the stator disk and the rotor assembly. The rotor disk is
mounted on a stiff shaft which itself is supported by a stiff bearing and
driven by the main motor.

We excite the rotor—stator system by an electromagnetic excitation of the
stator disk (see §/4.3.3). The out-of-plane velocity of the resulting vibrations
at the rotor and stator disks is measured using the scanning laser Doppler
velocimetry technique. The scanning mechanism allows the placement of
the measuring spots at discrete locations so that the vibration shape can be
reconstructed by successive measurements. For the non-rotating stator disk
we use a standard Cartesian scanning system to measure the vibration (see
§4.3.4). For the rotor disk, we built our own polar scan unit that is based
on the self-tracking laser Doppler velocimetry, where the laser beam is co-
rotating by design. A glass window gives optical access to the backside of
the rotor disk. The polar scan unit uses a scanning mirror to set the radial
coordinate and an adjustment mechanism to set the azimuthal coordinate
(see §4.3.5).
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Fig. 4.1: Schematic of the test bench.

The electromagnetic excitation and the laser Doppler velocimetry are
both non-contact techniques that only barely influence the mechanical prop-
erties of the rotor and the stator. This is an advantage over other transducers
like accelerometers or strain gauges that modify the mass and/or stiffness
of the structure. Furthermore, the laser Doppler velocimetry provides a high
resolution which is necessary for the modal analysis. Finally, no telemetric
system or slip rings are needed to transmit measured signals from the rotor
to the inertial system.

4.2.2 Test Bench Design

This section discusses the specific realization of the test bench design.
Fig. 4.2 shows the cutaway drawing of the experimental test bench with
the major parts labeled. Tab. 4.2 lists the major components and their
manufacturer.

Casing

The stiff casing is composed of a massive cylindrical ring (thickness 30 mm,
inner diameter 300 mm) and two thick cover plates (thickness 35 mm). It
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forms a fluid cavity with a volume of approximately 6.51. All metallic com-
ponents that are in contact with the fluid are made of stainless steel to
control corrosion. O-rings are mostly used to create the seal at the non-
sliding interfaces. The glass window (thickness 29 mm) is made of N-BK7.
Its surface is ground, lapped and polished to a flatness of 1 pum to reduce
measuring errors. To prevent glass breaking, we glued the glass window
at the inner and outer radius to metallic clamping rings using Scotch-Weld
2216 B/A. Six portholes distributed around the cylinder provide lateral op-
tical access into the fluid cavity.

Stator Disk

The stator disks are laser cut from ground sheets of hardened steel (1.4034)
with thicknesses of 1mm and 1.5 mm. A single disk is clamped between
the massive stator ring and the fastening ring at the clamping diameter of
250 mm. We seal the contact interface between stator disk and stator ring
with the Loctite 574 sealant. The interface between stator ring and casing is
sealed using an O-ring. The fastening ring is designed to minimize the bias
stress in the disk. Nevertheless, the 36 screws must be tightened carefully
with an appropriate tightening sequence and a specified torque to prevent a
detuning of the stator disk by in-plane stresses. We use spacers of different
thicknesses when mounting the stator assembly on the casing. This allows
to accurately adjust the gap width g between rotor and stator disk in the
range of 1 to 15mm in increments of 0.1 mm.

Rotor Disk

The rotor disks are laser cut of the same sheets as the stator disks with
thicknesses of 1mm, 1.5mm and 2mm. We bonded the rotor disks to
the rotor hubs using Loctite Double Bubble epoxy adhesive. This bonding
sets the clamping diameter of the rotor disk to 30 mm. We did not use
thermal bonding techniques because this leads to residual stresses and a
detuning of the rotor. The rotor is mounted on the front side of a stiff shaft
made of hardened, stainless steel which is supported by four prestressed
high-precision spindle bearings. These bearings are stiff and provide a very
high true-running accuracy of the rotor. We use a radial shaft seal to seal
off the bearings from the fluid in the cavity.
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Fig. 4.2: Cutaway drawing of the experimental test bench with annota-
tions of the major parts. Selected optical ray paths of the rotor
and stator laser Doppler velocimetry systems are plo