Application of Native ESI-MS to Characterize Interactions between Compounds Derived from Fragment-Based Discovery Campaigns and Two Pharmaceutically Relevant Proteins

Journal Article

Author(s): Gavriilidou, Agni F.M.; Holding, Finn P.; Coyle, Joseph E.; Zenobi, Renato

Publication date: 2018-10

Permanent link: https://doi.org/10.3929/ethz-b-000264345

Rights / license: In Copyright - Non-Commercial Use Permitted

Originally published in: SLAS DISCOVERY 23(9), https://doi.org/10.1177/2472555218775921

This page was generated automatically upon download from the <u>ETH Zurich Research Collection</u>. For more information, please consult the <u>Terms of use</u>.

Supporting Information

Application of native ESI-MS to characterize interactions between compounds derived from fragment based discovery campaigns and two pharmaceutically relevant proteins

Agni F. M. Gavriilidou¹, Finn P. Holding², Joseph E. Coyle², Renato Zenobi¹

¹ETH Zurich, Department of Chemistry and Applied Biosciences, CH-8093 Zurich, Switzerland

²Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge, CB4 0QA, United Kingdom

Correspondence to: Renato Zenobi; e-mail: renato.zenobi@org.chem.ethz.ch

Expression and Purification of CDK2

The kinase domain for human CDK2 with an N-terminal GST-tag, was transformed into E. Coli Rosetta-Gami 2(DE3) cells (Novagen). Cultures were grown for 4-6 h at 37 °C until they reached an optical density at 600 nm (OD600) of 1. At this point the and 0.1 temperature was decreased to 18 °C mM isopropyl β-D-1thiogalactopyranoside (IPTG) was added. The cultures were allowed to grow for an additional 20–24 h at 18 °C and were harvested by centrifugation (15 min at 6000 g). Harvested cells were resuspended to a volume of 200 ml in a buffer with 50 mM HEPES, 150 mM NaCl, 2 mM dithiothreitol (DTT), pH 7.4 containing 0.5 ml protease inhibitors (Roche complete tablet) and 0.5 ml DNAse and sonicated on ice for 10 minutes (5' on / 10' off). Cells were clarified by centrifugation in a JA-14 rotor at 14000 rpm for 1 hour. After sonication and centrifugation, the supernatant was purified by GST-affinity column chromatography (GE LifeSciences). After incubation of peak fractions with GST-PreScission protease (20:1) at 4 °C, the cleaved GST tag was removed by a second GST-affinity column. Fractions containing the protein were loaded onto a Superdex 75 (16/60) column, eluting with a buffer of 25 mM HEPES, 150 mM NaCl, 2 mM DTT, pH 7.4. Purified CDK2 was concentrated to ~10 mg/mL and stored at -80 °C.

Figure S1: Native ESI-MS spectra of titration of SMAC peptide against 5 μ M XIAP. At increased concentration of the SMAC peptide the intensity of the peak of the XIAP-SMAC peptide complex (PS) was increased while that of the protein (P) peak was decreased. The highlighted peak (*) in this and all subsequent XIAP spectra corresponds to the complex of XIAP and a 673 Da peptide that was a component of the bacterial growth medium. However, even at high concentrations of the SMAC peptide this peak was not depleted by competition with the SMAC peptide.

Figure S2: Nonspecific binding - nanoelectrospray mass spectra of a) 5 μ M XIAP and 50 μ M compound **5** and b) 5 μ M CDK2 and 50 μ M compound **1**. No ligand binding to the protein was observed in either case. The most abundant peak in both spectra was that corresponding to free compound. The m/z ranges of the protein spectra are highlighted in the zoomed spectra on the right.

Figure S3: Titration curve from triplicate measurements of the compound 7 to 5 μ M CDK2 in 50 mM NH4Ac, 1 % DMSO. The measured relative peak areas (I) of the complex (PL) to the protein (P) are plotted versus the initial concentration of the compound ([L]o).

Figure S4: Titration curve from triplicate measurements of compound **9** against 5 μ M CDK2 in 50 mM NH₄Ac, 1 % DMSO. The measured relative peak areas (I) of the complex (PL) to the protein (P) are plotted versus the initial concentration of the compound ([L]_o). For weak affinities with K_d values > 100 μ M the quality of the fit is reduced.

Figure S5: Native ESI-MS spectra for the 11+ charge state of the titration of the three compounds with the lowest affinity, **10-12** against 5 μ M CDK2 in 50 mM NH₄Ac, 1% DMSO

Figure S6: Measurement of thermodynamic parameters including dissociation constant (K_d) and stoichiometry (n) by ITC for interactions between XIAP with compounds **1-3** and CDK2 with compounds **7**, **9**, **12**.

Figure S7: Nanoelectrospray mass spectra of 5 μ M CDK2 in 50 mM NH₄Ac containing 0-5 % DMSO.

Figure S8: Nanoelectrospray mass spectra of 5 μ M CDK2 in 50 mM NH₄Ac after one desalting step (lower spectrum), two desalting steps (middle spectrum) and three desalting steps (upper spectrum). The S/N ratio increased sequentially with successive desalting steps.

Figure S9: Representative nano ESI-MS spectra of 5 μ M XIAP in complex with 50 μ M antagonist, +/- 10 mM imidazole in 20 mM NH₄Ac, pH 7.5. The lower spectrum was recorded after addition of imidazole.

Figure S10: Dissociation curves for the various noncovalent XIAP complexes: relative intensity of the complex plotted as a function of the collision energy to show gas-phase stabilities of the complexes. The optimum collision energy of 2 V is highlighted.

Table S1. Compounds, molecular weight (MW), structures, clogP, the number of heavy atoms (heavy atom count, HAC), solubility (sol) in 50 mM NH₄Ac / 1% DMSO, pH 7.5 where available, and the purity (in %) of the compounds. * Fragment hits; ** Compounds in the hit-to-lead phase; *** Compounds in the lead optimization phase.

Compoun d	MW (Da)	Structure	Compoun d	MW (Da)	Structure	Compoun d	MW(Da	Structure
1 **	416	clogP: 3.430 HAC: 29 purity 99.7 %	5 ***	438	F O NH N H N N N N N N N N N N N N N	9 *	223	O=S-NH ₂ O=S-NH ₂ OH clogP: 1.090 HAC: 15 sol: 770 μM purity 89.7 % [2]
2 **	379	HN 0 clogP: 3.876 HAC: 28 purity 95.3 %	6 ***	360	ClogP: 2.435 HAC: 26 F F sol: <10 μM purity 99.6 % NH O NH O NH O H	10 *	118	clogP: 1.625 HAC: 9 sol: 4810 μM purity 98.8 %
3	180	H ₂ N N NH ₂ H ClogP: -0.437 HAC: 13 purity 88.8 % [1]	7 ***	381	сіодР: 0.325 НАС: 25 sol: 5100 µМ purity 100 %	11 *	144	clogP:-0.157 HAC: 11 sol: 2890 μM purity 98.1 %
4	259	HN ClogP: 1.751 HAC: 19 purity 98 %	8	205	CI N N ClogP: 3.240 HAC: 14 sol: 190 μM purity 99.5 %	12 *	129	CI N NH ₂ clogP: 0.435 HAC: 8 sol: 5210 µM purity 100 %

^[1] Major impurity: tert-butyloxycarbonyl (BOC) protecting group

^[2] Major impurity: dimer of compound 9

Proteins/Mass	Compound theoretical mass (Da)	Measured mass of noncovalent complexes (Da)	Measured $\Delta M = Mass$ of complex –Mass of protein (Da)		
XIAP	Compound 1: 416	12324 ± 3	420		
Theoretical:	Compound 2: 379	12288 ± 3	384		
11840 Da Maaguradi	Compound 3: 180	12089 ± 5	185		
$\frac{\text{Measured}}{11904 \pm 2 \text{ Da}^1}$	Compound 4: 259	12164 ± 3	260		
	Compound 5: 438	34323 ± 2	432		
	Compound 6: 360	34251 ± 1	360		
CDK2	Compound 7: 381	34271 ± 3	380		
Theoretical:	Compound 8: 205	34101 ± 2	210		
Measured:	Compound 9: 223	34120 ± 6	229		
33891 ± 5 Da	Compound 10: 118	34012 ± 7	121		
	Compound 11: 144	34035 ± 6	140		
	Compound 12: 129	34023 ± 14	132		

Table S2: Measured and calculated masses of the proteins and their noncovalent complexes

 $^{^{1}}$ The difference between the measured and theoretical mass is due to the zinc ion (65 Da).