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Abstract

This thesis examines the vibration behavior of rotor–stator systems coupled
by intermediate viscous liquids. This problem is of particular importance in
the design of pump-turbines, where the runner (rotor) is coupled to the head
cover (stator) via the surrounding water. The elasticity of the rotor and the
stator, their relative rotational motion and the various damping mechanisms
contribute to the complexity of the vibration problem. We study this rotor–
stator coupling on a simplified model, consisting of a circular stator disc
(clamped at the outer circumference) and a ring-shaped rotor disc (clamped
at the inner circumference) separated by an axial gap.

In a first part, we present a concise theory of the dynamics of small per-
turbations (first order) which are superimposed on a stationary bias motion
(zero order). The theory is systematically deduced from fundamental princi-
ples of continuum mechanics and presented in weak variational form, which
is best suited for its implementation in the finite element framework. Special
attention is paid to the correct linearization of the governing equations and
the coupling condition between solid and liquid.

The second part of the work is devoted to the experimental modal anal-
ysis of the rotor–stator system with the use of a specially engineered test
bench. The test bench enables the measurement of eigenfrequencies, damp-
ing factors and mode shapes of rotor and stator. We have applied the laser
interferometer technique to precisely measure the vibrations and therefore
have developed a special mechanism for the vibration measurements on ro-
tating parts. The measurements collected over a wide range of parameters
form a substantial and unique experimental database for the verification of
current and future simulation models.

In the third part, we describe a new physically-based simulation technique
for the prediction of modal parameters of fluid-coupled rotor–stator systems.
We discretize the derived perturbation equations with the finite element
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VIII Abstract

method and solve the resulting eigenvalue problem numerically using the
simulation software COMSOL Multiphysics. Both the stationary bias motion
and the viscosity of the liquid are included in the model. As solutions we
directly obtain the angular eigenfrequencies, the damping factors and the
complex eigenforms of the respective vibration modes. The simulation model
not only predicts the vibrational behavior of the system, but also provides
valuable insights into the underlying mechanisms.

The vibration modes can be characterized by an azimuthal wave number,
a radial index as well as the relative motion between rotor and stator (vari-
cose or sinuous). Modes with a non-zero azimuthal wave number appear
in pairs of co- and counter-rotating modes (relative to the rotation of the
rotor). In the inertial frame of reference, a higher frequency is observed for
the co-rotating mode compared to the counter-rotating mode. The differ-
ence in frequency is approximately proportional to the rotor speed and the
mode’s azimuthal wave number. This frequency split effect, caused by the
stationary bias motion, is excellently mapped by the simulation model. For
the more challenging characterization of the damping, we have also found
a good agreement between simulation and experiment over a wide range of
parameters.



Zusammenfassung

Die vorliegende Arbeit untersucht das Schwingungsverhalten von Rotor–
Stator-Systemen, die über viskose Flüssigkeiten gekoppelt sind. Mit dieser
Problemstellung ist man insbesondere bei der Auslegung von Pumpturbi-
nen konfrontiert, bei denen der Läufer (Rotor) über das umgebende Wasser
mit der Turbinenrückwand (Stator) gekoppelt ist. Die Nachgiebigkeit von
Rotor und Stator, deren rotative Relativbewegung, sowie die verschiedenen
Dämpfungsmechanismen, tragen zur Komplexität dieses Schwingungspro-
blems bei. Wir studieren die Grundlagen dieser Rotor–Stator-Kopplung an
einem vereinfachten Modell, bestehend aus einer kreisförmigen Statorschei-
be (aussen eingespannt) und einer ringförmigen Rotorscheibe (innen einge-
spannt), getrennt über einen axialem Fluidspalt.

Im ersten Teil erarbeiten wir die theoretischen Grundlagen zur Dyna-
mik kleiner Störungen erster Ordnung, die einer stationären Grundbewegung
nullter Ordnung überlagert sind. Die Formulierung der Störungsgleichungen
in variationeller Form, direkt abgeleitet aus dem Prinzip der virtuellen Ar-
beit/Leistung, bietet die Grundlage für die folgende Implementierung mittels
der Finite-Elemente-Methode. Der korrekten Linearisierung der Grundglei-
chungen und der Kopplungsbedingung zwischen Festkörper und Flüssigkeit
kommt dabei eine besondere Aufmerksamkeit zu.

Der zweite Teil der Arbeit widmet sich der experimentellen Modalanaly-
se des Rotor–Stator-Systems mit einem eigens dazu entwickelten Versuchs-
stand. Dieser Versuchsstand ermöglicht eine hochgenaue Bestimmung der
Eigenfrequenz, des Abklingfaktors sowie der (komplexen) Eigenformen von
Rotor und Stator. Die Schwingungen werden elektromagnetisch angeregt
und, sowohl beim Stator als auch beim Rotor, interferometrisch gemessen.
Um die Messung mit dem Laservibrometer auch rotorseitig zu realisieren,
wurde ein spezieller Mechanismus entwickelt, bei dem der messende Laser-
strahl körperfest auf dem Rotor mitgeführt wird. Der grosse Umfang der
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X Zusammenfassung

gewonnenen Daten bildet eine einzigartige Grundlage für die Verifikation
von aktuellen und zukünftigen Simulationsmodellen.

Im dritten Teil beschreiben wir eine neuartige Simulationsmethode für die
Vorhersage von modalen Parametern flüssigkeitsgekoppelter Rotor–Stator-
Systeme. In der Simulationssoftware COMSOL Multiphysics werden die her-
geleiteten Störungsgleichungen mittels Finite-Elemente-Methode diskreti-
siert und das resultierende Eigenwertproblem numerisch gelöst. Hierbei ge-
hen sowohl die stationäre Grundbewegung wie auch die Viskosität der Flüs-
sigkeit in die Modellierung ein. Als Lösungen erhalten wir direkt die Eigen-
frequenzen, die Abklingfaktoren sowie die komplexen Eigenformen der ent-
sprechenden Schwingungsmoden. Mit diesem Simulationsmodell erhält man
nicht nur eine Vorhersage des Schwingungsverhaltens, sondern gewinnt auch
wertvolle Einblicke in die zu Grunde liegenden Mechanismen.

Die gefundenen Schwingungsformen können über eine Umfangswellen-
zahl, einen radialen Index sowie über die Relativbewegung zwischen Rotor
und Stator charakterisiert werden (varicose oder sinuous). Moden mit nicht
verschwindender Umfangswellenzahl treten paarweise als mit- und gegenro-
tierende Moden auf (relativ zur Drehrichtung des Rotors). Dabei misst man
im Intertialsystem bei der mitrotierenden Mode eine höhere Frequenz als
bei der gegenrotierenden. Diese Frequenzdifferenz ist näherungsweise pro-
portional zur Drehzahl des Rotors und der Umfangswellenzahl des Modes.
Der Effekt, hervorgerufen durch die stationäre Grundbewegung, wird mit
dem Simulationsmodell sehr gut abgebildet. Auch bei der herausfordernden
Modellierung der Dämpfung, finden wir über einen grossen Parameterbereich
eine gute Übereinstimmung zwischen Simulation und Experiment.



Nomenclature

Symbols used in the text are listed in the first column and its description
can be found in the second column. The optional third and fourth column
specify the units, and the page of prominent appearence, respectively. First-
order tensors or vectors are typed in bold italic serif letters (e.g., v, A) and
second-order tensors in bold roman serif letters (e.g., d, E). Vectors or
tuples are typed in bold oblique sans-serif letters (e.g., u, F ) and matrices
in bold roman sans-serif letters (e.g., M).

Latin Letter Variables

a, A area in deformed and reference
configuration

m2 23

a, A acceleration vector in deformed and
reference configuration

m/s2 16, 29

A system matrix of first-order system − 90

b, B body force vector in deformed and
reference configuration

N/m3 19

B system matrix of first-order system − 90

c1 dilatational wave speed m/s 45

c2 distortional wave speed m/s 45

d, D diameters m 57, 116

d spatial strain rate tensor (symmetric) 1/s 29

D damping matrix (symmetric) N/(m s) 89
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eI1 , eI2 , eI3 unit base vectors in the I-system − 16
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E Green–Lagrange strain tensor
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− 19
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Nm 19

f̃ , F̃ force vector of first- and second-order
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N 89, 90
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− 23, 24
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Introduction 1
1.1 Background and Motivation

The worldwide production and storage of electric energy faces substantial
challenges. To avert global warming, a major reduction of the greenhouse
gas emissions is inevitably required. Substitution of fossil energy with re-
newable energy (e.g., from wind, water and solar power) can contribute to a
reduction in carbon dioxide emissions. In addition, we see a stagnation—or
in some countries even a phase out—of the nuclear power production. This
is due to the disposal problematic and the inherent risks of this technology;
especially in the light of the catastrophic accident on the Fukushima Daiichi
power plant in 2011.

Unfortunately, a drawback of many renewable energy technologies is
the intermittent power production. This volatility limits their potential to
substitute nonrenewable energies that produce continuous base-load power.
A common approach to balance the loads is the use of pumped-storage
hydroelectricity. Such pumped-storage power plants mainly consist of two
water reservoirs at different elevations, connected by intermediate pumps
and turbines. When the electrical supply is high, the plant obtains electricity
from the grid and pumps water from the lower to the higher reservoir. In
case of electrical demand, the plant releases the stored water (and thus
energy) in turbine operation and supplies electricity to the grid.

Pumped-storage systems are now operational for over a century, but the
emerging transition to renewable energies changes their requirements. For
example, to compensate the load volatility, the market demands systems
with an extended operating range (e.g., variable rotation speeds) and with
the capability for faster and more frequent changes of the operating points
(e.g., from pump to turbine operation). To meet these enhanced require-

1
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Fig. 1.1: Cross section of a vertical pump-turbine. The blue arrows indi-
cate the direction of rotation and of fluid flow in turbine opera-
tion.

ments, an increased knowledge of the underlying physics and the limiting
factors is necessary.

The most common hydraulic machines used for pumped-storage appli-
cations are of Francis type. Fig. 1.1 shows a cross section of a pump-turbine
with the most important components labeled. The function of this radial
machine is described for turbine operation as follows: Swirling water flow
enters the turbine radially through a spiral case and exits axially through the
centric draft tube. During the flow through the turbine, the fluid generates
work on the rotating runner by the change of angular momentum between
the inlet and the outlet flow. The runner drives an electric generator that
transforms the mechanical power into electrical power. The guide vanes
between the spiral casing and the runner are used for turbine control. Large
hydraulic turbines generate an output up to 800 MW using runners with
diameters of approximately 10 m. A special feature of the pump-turbine
is that same machine can run in both pump and turbine operation. In
pump operation, the direction of rotation and flow is reversed, and as a
consequence, the runner must generate work on the fluid.
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A key factor in the design of the hydraulic machines is their vibrational
behavior. Various mechanisms can excite resonances which lead to an am-
plification of vibration amplitudes (e.g., the rotor–stator interaction of guide
vanes and runner blades (Dubas, 1984)). It is evident to suppress resonance,
as it leads to fatigue, shortens the lifetime, or even endangers the structural
integrity of the system. Therefore, a prediction of resonance frequencies
and corresponding damping factors, as well as an understanding of the un-
derlying mechanisms is of capital importance. This knowledge may then be
used to develop designs that meet the increased requirements.

However, the detailed characterization of the vibrational behaviour of
pump-turbines is still a challenging topic. The complexity arises from the
specific design of the hydraulic machine. From a detailed inspection of
Fig. 1.1, we notice that the runner is submerged in water, and consequently,
this water couples the flexible rotor with the adjacent flexible stator struc-
tures. Particularly, we recognize a small clearance between runner crown
(rotor) and head cover (stator) as well as between runner band (rotor) and
bottom ring (stator). As a result, the rotor and stator cannot be analysed
independently but must rather be considered in the combined rotor–stator
system.

The present thesis investigates the complex coupling mechanism between
rotor and stator caused by an intermediate viscous liquid. The sources of
complexity of the coupling problem are multifarious. We may name the
following challenges:

• The rotor–stator system consists of both rotating and non-rotating
parts.

• Both rotor and stator are elastic structures that influence the vibration
of the system.

• The intermediate liquid that couples the rotor and the stator is gov-
erned by nonlinear equations of motion (Navier–Stokes equations).

• Besides the resonance frequency, the characterization of the damping
is also of great interest.
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1.2 Literature Survey

Vibration of Elastic Structures in Contact with Fluid

Early works on the vibration of elastic structures in contact with liquids date
back to Lamb (1920). He has investigated the flexural vibration of a thin
circular plate which is clamped at its circumference and in contact with a
half space of water. The derived analytical model estimates the vibration
frequency of the first axisymmetrical mode as well as the damping due to
the radiation of sound into the far field. He argues that the frequency of
the fluid-loaded plate is lower compared to the unloaded plate because of
the additional mass of the water. Later, McLachlan (1932) has considered
flexural vibrations of a free circular plate submerged in a fluid. He has found
that the frequency reduction, compared to the vibration in vacuum, may be
marginal for air but is significant for water.

More recently, research has focused on the analytical treatment of special
cases or on numerical methods, such as the Ritz and Galerkin methods. For
example, Amabili and Kwak (1996) have reconsidered Lamb’s problem by
applying the Rayleigh–Ritz solution to additionally compute the change of
the mode shape of the fluid-loaded plate. The analytical treatment of special
cases includes, for instance, annular plates (Amabili et al., 1996), circular
plates on a sloshing liquid (Kwak and Kim, 1991; Amabili, 2001), cylindrical
shells partially filled with liquid (Chiba, 1996) or infinite plates (Hagedorn,
1994; Grosh and Pinsky, 1994).

Jeong and Kim (2005) have investigated the vibration of a confined prob-
lem, where a circular plate is clamped at its circumference and partitions a
water-filled rigid cylindrical cavity in two halves. They have formulated an
analytical model with an incompressible fluid and derived a finite element
model with a compressible fluid. These two formulations are in good agree-
ment for the non-axisymmetrical modes in the low-frequency range. The
analytical model overestimates the frequency of the higher-order modes and
the axisymmetrical modes, because it neglects the compressibility of the
fluid.

The works cited above all describe the solid–fluid interaction from a
solid-mechanics perspective. This means that the authors mainly focus on
the elastic structure and the change in frequency caused by the fluid loading.
The quiescent fluid (no bias motion) is assumed to be inviscid (irrotational
flow), where the motion can be described by a velocity potential obeying
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the Laplace equation (incompressible) or the wave equation (compressible).
These works do neither consider the damping due to fluid’s viscosity nor the
influence of a bias motion of the fluid or solid.

Using the same methodology, the coupling of multiple elastic structures
by an intermediate inviscid liquid has been studied. For instance, Jeong
(2003) and Jhung et al. (2003) have examined the vibration of a system
consisting of a lower and an upper circular plate coupled by the intermediate
fluid. In the investigated low-frequency range, the mode shapes of the
lower and upper plates are of the same form, which is characterized by an
azimuthal wave number (number of nodal diameters) and a radial index
(number of nodal circles). For a given pair of azimuthal wave number
and radial index, the coupled system comprises two different modes: (i) a
sinuous mode, where the motions of the two plates are in the same direction,
and (ii) a varicose mode, where the motions of the plates are in opposite
directions. The fluid motion of these two mode types is rather different:
Whereas the fluid motion of the sinuous mode is mainly in axial direction,
the varicose mode shows large radial velocity components. The squeezing
flow for the varicose mode is caused by the opposing movement of the
plates, leads to an increased apparent mass, and, as a result, has a lower
eigenfrequency compared to the sinuous mode. A similar phenomena has
also been reported by Jeong (1998), who has investigated the fluid coupling
between two coaxial cylindrical shells.

Hydrodynamic Stability of Flows with Compliant Walls

Another perspective to the solid–fluid interaction problem is provided by the
hydrodynamic stability theory. This field of fluid dynamics studies the sta-
bility of laminar flows, which are governed by the nonlinear Navier–Stokes
equations. For example, the dynamics of small perturbations superimposed
on a plane, viscous, stationary, parallel bias flow is described by the cele-
brated Orr–Sommerfeld equation (see, e.g., Drazin and Reid (2004, p. 156),
Criminale et al. (2003, p. 13) and Schmid and Henningson (2001, p. 57)).
Even though the hydrodynamic stability theory is mainly concerned with
the conditions for the onset of instability (because linear instability is an
important path to turbulence), the dedicated tools and methods may also
be used to study the damping in sub-critical conditions.

As an example, Davis and Carpenter (1997) and Larose and Grotberg
(1997) have incorporated an elastic wall model into the Orr–Sommerfeld
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equation to investigate the stability of a plane channel flow with compliant
walls. Among other types of instability, they describe a flutter instability
which is characteristic to a flow with compliant walls. More complex ge-
ometries have also been examined, such as the effect of wall compliance to
the stability of Taylor–Couette flow in the gap between rotating cylinders
(Guaus et al., 2009), or the stability of a rotating-disk boundary-layer flow
over a compliant wall (Cooper and Carpenter, 1997a,b).

Vibrational Analysis of Hydraulic Turbines

Dubas and Schuch (1987) have initiated the numerical modeling of the vi-
brational behaviour of real turbines using the finite element method. They
have modeled a Francis runner with shell elements to compute its eigen-
frequencies in vacuum. At that time, computing power was limited and
a realistic modeling of the surrounding water not realizable. Instead, the
frequency of the submerged structure was estimated from the frequency in
vacuum by empirical correction factors.

A landmark in the computation of eigenfrequencies of runners including
added-mass effects is the work by Jacquet-Richardet and Dal-Ferro (1996).
They have modeled both fluid and structure domains with finite elements,
where the fluid has been assumed to be inviscid, incompressible and at rest
(Laplace equation). The computational effort could be reduced by exploiting
cyclic symmetries of the investigated centrifugal pump runner.

With increasing computational power, larger and more detailed models
have become feasible. For instance, Liang et al. (2007) have computed
eigenfrequencies of a complete, non-rotating Francis runner submerged in
water. They included the compressibility of water by using acoustic ele-
ments (wave equation). The eigenfrequencies of the numerical modal anal-
ysis shows a good agreement with the experimental study performed by
Rodriguez et al. (2006). Additionally, Lais et al. (2009) have described
a harmonic response analysis of an immersed runner with the excitation
pattern computed by computational fluid dynamics (CFD).

Coutu et al. (2008) have performed a root cause analysis of a Francis
runner, which failed within two weeks of operation. The reason for the failure
was high cycle fatigue due to resonance, because the eigenfrequency of the
built-in runner surrounded by water was to close to the excitation frequency
resulting from the rotor–stator interaction pattern. The authors concluded
(i) that the method with empirical correction factors (the method available
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at the time of development of the machine) is not sufficient to predict
the eigenfrequencies of the built-in runner and (ii) that an eigenfrequency
analysis with acoustic elements would have averted the problem. As a result,
the eigenfrequency analysis—with acoustic elements modeling the quiescent
liquid—has become the state-of-the-art method to predict the vibrational
behavior of hydraulic machines during its design stage.

More recently, several attempts were made to enhance models for a bet-
ter prediction of the vibrational behavior. The attempts were aimed to take
further, probably relevant, effects into account, such as the rotation of the
runner, the bias fluid motion, large vibration amplitudes, the damping of
the vibration or the coupling of rotor and stator. For instance, Dompierre
and Sabourin (2010) described a transient two-way solid–fluid coupled sim-
ulation of Francis turbine to study the resonance of the system. Therefore,
a computational fluid dynamics solver and a structural finite element code
were coupled to simulate the fluid and solid motion in the time domain. Ba-
sically, such a simulation takes many relevant effects directly into account
(e.g., rotation of runner, bias fluid motion, large vibration amplitudes). But
it is not feasible for the design of a machine, because the simulation is ex-
tremely laborious and computationally expensive. For example, to resolve
one single vibration mode in a time frame of 0.286 s in physical time, a com-
putational time of 95 days was necessary. Furthermore, Krey et al. (2011)
have investigated the coupling of runner and head cover of a Francis type
pump-turbine with a transient finite element simulation. The intermedi-
ate liquid was modeled using acoustic elements by neglecting viscosity and
advection terms due to bias fluid motion. To include the rotation of the
runner, a rotating frame of reference was defined together with an acoustic
rotor–stator interface.

Simplified Disk Models

Real water turbines are large and complex systems which makes them not
suitable to study fundamental vibration phenomena. A promising approach
for basic research is to reduce the (geometric) complexity of the model,
where, for example, rotor and stator parts are represented as circular disks.

Hengstler (2013) has followed this approach and experimentally investi-
gated the vibration of a stator disk submerged in swirling flow of water. He
has observed that degenerated disk modes show a frequency split roughly
proportional to the swirling speed of the water. This means that a pair of
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modes, for which the frequencies coincide for the quiescent fluid, have dif-
ferent frequencies in the case of fluid motion. Additionally, the mode shapes
of the non-rotating disk are no longer stationary but rotate in the two dif-
ferent directions. In the inertial reference frame, the mode shape with the
higher frequency rotates with the direction of fluid flow (co-rotating) and
the one with lower frequency against the fluid flow (counter-rotating). The
influence of the gap width between stator disk and the rigid stator wall on
the eigenfrequencies was also investigated in this work.

Later on, the vibration of a rotating disk submerged in a confined water
cavity has been examined. Presas et al. (2014) have presented an experi-
mental test bench, where the vibration on the rotating disk is excited using
patches of piezoelectric transducers (Presas et al., 2015c, 2017) and mea-
sured with accelerometers placed at selected locations. Measurements with
this setting also show a frequency split of mode pairs with non-zero az-
imuthal wave number, which are related to co- and counter-rotating mode
shapes (Presas et al., 2015a). As they measured the vibration in the rotor-
fixed reference frame, the lower frequency is now related to the co-rotating
mode and the higher frequency to the counter-rotating mode. Valentín et al.
(2016) presented a simple simulation approach to predict the eigenfrequency
split measured in the test bench. They formulated the finite element model
in a rotating frame of reference related to an averaged motion of the liquid.
The liquid is modeled with acoustic elements, albeit without including the
necessary gyroscopic terms (e.g., centrifugal and Coriolis terms). Addition-
ally, they only considered the relative angular velocity between the rotor and
liquid, which also leads to incorrect gyroscopic terms for the solid motion.
These oversimplifications are a consequence of the limitations of the com-
mercial finite element software used for the study. Further investigations
on the same test bench have addressed the influence of the axial gap (Pre-
sas et al., 2016) and the coupling of the rotor disk with the elastic casing
(Presas et al., 2015b).

Recently, Valentín et al. (2015, 2017) did an experimental study of a
stator disk vibrating in a cylindrical cavity filled with quiescent liquid and
covered with a compliant plate. The focus of the study was on the coupling
of the stator disk with the elastic cover plate by the intermediate liquid.
They have observed that the stator disk and cover plate build a system with
a common eigenfrequency and that the eigenfrequency of the system with
a compliant cover is larger compared to the one with a stiff cover. Bassio
et al. (2017) have performed a numerical study of the same setup using
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acoustic elements to model the water. They investigated the influence of
the eigenfrequency on several parameters such as the radial gap width, the
axial gap width or the liquid’s speed of sound.

Vibration of Rotating Disks

The transverse vibrations of unconstrained rotating disks has been theo-
retically studied by Lamb and Southwell (1921). They have provided an
approximation of the vibration frequency which is derived from the two ex-
treme cases, namely (i) a flexural plate at rest (by neglecting membrane
forces) and (ii) a thin membrane rotating (by neglecting flexural forces).
Their model predicts an increase of the eigenfrequency with the rotation
speed due to the stress stiffening effect. Later, Southwell (1922) consid-
ered the rotating disk clamped at the center and Tobias and Arnold (1957)
studied rotating disks with imperfections.

Fluid Flow Near Rotating Disks

In his famous work, von Kármán (1921) has found the similarity solution for
the laminar flow in a fluid half space in contact with an infinitely extended
rotating wall. The rotating disk acts as centrifugal pump with an radial out-
flow and an axial inflow. The work also provides the driving torque of a disk
with finite radius as well as an approximation for the turbulent flow regime.
The stability and transition of this flow has been investigated by Kobayashi
et al. (1980) with a linear stability analysis together with experiments. At
the onset of instability, the experiments showed a regular pattern of spiral
vortices appearing around the circumference. Batchelor (1951) generalized
Kármán’s similarity solutions for the flow confined between a rotor and a
stator disk. This torsional Couette flow is characterized by a secondary flow
which is superposed to the primary flow in azimuthal direction. Schouveiler
et al. (2001) experimentally studied the laminar–turbulent transition of this
flow and observed different types of instability which evolve as circular or
spiral rolls. Subsequently, Cros et al. (2003) additionally investigated the
effect of wall compliance on this transition.
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1.3 Aim and Scope

The long-term objectives of the project are validated tools and methods that
allow a reliable prediction of the vibrational characteristics of real turbines
at the design stage. To take a stride towards this goal, a comprehensive
knowledge about the fundamentals of the rotor–stator coupling is crucial.
In the present thesis, we focus on the rotor–stator coupling with an axial
clearance, such as between the runner crown and the head cover. To study
the fundamentals, we work on strongly simplified models, where the runner
crown (rotor) and head cover (stator) are represented as circular disks. The
abstraction from a real turbine to the simplified disk model is illustrated in
Fig. 1.2.

It is the idea to gain knowledge about the coupling phenomena on the
simplified model, where the geometrical aspect of the complexity is elimi-
nated but other substantial aspects are still part of the model. The com-
plexity of the disk model particularly includes (i) a combination of rotating
and non-rotating parts, (ii) deformability of rotor and stator, and (iii) a vis-
cous liquid which couples rotor and stator. The disk model therefore allows
to study the coupling phenomena on simpler experimental setups and sim-
ulation models. It is the aim, to afterwards transfer the derived concepts
into the development process of real turbines. This important process of

Fig. 1.2: Abstraction of the complex pump-turbine with a simplified disk
model.
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concretization is challenging, but will not be part of the present thesis. In
an overall view, we are confident that the approach with the ‘detour’ via the
simplified model is faster, more robust and provides more reliable concepts.

The literature survey has revealed various gaps in knowledge of liquid-
coupled vibration problems. For example, there is an insufficient experi-
mental data base that covers liquid-coupled systems with rotation and/or
investigates its damping mechanisms. Additionally, there are no simulation
tools available to efficiently compute the influence of the bias motion on the
vibration frequency or the damping due to the viscous liquid. The present
work addresses these topics and tries to bridge the lack of understanding.
With regard to the state of the art and the comments about our focus on
simplified disk models, we formulate the following research questions:

• What are the fundamental mechanisms and features that characterize
the vibration of elastic rotor–stator systems coupled by viscous liquids?

• How do important parameters such as the stiffness of rotor and stator,
the gap width between rotor and stator, and the rotor speed influence
the resonance frequency and damping of the system?

• How can rotor–stator systems coupled by viscous liquids be modeled
to predict the resonance frequency and damping characteristics?

1.4 General Methods and Assumptions
We anchor the work on the tree pillars of science, namely theory, experiment
and simulation. Fig. 1.3 illustrates their interplay and emphasizes that these
methods are not disjoint but overlap. For example, a comparison of exper-
iment with simulation reveals the quality of the derived model and gives a
feedback about the assumptions made (validation). In addition, a validated
simulation model can provide insights, which would not have been accessible
with experimental techniques. In the present thesis we will intensively make
use of this interplay.

In the following, we state general assumptions for the rotor–stator cou-
pling with viscous liquids that we apply to the entire thesis:

• We study the rotor–stator coupling by liquids on a strongly simplified
model, where the rotor and the stator are modelled as elastic disks.
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• We assume small vibration amplitudes which are governed by lin-
earized equations of motions (perturbation theory).

• We neglect nonlinear effects such as streaming (second-order effect)
or large deformations.

• The fluid flow is assumed to be incompressible (bias flow and first-
order perturbation).

• The solid structures are assumed to behave linearly elastic.

1.5 Outline
The present thesis is outlined as follows: Chapter 2 provides the theoretical
background of the thesis. The governing equations for the solid and fluid are
derived in the weak variational form, which build the basis for the simulation
models in Chapter 3 and 6. Special attention is paid on the formulation of
the fluid–solid interaction as well as on the linearization of the equations
about the bias motion. Chapter 3 describes a semi-analytical model con-
sisting of two parallel plates with an intermediate viscous liquid. This is

Fig. 1.3: The interplay between theory, experiment and simulation with
references to the individual chapters of this thesis.
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probably the simplest model to study the coupling of elastic structures by a
liquid. With this sandwich model, we investigate fundamental phenomena
of the coupled vibration, such as characteristic mode shapes, added mass
effects and damping mechanisms.

Chapter 4 documents the experimental test bench for the characteriza-
tion of the rotor–stator coupling by liquids. We discuss the general design
concept and the specific realization of the test bench, which mainly consists
of a rigid casing filled with liquid, a stator disk clamped to the casing and
a rotor disk clamped to a driven rotor shaft. The control of the test bench,
the excitation and measurement of the vibrations, the signal processing, the
data acquisition as well as the data storage are discussed in detail. Chap-
ter 5 presents test bench measurements and modal analysis theory. We
describe the preparation of the samples and of the test bench, a single scan
measurement as well as the series of measurements performed with the test
bench. Additionally, the theoretical basics of the modal analysis with rotat-
ing components are reviewed and the adaptions to our symmetric problem
are discussed. In the same chapter, we show the measured mode shapes as
well as the experimental results for the eigenfrequency and damping.

The finite element simulations of the simplified disk model are covered
in Chapter 6. This includes a description of the finite element model and
its implementation in COMSOL Multiphysics. The chapter also presents
simulation results of the bias motion, mode shapes of the vibration and some
features of the perturbation motion. In Chapter 7 we show the comparison
of experiment with simulation and discuss the results. Finally, in Chapter 8
we provide the conclusions and outlook of the work.





Theoretical
Background 2
This chapter provides the theoretical foundations of the dynamics of solid–
fluid coupled systems. This includes the governing equations of the solid
and the fluid as well as a description of the coupling between these two.
The equations are derived in a general form, from which the specific forms
of Chapter 3 (semi-analytical model) and Chapter 6 (finite element model)
are deduced.

We assume small vibration amplitudes and hence apply the perturbation
method, where the total motion is decomposed into a bias motion (zero
order) and a linear perturbation (first order). This method is widely used in
engineering, for instance, to investigate the generation and propagation of
sound (Howe, 2003), or to study the linear stability of fluid flows (Drazin
and Reid, 2004; Schmid and Henningson, 2001; Criminale et al., 2003).
Special consideration is required when linearizing the governing equations:
For the solid equations, the general non-linear framework is necessary prior
to the linearization to take the effect of bias-stress effects into account
(Bonet and Wood, 2008, pp. 218; Bremer, 2008, pp. 159). For the fluid
equations in Eulerian representation, the material time derivative of the
velocity field needs to be linearized. Moreover, at the solid–fluid interface,
the linearization of the boundary conditions leads to an interaction between
fluid bias motion and solid perturbation (Benjamin, 1960).

We formulate the mechanical principles of the continua in variational
form based on the work by Hellinger (1914) (see Eugster and dell’Isola (2017,
2018a,b) for a commented English translation thereof). This is motivated
by the later implementation of the equations in the finite element framework
COMSOL Multiphysics, where the physics can be described directly in the
weak form. Additionally, the variational principles are more descriptive than
the classical balance laws. Note that many derivations in this chapter make
use of the Gâteaux derivative which is defined in Appendix A.1.

15
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2.1 Governing Equations of the Solid

2.1.1 System and Kinematics
This section introduces the system and the kinematics to describe the solid
body motion according to Fig. 2.1. We follow the textbooks by Chadwick
(1976, pp. 50); Odgen (1984, pp. 73); Haupt (2002, pp. 7) as well as the
work by Eugster and Glocker (2017) and adopt their terminology. However,
in contrast to these publications—and other standard works in continuum
mechanics—we explicitly allow the reference configuration to be time de-
pendent. This leads to additional terms in the expressions for the particle
velocity and acceleration that take rotordynamic effects of rotating struc-
tures into account. We typeset quantities in the deformed configuration
in lower case letters and those in the reference configuration in upper case
letters, or, alternatively, we tag them with a subscript or superscript ‘0’.

A solid body B is a set of particles that can be bijectively placed into
a subset of a physical space, here represented by the three-dimensional Eu-
clidean vector space E3. The Euclidean vector space is inertial and equipped
with an orthonormal base (eI1 , eI2 , eI3 ) and an origin O, forming the I-
system.

The time parameter family of placements into the deformed configura-
tion B̄t ⊂ E3 is defined as the function κ : B× R → B̄t together with its
inverse

x = κ(X, t), X = κ−1(x, t), (2.1)

where X ∈ B denotes a specific particle and x its position vector in the
deformed configuration with respect toO. This time evolution of placements
is called the motion of B in the deformed configuration. The trajectory,
velocity and acceleration of a particle X in the deformed configuration then
are, respectively,

x(t) = κ(X, t), ẋ(t) = ∂tκ(X, t), ẍ(t) = ∂2
t κ(X, t), (2.2)

where we use partial time derivatives since the particle X remains fixed. In
Eulerian representation, the velocity and acceleration fields read,

ẋ = vs(x, t) := ∂tκ(κ−1(x, t)︸ ︷︷ ︸
X

, t), ẍ = as(x, t) := ∂2
t κ(κ−1(x, t)︸ ︷︷ ︸

X

, t),

(2.3)
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Fig. 2.1: Placements of solid body B into the deformed configuration B̄t

and the reference configuration B̄0
t of Euclidean vector space E3.

where we eliminated X using (2.1)2. The region occupied by the image B̄t =
κ(B, t) can be written as the disjoint union B̄t = Bt∪∂Bt of the interior Bt
and the boundary ∂Bt of the deformed configuration, respectively.

As we will formulate constitutive equations later on, we rely on a strain
free reference configuration. We therefore define a time parameter family
of placements into the reference configuration B̄0

t ⊂ E3 as the function
K : B× R→ B̄0

t together with its inverse

X = K(X, t), X = K−1(X , t), (2.4)

where X denotes the position vector in the reference configuration with
respect to O. Here, we explicitly include the time dependence and call the
time evolution of placements the motion of B in the reference configura-
tion. The particle trajectory, velocity and acceleration of a particle X in the
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reference configuration then write as, respectively,

X(t) = K(X, t), Ẋ(t) = ∂tK(X, t), Ẍ(t) = ∂2
tK(X, t). (2.5)

The motion in the reference configuration shall be strain free for all times.
We therefore restrict the motion (2.5) to that of a rigid body with particle
velocity and acceleration fields

Ẋ = VP + Ω × rPX , Ẍ = AP + Ω̇ × rPX + Ω × (Ω × rPX), (2.6)

where VP and AP denote the particle velocity and acceleration of an ar-
bitrary reference point P , Ω the angular velocity of the rigid body motion,
and rPX the particle position vector with respect to P .

It is convenient to express the motion in the deformed configuration in
terms of the reference position X rather than the particle X. Using (2.4)2
together with (2.1)1, we eliminate X and define the deformation as the
function ξ : B̄0

t × R→ B̄t together with its inverse

x = ξ(X , t) := κ(K−1(X , t)︸ ︷︷ ︸
X

, t), X = ξ−1(x, t) := K(κ−1(x, t)︸ ︷︷ ︸
X

, t).

(2.7)
The relative motion between deformed and reference configuration is called
displacement and is defined as the function u : B̄0

t × R→ E3 with

u(X , t) := ξ(X , t)−X . (2.8)

We now express the kinematic quantities of (2.2) in Lagrangian represen-
tation, this is, in terms of X and u. By applying the chain rule, with X
remaining fixed, the velocity and acceleration fields become

ẋ = V s(X , t) := Ds
tu = Ẋ︸︷︷︸

=: V I

+ ∂tu︸︷︷︸
=: V II

+ (∂Xu)Ẋ︸ ︷︷ ︸
=: V III

, (2.9)

ẍ = As(X , t) := Ds
t
2u :=

=: AI︷︸︸︷
Ẍ +

=: AII︷︸︸︷
∂2
t u +

=: AIII︷ ︸︸ ︷
2∂t(∂Xu)Ẋ

+ [(∂X∂Xu)Ẋ ]Ẋ︸ ︷︷ ︸
=: AIV

+ (∂Xu)Ẍ︸ ︷︷ ︸
=: AV

, (2.10)
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where (∂Xu)Ẋ = Du(X)[Ẋ ] and [(∂X∂Xu)Ẋ ]Ẋ = D2u(X)[Ẋ ] are ge-
ometrically defined by the Gâteaux derivative (A.1). The operators Ds

t

and Ds
t
2 operate on u and formally define the material time derivative for

the solid body.
The deformation in the vicinity of x = ξ(X , t) is described by the

deformation gradient, defined by the two-point tensor

G(X , t) := ∂Xξ(X , t), (2.11)

which linearly maps tangent vectors in the reference configuration dX to
tangent vectors in the deformed configuration dx = G dX . We assume a
positive volume ratio

J(X , t) := det G(X , t) > 0 ∀X ∈ B0
t , ∀t, (2.12)

so that G is invertible. The displacement gradient is the two-point tensor
given by

H(X , t) := ∂Xu(X , t) ≡ G(X , t)− I. (2.13)
We define the Green–Lagrange strain tensor as

E(X , t) := 1
2(GTG− I) ≡ 1

2(HT+ H + HTH), (2.14)

which measures the difference of squared lengths of tangent vectors in the
deformed and reference configuration by ‖dx‖2 −‖dX‖2 = 2(E dX) · dX .

Generalized forces measures acting on the solid body B are denoted by

df (x, t), df(x, t), or dF(X , t), dF(X , t), (2.15)

depending on whether expressed in the deformed or reference configuration.
Note that generalized forces can either be represented by vector quanti-
ties (df , dF) in N or by tensor quantities (df , dF) in Nm. We further
distinguish between volume body forces b dv or B dV , surface traction
forces t da or T dA, inertia forces (−%sas) dv or (−%s

0As) dV and in-
ternal forces, which we subsequently express in terms of stress contributions
−σ dv or −P dV .

2.1.2 Principle of Virtual Work
In the present section we introduce the governing equation for the motion of
the solid bodyB. For this, we apply the principle of virtual work, from which
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the scalar equation of motion in variational form results. For a comprehen-
sive analysis of this topic, we refer to the fundamental works by Eugster
(2015) and Eugster and Glocker (2017).

First, we define the variational family of virtual placements κ́ : B ×
R × R → B̄εt with the variational parameter ε. These virtual placements
are arbitrary besides the prerequisite that the actual placement κ(X, t) is
revealed by setting ε = ε0, that is, κ́(X, t, ε0) ≡ κ(X, t). The Gâteaux
derivative (A.1) then defines the virtual displacement of particle X

δκ(X, t) := Dκ́(ε0)[δε] = ∂εκ́(X, t, ε0) · δε, (2.16)

where δε := ε−ε0 denotes the variation of ε. As a result of the arbitrariness
of the virtual placements, the virtual displacements become arbitrary in
direction—a fact that is used in the principle of virtual work to test the force
contributions. We express the virtual displacement fields in terms of the
position fields in the deformed and the reference configuration, respectively,
as

δx(x, t) := δκ(κ−1(x, t)︸ ︷︷ ︸
X

, t), δξ(X , t) := δκ(K−1(X , t)︸ ︷︷ ︸
X

, t). (2.17)

The variation of the displacement field (2.8) is

δu(X , t) := Du[δξ] = lim
ε→0

(ξ + εδξ −X)− (ξ −X)
ε

≡ δξ(X , t),
(2.18)

and thus equals the virtual displacement (2.17)2.
Now, we state the principle of virtual work according to Eugster and

Glocker (2017): Let df tot,df tot, . . . be the totality of forces acting on the
body expressed in the deformed configuration B̄t and dFtot,dFtot, . . . be
the same expressed in the reference configuration B̄0

t . In order that the
solid body B is in dynamical equilibrium, the overall virtual work δWtot
performed by (df tot,df tot, . . .) or (dFtot,dFtot, . . .), must vanish for all
virtual displacement fields δx or δu and gradients thereof, that is,

0 = δWtot =
∫
B̄t

δx · df tot +
∫
B̄t

(∂xδx) : df tot ∀δx, ∀t

=
∫
B̄0

t

δu · dFtot +
∫
B̄0

t

(∂Xδu) : dFtot ∀δu, ∀t.

(2.19)
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The totality of forces must include all forces, namely the inertia forces, the
internal forces, and the external forces. Accordingly, we can write the total
virtual work as

δWtot = δW dyn + δW int + δW ext, (2.20)

with the virtual work contributions further specified in the following para-
graphs.

Virtual Work Contribution of Inertia Forces

The inertia forces contribute to the virtual work by

δW dyn :=
∫
B̄t

δx · (−%sas) dv

:=
∫
B̄0

t

δu · (−%s
0As) dV,

(2.21)

where the first line is expressed in the deformed configuration and the second
line in the reference configuration, using the acceleration terms defined in
(2.3)2 and (2.10).

Virtual Work Contribution of Internal Forces

We call a force internal with respect to the bodyB, if the force only interacts
with particles of the body itself and not with the environment. According
to Eugster and Glocker (2017), we consider stress as the internal forces
modeling the small range interactions. The virtual work contribution by the
internal forces is then given by

δW int :=
∫
Bt

−(∂xδx) : σ dv

:=
∫
B0

t

−(∂Xδu) : P dV =
∫
B0

t

−δE : S dV,
(2.22)

where, in the deformed configuration, ∂xδx denotes the spatial gradient of
the virtual displacement field and σ the symmetric Cauchy stress tensor ;
and in the reference configuration, ∂Xδu denotes material gradient of the
virtual displacement field, P the first Piola–Kirchhoff stress tensor, δE the
variation of the Green–Lagrange strain tensor and S the symmetric second
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Piola–Kirchhoff stress tensor. The variation of the Green–Lagrange strain
tensor is obtained by

δE(X , t) := DE[δG] = 1
2(GTδG + δGTG)

:= DE[δH] = 1
2(δHT+ δH + HTδH + δHTH),

(2.23)

either using the variation of the deformation gradient

δG(X , t) := DG[δξ] = ∂Xδξ(X , t), (2.24)

or the variation of the displacement gradient

δH(X , t) := DH[δu] = ∂Xδu(X , t) ≡ δG(X , t). (2.25)

Now, we specify the constitutive equations describing the material be-
haviour of the solid body. Following Haupt (2002, p. 346), we assume the
material to be Green elastic or hyperelastic, so that we can state a scalar-
valued strain energy function WE(E) to deduce the second Piola–Kirchhoff
stress from

S(E) = dWE

dE . (2.26)

We further assume the material to be isotropic and linear-elastic, for which
the strain energy function is expressed by

WE(E) := µsE : E + λs

2 (E : I)2, (2.27)

with λs defining the first Lamé constant and µs the second Lamé constant,
also known as shear modulus (Haupt, 2002, p. 365). If we evaluate (2.26)
using (2.27), we find the second Piola–Kirchoff stress for an isotropic, linear-
elastic material by

S = 2µsE + λs(E : I)I. (2.28)

The relations between the Young’s modulus E and the Poisson’s ratio ν to
the Lamé constants read

µs = E

2(1 + ν) , λs = νE

(1 + ν)(1− 2ν) . (2.29)
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Virtual Work Contribution of External Forces

We call a force external with respect to the solid body B, if the force
interacts with the environment and not with particles of the body itself.
The virtual work contribution of these external forces then write as

δW ext :=
∫
Bt

δx · b dv +
∫
∂Bt

δx · t da

:=
∫
B0

t

δu ·B dV +
∫
∂B0

t

δu ·T dA,
(2.30)

where the body volume forces b or B act on the interior and the surface
traction forces t or T at the boundary of the solid body B. Again, in the
first line, the forces are represented in the deformed configuration, and in
the second line, the same forces are given in the reference configuration.

As a summary, we assemble the contributions of the inertia forces (2.21),
the internal forces (2.22) and external forces (2.30) and write out the prin-
ciple of virtual work in the reference configuration as

0 = δWtot =
∫
B̄0

t

δu · (−%s
0As) dV

+
∫
B0

t

−δE : S dV

+
∫
B0

t

δu ·B dV +
∫
∂B0

t

δu ·T dA ∀δu, ∀t.

(2.31)

2.1.3 Perfect Bilateral Constraints
So far we have not considered any kinematic constraints on the motion of the
solid body. In the present section we discuss perfect bilateral constraints on
the displacement field which may be equivalently represented in local strong
form or in the weak variational form, namely,

0 = gµ(u) ⇔ 0 = δΩµ :=
∫
B̄0

t

δµ · gµ(u) dV ∀δµ. (2.32)

Therein, gµ(u) is a scalar-valued constraint function at the displacement
level and δµ an arbitrary test function called virtual force. The forces which
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ensure the constraint (2.32) are called constrained forces and denoted as
dFcon.

We now formulate the principle of d’Alembert–Lagrange, which is the
constitutive law for the constraint forces of the perfect bilateral constraint at
position level: The virtual work δW con

adm generated by constraint forces dFcon

vanishes for all virtual displacements δuadm admissible with the constraint,
that is

0 = δW con
adm =

∫
B̄0

t

δuadm · dFcon ∀δuadm, ∀t, (2.33)

or in local form

0 = δwcon
adm = δuadm · dFcon ∀δuadm, ∀t. (2.34)

Furthermore, we find the admissible variations of (2.32) using the Gâteaux
derivative (A.1) as

0 = δgµadm(u) = Dgµ(u)[δuadm] = [∂ug
µ(u)] · δuadm

= δuadm · [∂ug
µ(u)] ∀δuadm.

(2.35)

A comparison of (2.34) and (2.35), with the fact that both equations hold
for all δuadm, reveals the form of the constraint force

dFcon = µ[∂ug
µ(u)] dV, (2.36)

where ∂ug
µ(u) represents the generalized force direction and µ is a scalar

Lagrange multiplier. The vector-valued force direction, defined as the gra-
dient ∂ug

µ(u), may be found, again, by applying the Gâteaux derivative
(A.1) on the constraint function (2.32), that is

0 = Dgµ(u)[ũ] = [∂ug
µ(u)] · ũ ∀ũ. (2.37)

Instead of (2.32) we could also define constraints on the field of the
displacement gradient H = ∂Xu, again equivalently in local strong form or
in the weak variational form, by

0 = Gµ(H) ⇔ 0 = δΩµ :=
∫
B0

t

δµ ·Gµ(H) dV ∀δµ. (2.38)

The formalism is the same as sketched out above and leads to constraint
stresses of the form

dFcon = µ[∂HG
µ(H)] dV, (2.39)

where the gradient ∂HG
µ(H) represents the tensor-valued stress direction.
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2.1.4 Linearization
The governing equation (2.31) derived above is non-linear. For the pertur-
bation method, we separate the total process q into a bias process q̄ (zero
order) and linear perturbation process q̃ (first order), that is,

q = q̄ + εq̃ +O(ε2), q ∈ {u,B,T}. (2.40)

We derive the equation for the linear perturbations q̃ by linearizing the gov-
erning equations about the bias solution q̄. The procedure of linearization
by applying the Gâteaux derivative (A.1), is described by Bonet and Wood
(2008, pp. 218). Accordingly, linearization is a strict use of the Gâteaux
derivative on the non-linear equations at the bias solution q̄ into the direc-
tion of the disturbances q̃.

We apply the linearization procedure to (2.31) and derive the linearized
principle of virtual work

0 = δW̃tot = δW̃ dyn + δW̃ int + δW̃ ext ∀δu, ∀t, (2.41)

with the different contributions given in the following. Firstly, we deduce
the linearized virtual work contribution of the inertia forces

δW̃ dyn := DδW dyn(ū)[ũ] =
∫
B̄0

t

D{δu · (−%s
0As)}(ū)[ũ] dV

=
∫
B̄0

t

−δu · %s
0{∂2

t ũ + 2∂t(∂X ũ)Ẋ

+ [(∂X∂X ũ)Ẋ ]Ẋ + (∂X ũ)Ẍ} dV. (2.42)

from (2.21) using (2.10). Secondly, we derive the linearized virtual work
contribution of the internal forces from (2.22)

δW̃ int := DδW int(ū)[ũ] =
∫
B0

t

D{−δE : S}(ū)[ũ] dV

=
∫
B0

t

−δĒ : DS(ū)[ũ] dV +
∫
B0

t

−DδE(ū)[ũ] : S̄ dV

=
∫
B0

t

−δĒ : S̃ dV +
∫
B0

t

−δẼ : S̄ dV, (2.43)

by using the Gâteaux derivative together with the product rule. The second
integral in the last line describes the influence of bias forces that arise from
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the gross body motion of the reference configuration or other prestressing
effects (Bremer, 1988, pp. 194); (Bremer and Pfeiffer, 1992, pp. 103); (Bre-
mer, 2008, pp. 159). It remains to provide the missing quantities: The bias
variation of the Green–Lagrange strain is given by

δĒ := δE(ū) = 1
2(δHT + δH + H̄TδH + δHTH̄) = sym[(

Ḡ︷ ︸︸ ︷
I + H̄)TδH],

(2.44)
and the perturbation variation of the Green–Lagrange strain by

δẼ := DδE(ū)[ũ] = 1
2(H̃TδH + δHTH̃) = sym(H̃TδH), (2.45)

where bias and perturbation displacement gradients are defined as

H̄ := ∂X ū(X , t), H̃ := ∂X ũ(X , t). (2.46)

The bias stress and the bias Green–Lagrange strain read

S̄ := S(ū) = 2µĒ+λ(Ē : I)I, Ē := E(ū) = 1
2(H̄T+H̄+H̄TH̄). (2.47)

The perturbation stress writes as

S̃ := DS(ū)[ũ] = 2µẼ + λ(Ẽ : I)I (2.48)

using the linear perturbation Green–Lagrange strain

Ẽ := DE(ū)[ũ] = 1
2(H̃T+ H̃ + H̄TH̃ + H̃TH̄) = sym[(

Ḡ︷ ︸︸ ︷
I + H̄)TH̃].

(2.49)

Finally, the linearized virtual work contribution of the external forces

δW̃ ext := DδW ext(B̄, T̄)[B̃, T̃ ]

=
∫
B0

t

D{δu ·B}(B̄)[B̃] dV +
∫
∂B0

t

D{δu ·T}(T̄)[T̃ ] dA

=
∫
B0

t

δu · B̃ dV +
∫
∂B0

t

δu · T̃ dA. (2.50)

is deduced from (2.30).



2.1. Governing Equations of the Solid 27

To summarize, we combine the linearized contributions (2.42), (2.43)
and (2.50) and write the linearized principle of virtual work for the solid
body as

0 = δW̃tot =
∫
B̄0

t

−δu · %s
0{∂2

t ũ + 2∂t(∂X ũ)Ẋ

+ [(∂X∂X ũ)Ẋ ]Ẋ + (∂X ũ)Ẍ}dV

+
∫
B0

t

−δĒ : S̃ dV +
∫
B0

t

−δẼ : S̄ dV

+
∫
B0

t

δu · B̃ dV +
∫
∂B0

t

δu · T̃ dA ∀δu, ∀t.

(2.51)

2.1.5 Boundary Value Problem
In the present section we derive the boundary value problem corresponding
to the equation of motion (2.31) given in weak variational form. This is
mainly an exercise in integration by parts in the three-dimensional domain.
Using the general relation for the contraction of tensors

(AB) : C = tr[(AB)TC] = tr[BT(ATC)] = B : (ATC), (2.52)

we can rewrite the virtual work contribution of the internal force (2.22) as

δE : S = 1
2(GTδG + δGTG) : S = sym(GTδG) : S = (GTδG) : S

= δG : (GS) = (∂Xδu) : (GS). (2.53)

Additionally, we find from Gauss’s divergence theorem that∫
B0

t

−(∂Xc) : B dV =
∫
B0

t

c ·[(∂XB) : I] dV −
∫
∂B0

t

c ·(BN ) dA ∀c,∀B,

(2.54)
where N denotes the outward unit vector normal to the boundary sur-
face ∂Bt0. By combining (2.53) and (2.54) we rewrite (2.31) as

0 = δWtot =
∫
B0

t

δu · {[∂X(GS)] : I + B − %s
0As} dV

+
∫
∂B0

t

δu · [T − (GS)N ] dA ∀δu. (2.55)



28 Chapter 2. Theoretical Background

Fig. 2.2: Placement of fluid body F in the current configuration F̄t of
Euclidean vector space E3.

As this equation must hold for all δu, we can state the boundary value
problem

%s
0As = [∂X(GS)] : I + B in B0

t

T = (GS)N on ∂B0
t .

(2.56)

2.2 Governing Equations of the Fluid

2.2.1 System and Kinematics

Similar to definitions for the solid body motion in § 2.1.1, we introduce the
system and kinematics for the fluid body motion according to Fig. 2.2. In
contrast to the solid body, we do not rely on a reference configuration to
describe the constitutive equations. Furthermore, we choose an Eulerian
representation of the kinematics, where the velocity field in the current
configuration is the primary variable.

A fluid body F is a set of particles that can be bijectively placed into a
subset of a physical space, again represented by the three-dimensional Eu-
clidean vector space E3. The Euclidean vector space is inertial and equipped
with an orthonormal base (eI1 , eI2 , eI3 ) and an origin O, forming the I-
system.
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The time parameter family of placements into the current configuration
F̄t ⊂ E3 is defined as the function κ : F×R→ F̄t together with its inverse

x = κ(X, t), X = κ−1(x, t), (2.57)

where X ∈ B denotes a specific particle and x its position vector in the de-
formed configuration with respect to O. This time evolution of placements
is called the motion of F in the current configuration. The trajectory, ve-
locity and acceleration of a particle X in the deformed configuration then
write as, respectively,

x(t) = κ(X, t), ẋ(t) = ∂tκ(X, t), ẍ(t) = ∂2
t κ(X, t), (2.58)

where we use partial time derivatives because the particle X is kept fixed.
The region occupied by the image F̄t = κ(F, t) can be written as the disjoint
union F̄t = Ft∪∂Ft of the interior Ft and the boundary ∂Ft of the current
configuration, respectively.

Using (2.57)2 we eliminate the particle X from (2.58)2 and define the
velocity field in Eulerian description

ẋ = v(x, t) := ∂tκ(κ−1(x, t)︸ ︷︷ ︸
X

, t). (2.59)

Applying the chain rule, by keeping the particle X fixed, we derive the
acceleration field

ẍ = af(x, t) := Df
tv = ∂tv + (∂xv)ẋ = ∂tv + (∂xv)v. (2.60)

The operator Df
t operating on v formally defines the material derivative for

the fluid body.
The rate for deformation in the vicinity of x is described by the spatial

velocity gradient, defined as the tensor

l(x, t) := ∂xv(x, t). (2.61)

The symmetric part of l denotes the spatial strain rate tensor

d(x, t) := sym[l(x, t)] = 1
2(l + lT), (2.62)

which will be used to describe the constitutive equation for the fluid. The
skew-symmetric part of l is called the spatial spin tensor and is defined by

w(x, t) := skw[l(x, t)] = 1
2(l− lT). (2.63)
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Every skew-symmetric second-order tensor in the three-space can be ex-
pressed by a corresponding axial vector. We use this fact to define the
vorticity vector η(x, t) by the relation

wc = 1
2(η × c) ∀c. (2.64)

Forces acting on the fluid body F are generally denoted as df (x, t) or
df(x, t), depending on whether represented as vector or tensor quantity. We
distinguish between volume body forces b dv, surface traction forces t da,
inertia forces (−%faf) dv and internal forces, which we subsequently express
in terms of the Cauchy stress contribution −σ dv.

2.2.2 Principle of Virtual Power
In § 2.1.2 we introduced the concept of virtual displacements, and with this
the principle of virtual work for the solid body. In the present section we do
the equivalent to derive the equations of motion for the fluid body F. For
a fluid, it is more convenient to work on the velocity level instead of the
position level. We therefore define virtual velocities and state the governing
equation for the fluid formulated by the principle of virtual power.

We adopt the definitions of the family of virtual placements κ́(X, t, ε)
and the virtual displacement δκ(X, t) from § 2.1.2 also to the fluid body.
Furthermore, we denote the set of all families of virtual placements H, such
that

κ́(X, t, ε) ∈ H ⇔ δκ(X, t) = ∂εκ́(X, t, ε0) · δε (2.65)

holds. For every time instant t0 ∈ R, we then define the subset H(t0) ⊂
H as the families of placements κ́(X, t, ε) where the virtual displacements
δκ(X, t0) vanish for t0, that is,

κ́(X, t0, ε) ∈ H(t0) := {κ́(X, t, ε) ∈ H | ∂εκ́(X, t0, ε0) = 0} ⊂ H. (2.66)

With the virtual placements of the restricted set H(t), marked by an under-
bar, we define the virtual velocity of particle X as

δκ̇(X, t) := ∂t∂εκ́(X, t, ε0) · δε. (2.67)

Although we select the virtual displacements from the restricted set H(t),
the virtual velocities are still arbitrary in direction. We express the virtual
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velocity fields in terms of the position fields in the current configuration by

δv(x, t) := δκ̇(κ−1(x, t)︸ ︷︷ ︸
X

, t). (2.68)

Now, we formulate the principle of virtual power, which is equivalent
to the principle of virtual work (2.19), but expressed on velocity level: Let
(df tot,df tot) be the totality of forces acting on the body expressed in the
current configuration F̄t. In order that the fluid body F is in dynamical
equilibrium, the overall virtual power δPtot performed by (df tot,df tot), must
vanish for all virtual velocities δv and gradients thereof, that is,

0 = δPtot =
∫
F̄t

δv · df tot +
∫
F̄t

(∂xδv) : df tot ∀δv, ∀t. (2.69)

Again, the totality of forces must include all forces, namely the inertia forces,
the internal forces, and the external forces. Accordingly, we can write the
total virtual power as

0 = δPtot = δP dyn + δP int + δP ext ∀δv, ∀t, (2.70)

with the virtual power contributions further specified in the following para-
graphs. The definition of the virtual velocities via the subset of virtual
displacements ensures that the principles of virtual work and power are
equivalent.

Virtual Power Contributions of Inertia Forces

The inertia forces contribute to the virtual power by

δP dyn :=
∫
F̄t

−δv · %f [∂tv + (∂xv)v] dv, (2.71)

with the acceleration term defined in (2.60).

Virtual Power Contributions of Internal Forces

Analogous to § 2.1.2, we define internal forces with respect to the fluid body
F and include the virtual power contribution by the internal forces as

δP int :=
∫
Ft

−δd : σ dv, (2.72)
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with the symmetric Cauchy stress tensor σ and the variation of the strain
rate defined by

δd(x, t) := Dd[δl] = 1
2(δlT + δl). (2.73)

Herein, the variation of the spatial velocity gradient is given by

δl(x, t) := Dl[δv] = ∂xδv. (2.74)

Virtual Power Contributions of External Forces

We define external forces with respect to the fluid body F analogously to
§ 2.1.2 and include the virtual power contribution by the external forces by

δP ext :=
∫
Ft

δv · b dv +
∫
∂Ft

δv · t da. (2.75)

In summary, we assemble the contributions of the inertia forces (2.71),
the internal forces (2.72) and (2.75) and write out the principle of virtual
power in the current configuration as

0 = δPtot =
∫
F̄t

−δv · %f [∂tv + (∂xv)v] dv

+
∫
Ft

−δd : σ dv

+
∫
Ft

δv · b dv +
∫
∂Ft

δv · t da ∀δv, ∀t.

(2.76)

2.2.3 Perfect Bilateral Constraints
Similar to § 2.1.3 we now introduce kinematic constraints on the motion
of the fluid body. Perfect bilateral constraints on the velocity field may be
equivalently represented in local strong form or in the weak variational form,
namely,

0 = γµ(v) ⇔ 0 = δΩµ :=
∫
F̄t

δµ · γµ(v) dv ∀δµ. (2.77)

Therein, γµ(v) is a scalar-valued constraint function at the velocity level and
δµ an arbitrary test function called virtual force. The forces which ensure
the constraint (2.77) are denoted as df con.
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The principle of Jourdain is the constitutive law for the constraint forces
of perfect bilateral constraints at velocity level and is formulated as follows:
The virtual power δP con

adm generated by the constraint forces df con vanishes
for all virtual velocities δvadm admissible with the constraint, that is

0 = δP con
adm =

∫
F̄t

δvadm · df con ∀δvadm, ∀t, (2.78)

or in local form

0 = δpcon
adm = δvadm · df con ∀δvadm, ∀t. (2.79)

Furthermore, we find the admissible variations of (2.77) using the Gâteaux
derivative (A.1) as

0 = δγµadm(v) = Dγµ(v)[δvadm] = [∂vγ
µ(v)] · δvadm

= δvadm · [∂vγ
µ(v)] ∀δvadm.

(2.80)

A comparison of (2.79) and (2.80), with the fact that both equations hold
for all δvadm, reveals the form of the constraint force

df con = µ[∂vγ
µ(v)] dv, (2.81)

where ∂vγ
µ(v) represents the generalized force direction and µ is a scalar

Lagrange multiplier. The vector-valued force direction, defined as the gradi-
ent ∂vγ

µ(v), may be found, again, by applying the Gâteaux derivative (A.1)
on the constraint function (2.77), that is

0 = Dγµ(v)[ṽ] = [∂vγ
µ(v)] · ṽ ∀ṽ. (2.82)

Instead of (2.77) we could also define constraints on the field of the
velocity gradient l = ∂xv, again equivalently in local strong form or in the
weak variational form, by

0 = Γµ(l) ⇔ 0 = δΠµ :=
∫
F̄t

δµ · Γµ(l) dv ∀δµ. (2.83)

The formalism is the same as sketched out above and leads to constraint
stresses of the form

df con = µ[∂lΓµ(l)] dv, (2.84)
where the gradient ∂lΓµ(l) represents the tensor-valued stress direction.
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Incompressibility Constraint

We now apply the findings for the perfect constraints to define the incom-
pressibility constraint for the fluid motion. We model the fluid flow as
incompressible, that is, a motion with a divergence-free velocity field

0 = (∂xv) : I = l : I =: Γp(l) ⇔ 0 = δΠp :=
∫
Ft

−δp · Γp(l) dv ∀δp,

(2.85)

where we define the constraint function Γp(l) at the velocity level and in-
troduce an arbitrary test function δp called virtual pressure. We reconsider
(2.72), the virtual power contribution of internal forces,

δP int =
∫
Ft

−δd : (
σ︷ ︸︸ ︷

τ + ς) dv, (2.86)

where we have split the total Cauchy stress σ into an impressed stress τ
and a constraint stress ς, which enforces (2.85) to hold.

The principle of Jourdain reveals the specific form of the constraint stress

ς = −p(∂lΓp), (2.87)

with the Lagrange multiplier p recognized as pressure. The stress direction
∂lΓp is found by applying the Gâteaux derivative to (2.85)1 as

DΓp(l)[̃l] = (∂lΓp) : l̃ = lim
ε→0

(l + ε l̃) : I− l : I
ε

= l̃ : I = I : l̃ ∀̃l,
(2.88)

which yields ∂lΓp = I and finally

ς = −pI. (2.89)

In accordance to White (2005, p. 66), we model the impressed stress as
Newtonian fluid

τ = 2µfd + λf(d : I)I, (2.90)

with the first viscosity µf and the second viscosity λf . For an incompressible
flow, where the incompressibility condition (2.85) holds, the second term
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vanishes, because 0 = Γp(l) = l : I = (d + w) : I = d : I. We collect the
results from (2.85), (2.89) and (2.90) and write out the total stress as

σ = τ + ς = 2µfd + λf(d : I︸︷︷︸
0

)I− p(∂lΓp) = 2µfd− pI. (2.91)

The weak variational equation describing the incompressible flow of a
Newtonian fluid then writes as

0 = δPtot + δΠp =
∫
F̄t

−δv · %f [∂tv + (∂xv)v] dv

+
∫
Ft

−δd : (2µfd− pI) dv

+
∫
Ft

δv · b dv +
∫
∂Ft

δv · t da

+
∫
Ft

−δp(l : I) dv ∀δv, ∀δp, ∀t,

(2.92)

where the equation of motion (2.76) and the constraint equation (2.85)2
are combined into one.

2.2.4 Linearization
In the same way as in § 2.1.4, we linearize the governing equations of the fluid
by applying the Gâteaux derivative at the bias solution q̄ into the direction
of the disturbance q̃. We apply the linearization procedure to (2.92) and
derive the linearized equations of motion as

0 = δP̃tot +δΠ̃p = δP̃ dyn +δP̃ int +δP̃ ext +δΠ̃p ∀δv, ∀δp, ∀t, (2.93)

with the different contributions given in the following. The linearized virtual
power contribution of the inertia forces from (2.71) yields

δP̃ dyn := DδP dyn(v̄)[ṽ] =
∫
F̄t

D{−δv · %f [∂tv + (∂xv)v]}(v̄)[ṽ] dv

=
∫
F̄t

−δv · %f [∂tṽ + (∂x v̄)ṽ + (∂x ṽ)v̄] dv. (2.94)
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From (2.72), we derive the linearized virtual power contribution of the in-
ternal forces

δP̃ int := DδP int(v̄, p̄)[ṽ, p̃] =
∫
Ft

D{−δd : (2µfd− pI)}(v̄, p̄)[ṽ, p̃] dv

=
∫
Ft

−δd : (2µf d̃− p̃I) dv (2.95)

with the perturbation velocity gradient and the perturbation strain rate,
respectively, defined as

l̃ := ∂x ṽ, d̃ := 1
2 (̃l + l̃T). (2.96)

The linearized virtual power contribution of the external forces writes as

δP̃ ext := DδP ext(b̄, t̄)[̃b, t̃]

=
∫
Ft

D{δv · b}(b̄)[̃b] dv +
∫
∂Ft

D{δv · t}(̄t)[̃t] da

=
∫
Ft

δv · b̃ dv +
∫
∂Ft

δv · t̃ da, (2.97)

and the linearized incompressibility constraint from (2.85) is given by

δΠ̃p := DδΠp(v̄)[ṽ] =
∫
Ft

D{−δp · Γp(l)}(̄l)[̃l] dv

=
∫
Ft

−δp(̃l : I) dv. (2.98)

Finally, we assemble the linearized contributions (2.94), (2.95), (2.97)
and (2.98) of the fluid body to

0 = δP̃tot + δΠ̃p =
∫
F̄t

−δv · %f [∂tṽ + (∂x v̄)ṽ + (∂x ṽ)v̄] dv

+
∫
Ft

−δd : (2µf d̃− p̃I) dv

+
∫
Ft

δv · b̃ dv +
∫
∂Ft

δv · t̃ da

+
∫
Ft

−δp(̃l : I) dv ∀δv, ∀δp, ∀t

(2.99)
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2.2.5 Boundary Value Problem
Similar to the derivation in § 2.1.5 we can rewrite (2.92) as

0 = δPtot =
∫
Ft

−δv · {∂x [(2µfd)− pI] : I + b − %f [∂tv + (∂xv)v]} dv

+
∫
∂Ft

δv · [t − (2µfd− pI)n] da ∀δv, (2.100)

where n denotes the outward unit vector normal to the boundary surface
∂Ft. This leads to the boundary value problem corresponding to (2.92)

%f [∂tv + (∂xv)v] = −∂xp+ µf [∂x(∂xv)] : I + b in Ft

t = (2µfd− pI)n on ∂Ft
(2.101)

together with the incompressibility condition 0 = (∂xv) : I. This equation
is widely known as Navier–Stokes equation (White, 2005, p. 68).

2.3 Coupling of Solid with Fluid

2.3.1 Total System
In the preceding sections we considered the equations of motion for a solid
body and a fluid body separately. However, out main focus lies on solid–fluid
coupled systems and we therefore need to treat the coupling between these
two. This section derives the equations of motion for the total system by
combining the solid equations of § 2.1 and the fluid equations of § 2.2. The
explicit coupling between solid and fluid is then covered in the subsequent
section.

The total system T := B ∪ F, formed by the union of the solid and the
fluid body, occupies the region T̄t := B̄t ∪ F̄t in the physical space. We
call the surface ∂It := ∂Bt ∩ ∂Ft, build by the intersection of the solid and
fluid boundary, the interface. To clearly distinguish between the quantities,
we indicate solid quantities with a superscript ‘s’ and fluid quantities with
a superscript ‘f’.

First, we would like to clarify that the principle of virtual work stated
in § 2.1.2 and the principle of virtual power formulated in § 2.2.2 can be
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regarded as equivalent, that is,

0 = δWtot =
∫
T̄t

δx · df tot +
∫
T̄t

(∂xδx) : df tot ∀δx (2.102a)

m

0 = δPtot =
∫
T̄t

δv · df tot +
∫
T̄t

(∂xδv) : df tot ∀δv. (2.102b)

The principle of virtual power is convenient for a kinematics described at
velocity level, what is true for the fluid motion. We therefore apply the
principle of virtual power for both solid and fluid, building the total system.

In § 2.1.2 and § 2.2.2, we introduced the concept of internal and external
forces, which are defined as internal or external with respect to a specific
system. Considering this, we rewrite the contributions to the virtual power
of the external forces. The contribution with respect to the solid body B
from (2.30) then writes as

δP extB =
∫
Bt

δvs · bs dv +
∫
∂Bt\∂It

δvs · ts da+
∫
∂It

δvs · ts da, (2.103)

the one with respect to the fluid body F from (2.75) writes as

δP extF =
∫
Ft

δvf · bf dv +
∫
∂Ft\∂It

δvf · tf da+
∫
∂It

δvf · tf da. (2.104)

Note that we separated the integrals over the interface ∂It from the integrals
over the remaining surface. The integrals over the interface ∂It—that are
external with respect to the solid body B or the fluid body F—become
internal with respect to the total system T. We therefore write out the
virtual power contribution of the external forces for the total system as

δP extT :=
∫
Bt

δvs · bs dv +
∫
∂Bt\∂It

δvs · ts da

+
∫
Ft

δvf · bf dv +
∫
∂Ft\∂It

δvf · tf da,
(2.105)

and the virtual power contribution of the internal forces of the total system

δP intT :=
∫
Bt

−δds : σs dv +
∫
∂It

δvs · ts da

+
∫
Ft

−δdf : σf dv +
∫
∂It

δvf · tf da.
(2.106)
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At the interface ∂It, the surface traction force ts da is then exerted from
the fluid to the solid and tf da is exerted from the solid to the fluid.

For completeness, we provide the contribution of the inertia forces for
the total system as

δP dynT := δP dynB + δP dynF

=
∫
Bt

−δvs · (%sas) dv +
∫
Ft

−δvf · (%faf) dv. (2.107)

2.3.2 Interface Condition
This section addresses the conditions on the kinematics and the constraint
forces for the coupling between a solid and a fluid body, as depicted in
Fig. 2.3. For the fluid to stick at the solid, the velocities of solid and fluid
particles must be equal for all particles at the interface ∂It, that is,

0 = vs(X s, t)− vf(
x f︷ ︸︸ ︷

xs(X s, t), t)
= Ẋ + ∂tus(X s, t) + [∂Xus(X s, t)]Ẋ
− vf(X s + us(X s, t)︸ ︷︷ ︸

x f

, t) =: γµ(us, vf), (2.108)

where (2.9) and (2.59) were used to define the vector-valued constraint
function γµ(us, vf) in terms of the solid displacement us(X s, t) and the
fluid velocity vf(x f , t). This perfect bilateral constraint can be equivalently
represented in the local strong form or in the weak variational form, that is,

0 = γµ(us, vf) ⇔ 0 = δΠµ :=
∫
∂It

δµ · γµ(us, vf) da ∀δµ,

(2.109)
where δµ is an arbitrary vector-valued test function that denotes the virtual
traction vector.

The constraint forces ts da and tf da, acting on the interface ∂It, are
internal forces with respect to the total system T and must therefore satisfy
the variational law of interaction. In accordance with Eugster and Glocker
(2017), we define the variational law of interaction as follows: Let df intK

denote the internal forces with respect to a subsystem K ⊆ T. Further, let
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Fig. 2.3: (a) Kinematics of the interface ∂It = ∂Bt ∩ ∂Ft between the
solid body B and the fluid body F. (b) Constraint surface trac-
tion forces acting on the solid and fluid boundary at a shared
point P ∈ ∂It.

δvrig define the rigid virtual velocity field by

δvrig(x, t) = δvO(t) + δΩ(t)× x, (2.110)

where δv0 is the virtual velocity of the origin O and δΩ is the virtual
rotation velocity. Then, for any subsystem K ⊆ T, the virtual work done by
the internal forces df intK must vanish for all rigid virtual velocities δvrig,
that is,

0 = δP intK
rig =

∫
K

δvrig · df int ∀δvrig, ∀K ⊆ T̄. (2.111)

If we apply (2.111) to any subsystem K of the interface ∂It we find

0 = δP intK
rig =

∫
K

δvrig · (ts + tf) da ∀δvrig, ∀K ⊆ ∂It. (2.112)

We are free to select the rigid virtual body motion and therefore choose
δΩ = 0 and δvO arbitrary, which yields

0 = δP intK
rig = δv0 ·

∫
K

(ts + tf) da ∀δv0, ∀K ⊆ ∂It. (2.113)
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As this must hold for any subsystem K ⊆ ∂It, the expression in the bracket
must vanish and we find

ϕ = tf = −ts, (2.114)

with the constraint force ϕ = (∂vfγµ)µ defined by force directions ∂vfγµ

and the vector-valued Lagrange multiplier µ.

2.3.3 Linearization
Again, we apply the Gâteaux derivate (A.1) to (2.109) at the bias solution ūs

and v̄f in the direction of the perturbations ũs and ṽf to find the linearized
constraint

0 = δΠ̃µ := DδΠµ(ūs, v̄f)[ũs, ṽf ]

=
∫
∂It

D{δµ · γµ(us, vf)}[ũs, ṽf ] da

=
∫
∂It

δµ · γ̃µ da, (2.115)

where

γ̃µ := Dγµ(ūs, v̄f)[ũs, ṽf ]
= ∂tũs(X s, t) + [∂X ũs(X s, t)]Ẋ s

− [∂x v̄f(X s + ūs(X s, t), t)]ũs(X s, t)− ṽf(X s + ūs(X s, t), t)
(2.116)

defines the linearized constraint function. Note the term (∂x v̄f)ũs charac-
terizing the interaction of the velocity gradient of the fluid bias motion with
the displacement of the solid perturbation motion, also found by Benjamin
(1960); Landahl (1962); Carpenter and Morris (1990).





Semi-analytical
Model 3
The semi-analytical sandwich model presented in this chapter is probably the
simplest system of two elastic structures coupled by a viscous liquid. Despite
the simplicity, the proposed model features several general phenomena of
the liquid coupling (e.g., effects of viscosity or bias motion) and is therefore
well suited to study the fundamental vibration mechanisms.

3.1 Sandwich Model

3.1.1 Model and Assumptions
Fig. 3.1 shows the semi-analytical sandwich model, which is composed of
a bottom solid layer of thickness h−, a top solid layer of thickness h+ and
a viscous liquid layer filling the gap width g. We only consider motion in
the (eIx, eIz)-plane and assume periodicity in the eIx-direction. Whereas the
bottom solid layer has no bias motion, we allow a bias velocity v̂s+

x of the
top solid layer. In the liquid layer, a plane Couette flow evolves with the
linear velocity profile

v̄f
x(z) = v̄s+

x

2

(
1 + 2z

g

)
, (3.1)

which holds for a laminar bias flow (White, 2005, pp. 98).
The bias motion of the solid and liquid shall be disturbed by small,

wave-shaped perturbations

q̃(x, z, t) =: <{q̂(z) e j(ωt−kx)} = <{q̂(z) e j(ωrt−kx) e−δ
rt}, (3.2)

where q̃(x, z, t) denotes an arbitrary perturbation quantity, q̂(z) its complex
amplitude, k ∈ R the longitudinal wave number and ω = (ωr + jδr) ∈ C

43
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Fig. 3.1: Plane semi-analytical sandwich model.

the complex angular eigenfrequency. The real part ωr := <{ω} refers to
the (real) angular eigenfrequency and the imaginary part δr := ={ω} to the
damping factor.

Note that by choosing a real wave number k and solving for a com-
plex eigenfrequency ω, we are considering the temporal problem of spatial-
periodic perturbations that oscillate and fade out in time. We could also
choose a real frequency ω and solve for a complex wave number k, which
would state the spatial problem of time-periodic perturbations that decay in
space.

3.1.2 Governing Equations

Solid Layers

The perturbation equations of the solid layers are derived from the bound-
ary value problem (2.56) by linearization about the strain-free bias motion.
Thereby, we neglect body forces and apply (2.28) for an isotropic, linear
elastic material. The acceleration terms, which include the bias motion v̄s

x,
are derived in §A.2.5 and given by (A.40). In Cartesian coordinates, the
perturbation equations for the displacements (ũs

x, ũ
s
z) then read

%s(∂2
t +2v̄s

x∂t∂x+v̄s2
x ∂

2
x)ũs

x = µs(∂2
x+∂2

z )ũs
x + (λs+µs)(∂2

xũ
s
x+∂z∂xũs

z),
%s(∂2

t +2v̄s
x∂t∂x+v̄s2

x ∂
2
x)ũs

z = µs(∂2
x+∂2

z )ũs
z + (λs+µs)(∂x∂zũs

x+∂2
z ũ

s
z).
(3.3)
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We apply the wave ansatz (3.2) and rewrite the equations as

(−ω2+2v̄s
xkω−v̄s2

x k
2)ûs

x = c22(D2
z−k2)ûs

x + (c21−c22)(−k2ûs
x−jkDzûs

z),
(−ω2+2v̄s

xkω−v̄s2
x k

2)ûs
z = c22(D2

z−k2)ûs
z + (c21−c22)(−jkDzûs

x+D2
z û

s
z),

(3.4)
where Dz := d/dz and

c1 =

√
λs + 2µs

%s =

√
E(1− ν)

(1 + ν)(1− 2ν)%s , c2 =
√
µs

%s =
√

E

2(1 + ν)%s ,

(3.5)
denote the dilatational and distortional wave speeds, respectively.

Fluid Layer

The perturbation equation of the liquid layer is derived from the incom-
pressible Navier–Stokes equations (2.101) by linearization about the plane,
parallel bias flow v̄f

x(z). After eliminating the perturbation pressure p̃ and
the longitudinal perturbation velocity ṽf

x, we may write the perturbation
equation as

0 = %f(∂t + v̄f
x∂x)(∂2

x + ∂2
z )ṽf

z − %f d2v̄f
x

dz2 ∂xṽ
f
z − µf(∂2

x + ∂2
z )2ṽf

z, (3.6)

expressed in the transversal perturbation velocity ṽf
z. If we apply the wave

ansatz (3.2), we find the celebrated Orr–Sommerfeld equation

0 =
[
%f(jω − v̄f

xjk)(D2
z − k2) + %f d2v̄f

x

dz2 jk − µf(D2
z − k2)2

]
v̂f
z, (3.7)

where again Dz := d/dz. For a discussion of the equation and the details
about its derivation, we refer to the textbooks by Drazin and Reid (2004,
p. 156), Criminale et al. (2003, p. 13), as well as Schmid and Henningson
(2001, p. 57).

3.1.3 Implementation
The perturbation equations (3.4) and (3.7), together with conditions for
the interfaces and boundaries, can be assembled to a general eigenvalue
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problem. After discretization it takes the form

[A− ωB]q̂, (3.8)

where A and B are coefficient matrices, ω = (ωr +jδr) ∈ C is the eigenvalue
and q̂ the corresponding complex eigenvector containing the discretized
forms of ûs

x, ûs
z and v̂f

z. Fig. 3.2 shows the structure of A− ωB and §A.3
defines its coefficients. We apply the Chebyshev collocation method to dis-
cretize the equations at the Gauss–Lobatto points (Malik, 1990; Weder,
2012). Peyret (2002, pp. 50) defines the corresponding discretized repre-
sentation of the differential operator Dz. It is a full matrix reflecting the
spectral properties of the collocation method. Matlab (Mathworks, 2016)
together with the Multiprecision Computing Toolbox (Advanpix, 2016) is
used to solve the resulting numerical eigenvalue problem in quadruple pre-
cision.

Fig. 3.3: Spectrum of (a) angular eigenfrequency ωr and (b,c) damping
factor δr as a function of wave number k of modes in the low-
frequency range. Longitudinal modes ‘→→’ and ‘→←’ (blue dashed
line), varicose mode ‘↑↓’ (red solid line), sinuous mode ‘↑↑’ (or-
ange solid line) and Rayleigh–Lamb waves (gray solid lines).
Markers indicate the selected parameters for the plotting the
mode shapes and velocity profiles in Figs 3.4 and 3.5.
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3.2 Results

In the present section we show the results of the sandwich model, where
we have used E = 210 GPa, ν = 0.3, %s = 7850 kg/m3, h− = h+ =
2 mm as parameters for the solid layers (steel) and µf = 1.002 mPa · s,
%f = 998.2 kg/m3, g = 5 mm for the liquid layer (water).

3.2.1 Modal Parameters without Bias Motion
We start with the results for the sandwich model without bias motion, this
is v̄s− = v̄s+ = v̄f(z) = 0 m/s. Fig. 3.3 shows the spectrum of the angular
eigenfrequency ωr and the damping factor δr as a function of the wave num-
ber k. For comparison, we also plot the Rayleigh–Lamb frequency spectrum
of a single solid plate with the same properties (Mindlin, 1960; Graff, 1975,
pp. 453). In this low-frequency range, we recognize three modes, which we
discuss in more detail by considering the mode shapes (ûs

x, û
s
z) in Fig. 3.4

and the profiles of the liquid perturbation velocity (v̂f
x, v̂

f
z) in Fig. 3.5.

Longitudinal Mode

The longitudinal modes of the sandwich structure are labeled with ‘→→’
or ‘→←’, depending on the relative motion between the top and bottom solid
plate. They show a linear ωr(k) relation which nearly coincides with the
longitudinal Rayleigh–Lamb spectrum. The motion of the elastic plates
is primarily in the eIx-direction. Due to the longitudinal motion of the
solid/liquid interface, a Stokes boundary layer is formed in the liquid (White,
2005, pp. 131). Outside of the small viscous boundary layer with frequency
dependent thickness δf ≈ 6.5

√
µf/(ωr%f), the liquid is at rest. Accordingly,

only a small fraction of the liquid mass participates on the longitudinal vi-
bration, and thus, the angular eigenfrequency ωr only insignificantly changes
compared to the longitudinal mode of the single plate (less than 0.1% in
the plotted range). On the other hand, we found that the boundary layer
formed is responsible for the viscous damping. The damping factor δr in-
creases almost proportionally to

√
ωr. In the frequency range plotted, we

further find a Stokes layermuch smaller then the gap width, that is δf � g.
The longitudinal modes ‘→→’ and ‘→←’ then become degenerate by sharing
the same frequency.
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Sinuous Mode

The sinuous mode, labeled with ‘↑↑’, shows a nearly quadratic ωr(k) relation.
The mode shape is characterized by a symmetrical deformation of the solid
plates with respect to the center axis and by a liquid motion predominantly
in the eIz-direction. The angular eigenfrequency of the sandwich structure
is reduced by approximately 7.6% compared to the antisymmetric Rayleigh–
Lamb mode. We find a similar frequency reduction, when we think of adding
the liquid mass to the single solid layers, without changing their stiffness
properties. The damping factor of the sinuous mode is low, because there
is only a weak boundary layer formed.

Varicose Mode

The varicose mode, labeled with ‘↑↓’, also shows a nearly quadratic ωr(k)
relation. The mode shape is characterized by an antisymmetrical defor-
mation of the solid plates with respect to the center axis. This causes a
squeezed liquid motion along the eIx-direction, flowing from the narrowing
to the widening of the gap. In the low-wavenumber regime, the distance
between the narrowing and widening is large (∼ π/k) and, therefore, the
acceleration of the liquid is correspondingly large. This results in a strong
reduction of the eigenfrequency ωr, because the liquid is pumped as a bulk
along the extensive eIx-direction. A Stokes boundary layer is formed by the
bulk motion of the liquid. This is another mechanism than in the longitudi-
nal mode, where the boundary layer is directly formed by the motion of the
solid boundary. This viscous boundary is responsible for the large damping
factor δr compared to the sinuous mode.

3.2.2 Modal Parameters with Bias Motion
Finally, we discuss the influence of the bias motion on the modal parameters.
Fig. 3.6 shows the angular eigenfrequency Iω

r and the damping factor δr

of varicose and sinuous modes in function of the bias velocity of the top
solid plate v̄s+

x . We distinguish between right propagating modes with pos-
itive wave number k+ > 0 and left propagating modes with negative wave
number k− < 0. With increasing bias velocity, we observe that the angular
frequency of the right propagating modes increase, whereas the frequency of
the left propagating modes decrease. The difference in frequency between
left and right propagating modes is nearly proportional to the bias velocity.
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Fig. 3.4: Real part of mode shapes of (a) longitudinal mode ‘→→’, (b) sin-
uous mode ‘↑↑’ and (c) varicose mode ‘↑↓’. The solid layers
are deformed according to the perturbation displacement field
(ûs

x, û
s
z). The blue arrows indicate the perturbation velocity

field (v̂f
x, v̂

f
z) in the fluid.
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Fig. 3.5: Profiles of liquid perturbation velocity components v̂f
x and v̂f

z of
(a) longitudinal mode ‘→→’, (b) sinuous mode ‘↑↑’ and (c) vari-
cose mode ‘↑↓’ for wave numbers k according to Fig. 3.4. Magni-
tude (solid lines), real part (dashed lines), imaginary part (dash-
dotted lines).
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This frequency split effect is due to the average bias velocity to the right
direction.

The damping factors of the sinuous modes ‘↑↑±’ are nearly independent
of the direction of propagation, whereas the varicose modes ‘↑↓±’ show
different damping factors for right and left propagating modes. We believe
that this is a numerical effect, because due to symmetry reasoning, the
damping factor should not depend on the direction of propagation.
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Fig. 3.6: Spectrum of (a) angular eigenfrequency Iω
r and (b-c) damp-

ing factor δr as a function of the bias velocity of the top solid
plate v̄s+

x for wave numbers k± = ±38.03 rad/m for varicose
modes ‘↑↓±’ and sinuous modes ‘↑↑±’, respectively.





Experimental
Test Bench 4
This chapter documents the test bench that was engineered to experimen-
tally study the rotor–stator coupling by liquids. As described in § 1.4, we
investigate the coupling on a strong simplified model, where the rotor and
the stator are represented by circular disks.

Following the concepts of design theory, we first formulate the func-
tional requirements for the test bench. We then present the general design
concept that meets these requirements and give some reasoning about the
chosen measurement techniques. The specific realization of the test bench
is discussed in more detail than by Weder et al. (2016). This includes the
geometry, the excitation and measurement of the vibrations, as well as the
monitoring and operation of the test bench. Thereby, we focus on the polar
scan unit for measuring the vibrations on the rotor using self-tracking laser
Doppler velocimetry.

4.1 Functional Requirements
In the present section, we formulate the functional requirements of the test
bench that constitute its design guide lines. As overriding principle we
require the design as simple and ideal as possible on one hand, and to be
able to sufficiently characterize the vibration on the other. Our intention is
to achieve comprehensive and conclusive measurements (Chapter 5) that can
be well compared with results of the related simulation models (Chapter 6).

With this principle in mind, we impose the following requirements:

Small amplitude vibrations We are interested in small-amplitude vibra-
tions, where a linearized model is expected to be sufficient. We there-
fore rely on a vibration measurement technique with a high amplitude
resolution.

55
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Mode shapes To sufficiently characterize the vibration, the test bench
must be able to measure the mode shapes of the rotor and the stator
as well as the correct phase relation between them.

Boundary conditions The boundary conditions for the rotor, the stator
and the liquid should be designed as ideal as possible. Well defined
boundary conditions make the comparison between the results of the
experimental test bench and the simulations more conclusive.

Influence of excitation and measurement The rotor and the stator are
compliant and lightweight structures. The stiffness and mass prop-
erties should not be significantly changed by the vibration excitation
and the measurement.

Axially symmetrical geometry The relevant parts of the test bench shall
be designed with axial symmetry. With this, we can use a rotationally
symmetric geometry for the simulation model of Chapter 6 which
significantly reduces the model complexity and the computation time.

Automatic measurements The measurements should be automatized to
reduce the influence of the test operator so that we can expect a
higher reproducibility and more reliable results.

Stiff test bench The test bench stiffness has to be chosen so that its
eigenfrequencies are beyond the eigenfrequencies of the rotor–stator
system.

Variation of parameters The parameters stator disk thickness hS, rotor
disk thickness hR, gap width g and rotor angular speed ΩR must be
adjustable. The major parameters and their ranges of variation are
listed in Tab. 4.1.

4.2 Design Concept and Realization

4.2.1 Design Concept
In general, we use modal analysis to experimentally characterize the dynam-
ics of the system (Ewins, 2000): The structure under investigation is excited
by an external forcing at one point (input) and its dynamical response is
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Tab. 4.1: Major parameters of the experimental test bench and their
ranges of variation.

parameter variable range unit
stator clamping diameter DS 250 mm
stator disk thickness hS {1, 1.5} mm
gap width g [1, 15] mm
rotor disk thickness hR {1, 1.5, 2} mm
rotor clamping diameter dR 30 mm
rotor outer diameter DR 200 mm
rotor angular speed ΩR [0, 50] rad/s
excitation angular frequency $ [0, 5000] rad/s

then measured at other points (outputs). The resulting frequency response
functions (outputs/input) contain the eigenfrequency, damping and mode
shapes which characterize the dynamics of the system.

Before we explain the test bench in detail, we briefly sketch the overall
design concept. A schematic representation of the design concept is given
in Fig. 4.1. The casing is a stiff structure acting as a fluid cavity and
rigid support for the stator disk and the rotor assembly. The rotor disk is
mounted on a stiff shaft which itself is supported by a stiff bearing and
driven by the main motor.

We excite the rotor–stator system by an electromagnetic excitation of the
stator disk (see § 4.3.3). The out-of-plane velocity of the resulting vibrations
at the rotor and stator disks is measured using the scanning laser Doppler
velocimetry technique. The scanning mechanism allows the placement of
the measuring spots at discrete locations so that the vibration shape can be
reconstructed by successive measurements. For the non-rotating stator disk
we use a standard Cartesian scanning system to measure the vibration (see
§ 4.3.4). For the rotor disk, we built our own polar scan unit that is based
on the self-tracking laser Doppler velocimetry, where the laser beam is co-
rotating by design. A glass window gives optical access to the backside of
the rotor disk. The polar scan unit uses a scanning mirror to set the radial
coordinate and an adjustment mechanism to set the azimuthal coordinate
(see § 4.3.5).



58 Chapter 4. Experimental Test Bench

Fig. 4.1: Schematic of the test bench.

The electromagnetic excitation and the laser Doppler velocimetry are
both non-contact techniques that only barely influence the mechanical prop-
erties of the rotor and the stator. This is an advantage over other transducers
like accelerometers or strain gauges that modify the mass and/or stiffness
of the structure. Furthermore, the laser Doppler velocimetry provides a high
resolution which is necessary for the modal analysis. Finally, no telemetric
system or slip rings are needed to transmit measured signals from the rotor
to the inertial system.

4.2.2 Test Bench Design
This section discusses the specific realization of the test bench design.
Fig. 4.2 shows the cutaway drawing of the experimental test bench with
the major parts labeled. Tab. 4.2 lists the major components and their
manufacturer.

Casing

The stiff casing is composed of a massive cylindrical ring (thickness 30 mm,
inner diameter 300 mm) and two thick cover plates (thickness 35 mm). It
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forms a fluid cavity with a volume of approximately 6.5 l. All metallic com-
ponents that are in contact with the fluid are made of stainless steel to
control corrosion. O-rings are mostly used to create the seal at the non-
sliding interfaces. The glass window (thickness 29 mm) is made of N-BK7.
Its surface is ground, lapped and polished to a flatness of 1 µm to reduce
measuring errors. To prevent glass breaking, we glued the glass window
at the inner and outer radius to metallic clamping rings using Scotch-Weld
2216 B/A. Six portholes distributed around the cylinder provide lateral op-
tical access into the fluid cavity.

Stator Disk

The stator disks are laser cut from ground sheets of hardened steel (1.4034)
with thicknesses of 1 mm and 1.5 mm. A single disk is clamped between
the massive stator ring and the fastening ring at the clamping diameter of
250 mm. We seal the contact interface between stator disk and stator ring
with the Loctite 574 sealant. The interface between stator ring and casing is
sealed using an O-ring. The fastening ring is designed to minimize the bias
stress in the disk. Nevertheless, the 36 screws must be tightened carefully
with an appropriate tightening sequence and a specified torque to prevent a
detuning of the stator disk by in-plane stresses. We use spacers of different
thicknesses when mounting the stator assembly on the casing. This allows
to accurately adjust the gap width g between rotor and stator disk in the
range of 1 to 15 mm in increments of 0.1 mm.

Rotor Disk

The rotor disks are laser cut of the same sheets as the stator disks with
thicknesses of 1 mm, 1.5 mm and 2 mm. We bonded the rotor disks to
the rotor hubs using Loctite Double Bubble epoxy adhesive. This bonding
sets the clamping diameter of the rotor disk to 30 mm. We did not use
thermal bonding techniques because this leads to residual stresses and a
detuning of the rotor. The rotor is mounted on the front side of a stiff shaft
made of hardened, stainless steel which is supported by four prestressed
high-precision spindle bearings. These bearings are stiff and provide a very
high true-running accuracy of the rotor. We use a radial shaft seal to seal
off the bearings from the fluid in the cavity.
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Fig. 4.2: Cutaway drawing of the experimental test bench with annota-
tions of the major parts. Selected optical ray paths of the rotor
and stator laser Doppler velocimetry systems are plotted as red
lines. The detail view of the polar scan unit is shown in Fig. 4.7.
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Tab. 4.2: List of main components of experimental test bench.

component manufacturer model

spindle bearings SKF S71908 CDGA/P4A
main motor Harmonic Drive TorkDrive-100A-30-AA-C
main motor controller LTi Drives ServoOne Junior S022.003
angular encoder ring Renishaw RESM-20U-S-B-075
angular encoder head Renishaw SR-005-A
angular encoder interface Renishaw Si-NN-0001-00-0-0N
slip ring assembly LTN SM050-00/04-AG1
cross roller bearing THK RE 7013 UU CC0 P2
strain wave gearing Harmonic Drive CSD-14-100-2A-R
servo motor Maxon Motor EC 32 flat 267121
servo motor controller Maxon Motor EPOS2 24/2 380264
galvanometer scanner SCANLAB dynAXIS XS
galvanometer amplifier SCANLAB microSSV
deflection mirror TECHSPEC 45754, 400–700 nm
voltage amplifier Mc Crypt PA 3000
current sensor Allegro MicroSystems ACS712
analog filters Krohn-Hite 3988
laser head (1-point) Polytec OFV-505 SR
laser controller (1-point) Polytec OFV-5000 with VD-06
laser head (scanning) Polytec PSV-I-400 LR
laser controller (scanning) Polytec OFV-5000 with VD-08
data acquisition card National Instruments PCI-6110
connector box National Instruments BNC-2110
motor interface card National Instruments USB-6001

Polar Scan Unit

The polar scan unit is mounted on the back side of the shaft and enables to
measure arbitrary points of the rotor disk. In § 4.3.5 we describe this unit
with a galvanometer scanner and an azimuthal adjustment mechanism be-
tween shaft and scanner head in more detail. The rotor assembly consisting
of rotor, shaft and polar scan unit is driven by the main motor. This motor
allows to control the precise angular position and speed of the rotor with
the use of an angular encoding system, also mounted on the scanning head.
The slip ring assembly at the end of the rotor assembly transmits power
and positioning signals from the inertial to the rotor system.
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Fig. 4.3: Kinematics of the rotor–stator system. P denotes a measuring
point on the rotor disk and Q a point on the stator disk.

4.2.3 Kinematics

In this section we define the kinematics of the rotor–stator system which
is important for the correct acquisition and interpretation of the vibration
measurements. Fig. 4.3 illustrates the kinematics in rotor, stator and side
view, where P denotes an arbitrary measuring point on the rotor disk and Q
an arbitrary point on the stator disk. The origin O is placed at the bottom
center of the rotor disk. The inertial stator system (eSx , eSy , eSz ), called the
S-system, is a right-handed system formed by unit vectors. Vector eSz is
coaxial to the rotation axis of the rotor assembly and eSy is pointing upward
in the vertical direction. The body-fixed rotor system (eRx , eRy , eRz ), called
the R-system, is formed by a rotation of the S-system about the common
ez axis by the angle β. The head system (eHx , eHy , eHz ), abbreviated as H-
system, is the body-fixed system of the scanner head with the galvanometer
scanner lying in the (eHx , eHz )-plane. It is formed by a rotation of the R-
system about the common ez axis by the angle Rϕ. The rotation angle
between the H- and the S-system is then given by α := β + Rϕ. Here,
ΩR := β̇ indicates the angular speed of rotation of the rotor disk.

The galvanometer scanner and the measuring point P lie both in the
(eHx , eHz )-plane. We denote the plane polar coordinates of P in the R-
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system by (Rr,Rϕ) and the plane Cartesian coordinates by (Rx,Ry). The
same holds for the point Q in the S-system, where we write (Sr, Sϕ) for
the polar coordinates and (Sx, Sy) for the Cartesian coordinates.

The encoder mark is a marker on the encoder ring placed at the eHx
axis. The encoder system fires a hardware trigger signal when the encoder
mark passes the encoder trigger. This happens if α = 5π/4 + 2πn with
n ∈ Z. We use this trigger to start the vibration measurements at a defined
angular position of the rotor disk.

4.3 Vibration Excitation and Measurement

4.3.1 Measuring Layout and Overview
In the present section we give an overview of the vibration excitation and
the measurement. We show the wiring diagram of the experimental test
bench in Fig. 4.4 with the main devices listed in Tab. 4.2. The heart of the
measuring layout is the computer that controls themain motor (§ 4.3.2), the
excitation (§ 4.3.3), the stator scan (§ 4.3.4) and the rotor scan (§ 4.3.5).
All signals are acquired with the data acquisition card using the connector
box (§ 4.3.6). We use LabVIEW by National Instruments (2014) to monitor
and control the entire process (§ 4.3.7) and store the measurement data into
an HDF5 archive file (§ 4.3.8).

4.3.2 Main Motor
Themain motor consists of a permanent magnet rotor with 11 pole pairs and
a stator with the 3 phase windings U, V, and W. PTC and KTY are temperature
sensors and function as a thermal controlling of the motor. By the hollow
motor design, we can guide the laser beam of the rotor scan system through
the motor. The angular encoding system provides a high resolution feedback
for the main motor controller to control the angular position or angular
speed of the rotor assembly, depending on the mode of operation. We
programmed the main motor controller so that the reference signal (angular
position or angular speed) is set by the analog channel AO0 of the motor
interface card, which itself is connected to the computer’s USB port. The
signals of the angular encoder system are internally forwarded to the data
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Fig. 4.4: Wiring diagram of the experimental test bench.

acquisition channels PFI0 and PFI1. PFI0 is used to trigger the vibration
measurement and PFI1 to measure the actual rotor angular speed.

4.3.3 Electromagnetic Excitation
As pointed out before, we use the electromagnetic effect to excite the vibra-
tion of the rotor–stator system. The excitation setup in Fig. 4.5 consists of
an electromagnetic coil and a permanent magnet. We wound an insulated
wire of diameter 0.245 mm on the coil body made of polyether ether ke-
tone to serve as an electromagnetic coil. To reduce the magnetic resistance
we placed a soft-magnetic ferrite core in the center of the coil, where the
magnetic field is the strongest. The coil has approximately 500 windings, a
resistance of 7.9 Ω and an inductance of 2.33 mH measured at 1 kHz. We
use a permanent-magnetic cube placed on the stator disk to significantly
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Fig. 4.5: Section view of electromagnetic excitation with electromagnetic
coil and permanent magnet.

increase the excitation force that is generated by the magnetic field of the
coil and to suppress higher-order excitations that arise with ferromagnets.
The cube has an edge length of 5 mm and a mass of 1.05 g, so that the
added mass is negligible compared to the modal mass of the vibration.

The electronic controlling of the coil can be seen in the wiring diagram of
Fig. 4.4. A voltage amplifier feeds the electromagnetic coil, which itself gets
its analog input from the analog output channel AO0 of the data acquisition
card. The excitation force is proportional to the magnetic field and therefore
proportional to the current in the coil. To obtain an appropriate input signal
for the rotor–stator system, we measure the electric current using a Hall-
effect current sensor. The current signal from the sensor is low-pass filtered
by an analog filter to suppress aliasing effects. The signal is then finally
acquired by the analog input channel AI2 of the data acquisition card.

4.3.4 Laser Doppler Velocimetry on Stator
For the vibration measurements on the stator disk we used the Polytec PSV-
400, a commercially available laser Doppler scanning system. In this section
we only explain the working principle of the laser interferometer and sketch
the layout of the system. For more detailed information about the PSV-400
system we refer to the manuals (Polytec, 2011a,b).
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Fig. 4.6: Schematic of a heterodyne laser interferometer with scanner mir-
ror and moving target surface.

First, we briefly explain the working principle of the heterodyne laser
interferometer with the schematic depicted in Fig. 4.6. Polytec uses a
helium-neon laser source to generate the coherent laser beam with a wave-
length of λ = 633 nm and a frequency f0 = c0/λ

.= 4.72× 1014 Hz, where
c0

.= 2.99×108 m/s is the speed of light. The first beam splitter divides the
laser beam into a reference beam and a target beam. The target beam is
routed with splitters and mirrors to the moving target surface, where it gets
directly backscattered. According to the Doppler effect, the backscattered
beam is frequency shifted by the Doppler frequency fD, which is proportional
to the velocity component in beam direction. The Doppler shifted beam
travels back and interferes with the heterodyned reference beam. Polytec
uses a Bragg cell to shift the reference beam’s frequency by the heterodyne
frequency fB = 40 MHz. This allows to measure the velocity in the range
of −10 m/s to +10 m/s including its sign. The frequency f0 is filtered out
at the photodetector, because of the low-pass characteristics of the sen-
sor. The measured signal is then a modulation of the carrier signal with
heterodyne frequency fB and the Doppler signal with frequency fD.

As can be seen in Fig. 4.4, the PSV-400 consists of a scanning laser
head, a junction box, a laser controller with decoder cards and a computer
with a data acquisition card. Additionally, the computer runs the Polytec
PSV scanning vibrometer software to control the different devices. The laser
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scanning head is equipped with a heterodyne laser interferometer together
with two galvanometer scanning mirrors to deflect the laser beam. We use
the digital velocity decoder VD-08 to demodulate the interference signal of
the photodetector into a velocity proportional voltage signal. We low-pass
filter the velocity signal using an analog filter to suppress aliasing effects and
digitize the signal. To increase the signal-to-noise ratio, we applied stripes
of 3M Scotchlite 7610 reflective sheeting on the stator disk.

Instead of the classical front panel, we use LabVIEW to control the
scanning position via the ActiveX interface of the PSV scanning vibrometer
software. In LabVIEW we also correct the error resulting from the angle of
incidence γ by multiplying the measured signal by the factor 1/ cos γ. It is
hereby assumed that the in-plane velocity components (vx, vy) at the mea-
suring point Q are negligible compared to the out-of-plane component vz.

4.3.5 Self-tracking Laser Doppler Velocimetry on Rotor
In contrast to the vibration measurement on the stator disk, where the disk
has no bias motion, the measurement on the rotor disk is more sophisticated.
The main problem originates from the speckle pattern backscattered at
an optically rough surface—an effect that needs to be taken into account
when applying a laser Doppler velocimetry method on rotating parts. In
the present section we describe the speckle problem, suggest some possible
solutions and present our self-tracking laser Doppler velocimetry system in
detail.

Speckle Noise Problem

In the previous section we discussed the laser interferometer and saw that
the velocity signal can be demodulated from the intensity signal measured by
the photodetector. If the target beam is backscattered by an optically rough
surface, the backscattered image shows a random-phase speckle pattern due
to constructive and destructive interference. This speckle pattern moves
over the photodetector if the target surface moves in the direction normal to
the beam and therefore leads to changes in the intensity signal. As described
by Rothberg et al. (1989), this effect distorts the velocity measurement. The
desired intensity changes due to the motion in beam direction cannot be
distinguished from the undesired intensity changes due to the speckle pattern
resulting from the motion normal to the beam.



68 Chapter 4. Experimental Test Bench

When a laser interferometer in the inertial system beams on a space-fixed
measuring spot at a rotating disk, the demodulated velocity signal is then
composed of the true vibration part and an erroneous random part caused
by the speckle pattern. Note that the random signal part is periodic when
measured on a rotor disk with constant angular speed ΩR. That is because
the surface roughness at the space-fixed measuring spot repeats for every
revolution and so does the speckle pattern. In the Fourier spectrum, this
periodic signal manifests in sharp peaks at frequency multiples of ΩR repre-
senting the Fourier series of the random speckle signal. This speckle effect
strongly reduces the signal-to-noise ratio and makes the direct measurement
in the inertial system not applicable.

Solution Approaches

Several approaches exist to overcome the speckle noise problem in laser
Doppler velocimetry. The most common systems use (i) dual mirror scan-
ning, (ii) self-tracking, and (iii) a derotator to reduce the influence of speck-
les. These three solutions share the idea of measuring the vibration of
a body-fixed measuring spot in the rotor system (instead of measuring a
space-fixed point in the inertial system). This helps to minimize the speckle
noise.

Bucher et al. (1994) developed the dual mirror scanning laser Doppler
velocimetry to measure vibrations on rotating parts from the front side.
Their system consists of a laser interferometer equipped with a pair of or-
thogonal mirrors to control the measuring spot that continuously follows
a body-fixed point on the rotor. The scanning mirrors must be properly
synchronized with the angular position of the rotor. Thereby, the mirror’s
inertia limits the speed of rotation. Additionally, the continuous scanning
laser beam needs unobstructed optical access to the rotor, which is hard to
fulfill when measuring from the driving side of the rotor.

The self-tracking laser Doppler velocimetry is a method where the laser
beam is co-rotating by design. It was initially developed by Lomenzo et al.
(1999) and later enhanced by Sever (2004) and Sever et al. (2002, 2006) to
measure the vibrations on bladed disks. Considering Fig. 4.1, the beam of
the laser interferometer is exactly aligned to the rotation axis of the rotor,
where it gets deflected by a rotor-fixed central mirror. After the reflection
at the central mirror, the beam rotates in the rotor system and can again
be deflected to a body-fixed measuring spot by keeping it self-tracked. A
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big advantage of this concept is that the target beam can be guided though
a hollow motor while measuring from the driving side (see Fig. 4.1).

The idea of using a derotator in combination with a standard scanning
vibrometer to measure on rotating parts was initially presented by Boedecker
et al. (2006) and lead to the commercially PSV-A-440 derotator system
by Polytec. A Dove prism is placed between the rotor and the scanning
vibrometer, and rotates with half the angular speed of the rotor about their
mutual axis. This generates a non-rotating image seen by the scanning
vibrometer. This system is expensive and also needs synchronization of the
Dove prism rotation speed as well as an unobstructed optical access of the
target beam.

Rothberg and Tirabassi (2012) studied the effects of misalignment for
the three approaches presented above. They also provide a framework to
quantify the misalignment errors in the velocity measurement.

Realization of our Self-tracking System

We now present our realization of the self-tracking laser Doppler velocimetry
system to pointwise measure the vibration on the rotor disk. As illustrated in
Fig. 4.1, we enhanced the self-tracking systems by Lomenzo et al. (1999) and
Sever (2004) by a radial scanner and an azimuthal positioning mechanism
that allows to scan the rotor disk in polar coordinates. We have selected the
self-tracking approach since it allows to measure the vibration of the rotor
from the driving side by guiding the target beam through the motor. And
it is the simplest of the three methods discussed above.

Fig. 4.7 shows a detailed view of the cutaway drawing Fig. 4.2, high-
lighting the polar scan unit. The central element of the polar scan unit
is the shaft, where the rotor disk is mounted on one end and the sensor
head on the other end. The cross roller bearing connects the sensor head
and the shaft and allows a relative rotation between them. We use a servo
motor together with a strain wave gear (gear ratio 1:100, no clearance) to
precisely control the polar angle Rϕ defined in Fig. 4.3. The sensor head
supports the scanner stem with the galvanometer scanner to adjust the ra-
dial coordinate Rr as well as the deflection mirror that deflects the target
beam from the rotation axis into the direction of the galvanometer scan-
ner. Additionally, the sensor head carries the servo motor controller, the
galvanometer amplifier and the RS232 interface. They are supplied by a
slip ring assembly and communicate (wirelessly) over the RS-232 protocol,
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as illustrated in Fig. 4.4. This polar scan unit allows to set the measuring
spot at an arbitrary location on the rotor disk, parameterized by the polar
coordinates (Rr,Rϕ).

A crucial and delicate process is the alignment of the laser target beam
to the rotation axis of the polar scan unit. A misalignment leads to a
blurred measuring spot and to speckle noise in the velocity signal (Rothberg
and Tirabassi, 2012). We designed an alignment unit to adjust the four
parameters (2 transversal, 2 tilt) necessary to align the beam. In practice, we
tried a combination of monitoring the measuring spot by eye while revolving
the rotor (Sever, 2004) and minimizing the speckle noise content in the
frequency spectrum (Boedecker et al., 2006).

We use the digital velocity decoder VD-06 to demodulate the interfer-
ence signal into the velocity-proportional voltage signal (see Fig. 4.4). We
low-pass filter the velocity signal before digitization to avoid aliasing effects.
To increase the backscattering signal at the measuring spot, we apply stripes
of 3M Diamond Grade reflective sheeting that also works in water. We com-
pensate for the error by the angle of incidence γ and for the influence of
water on the Doppler frequency shift by multiplying the measuring signal
with 1/(nf cos γ), where nf .= 1.333 is the refraction index of water.

4.3.6 Signal Processing and Data Acquisition
From the wiring diagram of Fig. 4.4 we recognize that the analog signals
from the current sensor and the laser interferometers are filtered before en-
tering the data acquisition card to prevent aliasing during digitization. In the
present section we discuss the relevant parameters of the signal processing
and data acquisition of the test bench.

Fig. 4.8 illustrates the relevant frequency parameters of the anti-aliasing
procedure that was applied to all analog input signals before digitization.
Therein, $s denotes the sampling frequency of the data acquisition card
and $s/2 the Nyquist frequency related to $s. We use an 8th-order Bessel-
type low-pass filter to attenuate the analog input signal above the cut-off
frequency $c with a roll-off of −160 dB/decade. The data acquisition
card simultaneously samples the filtered analog input signals using parallel
analog–digital converters with a resolution of 12 bit—that corresponds to
4096 discrete signal levels. The sampling frequency $s should be chosen so
that the attenuated input signal above the Nyquist frequency $s/2 is below
the threshold of the analog–digital converter. That is the 4096th part of the
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Fig. 4.8: Illustration of the relevant frequency parameters of the anti-
aliasing procedure.

specified input range or an attenuation of −72.2 dB. With this requirement
we make sure that in digitization no high-frequency signal content is mirrored
into the frequency range [0, $s/2).

After digitization we can apply digital techniques to downsample the
signal to a frequency range of interest. Note that again low-pass filtering
is necessary to avoid aliasing when resampling. In our case, we Fourier
transformed the digital time signal into the frequency domain, cut off the
frequency content above $r/2 and then inverse Fourier transformed the
signal back into the time domain with the resampling frequency $r. For
this, we used the fast Fourier transform algorithm proposed by Cooley and
Tukey (1965). The cut of frequency $c of the analog low-pass filter should
be chosen high enough above$r/2 to avoid a distortion due to the non-ideal
filter characteristics.

4.3.7 Test Bench Control

As can be seen in Fig. 4.4, we used a computer to control all devices for
the experimental test bench. The present section documents the program
implemented in LabVIEW (National Instruments, 2014) to operate the test
bench, perform the measurements, process the digital signals and store the
measurement data. We designed the system as a state machine that can,
according to Harel (1987), be represented with the statechart of Fig. 4.9.
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Fig. 4.9: Statechart of the test bench with the states ‘Measure in
Velocity Mode’ and ‘Measure in Position Mode’ unclus-
tured.
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Subsequent to the primary ‘Initialize’ and ‘Start Polytec PSV’
states, the machine enters the central ‘Idle’ state, from which the surround-
ing states can be reached by user interaction. The most important states
are ‘Measure in Position Mode’ and ‘Measure in Velocity Mode’, as
they define the modal analysis measurements for rotation speeds ΩR = 0
and ΩR > 0, respectively. In accordance with Fig. 4.9 we give here a short
description of each state:

Initialize Initialize the program with the default settings.

Start Polytec PSV Start the Polytec PSV ActiveX client to control the
galvanometer scanner for the measurements on the stator disk.

Idle Default state where the user can enter other states by interaction.

Load Settings Load program settings from an XML file.

Save Settings Save program settings to an XML file.

Load Excitation Load excitation time signal from a text file.

Load Scan Points Load polar coordinates of the scan points on the rotor
and stator disk from a text file.

Set Rotor Position Set the angular position α of the sensor head by ac-
tuating the main motor.

Set Rotor Speed Set the rotor angular speed ΩR by actuating the main
motor.

Wait Until Speed Reached Measure the actual rotor angular speed ΩR
and wait until the desired value is reached.

Wait Wait for a desired amount of time. This state is used to achieve
stationary conditions for a measurement after changing the rotor speed
or position.

Set Rotor Beam Position Set the polar position (Rr,Rϕ) of the rotor
measuring spot by actuating the galvanometer scanner and the servo
motor of the polar scan unit. For the radial position, Snell’s law is
applied to determine the ray path through air, glass and the fluid.
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Set Stator Beam Position Set the polar position (Sr, Sϕ) of the stator
measuring spot by actuating the galvanometer scanners on the scan-
ning leaser head via ActiveX.

Measure Configure the data acquisition card with output, input and trig-
ger channels as well as the timing properties. Acquire the current
signal (input) and the velocity signals on stator and rotor (output).

Resample Resample the signals acquired with sampling frequency $s to
the resampling frequency $r via fast Fourier transform.

Create HDF5 Archive Create an initial HDF5 archive and assign the gen-
eral attributes.

Update HDF5 Archive Update HDF5 archive with the measured signals
and the measurement attributes.

Quit Shut down the Polytec PSV client and exit the program.

4.3.8 Data Storage
We briefly describe the structure of the archive file used to store the mea-
surement data, as it builds the interface between the acquisition and the
analysis of the measurements. We use the open-source hierarchical data
format HDF5, which was designed by the HDF Group (2018) to store large
multidimensional data structures together with metadata. This allows to
bundle the measurements with all the additional information into one well-
structured HDF5 file.

The major components of a HDF5 are groups, datasets and attributes.
Groups are used to structure the data as they can contain other groups and
datasets. Datasets are multidimensional arrays of a fixed datatype to store
large amount of data. Attributes can be attached to groups or datasets and
are used to store metadata related to them. We define the general attributes

• Program Name

• Identifier

• Date

• Medium

• Gap Width [m]

• Stator Thickness [m]

• Rotor Thickness [m]

• Rotor Velocity [rad/s]
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which are attached to the default root group ‘/’. The measurements are
bundled into the groups ‘Current’, ‘Rotor’ and ‘Stator’, in which each
group contains the resampled time signals stored as datasets. Each dataset
is labeled with the index of the measuring point starting with ‘000’ and
represents the signal measured at one measuring point. On every dataset
we attached the measurement attributes

• Position

• Start Time

• Time Increment [s]

• Unit

• Sensitivity [Unit/V]

• Signal Zero Offset [V]

• Refraction Correction [1]

• Cosine Correction?

• Angle of Incidence [rad]

to define the metadata to the individual measurement. The HDF5-file con-
tains the measurement of one scan and has a size of approximately 44 MB.



Measurements and
Modal Analysis 5
In the previous chapter, we were concerned with the experimental test bench
to study the rotor–stator coupling by liquids. Now, in the present chapter,
we describe the explicit measuring procedure to gather the measurement
data, explain the modal analysis to estimate the modal parameters and
show the experimental results.

The measuring procedure includes the individual preparation and the ref-
erence measurements of the rotor and the stator prior to the actual vibration
measurements of the complete rotor–stator system. These are important
steps to ensure a well-defined reference state without bias deformation and
stress. We further describe a single scan measurement to gather the vibra-
tion data for one parameter set. Finally, we describe the measurement series
which is a collection of scan measurements with varying parameters.

We estimate the modal parameters of the scan measurement data using
modal analysis. This analysis denotes the fitting of a parametrized model
to the measured data, usually carried out in the frequency domain. Our
system contains rotating solids and a flowing viscous fluid. Therefore, the
parametrized model needs to take gyroscopic effects and general damping
into account.

5.1 Measuring Procedure

5.1.1 Sample Preparation

In the present section, we describe the preparation of the rotor and the
stator disk for the vibration measurements. The reference state is verified
with measurements that we will discuss in the following section.

77
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Fig. 5.1: Placement of reflective stripes and location of measuring spots
on rotor and stator disk. Point of excitation and tightening order
for the 36 screws of stator disk.

Stator

The preparation of the stator includes the placement of the reflective stripes,
the clamping of the stator disk and the installation of the electromagnetic
excitation. The most important step is the clamping of the stator disk,
because this may lead to a detuning of the system.

We will scan the stator disk with 72 measuring spots arranged in a spider-
web array as illustrated in Fig. 5.1. Hence, we arrange 24 stripes (2.5 mm×
105 mm) of 3M Scotchlite 7610 reflective sheeting. These reflective stripes
increase the backscattering of the incoming laser beam and thus improve
the signal quality of the laser vibrometer considerably. The reflective sheet
has a mass density of 340 g/m2 which yields a total mass of 2.2 g for the
24 stripes. We can therefore neglect the added mass of the reflective sheet
compared to the mass of the stator—or even more to the modal mass of
the rotor–stator system.

We saw in § 4.2.2 that the stator disk is clamped between the massive
stator ring and the fastening ring. In the ideal case, the boundary condition
at the clamping diameter is rigid and the stator disk is in an undeformed
and stress-free reference state. We properly designed the components to
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get close to this ideal condition. To this end, we use ground sheets of
hardened steel to achieve a high accuracy of flatness for the stator disks.
Further we designed the clamping with a large number of screw joints to
achieve a uniform force distribution. However, the assembly process has
a significant influence on the detuning of the stator. Therefore, we define
the tightening procedure for the clamping of the stator disk as follows: We
tighten the screws according to the tightening order of Fig. 5.1 and increased
the torques in the sequence of 0.4 Nm, 1 Nm and 2 Nm. The reference
condition is verified by a comparison of the measured plate vibrations in
air with analytical results. If the experimental results deviate significantly
from the analytical results, the stator is disassembled and assembled again.
The reference measurements and the verification procedure are described in
§ 5.1.2.

Finally, we place the permanent-magnetic cube for the excitation at the
polar position (Sr, Sϕ) = (75 mm,−7π/18) with the south pole pointing
in the +eSz direction. The electromagnetic coil is mounted with a gap of
1 mm to the magnet cube according to Fig. 4.5.

Rotor

Consider the assembly of the rotor disk bonded to the rotor hub using
Double Bubble epoxy adhesive like described in § 4.2.2. To increase the
backscattering, we apply 12 stripes (2.5 mm × 75 mm) of 3M Diamond
Grade reflective sheet (see Fig. 5.1). This reflective sheet also works in wet
conditions and has a mass density of 480 g/m2, which yields a total mass of
1.1 g for the 12 stripes. Again, the added mass of these stripes is assumed
to be negligible. But they have a height of 0.4 mm which may alter the
fluid flow over the measuring surface.

5.1.2 Reference Measurements and Verification

We measure the eigenfrequencies of the rotor and the stator individually
prior to the vibration measurements of the rotor–stator system. With these
reference measurements we can document the reference state of our samples.
By comparing the measured eigenfrequencies with analytical values, we can
further verify the quality of the sample preparation of § 5.1.1.
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Tab. 5.1: Analytical and measured angular frequency ωr in rad/s for the
stators of various thicknesses hS. The analytic values for a
circular disk are calculated according to Leissa (1969). The
eigenfrequencies are measured in air.

hS = 1.0 mm hS = 1.5 mm
mode analytical measured analytical measured
(0, 0) 1023 989.0 1535 1567
(1, 0) 2130 2076 3195 3211
(2, 0) 3494 3399 5241 5225
(0, 1) 3984 3953 5976 5982
(3, 0) 5112 4995 7668 7638
(1, 1) 6093 6012 9140 9126
(4, 0) 6847 6979 10468 10452
(2, 1) 8393 8473 12709 12674

Tab. 5.2: Analytical and measured angular eigenfrequencies ωr in rad/s
for the rotors of various thicknesses hR. The analytic values for
an annular disk are calculated according to Vogel and Skinner
(1965). The eigenfrequencies are measured in air.

hR = 1.0 mm hR = 1.5 mm hR = 2.0 mm
mode analytical measured analytical measured analytical measured
(1, 0) 644.3 630.8 966.5 933.7 1289 1194
(0, 0) 728.5 745.2 1093 1057 1457 1384
(2, 0) 932.8 960.1 1399 1471 1866 1882
(3, 0) 1956 2042 2934 3104 3912 4020
(4, 0) 3418 3563 5127 5388 6837 6999
(0, 1) 4453 4407 6680 6524 8907 −
(1, 1) 4820 4794 7230 7077 9639 9067
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Fig. 5.2: Analytical mode shapes of stator according to Leissa (1969).

Fig. 5.3: Analytical mode shapes of rotor according to Vogel and Skinner
(1965).
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Stator

For the reference measurement of the stator, we place the prepared stator
assemblies (stator disk, stator ring, fastening ring) on an optical table using
foam supports. It is important to choose the gap between stator disk and
optical table large enough. Otherwise, the air cavity between disk and table
becomes a resonator and alters the eigenfrequencies of the stator. We have
found out that the gap must exceed 150 mm to suppress this effect.

We excite the stator vibration with a broad-band periodic chirp signal
according to Boyd (1986) using the electromagnetic arrangement of § 4.3.3.
We measure the vibration velocity at 72 measuring spots with the scanning
vibrometer of § 4.3.4 placed on a tripod. To extract the eigenfrequencies
ωr, we simply search for peaks in the frequency spectra of the velocity
signals. The eight lowest eigenfrequencies of the stators with thicknesses
hS of 1.0 mm and 1.5 mm are listed in Tab. 5.1. The table also lists the
analytical values for the eigenfrequencies of a disk clamped at the diameter
DS = 250 mm. The values are computed according to Leissa (1969) using
% = 7850 kg/m3, E = 210 GPa and ν = 0.3 as material parameters. We
used the same analytical approach to plot the corresponding mode shapes
of Fig. 5.2. The modes are labeled with (n, l), where n ∈ N0 denotes the
azimuthal wave number (or the number of nodal diameters) and l ∈ N0 its
radial index (or the number of nodal circles).

The measured eigenfrequencies are in good agreement with the analyt-
ical values. The measured values for the stator thickness hS = 1.0 mm
deviate less than 3.3% and the values for hS = 1.5 mm less than 2.0% from
the analytical solution. We conclude that the prepared stators can be well
described with the analytical model of a clamped disk. Hence, the clamping
is nearly ideally rigid and the bias stress due to the tightening of the stator
disk can be neglected.

Rotor

Similar to the stator assembly, we performed reference measurements of
the rotor assemblies (rotor disk, rotor hub). Accordingly, we mounted a
single rotor on the optical table using an intermediate plate to achieve a
high stiffness. We used the same equipment for the excitation and the
measurement of the vibration as for the stator. Again, the eigenfrequencies
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are estimated by locating the peaks in the frequency spectra of the measured
velocity signals.

In Tab. 5.2 we list the seven lowest eigenfrequencies ωr for rotors with
thicknesses hR of 1.0 mm, 1.5 mm and 2.0 mm. The measured eigen-
frequencies are compared to the analytical solution by Vogel and Skinner
(1965) of an annular disk which is clamped at the diameter dR = 30 mm
and free at the outer diameter DR = 200 mm, again using % = 7850 kg/m3,
E = 210 GPa and ν = 0.3 as material parameters. With the same analyti-
cal approach, we plot the mode shapes corresponding to the eigenvalues in
Fig. 5.3. When we compare the agreement of the measured eigenfrequencies
with the analytical results we note some deviations. The measured values
of the rotor with thickness hR = 1.0 mm deviate less than 4.4%, the one
with hR = 1.5 mm less than 5.8% and the one with hR = 2.0 mm less than
7.4%. This increasing discrepancy suggests that the bonding between rotor
disk and rotor hub might not be ideally rigid for the stiff disks.

5.1.3 Test Bench Preparation
We assume that the rotor and the stator are well prepared according to
§ 5.1.1. Prior to each scan measurement on the rotor–stator system, we
perform the following steps to prepare the test bench:

1. Power on all electric devices so that they can heat up to the thermal
equilibrium.

2. Degas the water using the Sonoswiss SW 12 H ultrasonic cleaner.
The degassing of the water is necessary, to avoid the formation of
air bubbles in the central low-pressure region of the fluid flow. These
bubbles would interrupt the target laser path of the rotor scanning
vibrometer and disturb the velocity measurement. Further, they might
influence the dynamics of the fluid through a change of density and
stiffness properties.

3. Clean the optical window carefully using Loctite SF 7063 parts cleaner
and Kimtech precision wipes. This is also an important step to ensure
the unobstructed optical access of the rotor scanning vibrometer.

4. Fit the rotor onto the shaft and tighten the central screw with a torque
of 5 Nm. The relative angular position is arbitrary, as we set the zero
reference position in the next step.
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5. Move the rotor to the reference position Rϕ = 0 (confer Fig. 4.3).
Use the servo motor for this homing movement and set home position
to zero.

6. Fit the stator to the casing and use a packet of spacers to adjust the
gap width g between rotor and stator disk. The spacer packet must
be assembled to the height

a = g + hS − 1.4 mm, (5.1)

where hS is the thickness of the stator disk. Tighten the 18 screws
with a torque of 3 Nm.

7. Carefully flood the fluid cavity with the degassed water until the casing
is filled completely. Avoid the building of air pockets at protruding
edges.

8. Activate the main motor controller and run the homing procedure to
find the angular home position of the scanner head at β = 5π/4.

After this preparation, the test bench is ready for the scan measurements
described in the following sections.

5.1.4 Scan Measurement
We measure the vibration of the rotor–stator system in a pointwise scan.
This is a consecutive sequence of repetitive point measurements. For each
measurement, we switch the measuring spots on rotor and stator while
keeping the point of excitation fixed. In the present section, we specify the
scan measurements and the corresponding parameters.

Modes of Operation

As depicted in Fig. 4.9, we distinguish two modes of operation: (i) the posi-
tion mode with ΩR = 0 rad/s and (ii) the velocity mode with ΩR > 0 rad/s.
The excitation, the location of the measuring spots and the temporal sam-
pling are the same for both modes. Nevertheless, we would like to point out
the variations.

In the position mode, we keep the rotor angle fixed at β = 0 (confer
Fig. 4.3). This yields a static condition with the rotor speed ΩR = β̇ =



5.1. Measuring Procedure 85

0 rad/s and a fluid at rest. Nevertheless, due to the azimuthal adjustment
mechanism of our test bench, we need to change both, Rϕ and α in order
to hold β = 0 fixed. This disturbs the fluid slightly, when the azimuthal
position of the measuring spot is changed. In that case, we wait for 30 s
before starting the single spot measurement so that the disturbance can
decay.

In the velocity mode, we run up the rotor to the desired angular rotor
speed ΩR. Prior to the actual scan measurement, we wait for 300 s to allow
the fluid flow to reach a stationary condition. To ensure consistent initial
conditions, we set the triggering so that each point measurement starts
when the rotation angle is at β = 0.

Spatial Sampling

We arrange the 72 measuring spots on the rotor and the stator in a spider-
web array according to Fig. 5.1. The spots are equally spaced in azimuthal
direction in Nϕ = 12 azimuthal grid lines. In radial direction, the spots are
linearly spaced in Nr = 6 grid circles. The radii of the circles lie between
17 mm and 110 mm for the stator and between 27 mm and 98 mm for the
rotor.

Excitation

We excite the rotor–stator system with an electromagnetic coil at the lo-
cation (Sr, Sϕ) = (75 mm,−7π/18) (see Fig. 5.1). We use the windowed
chirp signal of Fig. 5.4 to drive the electromagnetic coil. The signal is
described by the chirped sine function

U(t) = U0 sin θ(t), (5.2)

where θ(t) denotes the instantaneous phase and U0 the voltage amplitude.
For a windowed linear chirp, we define the ramp

$(t) =

$1 + ($2 −$1) t− t1
t2 − t1

t1 ≤ t < t2

0 otherwise,
(5.3)

for the instantaneous angular frequency $(t) = θ̇(t). Therein, $1 denotes
the frequency at time t1 and $2 the one at the end time t2. The instanta-
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Fig. 5.4: (a) Normalized voltage signal U(t)/U0 in time domain. (b) De-
tail of U(t)/U0 around the start time ts. (c) Amplitude spectrum
of Û($)/U0 in the frequency domain.

neous phase is then found by the integration

θ(t) =
∫ t

0
$(τ) dτ. (5.4)

Our specific excitation signal has a length of T = 5 s. We sweep the
frequency from $1 = 0 rad/s at t1 = 0.2 s to the frequency $2

.= 15.7 ×
103 rad/s at t2 = 4.2 s. The excitation terminates at t2 = 4.2 s such
that the vibration decays in the remaining 0.8 s measuring time. Thus, no
information is transferred between the subsequent point measurements and
they become independent. Further, the windowing is necessary to suppress
spectral leakage. As can be seen in the amplitude spectrum of Fig. 5.4, the
signal provides a broad-band excitation with a nearly constant amplitude up
to $2

.= 15.7× 103 rad/s.
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Note that we defined the voltage signal and not the current signal that
drives the electromagnetic coil. It would be more useful to define the cur-
rent signal directly, because it is proportional to the excitation force of the
system. Unfortunately, it is more demanding to use a current controlled
amplifier. We therefore use a voltage amplifier to drive the coil but measure
the resulting current with a Hall-effect sensor (see Fig. 4.4).

Temporal Sampling

Here, we specify the sampling parameters based on the principles of § 4.3.6.
The frequency range of interest ranges up to the maximum excitation fre-
quency of $2

.= 15.7 × 103 rad/s. This determines the resampling rate
$r = 2$2

.= 31.4 × 103 rad/s and the time increment ∆t = 200 µs. We
set the cut of frequency of the anti-aliasing filter to $c

.= 188× 103 rad/s
and the sampling rate of the data acquisition card to $s

.= 628×103 rad/s.

Data Storage

We store the data for each scan measurement in a separate HDF5 archive
with the structure documented in § 4.3.8. The archive file contains the
waveforms of the current signal I(t) as well as the velocity components
vz(t) of the rotor and the stator for the 72 scan points. The signals are
sampled at the resample frequency $r

.= 31.4 × 103 rad/s. Further, we
attached all information necessary for the subsequent analysis of the data.
The naming pattern is

stator-1.5_rotor-1.0_gap-03.6_Omega-160_00.h5

for the exemplary parameters hS = 1.5 mm, hR = 1.0 mm, g = 3.6 mm
and ΩR = 160 2π

60 rad/s .= 16.8 rad/s.

5.1.5 Series of Measurements
We perform a series of scan measurements by varying the parameters stator
thickness hS (2 levels), rotor thickness hR (3 levels), gap width g (8 levels)
and angular rotor speed ΩR (7 levels). The parameter levels of the param-
eters are listed in Tab. 5.3. We do not cover all combinations of the four
parameters, but restrict the three geometrical parameters to the 4× 8 = 32
combinations illustrated in Fig. 5.5. For each geometrical combination we
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Tab. 5.3: Parameters and level values in the series of measurements.

paramter symbol level values unit
stator thickness hS {1.0, 1.5} mm
rotor thickness hR {1.0, 1.5, 2.0} mm
gap width g {1.4, 2.2, 2.9, 3.6, 4.4, 6.4, 9.4, 14.4} mm
angular rotor speed ΩR {0, 8.38, 16.8, 25.1, 33.5, 41.9, 50.3} rad/s

Fig. 5.5: Combinations of the geometrical parameters in the series of mea-
surements. On each depicted point, the angular rotor speed ΩR
takes the 7 levels {0, 8.38, 16.8, 25.1, 33.5, 41.9, 50.3} rad/s.

run measurements for all 7 levels of the angular rotor speed ΩR. For the
complete series, this yields a total of 32× 7 = 224 scan measurements with
a cumulative measuring time of approximately 42 h.

5.2 Modal Analysis
Our experiment provides time signals of the excitation (input) and the re-
sulting vibration (output) of the rotor–stator system. The aim of the modal
analysis is to estimate the modal parameters from the measurement data.
For each mode m, the modal parameters are the complex eigenvalue

λm = −δr
m + jωr

m, (5.5)
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composed of the angular eigenfrequency ωr
m and the damping factor δr

m, as
well as the mode shapes rm and lm describing the right and left eigenvectors,
respectively. The eigenvalue λm determines the temporal evolution of a
mode without excitation according to

eλmt = e(−δr
m+jωr

m)t = e−δ
r
mt e jωr

mt. (5.6)

We then see that the angular eigenfrequency ωr
m is assigned to the pseudo

angular frequency of the free oscillations and the damping factor δr
m to its

temporal decay rate. The collection of all modes fully describes the dynamics
of a linear system.

The fundamentals of modal analysis are well described in the textbooks
by Ewins (2000) and Heylen et al. (1997). However, they only partially cover
the dynamics of rotating structures which is essential for our rotor–stator
system. For the theory of rotor dynamics, we refer to the textbook by Gasch
et al. (2012) and the fundamental contributions by Nordmann (1984a,b).

In the following section, we briefly present the basic theory of modal
analysis with regard to rotating structures. Subsequently, we utilize rotation
symmetries and adapt the formulation to our specific test bench measure-
ments.

5.2.1 Theory
Second-order Form

Consider a linear time-invariant mechanical system with degree of freedom
N formulated in the second-order form as

M¨̃u(t) + (D + G) ˙̃u(t) + (K + N)ũ(t) = F̃ (t), (5.7)

where ũ(t) ∈ RN is the displacement vector and F̃ (t) ∈ RN the force
vector exciting the structure. M, D, G, K and N denote the mass matrix,
the damping matrix, the gyroscopic matrix, the stiffness matrix and the
matrix of circulating forces, respectively. They are constant elements of
RN,N with the properties

M = MT � 0, D = DT, G = −GT, K = KT, N = −NT. (5.8)

The skew-symmetric matrices G and N take effects due to the rotating
structures into account and need to be included in our system.
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Associated to the inhomogeneous system (5.7), we can find the homo-
geneous system

M¨̃u(t) + (D + G) ˙̃u(t) + (K + N)ũ(t) = 0 . (5.9)

by setting F̃ (t) ≡ 0 . This system describes the free vibrations of the struc-
ture without any excitation. If we apply the exponential ansatz

ũ(t) = <{reλt}, ˙̃u(t) = <{λ reλt}, ¨̃u(t) = <{λ2 reλt}, (5.10)

this yields the right eigenvalue problem in second-order form

[λ2M + λ(D + G) + (K + N)]r = 0 . (5.11)

There are 2N right eigenpairs (λm, rm) satisfying this equation, with λm ∈
C denoting the m-th eigenvalue and rm ∈ CN its associated right eigen-
vector. We can also formulate the left eigenvalue problem in second-order
form

lT[λ2M + λ(D + G) + (K + N)] = 0 T, (5.12)
with 2N left eigenpairs (λm, lm). The left eigenvectors lm ∈ CN are the
right eigenvectors of the transposed problem of (5.9) and they therefore
share the same eigenvalues λm. We concatenate the right and left eigen-
vectors to the right and left modal matrices

R :=
(
r1 r2 · · · r2N

)
, L :=

(
l1 l2 · · · l2N

)
, (5.13)

respectively. Further, we assume that the 2N eigenvalues are distinct and
not real valued so that the eigenvalues and eigenvectors can by ordered in
complex conjugate pairs

λm+N = λ∗m, rm+N = r∗m, lm+N = l∗m, m = 1, . . . , N. (5.14)

First-order Form

The system in second-order form (5.7), with a general damping matrix D
and skew-symmetric matrices G and N, is not diagonalizable (Müller, 1977,
p. 58). Nevertheless, we can rewrite (5.7) in the first-order form(

K + N 0
0 −M

)
︸ ︷︷ ︸

=: A

(
ũ(t)
˙̃u(t)

)
︸ ︷︷ ︸
=: x̃(t)

+
(

D + G M
M 0

)
︸ ︷︷ ︸

=: −B

(
ũ(t)
˙̃u(t)

)̇
︸ ︷︷ ︸
=: ˙̃x(t)

=
(

F̃ (t)
0

)
︸ ︷︷ ︸
=: f̃ (t)

, (5.15)
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where we stack the displacement and velocity vector to the state vector
x̃(t) ∈ R2N and define the general force vector f̃ (t) ∈ R2N . This first-order
form, which writes in short-hand notation as

Ax̃(t)− B˙̃x(t) = f̃ (t), (5.16)

is diagonalizable with the bi-modal decomposition described below. Accord-
ingly, we need the right and left eigenvectors of the first-order form. Again,
we start with the associated homogeneous system

Ax̃(t)− B˙̃x(t) = 0 , (5.17)

by setting f (t) ≡ 0 . Applying the ansatz

x̃(t) = <{reλt}, ˙̃x(t) = <{λreλt}, (5.18)

yields the right eigenvalue problem in first-order form

(A− λB)r = 0 (5.19)

and the related left eigenvalue problem in first-order form is

lT(A− λB) = 0 T. (5.20)

If we compare the first row of (5.15) with (5.7), we recognize that the eigen-
values of the two forms are equal and that the right and left eigenvectors
are interrelated by

rm :=
(

rm
λmrm

)
, lm :=

(
lm

λmlm

)
. (5.21)

We can again build the right and left modal matrix by concatenation of the
eigenvectors

R :=
(
r1 r2 · · · r2N

)
=
(

r1 r2 · · · r2N
λ1r1 λ2r2 · · · λ2N r2N

)
, (5.22)

L :=
(
l1 l2 · · · l2N

)
=
(

l1 l2 · · · l2N
λ1l1 λ2l2 · · · λ2N l2N

)
. (5.23)

We note that the eigenvalues are distinct and order the eigenvalues and
eigenvectors as complex conjugated pairs

λm+N = λ∗m, rm+N = r∗m, lm+N = l∗m, m = 1, . . . , N. (5.24)
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Bi-modal Decomposition

In §A.4 we show that the left eigenvectors ln and right eigenvectors rm are
bi-orthogonal with respect to A and B for distinct eigenvalues λn and λm,
this is

lTnArm =
{

0 n 6= m

am n = m,
lTnBrm =

{
0 n 6= m

bm n = m.
(5.25)

If all eigenvalues of (5.19) are distinct, the left modal matrix L and the
right modal matrix R then diagnoalize the matrices A and B according to

a := LTAR = Λ, b := LTBR = I, (5.26)

with diagonal matrices a and b. We further normalize the eigenvectors such
that lTnBrm = δnm with bm = 1, and b therefore equals the identity matrix
I. In this case, the matrix a becomes the matrix Λ with the 2N eigenvalues
am = bmλm = λm on its diagonal.

We multiply LT to the left of (5.16), use the relation RR−1 = I and
write the first-order form as

(LTAR)R−1x̃(t)− (LTBR)R−1 ˙̃x(t) = LTf̃ (t) (5.27)

Further, we introduce generalized coordinates q̃(t) ∈ C2N and generalized
forces g̃(t) ∈ C2N defined by

q̃(t) := R−1x̃(t), g̃(t) := LTf̃ (t) = LTF̃ (t). (5.28)

With this variable transformation, we rewrite (5.27) as

Λq̃(t)− I ˙̃q(t) = g̃(t), (5.29)

where (5.16) is decomposed into 2N scalar equations of the form

λmq̃m(t)− ˙̃qm(t) = g̃m(t) m = 1, . . . , 2N, (5.30)

with g̃m(t) = lTmf̃ (t) = lT
mF̃ (t). Note that q̃(t) and g̃(t) are complex-

valued variables which have no simple physical interpretation. After solving
(5.30) we can recast the real-valued physical solution by

x̃(t) = Rq̃(t) =
2N∑
m=1

rmq̃m(t), ũ(t) = Rq̃(t) =
2N∑
m=1

rmq̃m(t). (5.31)
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Frequency Response Function

It is convenient to represent (5.30) in the frequency domain. Hence, we
take the Fourier transform of the excitation time signal

F̂ ($) =
∫ +∞

−∞
F̃ (t) e−j$t dt (5.32)

to write the Fourier transform of the generalized force as

ĝm($) =
∫ +∞

−∞
g̃m(t) e−j$t dt =

∫ +∞

−∞
lT
mF̃ (t) e−j$t dt

= lT
m

∫ +∞

−∞
F̃ (t) e−j$t dt = lT

mF̂ ($). (5.33)

The Fourier transform of the decoupled ordinary differential equations in
the time domain (5.30) leads to the algebraic equations in the frequency
domain

(λm − j$)q̂m($) = ĝm($) (5.34)
with the solutions

q̂m($) = ĝm($)
λm − j$. (5.35)

Analogous to (5.31), we can recast the solution for the response in the
frequency domain by

û($) =
2N∑
m=1

rmq̂m($) =
2N∑
m=1

rmĝm($)
λm − j$

=
2N∑
m=1

rmlT
m

λm − j$ F̂ ($) =
N∑
m=1

[
rmlT

m

λm − j$ + r∗ml∗Tm
λ∗m − j$

]
︸ ︷︷ ︸

=: H($)

F̂ ($),

(5.36)

where we introduced the frequency response function matrix H($) ∈ CN,N .
Although H($) is describing the response behaviour of the system, it is
entirely formed by the modal parameters λm, rm and lm, which themselves
are determined by the homogeneous system (5.9). Equations (5.36) and
(5.28) show that the left eigenvectors lm describe the receptivity of the
mode m to the force F̂ (ω).
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5.2.2 Adaption to Test Bench Measurements
For the modal analysis of the test bench, we assume that the force response
of the system can be described by the model (5.7) with degree of freedom
N equal to the number of measuring spots Nr · Nϕ = 6 · 12 = 72 (see
Fig. 5.1). We represent the N displacement components in +eSz direction
by the displacement vector ũ(t). The force vector F̃ (t) models the excitation
mapped onto the grid of measuring spots.

In (5.36), we provide the frequency response relation û($) = H($)F̂ ($)
in its general form. It would need N2 = 5184 measurements (by varying
the points of excitation and response individually) to completely determine
the frequency response function matrix H($). Additionally, each individual
mode m is characterized by the complex modal parameters λm, rm and lm,
which results in 2N + 1 = 145 complex or 2(2N + 1) = 290 real scalars.
It is not feasible to measure all combinations and to estimate such a large
number of parameters. The present section describes how we reduced the
complexity to a reasonable level and states the underlying assumptions.

In the present study we focus on the right eigenvectors rm which describe
the mode shape of the free vibration without excitation. We therefore disre-
gard the left eigenvectors lm that characterize the receptivity of mode m to
the spatial force distribution of F̃ (t). For this, we assume a decomposition
of the force vector according to

F̃ (t) = Γ F̃ (t), (5.37)

with a constant force distribution Γ ∈ RN and a scalar force magnitude
F̃ (t) proportional to the current signal of the electromagnetic coil. This
means that all N force components mapped to the measuring grid have the
same temporal waveform, or, in the frequency domain

F̂ ($) = Γ F̂ ($), (5.38)

they all share the phase defined by the Fourier transform F̂ ($) ∈ C. This
assumption holds for the stator measurements at arbitrary angular rotor
speeds ΩR. For the rotor measurements, the assumption is violated for
angular rotor speeds ΩR 6= 0, because the stator-fixed excitation is rotating
in the rotor system with an angular rotation speed ΩF = −ΩR, and hence,
the force distribution Γ becomes time dependent. With a constant force
distribution Γ , we define an averaged reception factor

l̄m := lT
mΓ , (5.39)
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which is assumed to be nonzero. We are free to normalize the left eigen-
vector lm and for convenience we choose

l̄m = lT
mΓ = l∗Tm Γ = 1. (5.40)

With this normalization, we write the products lT
mF̂ ($) and l∗Tm F̂ ($) ap-

pearing in (5.36), as

lT
mF̂ ($) = lT

mΓ F̂ ($) = l̄mF̂ ($) = F̂ ($), (5.41)
l∗Tm F̂ ($) = l∗Tm Γ F̂ ($) = l̄mF̂ ($) = F̂ ($), (5.42)

and define the averaged frequency response function vector H̄($) ∈ CN as

H̄($) := û($)
F̂ ($)

=
N∑
m=1

[
rmlT

mΓ
λm − j$ + r∗ml∗Tm Γ

λ∗m − j$

]

=
N∑
m=1

[
rm

λm − j$ + r∗m
λ∗m − j$

]
. (5.43)

We now present an ansatz for the complex right eigenvector rm which
describes the right mode shape. Let Rim denote the elements of the right
modal matrix R specified in (5.13), with the index i = 1, . . . , N running
over all measuring spots and m indexing the mode. We utilize the rotation
symmetry of the test bench design and suggest a product ansatz for the
right mode shapes (see Fig. 5.6)

R(q−1)Nr+p,m = Ψm(rp) Φm(ϕq), p = 1, . . . , Nr, q = 1, . . . , Nϕ.
(5.44)

Therein, Ψm(rp) ∈ R specifies the real-valued radial mode shape and
Φm(ϕq) ∈ C the complex-valued azimuthal mode shape. The index i =
1, . . . , N is split up into the radial index p = 1, . . . , Nr and the azimuthal
index q = 1, . . . , Nϕ. As the radial mode shape Ψm(rp) is real, all radial
points share the same phase. For the azimuthal mode shape we further
propose a Fourier ansatz

Φm(ϕq) = e j(−nmϕq+ϑm), q = 1, . . . , Nϕ, (5.45)

with the azimuthal wave number nm ∈ Z, the rotation angle ϑm ∈ R
and the grid angles ϕq = (q − 1)2π/Nϕ. With this ansatz for the right
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Fig. 5.6: Real part of the right mode shape with the product ansatz
R(q−1)Nr+p,m = Ψm(rp) Φm(ϕq) = Ψm(rp) e j(−nmϕq+ϑm),
exemplarly shown for a (1, 1) mode with nm = 1.

eigenvector, we write the averaged frequency response function from (5.43)
as

H̄(q−1)Nr+p($) =
û(q−1)Nr+p($)

F̂ ($)
p = 1, . . . , Nr, q = 1, . . . , Nϕ

=
N∑
m=1

[
R(q−1)Nr+p,m

λm − j$ +
R∗(q−1)Nr+p,m

λ∗m − j$

]

=
N∑
m=1

[
Ψm(rp) Φm(ϕq)

λm − j$ + Ψm(rp) Φ∗m(ϕq)
λ∗m − j$

]

=
N∑
m=1

Ψm(rp)
[

e j(−nmϕq+ϑm)

(−δr
m + jωr

m)− j$ + e−j(−nmϕq+ϑm)

(−δr
m − jωr

m)− j$

]
,

(5.46)

where we reintroduced the angular eigenfrequency ωr
m and the damping

factor δr
m from (5.5).
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Note that due to the Fourier ansatz (5.45), a single mode m with az-
imuthal wave number nm ∈ Z appears to rotate with an angular frequency
Ωm = ωr

m/nm. A standing vibration mode is only formed by a pair of two
counter-rotating modes m− and m+ with opposite-signed azimuthal wave
numbers nm− = −nm+ and equal angular eigenfrequencies ωr

m− = ωr
m+ .

Moreover, it is important to note that the angular eigenfrequency depends
on the angular rotation speed of the observer. The relation between the
eigenfrequency Aωr

m in system A and the eigenfrequency Bωr
m in system B

is given by
Bω

r
m = Aω

r
m − nmΩAB , (5.47)

where ΩAB denotes the angular speed of the B-system relative to the A-
system. We therefore mark the eigenfrequencies with a preceding subscript
indicating the observer system. The damping factor δr

m, on the other hand,
is not affected by a change of observer and we omit the mark. We write the
relation between the stator system S and the rotor system R explicitly as

Rω
r
m = Sω

r
m − nmΩR, (5.48)

with the rotor angular speed ΩR defining the relative motion ΩSR. It follows
from (5.47) that we always find an observer system M where the eigenfre-
quencies of a mode pair are equal, that is Mωr

m− = Mω
r
m+ .

For each mode m, we have reduced the number of parameters to Nr +
3 = 9 real variables, namely Ψm(r1), . . . ,Ψm(rNr ), ωr

m, δr
m and ϑm. Ad-

ditionally, the Nr = 6 variables of the radial mode shape Ψm(rp) appear
linearly in (5.46), which simplifies the parameter fit. To estimate these
modal parameters, we measured Nr ·Nϕ = 72 frequency response functions
by varying the measuring spot and keeping the excitation fixed.

5.2.3 Numerical Implementation
The present section concerns the numerical implementation of the modal
parameter estimation. The task is to find modal parameters Ψm(rp), ωr

m,
δr
m and ϑm for which the response model (5.46) best fits the measured fre-
quency response functions in the sense of least squares. We used Matlab
for the complete modal-analysis procedure.

First, we transform the measured excitation and response signal into
the frequency domain using the fast Fourier algorithm proposed by Cooley
and Tukey (1965) and compute the measured frequency response functions.
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Fig. 5.7 shows frequency response functions of Nr · Nϕ = 72 measuring
spots acquired on the stator disk for a selected parameter set. Because we
measured the vibration velocity instead of the displacement, we work with
the mobility j$H($) instead of the receptance H($) (see Ewins (2000,
p. 36) for the terminology). In the frequency response function, we identify
the resonance peaks and antiresonance valleys that are important features
for the parameter fit.

We employed the following tricks to achieve a robust estimation of the
modal parameters:

• We estimate the modal parameters by minimizing the least squares of
the error between frequency response function of model and measure-
ment. As the frequency response is a complex function, we split the
error up in a real and an imaginary part.

• We separate the linear parameters (Ψm(rp)) from the nonlinear pa-
rameters (ωr

m, δr
m, ϑm). In the outer loop, we solve the nonlinear

least-squares problem using the Matlab function lsqnonlin with
the algorithm by Coleman and Li (1994, 1996). In the inner loop, we
solve the linear least-squares problem using the QR algorithm.

• For the initial guess of the nonlinear parameters we used the following
data. For the stator analysis at ΩR = 0 rad/s the initial guess values
are sourced from acoustic finite element simulations. For the rotor
analysis and the stator analysis at ΩR > 0 rad/s we used already
computed results of the stator at lower or equal speeds.

• We do not fit all modes in the measured frequency spectrum at once.
Instead, we scan the frequency spectrum in sections from lower to
higher frequencies. We used a frequency range width of 800 rad/s
and only fitted the modes inside this range.

• The frequency response functions of modes outside the frequency
range are considered with residual terms. We used the frequency
response function of the already computed modes for the residuals
of modes below the frequency range. The residuals of modes above
the frequency range are approximated by additional terms of the form
H̄c
i ($) = s̄i, where c̄i = 1/s̄i denote residual stiffnesses as proposed

by (Ewins, 2000, p. 325) and i = 1, . . . , N .
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• The measurement signals experience a group delay τ by passing through
the electronic devices. We take the resulting linear phase shift into
account by multiplying the frequency response function of the model
by e j$τ .

• For a pair of counter-rotating modesm− andm+ with nm− = −nm+ ,
we couple the damping factors by δr

m− = δr
m+ . At rotor angular

speed ΩR = 0 rad/s, we also couple the angular eigenfrequencies by
ωr
m− = ωr

m+ .

Fig. 5.8 shows a comparison of the frequency response function of the
measurement and the model at different rotor speeds ΩR. It also provides
the decomposition of the frequency response function into the individual
modes. We see that the resonance peaks of mode pairs, which match at
ΩR = 0 rad/s, become more and more separated with increasing rotor speed
ΩR. This frequency splitting of modes with azimuthal wave number nm 6= 0
is well described by the model. The next section discusses the experimental
results in more detail.

5.3 Experimental Results
We now present the experimental results from the modal analysis carried
out for the rotor–stator system. In § 5.1.5, we defined the set of 224 pa-
rameter combinations for the complete series of measurements. It is not
reasonable to discuss all results because of the extensive amount of data.
For that reason, we show a selection of expressive results, discuss their
physical interpretation in detail and provide generalizations. The modal pa-
rameters estimated for all measured parameter combinations are tabulated
in Appendix B.

5.3.1 Eigenfrequency Spectrum and Mode Shapes
In Fig. 5.9 we plot the spectrum of angular eigenfrequencies ωr

m for a se-
lected parameter set and in Fig. 5.10 the corresponding mode shapes. The
modes are labeled by (nm, lm)↑↓ or (nm, lm)↑↑, where nm ∈ Z denotes the
azimuthal wave number (or the number of nodal diameters), lm ∈ N0 is the
radial index of the stator (or the number of nodal circles) and the super-
scripts ‘↑↓’ and ‘↑↑’ indicate varicose and sinuous modes, respectively. We
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Fig. 5.9: Spectrum of angular eigenfrequencies ωr of rotor–stator sys-
tem for hS = 1.0 mm, hR = 2.0 mm, g = 2.2 mm and
ΩR = 0 rad/s.

call a mode varicose if the motion of the rotor is mainly opposed to the
stator and sinuous if the motion is mainly synchronous.

From Fig. 5.9, we recognize that the eigenfrequencies can be clustered
to branches of equal radial index lm and equal type (varicose/sinuous). The
branches of the varicose and sinuous modes with radial index lm = 0 can be
well approximated by quadratic functions, whereas the modes with lm = 1
may be described by a linear relation between eigenfrequency and azimuthal
wave number. A comparison of Fig. 5.9 with the frequency spectrum of
the semi-analytical model in Fig. 3.3 shows the close resemblance of the
behavior—for the varicose modes as well as for the sinuous modes.

Note that in Fig. 5.10 we only visualize the motion of the rotor and the
stator, whereas we hide the fluid motion, which indeed contributes to the
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Fig. 5.10: Real part of measured right mode shapes of rotor–stator system
for hS = 1.0 mm, hR = 2.0 mm, g = 2.2 mm and ΩR =
0 rad/s. The stator is on the left, the rotor on the right and
the spider-web grid indicates the measuring spots.
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mode. We can imagine that the fluid motion strongly depends on the mode
type. For a varicose mode, where the rotor and the stator are moving in
opposite directions, the fluid cavity in between gets strongly squeezed. This
leads to large in-plane accelerations of the fluid in the cavity which results
in an increased modal mass. For a sinuous mode, on the other hand, the
motion of rotor and stator is mainly synchronous and the fluid is only slightly
squeezed. The larger modal mass of the varicose mode due to the squeezing
is the reason for the lower frequency compared to the sinuous mode (confer
varicose and sinuous modes in Fig. 5.9).

The mode shapes in Fig. 5.10 are visualized for one specific parameter
set. Nevertheless, these mode shapes are reasonably generic. The major
changes can be expressed by the amplitude ratio between rotor and stator
defined by

κm := max|ΨR
m(r)|

max|ΨS
m(r)| > 0. (5.49)

5.3.2 Modal Parameters without Bias Motion
In the present section we discuss the modal parameters for all experiments
without bias motion, this is ΩR = 0 rad/s. We plot the angular eigen-
frequency ωr

m, the damping factor δr
m and the amplitude ratio κm for all

geometrical parameter combinations in Figs. 5.11–5.14.
For the presentation of the data we use the color scheme defined in

Tab. B.0 of Appendix B. Modes with radial index lm = 0 are plotted with
solid lines and higher order modes with lm > 0 are plotted with dashed
lines. The legend on the right of the plots of Figs. 5.11–5.14 are ordered
according to the angular frequency ωr.

Angular Eigenfrequency ωr
m

We observe that the angular eigenfrequencies ωr
m of the varicose (∗, 0)↑↓

modes monotonically increase with the gap width g like a square-root func-
tion. In contrast, the eigenfrequencies of the sinuous (∗, 0)↑↑ modes only
increase up to a gap width of g ≈ 4 mm and then remain about constant.
Note that the stiffness of the structure is not influenced by a variation of the
gap width and the change of the eigenfrequency must therefore be caused
by a mass effect. At smaller gap widths, the squeezing effect between rotor
and stator becomes more and more dominant, which increases the modal
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mass and therefore decreases the eigenfrequency. It seems that for the sin-
uous modes, the fluid gets significantly squeezed only for small gap widths
of approximately g < 4 mm, which may be caused by the difference of the
radial modes shapes between rotor and stator.

By comparing Fig. 5.11 and Fig. 5.12, where the rotor thickness hR
varies from 1.0 mm to 1.5 mm, we observe that eigenfrequencies of the
varicose (∗, 0)↑↓ modes increase strongly (approximately 65% per 0.5 mm),
whereas the eigenfrequencies of the sinuous (∗, 0)↑↑ modes only increase
weakly (approximately 5% per 0.5 mm). This effect gets saturated by a
further increase of the rotor thickness hR as can be seen in Fig. 5.13. In
contrast, a variation of the stator thickness hS leads to a slight increase of
the eigenfrequencies of the varicose (∗, 0)↑↓ modes (approximately 5% per
0.5 mm) and a strong increase of the eigenfrequencies of the sinuous (∗, 0)↑↑
modes (approximately 70% per 0.5 mm). This can be seen by comparing
Fig. 5.12 with 5.14, where the stator thickness changes from 1.0 mm to
1.5 mm. In summary, we conclude that in the investigated parameter range
the eigenfrequencies of the varicose (∗, 0)↑↓ modes are more sensitive to the
rotor thickness hR and the eigenfrequencies of the sinuous (∗, 0)↑↑ modes
to the stator thickness hS.

Damping Factor δr
m

Referring to (5.6), we need to clarify that the damping factor δr
m is as-

sociated to the temporal rate of exponential decay for the system without
excitation. If we are interested in a measure for the decay per oscillation,
we may introduce the damping ratio defined by

Dm := δr
m

ωr
m

. (5.50)

Considering Figs. 5.11–5.14, we notice more variations in the damping factor
data compared to the eigenfrequency data. This indicates that the estima-
tion of the damping factor is affected by larger uncertainties.

In general, the damping factor rises with the azimuthal wave number
|nm|. This is mainly due to the associated eigenfrequency ωr

m, which also
rises with the azimuthal wave number, and as a consequence thereof, in-
creases the number of oscillations per time.

We also see that the damping factor drops for small gap widths g and
then levels off. This dependency on the gap width may again be explained
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Fig. 5.11: Measured angular eigenfrequency ωr, damping factor δr and
amplitude ratio κ as a function of the gap width g for hS =
1.0 mm, hR = 1.0 mm and ΩR = 0 rad/s.
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Fig. 5.12: Measured angular eigenfrequency ωr, damping factor δr and
amplitude ratio κ as a function of the gap width g for hS =
1.0 mm, hR = 1.5 mm and ΩR = 0 rad/s.
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Fig. 5.13: Measured angular eigenfrequency ωr, damping factor δr and
amplitude ratio κ as a function of the gap width g for hS =
1.0 mm, hR = 2.0 mm and ΩR = 0 rad/s.
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Fig. 5.14: Measured angular eigenfrequency ωr, damping factor δr and
amplitude ratio κ as a function of the gap width g for hS =
1.5 mm, hR = 1.5 mm and ΩR = 0 rad/s.
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by the oscillating squeezing flow between rotor and stator. At smaller gap
widths, the in-plane fluid velocity increases, and accordingly, the velocity
gradient of the viscous boundary layer too. The larger velocity gradient then
raises the viscous dissipation resulting in a larger damping factor, despite
the fact that the eigenfrequency also falls with decreasing gap width.

Amplitude Ratio κm

The amplitude ratio κm of the rotor to the stator is defined in (5.49). An
amplitude ratio κm > 1 indicates a mode with dominating rotor vibration
and κm < 1 indicates a mode with dominating stator vibration.

A comparison of Figs. 5.11–5.13 shows a different behaviour of the vari-
cose (∗, 0)↑↓ and sinuous (∗, 0)↑↑ modes. The amplitude ratios of the sinuous
(∗, 0)↑↑ modes are nearly unaffected by the azimuthal wave number |nm|,
especially for gap widths g > 4 mm. The varicose (∗, 0)↑↓ modes, on the
other hand, show a strong dependence of the amplitude ratio on the az-
imuthal wave number. A higher azimuthal wave number |nm| generally
lowers the amplitude ratio of the varicose modes, except for the (1, 0)↑↓ and
(2, 0)↑↓ modes, for which the sequence of amplitude ratios are reversed (see
Fig. 5.12 and 5.13).

The dependence of the amplitude ratio on the gap width g is also differ-
ent for varicose (∗, 0)↑↓ and (∗, 0)↑↑ sinuous modes. Whereas the amplitude
ratios of the sinuous modes slightly decline, we observe rising amplitude
ratios of the varicose modes for increasing gap widths.

If we compare the amplitude ratios of 5.11 with 5.14, for which the
thickness ratios hR/hS are equal, we observe a strong similarity. This pro-
vides evidence that the amplitude ratio κm is mainly determined by the
thickness ratio hR/hS, instead of the individual thickness parameters hR
and hS. With an increasing thickness ratio, the amplitude ratios κm of the
varicose (∗, 0)↑↓ modes get strongly reduced, whereas the amplitude ratios
of the sinuous (∗, 0)↑↑ modes remain nearly constant.

5.3.3 Modal Parameters with Bias Motion
We now study the influence of the bias motion on the modal parameters
by examining the measurements at angular rotor speeds ΩR > 0 rad/s. In
Fig. 5.15 we present the angular frequency Sω

r
m, the damping factor δr

m
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and the amplitude ratio κm for a selected parameter set at various angular
rotor speeds ΩR.

Angular Eigenfrequency ωr
m

Let us first focus on the implications of the angular rotor speed ΩR on the
angular eigenfrequency Sω

r. Consider Fig. 5.15 and locate a pair of modes
m− and m+, with nm− = −nm+ , which have equal eigenfrequencies at
ΩR = 0 rad/s. We observe that the eigenfrequencies separate for ΩR >
0 rad/s when measured in the stator system S. In the S-system, the branch
with the higher eigenfrequency Sω

r
m+ is associated with the positive wave

number nm+ > 0 and the lower eigenfrequency Sω
r
m− with the negative

wave number nm− < 0. From § 5.2.2, we know that the single modes
appear to rotate with angular frequency SΩm = Sω

r
m/nm. We therefore

denote a mode m+ as co-rotating (rotating in the same direction as the
rotor) and m− as counter-rotating (rotating in the opposite direction as the
rotor). The difference

S∆ωr
m := Sω

r
m+ − Sω

r
m− (5.51)

is called the angular frequency split and plotted in Fig. 5.16 for the selected
parameter set. We see that S∆ωr

m is approximately proportional to the
azimuthal wave number |nm| and the angular rotor speed ΩR. In conse-
quence, we do not observe a separation of the eigenfrequency for modes
with nm = 0.

Note that the eigenfrequencies ωr
m, as well as the reported separation of

the eigenfrequencies, depend on the rotation speed of the observer according
to relation (5.47). For a given pair of modes, we can therefore always find
an observer that does not detect a separation of the eigenfrequencies. The
eigenfrequencies in the rotor system R can be calculated using (5.48). When
going from the S to the R-system, the eigenfrequencies of a mode pair
switch the order. The co-rotating mode m+ is then associated with the
lower eigenfrequency Rω

r
m+ and the counter-rotating m− with the higher

eigenfrequency Rω
r
m− .

Damping Factor δr
m

Furthermore, we discuss the influence of the angular rotor speed ΩR on the
damping factor δr

m. From Fig. 5.15 we see that some damping factors δr
m
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Fig. 5.15: Measured angular eigenfrequency Sω
r, damping factor δr and

amplitude ratio κ as a function of the angular rotor speed ΩR
for hS = 1.0 mm, hR = 2.0 mm and g = 3.6 mm. Modes are
distinguished by nm > 0 (solid lines), nm < 0 (dashed lines)
and nm = 0 (dash-dotted lines).
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Fig. 5.16: Measured angular frequency split S∆ωr as a function of the
angular rotor speed ΩR for hS = 1.0 mm, hR = 2.0 mm and
g = 3.6 mm.

fall up to a low point and then increase slightly. The location of the lowest
point and its damping factor value seem to depend on the initial damping
factor at ΩR = 0 rad/s. For larger initial damping values, the lowest point
is located at higher angular rotation speeds and has a larger minimum value.

Amplitude Ratio κm
Finally, we take a look at the angular rotor speed dependency of the ampli-
tude ratio κm. In Fig. 5.15 we recognize a slight decline of the amplitude
ratio for the vast majority of the modes.





Finite Element
Simulations 6
The present chapter covers the numerical modeling of the rotor–stator sys-
tem coupled by a viscous liquid, which has been experimentally studied in
Chapter 5. We use the simulation software COMSOL Multiphysics to com-
pute eigenfrequencies and eigenmodes of the fluid-coupled system with the
finite element method. This software allows us to implement user-defined
equations in weak variational form, just as we derived them in Chapter 2 by
applying the principle of virtual work and power.

We present the simulation model for the test bench described in Chap-
ter 4 and discuss the underlying assumptions. Additionally, we exploit rota-
tion symmetries of the test bench geometry and the vibrational mode shapes
to reduce the problem from three to two dimensions. Further, we discuss
the implementation in COMSOL Multiphysics with emphasis on the com-
putation of the bias motion and the computational grid. Finally, we present
and discuss selected simulation results of the test bench model.

6.1 Test Bench Model

6.1.1 Model and Assumptions
Fig. 6.1 shows the axisymmetrical geometry of the numerical test bench
model. The complete modeling domain is composed of the stator domain S̄,
the rotor domain R̄ and the fluid domain F̄. These domains are deduced
from the nominal geometry of the stator disk, the rotor disk and the fluid
cavity, respectively, by omitting non-axisymmetrical features and small-scale
details (compare Fig. 6.1 with Fig. 4.2). The gap width g, the stator thick-
ness hS and the rotor thickness hR are the geometrical parameters of the
model.

115
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Fig. 6.1: Geometry of the test bench model with the specification of the
domains and interfaces. Dimensions are given in mm.
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We refer to § 2.1 and model the stator disk S and the rotor disk R as
linear elastic solid bodies. For the rotor, we additionally include gyroscopic
effects by a rigid-body motion of the reference configuration with angular
velocity

Ω = ΩReIz, (6.1)

where ΩR denotes the angular rotor speed. As described in § 2.2, we model
the fluid F as a Newtonian liquid constrained to an incompressible motion.

We decompose the domain boundaries according to their interface con-
ditions. Hence, the stator boundary is subdivided into

∂S = ∂Scon ∪ ∂Samb ∪ (∂S ∩ ∂F). (6.2)

where ∂Scon denotes the stator–rigid interface with the displacement con-
straint to u = 0 , ∂Samb refers to the traction-free stator–ambient interface
with t = 0 , and ∂S∩∂F indicates the stator–fluid interface with constraint
force t = −ϕ as traction vector (see § 2.3.2). Accordingly, we write

∂R = ∂Rcon ∪ (∂R ∩ ∂F) (6.3)

for the decomposition of the rotor boundary and

∂F = ∂Fcon ∪ (∂S ∩ ∂F) ∪ (∂R ∩ ∂F), (6.4)

for the decomposition of the fluid boundary with the interfaces specified in
Fig. 6.1. Note that for three-dimensional domains, we do not include the
symmetry interfaces δSsym and δFsym. We incorporate them later, when
we reduce the model from three to two dimensions.

We assume that the vibrations are described by infinitesimal perturba-
tions q̃ of the bias motion q̄ according to § 2.1.4. Further, we assume a sta-
tionary bias motion q̄, or otherwise, an approximation by its time-averaged
solution. Additionally, we neglect all external body forces B and b in the
solid and fluid domains, respectively.

6.1.2 Perturbation Equations
In the present section, we gather the perturbation equations from Chapter 2
and adapt them to our test bench model. From (2.51), we deduce the



118 Chapter 6. Finite Element Simulations

linearized perturbation equation for the stator disk S as

0 = δW̃totS =
∫
S̄

−δu · %s∂2
t ũ dV

+
∫
S

−δĒ : S̃ dV +
∫
S

−δẼ : S̄ dV

+
∫
∂S∩∂F

−δu · ϕ̃ dA ∀δuadm, ∀t,

(6.5)

with the perturbation displacement ũ, the virtual displacement δu, the bias
stress S̄, the perturbation stress S̃, the bias variation of the Green–Lagrange
strain δĒ, the perturbation variation of the Green–Lagrange strain δẼ and
the constraint force ϕ̃. Notice that we applied the principle of d’Alembert–
Lagrange to eliminate the virtual work contribution of the constraint trac-
tions on the stator–rigid interface ∂Scon. We therefore only allow admissible
(virtual) displacement fields which are zero on ∂Scon.

Similarly, we deduce the linearized perturbation equation for the rotor
disk R from (2.51) as

0 = δW̃totR =
∫
R̄

−δu · %s{∂2
t ũ + 2∂t(∂X ũ)Ẋ

+ [(∂X∂X ũ)Ẋ ]Ẋ + (∂X ũ)Ẍ}dV

+
∫
R

−δĒ : S̃ dV +
∫
R

−δẼ : S̄ dV

+
∫
∂R∩∂F

−δu · ϕ̃dA ∀δuadm, ∀t,

(6.6)

where we retained the acceleration terms arising from the motion of the
rotor reference configuration. Combining (2.6) and (6.1) with P = O and
VO = AO = 0 yields the specific velocity and acceleration fields of the
reference configuration

Ẋ = Ω ×X , Ẍ = Ω × (Ω ×X). (6.7)

Again, we eliminated the constraint tractions on the rotor–rigid interface
∂Rcon by applying the principle of d’Alembert–Lagrange.
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From (2.99) we find the linearized perturbation equation for the fluid F
as

0 = δP̃totF =
∫
F̄

−δv · %f [∂tṽ + (∂x v̄)ṽ + (∂x ṽ)v̄] dV

+
∫
F

−δd : (2µf d̃− p̃I) dV

+
∫
∂S∩∂F

δv · ϕ̃ dA+
∫
∂R∩∂F

δv · ϕ̃ dA ∀δvadm, ∀t,

(6.8)
where ṽ denotes the perturbation velocity, v̄ the bias velocity, δv the virtual
velocity, d̃ the perturbation strain rate, δd the variation of the strain rate
and p̃ the perturbation pressure. The constraint tractions on the fluid–rigid
interface ∂Pcon are eliminated using the principle of Jourdain. Additionally,
we enforce a divergence-free velocity field by the incompressibility constraint
(2.85), that is,

0 = δΠ̃p =
∫
F

−δp(̃l : I) dV ∀δp, ∀t, (6.9)

where δp denotes the virtual pressure.
Finally, we state the kinematic coupling condition on the rotor–fluid

interface ∂R∩ ∂F and on the stator–fluid interface ∂S∩ ∂F. The linearized
constraint deduced from (2.115) then reads

0 = δΠ̃µ =
∫
∂R∩∂F

δµ · {∂tũs + (∂X ũs)Ẋ s − (∂x v̄f)ũs − ṽf} dA

+
∫
∂S∩∂F

δµ · {∂tũs − (∂x v̄f)ũs − ṽf} dA ∀δµ, ∀t,

(6.10)
where δµ is the virtual traction vector. Note the superscripts ’s’ and ’f’ to
distinguish solid and fluid variables, respectively.

Equations (6.5)–(6.10) fully describe the dynamics of linear perturba-
tions superposed to a bias motion. We can combine them into one single
scalar equation in variational form

0 = δW̃totS + δW̃totR + τ(δP̃totF + δΠ̃p + δΠ̃µ)
∀δuadm, ∀δvadm, ∀δµ, ∀δp, ∀t

(6.11)

where the time constant τ may be used for a proper scaling.
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6.1.3 Cylindrical Coordinates and Rotational Symmetry
Notice that the governing equations of the previous section are all written
in a coordinate-free tensor form. To evaluate the expressions, we need to
introduce a coordinate system appropriate to the given geometry. A natural
choice for our axisymmetrical model is a parameterization with cylindrical
coordinates (r, ϕ, z), where r refers to the radial coordinate, ϕ to the az-
imuthal coordinate and z to the axial coordinate. Odgen (1984, pp. 1–72)
presents a comprehensible introduction to tensor analysis with a focus on
the differentiation in curvilinear coordinates. In §A.2 we summarize the
necessary ingredients for our situation and evaluate the tensors given in
(6.5)–(6.10) using cylindrical coordinates.

We now simplify (6.11) by taking advantage of rotational symmetries.
Recall that all terms in (6.11) are integrals of a duality pairing (virtual work,
virtual power) between elements of the primal space (virtual displacements,
virtual velocities) and the dual space (forces, tractions, stresses). For sim-
plicity, we write δw̃ for the duality pairing, δu for the primal variable and F̃
for the dual variable throughout the remaining part of this section. We ap-
ply a Fourier ansatz in azimuthal direction for the primal and dual variables
according to

δu(r, ϕ, z) = <{δŭ(r, z) e−jnϕ}, (6.12a)
F̃ (r, ϕ, z, t) = <{F̆ (r, z, t) e−jnϕ}, (6.12b)

where n ∈ Z denotes the azimuthal wave number. The complex variables
δŭ ∈ C and F̆ ∈ C specify the azimuthal Fourier coefficients of δu and F̃ ,
respectively. Thus, we can write the duality pairing as

δw̃ = δu(r, ϕ, z) · F̃ (r, ϕ, z, t)
= <{δŭ(r, z) e−jnϕ} · <{F̆ (r, z, t) e−jnϕ}

= <{|δŭ| e j(arg δŭ−nϕ)} · <{|F̆ | e j(arg F̆−nϕ)}
= |δŭ| |F̆ | cos(arg δŭ− nϕ) cos(arg F̆ − nϕ)

= 1
2 |δŭ| |F̆ | [cos(arg δŭ− arg F̆ ) + cos(arg δŭ+ arg F̆ − 2nϕ)].

(6.13)
Note that the integrals in (6.11) are either volume integrals over a three-
dimensional domain, here denoted as G3, or surface integrals over its two-
dimensional boundary, here denoted as ∂(G3). Accordingly, the virtual work
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integrals become∫
G3
δw̃ r dϕdr dz︸ ︷︷ ︸

dV

=
∫
G2

(∫ 2π

0
δW̃ dϕ

)
r dr dz, (6.14a)

∫
∂(G3)

δw̃ r dϕds︸ ︷︷ ︸
dA

=
∫
∂(G2)

(∫ 2π

0
δW̃ dϕ

)
r ds, (6.14b)

where ds :=
√

dr2 + dz2 is an infinitesimal line element. The cyclic virtual
work integral in the bracket appears in the volume integral as well as the
surface integral. We substitute the duality pairing from (6.13) to evaluate
this integral for n 6= 0 as∫ 2π

0
δw̃ dϕ =

∫ 2π

0
δu · F̃ dϕ

= 1
2 |δŭ| |F̆ |

∫ 2π

0
[cos(arg δŭ− arg F̆ )

+ cos(arg δŭ+ arg F̆ − 2nϕ)] dϕ

= 1
2 |δŭ| |F̆ |

[
cos(arg δŭ− arg F̆ )ϕ

− 1
2n sin(arg δŭ+ arg F̆ − 2nϕ)

]2π

0

= π |δŭ| |F̆ | cos(arg δŭ− arg F̆ )

= π
δŭ∗ · F̆ + δŭ · F̆ ∗

2︸ ︷︷ ︸
=: 〈δŭ, F̆ 〉

.

(6.15)

The term in (6.13) oscillating with ϕ does not contribute to the integral over
a complete revolution. We abbreviate the relevant expression by 〈δŭ, F̆ 〉,
which measures the phase angle between δŭ and F̆ .

With (6.15), we reduced the dimension of the integrals (6.14) by one.
Hence, the volume integral over G3 is replaced by an area integral over the
cross section G2 and the surface integral over ∂(G3) is replaced by a line
integral along the contour ∂(G2). By doing this, we need to incorporate
additional symmetry boundary conditions at the centerline r = 0. Batchelor
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Tab. 6.1: Symmetry boundary conditions according to Gloor (2014, p. 10)
for the velocity v̆, the pressure p̆ and the interface traction ϕ̆
at the centerline r = 0.

n = 0 n = ±1 |n| ≥ 2
(i) 0 = v̆r 0 = v̆r ∓ jv̆ϕ 0 = v̆r
(ii) 0 = v̆ϕ 0 = ∂rv̆r 0 = v̆ϕ
(iii) 0 = ∂rv̆z 0 = v̆z 0 = v̆z
(iv) 0 = ∂rp̆ 0 = p̆ 0 = p̆
(v) 0 = ϕ̆r 0 = ϕ̆r ∓ jϕ̆ϕ 0 = ϕ̆r
(vi) 0 = ϕ̆ϕ 0 = ∂rϕ̆r 0 = ϕ̆ϕ
(vii) 0 = ∂rϕ̆z 0 = ϕ̆z 0 = ϕ̆z

and Gill (1962) initially derived the boundary conditions based on geometric
reasoning and Khorrami et al. (1989) have provided its formalized form.
In Tab. 6.1 we list the conditions for the velocity v̆, the pressure p̆ and
the interface traction ϕ̆ applied to the interfaces ∂Ssym and ∂Fsym (confer
Fig. 6.1). The same conditions were also successfully applied by Müller
(2007, p. 26) and Gloor (2014, p. 10) to investigate the stability of swirling
jet flows.

6.1.4 Modal Ansatz
The perturbation equations of § 6.1.2 are still explicitly depending on time.
In accordance with the experimental modal analysis of § 5.2, we apply the
modal ansatz

q̃i(r, ϕ, z, t) = <{

q̆i(r, z, t)︷ ︸︸ ︷
q̂i(r, z) eλt e−jnϕ} qi ∈ ur, uϕ, uz, vr, vϕ, vz, p, . . .

= <{q̂i(r, z) e−δ
rt e j(ωrt−nϕ)}

(6.16)

to all cylindrical components qi of the perturbation variables appearing
in (6.11). If we now select an azimuthal wave number n ∈ Z and apply
the ansatz (6.16), then (6.11) states an eigenvalue problem with eigen-
solutions (λ, q̂i(r, z)), where λ ∈ C refers to the complex eigenvalue and
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q̂i(r, z) to the complex eigenfunctions. Identically to (5.5), we can express
the eigenvalue as λ = −δr +jωr, with the damping factor δr and the angular
eigenfrequency ωr. From (6.16), we see that the modes are exponentially
decaying with e−δrt and that they rotate in azimuthal direction with angular
frequency Ω = ωr/n.

6.2 Implementation in COMSOL Multiphysics
In the present section, we briefly discuss some aspects regarding the finite
element implementation of the test bench model described in § 6.1. We
used COMSOL 5.2a (build 152) for all simulations and refer to COMSOL
(2016a,b) for its documentation. COMSOL Multiphysics takes advantage
of the intrinsic modularity of the finite element approach. Consistently, it
separates and recombines the key ingredients, which are basically: definition
of the physics in weak variational form, mesh generation, definition of ba-
sis functions, numerical integration using quadratures, constraint handling
either by elimination or by Lagrange multipliers, assembly of equations, nu-
merical solution of equations, and post-processing. Especially the capability
to introduce user-defined physics directly in weak form differentiates COM-
SOL from other finite element codes, where the physics is either hard coded
or can only be altered by low-level user subroutines.

In the following, we are concerned with the specific implementation of the
test bench model. The simulation is subdivided into the three consecutive
solution steps which we explain in more detail in the subsequent sections:

1. fluid bias motion (stationary analysis)

2. solid bias motion (stationary analysis)

3. perturbation motions of solid–fluid system (eigenvalue analysis)
The two initial simulation steps are stationary and define the linearization
point for the eigenvalue analysis in the third step. By the separation of
the stationary steps 1 and 2, we presume that the fluid bias motion is not
influenced by the small deformations of the solid bias motion.

6.2.1 Fluid Bias Motion
In the first simulation step, we solve for the bias fluid motion in the do-
main F̄, about which we linearize the perturbation equations of the fluid.
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Tab. 6.2: Material properties for the fluid domain F̄ and the solid domains
S̄ and R̄.

domain parameter variable value

F̄ mass density %f 998.206 kg/m3

F 1st viscosity µf 1.0016 mPa · s
S̄, R̄ mass density %s 7850 kg/m3

S, R Young’s modulus E 210 GPa
S, R Poisson’s ratio ν 0.3

}
water

}
steel 1.4034

For this, we use the turbulent flow interface of COMSOL’s CFD Mod-
ule and model the fluid with the Reynolds averaged Navier–Stokes equa-
tions (RANS) together with the k–ε turbulence model (COMSOL, 2016c).
Hence, the model does not resolve the temporal and spatial turbulent fluc-
tuations in the fluid but, in return, calculates the stationary, time-averaged
flow. In the domain F̄, we solve for the bias velocity v̄ and the bias pres-
sure p̄. On the interfaces ∂S ∩ ∂F and ∂R ∩ ∂F, we also solve for the bias
traction vector t̄ = ϕ̄. The axisymmetrical model is defined in the (er, ez)-
plane, but we allow for vector components in the azimuthal eϕ-direction by
activating swirl flow.

We make use of wall functions to apply the no-slip boundary condition at
the walls. These wall functions approximate the thin boundary layer at the
wall without the need to resolve it with finite elements. At the boundaries,
where the fluid is in contact with the rotor (rotor disk and rotor shaft), we
set the sliding wall condition and additionally specify the tangential velocity
component as

V̄ϕ = rΩR, (6.17)

where ΩR denotes the angular speed of the rotor.
The material properties of the water are set according to Tab. 6.2. These

values are derived from the formulations of the IAPWS (2007, 2008) using
the reference temperature T0 = 293.15 K and pressure p0 = 101.4 kPa.

We use linear shape functions for both the velocity field and the pressure
field when discretizing the fluid domain with quadrilateral elements. To en-
force convergence of the non-linear equations, we solve them in an auxiliary
sweep by incrementally increase the angular rotor speed ΩR.
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6.2.2 Solid Bias Motion

The second simulation step solves for the bias solid motion in the domains S̄
and R̄, about which the perturbation equations for the solid are linearized.
We use COMSOL’s general weak form PDE interface to solve (2.31) for
the bias motion ū, which is, in the present stationary case, simply a static
deformation. The major quantity that enters the perturbation equations is
the bias stress S̄, which enables the stress stiffening effect. As boundary
conditions, we apply the surface traction T̄ = −ϕ̄ computed in the pre-
vious simulation step and constrain the displacements at ∂Scon and ∂Rcon

to ū = 0 . We include centrifugal effects in the rotor domain R̄ using
the acceleration terms (2.10) evaluated with (6.7) and (6.1). The material
properties for the steel disks are provided in Tab. 6.2. We discretize the dis-
placement field using quadrilateral nodal serendipity elements with shape
functions of quadratic order.

6.2.3 Perturbation Motions of Solid–Fluid System
The third simulation step solves the eigenvalue problem for the perturbation
equation (6.11). Here, we apply the monolithic approach, where the equa-
tions for the solids S and R, the fluid F and their interaction are processed
at once. The linearized equations (6.11) with the contributions defined in
(6.5)–(6.10) are entered in COMSOL’s weak form PDE interface. As lin-
earization point, we take the solutions of the bias motion of the proceeding
simulation steps.

We work with the reduced two-dimensional model and therefore employ
the azimuthal ansatz (6.12) as well as the symmetry boundary conditions
defined in Tab. 6.1. This implies that the eigenvalue problem of the two-
dimensional model becomes dependent on the azimuthal wave number n,
and consequently, the eigenvalue problem can not be solved for all modes at
once. Instead, we solve successively for each individual mode and thereby
also adapt the mesh to the viscous boundary layer. For more details about
the computational grid we refer to the next section.

We discretize the displacement field û in the solid domains S̄ and R̄ using
quadrilateral nodal serendipity elements with shape functions of quadratic
order. In the fluid domain F̄, we apply quadrilateral Lagrange elements,
which are of quadratic order for the velocity field v̂ and of linear order for
the pressure field p̂.
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6.2.4 Computational Grid
In the present section, we discuss some aspects of the computational grid
generation. We saw in the previous sections that we exclusively use quadri-
lateral elements for discretization. These elements are accurate, but it is
difficult to generate a proper mesh, particularly in an automatic way.

That is why we apply the block grid technique to define a structured
mesh of quadrilateral elements. This means that we manually subdivide the
computational domain S̄ ∩ R̄ ∩ F̄ into quadrilateral blocks, like depicted in
Fig. 6.2(a). Each of these blocks can then be meshed with quadrilateral
elements using simple direct methods. Indeed, this technique is laborious,
but it is also robust and computationally efficient, allows to explicitly specify
the mesh density and hence produces high-quality meshes.

In general, we choose the element size according to the gradient of
the field variables. In regions with large gradients we define a finer grid
than in regions with small gradients. Since we do not know the solution
beforehand, we apply physical intuition for the initial meshing. Once, a
solution is calculated, the mesh quality is improved by iterative refinement
and coarsening.

We discretize the stator disk S̄ and the rotor disk R̄ with eight elements
equally spaced over the thickness. In the fluid domain F̄ we set the default
element size to 1.5 mm, which applies to inner regions away from solid
boundaries. Special care is required for the mesh at the vibrating fluid–solid
interfaces ∂S∩∂F and ∂R∩∂F. In the fluid’s near-wall region, we expect the
formation of a viscous boundary layer due to the relative perturbation motion
of solid and fluid. This situation is related to Stokes’ second problem of an
infinite plane boundary oscillating at frequency ωr, where an exponentially
decaying boundary layer is formed. According to White (2005, pp. 130), the
Stokes boundary layer has an approximate thickness of

δf = 6.5

√
µf

ωr%f , (6.18)

and therefore depends on the frequency ωr, the viscosity µf and the den-
sity %f . For water it takes the values 292 µm at 500 rad/s and 92 µm at
5000 rad/s. Fig. 6.2(b) shows a detail of the blocking at the near wall re-
gions. To resolve the Stokes layer, we define boundary layer blocks of thick-
ness δf , which are discretized with fifteen elements geometrically spaced
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Fig. 6.2: (a) Subdivision of computation domain S̄ ∩ R̄ ∩ F̄ into quadri-
lateral blocks. (b) Detail of blocking in the region of the outer
diameter of the rotor disk. (c) The same detail with the struc-
tured mesh using quadrilateral elements.
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over the thickness and adjusted to an estimated frequency of the mode.
The additional block of thickness ∆f = 3 mm allows a smooth transition
from the fine boundary layer the coarse inner regions.

The blocking and meshing procedure of the computational domain is
fully parametrized. We use the same blocking for all simulation steps, ex-
cept that we adjust the thickness of boundary layer block δf . In total, the
simulation model of the test bench approximately counts 20 000 elements
and 250 000 degrees of freedom.

6.3 Simulation Results
In the present section, we focus on selected simulation results which are
characteristic for the bias motion and the vibration of the rotor–stator con-
figuration. Further results, such as the modal parameters, will be separately
presented in the following Chapter 7, where we also compare them with the
experimental data.

6.3.1 Bias Motion
The (non-zero) solutions of the bias motion for the simulated parameter
configurations show high similarities. We therefore exemplarily provide and
discuss the results for one selected parameter set. Fig. 6.3 shows the axisym-
metrical solution of the stationary Reynolds-averaged Navier–Stokes equa-
tions for a selected configuration. The primary bias flow is in the azimuthal
ϕ-direction, which is indicated by a contour plot of the azimuthal velocity
component v̄ϕ. The bias fluid motion also features secondary flows, which
are visualized by a vector plot of the cross-section components (v̄r, v̄z).
Note that the azimuthal velocity component v̄ϕ is much larger than the
radial component v̄r and the axial component v̄z. We observe three recircu-
lation regions: (i) The torsional Couette flow between stator disk and rotor
disk, (ii) the von Kármán flow above the rotor disk and (iii) a recirculation
flow above the fastening ring.

The torsional Couette flow between rotor and stator disk is primarily a
shear flow with an azimuthal velocity component increasing from v̄ϕ = 0
at z = −g (stator disk) to v̄ϕ = ΩRr at z = 0 (rotor disk). Boundary
layers are formed near the wall due to the turbulent flow regime. The low-
velocity secondary flow shows a recirculation pattern with a radial outflow
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Fig. 6.3: Simulated bias velocity field v̄ of test bench model for hS =
1.0 mm, hR = 2.0 mm, g = 2.2 mm and ΩR = 50.3 rad/s. The
color indicates the velocity component v̄ϕ and the arrows the
cross-section components (v̄r, v̄z).
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near the rotor wall and a radial inflow near the stator wall. The axial flow
is negligible except at the center r = 0, where the axial flow allows an
exchange of the radial in- and outflow. The pressure between the rotor and
stator disk declines radially towards the center.

The fluid motion above the rotor disk corresponds to the flow described
by von Kármán (1921). Again, the flow has a primary component in the
azimuthal ϕ-direction which is superimposed by a secondary flow. The
rotation of the disk effects a radial outflow near the wall and this in turn
induces a slow axial flow towards the disk. In this way, the rotating disk acts
as a centrifugal pump and perpetuates the recirculation of the fluid confined
in the cavity. Additionally, the sharp edges at the outer radius of the rotor
disk and the inner radius of the fastening ring initiate a flow detachment,
and hence, leads to the separation of the flow into the three recirculation
regions.

6.3.2 Modes Shapes
Fig. 6.4 shows simulated mode shapes for a selected parameter set. The
naming convention for the modes is the same as defined in § 5.3.1, that is,
(n, l)↑↓ and (n, l)↑↑ denote varicose and sinuous modes, respectively, with an
azimuthal wave number n and a radial index l. A qualitative comparison with
the measured mode shapes in Fig. 5.10 shows a good agreement between
experiment and simulation.

6.3.3 Features of Perturbation Motion

Perturbation Flow in the Fluid Gap

The perturbation motion of the fluid in the gap between rotor and stator is
crucial for the understanding of the coupling mechanism. For that reason,
we take the time to study the perturbation motion in the fluid gap in detail.
Fig. 6.5 shows profiles for the velocity components v̂r, v̂ϕ and v̂z at different
radial positions in the fluid gap. The profiles are plotted for a varicose
(+2, 0)↑↓ mode and the corresponding sinuous (+2, 0)↑↑ mode. Notice that
the varicose mode has a lower eigenfrequency ωr and a higher damping
factor δr compared to the sinuous mode. Consider Fig. 6.4 to note that
these two modes have similar mode shapes of the rotor and the stator, but
that for the varicose mode the directions of motion are opposed whereas for
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Fig. 6.4: Real part of simulated mode shapes of rotor–stator system for
hS = 1.0 mm, hR = 2.0 mm, g = 2.2 mm and ΩR = 0 rad/s.
Compare with measured mode shapes in Fig. 5.10.
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the sinuous mode the directions are equal. This fact can also be seen in
a comparison of the axial velocity component v̂z, where the varicose case
exhibits a sign change of the nearly linear profile whilst the sinuous case
does not.

Due to the no-slip condition at the wall, the perturbation flow of both
modes feature a viscous boundary layer, which is most pronounced in the
profiles of the components v̂r and v̂ϕ. The boundary layer is analogous to the
one of Stokes’ second problem with an approximation of the thickness given
in (6.18). Accordingly, the boundary layer thickness is proportional to 1/

√
ωr

and we calculate δf = 0.30 mm for the varicose mode and δf = 0.17 mm
for the sinuous mode. These analytical values well predict the thickness
of the simulated boundary layers. Hence, our simulation model is capable
to describe the damping of the system due to viscous effects. For the
situation with no bias motion with ΩR = 0 rad/s, this is the only mechanism
that contributes to the damping. This is because there is in this case no
interaction between bias motion and perturbations, and because our model
neglects acoustic radiation, damping in the solid bodies and higher-order
effects (acoustic streaming).

An inspection of Fig. 6.5 reveals that the in-plane velocity components
v̂r and v̂ϕ are much larger in the varicose case than in the sinuous case. This
is due to the relative motion of the rotor and the stator, which is different for
the two cases. Characteristic for the varicose mode are velocity components
v̂z of the rotor and the stator which are opposite in direction. This leads
to a squeezing flow in the gap between rotor and stator, where the fluid
flows from regions where the gap narrows to regions where the gap widens.
This effect is much less pronounced for sinuous modes, where the velocity
components v̂z of the rotor and the stator are in the same direction. The in-
plane flow in sinuous case mainly compensates for the different mode shapes
of rotor and stator (due to their different boundary and stiffness conditions).

It is this kinematic effect that leads to larger accelerations of the fluid
for the varicose mode and, as a consequence, to an increased added-mass
effect. The larger virtual mass results in a lower eigenfrequency of the
varicose mode compared to the sinuous mode. Additionally, the squeezing
flow also leads to a larger velocity gradient at the boundary layer of the
wall, which explains the higher damping factor of the varicose mode (also
considering the lower eigenfrequency).

A comparison of the velocity components v̂r and v̂z in Fig. 6.5 with the
components v̂z and v̂z of the semi-analytical model in Fig. 3.5 show a good
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Fig. 6.5: Simulated profiles of velocity components v̂r, v̂ϕ and v̂z at dif-
ferent radial positions in the fluid gap between stator and rotor.
(a) varicose mode (+2, 0)↑↓ and (b) sinuous mode (+2, 0)↑↑ for
hS = 1.0 mm, hR = 2.0 mm, g = 2.2 mm and ΩR = 0 rad/s.
Magnitude (solid lines), real part (dashed lines), imaginary part
(dash-dotted lines).
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agreement. Many of the effects discussed above have already be discovered
in the analysis of the strongly simplified sandwich of Chapter 3.

Edge Vortices

Fig. 6.6 shows exemplarily the simulated total flow field of a (+4, 0)↑↓ mode
in the vicinity of the rotor’s outer diameter for two different rotor speeds.
In the first case with ΩR = 0 rad/s, there is no bias motion and the total
motion is simply described by the perturbations. We identify two fluid
vortices that are located at the sharp edges of the rotor disk which are
oriented equally. These vortices are induced by the motion of the rotor disk
in the fluid initially at rest. In case with angular rotation ΩR = 50.3 rad/s,
the underlying bias flow advects the vortices away from the edge and forms
a wake of alternating co- and counter-rotating spirals. From Fig. 6.3 we
see that the radial velocity of the bias flow at the upper edge is larger and,
therefore, the vortices are advected further away. A consequence of this
phenomenon is that the vortices of the wake need to be spatially resolved,
which demands a finer computational grid in regions away from the walls.
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Fig. 6.6: Simulated total flow field around the outer diameter of the rotor
disk for mode (+4, 0)↑↓ at (a) ΩR = 0 rad/s and (b) ΩR =
50.3 rad/s. The color indicates the total vorticity component
η̄ϕ + εη̃ϕ and the arrows the total velocity cross-section compo-
nents (v̄r + εṽr, v̄z + εṽz) for hS = 1.0 mm, hR = 2.0 mm and
g = 3.6 mm.





Comparison of
Experiment with
Simulation 7
We have described the experimental measurements on the test bench in
Chapter 5 and simulations of the same configuration in Chapter 6. There,
we have already seen the qualitative good agreement between mode shapes
from experiments (Fig. 5.10) and from simulations (Fig. 6.4). In the present
chapter, we compare the results from experiments and simulation quantita-
tively and thereby focus on the modal parameters.

7.1 Modal Parameters without Bias Motion
In the present section, we compare the modal parameters of experiments and
simulations without bias motion, that is ΩR = 0 rad/s. Figs. 7.1–7.4 show
the angular eigenfrequency ωr, the damping factor δr and the amplitude
ratio κ derived from experimental measurements and from numerical simu-
lations. Complementary to the following comparison, also consider § 5.3.2
for an interpretation and discussion of the experimental results.

Angular Eigenfrequency ωr

Figs. 7.1–7.4 show a very good agreement between measured and simulated
angular eigenfrequencies ωr for the investigated parameter range and for
most of the vibration modes. The simulation model also maps the char-
acteristic difference between varicose and sinuous modes, as described in
§ 5.3.2. Nevertheless, we observe discrepancies, especially for the configu-
ration with hS = 1.0 mm and hR = 1.0 mm (Fig. 7.1), where the angular
eigenfrequencies of some varicose modes (n, 0)↑↓ are slightly underestimated
by the simulation. This deviation increases with the azimuthal wave number
n—and therefore with the eigenfrequencies ωr—and particularly manifests
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Fig. 7.1: Comparison of angular eigenfrequency ωr, damping factor δr

and amplitude ratio κ as a function of the gap width g for
hS = 1.0 mm, hR = 1.0 mm and ΩR = 0 rad/s. Experiment
(thin lines with markers), simulation (thick lines). Modes are
distinguished by l = 0 (solid lines) and l > 0 (dashed lines).
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Fig. 7.2: Comparison of angular eigenfrequency ωr, damping factor δr

and amplitude ratio κ as a function of the gap width g for
hS = 1.0 mm, hR = 1.5 mm and ΩR = 0 rad/s. Experiment
(thin lines with markers), simulation (thick lines). Modes are
distinguished by l = 0 (solid lines) and l > 0 (dashed lines).
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Fig. 7.3: Comparison of angular eigenfrequency ωr, damping factor δr

and amplitude ratio κ as a function of the gap width g for
hS = 1.0 mm, hR = 2.0 mm and ΩR = 0 rad/s. Experiment
(thin lines with markers), simulation (thick lines). Modes are
distinguished by l = 0 (solid lines) and l > 0 (dashed lines).
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Fig. 7.4: Comparison of angular eigenfrequency ωr, damping factor δr

and amplitude ratio κ as a function of the gap width g for
hS = 1.5 mm, hR = 1.5 mm and ΩR = 0 rad/s. Experiment
(thin lines with markers), simulation (thick lines). Modes are
distinguished by l = 0 (solid lines) and l > 0 (dashed lines).
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for modes of higher order. The deviations may be caused by the compress-
ibility of the water, which is not included in formulation of the fluid in the
simulation model.

From the good agreement we conclude that the modal analysis of the
measurement data provides reliable eigenfrequencies and that the finite el-
ement simulation well predicts the eigenfrequencies of the water coupled
system without bias motion.

Damping Factor δr

A comparison of the measured and simulated damping factors δr in Figs. 7.1–
7.4 draws an ambivalent picture. There are modes that show a good agree-
ment between simulation and experiment. For example, the damping fac-
tors of the varicose modes (n, 0)↑↓ are well estimated by the simulation over
a large parameter range. However, in some cases with large gap widths
(g & 8 mm), the simulation estimates smaller damping values compared
to the experiment. A similar behavior is observed for the sinuous modes
(n, 0)↑↑, albeit the range of gap widths with a good agreement is smaller.
On the other hand, there is no match between simulation and experiment
for varicose modes (∗, l)↑↓ and sinuous modes (∗, l)↑↑ of higher radial order,
that is l > 0.

The reasons for the deviation between simulation and experiment can be
manifold. On the simulation side, we neglect, for example, material damping
in the solid, damping effects at the clamping, or higher-order effects in the
fluid such as streaming. These lead to an underestimation of the damping
factor. On the experimental side, we need to consider that the estimation
of the damping factor δr, as described in §§ 5.2.2 and 5.2.3, is a challenging
task with uncertainties. Particularly, if the signal-to-noise ratio is low, the
experimental modal analysis may overestimate the damping factor.

By considering Figs. 5.1 and 5.10, we see that our point of excitation is
not optimally located to excite higher radial-order modes (∗, l), with l > 0.
For these modes, the excitation is located near the nodal circle of the stator
disk, and therefore leads to low vibration amplitudes. We believe that the
resultant low signal-to-noise ratio causes an overestimation of the damping
factor of these radial modes. For the varicose modes (n, 0)↑↓ and sinu-
ous modes (n, 0)↑↑, which show partially a good agreement of experiment
and simulation, it is not clear which effect eventually is responsible for the
deviation at larger gap widths.
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We conclude that the finite element simulation well predicts the damping
factor δr for varicose modes (∗, 0)↑↓ and sinuous modes (∗, 0)↑↑ without
bias motion and for the gap width range g . 8 mm. For these modes,
the viscous effect is therefore the only relevant damping effect. For the
higher-order modes with l > 0 and for configurations with larger gap widths
(g & 8 mm), the cause of the deviations between simulation and experiment
is not yet determined.

Amplitude Ratio κ

The amplitude ratio is defined according to (5.49) as the ratio of the max-
imum amplitude of the rotor over the maximum amplitude of the stator.
Figs. 7.1–7.4 show a qualitative good agreement between measured and
simulated amplitude ratio. Especially the different functional dependence
on the gap width g of varicose modes (n, l)↑↓ and sinuous modes (n, l)↑↑ is
well reproduced by the simulation. Whereas the amplitude ratio increases
with g for the varicose modes, it declines with g for the sinuous modes. The
quantitative agreement of experiment and simulation is particularly well for
all the sinuous modes. For the varicose modes, we observe consistent results
for the configuration with hS = 1.0 mm and hR = 2.0 mm (see Fig. 7.3).
For the remaining configurations, the simulated amplitude ratios of the vari-
cose modes are usually higher than the measured values.

7.2 Modal Parameters with Bias Motion
Let us now turn to the comparison of experiment and simulation includ-
ing bias motion. That is the case with ΩR > 0 rad/s, where the rotor is
in rotation and induces a bias fluid motion. Fig. 7.5 shows the angular
eigenfrequency Sω

r, the damping factor δr and the amplitude ratio κ for a
selected parameter set at various angular rotor speeds ΩR. The legend en-
tries on the right annotate the experimental data points. We refer to § 5.3.2
for a detailed discussion of experimental results for the same configuration.

Angular Eigenfrequency ωr

First, we focus on the comparison of the angular eigenfrequency Sωr. Note
that we present the frequency results in the stator system S. For the con-
version of the angular frequencies into the rotor system R we refer to (5.48).
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Fig. 7.5: Comparison of angular eigenfrequency Sω
r, damping factor δr

and amplitude ratio κ as a function of the angular rotor speed ΩR
for hS = 1.0 mm, hR = 2.0 mm and g = 3.6 mm. Experiment
(thin lines with markers), simulation (thick lines). Modes are
distinguished by nm > 0 (solid lines), nm < 0 (dashed lines)
and nm = 0 (dash-dotted lines).
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Fig. 7.5 shows the excellent qualitative and quantitative agreement between
measured and simulated angular eigenfrequencies. The simulation model
well predicts the frequency splits that arise for pairs of co- and counter-
rotating modes with non-zero azimuthal wave number n. The difference
in frequency is roughly proportional to the azimuthal wave number |n| and
the angular rotor frequency ΩR, which is well described by the simulation
model. We have included this effect in the finite element model by introduc-
ing perturbation equations derived from the linearization about a stationary
bias motion (see §§ 2.1.4 and 2.2.4). The stationary bias motion of the fluid
has been approximated by the Reynolds-averaged Navier–Stokes equations
together with the k–ε turbulence model and wall functions (see § 6.2.1).
The good agreement suggests that this modeling approach is appropriate
for the prediction of the frequency split effect.

Damping Factor δr

Next, we refer to Fig. 7.5 and discuss the comparison of the damping fac-
tor δr. We have already seen in § 7.1 that, even for the non-rotating case
with ΩR = 0 rad/s, there is only a partial match between experiment and
simulation. Therefore, we only qualitatively compare the modes that match
for the non-rotating case.

The experimental results show an increase of the damping factor with
the angular rotor speed ΩR for most of the modes. This effect is not
represented with the simulation model, where the damping factor remains
nearly constant. That deviation may be caused by an insufficient modeling of
the bias motion near the wall. It is known from hydrodynamic stability theory
(Schmid and Henningson, 2001, p. 9; Weder et al., 2015) that the damping
factor δr is influenced by the bias-flow velocity gradient. But, by using wall
functions (see § 6.2.1) instead of resolving the bias-flow boundary layer, the
interaction between base flow and perturbation flow may not be sufficiently
considered in our finite element model. Furthermore, we assumed for the
simulation model that the perturbation equations can be derived by the
linearization about the stationary Reynolds-averaged bias flow (see § 6.2.1).
A violation of this assumption may be an additional reason for the deviation
of the damping factor between simulation and experiment.

Another issue is the large variation of the simulated damping factors
of the modes (±1, 0)↑↓, (±2, 0)↑↓, (±0, 1)↑↑ and (±1, 0)↑↑, which appears
for ΩR & 30 rad/s. For a system with bias motion, the eigenvalue prob-
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lem becomes non-self-adjoint (non-symmetric) with eigenvectors that are
non-orthogonal. Schmid and Henningson (2001, pp. 89) describe that for
non-orthogonal eigenvectors, the eigenvalues become sensitive to small dis-
turbance of the governing perturbation equations. This may be the reason
for the variation of the addressed modes.

Amplitude Ratio κ

Finally, we examine the amplitude ratio κ which is also compared in Fig. 7.5.
The simulated amplitude ratio is nearly independent of the angular rotor
speed ΩR, whereas we observe a slight decline in the measured ratio.



Conclusions and
Outlook 8
In this last chapter, we discuss the conclusions of our investigations and
provide recommendations for future work.

8.1 Conclusions
We have investigated the complex vibration of rotor–stator systems coupled
by viscous liquids. The knowledge and understanding of this problem are of
particular importance for the design of pump-turbines, in which the elastic
structures of the rotor and stator are coupled by the intermediate water (see
Fig. 1.1). The challenges of this problem include rotating structures, the
deformability of the rotor and stator, as well as various damping mechanisms
that are present in the system. Throughout this thesis, we worked with a
simplified disk–disk model consisting of a stator disk that is axially separated
from a rotor disk, together with a rigid casing that acts as a fluid cavity. The
stator disk is clamped to the casing and the rotor disk to a rotating shaft
(see Fig. 1.2). We have chosen theoretical, experimental and simulative
approaches to address this difficult and explorative problem.

Major Contributions

Before going into detail, we briefly summarize the major contributions of
the present work:

• We have presented a concise theory of linear vibrations of liquid-
coupled system including the effects of viscosity and bias motion. The
theory is systematically deduced from fundamental principles of con-
tinuum mechanics and presented in the weak variational form, which
is best suited for its implementation in the finite element framework.
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• The especially engineered test bench has enabled conclusive experi-
ments on the vibration of liquid-coupled rotor–stator systems. It par-
ticularly has allowed for the measuring of eigenfrequencies, damping
factors and mode shapes of rotor and stator on a system with rotating
parts. The measurements collected over a wide range of parameters
form a substantial and unique experimental database for the current
and future work.

• The new physically-based simulation technique has enabled a predic-
tion of modal parameters for rotor–stator systems. The implementa-
tion is computationally efficient and includes effects of viscosity and
bias motion. A comparison of the simulation results with the ex-
perimental data has shown an excellent agreement for the computed
eigenfrequencies and a good agreement for the damping factors of
the relevant low-frequency modes. By means of the simulation we
achieved a deeper understanding of the underlying internal mecha-
nisms of the liquid coupling.

The methodical interplay of theory, experiment and simulation has proven
to be particularly fruitful for exploring the current problem and may be seen
as a key factor in coping with complexity.

In the following we draw more specific conclusions with respect to the
research questions, which we raised in § 1.3 about (i) fundamental mecha-
nisms and features of fluid coupled rotor–stator systems, (ii) the parametric
dependency of modal parameters, and (iii) the numerical modeling of such
systems.

Fundamental Mechanisms and Features

We draw the following conclusions with regard to the fundamental mecha-
nisms and features of the vibration of elastic rotor–stator systems coupled
by viscous liquids:

• From a vibrational point of view, the components rotor, stator and
fluid form a system on its own. Therefore, the vibration can, in gen-
eral, only be analyzed by considering the complete system, and not
just its components separately.

• The axial symmetry of the disk–disk model allows to describe linear
vibrations by eigenmodes (in an approximate sense), even for the case
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with bias motion (ΩR > 0 rad/s). Each eigenmode is characterized
by an angular eigenfrequency ωr ∈ R, a damping factor δr ∈ R and
by a (left and right) mode shape (see § 5.2.2).

• The mode shapes of the disk–disk model are categorized by the az-
imuthal wave number n ∈ Z (number of nodal diameters), by the
radial index l ∈ N0 (number of nodal circles of the stator), and ac-
cording to the relative motion between rotor and stator disk (varicose
and sinuous modes). We call a mode varicose when the motion of the
rotor is mainly opposite to the stator and sinuous when the motion is
mainly synchronous (see §§ 5.3.1 and 6.3.2).

• We have found that varicose modes have lower eigenfrequencies com-
pared to the corresponding sinuous modes (see Fig. 5.9). The finite
simulation has revealed that the squeezing flow of the fluid between
rotor and stator is more pronounced for the varicose mode and that
this added-mass effect is the key cause of the frequency reduction (see
§ 6.3.3).

• For the case without bias motion, we have identified the viscous dis-
sipation as the dominant damping mechanism of the vibration. The
dissipation is located in the Stokes boundary layer formed in the near-
wall region of the fluid (see § 6.3.3).

• The angular eigenfrequency of a vibration mode depends on the ro-
tation speed of the observer. Therefore, the rotor system R and the
stator system S experience different frequencies in the case of non-zero
bias motion (see § 5.2.2).

• For the case with bias motion, the system exhibits a frequency split for
mode pairs with non-zero azimuthal wave number n (see Figs. 5.15
and 7.5). For an observer in the stator system S, the mode with larger
eigenfrequency is co-rotating with the rotor bias motion, whereas the
corresponding mode with lower eigenfrequency is counter-rotating.
The difference in frequency S∆ωr, again for the stator observer S,
is roughly proportional to the azimuthal wave number n and the an-
gular rotor frequency ΩR (see §§ 5.3.3 and 7.1).



150 Chapter 8. Conclusions and Outlook

Parametric Dependency of the Modal Parameters

We draw the following conclusions with regard to the parametric dependency
of the systems’ modal parameters:

• The specially developed test bench enables highly accurate vibration
measurements of a rotor–stator system coupled by liquids. For a disk–
disk configuration, the test bench allows a variation of the parameters
rotor thickness hR, stator thickness hS, gap width g and angular rotor
speed ΩR (see Chapter 4).

• We have evaluated the measurement data with the modal analysis ap-
proach to estimate the modal parameters eigenfrequency ωr, damping
factor δr and right mode shape. It is necessary to consider the general
modal analysis theory via the first-order form (with complex valued
left and right mode shapes), to include the gyroscopic effects resulting
from the bias motion of the rotor and the fluid (see § 5.2.1).

• The measurement of the vibrations and the subsequent evaluation are
largely automated. This has enabled an extensive series of experiments
by variation of the configuration parameters (see Chapter 5). We
have generated a broad experimental database, which in turn forms
a unique basis for the verification of present (and future) simulation
models (see Chapter 7).

Numerical Modeling

We draw the following conclusions with regard to the numerical modeling
of rotor–stator systems coupled by viscous liquids:

• We have implemented the linearized perturbation equations of Chap-
ter 2 into the finite element code COMSOL Multiphysics to compute
the angular eigenfrequency ωr, the damping factor δr as well as the
(right) mode shape of modes with arbitrary azimuthal wave number
n ∈ Z.

• The employed rotational symmetries allowed a reduction to a two-
dimensional model, which drastically saves computational cost. Un-
fortunately, this simplification will not apply for general shaped ge-
ometries.
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• The finite element model includes the effect of a stationary bias motion
of the rotor and the fluid flow. This allows a physically-based and
validated prediction of the frequency split, an effect which exists for
mode pairs with non-zero azimuthal wave number n (see § 7.2).

• We expect that the angular eigenfrequency does only marginally de-
pends on the (viscous) damping of the system. Therefore, it should
be possible to accurately predict the eigenfrequency (and thus the
frequency split) by neglecting viscous effects, but by including the
convective effects from the bias motion.

• Without bias motion, the finite element model well predicts the damp-
ing factor of the fluid coupled system, except for large gap widths and
some higher-order modes. We therefore conclude that the viscous
damping effect is correctly implemented in the finite element model.
But using this direct method, the computational grid must sufficiently
resolve the frequency dependent viscous boundary layer.

• With bias motion, the finite element model’s prediction of the damp-
ing factor is unsatisfactory, because the angular rotor speed ΩR only
marginally effects the computed damping factor (see Fig. 7.5). We
assume that the interaction of bias motion with the perturbations,
which is mainly driven by velocity gradients in the bias flow, is im-
plemented insufficiently. The reason is probably the use of the wall
functions in the calculation of the turbulent bias flow.

8.2 Outlook
Fundamental Research on Simplified Models

The present thesis has extensively investigated the vibration of liquid coupled
rotor–stator systems on a simplified disk–disk configuration. Notwithstand-
ing, there are still open questions that seem worthwhile to be addressed in
future work:

• The presented simulation model does not adequately map the depen-
dence of the damping factor δr on the angular rotor speed ΩR (see
Fig. 7.5). We assume that the applied wall functions do not sufficiently
model the bias-flow velocity gradients near the wall and therefore lead
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to that deviation. Henceforth, we propose to use low-Reynolds models
for the calculation of the bias flow, which resolve the near-wall bound-
ary layer. Low-Reynolds models are, for example, Menter’s shear stress
transport turbulence model (SST), the low-Reynolds number k–ε tur-
bulence model or the Spalart–Allmaras turbulence model (COMSOL,
2016c, pp. 164).

• In this work we focused on the characterization of free vibrations,
which are related to the right mode shapes. However, for a system
with bias motion, the receptivity of each vibration mode is described by
the corresponding left mode shape. Left mode shapes are experimen-
tally measured by moving the point of excitation (Nordmann, 1984b).
For the theoretical and simulative investigations of the receptivity, it
would be worth to study the adjoint problem (Hill, 1995).

• Weder et al. (2015) proposed a decomposition of the damping fac-
tor δr into terms of dissipation, production and flux of perturbation
energy, which has been applied to study damping of perturbations
superimposed to compressible parallel bias flow. This technique may
be transferred to the present application to provide additional insights
about the fundamental mechanisms of damping (or instability).

• Throughout this thesis, we worked with a simplified disk–disk configu-
ration, which represents the interaction between runner crown (rotor)
and head cover (stator). By considering Fig. 1.1, we see that this
configuration can not be applied to the coupling between runner band
(rotor) and discharge ring (stator). It would be interesting to investi-
gate this coupling on a simplified ring–ring configuration.

• For larger vibration amplitudes, nonlinear effects need to be consid-
ered, such as additional damping by acoustic streaming (Hahn et al.,
2015) or the nonlinear stiffness of the disks.

Concretization towards Real Turbines

The long-term objectives of this project are tools and methods for the vibra-
tional characterization of real turbines. In Fig. 1.2 we indicate the process of
concretization, that is, the transfer of knowledge, tools and methods from
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the simplified model to the application on real turbines. This concretiza-
tion process faces with two major difficulties, for which we suggest solution
approaches:

• For the simplified disk model, we have formulated all equations in
an inertial frame of reference. The bias motion of the rotor has been
taken into account by additional acceleration terms that arise from the
motion of the reference configuration (see § 2.1.1). This modeling ap-
proach has become possible for the simplified disk model due to the
axial symmetry of rotor and stator, and cannot simply be transferred
to general geometries. In addition, the perturbation equations for a
system with arbitrary shaped rotor and stator are time dependent,
so that we can not formulate an eigenvalue problem. To overcome
this difficulty, we suggest to formulate the perturbation equations in
the rotor frame of reference (rotating with +ΩR). The stator geom-
etry then needs to simplified by its axisymmetric representation and
modeled with a rotating reference configuration (rotating with −ΩR).

• In the presented simulation model, we have included viscous terms
in the perturbation equations and solved directly for both the eigen-
frequency ωr and the damping factor δr. Using this direct method,
the frequency dependent Stokes boundary layer formed near the wall,
needs to be sufficiently discretized with finite elements. The direct
method has become feasible, because we have reduced the simpli-
fied disk model to a two-dimensional problem. In three-dimensional
simulations, however, the computational cost is significantly larger.
For that case, we propose to compute the damping factor either by
(i) introducing wall functions to model the Stokes boundary layer, or,
by (ii) calculating the eigenfrequency and the damping factor in two
consecutive steps. In the two step procedure, one first solves for the
eigenfrequency using the inviscid perturbation equations including bias
flow (acoustic equations with convective terms). Secondly, the damp-
ing factor can be either computed with analytical methods (Hahn and
Dual, 2015), or by numerical means (Monette et al., 2014).





Mathematical Tools
and Evaluations A
This appendix gathers the most common mathematical tools used through-
out the thesis.

A.1 Gâteaux Derivative
Let f be a scalar-, vector-, or tensor-valued function of a vector x, then

Df(x̄)[x̃] := lim
ε→0

f(x̄ + εx̃)− f(x̄)
ε

= [∂xf(x̄)]x̃ (A.1)

defines the Gâteaux derivative of f at x̄ in the direction of x̃ (see also Odgen,
1984, pp. 48; Marsden and Hughes, 1983, pp. 44; Bonet and Wood, 2008,
pp. 47). This equation also introduces the gradient of f at x̄, denoted as
∂xf(x̄), if this object is uniquely defined for all x̃. We see from (A.1) that
the tensor order of the gradient ∂xf is by one greater than the one of the
function f . Accordingly, let F be a function of a tensor X, then we write

DF (X̄)[X̃] := lim
ε→0

F (X̄ + εX̃)− F (X̄)
ε

= [∂XF (X̄)] : X̃ (A.2)

for the Gâteaux derivative of F at X̄ in the direction of X̃ and ∂XF (X̄) for
the gradient of F at X̄. Note that the tensor order of the gradient ∂XF is
by two greater than of the function F .

We may further define the second-order Gâteaux derivative of f at x̄ in
the direction of x̃ by

D2f(x̄)[x̃] := lim
ε→0

Df(x̄ + εx̃)[x̃]−Df(x̄)[x̃]
ε

= {[∂x∂xf(x̄)]x̃}x̃,
(A.3)
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which geometrically defines ∂x∂xf(x̄) as well. Accordingly, for the function
F of a second-order tensor X, the second-order Gâteaux derivative at X̄ in
X̃ reads

D2F (X̄)[X̃] := lim
ε→0

DF (X̄+εX̃)[X̃]−DF (X̄)[X̃]
ε

= {[∂X∂Xf(X̄)] :X̃} :X̃.
(A.4)

A.2 Tensor Analysis
The following introduction to tensor analysis in curvilinear coordinates mainly
follows the work by Odgen (1984, pp. 33–72). We gather the necessary in-
gredients for the evaluation of the tensor quantities derived in Chapter 2 in
Cartesian and cylindrical coordinates.

A.2.1 Tensors in Curvilinear Coordinates
We define a bijective coordinate mapping Π : E3 → R3 together with its
inverse Π−1 as

Π(X) =

Π1 (X)
Π2 (X)
Π3 (X)

 =

q1

q2

q3

 ∈ R3, X = Π−1(q1 , q2 , q3 ), (A.5)

with the, in general, curvilinear coordinates (q1 , q2 , q3 ). The natural basis
(g1 , g2 , g3 ) associated with the coordinate mapping Π is defined by the
tangent vectors on the coordinate curves

gi := ∂qi Π−1, (i = 1 , 2 , 3 ). (A.6)

Based on the natural basis,

gi · gj = δij =
{

1 if i = j

0 otherwise
(i, j = 1 , 2 , 3 ), (A.7)

uniquely defines the reciprocal basis (g1 , g2 , g3 ), which, as has been proven
by Odgen (1984, pp. 56), coincides with the set of normal vectors to the
coordinate surfaces

gi := ∂XΠi, (i = 1 , 2 , 3 ). (A.8)
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The components of a vector a can be either expressed in the natural basis
or in the reciprocal basis

a = aigi = aigi, (i = 1 , 2 , 3 ), (A.9)

where we applied Einstein notation for the summation over repeated indices.
We call (a1 , a2 , a3 ) the contravariant components of a and (a1 , a2 , a3 ) its
covariant components. For the spatial differentiation in curvilinear coordi-
nates, it is convenient to introduce the Christoffel symbols

Γkij := (∂qj gi) · gk = −(∂qj gk) · gi, (i, j, k = 1 , 2 , 3 ), (A.10)

which describe the change of the basis vectors with regard to its coordinates,
again expressed in terms of the basis vectors, that is

∂qj gi = Γkijgk, ∂qj gi = −Γijkgk, (i, j, k = 1 , 2 , 3 ). (A.11)

The Christoffel symbols may also be regarded as the contra- and covariant
components of the vectors ∂qj gi.

A.2.2 Tensors in Cartesian Coordinates
The coordinate mapping for right-handed Cartesian coordinates (x, y, z)
writes

ΠD(X) =

q1

q2

q3

 :=

xy
z

 ∈ R3, X = Π−1
D (x, y, z), (A.12)

which form plane, orthogonal and equidistant coordinate surfaces. For
Cartesian coordinates, the tangent and gradient vectors are defined as

g1 = eDx = g1 , (A.13a)
g2 = eDy = g2 , (A.13b)
g3 = eDz = g3 . (A.13c)

and coincide with the set of unit vectors (eDx , eDy , eDz ). We write and define

Da :=

axay
az

 =

a · eDx
a · eDy
a · eDz

 ∈ R3 (A.14)
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for the mapping of a vector a to its Cartesian components (ax, ay, az).
Similarly, we write and define

DA :=

Axx Axy Axz
Ayx Ayy Ayz
Azx Azy Azz


=

(A · eDx ) · eDx (A · eDx ) · eDy (A · eDx ) · eDz
(A · eDy ) · eDx (A · eDy ) · eDy (A · eDy ) · eDz
(A · eDz ) · eCx (A · eDz ) · eDy (A · eDz ) · eDz

 ∈ R3×3 (A.15)

for the component mapping of a tensor A. For the Cartesian coordinates
the we find that all Christoffel symbols are identically zero

Γkij ≡ 0, (i, j, k = 1 , 2 , 3 ), (A.16)

and, therefore, we write the gradient of a scalar field f , defined by (A.1), as

∂Xf = ∂qif gi

= ∂xf eDx + ∂yf eDy + ∂zf eDz , (A.17)

or, with (A.14), in component form

D(∂Xf) =

∂xf∂yf
∂zf

 . (A.18)

The gradient of a vector field u = uigi = uigi with physical components
(ux, uy, uz) = (u1, u2, u3) in Cartesian coordinates writes

H = ∂Xu = ∂qj (uigi)⊗ gj =

=: Hij︷ ︸︸ ︷
(∂qjui − Γkijuk) gi ⊗ gj

= ∂xux eDx ⊗ eDx + ∂yux eDx ⊗ eDy + ∂zux eDx ⊗ eDz
+ ∂xuy eDy ⊗ eDx + ∂yuy eDy ⊗ eDy + ∂zuy eDy ⊗ eDz
+ ∂xuz eDz ⊗ eDx + ∂yuz eDz ⊗ eDy + ∂zuz eDz ⊗ eDz , (A.19)

or, with (A.15), in component form

DH = D(∂Xu) =

∂xux ∂yux ∂zux
∂xuy ∂yuy ∂zuy
∂xuz ∂yuz ∂zuz

 . (A.20)
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The divergence of the vector field u writes in Cartesian coordinates as

(∂Xu) : I = DH : DI = ∂xux + ∂yuy + ∂zuz. (A.21)

A.2.3 Tensors in Cylindrical Coordinates
The coordinate mapping for cylindrical coordinates (r, ϕ, z) writes

ΠC(X) =

q1

q2

q3

 :=

rϕ
z

 ∈ R3, X = Π−1
C (r, ϕ, z). (A.22)

The tangent and gradient vectors are defined as

g1 = eCr = g1 , (A.23a)
1
r

g2 = eCϕ = r g2 , (A.23b)

g3 = eCz = g3 , (A.23c)

which also defines the set of unit vectors (eCr , eCϕ , eCz ). We write and define

Ca :=

araϕ
az

 =

a · eCr
a · eCϕ
a · eCz

 ∈ R3 (A.24)

for the mapping of a vector a to its cylindrical components (ar, aϕ, az).
Similarly, we write and define

CA :=

Arr Arϕ Arz
Aϕr Aϕϕ Aϕz
Azr Azϕ Azz


=

(A · eCr ) · eCr (A · eCr ) · eCϕ (A · eCr ) · eCz
(A · eCϕ ) · eCr (A · eCϕ ) · eCϕ (A · eCϕ ) · eCz
(A · eCz ) · eCr (A · eCz ) · eCϕ (A · eCz ) · eCz

 ∈ R3×3 (A.25)

for the component mapping of a tensor A. The non-zero Christoffel symbols
of the cylindrical coordinate mapping are

Γ2
12 = Γ2

21 = 1
r
, Γ1

22 = −r, (A.26)
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and, therefore, we write the gradient of a scalar field f , defined by (A.1), as

∂Xf = ∂qif gi

= ∂rf eCr + 1
r
∂ϕf eCϕ + ∂zf eCz , (A.27)

or, with (A.24), in component form

C(∂Xf) =

 ∂rf
(∂ϕf)/r
∂zf

 . (A.28)

The gradient of a vector field u = uigi = uigi and physical components
(ur, uϕ, uz) = (u1, u2/r, u3) in cylindrical coordinates writes

H = ∂Xu = ∂qj (uigi)⊗ gj =

=: Hij︷ ︸︸ ︷
(∂qjui − Γkijuk) gi ⊗ gj

= ∂rur eCr ⊗ eCr + 1
r

(∂ϕur − uϕ) eCr ⊗ eCϕ + ∂zur eCr ⊗ eCz

+ ∂ruϕ eCϕ ⊗ eCr + 1
r

(∂ϕuϕ + ur) eCϕ ⊗ eCϕ + ∂zuϕ eCϕ ⊗ eCz

+ ∂ruz eCz ⊗ eCr + 1
r
∂ϕuz eCz ⊗ eCϕ + ∂zuz eCz ⊗ eCz , (A.29)

or, with (A.25), in component form

CH = C(∂Xu) =

∂rur (∂ϕur − uϕ)/r ∂zur
∂ruϕ (∂ϕuϕ + ur)/r ∂zuϕ
∂ruz (∂ϕuz)/r ∂zuz

 . (A.30)

The divergence of the vector field u in cylindrical coordinates writes

(∂Xu) : I = CH : CI = ∂rur + 1
r

(∂ϕuϕ + ur) + ∂zuz. (A.31)
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A.2.4 Evaluations for General Curvilinear Coordinates
The evaluation of the velocity terms in (2.9) for general curvilinear coordi-
nates writes

V I = Ẋ = Ẋigi = Ẋigi, (A.32a)

V II = ∂tu = ∂tu
igi = ∂tuigi, (A.32b)

V III = (∂Xu)Ẋ = HẊ = (Hijgi ⊗ gj)Ẋkgk
= Hij Ẋ

k δjk gi = Hij Ẋ
j gi. (A.32c)

The acceleration terms in (2.10) become

AI = Ẍ = Ẍigi = Ẍigi, (A.33a)

AII = ∂2
t u = ∂2

t u
igi = ∂2

t uigi, (A.33b)

AIII = 2∂t(∂Xu)Ẋ = 2∂tHẊ = 2∂t(Hijgi ⊗ gj)Ẋkgk
= 2∂tHij Ẋ

k δjk gi = 2∂tHij Ẋ
j gi, (A.33c)

AIV = [(∂X∂Xu)Ẋ ]Ẋ = [(∂XH)Ẋ ]Ẋ
= [(∂qk{Hijgi ⊗ gj} ⊗ gk)Ẋmgm]Ẋngn
= (∂qkHij − ΓlkiHlj − ΓlkjHil) Ẋm Ẋn δkm δ

j
n gi

= (∂qkHij − ΓlkiHlj − ΓlkjHil) Ẋk Ẋj gi, (A.33d)

AV = (∂Xu)Ẍ = HẌ = (Hijgi ⊗ gj)Ẍkgk
= Hij Ẍ

k δjk gi = Hij Ẍ
jgi. (A.33e)

A.2.5 Evaluations for Plane Periodic Plate
The motion of the reference configuration of a plane periodic plate with
velocity VxeDx is described by

Ẋ = Vx eDx = Vx g1 = Vx g1 (A.34)
Ẍ = 0 . (A.35)
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The contra- and covariant components of the velocity and acceleration of
the reference configuration, expressed in Cartesian coordinates, areẊ1

Ẋ2

Ẋ3

 =

Vx0
0

 =

Ẋ1
Ẋ2
Ẋ3

 ,

Ẍ1

Ẍ2

Ẍ3

 =

0
0
0

 =

Ẍ1
Ẍ2
Ẍ3

 . (A.36)

For this particular reference motion, we find the terms of the velocity field
of the deformed configuration

V I = Ẋigi = Ẋ1 g1 = VxeDx , (A.37a)

V II = ∂tuigi = ∂tuxeDx + ∂tuyeDy + ∂tuzeDz , (A.37b)

V III = Hij Ẋ
j gi = Hi1 Ẋ

1 gi = ∂xuiVx gi

= Vx[∂xuxeDx + ∂yuyeDy + ∂zuzeDz ]. (A.37c)

The corresponding acceleration terms are

AI = Ẍigi = 0 , (A.38a)

AII = ∂2
t uigi = ∂2

t uxeDx + ∂2
t uyeDy + ∂2

t uzeDz , (A.38b)

AIII = 2∂tHij Ẋ
j gi = 2∂tHi1 Ẋ

1 gi = 2∂t∂xuiVx gi

= 2Vx[∂t∂xuxeDx + ∂t∂yuyeDy + ∂t∂zuzeDz ], (A.38c)

AIV = (∂qkHij − ΓlkiHlj − ΓlkjHil) Ẋk Ẋj gi

= ∂q1Hi1 Ẋ
1 Ẋ1 gi = ∂xHi1 Vx · Vx gi = V 2

x [∂x(∂xui)]gi

= V 2
x [∂2

xuxeDx + ∂2
xuyeDy + ∂2

xuzeDz ], (A.38d)

AV = Hij Ẍ
jgi = 0 . (A.38e)

In component form we write

DV = D(V I + V II + V III)

=

∂tux∂tuy
∂tuz

+ Vx

1 + ∂xux
∂xuy
∂xuz

 (A.39)
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and

DA = D(AI + AII + AIII + AIV + AV)

=

∂2
t ux
∂2
t uy
∂2
t uz

+ 2Vx

∂t∂xux∂t∂xuy
∂t∂xuz

+ V 2
x

∂2
xux
∂2
xuy
∂2
xuz

 . (A.40)

A.2.6 Evaluations for Axisymmetric Disk

The motion of the reference configuration of an axisymmetric disk with
angular velocity Ω = ΩeCz is described by

Ẋ = Ω ×X = rΩ eCϕ = Ω g2 = r2Ω g2 (A.41)
Ẍ = Ω × (Ω ×X) = −rΩ2 eCr = −rΩ2 g1 = −rΩ2 g1 (A.42)

The contra- and covariant components of the velocity and acceleration of
the reference configuration, expressed in cylindrical coordinates, are

 Ẋ1

rẊ2

Ẋ3

 =

 0
rΩ
0

 =

 Ẋ1
Ẋ2/r
Ẋ3

 ,

 Ẍ1

rẌ2

Ẍ3

 =

−rΩ2

0
0

 =

 Ẍ1
Ẍ2/r
Ẍ3

 .

(A.43)
For this particular reference motion, we find the terms of the velocity field
of the deformed configuration

V I = Ẋigi = Ẋ2 g2 = r2Ω g2 = rΩ eCϕ (A.44a)

V II = ∂tuigi = ∂tureCr + ∂tuϕeCϕ + ∂tuzeCz (A.44b)

V III = Hij Ẋ
j gi = Hi2 Ẋ

2 gi = (∂ϕui − Γki2uk)Ω gi

= Ω[(∂ϕur − uϕ)eCr + (∂ϕuϕ + ∂tur)eCϕ + ∂ϕuzeCz ]. (A.44c)
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The corresponding acceleration terms are

AI = Ẍigi = Ẍ1 g1 = −rΩ2g1 = −rΩ2eCr (A.45a)

AII = ∂2
t uigi = ∂2

t ureCr + ∂2
t uϕeCϕ + ∂2

t uzeCz (A.45b)

AIII = 2∂tHij Ẋ
j gi = 2∂tHi2 Ẋ

2 gi = 2∂t(∂ϕui − Γki2uk)Ωgi

= 2Ω[(∂t∂ϕur − ∂tuϕ)eCr + (∂t∂ϕuϕ + ∂tur)eCϕ + ∂t∂ϕuzeCz ]
(A.45c)

AIV = (∂qkHij − ΓlkiHlj − ΓlkjHil) Ẋk Ẋj gi

= (∂q2Hi2 − Γl2 iHl2 − Γl22Hil) Ẋ2 Ẋ2 gi

= (∂ϕHi2 − Γl2 iHl2 − Γ1
22Hi1 ) Ω · Ω gi

= Ω2[∂ϕ(∂ϕui − Γli2ul)− Γl2 i(∂ϕul − Γml2um)
+ r(∂rui − Γ2

i1u2 )]gi

= Ω2[(∂2
ϕur − 2∂ϕuϕ − ur + r∂rur)eCr

+ (∂2
ϕuϕ + 2∂ϕur − uϕ + r∂ruϕ)eCϕ

+ (∂2
ϕuz + r∂ruz)eCz ] (A.45d)

AV = Hij Ẍ
jgi = Hi1 Ẍ

1 gi = −(∂rui − Γ2
i1u2 )rΩ2gi

= Ω2[−r∂rureCr − r∂ruϕeCϕ − r∂ruzeCz ]. (A.45e)

In component form we write

CV = C(V I + V II + V III)

=

∂tur∂tuϕ
∂tuz

+ Ω

 ∂ϕur − uϕ
∂ϕuϕ + ur + r

∂ϕuz

 (A.46)

and

CA = C(AI + AII + AIII + AIV + AV)

=

∂2
t ur
∂2
t uϕ
∂2
t uz

+ 2Ω

∂t∂ϕur − ∂tuϕ∂t∂ϕuϕ + ∂tur
∂t∂ϕuz

+ Ω2

∂2
ϕur − 2∂ϕuϕ − ur − r
∂2
ϕuϕ + 2∂ϕur − uϕ

∂2
ϕuz

 .

(A.47)
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A.3 Implementation of Semi-analytical Model
For the eigenvalue problem (3.8) we express the solid perturbation equations
(3.4) as

0 =



As

11 As
12 0 0

As
21 As

22 0 0
0 0 1 0
0 0 0 1

− ω

Bs

11 0 Bs
13 0

0 Bs
22 0 Bs

24
1 0 0 0
0 1 0 0




ûs
x

ûs
z

ωûs
x

ωûs
z

 ,

(A.48)
with the coefficients

As
11 := c22D2

z + k2(v̄s2
x − c21), As

12 := −jk(c21 − c22)Dz,
Bs

11 := 2kv̄x, Bs
13 := −1,

As
21 := −jk(c21 − c22)Dz, As

22 := c21D2
z + k2(v̄s2

x − c22),
Bs

22 := 2kv̄s
x, Bs

24 := −1.

(A.49)

For the definition of the boundary and interface conditions we introduce the
auxiliary variables of the form

ûx
ûz
v̂x
v̂z
âx
âz
σ̂xz
σ̂zz


=





as
11 0 0 0
0 as

22 0 0
0 0 as

33 0
0 0 0 as

44
0 0 0 0
0 0 0 0
as

71 as
72 0 0

as
81 as

82 0 0


− ω



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 bs

53 0
0 0 0 bs

64
0 0 0 0
0 0 0 0






ûx
ûz
ωûx
ωûz

 ,

(A.50)
with the coefficients

as
11 := 1, as

22 := 1,
as

33 := j, as
44 := j,

bs
53 := 1, bs

64 := 1,
as

71 := µsDz, as
72 := −jkµs,

as
81 := −jkλs, as

82 := (λs + 2µs)Dz.

(A.51)

Similarly, we express the fluid perturbation equation (3.7) as

0 =
[(
Af

11
)
− ω

(
Bf

11
)] (

v̂f
z

)
(A.52)
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with the coefficients

Af
11 := jk%f

[
d2v̄f

x

dz2 − v̄
f
x(D2

z − k2)
]
− µf(D2

z − k2)2,

Bf
11 := −j%f(D2

z − k2).
(A.53)

The auxiliary variables then write
v̂f
x

v̂f
z

p̂
σ̂f
xz

σ̂f
zz

 =



af

11
af

21
af

31
af

41
af

51

− ω


0
0
bf
31
0
bf
51


(v̂f

z

)
, (A.54)

with the coefficients

af
11 := − j

k
Dz,

af
21 := 1,

af
31 := µf

k2 (D2
z − k2)Dz + j%

f

k

(
v̄f
xDz −

dv̄f
z

dz

)
, bf

31 := j %
f

k2Dz,

af
41 := µf(af

11Dz − jk),
af

51 := −af
31 + 2µfDz, bf

51 := −bf
31.

(A.55)

A.4 Bi-orthogonality of Eigenvectors
In the present section we follow Gasch et al. (2012, pp. 231) and Nordmann
(1984a, pp. 20) to prove the bi-orthogonality of left and right eigenvectors,
used in § 5.2.1. Let A ∈ R2N×2N and B ∈ R2N×2N be real square non-
symmetric matrices describing the general right and left eigenvalue problems

(A− λmB)rm = 0 , (A.56a)
lTn(A− λnB) = 0 T, (A.56b)

where (λm, rm) denotes the mth right eigenpair and (λn, ln) the nth left
eigenpair. Note that the left and right eigenvalue problem share its eigen-
values. We multiply lTn to the left of (A.56a) and rm to the right of (A.56b)



A.4. Bi-orthogonality of Eigenvectors 167

to find

lTn(A− λmB)rm = 0, (A.57a)
lTn(A− λnB)rm = 0. (A.57b)

We subtract (A.57a) from (A.57b) and get

(λm − λn)lTnBrm = 0. (A.58)

We assume that the eigenvalues are distinct and find the first orthogonality
condition

lTnBrm =
{

0 n 6= m,

bm n = m.
(A.59)

Combining (A.59) with say (A.57a) we find the second orthogonality con-
dition

lTnArm =
{

0 n 6= m,

am = bmλm n = m.
(A.60)

We are free to normalize the eigenvectors to achieve bm = 1 and hence
am = λm, so that L :=

(
l1 l2 · · · l2N

)
and R :=

(
r1 r2 · · · r2N

)
diagonalize A and B according to

LTAR = Λ, (A.61a)
LTBR = I. (A.61b)





Measurement Data B
B.1 Measured Modal Parameters
In the following pages we tabulate the modal parameters which have been
estimated from the measurements as discussed in Chapter 5. The modal
parameters are the average angular frequency ω̄r, the angular frequency
split S∆ωr, the damping factor δr and the dimensionless amplitude ratio κ.
They are defined as

ω̄r
m := 1

2(Sωr
m+ + Sω

r
m−) in rad/s, (B.1)

S∆ωr
m := Sω

r
m+ − Sω

r
m− in rad/s, (B.2)

δr
m := +ωi

m+ = +ωi
m− in s−1, (B.3)

κm := max|ΨR
m+(r)|

max|ΨS
m+(r)|

=
max|ΨR

m−(r)|
max|ΨS

m−(r)|
, (B.4)

where m+ and m− indicates a pair of co- and counter-rotating modes with
nm+ ≥ 0 and nm− ≤ 0. See §§ 5.2.2 and 5.2.3 for details.

Throughout the thesis as well as for the following tables we apply the
color scheme of Tab. B.0 for the coloring of the different modes.

Tab. B.0: Color scheme used throughout the thesis to differentiate vari-
cose modes (dark) from sinuous modes (bright) along with their
azimuthal mode number n, according to Brewer et al. (2003).

n 0 ±1 ±2 ±3 ±4 ±5 ±6
varicose ↑↓ � � � � � � �
sinuous ↑↑ � � � � � � �

169
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Tab. B.1: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 1.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(0, 1)↑↓
439.53

0.00
17.36
0.74

439.39
0.00

15.45
0.70

434.28
0.00

17.71
0.78

431.17
0.00

17.70
0.84

417.16
0.00

20.46
0.59

407.41
0.00

17.65
0.89

384.68
0.00

18.86
0.58

(±1, 0)↑↑
530.96

0.00
8.05
1.40

527.84
6.25
7.72
1.57

526.03
12.71
8.93
1.55

521.02
19.06
11.54
1.53

510.65
25.82
12.77
1.53

497.05
33.32
14.51
1.41

480.31
40.58
17.45
1.46

(±4, 0)↑↓
912.32

0.00
13.01
4.71

909.06
31.17
12.19
4.63

906.69
60.83
13.17
3.75

902.00
90.17
15.49
3.19

889.12
122.71
18.48
2.23

870.86
155.33
24.66
2.04

859.43
200.19
36.31
1.13

(±2, 0)↑↑
1087.59

0.00
11.03
1.68

1082.76
14.20
10.57
1.68

1078.29
27.19
11.04
1.66

1071.64
40.69
12.50
1.53

1056.94
54.97
14.66
1.45

1036.76
70.02
17.80
1.32

1008.47
85.54
20.57
1.23

(±1, 1)↑↓
1277.63

0.00
35.50
1.14

1265.53
31.77
26.70
1.10

1256.77
44.15
23.63
1.04

1258.36
41.70
23.11
1.03

1247.41
48.42
22.22
1.02

1241.06
49.10
21.62
0.96

1223.73
45.74
20.10
0.96

(±5, 0)↑↓
1526.04

0.00
16.87
3.88

1521.94
39.83
15.62
3.50

1515.75
77.39
16.07
2.83

1506.31
112.96
17.67
2.37

1486.40
154.41
19.84
1.66

1456.36
198.38
24.50
1.23

1413.32
239.45
28.71
0.76

(±3, 0)↑↑
1889.73

0.00
15.12
1.95

1885.09
20.27
14.20
1.99

1876.82
41.72
14.81
1.71

1865.40
62.72
14.96
1.49

1843.74
84.19
16.52
1.38

1811.51
108.45
18.62
1.31

1767.22
132.17
23.05
0.93

(±2, 1)↑↓
1963.39

0.00
15.28
1.05

1963.35
14.33
12.43
1.01

1959.93
23.97
11.81
0.98

1954.12
35.47
12.06
0.94

1943.10
47.59
11.91
0.89

1927.89
59.93
12.27
0.82

1908.47
73.42
12.26
0.77

(±1, 1)↑↑
2277.07

0.00
24.71
1.10

2282.79
6.21

20.67
1.30

2269.56
15.33
22.25
1.23

2247.50
18.05
21.10
1.22

2214.22
22.06
22.64
1.11

2173.54
28.63
26.24
1.11

2125.86
33.47
26.82
1.08

(±6, 0)↑↓
2328.26

0.00
19.51
2.25

2326.01
48.28
19.78
2.70

2315.89
93.09
18.67
1.71

2299.74
136.50
20.14
1.86

2266.28
186.33
21.68
1.38

2220.97
237.14
24.75
0.76

2157.26
293.64
29.07
0.30

(±4, 0)↑↑
2980.68

0.00
20.63
2.14

2980.79
29.97
22.03
2.18

2966.95
56.57
19.15
1.73

2951.92
89.44
17.03
1.63

2918.56
129.78
18.48
1.47

2864.37
150.95
17.47
1.24

2796.15
175.25
22.98
0.97
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Tab. B.2: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 2.2 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(0, 1)↑↓
535.61

0.00
14.42
0.75

535.26
0.00

13.20
0.62

531.80
0.00

14.11
0.73

528.16
0.00

13.56
0.75

518.59
0.00

20.39
0.73

506.27
0.00

16.84
0.69

490.73
0.00

25.86
0.51

(±1, 0)↑↑
590.66

0.00
5.91
1.29

590.38
7.46
5.32
1.42

589.88
13.84
5.90
1.47

586.35
19.37
7.62
1.49

579.43
24.95
9.43
1.40

569.67
31.27
11.34
1.41

557.73
38.00
13.34
1.32

(±4, 0)↑↓
1071.77

0.00
8.48
4.99

1071.18
31.20
8.55
4.73

1070.87
60.53
9.68
4.50

1069.95
89.25
11.91
3.93

1065.44
116.15
14.43
3.23

1057.98
150.92
18.84
2.65

1049.12
189.88
20.22
1.53

(±2, 0)↑↑
1217.51

0.00
6.77
1.49

1216.07
13.43
6.72
1.55

1213.01
27.10
7.11
1.55

1208.46
39.95
7.74
1.55

1200.98
53.20
9.61
1.43

1189.49
67.35
12.08
1.36

1175.04
82.50
14.75
1.21

(±1, 1)↑↓
1365.29

0.00
23.57
1.26

1362.97
−14.49

26.78
1.22

1367.70
−20.71

29.52
1.10

1341.43
24.91
26.86
1.07

1336.59
30.78
28.76
0.99

1329.07
33.52
25.69
0.95

1319.54
40.95
27.77
0.88

(±5, 0)↑↓
1789.73

0.00
11.43
4.08

1788.14
39.54
11.52
3.82

1785.73
76.37
11.56
3.32

1784.76
121.13
16.13
2.66

1772.04
150.87
14.60
2.37

1758.59
192.13
19.15
1.63

1738.26
230.84
22.81
0.94

(±2, 1)↑↓
2088.14

0.00
13.60
1.21

2087.85
16.26
11.67
1.19

2084.19
26.26
10.35
1.14

2078.55
38.95
10.48
1.09

2069.56
52.10
10.20
1.04

2057.15
65.15
11.12
0.93

2042.43
76.37
12.57
0.87

(±3, 0)↑↑
2110.59

0.00
9.45
1.68

2111.54
21.15
9.03
1.82

2108.69
42.82
10.33
1.72

2101.52
65.42
11.16
1.62

2091.22
88.27
11.53
1.45

2076.66
110.07
12.70
1.41

2056.47
129.39
14.92
1.25

(±1, 1)↑↑
2573.34

0.00
23.88
1.02

2568.70
10.91
20.91
1.15

2558.53
21.32
18.85
1.13

2552.80
26.52
18.98
1.12

2536.48
30.03
17.61
1.06

2510.34
36.95
18.22
1.08

2478.26
45.93
20.43
0.91

(±6, 0)↑↓
2724.85

0.00
13.55
2.45

2722.53
48.29
14.06
3.06

2717.99
92.79
13.82
1.36

2709.34
136.92
14.94
2.24

2694.17
183.59
15.78
2.00

2670.73
231.91
17.65
1.43

2639.42
282.76
20.10
0.61

(±3, 1)↑↓
3089.80

0.00
26.13
1.12

3088.79
18.99
24.58
1.06

3085.08
37.56
24.34
0.92

3078.60
56.38
23.63
0.79

3067.26
75.08
23.59
0.69

3051.54
93.85
23.58
0.59

3032.16
114.33
22.99
0.52
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Tab. B.3: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 2.9 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(0, 1)↑↓
610.22

0.00
12.78
0.83

609.01
0.00

11.97
0.79

629.77
0.00

16.48
0.82

631.18
0.00
8.59
0.93

616.32
0.00

18.68
0.80

587.22
0.00

36.70
0.51

562.09
0.00

30.38
0.52

(±1, 0)↑↑
634.02

0.00
3.41
1.44

634.56
1.88
3.94
1.37

626.90
15.67
4.30
1.48

623.81
19.63
5.92
1.34

616.89
25.65
7.32
1.40

608.19
33.52
9.47
1.31

597.02
39.87
11.04
1.33

(±4, 0)↑↓
1179.16

0.00
6.73
5.65

1178.87
31.51
6.90
5.50

1179.03
61.01
8.19
5.04

1178.71
90.27
9.76
4.49

1177.05
122.78
12.38
3.95

1165.68
142.04
15.64
2.67

1164.57
178.50
21.97
1.94

(±2, 0)↑↑
1288.04

0.00
4.78
1.57

1288.35
13.17
4.84
1.49

1286.15
26.13
5.27
1.52

1282.08
39.14
5.81
1.40

1275.96
52.41
6.96
1.45

1267.02
66.84
9.24
1.33

1254.89
80.80
11.64
1.21

(±1, 1)↑↓
1456.02

0.00
13.52
1.33

1452.16
−6.57
13.75
1.33

1450.33
−8.48
14.54
1.36

1447.45
−6.91
15.81
1.31

1441.50
−7.75
17.18
1.27

1410.26
−9.15
33.59
1.08

1407.75
6.31

46.60
0.88

(±5, 0)↑↓
1964.77

0.00
8.90
4.52

1963.72
40.08
9.06
4.21

1961.95
77.68
9.22
3.95

1958.93
114.52
10.57
3.29

1952.78
153.92
11.89
2.82

1940.31
196.39
15.00
1.92

1927.05
236.87
18.91
1.26

(±3, 0)↑↑
2223.42

0.00
6.34
1.66

2225.19
20.67
6.51
1.64

2223.51
40.85
6.92
1.55

2219.34
59.90
7.71
1.39

2211.69
83.17
9.03
1.38

2200.44
103.95
10.98
1.23

2185.80
127.24
12.52
0.67

(±1, 1)↑↑
2748.78

0.00
13.39
1.16

2745.19
10.16
12.65
1.11

2741.98
10.04
13.38
1.08

2726.99
24.31
13.61
0.91

2711.84
31.52
14.35
1.07

2681.49
40.21
22.00
0.97

2656.71
45.66
22.59
1.02

(±6, 0)↑↓
2984.95

0.00
10.85
2.88

2981.94
47.98
10.76
3.42

2978.67
92.63
10.96
3.74

2972.50
137.52
11.58
2.38

2961.26
186.90
13.05
1.99

2938.66
238.54
15.48
1.64

2916.86
289.40
17.18
1.19

(±3, 1)↑↓
3238.90

0.00
13.54
1.27

3238.82
19.87
12.23
1.22

3235.38
37.05
12.24
1.14

3228.76
56.11
13.14
1.04

3224.70
88.14
16.92
0.93

3201.82
97.08
25.80
0.61

3182.12
117.72
24.95
0.50

(±4, 0)↑↑
3465.92

0.00
7.64
1.58

3468.66
26.82
8.45
1.57

3465.82
54.49
8.36
1.48

3461.10
80.39
8.36
1.28

3452.96
109.53

9.42
1.28

3442.82
140.54
13.79
0.99

3425.97
170.64
13.94
0.89
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Tab. B.4: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 3.6 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↑
645.82

0.00
4.66
1.50

651.06
14.86
4.34
1.49

650.82
16.51
3.93
1.43

647.78
21.49
5.26
1.39

642.48
25.93
6.68
1.41

634.33
32.11
8.36
1.32

625.14
38.09
9.78
1.33

(0, 1)↑↓
655.93

0.00
6.01
0.76

657.61
0.00
6.05
0.65

659.04
0.00
5.92
0.68

656.81
0.00
4.64
0.67

651.69
0.00
8.99
0.75

644.27
0.00
9.51
0.63

635.53
0.00

12.72
0.70

(±4, 0)↑↓
1261.36

0.00
5.95
6.08

1261.74
31.42
5.92
5.37

1262.30
61.46
6.96
5.51

1261.80
89.74
9.09
4.95

1261.89
124.78
10.68
3.97

1260.28
151.71

9.79
2.93

1242.94
174.17
17.06
3.42

(±2, 0)↑↑
1335.81

0.00
4.38
1.53

1337.27
13.08
4.07
1.44

1335.94
25.44
4.48
1.47

1332.85
38.38
4.85
1.46

1327.75
51.36
5.68
1.41

1320.86
65.38
7.10
1.36

1311.92
79.19
8.97
1.26

(±1, 1)↑↓
1508.65

0.00
13.16
1.43

1506.96
−2.45
12.64
1.42

1505.90
−2.95
12.87
1.42

1505.39
2.91

14.87
1.37

1502.23
5.67

15.82
1.33

1503.87
22.29
18.81
1.24

1498.76
31.58
20.44
1.24

(±5, 0)↑↓
2097.29

0.00
7.49
4.87

2097.40
39.71
7.61
4.63

2096.43
77.37
8.01
4.21

2094.89
115.59

9.60
3.66

2092.82
161.37
12.91
3.03

2086.10
201.49
14.07
2.65

2075.13
239.75
16.55
1.44

(±2, 1)↑↓
2282.14

0.00
10.42
1.52

2278.57
10.79
8.29
1.51

2275.34
12.73
8.15
1.48

2270.08
38.22
8.05
1.41

2263.62
50.46
7.31
1.37

2253.49
63.20
7.64
1.31

2241.66
76.55
8.65
1.24

(±3, 0)↑↑
2295.01

0.00
5.44
1.53

2296.87
15.14
7.51
1.50

2294.17
36.47
9.87
1.41

2292.42
59.19
7.33
1.38

2286.40
78.87
8.74
1.28

2278.54
99.24
9.31
1.21

2269.20
121.82
10.20
1.14

(±1, 1)↑↑
2842.25

0.00
13.85
1.11

2839.09
16.09
11.44
1.11

2838.00
20.43
12.48
1.05

2830.26
38.57
20.41
0.97

2815.01
32.53
17.39
1.05

2798.33
36.83
17.29
1.02

2783.10
44.43
17.41
0.98

(±6, 0)↑↓
3179.72

0.00
9.75
2.98

3178.80
48.37
9.15
4.12

3176.70
94.36
9.37
2.84

3172.68
141.20
10.48
3.10

3164.13
190.85
11.53
2.57

3152.16
240.31
12.65
1.80

3136.90
293.80
15.92
1.32

(±3, 1)↑↓
3373.77

0.00
14.62
1.39

3372.91
18.92
14.11
1.36

3370.94
37.03
16.33
1.21

3371.05
58.43
16.33
1.09

3358.26
78.33
16.58
0.98

3345.52
100.45
16.56
0.86

3328.71
121.27
17.27
0.74
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Tab. B.5: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 4.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↑
667.57

0.00
2.96
1.34

667.37
7.47
2.83
1.31

662.30
13.85
3.19
1.33

658.86
18.75
4.26
1.34

652.76
23.92
5.49
1.30

644.33
29.54
6.86
1.26

636.66
35.78
8.15
1.25

(0, 1)↑↓
718.18

0.00
11.84
0.75

717.74
0.00

11.24
0.66

713.96
0.00

11.93
0.67

708.79
0.00

14.56
0.66

699.13
0.00

14.55
0.70

685.58
0.00

17.31
0.67

672.91
0.00

15.78
0.64

(±4, 0)↑↓
1343.60

0.00
3.89
6.68

1339.45
31.28
4.28
6.18

1340.93
61.02
3.19
4.77

1336.48
78.91
4.36
5.14

1327.25
101.20

6.52
3.99

1342.52
163.71
14.21
3.60

1340.13
191.18
13.61
3.99

(±2, 0)↑↑
1361.77

0.00
4.08
1.41

1370.83
12.53
3.50
1.45

1365.10
24.58
4.03
1.40

1361.50
36.84
4.31
1.42

1356.07
49.34
4.77
1.34

1349.12
63.44
5.88
1.30

1343.24
77.21
7.32
1.21

(±1, 1)↑↓
1550.48

0.00
23.86
1.55

1551.26
−11.88

18.13
1.64

1554.52
−10.90

15.41
1.63

1563.65
5.17

15.94
1.51

1568.35
28.37
17.00
1.46

1564.47
34.09
17.84
1.39

1556.94
39.12
18.77
1.32

(±5, 0)↑↓
2226.41

0.00
6.46
5.28

2223.01
40.54
6.87
4.94

2222.76
78.31
8.55
4.45

2222.21
117.04

9.10
4.05

2220.45
163.14
11.56
3.69

2215.76
201.93
11.40
2.99

2210.00
243.85
12.42
2.15

(±3, 0)↑↑
2332.68

0.00
5.55
1.39

2343.89
17.63
5.03
1.46

2338.79
38.01
4.84
1.34

2335.74
56.15
5.11
1.31

2331.70
81.17
6.77
1.29

2324.44
100.35

7.86
1.16

2318.22
117.40

7.11
1.13

(±2, 1)↑↓
2365.93

0.00
10.01
1.77

2367.95
14.46
7.51
1.72

2367.20
23.35
7.37
1.67

2359.28
12.45
16.14
1.46

2343.10
54.30
18.28
1.40

2337.79
71.07
16.94
1.27

2330.10
78.89
10.74
1.32

(±1, 1)↑↑
2922.48

0.00
12.97
1.07

2921.65
7.61

12.90
1.07

2911.13
19.60
11.81
1.04

2902.67
26.61
11.68
0.99

2888.90
30.66
13.71
0.98

2875.41
37.00
13.79
0.99

2861.63
43.69
14.37
0.94

(±6, 0)↑↓
3365.12

0.00
7.68
3.13

3361.33
49.58
8.23
4.40

3358.78
96.14
8.77
4.61

3355.06
143.62

9.45
3.29

3356.38
206.47
10.82
3.49

3341.55
247.15
12.23
1.84

3333.19
303.48
12.60
1.65

(±3, 1)↑↓
3510.66

0.00
12.95
1.59

3510.03
19.61
12.30
1.54

3504.08
40.71
12.85
1.45

3499.20
59.79
11.92
1.31

3489.22
78.44
16.14
1.15

3486.84
115.48
18.66
1.13

3466.37
128.53
15.12
0.91
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Tab. B.6: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 6.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↑
700.74

0.00
2.49
1.20

702.23
4.96
3.97
1.31

703.18
13.64
2.58
1.20

699.63
17.81
3.14
1.20

694.42
23.10
4.17
1.22

686.62
28.39
4.90
1.17

677.69
34.21
5.76
1.16

(0, 1)↑↓
841.24

0.00
11.59
0.67

841.17
0.00

11.55
0.70

838.44
0.00

11.49
0.69

834.96
0.00

12.28
0.66

828.67
0.00

14.19
0.74

817.04
0.00

16.45
0.69

805.93
0.00

16.85
0.62

(±2, 0)↑↑
1435.03

0.00
3.29
1.25

1435.63
11.61
3.07
1.23

1434.01
23.07
3.27
1.21

1431.12
34.94
3.40
1.23

1426.82
46.79
3.62
1.18

1420.94
60.08
4.40
1.19

1413.58
72.93
5.09
1.12

(±4, 0)↑↓
1479.69

0.00
4.19
7.31

1480.47
31.71
4.38
7.71

1480.22
66.17
6.03
7.05

1476.01
107.62

8.66
5.52

1479.62
134.47

8.18
5.53

1479.27
174.48

5.03
4.45

1478.30
199.54

3.15
5.38

(±1, 1)↑↓
1691.57

0.00
19.60
1.89

1687.51
−6.08
19.67
1.90

1687.68
−6.84
17.73
1.95

1689.54
−2.07
17.77
1.91

1702.19
26.97
18.57
1.74

1698.73
35.11
17.89
1.62

1693.33
41.35
18.77
1.58

(±3, 0)↑↑
2422.06

0.00
4.39
1.16

2424.49
17.62
4.14
1.11

2423.48
34.45
4.70
1.09

2422.29
50.34
5.19
1.05

2420.29
77.70
7.08
1.01

2411.32
88.32
4.91
1.00

2405.79
107.82

5.36
1.00

(±5, 0)↑↓
2444.15

0.00
4.94
6.20

2442.89
46.46
3.42
7.16

2446.54
81.06
2.46
7.15

2447.67
121.02

4.50
5.92

2448.76
161.09

6.31
5.46

2446.22
205.56

7.28
4.85

2443.66
252.75
10.14
3.25

(±2, 1)↑↓
2549.16

0.00
8.47
2.14

2545.69
14.45
7.75
2.04

2545.89
28.11
7.83
2.01

2544.55
42.30
8.38
1.91

2535.07
56.08
9.44
1.88

2529.70
72.35
9.94
1.72

2522.43
89.71
9.79
1.73

(±1, 1)↑↑
3032.70

0.00
16.23
0.94

3031.54
9.76

14.79
0.93

3028.34
15.99
14.17
0.88

3023.14
21.00
13.76
0.87

3011.47
53.65
37.57
0.82

2998.73
40.44
20.07
0.87

2985.91
44.63
18.34
0.83

(±4, 0)↑↑
3672.33

0.00
7.85
1.12

3677.27
21.01
9.33
1.10

3675.73
43.72
8.12
1.03

3674.57
67.29
7.94
0.95

3673.11
89.93
8.00
0.89

3667.79
116.30
10.34
0.79

3667.56
148.33
11.97
0.71

(±6, 0)↑↓
3679.96

0.00
2.41
5.41

3684.18
49.48
3.02
4.77

3684.33
98.98
4.72
5.53

3683.91
149.83

6.08
4.68

3681.81
198.16

7.83
3.73

3676.53
250.97

8.40
2.97

3673.38
301.02

9.53
2.42
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Tab. B.7: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 9.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↑
728.32

0.00
2.78
1.05

725.71
14.64
2.86
0.98

723.85
17.23
2.58
1.01

720.61
21.14
2.67
1.12

714.91
25.13
3.36
1.00

707.00
30.10
3.77
1.01

698.34
34.90
4.62
0.96

(0, 1)↑↓
959.19

0.00
12.11
0.65

959.95
0.00

11.69
0.65

958.01
0.00

11.74
0.64

956.41
0.00

11.78
0.64

949.10
0.00

12.94
0.65

937.55
0.00

14.03
0.72

925.06
0.00

17.89
0.62

(±2, 0)↑↑
1469.64

0.00
5.33
1.15

1479.08
14.03
3.46
1.00

1476.91
22.66
3.12
1.04

1476.75
36.41
5.20
1.05

1469.65
44.14
3.17
1.03

1463.09
55.97
3.42
0.99

1456.47
68.52
3.79
0.94

(±4, 0)↑↓
1606.87

0.00
4.33
9.75

1606.87
32.68
3.91
9.20

1609.08
64.34
4.22
8.94

1610.92
96.98
5.82
8.07

1613.16
130.49

6.97
7.45

1617.04
165.21
12.35
5.19

1617.81
202.40
16.36
3.69

(±1, 1)↑↓
1881.13

0.00
32.94
2.11

1917.62
−56.19

42.06
2.53

1928.18
−74.10

43.94
2.13

1844.44
25.61
15.94
2.48

1843.11
29.74
14.73
2.44

1839.89
35.86
14.71
2.27

1837.05
44.05
16.11
2.23

(±3, 0)↑↑
2457.09

0.00
5.97
0.99

2476.14
15.89
3.64
0.92

2474.85
30.54
3.85
0.93

2473.46
54.85
8.71
0.86

2465.72
63.92
3.89
0.87

2460.61
81.89
4.03
0.86

2455.80
99.81
4.68
0.78

(±5, 0)↑↓
2643.08

0.00
5.72
7.86

2641.69
42.01
5.01
7.59

2643.10
83.49
4.64
7.15

2644.07
127.38

5.20
6.69

2646.60
169.63

6.97
5.68

2645.43
218.69

7.85
4.82

2651.14
255.46

9.18
4.22

(±2, 1)↑↓
2723.45

0.00
7.22
2.63

2723.71
14.64
6.90
2.58

2722.82
29.25
6.35
2.56

2721.34
44.90
9.36
2.38

2715.82
61.94
7.67
2.37

2711.60
78.37
9.06
2.26

2707.47
94.33
10.20
2.07

(±1, 1)↑↑
3090.40

0.00
16.83
0.83

3097.76
−5.57
15.61
0.82

3096.96
−7.20
16.71
0.79

3098.30
−2.70
16.77
0.72

3041.88
37.26
23.80
0.69

3036.61
41.57
18.90
0.68

3027.57
44.11
19.32
0.69

(±4, 0)↑↑
3694.84

0.00
8.38
0.91

3716.37
19.16
6.49
0.92

3715.37
39.52
6.54
0.87

3712.87
60.52
6.40
0.81

3709.72
81.94
6.50
0.73

3706.02
106.82

8.82
0.67

3701.64
127.48

6.65
0.65

(±6, 0)↑↓
3957.49

0.00
8.05
4.88

3955.52
50.87
7.72
6.25

3957.21
99.79
7.71
6.44

3957.35
155.06

6.67
5.13

3958.06
209.65

6.93
3.97

3958.82
263.87

9.32
3.55

3958.57
321.65
11.47
2.59
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Tab. B.8: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.0 mm and g = 14.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↑
754.73

0.00
2.19
0.87

755.96
0.40
2.04
0.81

754.17
−0.20

2.10
0.88

750.29
−0.06

2.48
0.86

745.15
0.02
2.57
0.81

737.63
−0.45

3.07
0.85

728.18
−0.70

3.60
0.45

(0, 1)↑↓
1118.55

0.00
14.55
0.68

1119.56
0.00

14.15
0.57

1118.61
0.00

14.29
0.61

1116.12
0.00

14.51
0.50

1114.94
0.00

15.60
0.62

1106.73
0.00

16.15
0.59

1096.42
0.00

17.65
0.63

(±2, 0)↑↑
1536.47

0.00
5.44
1.12

1540.27
10.92
3.77
0.76

1538.72
18.74
3.36
0.75

1537.16
27.81
3.40
0.81

1536.30
38.26
2.96
0.75

1531.92
48.60
3.01
0.74

1526.64
60.27
3.47
0.73

(±4, 0)↑↓
1716.73

0.00
2.39

15.86

1718.19
32.54
2.92

12.54

1720.19
64.41
3.87

12.42

1720.93
95.90
4.76

12.59

1723.54
132.15

6.62
10.56

1727.89
168.08

9.42
7.49

1731.71
195.90
10.41
9.45

(±3, 0)↑↑
2539.24

0.00
4.17
0.70

2543.26
13.83
3.88
0.64

2543.26
26.40
4.00
0.67

2541.61
39.52
3.78
0.65

2536.93
55.04
9.14
0.61

2534.18
69.60
4.88
0.54

2530.10
86.31
5.63
0.59

(±5, 0)↑↓
2804.87

0.00
4.21

11.75

2805.53
43.29
3.62

10.41

2806.39
85.18
3.94

10.79

2808.69
127.93

5.75
9.37

2809.00
172.31

5.68
9.13

2813.21
218.74

7.18
7.57

2818.88
261.56

9.33
4.51

(±2, 1)↑↓
2892.82

0.00
6.36
3.63

2891.11
14.36
5.71
3.64

2891.30
31.74
6.08
3.55

2891.00
48.22
5.88
3.48

2890.16
64.83
8.87
3.25

2885.97
83.57
10.42
3.15

2884.44
102.22
11.84
2.91

(±1, 1)↑↑
3111.88

0.00
23.58
0.65

3103.20
27.77
19.85
0.57

3103.41
31.74
20.56
0.55

3102.92
33.24
20.10
0.54

3125.98
−5.12
25.82
0.52

3072.88
18.86
40.79
0.43

3063.61
18.90
41.34
0.39

(±4, 0)↑↑
3767.58

0.00
6.85
0.65

3772.96
16.64
7.47
0.60

3776.82
40.68
9.28
0.58

3772.80
50.01
7.76
0.58

3773.89
67.01
9.33
0.50

3769.17
88.17
9.58
0.45

3767.19
108.93

9.34
0.42

(±6, 0)↑↓
4174.66

0.00
5.74
6.96

4174.57
52.71
5.16
8.94

4175.06
106.23

5.15
8.38

4176.77
157.34

5.60
8.29

4178.13
214.94

6.45
7.92

4182.05
269.82

8.12
5.46

4184.74
326.33

9.93
4.38

(±3, 1)↑↓
4290.83

0.00
8.66
3.95

4290.92
25.09
8.10
3.73

4291.13
50.89
8.76
3.33

4291.31
76.81
8.28
3.37

4290.87
104.61
10.16
2.95

4288.82
133.06

9.65
2.95

4286.60
159.58
10.73
2.61
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Tab. B.9: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 1.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
154.19

0.00
6.09
3.56

156.36
9.47
7.55
2.99

155.83
15.93
9.34
3.32

153.42
23.47
9.71
3.47

150.70
28.30
12.22
3.60

146.22
35.40
14.58
4.11

146.02
80.60
6.73

11.39

(±2, 0)↑↓
310.89

0.00
7.79
4.40

311.32
15.58
8.23
4.43

311.17
29.95
10.29
4.02

310.41
43.15
12.62
4.06

305.92
57.91
14.44
3.23

302.26
77.11
16.89
3.18

299.46
79.61
19.71
3.22

(0, 1)↑↓
483.26

0.00
14.06
0.47

481.77
0.00

13.97
0.41

478.96
0.00

14.71
0.46

473.51
0.00

15.99
0.49

463.07
0.00

17.15
0.59

451.43
0.00

16.95
0.44

433.38
0.00

18.19
0.57

(±1, 0)↑↑
599.92

0.00
7.67
1.50

601.28
9.30
6.92
1.40

598.45
14.68
7.53
1.43

593.79
20.65
8.52
1.41

586.01
27.00
9.84
1.39

575.19
33.42
11.39
1.33

562.59
40.87
12.95
1.30

(±3, 0)↑↓
710.76

0.00
11.24
2.12

709.99
22.61
11.62
2.02

708.40
44.01
12.44
1.88

704.99
64.97
14.29
1.67

698.77
86.99
16.69
1.57

688.78
111.62
18.40
1.13

675.72
135.14
20.53
1.09

(±2, 0)↑↑
1253.87

0.00
8.62
1.45

1253.39
14.51
8.61
1.41

1249.84
27.88
9.12
1.37

1243.95
42.65
9.58
1.33

1233.29
56.66
10.64
1.25

1219.86
73.97
12.28
1.18

1200.55
88.18
14.18
1.08

(±4, 0)↑↓
1303.24

0.00
15.39
1.35

1302.59
33.03
16.75
1.23

1296.50
56.16
16.90
1.00

1292.14
88.70
17.14
0.91

1275.00
114.66
20.11
0.83

1264.11
154.55
19.97
0.65

1237.59
178.55
21.05
0.53

(±1, 1)↑↓
1476.11

0.00
26.29
0.64

1474.21
−15.71

23.93
0.66

1471.74
−13.98

22.70
0.65

1484.95
−7.60
30.59
0.63

1484.99
10.65
33.60
0.60

1462.64
−6.75
33.47
0.57

1446.61
−9.08
36.91
0.50

(±5, 0)↑↓
2094.74

0.00
19.19
0.21

2092.86
49.64
17.36
1.41

2086.47
80.31
20.01
0.71

2074.09
106.31
20.00
0.59

2055.86
142.75
21.07
0.47

2030.50
182.35
22.88
0.33

1996.73
223.17
24.26
0.21

(±3, 0)↑↑
2325.01

0.00
12.30
1.58

2323.01
20.23
11.43
1.55

2317.86
45.88
11.45
1.44

2308.55
70.89
12.50
1.31

2293.39
96.05
13.46
1.17

2272.52
122.14
14.40
1.04

2246.34
147.92
15.72
0.90

(±2, 1)↑↓
2335.65

0.00
18.15
0.74

2334.00
10.28
16.86
0.70

2329.13
25.52
17.07
0.67

2320.50
42.23
16.59
0.64

2307.77
55.63
16.59
0.60

2288.70
67.56
17.46
0.55

2268.50
85.51
25.61
0.46
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Tab. B.10: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 2.2 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
187.26

0.00
4.12
3.42

187.96
6.69
5.35
1.96

190.56
11.73
8.96
3.44

189.42
17.41
11.27
3.43

189.34
26.39
14.31
4.05

186.06
35.28
15.45
3.86

187.48
37.99
14.89
4.53

(±2, 0)↑↓
372.89

0.00
5.42
4.48

373.22
15.86
6.70
4.65

374.33
28.70
8.37
4.17

374.49
41.65
10.82
4.10

374.54
57.42
14.05
3.79

370.74
72.55
16.70
3.21

367.50
87.23
16.67
2.61

(0, 1)↑↓
584.87

0.00
12.62
0.44

582.54
0.00

13.36
0.45

580.81
0.00

14.60
0.42

575.68
0.00

15.49
0.52

568.74
0.00

17.29
0.43

558.79
0.00

15.31
0.54

546.91
0.00

19.19
0.38

(±1, 0)↑↑
653.87

0.00
6.44
1.52

652.78
11.45
5.61
1.36

653.17
16.59
5.58
1.36

650.86
22.00
6.29
1.38

646.03
27.28
7.23
1.36

638.76
33.84
9.01
1.32

629.81
40.72
10.83
1.26

(±3, 0)↑↓
850.65

0.00
7.96
2.12

850.50
21.80
8.24
2.12

850.49
41.93
9.26
1.97

849.27
61.31
11.03
1.86

845.87
82.53
12.96
1.64

841.02
104.37
16.21
1.40

833.56
128.06
18.39
1.15

(±2, 0)↑↑
1356.96

0.00
5.30
1.34

1353.85
14.42
5.46
1.35

1352.56
28.18
5.52
1.33

1349.48
41.63
6.47
1.30

1343.61
56.15
6.82
1.26

1335.08
70.96
7.86
1.22

1325.31
85.90
9.05
1.14

(±4, 0)↑↓
1556.09

0.00
10.96
1.38

1555.50
29.14
10.61
1.33

1553.61
55.16
11.24
1.16

1550.58
79.97
12.51
1.08

1543.81
108.47
13.34
0.92

1533.81
137.67
15.10
0.77

1522.63
166.69
16.95
0.67

(±1, 1)↑↓
1597.99

0.00
27.16
0.64

1609.42
13.21
36.43
0.60

1615.95
19.01
26.24
0.59

1613.55
19.95
25.02
0.57

1607.36
23.68
27.45
0.54

1597.81
28.99
24.66
0.52

1586.35
32.10
23.91
0.50

(±5, 0)↑↓
2484.15

0.00
7.99
0.94

2501.62
56.92
8.79
1.26

2496.71
80.89
9.81
1.07

2494.71
112.08
11.65
0.89

2484.46
145.62
14.76
0.74

2468.64
185.86
17.01
0.54

2451.61
227.10
20.75
0.34

(±3, 0)↑↑
2485.69

0.00
10.10
1.55

2489.56
17.23
11.49
1.47

2488.56
38.17
9.63
1.39

2484.54
61.32
9.44
1.31

2478.17
84.90
8.79
1.24

2468.63
109.99

9.79
1.17

2457.61
135.05
10.44
1.09

(±2, 1)↑↓
2566.89

0.00
19.24
0.71

2561.86
14.88
17.92
0.69

2556.81
24.62
16.95
0.66

2550.38
31.50
15.75
0.62

2540.61
38.80
17.33
0.55

2522.37
54.99
16.93
0.51

2503.71
65.90
16.01
0.50
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Tab. B.11: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 2.9 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
210.48

0.00
3.51
3.68

211.61
7.29
4.34
3.64

212.37
13.62
6.82
3.63

211.58
22.96
9.79
3.24

209.77
26.18
13.21
3.60

208.09
36.08
15.06
3.36

200.28
41.04
17.99
3.85

(±2, 0)↑↓
416.85

0.00
4.38
4.77

416.99
14.85
4.92
4.71

417.70
28.09
6.70
4.53

418.65
41.53
9.37
4.35

419.19
56.35
12.73
3.86

417.15
71.51
15.43
3.41

415.00
87.16
17.45
2.72

(0, 1)↑↓
656.21

0.00
12.78
0.51

653.71
0.00

20.12
0.44

653.19
0.00

26.50
0.46

645.24
0.00

24.70
0.42

652.33
0.00

34.49
0.45

628.84
0.00

20.92
0.41

617.13
0.00

24.91
0.51

(±1, 0)↑↑
684.16

0.00
4.37
2.17

687.68
8.96
3.87
1.16

685.21
14.24
4.12
1.37

682.45
19.80
4.76
1.34

678.00
26.06
5.62
1.37

672.10
32.77
6.83
1.32

664.50
39.56
8.80
1.31

(±3, 0)↑↓
949.53

0.00
6.52
2.25

949.63
21.73
6.71
2.22

949.66
41.75
7.54
2.05

949.02
61.44
9.23
1.98

946.91
82.55
10.69
1.74

943.13
104.32
12.65
1.59

938.27
126.61
15.90
1.35

(±2, 0)↑↑
1402.43

0.00
4.15
1.36

1401.62
13.91
3.99
1.33

1401.03
27.38
4.34
1.33

1398.43
41.07
4.64
1.30

1394.12
54.88
5.31
1.26

1387.76
69.74
5.81
1.24

1380.33
84.49
6.77
1.19

(±4, 0)↑↓
1733.96

0.00
8.84
1.45

1734.19
28.02
8.70
1.38

1733.45
53.89
8.85
1.28

1731.54
78.10
10.06
1.16

1726.60
105.92
11.61
1.00

1719.26
136.40
12.91
0.86

1710.15
165.91
14.70
0.46

(±3, 0)↑↑
2546.62

0.00
5.06
1.46

2549.90
21.44
5.93
1.46

2549.80
43.68
5.51
1.38

2547.32
68.36
9.32
1.27

2543.44
90.79
10.02
1.20

2538.12
111.75

7.04
1.21

2531.80
134.56

7.55
1.15

(±2, 1)↑↓
2749.79

0.00
22.84
0.70

2745.50
17.18
24.73
0.70

2744.64
24.58
20.95
0.64

2766.29
30.73
25.84
0.55

2757.70
46.86
24.22
0.40

2713.91
52.57
17.94
0.53

2696.99
65.44
18.07
0.49

(±5, 0)↑↓
2770.62

0.00
10.04
1.11

2770.46
34.82
10.44
1.03

2768.22
64.44
10.89
0.93

2763.99
96.33
11.43
0.81

2755.86
131.16
11.89
0.71

2745.57
165.28
13.78
0.55

2730.94
202.22
15.13
0.45

(±1, 1)↑↑
3685.36

0.00
18.94
0.95

3683.35
0.47

19.33
0.97

3681.56
8.45

19.33
0.95

3676.14
18.05
22.16
0.93

3664.78
26.42
23.78
0.89

3638.58
35.26
29.06
0.84

3617.82
43.37
28.51
0.73
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Tab. B.12: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 3.6 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
228.75

0.00
2.82
3.84

230.00
7.11
3.87
3.86

231.95
13.29
6.40
3.84

233.23
22.74
11.99
3.50

232.57
31.41
13.46
3.55

231.83
37.14
17.83
3.08

228.20
45.06
16.01
3.62

(±2, 0)↑↓
450.79

0.00
3.40
5.69

451.65
14.40
3.75
5.26

452.39
33.92
6.38
4.98

452.75
42.29
8.87
4.49

453.14
58.47
11.63
4.07

453.23
71.84
15.08
3.91

448.99
86.53
20.72
3.16

(±1, 0)↑↑
707.06

0.00
3.47
1.32

706.71
1.71
3.66
1.31

711.16
16.52
4.21
1.32

709.25
22.34
4.68
1.27

705.36
27.89
5.02
1.33

700.16
33.80
6.11
1.33

693.58
40.43
7.91
1.26

(0, 1)↑↓
712.29

0.00
3.41
0.58

713.32
0.00
4.37
0.43

716.13
0.00
6.45
0.51

714.74
0.00
6.93
0.71

710.49
0.00
9.17
0.54

704.86
0.00

11.07
0.37

693.89
0.00

14.64
0.51

(±3, 0)↑↓
1029.69

0.00
5.27
2.38

1029.91
22.04
5.60
2.35

1029.93
42.30
6.57
2.27

1029.39
62.00
8.09
2.04

1027.52
83.53
9.38
1.95

1025.05
106.02
11.53
1.72

1021.31
128.99
13.34
1.47

(±2, 0)↑↑
1452.93

0.00
3.97
1.29

1449.89
14.72
3.83
1.28

1448.56
27.26
3.80
1.28

1446.46
40.78
4.09
1.21

1442.09
54.49
4.40
1.23

1436.80
68.96
5.13
1.19

1430.06
83.51
5.75
1.18

(±4, 0)↑↓
1880.98

0.00
7.29
1.51

1880.91
28.44
7.37
1.45

1879.45
53.97
7.98
1.36

1877.54
79.61
8.74
1.17

1873.77
107.97

9.92
1.12

1867.84
137.17
11.42
0.97

1860.35
167.49
13.22
0.79

(±3, 0)↑↑
2600.79

0.00
5.42
1.37

2603.84
21.17
5.18
1.36

2603.11
42.40
7.83
1.28

2597.47
64.45
8.08
1.17

2594.47
86.57
7.37
1.19

2592.05
109.42

6.76
1.14

2586.91
133.05

7.65
1.09

(±2, 1)↑↓
2912.39

0.00
27.42
0.71

2912.81
11.70
23.94
0.67

2906.65
31.16
22.84
0.52

2898.80
47.64
28.71
0.48

2893.82
52.14
29.37
0.47

2876.72
54.42
24.52
0.48

2862.07
64.57
23.69
0.44

(±5, 0)↑↓
2997.54

0.00
10.46
1.14

2997.29
34.27
9.57
1.07

2997.56
76.88
14.68
0.93

2991.05
95.90
10.31
0.83

2984.66
130.02
10.72
0.77

2975.92
165.37
11.39
0.66

2964.53
202.30
13.28
0.52

(±1, 1)↑↑
3836.87

0.00
16.47
0.99

3836.66
4.46

16.61
1.00

3833.06
12.84
17.75
1.01

3829.94
20.51
18.33
0.78

3817.29
28.32
20.20
0.92

3803.95
37.56
21.91
0.87

3786.85
45.34
23.71
0.83
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Tab. B.13: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 4.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
247.25

0.00
2.31
3.89

248.02
7.02
3.30
3.95

247.92
13.24
5.48
1.96

247.74
19.20
10.34
4.13

244.68
26.86
11.59
4.26

242.22
31.93
16.39
3.31

238.50
44.14
18.82
3.97

(±2, 0)↑↓
483.58

0.00
3.19
5.10

483.44
14.51
3.55
5.20

483.97
28.76
5.97
2.20

484.76
41.74
7.26
4.96

485.71
57.40
10.34
4.63

487.52
74.32
15.07
4.19

487.22
85.83
19.07
2.82

(±1, 0)↑↑
722.61

0.00
2.57
1.30

724.60
5.48
3.14
1.01

720.65
13.45
3.42
1.28

717.10
19.29
3.80
1.31

712.27
25.28
4.44
1.28

706.58
31.93
5.28
1.27

699.55
38.45
7.15
1.24

(0, 1)↑↓
762.31

0.00
12.64
0.49

761.29
0.00

11.44
0.42

759.46
0.00

11.23
0.43

752.83
0.00

11.42
0.42

735.99
0.00

10.55
0.33

733.55
0.00
9.66
0.35

728.11
0.00
9.25
0.41

(±3, 0)↑↓
1101.04

0.00
4.90
2.39

1101.79
21.32
5.00
2.43

1101.86
42.80
7.68
2.31

1101.08
62.04
7.82
2.19

1099.71
85.34
9.50
2.02

1097.31
107.48
11.00
1.76

1094.59
130.48
13.22
1.55

(±2, 0)↑↑
1453.52

0.00
5.25
1.27

1464.20
12.86
3.59
1.28

1462.50
26.16
3.46
1.26

1459.29
39.04
3.70
1.22

1454.36
53.11
4.15
1.20

1448.25
67.07
4.50
1.18

1441.66
81.92
4.95
1.15

(±4, 0)↑↓
2009.03

0.00
6.36
1.50

2010.85
28.34
6.39
1.49

2009.12
54.09
6.84
1.42

2006.97
80.07
7.51
1.30

2003.47
108.79

8.46
1.19

1998.37
138.14

9.94
1.05

1991.62
168.13
11.23
0.92

(±3, 0)↑↑
2597.53

0.00
6.34
1.33

2610.90
20.53
5.34
1.34

2609.94
41.80
5.37
1.27

2607.33
63.07
4.98
1.23

2602.89
84.53
6.05
1.18

2600.35
110.95

7.55
1.11

2598.36
137.86

8.63
1.03

(±2, 1)↑↓
3054.31

0.00
28.66
0.68

3056.64
23.50
31.48
0.69

3052.61
30.78
29.72
0.61

3046.98
36.89
27.68
0.55

3038.42
52.92
30.74
0.48

3026.54
57.82
29.34
0.43

3010.76
65.67
29.35
0.40

(±5, 0)↑↓
3192.75

0.00
9.27
1.14

3196.75
33.41
8.21
1.11

3194.40
64.16
8.53
1.00

3191.28
96.04
9.17
0.91

3184.50
130.32

9.58
0.80

3177.13
165.33
10.47
0.69

3166.76
201.82
11.91
0.59

(±1, 1)↑↑
3947.76

0.00
14.74
1.05

3953.07
11.05
13.48
1.07

3948.93
19.41
15.51
1.04

3940.65
29.45
20.52
0.98

3929.66
33.09
21.00
0.97

3919.52
39.16
24.34
0.88

3902.81
50.34
22.10
0.92
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Tab. B.14: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 6.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
280.80

0.00
1.86
4.20

281.60
6.68
2.93
4.19

282.13
13.21
5.03
1.19

280.89
19.00
7.14
3.66

279.60
26.70
10.23
3.45

277.75
34.74
13.43
3.51

277.73
43.32
14.07
3.09

(±2, 0)↑↓
543.87

0.00
2.38
5.62

544.12
14.60
2.92
5.70

544.01
30.48
5.83
5.18

544.64
43.40
7.16
4.97

545.66
58.18
8.76
5.34

547.65
74.55
12.36
4.27

547.19
91.37
19.15
4.11

(±1, 0)↑↑
743.46

0.00
2.97
1.56

747.76
6.72
2.73
1.01

739.39
11.73
2.64
1.25

736.38
18.01
3.08
1.21

732.34
23.54
3.52
1.23

726.36
30.48
4.22
1.18

719.97
36.88
5.54
1.17

(0, 1)↑↓
891.10

0.00
14.42
0.41

890.81
0.00

14.40
0.41

886.07
0.00

14.33
0.41

881.67
0.00

14.73
0.42

874.46
0.00

14.78
0.40

861.52
0.00

14.56
0.41

850.45
0.00

15.79
0.39

(±3, 0)↑↓
1242.98

0.00
3.47
2.65

1243.73
21.96
3.87
2.70

1242.27
42.69
4.70
2.55

1242.65
63.59
7.64
2.45

1241.41
85.62
7.56
2.26

1240.63
112.86

9.19
2.00

1238.37
132.82
11.74
1.80

(±2, 0)↑↑
1491.08

0.00
5.09
1.22

1501.65
12.47
3.46
1.16

1492.82
24.42
3.12
1.14

1490.33
36.79
3.23
1.11

1488.58
54.46
4.88
1.25

1481.03
63.95
3.75
1.06

1475.09
77.90
4.08
1.06

(±4, 0)↑↓
2267.06

0.00
5.45
1.62

2268.94
27.94
5.43
1.63

2266.27
54.96
7.89
1.49

2263.98
81.21
6.28
1.43

2264.47
119.78

9.89
1.27

2264.09
152.78
12.79
1.07

2253.27
169.79

9.67
1.06

(±3, 0)↑↑
2618.04

0.00
6.03
1.19

2630.75
19.13
5.21
1.18

2625.14
43.97
6.87
1.15

2623.86
66.36
8.97
1.02

2619.64
85.06
8.26
1.02

2613.69
101.24

5.69
1.00

2610.19
123.00

5.86
0.99

(±2, 1)↑↓
3377.28

0.00
43.14
0.70

3379.13
27.98
45.34
0.59

3371.71
34.33
40.54
0.52

3384.85
19.84
50.02
0.46

3374.58
20.92
45.66
0.36

3350.72
61.53
35.86
0.35

3337.08
71.59
33.97
0.22

(±5, 0)↑↓
3587.18

0.00
8.67
1.22

3592.44
33.25
7.13
1.13

3586.45
64.10
7.53
1.08

3583.58
95.09
7.98
0.97

3579.83
127.74

8.48
0.86

3573.80
165.79

8.96
0.78

3566.96
201.91

9.92
0.65

(±1, 1)↑↑
4073.15

0.00
11.68
1.04

4077.99
9.99

11.87
1.09

4077.29
14.46
11.58
1.05

4074.63
23.17
13.46
1.09

4064.37
35.94
15.15
1.02

4053.27
25.96
25.11
0.85

4045.95
41.78
22.33
0.90
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Tab. B.15: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 9.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
315.11

0.00
1.58
4.62

316.54
6.35
2.51
4.40

317.65
13.04
4.53
4.44

319.34
19.44
7.61
4.34

320.40
25.48
11.58
4.21

318.97
33.28
15.51
4.04

318.16
36.83
17.58
4.15

(±2, 0)↑↓
603.42

0.00
1.47
6.66

603.38
14.88
2.39
6.29

604.73
28.96
3.83
6.65

605.81
43.84
5.51
6.22

606.65
59.83
7.10
6.03

609.97
74.87
10.06
5.30

611.39
89.06
15.42
4.78

(±1, 0)↑↑
760.00

0.00
5.24
1.07

767.99
11.67
2.63
1.01

766.65
14.56
2.16
1.13

766.17
19.01
2.43
1.01

761.74
25.03
3.18
1.05

755.22
30.66
3.50
1.03

747.24
36.41
4.45
1.04

(0, 1)↑↓
1020.53

0.00
15.96
0.38

1021.14
0.00

15.73
0.38

1018.52
0.00

15.98
0.36

1024.49
0.00

15.39
0.37

1019.37
0.00

15.38
0.33

1007.07
0.00

16.31
0.35

995.16
0.00

15.44
0.33

(±3, 0)↑↓
1382.56

0.00
2.73
3.20

1383.91
21.76
3.18
2.99

1384.53
43.68
3.58
2.97

1385.12
65.79
4.82
2.89

1384.36
88.50
6.17
2.64

1383.82
113.27

8.35
2.39

1382.17
135.47

9.96
2.22

(±2, 0)↑↑
1527.49

0.00
5.97
0.99

1536.71
14.78
4.41
0.85

1534.23
24.11
3.95
0.98

1534.38
34.06
3.33
0.95

1530.85
46.41
3.12
0.93

1524.16
59.27
3.28
0.92

1516.71
72.13
3.32
0.91

(±1, 1)↑↓
2361.06

0.00
27.47
0.42

2375.03
−19.58

26.83
0.41

2378.68
−17.80

25.65
0.38

2406.67
−15.65

25.29
0.39

2312.70
37.85
34.43
0.33

2308.62
36.96
31.47
0.32

2301.06
37.29
29.71
0.31

(±4, 0)↑↓
2624.57

0.00
1.11
1.55

2527.51
27.36
4.23
1.84

2526.78
54.65
4.79
1.78

2526.72
82.83
4.65
1.65

2527.55
117.63

7.70
1.42

2522.39
143.65

7.41
1.34

2519.07
172.81

8.13
1.21

(±3, 0)↑↑
2626.01

0.00
7.57
1.06

2641.48
18.05
4.88
0.97

2640.64
36.51
4.88
0.97

2640.01
53.43
4.90
0.94

2633.53
73.87
5.99
0.88

2629.10
93.79
5.64
0.86

2624.52
113.76

5.39
0.82

(±2, 1)↑↓
3746.50

0.00
57.03
0.64

3753.86
12.63
56.47
0.60

3745.76
25.69
56.02
0.47

3736.16
39.63
49.77
0.39

3736.64
51.24
59.48
0.28

3711.03
75.76
47.38
0.27

3701.06
81.21
44.97
0.26

(±5, 0)↑↓
3976.06

0.00
8.77
1.29

3984.46
32.53
6.98
1.23

3983.66
63.73
7.53
1.19

3982.97
95.55
6.79
1.03

3979.45
126.73

7.48
0.96

3975.44
164.07

8.65
0.89

3969.80
197.72

9.18
0.76
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Tab. B.16: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 1.5 mm and g = 14.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
353.54

0.00
1.70
5.60

353.47
5.71
2.00
5.94

353.50
13.99
4.37
1.67

357.00
19.69
5.75
3.36

356.73
25.54
8.17
6.06

355.49
29.74
9.88
6.53

331.88
66.98
28.60
3.24

(±2, 0)↑↓
660.33

0.00
1.04
9.94

662.17
13.52
1.62

10.25

665.00
30.46
3.47
7.37

664.73
45.42
5.53
7.51

668.15
62.87
7.99
7.40

670.88
81.23
10.12
6.06

688.59
124.15

9.40
5.28

(±1, 0)↑↑
795.12

0.00
2.33
0.86

787.85
16.47
2.41
1.02

785.92
18.61
2.57
0.91

782.21
22.55
2.54
0.93

778.20
24.84
3.07
0.88

772.29
30.50
2.64
0.85

766.17
35.94
3.71
0.88

(0, 1)↑↓
1197.03

0.00
16.58
0.32

1193.40
0.00

17.40
0.33

1192.46
0.00

17.54
0.31

1189.48
0.00

16.98
0.34

1185.36
0.00

17.75
0.30

1177.34
0.00

16.98
0.31

1164.50
0.00

17.40
0.31

(±3, 0)↑↓
1522.37

0.00
2.27
3.93

1523.19
22.77
2.55
3.83

1523.50
43.77
3.38
3.56

1525.66
69.55
4.24
3.78

1525.37
92.24
2.89
3.73

1521.51
109.09

4.03
3.32

1516.17
119.02

4.15
3.18

(±2, 0)↑↑
1561.77

0.00
5.95
0.93

1562.07
13.94
4.30
0.69

1560.16
23.31
3.32
0.78

1558.18
31.96
3.18
0.73

1555.45
43.04
4.06
0.75

1548.40
49.83
3.68
0.72

1543.03
62.36
3.22
0.72

(±3, 0)↑↑
2618.95

0.00
12.88
0.77

2624.86
20.70
9.47
0.78

2625.19
35.68
9.44
0.74

2623.89
53.21
11.08
0.66

2636.53
110.05
13.01
0.60

2622.84
97.43
11.47
0.60

2610.52
99.57
7.37
0.60

(±4, 0)↑↓
2790.36

0.00
3.80
2.27

2790.49
29.63
4.25
2.22

2790.97
57.43
4.23
2.15

2791.13
87.02
4.58
2.03

2790.43
116.86

5.27
1.98

2789.57
149.19

6.15
1.77

2788.47
181.26

7.68
1.57

(±4, 0)↑↑
3986.77

0.00
13.50
0.98

3990.58
22.85
13.29
0.91

3990.09
46.12
11.95
0.86

3988.51
66.87
11.84
0.74

3986.11
90.77
13.42
0.68

3985.16
119.41
13.76
0.59

3982.17
145.28
14.02
0.53

(±1, 1)↑↑
4039.71

0.00
12.12
1.12

4042.54
23.42
11.42
1.08

4035.16
20.93
10.17
1.14

4036.37
25.00
8.68
1.14

4030.03
33.20
9.94
1.05

4039.99
42.66
22.00
1.17

4032.70
82.43
25.16
0.33

(±2, 1)↑↓
3994.98

0.00
18.04
0.54

4007.17
31.53
29.10
0.54

4016.76
43.52
26.16
0.48

4024.52
58.67
30.89
0.44

4031.20
48.21
26.01
0.37

4049.32
26.51
21.48
0.39

4056.52
23.68
16.30
0.25
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Tab. B.17: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 1.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
181.99

0.00
7.86
1.49

184.62
8.90
9.06
1.40

185.27
16.37
10.35
1.60

183.10
21.08
9.45
1.44

180.76
29.66
10.63
1.57

178.13
37.92
13.88
1.69

179.84
54.41
3.38
2.09

(±2, 0)↑↓
380.99

0.00
9.57
2.00

380.19
15.00
9.74
1.98

378.42
29.49
10.71
1.77

376.24
43.84
12.57
1.50

372.20
58.52
12.90
1.51

367.12
73.06
14.80
1.40

359.31
87.51
16.20
1.33

(0, 1)↑↓
496.26

0.00
14.20
0.45

496.28
0.00

14.13
0.46

490.40
0.00

14.16
0.53

487.10
0.00

15.19
0.44

474.84
0.00

16.16
0.44

466.90
0.00

17.01
0.37

447.67
0.00

17.90
0.47

(±1, 0)↑↑
661.94

0.00
8.29
1.38

659.38
−4.46

8.11
1.40

666.01
19.43
8.49
1.36

661.35
25.31
9.48
1.37

653.67
32.51
10.81
1.35

641.90
38.21
12.28
1.30

628.32
46.42
13.55
1.32

(±3, 0)↑↓
816.85

0.00
13.69
0.91

816.58
22.22
13.81
0.87

812.60
43.58
14.41
0.80

807.46
64.16
15.31
0.73

799.39
85.32
16.74
0.61

787.47
107.75
17.76
0.53

772.01
132.96
19.50
0.45

(±2, 0)↑↑
1371.24

0.00
10.67
1.33

1368.12
15.98
10.14
1.31

1363.05
31.11
10.34
1.29

1355.92
46.15
10.56
1.19

1344.91
62.77
12.60
1.10

1328.96
77.63
12.98
1.09

1311.69
96.02
15.17
0.98

(±4, 0)↑↓
1430.95

0.00
17.47
0.59

1429.99
29.44
18.02
0.55

1423.47
56.15
17.46
0.47

1415.32
85.77
19.85
0.42

1401.29
111.49
18.19
0.29

1380.71
135.38
21.15
0.25

1362.17
173.50
23.83
0.20

(±1, 1)↑↑
1531.39

0.00
33.63
0.64

1527.12
−5.43
34.53
0.64

1536.87
19.24
35.28
0.62

1522.65
16.20
36.77
0.64

1521.35
30.41
34.38
0.63

1510.05
36.68
36.00
0.60

1495.84
43.33
38.75
0.59

(±5, 0)↑↓
2240.01

0.00
22.25
0.44

2235.47
36.69
22.36
0.38

2227.60
71.59
22.61
0.30

2214.53
105.18
23.37
0.23

2195.31
140.42
24.26
0.17

2168.00
179.14
25.46
0.12

2132.51
218.71
26.56
0.10

(±2, 1)↑↓
2444.43

0.00
22.62
0.65

2440.75
15.73
20.25
0.69

2433.59
26.27
19.57
0.64

2421.79
36.64
19.15
0.57

2406.07
47.94
18.72
0.56

2382.72
59.87
18.36
0.55

2353.07
72.94
18.15
0.53

(±3, 0)↑↑
2665.23

0.00
15.09
1.32

2662.11
23.78
15.05
1.28

2655.59
49.70
16.56
1.16

2642.46
71.10
15.91
1.04

2624.42
94.51
16.94
0.91

2597.98
120.00
18.31
0.81

2561.23
144.59
20.21
0.68
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Tab. B.18: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 2.2 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
227.17

0.00
5.07
1.58

229.69
7.12
5.73
1.65

229.87
13.26
7.98
1.58

229.05
19.84
9.41
1.65

227.29
26.24
11.23
1.78

223.28
31.10
13.30
1.71

220.28
40.06
15.55
1.15

(±2, 0)↑↓
466.04

0.00
7.43
2.03

467.25
14.33
7.04
2.05

467.13
27.37
8.43
1.93

466.48
40.45
10.48
1.86

463.07
56.58
12.22
1.71

459.34
71.62
14.50
1.57

455.26
85.45
15.41
1.32

(0, 1)↑↓
597.16

0.00
12.39
0.45

598.50
0.00

11.85
0.45

595.16
0.00

12.42
0.46

592.27
0.00

12.86
0.43

582.28
0.00

14.95
0.47

573.60
0.00

16.71
0.44

559.94
0.00

17.74
0.34

(±1, 0)↑↑
731.34

0.00
5.73
1.45

735.77
9.41
5.06
1.39

733.73
15.57
5.70
1.42

730.39
21.94
6.64
1.42

724.24
28.54
8.09
1.40

717.42
36.24
9.63
1.36

708.29
43.52
11.79
1.31

(±3, 0)↑↓
996.90

0.00
12.53
0.91

1001.37
20.80
9.66
0.91

1000.53
39.49
10.16
0.84

997.23
58.02
11.37
0.76

991.43
80.03
12.30
0.67

983.98
101.76
14.12
0.61

974.06
123.72
16.39
0.52

(±2, 0)↑↑
1480.53

0.00
8.49
1.37

1483.05
15.10
5.78
1.36

1480.79
31.06
6.27
1.34

1477.06
46.76
6.82
1.30

1469.73
62.93
7.40
1.25

1461.10
79.47
8.37
1.18

1450.65
96.36
9.48
1.15

(±1, 1)↑↑
1654.01

0.00
48.80
0.45

1647.36
−9.32
37.67
0.42

1656.25
2.32

33.52
0.42

1652.30
9.31

33.26
0.43

1642.59
13.79
31.88
0.41

1637.81
26.46
30.02
0.42

1625.27
35.36
26.79
0.39

(±4, 0)↑↓
1735.19

0.00
19.22
0.55

1745.32
27.04
12.94
0.53

1744.78
51.09
12.43
0.49

1739.69
74.64
13.11
0.44

1730.02
102.90
13.81
0.39

1718.04
130.94
14.98
0.35

1702.73
159.26
16.64
0.27

(±2, 1)↑↓
2678.62

0.00
37.99
0.47

2692.27
29.57
32.55
0.44

2690.34
32.39
27.67
0.42

2680.18
43.87
28.54
0.38

2663.47
46.57
23.28
0.36

2645.30
55.94
23.08
0.33

2623.03
67.84
22.47
0.31

(±5, 0)↑↓
2691.64

0.00
27.07
0.44

2714.67
31.33
17.30
0.39

2715.80
60.76
15.26
0.34

2711.22
96.33
19.49
0.26

2693.57
124.82
16.67
0.22

2675.73
161.70
17.15
0.21

2653.45
197.67
18.34
0.16

(±3, 0)↑↑
2888.68

0.00
12.61
1.55

2894.85
24.87
9.95
1.53

2893.37
50.63
9.60
1.43

2888.13
75.65
9.81
1.35

2880.66
101.14

9.93
1.25

2870.90
127.99
10.90
1.13

2857.99
154.02
11.91
1.02



188 Appendix B. Measurement Data

Tab. B.19: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 2.9 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
260.31

0.00
4.20
1.64

261.43
7.16
4.51
1.66

261.58
12.95
6.42
0.49

261.25
18.68
8.34
1.73

259.66
25.44
9.70
1.52

257.27
31.57
12.20
1.39

253.40
40.78
18.29
1.75

(±2, 0)↑↓
527.57

0.00
5.46
2.10

528.84
14.64
5.71
2.14

529.26
27.38
6.82
2.04

528.21
40.93
9.03
2.03

526.88
54.97
10.89
1.83

523.78
69.29
13.09
1.47

520.97
85.65
16.05
1.43

(0, 1)↑↓
659.28

0.00
13.83
0.47

660.86
0.00

12.81
0.48

658.83
0.00

13.36
0.54

654.24
0.00

13.80
0.47

647.51
0.00

16.07
0.47

635.28
0.00

15.82
0.46

625.64
0.00

17.91
0.44

(±1, 0)↑↑
768.74

0.00
4.72
1.41

769.41
6.96
4.07
1.41

768.27
13.98
4.67
1.41

765.87
20.84
5.61
1.40

761.59
28.30
6.78
1.35

756.17
35.48
8.31
1.33

749.17
43.26
10.16
1.29

(±3, 0)↑↓
1129.35

0.00
9.70
0.94

1131.89
21.13
7.94
0.93

1132.40
38.99
8.15
0.89

1130.13
57.84
9.30
0.82

1125.57
78.33
10.40
0.74

1120.29
99.73
11.88
0.66

1113.17
121.63
14.24
0.55

(±2, 0)↑↑
1535.12

0.00
6.77
1.37

1539.45
15.33
5.33
1.33

1538.09
30.84
5.40
1.35

1534.61
46.24
5.78
1.29

1529.70
62.81
6.58
1.25

1523.10
78.63
7.18
1.19

1515.92
95.93
8.20
1.13

(±1, 1)↑↑
1733.83

0.00
64.70
0.41

1729.52
−14.60

64.05
0.36

1742.90
0.16

56.69
0.36

1742.45
13.06
57.09
0.33

1728.98
21.14
54.09
0.30

1723.51
22.08
48.59
0.30

1715.30
29.43
46.91
0.28

(±4, 0)↑↓
1960.55

0.00
14.81
0.57

1966.25
26.80
11.43
0.56

1968.69
49.51
10.03
0.50

1964.45
73.09
10.62
0.45

1957.30
100.16
11.45
0.40

1948.04
127.42
12.65
0.35

1936.44
155.48
13.74
0.31

(±2, 1)↑↓
2962.16

0.00
127.37

0.49

2946.63
96.14

103.87
0.34

2960.17
112.22
86.42
0.33

2938.27
141.23
81.17
0.39

2929.02
167.57
78.06
0.20

2927.25
197.26
80.84
0.18

2913.18
234.74
91.14
0.12

(±3, 0)↑↑
2974.08

0.00
22.26
1.55

2979.04
25.73
22.45
1.55

2979.32
52.54
21.18
1.37

2975.03
80.78
21.97
1.14

2971.91
111.14
21.45
1.04

2967.69
141.55
20.79
0.93

2958.44
169.34
20.40
0.85

(±5, 0)↑↓
3028.04

0.00
28.91
0.46

3042.39
36.08
21.71
0.39

3048.84
61.52
15.74
0.33

3042.42
89.59
16.13
0.32

3037.30
134.16
21.05
0.22

3018.98
157.47
18.24
0.13

3001.70
194.23
19.03
0.12



B.1. Measured Modal Parameters 189

Tab. B.20: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 3.6 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
285.86

0.00
3.12
1.50

287.43
6.95
3.79
1.68

287.62
12.78
5.74
1.62

287.11
19.10
7.43
1.49

284.33
26.24
9.74
1.78

281.60
31.44
11.83
1.65

278.67
39.41
15.29
1.73

(±2, 0)↑↓
578.27

0.00
4.45
2.08

578.06
14.31
4.58
2.16

578.19
27.74
5.96
2.09

577.54
41.36
8.18
1.94

575.65
55.42
9.91
1.77

572.19
70.90
12.51
1.55

567.52
86.11
14.24
1.43

(0, 1)↑↓
726.28

0.00
13.97
0.43

726.12
0.00

13.45
0.44

723.70
0.00

13.91
0.43

720.20
0.00

14.05
0.46

711.18
0.00

15.96
0.47

696.73
0.00

15.82
0.42

683.63
0.00

15.63
0.49

(±1, 0)↑↑
788.52

0.00
3.89
1.28

792.77
10.91
3.78
1.35

791.28
15.77
4.00
1.37

786.93
22.60
4.91
1.37

782.17
29.54
5.71
1.34

775.03
36.99
7.23
1.31

766.89
44.50
8.82
1.32

(±3, 0)↑↓
1237.86

0.00
6.30
0.91

1238.52
20.28
6.45
0.91

1237.70
38.80
7.06
0.89

1233.99
57.63
7.86
0.83

1229.31
78.45
9.05
0.74

1222.83
99.74
10.54
0.66

1214.05
121.28
12.45
0.61

(±2, 0)↑↑
1568.99

0.00
5.29
1.24

1566.87
16.31
4.49
1.26

1565.79
31.01
4.42
1.31

1560.05
46.46
4.83
1.24

1555.01
62.35
5.58
1.23

1547.49
78.71
6.21
1.19

1538.86
95.52
7.06
1.16

(±4, 0)↑↓
2147.15

0.00
8.42
0.56

2147.19
25.98
8.78
0.56

2147.32
59.55
13.37
0.51

2138.83
72.48
9.44
0.46

2133.08
101.86
12.11
0.40

2125.51
135.07
14.55
0.34

2112.43
164.19
17.22
0.28

(±3, 0)↑↑
3007.46

0.00
21.06
1.44

3008.97
21.39
22.70
1.46

3009.27
52.22
22.63
1.29

3003.08
76.13
20.25
1.07

3002.21
108.96
20.15
1.54

2995.06
131.50
20.02
0.90

2988.58
158.65
20.98
0.78

(±5, 0)↑↓
3309.02

0.00
14.06
0.43

3308.88
30.76
14.00
0.40

3309.45
73.67
20.65
0.32

3310.65
102.60
24.67
0.24

3287.06
118.34
13.41
0.25

3272.60
151.27
14.39
0.21

3255.00
184.70
15.35
0.18

(±1, 2)↑↓
4669.22

0.00
62.36
0.47

4669.82
40.47
62.71
0.54

4656.34
47.41
66.70
0.49

4643.41
46.98
60.19
0.53

4609.75
36.52
70.99
0.50

4580.10
30.08
76.90
0.41

4552.19
42.71
65.14
0.39

(±6, 0)↑↓
4739.34

0.00
17.06
0.26

4740.98
34.73
14.98
0.26

4737.31
65.58
14.70
0.23

4726.03
98.42
14.78
0.21

4713.86
134.79
14.77
0.17

4696.68
172.41
15.12
0.14

4674.62
209.65
16.84
0.12
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Tab. B.21: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 4.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
310.15

0.00
3.90
1.70

308.50
9.19
3.69
1.67

309.48
13.72
5.36
1.01

309.50
19.69
7.20
1.55

309.26
26.86
9.10
1.35

307.96
31.54
12.03
1.51

303.56
39.15
14.81
1.23

(±2, 0)↑↓
621.34

0.00
3.76
2.27

622.10
14.41
4.05
2.23

623.76
28.46
5.13
2.21

622.79
40.94
6.73
2.11

621.61
55.62
8.52
1.92

620.15
70.38
10.23
1.86

618.22
84.10
12.80
1.65

(0, 1)↑↓
794.49

0.00
3.98
0.43

797.28
0.00
8.49
0.31

796.40
0.00
5.07
0.87

795.53
0.00

12.02
0.32

783.42
0.00

11.16
0.34

782.65
0.00

16.47
0.29

767.63
0.00

14.26
0.43

(±1, 0)↑↑
811.04

0.00
3.44
1.40

814.76
−6.19

4.58
1.41

818.89
−12.74

7.40
1.30

819.45
−10.04

5.74
1.18

822.80
−17.64

6.65
1.17

822.54
−18.21

7.60
1.19

824.03
−24.37

9.47
1.28

(±3, 0)↑↓
1329.57

0.00
6.03
0.95

1333.55
20.24
5.64
0.94

1333.61
40.97
8.54
0.91

1333.21
60.47
11.17
0.85

1329.46
78.01
9.79
0.76

1324.91
98.65
10.16
0.73

1320.50
120.28
11.73
0.63

(±2, 0)↑↑
1579.42

0.00
4.67
1.49

1583.04
14.68
3.52
1.31

1582.99
30.23
4.10
1.30

1581.63
45.46
4.25
1.28

1577.98
61.38
4.58
1.26

1573.58
77.53
5.19
1.21

1568.55
94.34
6.00
1.17

(±1, 1)↑↓
2002.68

0.00
36.35
0.35

1999.55
12.33
30.45
0.29

1999.03
9.69

32.12
0.34

2002.88
4.92

32.74
0.17

2003.41
0.58

39.57
0.33

1984.93
−1.59
51.04
0.16

1925.70
44.90
38.24
0.19

(±4, 0)↑↓
2297.64

0.00
9.30
0.57

2306.03
24.67
7.49
0.56

2305.49
47.63
7.51
0.52

2303.28
70.87
8.00
0.49

2298.15
96.66
8.43
0.44

2291.98
123.13

9.33
0.40

2283.92
150.82
10.38
0.36

(±3, 0)↑↑
3012.10

0.00
10.20
1.50

3018.19
25.31
9.11
1.46

3018.46
51.07
10.98
1.37

3018.06
78.08
10.44
1.28

3015.44
103.90
10.51
1.18

3013.45
130.84
10.10
1.11

3012.29
157.72
10.69
1.04

(±2, 1)↑↓
3262.62

0.00
37.78
0.33

3273.80
16.67
36.95
0.32

3272.58
27.46
38.21
0.27

3266.54
34.71
37.29
0.23

3259.07
43.96
36.73
0.21

3244.55
51.78
37.32
0.18

3225.54
62.21
37.91
0.15

(±5, 0)↑↓
3523.11

0.00
14.10
0.42

3538.62
30.22
9.37
0.40

3537.97
57.25
15.33
0.34

3534.68
82.70
9.79
0.32

3527.73
114.04
11.04
0.27

3518.79
145.21
11.46
0.25

3508.41
177.58
11.89
0.20
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Tab. B.22: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 6.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
358.49

0.00
2.81
1.70

359.45
7.50
3.05
1.65

360.75
13.37
4.47
1.69

360.64
19.93
6.29
1.66

360.34
26.08
8.12
1.61

358.16
32.69
10.40
1.68

354.96
37.41
13.73
1.60

(±2, 0)↑↓
714.26

0.00
3.13
2.42

713.62
14.33
3.13
2.38

714.45
28.12
3.97
2.43

714.51
41.37
5.55
2.32

713.97
56.80
7.29
2.09

712.85
71.04
9.21
2.00

712.58
88.57
12.42
1.83

(±1, 0)↑↑
820.06

0.00
3.96
1.31

821.36
2.98
7.91
1.44

827.54
21.00
3.55
1.31

825.83
26.15
3.98
1.31

822.59
32.08
4.58
1.31

817.61
38.13
5.22
1.28

811.98
44.73
6.57
1.25

(0, 1)↑↓
934.18

0.00
11.88
0.36

933.46
0.00

11.85
0.38

930.91
0.00

12.13
0.36

927.26
0.00

12.51
0.36

921.16
0.00

12.70
0.48

911.41
0.00

13.92
0.36

897.89
0.00

16.00
0.37

(±3, 0)↑↓
1530.00

0.00
4.20
1.00

1531.08
19.67
4.45
0.97

1531.49
35.65
6.27
0.94

1529.92
56.35
5.38
0.90

1526.80
75.71
7.36
0.84

1524.47
98.05
7.01
0.82

1520.14
118.75

8.50
0.74

(±2, 0)↑↑
1608.67

0.00
3.43
1.24

1608.31
14.06
3.10
1.22

1607.73
28.80
3.58
1.19

1606.05
43.77
3.38
1.19

1602.67
59.19
3.95
1.19

1598.08
74.83
4.15
1.12

1592.51
91.14
5.02
1.13

(±1, 1)↑↓
2202.28

0.00
43.43
0.21

2197.48
30.92
40.53
0.20

2188.98
34.70
43.26
0.19

2178.42
42.71
41.06
0.16

2192.44
31.13
34.02
0.19

2184.49
32.87
34.51
0.17

2176.39
34.07
35.32
0.17

(±4, 0)↑↓
2626.94

0.00
6.87
0.57

2628.05
23.68
7.11
0.55

2627.79
45.50
7.14
0.52

2624.92
67.96
7.51
0.48

2622.13
92.26
7.38
0.46

2616.37
118.86

8.13
0.42

2609.86
144.52

9.04
0.38

(±3, 0)↑↑
3004.07

0.00
9.33
1.41

3007.35
22.24
10.89
1.35

3010.06
50.65
12.95
1.26

3009.74
74.14
11.58
1.17

3006.58
100.89

9.05
1.17

3006.28
132.27

9.53
1.11

3002.25
154.97

9.95
1.01

(±2, 1)↑↓
3647.10

0.00
40.10
0.26

3644.27
−48.02

52.53
0.23

3653.86
−1.13
48.29
0.21

3640.88
56.22
42.06
0.20

3612.56
33.21
61.51
0.15

3601.05
59.29
50.77
0.11

3583.83
69.88
48.38
0.09

(±5, 0)↑↓
3981.61

0.00
10.59
0.40

3986.19
27.77
9.58
0.38

3985.24
51.95
9.14
0.34

3982.41
77.88
9.47
0.31

3977.85
106.09

9.04
0.28

3974.83
143.61
13.01
0.23

3966.43
171.80
13.59
0.19
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Tab. B.23: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 9.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
405.34

0.00
3.78
1.89

407.67
7.28
2.66
1.89

409.34
13.47
3.97
1.90

409.31
19.98
5.60
1.93

408.29
26.48
7.68
1.82

406.64
31.94
10.18
1.75

403.51
40.60
12.88
1.65

(±2, 0)↑↓
801.48

0.00
5.00
2.80

801.72
14.64
2.99
1.73

803.46
29.82
3.67
2.73

803.70
43.79
4.13
2.76

803.46
59.25
6.03
2.59

802.44
75.23
5.90
2.38

800.01
84.45
7.58
2.12

(±1, 0)↑↑
832.55

0.00
6.31
1.28

832.65
2.65
4.90
1.20

839.05
19.68
4.53
1.26

837.47
24.90
5.41
1.25

833.91
31.61
5.07
1.21

828.62
37.98
6.60
1.19

820.04
40.68
7.24
1.21

(0, 1)↑↓
1025.87

0.00
20.88
0.37

1021.55
0.00

21.12
0.38

1016.66
0.00

20.86
0.39

1012.31
0.00

20.34
0.39

1015.78
0.00

20.15
0.36

1005.08
0.00

20.13
0.36

989.76
0.00

19.27
0.29

(±2, 0)↑↑
1625.28

0.00
6.22
1.10

1627.70
13.66
6.05
1.09

1627.29
26.68
6.33
1.06

1625.29
39.96
6.17
1.04

1622.80
55.44
6.01
1.01

1617.63
72.14
7.72
0.97

1609.82
84.77
6.75
0.95

(±3, 0)↑↓
1731.89

0.00
8.72
1.10

1736.25
20.26
5.53
1.10

1738.28
38.37
4.95
1.06

1737.24
58.07
5.16
1.04

1734.26
78.18
6.03
0.97

1730.21
99.15
6.83
0.91

1724.83
121.62

7.35
0.85

(±4, 0)↑↓
2931.87

0.00
20.02
0.57

2951.50
32.10
17.23
0.55

2959.59
51.97
17.34
0.46

2955.74
76.91
18.77
0.42

2954.28
114.95
20.96
0.35

2942.69
123.67
17.88
0.32

2941.56
162.29
20.03
0.27

(±3, 0)↑↑
2992.43

0.00
41.83
1.33

3010.73
71.58
40.47
1.36

3017.46
96.94
41.83
1.11

3016.64
113.93
42.16
0.84

3014.52
145.08
41.55
0.67

3005.07
163.57
40.08
0.49

3000.52
191.35
41.80
0.32

(±2, 1)↑↓
4030.39

0.00
70.90
0.21

4062.32
49.45
64.95
0.19

4079.42
47.09
56.57
0.17

4067.78
39.78
44.02
0.30

4056.24
49.01
45.43
0.13

4042.69
60.93
50.51
0.09

4023.38
69.63
53.55
0.09

(±5, 0)↑↓
4379.37

0.00
28.27
0.38

4417.60
27.49
18.26
0.34

4435.66
48.60
13.78
0.30

4433.74
74.68
12.81
0.26

4426.77
101.06
12.60
0.22

4419.91
128.88
14.66
0.19

4410.61
155.43
14.48
0.16



B.1. Measured Modal Parameters 193

Tab. B.24: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.0 mm, hR = 2.0 mm and g = 14.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
464.37

0.00
1.86
2.26

466.55
7.05
2.22
2.01

466.43
12.72
3.54
2.23

466.49
18.76
5.05
2.27

466.07
25.34
6.89
2.08

466.06
33.18
9.34
2.05

464.02
38.70
13.51
1.75

(±1, 0)↑↑
843.04

0.00
4.59
1.08

840.44
−5.38

4.93
1.06

836.92
−6.34

4.83
1.23

832.25
−6.55

4.91
1.13

843.80
27.50
4.82
1.07

839.66
33.12
5.20
1.04

835.19
39.83
5.77
1.09

(±2, 0)↑↓
896.98

0.00
2.31
3.54

896.93
14.45
2.10
3.68

897.66
29.58
2.98
3.58

898.28
43.72
4.05
3.40

899.23
58.44
4.92
3.30

901.62
70.76
8.35
3.07

902.15
86.12
10.98
2.39

(0, 1)↑↓
1187.77

0.00
26.07
0.31

1185.92
0.00

26.40
0.31

1183.96
0.00

26.41
0.29

1180.43
0.00

26.34
0.31

1176.81
0.00

26.45
0.29

1169.48
0.00

25.88
0.31

1160.43
0.00

25.90
0.28

(±2, 0)↑↑
1635.49

0.00
5.67
0.90

1636.97
11.48
5.57
0.89

1637.26
23.01
5.44
0.87

1635.49
35.64
5.62
0.86

1632.66
47.96
5.35
0.82

1628.44
61.25
5.88
0.80

1624.11
74.67
5.56
0.79

(±3, 0)↑↓
1959.37

0.00
4.42
1.23

1959.68
19.15
4.85
1.23

1960.00
37.12
4.58
1.16

1959.31
56.05
5.19
1.13

1958.30
77.18
5.74
1.06

1956.79
98.13
6.68
0.98

1954.09
119.44

7.80
0.89

(±3, 0)↑↑
2910.17

0.00
30.60
1.20

2913.89
8.35

34.57
1.09

2916.63
31.57
38.45
0.87

2923.02
56.61
38.86
0.70

2926.30
90.07
40.27
0.55

2924.42
125.56
46.17
0.35

2918.18
149.76
43.74
0.30

(±4, 0)↑↓
3317.59

0.00
20.73
0.56

3318.61
18.82
21.23
0.51

3319.73
38.53
20.91
0.41

3318.72
57.39
19.64
0.35

3316.07
79.10
19.98
0.30

3313.13
102.68
20.10
0.24

3311.10
137.91
23.06
0.20

(±2, 1)↑↓
4451.25

0.00
68.00
0.16

4454.74
30.57
61.81
0.15

4452.56
41.64
60.64
0.12

4445.00
44.11
47.22
0.11

4434.94
57.36
52.04
0.09

4426.45
64.54
49.78
0.07

4415.31
64.95
50.73
0.06

(±5, 0)↑↓
4855.22

0.00
16.64
0.31

4856.92
15.63
19.53
0.25

4856.37
38.46
16.25
0.22

4853.94
53.71
15.57
0.21

4849.24
74.84
14.88
0.18

4846.44
101.83
13.87
0.15

4843.60
128.38
13.66
0.13
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Tab. B.25: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 1.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
163.24

0.00
4.35

10.59

165.03
9.08
6.97
9.23

167.75
18.70
11.13
10.32

172.47
28.05
17.26
9.78

178.44
65.32
38.51
9.01

180.29
79.41
48.47
12.12

196.35
67.30
77.77
11.74

(±2, 0)↑↓
318.77

0.00
5.89

14.17

321.90
23.40
6.95

32.74

322.18
45.99
8.07

27.96

323.01
60.81
12.00
15.34

326.90
61.27
12.73
17.68

329.39
77.16
17.39
12.58

335.59
60.86
29.58
9.10

(±3, 0)↑↓
803.29

0.00
12.83
7.66

803.42
26.97
12.47
7.42

804.67
49.57
14.22
6.24

806.16
73.89
14.53
5.68

802.32
90.47
14.61
5.26

790.99
101.68
14.88
5.60

782.04
126.54
18.17
4.46

(±1, 0)↑↑
866.60

0.00
10.21
1.60

860.96
15.09
10.54
1.56

862.23
16.05
10.65
1.54

859.96
20.66
11.14
1.53

855.67
26.42
11.78
1.51

849.73
32.57
12.93
1.45

842.25
40.31
14.48
1.39

(±4, 0)↑↓
1556.96

0.00
16.80
5.09

1555.47
32.26
16.80
4.71

1550.79
62.70
17.56
4.07

1544.34
93.03
18.08
3.38

1536.06
121.84
19.62
2.86

1523.65
153.36
20.56
2.37

1508.71
183.66
23.02
2.00

(±2, 0)↑↑
1818.67

0.00
13.95
1.84

1818.66
14.30
14.18
1.78

1815.19
28.44
14.59
1.73

1809.61
41.10
15.07
1.61

1801.35
55.63
15.91
1.51

1789.02
70.65
16.43
1.42

1774.07
86.27
18.03
1.29

(±1, 1)↑↓
2153.71

0.00
61.13
1.25

2136.83
14.10
47.93
1.24

2137.28
14.83
50.75
1.16

2139.35
13.64
54.01
1.07

2140.40
13.53
66.94
0.94

2144.84
9.76

96.95
0.70

2122.15
−15.43
119.89

0.60

(±5, 0)↑↓
2601.21

0.00
21.90
4.05

2595.66
40.59
21.62
3.57

2587.55
80.62
21.81
2.87

2578.25
118.29
22.49
2.18

2564.46
157.47
23.96
1.59

2544.12
197.87
25.22
1.19

2518.18
237.73
28.43
0.79

(±3, 0)↑↑
3178.18

0.00
20.33
2.09

3172.05
24.00
20.54
2.01

3169.33
43.21
20.57
1.77

3158.65
63.93
20.62
1.60

3142.20
89.45
22.01
1.42

3124.75
110.72
23.24
1.10

3098.59
130.02
23.73
0.98

(±2, 1)↑↓
3309.14

0.00
56.96
0.96

3308.80
11.34
58.55
0.99

3301.47
13.11
59.92
0.84

3309.88
21.23
66.18
0.67

3309.80
41.35
72.08
0.49

3297.50
47.62
71.63
0.40

3300.15
70.77
71.73
0.27

(±1, 1)↑↑
3787.14

0.00
59.25
1.32

3774.39
24.96
53.11
1.19

3762.86
51.63
72.24
1.10

3790.65
47.85
98.90
0.86

3815.50
9.81

77.27
0.86

3762.08
30.05
96.26
0.66

3676.08
44.13
71.91
0.76
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Tab. B.26: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 2.2 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
203.15

0.00
4.04

11.23

204.15
9.61
5.37

11.16

206.58
17.53
8.40

10.20

210.93
27.33
11.15
9.77

209.57
34.81
19.10
6.57

211.73
31.11
26.59
10.41

225.58
35.67
34.74
9.69

(±2, 0)↑↓
399.83

0.00
4.09

20.41

399.36
21.37
5.79

16.68

398.96
41.65
8.43

16.82

397.91
58.40
12.22
14.24

401.91
71.28
15.89
12.97

403.43
77.38
15.57
12.42

408.74
88.31
20.60
13.58

(±3, 1)↑↓
979.24

0.00
6.56
9.49

973.66
28.57
6.61

12.53

974.12
48.97
6.06
9.77

974.96
68.59
8.26
8.74

970.83
86.37
8.52
7.73

966.76
110.72

9.09
6.85

961.93
129.57

9.25
5.26

(±1, 0)↑↑
982.89

0.00
6.74
1.53

978.54
12.38
6.57
1.44

979.07
15.51
6.88
1.48

978.33
19.92
7.34
1.44

976.67
25.23
7.75
1.41

973.93
30.95
8.56
1.37

970.73
36.86
9.64
1.39

(±4, 0)↑↓
1878.17

0.00
10.71
5.64

1877.72
31.75
10.89
5.19

1876.24
60.41
10.93
4.95

1875.04
88.83
12.14
4.36

1870.44
118.13
14.09
3.60

1864.44
150.26
14.87
3.28

1857.63
181.70
16.47
2.59

(±2, 0)↑↑
2062.00

0.00
10.63
1.66

2064.23
14.13
9.46
1.64

2062.61
26.13
9.87
1.60

2060.80
39.34
10.06
1.54

2057.12
52.54
10.11
1.47

2052.81
66.71
10.95
1.38

2046.47
80.79
11.50
1.32

(±1, 1)↑↓
2389.71

0.00
184.36

1.31

2301.56
220.05
105.15

1.30

2323.86
212.20
116.36

1.36

2292.81
45.27
70.11
1.19

2297.37
42.78
59.40
1.07

2315.19
37.56
51.10
0.83

2313.10
45.54
53.41
0.76

(±5, 0)↑↓
3124.40

0.00
13.88
4.56

3120.83
40.05
14.29
4.10

3119.14
76.64
14.53
3.53

3114.62
111.54
14.55
3.01

3107.59
151.53
15.41
2.55

3097.77
191.76
16.33
2.02

3085.00
231.25
18.19
1.54

(±2, 1)↑↓
3559.99

0.00
30.26
1.27

3562.22
−27.60

35.49
1.32

3557.94
11.48
34.35
1.14

3555.92
4.91

52.74
0.99

3555.69
37.27
35.10
0.83

3539.19
29.62
43.25
0.75

3535.11
59.40
34.90
0.64

(±3, 0)↑↑
3588.92

0.00
16.35
1.85

3591.00
21.59
14.65
1.70

3588.10
41.81
15.37
1.63

3585.80
59.45
14.25
1.46

3577.58
82.24
16.14
1.33

3572.87
99.16
16.17
1.10

3561.19
127.04
17.23
1.05

(±1, 1)↑↑
4331.23

0.00
40.80
1.25

4334.99
6.10

43.36
1.11

4320.13
23.98
43.72
1.10

4319.94
21.81
47.12
0.84

4305.18
42.51
64.63
0.91

4326.72
42.33
91.05
0.58

4275.01
56.61
87.82
0.63
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Tab. B.27: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 2.9 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
227.69

0.00
3.31

11.82

228.67
8.77
5.17

12.17

230.11
18.27
7.62

11.80

232.32
29.01
12.59
11.40

234.40
30.92
18.68
10.84

241.97
30.23
25.67
9.25

243.98
31.57
31.42
9.64

(±2, 0)↑↓
441.08

0.00
4.41

36.69

441.84
20.74
4.41

175.15

441.97
42.34
6.19

44.87

442.34
60.98
10.33
24.14

445.41
77.69
13.64
18.28

447.98
88.81
14.57
11.99

451.45
98.22
16.98
14.00

(±1, 0)↑↑
1034.80

0.00
6.14
1.43

1038.02
−3.55

5.91
1.44

1030.74
15.55
6.03
1.40

1029.98
20.31
6.51
1.35

1028.93
25.49
6.95
1.34

1027.00
31.15
7.75
1.33

1024.40
37.31
8.59
1.27

(±3, 0)↑↓
1072.36

0.00
5.60
9.33

1071.94
24.76
6.81
8.62

1070.92
50.05
7.21
7.88

1071.56
70.90
7.00
8.12

1072.95
89.20
9.21
8.11

1073.12
111.24
11.45
7.27

1073.22
133.46
12.56
6.36

(±4, 0)↑↓
2063.93

0.00
8.94
5.97

2063.30
31.87
8.93
5.71

2062.65
61.65
9.19
5.34

2061.72
91.94
10.22
4.82

2060.35
125.64
11.37
3.88

2055.86
155.59
11.37
3.26

2052.08
189.31
17.00
2.57

(±2, 0)↑↑
2174.04

0.00
8.76
1.57

2175.39
12.12
9.15
1.55

2175.53
25.83
9.38
1.51

2174.82
38.73
9.58
1.46

2171.00
52.14
9.63
1.39

2167.49
66.21
10.30
1.33

2163.19
80.08
10.73
1.26

(±1, 1)↑↓
2406.81

0.00
83.14
1.48

2407.33
28.76
86.30
1.45

2405.40
32.91
77.74
1.39

2408.59
27.48
73.42
1.22

2386.99
34.40
80.36
1.17

2387.17
35.11
76.93
1.07

2396.26
70.23
83.81
0.94

(±5, 0)↑↓
3421.53

0.00
12.14
4.97

3423.00
46.42
13.01
4.46

3419.31
78.10
11.56
3.91

3416.53
116.94
12.40
3.40

3412.16
157.68
12.92
2.96

3405.28
198.22
14.38
2.40

3396.38
241.50
15.91
1.93

(±3, 0)↑↑
3771.97

0.00
30.72
1.62

3775.10
22.61
30.05
1.44

3776.22
46.09
28.56
1.24

3770.84
65.27
24.89
1.08

3767.75
82.70
25.42
0.88

3759.56
104.78
23.92
0.74

3753.28
125.36
23.20
0.61

(±2, 1)↑↓
3801.83

0.00
34.36
1.48

3799.41
26.06
32.19
1.41

3800.20
40.80
33.87
1.25

3796.94
55.27
38.44
1.10

3794.71
67.72
40.78
0.93

3788.14
95.46
45.86
0.76

3780.91
108.76
48.43
0.59

(±1, 1)↑↑
4592.88

0.00
41.08
1.11

4592.88
−4.68
41.58
1.07

4588.55
6.23

47.99
1.07

4582.91
15.59
65.83
0.99

4604.76
18.01
68.08
0.84

4599.19
23.27
75.98
0.66

4544.86
28.60
53.01
0.64
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Tab. B.28: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 3.6 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
248.49

0.00
2.77

11.68

249.21
9.21
4.47

12.62

250.34
18.31
6.46
3.30

253.70
29.60
10.19
12.48

256.01
33.76
17.77
10.37

259.20
31.49
27.05
8.78

254.27
36.49
23.34
5.71

(±2, 0)↑↓
480.19

0.00
3.62

17.50

480.33
18.42
5.36

15.87

482.07
29.00
6.72

16.75

483.12
47.92
8.77

13.90

483.47
67.13
11.62
13.73

484.43
82.08
14.41
11.93

485.19
108.28
17.40
11.66

(±1, 0)↑↑
1071.75

0.00
5.81
1.32

1075.51
6.90
5.29
1.35

1074.48
11.62
5.49
1.35

1073.30
17.23
5.85
1.33

1071.90
22.80
6.16
1.29

1070.01
28.64
6.87
0.93

1068.23
34.72
7.87
1.25

(±4, 0)↑↓
2220.33

0.00
6.25
6.63

2219.22
31.90
7.06
6.40

2219.52
65.54
8.83
5.64

2219.67
96.37
8.52
5.50

2217.40
128.40

7.38
5.71

2213.79
161.41

8.47
5.24

2208.19
191.60

9.01
4.22

(±2, 0)↑↑
2255.74

0.00
7.58
1.47

2263.89
12.65
7.59
1.46

2262.13
24.77
8.68
1.42

2260.04
37.51
9.65
1.37

2257.10
50.37
10.28
1.31

2253.69
63.68
11.46
1.24

2251.56
77.49
11.16
1.19

(±1, 1)↑↓
2542.71

0.00
73.65
1.60

2542.60
18.23
85.76
1.62

2546.92
−8.22
93.47
1.46

2500.96
6.55

123.83
1.24

2457.25
46.59

144.58
1.19

2451.65
60.86

151.34
1.05

2474.95
87.77

146.92
0.79

(±5, 0)↑↓
3669.66

0.00
10.53
5.15

3668.80
41.17
9.45
4.90

3666.70
79.35
12.01
4.34

3665.02
119.94

9.67
3.96

3661.45
160.95
11.42
3.40

3656.22
203.88
11.86
2.86

3652.89
251.02
15.00
2.15

(±3, 0)↑↑
3877.02

0.00
16.81
1.48

3885.92
25.21
18.56
1.34

3886.65
46.01
24.49
1.14

3888.70
63.71
21.86
1.02

3888.61
79.97
23.66
0.88

3884.61
106.01
24.68
0.74

3882.22
127.79
25.62
0.63

(±2, 1)↑↓
3922.33

0.00
33.90
1.72

3923.47
50.15
44.17
1.66

3927.94
50.55
35.74
1.37

3918.98
69.23
30.44
1.29

3921.10
79.58
32.52
1.12

3918.37
98.87
29.87
1.08

3922.73
126.03
36.91
0.90

(±1, 1)↑↑
4766.32

0.00
71.59
1.11

4778.78
6.21

70.58
1.07

4773.70
3.58

65.83
0.99

4781.79
8.62

72.41
0.92

4787.49
20.09
67.85
0.79

4776.29
36.44
75.87
0.63

4758.57
29.53
65.30
0.59
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Tab. B.29: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 4.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
265.78

0.00
2.93

13.04

265.70
8.41
3.95

13.21

267.24
16.90
6.40
9.97

269.00
22.34
9.09

12.90

270.74
31.05
14.38
14.82

271.94
33.86
14.30
11.29

272.97
42.36
15.07
9.43

(±2, 0)↑↓
511.55

0.00
3.38

18.09

511.97
14.50
4.11

18.60

512.22
34.77
6.48

17.69

514.56
42.71
8.52

14.79

516.68
60.78
10.48
14.26

517.46
80.52
14.12
16.01

517.24
103.96
23.04
8.81

(±1, 0)↑↑
1103.26

0.00
12.95
1.29

1112.28
−11.07

10.08
1.31

1114.45
−11.42

9.39
1.29

1115.43
−10.73

8.72
1.22

1116.51
−9.80

7.70
1.17

1118.07
−10.08

7.51
1.15

1120.29
−11.22

7.74
1.10

(±3, 0)↑↓
1228.71

0.00
4.21

10.08

1228.58
22.76
4.55
9.64

1229.22
44.82
4.92
9.58

1229.81
66.70
6.19
9.45

1228.94
89.11
7.74
8.59

1226.68
112.38

8.87
7.69

1223.85
138.43
12.00
6.23

(±2, 0)↑↑
2313.82

0.00
7.31
1.38

2322.40
10.49
7.26
1.39

2322.32
23.23
8.06
1.35

2320.30
35.19
8.59
1.31

2319.14
46.31
12.44
1.16

2314.27
60.05
10.14
1.19

2312.15
72.68
10.44
1.12

(±1, 1)↑↓
2682.73

0.00
60.74
1.90

2690.94
−38.48

60.88
1.84

2692.69
−43.75

59.77
1.58

2688.55
−62.06

67.29
1.42

2702.59
−68.68

69.82
1.41

2605.21
−25.64
115.49

1.31

2554.66
91.48

121.07
1.30

(±5, 0)↑↓
3881.84

0.00
8.44
5.76

3880.95
40.36
9.52
5.52

3878.68
81.22
8.00
4.96

3879.09
120.68
12.01
4.10

3875.20
159.74

9.46
3.87

3871.34
201.51

9.67
3.42

3867.65
244.57
11.55
2.61

(±3, 0)↑↑
3962.57

0.00
19.10
1.34

3968.81
18.56
18.43
1.25

3968.94
32.94
20.36
1.12

3976.62
54.37
21.18
0.97

3974.84
71.35
18.56
0.95

3974.17
91.78
21.66
0.78

3972.67
117.61
23.28
0.67

(±2, 1)↑↓
4062.60

0.00
37.49
1.76

4062.45
21.84
43.07
1.71

4069.42
37.36
48.70
1.47

4099.15
52.24
47.90
1.16

4090.03
54.53
37.07
1.12

4090.13
59.38
39.81
0.77

4069.70
80.23
43.08
0.78

(±1, 1)↑↑
4904.01

0.00
56.55
1.00

4919.15
−6.60
58.96
0.88

4911.86
12.59
63.97
0.99

4899.57
30.31
66.01
0.89

4907.35
15.17
73.63
0.61

4902.48
5.86

84.41
0.52

4870.48
53.51
68.31
0.44
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Tab. B.30: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 6.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
299.94

0.00
2.43

13.96

300.72
6.06
3.16

13.59

300.95
16.51
5.12

15.39

301.52
24.11
7.87

11.89

304.37
33.56
9.89

20.00

305.40
36.75
12.09
10.82

305.52
46.48
19.07
13.94

(±2, 0)↑↓
570.55

0.00
3.36

20.75

570.86
14.30
3.31

21.25

571.94
29.96
5.90

20.12

573.07
42.75
6.15

18.28

574.67
58.50
6.06

16.58

578.60
75.46
10.98
13.13

578.22
92.83
14.81
13.72

(±1, 0)↑↑
1151.54

0.00
8.31
1.18

1156.27
9.29
6.76
1.10

1158.18
13.99
6.62
1.16

1161.45
19.80
6.70
1.07

1161.42
24.32
6.58
1.13

1161.07
28.95
6.58
1.09

1159.80
32.77
6.61
1.08

(±3, 0)↑↓
1362.64

0.00
3.01

11.43

1361.80
23.61
3.61

11.15

1362.58
46.20
4.17

11.21

1364.21
68.33
5.37

10.94

1364.88
92.44
6.96
9.99

1364.32
116.75

8.55
9.28

1363.45
141.90
10.85
7.95

(±2, 0)↑↑
2436.54

0.00
6.75
1.21

2444.20
9.21
6.93
1.21

2443.96
20.91
7.68
1.18

2445.13
31.70
7.81
1.14

2446.78
42.35
9.26
1.07

2440.58
55.50
8.59
1.06

2439.29
67.35
8.96
1.01

(±4, 0)↑↓
2593.02

0.00
4.49
8.04

2591.58
31.72
4.91
8.09

2591.51
64.09
4.94
7.56

2593.17
95.72
5.40
7.14

2593.25
128.24

6.35
6.73

2593.11
160.87

7.53
5.91

2592.27
195.23
10.08
4.97

(±1, 1)↑↓
2902.93

0.00
49.25
2.17

2895.19
−32.12

56.75
2.30

2902.90
−36.95

51.65
2.04

2926.72
−36.60

47.89
1.90

2934.59
−33.74

45.29
1.84

2898.42
−43.81

69.86
1.26

2901.93
−42.66

71.24
1.28

(±3, 0)↑↑
4116.26

0.00
16.21
1.11

4123.84
16.86
17.33
1.06

4125.45
33.07
18.82
0.95

4127.17
48.11
19.39
0.84

4126.84
63.68
21.27
0.75

4127.16
81.01
21.59
0.64

4127.23
99.72
23.46
0.50

(±5, 0)↑↓
4254.14

0.00
6.96
6.61

4252.71
43.47
6.84
6.26

4252.40
83.26
6.38
5.85

4252.78
124.10

7.13
5.61

4251.45
167.54

7.23
5.28

4250.80
210.96

7.10
5.02

4248.75
253.76

8.64
3.71

(±2, 1)↑↓
4381.91

0.00
34.37
2.26

4381.17
17.68
34.10
2.12

4382.60
30.82
37.67
1.82

4379.74
40.26
41.88
1.56

4381.12
60.24
42.12
1.30

4382.26
75.57
43.48
1.09

4383.05
89.14
45.25
0.87
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Tab. B.31: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 9.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
333.54

0.00
1.94

16.78

334.10
8.02
3.12

16.32

334.95
16.31
4.97
3.88

336.19
25.63
7.33

18.25

337.95
33.57
10.80
15.82

340.92
38.75
16.17
16.43

344.52
40.75
18.01
6.39

(±2, 0)↑↓
627.18

0.00
2.51

24.82

626.92
14.65
2.64

24.84

627.38
31.49
5.09

23.43

629.80
45.75
5.14

25.18

631.38
60.84
7.43

26.32

633.01
78.71
7.48

23.47

634.14
100.44

9.92
19.47

(±1, 0)↑↑
1211.02

0.00
11.43
1.00

1216.00
10.24
12.94
1.01

1216.72
13.09
12.32
0.98

1216.27
17.75
13.61
0.92

1216.19
21.05
13.83
0.91

1215.95
25.98
14.56
0.89

1215.67
31.18
15.15
0.85

(±3, 0)↑↓
1484.63

0.00
2.66

13.99

1484.43
23.69
2.66

13.69

1485.61
47.01
3.12

13.90

1486.67
71.75
3.72

14.06

1487.62
97.97
4.92

13.35

1487.85
122.47

5.96
8.44

1488.09
146.82

7.74
9.29

(±2, 0)↑↑
2539.65

0.00
8.30
1.00

2548.82
9.38
8.90
0.97

2550.92
20.06
9.22
0.97

2551.21
29.94
9.39
0.93

2547.93
41.58
9.95
0.90

2547.10
51.11
9.66
0.86

2545.84
62.09
10.29
0.81

(±4, 0)↑↓
2807.30

0.00
3.48

10.26

2806.34
34.04
3.80
9.61

2806.80
65.92
4.10
9.76

2807.47
100.41

4.00
9.34

2808.14
136.14

4.60
9.05

2808.16
171.01

5.98
8.50

2809.00
205.90

7.06
7.22

(±1, 1)↑↑
3144.48

0.00
78.99
2.54

3132.41
18.43
96.60
2.76

3141.96
19.42

103.23
2.59

3154.21
11.62
94.91
2.07

3092.36
4.85

110.88
2.02

3111.37
1.92

126.15
1.52

3098.44
29.24

140.35
1.31

(±3, 0)↑↑
4247.38

0.00
18.43
0.91

4254.67
18.65
19.08
0.82

4258.26
32.17
21.41
0.73

4259.31
41.70
21.79
0.65

4262.46
54.13
21.43
0.59

4260.51
75.58
21.57
0.53

4261.84
95.47
25.68
0.43

(±5, 0)↑↓
4577.39

0.00
5.35
8.64

4576.40
44.00
5.25
8.30

4576.72
87.03
5.27
7.57

4576.50
131.83

5.48
6.88

4576.28
176.49

5.44
6.75

4576.53
222.51

5.79
6.11

4576.49
268.23

6.86
5.60

(±2, 1)↑↓
4692.38

0.00
29.60
2.66

4693.39
25.18
30.02
2.56

4694.82
38.39
29.69
2.40

4686.39
53.96
29.82
2.17

4687.41
65.30
27.27
2.05

4689.89
80.02
27.45
1.81

4690.45
94.76
29.45
1.45
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Tab. B.32: Measured modal parameters (ω̄r, S∆ωr, δr, κ)T for
hS = 1.5 mm, hR = 1.5 mm and g = 14.4 mm.

angular rotor speed ΩR in rad/s

mode 0 8.38 16.8 25.1 33.5 41.9 50.3

(±1, 0)↑↓
366.91

0.00
2.04

20.17

367.36
6.74
2.42

19.54

368.17
16.56
4.21

21.08

369.03
23.79
6.12

19.61

370.41
32.84
8.91

19.79

372.92
37.61
13.69
20.90

374.63
46.52
17.81
17.63

(±2, 0)↑↓
678.71

0.00
3.94

30.06

678.78
15.05
2.51

31.08

678.58
36.21
4.22

28.50

677.93
56.71
6.57

35.00

681.20
63.50
6.39

34.09

681.08
82.52
9.02

30.70

686.54
94.66
10.05
30.80

(±1, 0)↑↑
1298.88

0.00
16.52
0.77

1301.21
−22.41

16.81
0.79

1302.99
−22.18

16.80
0.76

1305.79
−22.33

17.14
0.72

1308.64
−20.18

16.78
0.67

1309.50
−21.53

16.98
0.62

1310.23
−22.71

17.16
0.55

(±3, 0)↑↓
1592.11

0.00
2.42

18.06

1591.72
24.57
1.62

19.30

1593.13
48.79
2.31

19.00

1594.58
72.09
2.68

22.48

1593.93
97.67
3.78

19.54

1593.00
124.00

5.25
18.18

1593.91
151.64

5.70
16.97

(±2, 0)↑↑
2639.56

0.00
14.60
0.73

2640.97
7.73

15.78
0.73

2642.02
15.66
17.01
0.70

2646.58
38.15
24.92
0.58

2640.28
37.74
19.71
0.66

2638.49
46.09
19.57
0.57

2636.68
55.67
20.96
0.51

(±4, 0)↑↓
2985.54

0.00
3.29

14.71

2985.66
34.35
3.09

14.58

2986.28
68.93
3.38

14.54

2986.53
102.99

3.81
13.45

2987.56
139.30

3.64
12.96

2989.50
175.80

4.54
12.39

2989.86
211.60

5.70
11.77

(±3, 0)↑↑
4376.69

0.00
26.63
0.64

4377.69
15.68
25.76
0.57

4376.06
28.92
26.65
0.48

4377.54
36.31
25.18
0.42

4377.82
52.42
26.37
0.36

4378.00
67.65
28.37
0.31

4378.84
79.63
25.64
0.30

(±5, 0)↑↓
4833.22

0.00
3.90

12.63

4833.18
45.55
4.47

11.72

4833.58
90.13
4.53

11.00

4833.94
135.53

4.62
10.20

4834.38
182.68

4.52
9.54

4834.84
229.97

4.78
9.77

4836.26
277.33

5.51
8.63

(±2, 1)↑↓
4958.79

0.00
21.32
3.69

4956.34
21.43
21.33
3.80

4957.78
37.34
21.10
3.27

4956.19
52.32
22.47
3.22

4950.45
73.69
22.08
3.04

4955.42
91.37
24.58
2.67

4957.07
110.51
23.57
2.40
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