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VI-RPE: Visual-Inertial Relative Pose Estimation
for Aerial Vehicles

Lucas Teixeira, Fabiola Maffra, Marco Moos and Margarita Chli

Abstract—With a large body of literature dedicated to ego-
motion estimation and perception of a robot’s workspace, the
Robotics community has seen some impressive advances in self-
localization and mapping, however, we are still far from general
applicability of such approaches in real scenarios. Driven by
the need for portable and low-cost solutions to relative pose
estimation between Unmanned Aerial Vehicles (UAVs), in this
work we propose a new framework to track a master UAV
in real-time, carrying a known constellation of LED markers,
from a slave UAV without any other pose estimation capability.
This setup is especially interesting to aerial manipulation and
close-up inspection of structures with low or no texture. Our
approach is able to fuse the estimated master’s pose with
the slave’s onboard inertial readings, supporting intermittent
communication between the UAVs. Evaluation on both simulation
and real indoor and outdoor experiments reveals that the
proposed approach achieves unprecedented robustness to noise
and occlusion, accuracy and speed of computation. All the code
to reproduce this work is publicly available.

Index Terms—Aerial Systems: Perception and Autonomy;
Localization; Visual-Based Navigation; Sensor Fusion

SUPPLEMENTARY MATERIAL

The code, videos and simulations are available at:
www.v4rl.ethz.ch/research/datasets-code.html

I. INTRODUCTION

W ITH the booming interest in Unmanned Aerial Vehicles
(UAVs) for a variety of applications, such as infrastruc-

ture inspection and maintenance1,2, there has been an increas-
ing body of research dedicated in developing more complex
aerial manipulation algorithms and collaborative approaches.
With unique agility UAVs can swiftly reach high-rise places
that previously were only accessible using special equipment,
such as suspended platforms or bucket trucks. However, pose
estimation comprises a key obstacle that still prevents the
employment of UAVs in real scenarios.

With works most often relying on motion capture systems
for indoor demonstrations, for outdoor functionality, research
focuses mainly on computationally-expensive sensor fusion
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Fig. 1: Master/Slave setup used to collaborative pose estimation
between a Master UAV carrying LED markers and a second Slave
UAV carrying a camera pointing to the direction of the Master.

using Differential GPS (DGPS), cameras and inertial sensors
to address pose estimation. However, these approaches do not
apply to a wide range of tasks, such as, aerial navigation
or manipulation, as UAVs have typically a small payload
and consequently limited computational capabilities resulting
to added challenges in robustness of operation. Often, such
tasks require flying only a few centimetres away from large
structures, such as buildings or wind turbines, and in these
cases most of the existing pose estimation approaches fail
as the sensors’ behaviour deteriorates. Typically, GPS signal
gets occluded by large structures and magnetometers are
disturbed by the presence of metals. Moreover, the otherwise
very promising infra-red depth sensors (e.g. Microsoft Kinect)
perform poorly outdoors due to the presence of sunlight.
and high-power laser sensors, such as the Velodyne Puck are
typically too heavy for most aerial platforms. On the other
hand, vision-based approaches perform well provided that the
environment is sufficiently textured and inertial sensors are
still reliable outdoors, rendering visual-inertial pose estimation
as the main approach employed in recent systems besides the
computational cost.

Aerial inspection of tree cavities was shown to be possi-
ble [1] employing visual-inertial Simultaneous Localization
And Mapping (SLAM) to continuously estimate the pose of
the UAV as it introduces its manipulator arm inside the cavity.
Such tasks can only be accomplished thanks to the high-
textured nature of the tree. For texture-less objects, pointing
the camera to the ground can keep the estimation process
working. However, as the triangulation of landmarks for depth
estimation becomes ill-posed as the camera moves further
away from the textured surface (e.g. ground), visual-inertial
SLAM becomes very imprecise at large distances, rendering
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pose estimation based on traditional methods very inaccurate.
For reference, the pose accuracy of high-performing state-of-
the-art visual inertial SLAM systems, has been evaluated when
employed onboard a fully autonomous UAV by using a Leica
Total Station for ground-truth; values are reported in [2] for the
open sourced ROVIO [3] and in [4] for OKVIS [5]. Inspired
by the need for a robust pose estimation for outdoor aerial
manipulation at high-altitudes and at low computational cost,
in this paper, we present a novel and efficient master/slave
based method to perform collaborative pose estimation to
enable flights close to structures including the ones with
insufficient texture on the target. The proposed method makes
use of an additional UAV in order to indirectly estimate the
pose of the UAV flying close to the structure. The first UAV
(Master) is positioned few meters away from the structure,
such that its onboard visual-inertial SLAM can still achieve
high accuracy, while a second UAV (Slave) is positioned
close to the target surface. The latter, indirectly evaluates its
own pose using the Master as reference. Using an onboard
monocular camera and an inertial sensor, the Slave assesses
its pose using a robust relative pose estimation approach based
on small LEDs (i.e. markers) carried by the Master platform.
Figure 1 illustrates the Master/Slave setup used in this work.

Our open-source system employs the open-source au-
tonomous drone framework [6], rendering this work fully
reproducible onboard a wide range of UAV platforms.

In summary, the main contributions of this paper are:
• a novel and efficient open-source relative pose estimation

(VI-RPE) that cascades onboard visual-inertial sensors
between multiple UAVs,

• a robust multi-hypothesis monocular pose estimation
using visible LED markers that works in challenging
outdoors scenarios, and

• an evaluation on simulated photo-realistic environments,
indoor motion capture system and real outdoor scenarios.

II. RELATED WORK

Marker tracking: Multi-camera motion capture systems
(Mocap), such as VICON3, make use of several calibrated
cameras and identical reflective spherical markers illuminated
by infra-red light in order to accurately estimate the markers
position. The known location of the cameras allows to deter-
mine the position (in 3 degrees of freedom) of each marker
by triangulation. A 6-degrees-of-freedom pose of a known
constellation of spherical markers can also be estimated if
the markers are attached to a rigid body. The small size and
light weight of the markers make them easily attachable to
UAVs. Moreover, the high accuracy of these tracking systems
make this the most popular approach to accurate pose tracking
in indoor confined spaces. April-tag-like [7] planar markers
are also commonly used, however, mounting planar markers
onboard a UAV, severally influence its dynamics and only
very small tags can be placed on UAVs, as in [8], leading to
inaccuracies and a small operational range. In practice, planar
markers are only used on non-aerial vehicles or static objects,
such as walls or on the ground.

3www.vicon.com

Aerial relative pose estimation: A far more versatile
approach to Mocap is to attach a known constellation of
infra-red or visible-light LEDs markers on the UAV. Such
markers are detectable under a wide variety of illumination
conditions. Correlating the prior on the relative positioning
of these markers on the UAV and the position of the marker
detections in the image obtained from an external camera, the
pose of the UAV can be calculated. This problem is typically
approached in the literature either by using the Perspective-
n-Point (PnP) formulation [9] as in [10] and [11] or a solver
specifically designed for the known marker constellation as
in [12]. The main problem of these approaches is the as-
sociation between the detected markers and the ones in the
known constellation. MPE [10], tries all combinations for
initialization and then runs a tracking algorithm to avoid the
association step. As reported by Wilson et al. [13], MPE
tracking is not good enough to track one UAV from the other.
In Section IV, we propose a novel multi-hypothesis tracker
based on P3P and particle filtering that outperforms MPE and
works well while tracking one UAV from another, widening
the applicability of the method to more generic and outdoor
scenarios, albeit posing greater robustness challenges to noise
due to significantly more candidate detections per frame. Dias
et al. [14] also proposed aerial relative pose estimation. Their
system shares the same marker tracking algorithm as MPE,
but they extend the methodology to support multiple robots
using blinking LEDs for differentiation and add a high-level
tracking algorithm that also takes in consideration inertial
sensors and thrust commands. However, their results were only
demonstrated in a similar setting to MPE’s original work, of
about 3× 3m indoor environments.

Autonomous close-formation flight: The recent work
in [13] proposes a leader-follower control and pose estimation
using two autonomous unmanned planes where the leader
features infra-red markers and the follower has a camera
embedded. They propose a simpler and faster marker asso-
ciation algorithm that takes in consideration an initial pose
from the planes, showing large scale outdoor results. Their
controlling and tracking strategy leads to unprecedented results
on close-range flight formation for planes, however, this is not
applicable to multi-copters. The omni-directional often erratic
motions from two multi-copter UAVs pose a much harder
problem for tracking, while the fact that the controller is part
of the tracking algorithm, renders this approach difficult to use
with other generic controllers. Aiming to overcome this, the
framework in this paper, does not couple the pose estimation
tightly to any controller. The proposed system is developed
using the open-source drone stack [6], with the controller
outside the loop. The controller available in this stack can
perform model-based prediction of the UAV’s pose in the near
future. To keep better relative pose between both UAVs the
controller could be easily added to our pipeline, however, it
would limit its generality of applicability.

III. VI-RPE: VISUAL-INERTIAL RELATIVE POSE
ESTIMATION

Our method proposes a monocular-inertial relative pose
estimation between a Master UAV with LED markers attached
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on it and a second UAV (Slave) carrying a camera pointing to
the direction of the Master, as shown in Figure 1.

A. Inertial and Relative Pose Fusion Problem

Relative pose estimation with a moving reference has an
intrinsic incompatibility with inertial fusion, making this a
very challenging problem. While inertial sensors inform accel-
eration in absolute values, the relative pose estimation reports
the motion with respect to the moving target. Conventional
approaches typically have both an odometry estimation with
relation to a static reference and a relative pose estimation
on the same robot. In this case, only the transformation
between these two coordinate systems needs to be estimated.
In contrast to traditional methods, the proposed approach tasks
the Master UAV with global pose estimation and the Slave with
computing only its relative pose to the Master. Great benefits
are acquired when compared with the usual configuration,
where the Master holds the camera and the Slave the markers.
Firstly, and most important, in case of communication failures,
the Slave UAV can still compute its relative pose. Secondly,
multiple Slave UAVs can be added to the system without
increasing the computational workload of the Master.

B. Coordinate frames and transformations

In our system, we define several coordinate frames and
transformations. The rigid transformation TAB transform from
frame B to frame A and T ∗ represents the transformation after
been fused with the inertial reading.

The coordinate frames used here are defined as:

• World [W]: Origin of the Master’s pose estimation.
• Master Body [M]: Center of the Master UAV.
• LED Fiducial Markers [F]: Origin of the constellation.
• Slave Body [S]: Center of the Slave UAV.
• Slave Camera [C]: Centered on the Slave Camera
• Slave Goal [G]: Aligned with the Slave-Goal’s Pose
• Local [L]: VI-RPE internal frame used to absorb incon-

sistencies between the relative pose estimation and the
inertial measurements.

In addition, the transformation TCS between the Slave and the
camera and the transformation between Master and the fiducial
marker, TMF , are known from calibration.

C. Workflow

The main goal of our approach is to provide a smooth
odometry and relative trajectory, which the Slave UAV can
use for safe navigation at very close distances from the
target structure and from each other even in the event of
communication failures. In the traditional approach the pose
of the Slave UAV at certain time can be estimated using
equation 1. After fusing this pose with the IMU measurings,
T ∗WS is fed to the controller. In this way, the goal can be
defined by TWG or TMG using Equation 2. However, in case
of a loop-closure detection or communication link failures for
a short period of time, the pose of the Master with relation

Fig. 2: This diagram shows the data flow of our system. We do not
assume any synchronization between the components. VI-RPE is the
responsible for the maintenance of a smooth odometry input for the
controller while still pursuing the goal requested by the planner. The
blue blocks are hardware. The green blocks are part of the open-drone
stack [6]. We are using the non-linear MPC controller [15]. The pink
blocks are also external implementations. In addition, the accuracy of
different global position systems are reported in the results section.
VI-RPE is described in this section and PF-MPE in Section IV.

to the world frame, TWM , can suddenly change, resulting to
instabilities in the pose estimation.

TWS = T ∗WM ∗ TMF ∗ TFC ∗ TCS (1)

TWG = TWM ∗ TMG (2)

With this problem in mind, our Visual-inertial Relative Pose
Estimation (VI-RPE) introduces a novel artificial Slave Local
coordinate frame L. The Local frame is static for each Slave
UAV and the planning algorithm is not aware of this coordinate
frame. Our software works as a mediator between all the other
blocks of the system as show in Figure 2. In this configuration,
the state of the VI-RPE algorithm consists of three dynamic
transformations: the transformation between the Local frame
and the World (T latest

LW ); the Local frame and the Master
(T latest

LM ); and the Local frame and the Slave(T latest
LS ). In our

case, TLS is fed to the controller after being fused to the
IMU and can be calculated using Equation 3 every time a
new relative pose measurement is available. In addition, the
Master pose in Local frame is updated using Equation 4 every
time a new pose of the Master in the world is available.

TLS = T latest
LM ∗ TMF ∗ TFC ∗ TCS (3)

T latest
LM = TLW ∗ TWM (4)

As in the traditional approach, the user is only allowed to
define the goal either in the World or the Master’s frame. As a
result, in our system, we need to keep an internal goal, TLG,
as the controller receives TLS . These goals are converted using
Equations 5 and 6.

TLG = TLW ∗ TWG (5)
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TLG = T latest
LM ∗ TMG (6)

In case of a big change on TWM or when a communication
failure is restored, the World pose TLW and the Master pose
TLM in the Local frame are changed at the same time in order
to keep the pose of the Slave in the Local frame TLS constant,
while maintaining Equation 3 valid. During the initialization
we set TLW = (TWM )−1.

IV. PF-MPE: PARTICLE-FILTER-ENHANCED MONOCULAR
POSE ESTIMATION

The core of the algorithm presented on this section was ini-
tially proposed by Breitenmoser et al. [16] and after improved
and open-sourced by Faessler et al. [10] named as Monocular
Pose Estimation (MPE). In this section we present a further
improved version that was implemented based on Faessler et
al. code. The VI-RPE is also compatible with Faessler’s code
or any other visual-based relative pose estimation algorithm
as long as they are able to provide a 6D pose estimation.
However, in the Section V, we show that our improvements
in Faessler’s algorithm is essential for real scenarios. While
[10] offers a detailed explanation of the base algorithm, in
this section we give focus to the proposed improvements.

A. Markers setup and detection

In contrast to [10], here we use RGB LEDs as markers,
instead of infra-red ones. The configuration of the markers
can be chosen arbitrarily, however, it has to be considered
that three markers should not be collinear in 3D. We will
assume five markers in this section and they are assigned to
specific labels M : {M1,M2,M3,M4,M5}. The individual
marker position on the UAV Master is known by the algorithm
running in the UAV Slave.

In each camera frame the areas of interest correspond to the
really bright image intensities. We use a threshold function
followed by a Gaussian smoothing step before clustering
neighbouring bright pixels in order to detect the markers in
the image. The center of each cluster is computed using its
first image moments. For a cluster be classified as a detection
Dj , its shape and size should reflect the expected values
with respect to the estimated distance d between the UAV
(and hence each marker) and the camera. We check these by
imposing constraints on the distortion of the circular nature
of the marker and its expected size in the image. If the UAV
is close to the camera, the markers are assumed to be bigger
in the image, but as the distance between the UAV and the
camera increases this distance slowly decreases.

B. Initialization of the Particle filter

When the UAV appears for the first time in the field of view
of the camera or when the UAV tracking algorithm loses track,
this (re-)initialization is performed. Our initialization consists
of two steps. The first one follows the same initialization
proposed in [10], where all possible associations between
detections and a subset of 3 markers are tested. In constrast
to [10] where the most probable hypothesis is selected and
the initialization is finalized, our approach has a second step.

Instead of pick only the most probable one, in this step we
collect all the hypotheses passing in a cascade of filters. This
set of hypotheses is used to create the initial particles. In such
a way our particle cloud reflects directly the ambiguity of the
UAV pose initialization problem at the beginning of tracking.

First Step: Since the marker labels are unknown following
the detection stage, we want to consider as many UAV poses
as possible. In order to get valid hypotheses we use the
P3P algorithm [17], which suggests up to four possible poses
by evaluating triplets of correspondences between detections
and marker labels. The evaluation of all possible triplet of
correspondences is the most expensive part of the algorithm
given that the total number of poses suggested in each image
during the initialization is

NP = 4 ·
(
nD
3

)
· nM !

(nM − 3)!
,

where nD and nM stand for the number of detections and the
number of total marker labels, respectively. In order to evaluate
all the different correspondence possibilities, we maintain a
voting matrix V with the rows spanning all detections Dj and
the columns spanning all marker labels Mi. V is initialized as a
zero matrix. The markers not considered for the P3P estimation
are then reprojected onto the image plane. If at least one of
them is close enough to a detection, i.e its distance is less than
λr (here, 5 pixels), we increment the votes V(Dj ,Mi) for all
DjMi correspondences participating in this hypothesis.

Second Step: Due to noise and the measurement uncertain-
ties the obtained voting matrix is not only showing the optimal
correspondences, but also other likely and some very unlikely
possibilities. This is why taking in consideration multiples
hypotheses is important.

So, here, we first weight each cell of matrix V according
to the probabilities that a certain marker belongs to a certain
detection and vice versa using Equation (7). If the obtained
weight wVij

is below a threshold λvote (here, 2/(nD · nM ))
then it is set to zero.

wVij
=

Vij∑
a Vaj

· Vij∑
b Vib

(7)

The correspondences with a non-zero weight (i.e. wVij
6= 0)

are used to create possible combinations C, for finding the true
pose. The set of possible combinations C is determined by all
potential combinations, which use every marker label exactly
once (i.e. M1D2,M2D1,M3D1,M4D6,M5D7). Note that for
the initialization stage all nM markers are needed, but in the
tracking stage also solutions containing fewer markers are
accepted. After, for every combination in C the P3P problem
is solved again. In contrast to the first step, a pose is valid if
and only if the distance between the predicted reprojections
of all marker labels, which were not used in the P3P, and
their corresponding detection is smaller than the threshold λr.
Every obtained valid pose is then stored for later use in the
Particle Filter. In addition, the most likely combination is used
to calculate the initial UAV pose and optimized according to
Section IV-C.
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C. Optimization of suggested UAV pose

As mentioned above the UAV pose is the result of an
optimization. Starting with an initial guess coming from the
initialization or the Particle Filter, the pose is optimized to
minimize the error between the projected marker labels Mi and
the corresponding detections Dj as expressed by Equation (8).

Popt = argmin
P

∑
(Mi,Dj)∈C

‖π(Mi, Pguess)−Dj‖ (8)

The function π : R3×SE(3)→ R2 denotes the projection of
the marker label Mi onto the image plane. For optimizing the
pose it is parametrized according to the Lie Group theory and
then the Gauss-Newton algorithm is applied.

D. Particle Filter for frame-to-frame UAV pose tracking

For the frame-to-frame UAV pose tracking we use a Particle
Filter for maintaining multiple hypotheses. A particle contains
an expected pose and its weight (p : {P, w} ∈ SE(3)×R[0,1]).
If the Particle Filter is used for the first time after the
initialization, each particle pose P is determined by a valid
pose, obtained from the initialization stage. In case there are
too many particles, some of them may be initialized at the
same pose. On the other hand, if there are too many valid
poses, only the most likely ones are used for the particle
initialization. If the Particle Filter has already been running
in the last frame, the particles are determined by the poses
obtained by the last resampling. The set of particles is denoted
by Ψ, (p = {P, w}; Ψ = {pk} ∀ k = 1, ...). In order to
keep generality, the particle update predicts the pose using a
constant velocity model, which is based on the UAV poses
from the last two frames (Pi−1, Pi−2).

The pose updates Pu of the individual particles p are
obtained by applying the extrapolated change in pose Ti and
some uniformly distributed noise Wi to the actual particle
pose P (Equation (9)). The noise contains a translation part
t ∈ R3

[−20mm,20mm] and a rotational part R ∈ R3×3 which
angles are bounded by ±30◦ for each axis,

Pu = Ti ∗ P ∗Wi , where Wi ∈
[
R t
0 1

]
. (9)

After updating the particles they are weighted. Each updated
particle pose Pu is used to project the five marker labels onto
the image. For each projection the distance ∆min to the closest
detection is calculated. This distance is needed to determine
the number of projections (nPR) which are close enough to
a detection (i.e. ∆min ≤ λrPF

, here, λrPF
= 5pixel). These

two numbers (nPR and ∆min), together with the number of
self-occlusions (nselfOcl), are used to calculate the weight w
of the individual particles using Equation (10). The number of
self-occlusions is defined as the number of projections which
share a ‘closest’ detection. This value is included to suppress
poses which are very far away (many or all markers projected
on the same detection). Multiplying number of projections

nPR by number of markers nM does ensure that combinations
with more valid correspondences are preferred.

w = nPR ·nM +

nPR∑
k=1

(λrPF
−∆min,k

λrPF

)2
−3 ·nselfOcl (10)

If the weight of at least one particle is bigger than a
threshold (λwPF

≥ 5) the particles will be resampled. The
threshold λwPF

changes according to the number of detected
markers. The more markers are detected, the higher is the
threshold. This adaptive change allows our method to track
UAV poses with one or multiple markers (self-) occluded or
poses when the UAV is not completely inside the field of view
of the camera. In case the weights of all particles are smaller
than λwPF

, the particle update and its weighting is repeated
until at least one particle weight is bigger than the threshold
or the maximum number of iterations is reached. In this case
the particle update including the biggest weight is chosen. An
overview of this step is shown by Algorithm 1.

Algorithm 1 Particle Update (for a single frame)
iter := 0, wmax := 0
while wmax < λwPF

&& iter < maxIter do
Ψu := ∅
. update p and build a set of updated particles Ψu

for all {P, w} ∈ Ψ do
Pu ← update(P, T )
µ← project(M, Pu, W)
w ← weight(µ,D)
pu = {Pu, w}
Ψu = Ψu ∪ pu

end for
if max

w
Ψu > wmax then

wmax = max
w

Ψu

Ψu
max = Ψu

end if
iter++

end while
Ψ = Ψu

max

After the updating stage the obtained weights are normal-
ized and all particles are resampled. This step is done to reduce
the number of unlikely particles and equalize their weights.
The resampling is done using the stratified resampling method
of [18]. Compared to the traditional multinomial approach,
this method results to more uniformly distributed particles and
smaller variance of the particles’ distribution, which improves
the quality of the resampling. Similarly to the initialization,
the final pose for the UAV is obtained via optimization using
Equation (8). Here the initial pose guess for the optimization
is set to the pose with more particles after the resampling.

V. RESULTS

Our experiments were designed to assess the performance
of our algorithm according to the estimation time needed, the
robustness to challenging scenarios and the achieved accuracy.
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The outdoor experiments demonstrate that our relative pose es-
timation works in a wide range of illumination conditions. We
also use indoor experiments for comparisons with millimeter
precision using a motion capture system, as well as a photo-
realistic physical simulation for large-scale experiments.

A. Accuracy of the Master’s Pose Estimate

The core of the contribution of this work is to handle the
challenges arising by the use of a reference frame defined
by the Master UAV that even when in hovering mode, can
never be assumed to be entirely still. Using the UAV simulator
Rotors [19] with metric photo-realistic models, shown in
figure 3, we tested the scenario of aerial manipulation in front
of a large building. First, we tested two state-of-the-art visual-
inertial SLAM algorithms, ROVIO [3] and OKVIS [5] on a
sequence where the UAV hovers at 5 meters away from a
facade. Figure 4 shows that OKVIS exhibits smaller errors in
the range of 10 cm, but with more high-frequency changes.
ROVIO exhibits bigger errors on average, but error fluctuates
smoothly, which is favourable if the Slave runs visual servoing
similarly to [1].

Fig. 3: UAV Master, in black with red marker, and the Slave, in
white, in front of a large 3D Reconstructed facade
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Fig. 4: The absolute error in the pose estimate of the Master UAV
by two state of the art VI-SLAM systems: ROVIO and OKVIS.

Global position estimation is a challenging element in GPS
denied scenarios. In this work we also tested global pose es-
timation in the recently published localization algorithm [20],
especially designed to facades. The global pose error is on
average 0.55m in x- and y-axis, and 0.22m in the z-axis and

nearly zero error in yaw. With the disadvantage of requiring
extra sensors in the ground and calibration, similar results can
be obtained using Ultra Wide Band position estimation. Guo
et al. [21] report errors of 0.175 m in a range of up to 100 m
from the beacon.

In conclusion, combining the global localization and the VI-
SLAM pose estimation, it is safe to assume that the Master
will be hovering with a slow drift while the error with the
visual localization algorithm can be bound to a maximum of
about 50cm.

B. Comparison of the propose PF-MPE to MPE for marker-
based pose estimation

The performance of the proposed PF-MPE method to lo-
calize the Master from the Slave is of crucial importance in
order to enable accurate pose estimation of the Slave. Figure 5
shows a comparison between both Faessler et al. MPE [10]
and the proposed approach in the same sequence. Highlighted
in yellow are the areas where MPE loses track and besides
a completely wrong angle estimation, the error in position
still low. This happens because of the self similarity of the
marker constellation. Sometimes the pose is flipped, so the
error should be around 180 degrees but the position still
correct. These poses are easily discarded by the visual inertial
algorithm as it has access to the gravity orientation and it is
known that it is not possible to see the marker from behind.

The PF-MPE does not improve or degrade the quality of
the relative transformation. It only keeps the computation time
very low to be able to be used onboard computers by avoiding
the costly re-initialization described on IV-B. Figure 6 shows
an outdoor experiment featuring several outliers all the time
and Figure 7 shows the times of both algorithms. It is clear
that it is not possible to use MPE algorithm as it takes over one
second per frame, while we are required to run the algorithm
at least 20 frames per second for good UAV stabilization. In
the video accompanying this work we show examples of how
our modification was essential for its outdoor deployment.

Fig. 5: The evolution of the position and orientation accuracy of
MPE with respect to the proposed method on an indoor sequence.
The shaded regions denote areas where MPE fails.
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Fig. 6: An example image from an outdoor sequence denoting
with green circles all candidate marker detections occurring
inside the yellow region of interest. The proposed UAV tracker
is able to successfully estimate the center of the UAV and its
orientation, with the help of the particle cloud (RGB color-
code denotes the orientation-axes suggested by each particle).
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Fig. 7: The number of detections can have a significant influence on
the computational time as evident in this sequence. Solving the P3P
problem considering all possible detection triplets causes such a high
computational time and that is why MPE is not able to estimate a pose
for each frame of the sequence. The particle filter in the proposed
method only evaluates all obtained detections against the projected
marker labels suggested by each particle and can still estimate a UAV
for each frame.

C. Hovering using Motion Capture System

Aiming to verify the error in the relative pose estimation
while running the proposed VI-RPE algorithm onboard the
UAV, in this experiment we use the Mocap system, VICON,
as input to the controller. An Asctec Hummingbird equipped
with an Intel Atom computer and a 1.2MP camera is used as
the Slave UAV and a DJI S900 as the Master. Figure 8 shows
the error of our VI-RPE algorithm w.r.t. the ground-truth while
the Slave UAV flies as stable as possible.
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Fig. 8: The error of our VI-RPE algorithm w.r.t. the ground-truth
while the Slave UAV flies as stable as possible.

D. Autonomous Flight with Moving Slave and Static Master

This experiment and all the next sections use our VI-
RPE algorithm as input to the controller. The Mocap data is
only recorded for analysis. Figure 9 shows the error of our
algorithm w.r.t. the ground-truth.
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Fig. 9: The error of our VI-RPE algorithm w.r.t. the ground-truth
during autonomous flight with moving Slave and static Master.

E. Autonomous Flight of the Slave UAV with a Moving Master
UAV

On this set of experiments, we test our approach when the
Master is willing moving in the direction on purpose. First we
test the system using a goal pose in the Master frame (TMG)
and after in the Absolute World frame (TWG).

1) Slave Hovering with static relative pose : On this exper-
iment the Slave’s goal is setted to (x:5,y:0,z:-1.3,yaw:180) in
the Master frame (TMG). Figure 10 shows the 3D position of
the UAVs during the experiment, while the Master UAV moves
back and forward four times. Figure 11 shows the difference
between the goal and the actual position of the Slave UAV
measured by the Mocap system in the x and z axis. So it
does not represent the error of the pose estimation algorithm
but the capacity of the whole solution in keeping the right
position. Figure 12 shows the position of both UAVs in time.
The ideal result for formation algorithms would be one graph
on top of the other, but here we are interested in good platform
stabilization. This figure shows that the Slave had a very stable
flight using our VI-RPE algorithm while stayed behind only
2-3 seconds in average from the Master.
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Fig. 10: The 3D position of the UAVs with the Slave hovering with
static relative pose and a moving Master.

2) Slave Hovering with static absolute pose : This test
is similar from the one before, but now the pose is setted
to (x:0,y:0,z:1,yaw:180) in world frame (TWG). This is the
center of the room in the y direction. The Slave UAV is about
5 meters from the Master. Figure 13 shows that the UAV is
capable to keep a position inside of a sphere of 20 cm radius.
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Fig. 11: Difference between the goal and the actual position of the
Slave UAV measured by the Mocap system in the x and z axis with
the Slave hovering with static relative pose and a moving Master.
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Fig. 12: Absolute position of both UAVs with the Slave hovering
with static relative pose and a moving Master.
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Fig. 13: Distance between the goal and current position measured by
the Mocap system while the Slave is trying to keep the same position
and the Master moving freely.

VI. CONCLUSIONS

In this paper we present a method to enable aerial manip-
ulation and close inspection of potentially textureless struc-
tures. By indirectly evaluating the global pose of the inspect-
ing/manipulating UAV, the proposed approach can provide
accurate pose estimation in cases where traditional pose es-
timation approaches are not operational. Employing a Master
UAV with a known constellation of LED markers and the
ability to run visual-inertial SLAM, the Slave UAV operating
in close range to the structure of interest, estimates its relative
pose to the Master by tracking the LED markers. We evaluate
the proposed approach with respect to scene ground truth
obtained using a motion capture system with relative poses up
to 5 m distance and in simulation up to 15 m with error ranging
between 2 and 15 cm. On the experiments with autonomous
flight, the Slave UAV was able to hover while the Master was
moving with average error of 20 cm. The robustness of our
particle-filter-enhanced monocular pose estimation was also
tested in challenging outdoor scenarios.

Future work involves research in a fully communication-less
approach between both aerial vehicles and also improvements
using less generic information from the UAVs, such as the
output of a specific controller.
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