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An inclusive search for anomalous Higgs boson production in the diphoton decay channel and in 
association with at least one jet is presented, using LHC proton–proton collision data collected by the 
CMS experiment at a center-of-mass energy of 13 TeV and corresponding to an integrated luminosity of 
35.9 fb−1. The razor variables MR and R2, as well as the momentum and mass resolution of the diphoton 
system, are used to categorize events into different search regions. The search result is interpreted in the 
context of strong and electroweak production of supersymmetric particles. We exclude bottom squark 
pair-production with masses below 450 GeV for bottom squarks decaying to a bottom quark, a Higgs 
boson, and the lightest supersymmetric particle (LSP) for LSP masses below 250 GeV. For wino-like 
chargino–neutralino production, we exclude charginos with mass below 170 GeV for LSP masses below 
25 GeV. In the GMSB scenario, we exclude charginos with mass below 205 GeV for neutralinos decaying 
to a Higgs boson and a goldstino LSP with 100% branching fraction.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of the Higgs boson [1–3], the first fundamen-
tal scalar particle ever observed, has opened a new window for 
exploring physics not described by the standard model (SM) of par-
ticle physics. Many models of physics beyond the standard model 
(BSM) postulate the existence of cascade decays of heavy states 
involving Higgs bosons [4,5]. In the minimal supersymmetric stan-
dard model (MSSM) [6], Higgs bosons may be produced in a va-
riety of ways. The bottom squark, the supersymmetric partner of 
the bottom quark, produced via the strong interaction, may decay 
to a Higgs boson, quarks, and the lightest supersymmetric par-
ticle (LSP). Similarly charginos or neutralinos produced through 
the electroweak interaction may decay to a Higgs boson and the 
LSP. Of particular interest are scenarios with gauge-mediated su-
persymmetry breaking (GMSB), where the lightest neutralino may 
decay to a Higgs boson and the goldstino LSP (G̃) [7,8]. The decay 
signature depends on whether the chargino and neutralino mixed 
states are dominated by the wino or higgsino components, the 
respective supersymmetric partners of the W and Higgs bosons. 
Diagrams of simplified models [9] for the scenarios considered are 
shown in Fig. 1. In this paper, we denote the Higgs boson as H 
to indicate that it is the particle observed by the ATLAS and CMS 

� E-mail address: cms-publication-committee-chair@cern.ch.

experiments. In the MSSM, this particle is typically assumed to cor-
respond to the lighter of the two CP-even Higgs particles and is 
often denoted as h. For the GMSB scenario, we consider simplified 
models where Higgsino-like charginos and neutralinos are nearly 
mass-degenerate and both chargino–neutralino and neutralino-pair 
production result in very similar final state signatures, and are 
hereafter collectively referred to as chargino–neutralino production 
in this paper. These examples of BSM production of Higgs bosons 
motivate an inclusive search for anomalous Higgs boson produc-
tion that is broadly sensitive to a wide range of supersymmetric 
(SUSY) scenarios. Similar searches for supersymmetric particles de-
caying to Higgs bosons have been performed by the ATLAS and 
CMS collaborations in the past using 8 TeV collision data and can 
be found in references [10–12].

In this Letter, we present an updated search for supersymme-
try events with at least one Higgs boson candidate decaying to 
two photons produced in association with at least one jet pro-
duced in 13 TeV proton–proton collisions. The data were collected 
by the CMS experiment and correspond to an integrated luminos-
ity of 35.9 fb−1 [13]. The diphoton decay mode of the Higgs boson 
provides a good compromise between branching fraction and back-
ground rejection. The transverse momentum of the Higgs boson 
candidate, the expected mass resolution, and the razor variables 
MR and R2 [14,15], explained in detail in Section 4, are used to 
define event categories which generically enhance BSM signals rel-
ative to SM backgrounds. The potential signal is extracted from 
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Fig. 1. Diagrams displaying the simplified models that are being considered. Upper left: bottom squark pair production; upper right: wino-like chargino–neutralino production; 
bottom: the two relevant decay modes for higgsino-like neutralino pair production in the GMSB scenario.
the dominant nonresonant multijet background through a fit to 
the diphoton mass distribution. The results of the search are in-
terpreted in terms of simplified models of bottom squark pair pro-
duction and chargino–neutralino production.

2. The CMS detector, trigger, and event reconstruction

The central feature of the CMS detector is a superconducting 
solenoid of 6 m internal diameter, providing a magnetic field of 
3.8 T. Within the solenoid volume are a silicon pixel and strip 
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), 
and a brass and scintillator hadron calorimeter (HCAL), each com-
posed of a barrel and two endcap sections. Extensive forward 
calorimetry complements the coverage provided by the barrel and 
endcap detectors. Muons are measured in gas-ionization detec-
tors embedded in the magnet steel flux-return yoke outside the 
solenoid. A more detailed description of the CMS detector, together 
with a definition of the coordinate system used and the relevant 
kinematic variables, can be found in Ref. [16].

Signal event candidates are recorded using a diphoton trigger, 
requiring the transverse energy of the leading and subleading pho-
tons to be larger than 30 GeV and 18 GeV, respectively and their 
invariant mass to be larger than 90 GeV. Additional requirements 
on the photon shower shape and isolation are imposed to reduce 
the background rate and improve the signal purity [17]. The ef-
ficiency of the trigger with respect to events passing the offline 
selection is measured to be above 98%.

Physics object candidates are reconstructed using a global event 
description based on the CMS particle-flow (PF) algorithm [18], 
which identifies particles through an optimized combination of 
information from the various detector subsystems. Photon candi-
dates are selected by imposing “loose” requirements on the shower 
shape in the electromagnetic calorimeter, the ratio of energy mea-
sured in the HCAL to the energy measured in the ECAL, and the 
isolation in a cone around the direction of the photon momen-
tum [19]. The isolation requirement is corrected for the effect of 
multiple proton collisions in the same or adjacent bunch crossing 
(pileup) by subtracting the average energy from pileup deposited 
in the isolation cone, estimated by averaging the energy density 

over the event. Furthermore, photon candidates are rejected if they 
match an electron candidate that is not consistent with one leg of 
a conversion. The photon selection efficiency was measured to be 
about 90% [20] using tag and probe methods. The measured energy 
of photons is corrected for clustering and local geometric effects 
using an energy regression trained on Monte Carlo (MC) simula-
tion [19]. This regression gives a significant improvement in the 
energy resolution of the photons (about 30%) and provides an es-
timate of the uncertainty of the energy measurement that is used 
to separate events into high- and low-resolution categories.

The reconstructed vertex with the largest value of summed 
physics-object p2

T is taken to be the primary pp interaction ver-
tex (PV). The physics objects used in this context are the objects 
returned by a jet finding algorithm [21,22] applied to all charged 
tracks associated with the vertex under consideration, plus the cor-
responding associated missing transverse momentum.

The charged PF candidates associated with the PV and the neu-
tral PF candidates are clustered into jets using the anti-kT algo-
rithm [21] with a distance parameter R = 0.4, as implemented 
in the FastJet package [22]. The jet momentum is determined 
as the vectorial sum of all particle momenta in the jet. Jet en-
ergy corrections are derived based on a combination of simula-
tion studies, accounting for the nonlinear detector response and 
the presence of pileup, together with in-situ measurements of the 
energy balance in dijet and γ +jet events using the methods de-
scribed in Ref. [23]. For this analysis, jets with |η| < 3.0 that do 
not overlap with any identified photon are selected by requiring 
�R = √

(�η)2 + (�φ)2 > 0.5 between photon and jet candidates. 
The combined secondary vertex (CSVv2) tagging algorithm [24]
is used to identify jets originating from the hadronization of b 
quarks. A loose working point is chosen that yields an efficiency 
above 80% and a mistag rate for light-flavor jets that is approxi-
mately 10%. The negative vector sum of the reconstructed pT of all 
PF candidates in an event defines the missing transverse momen-
tum �p miss

T in the event, and its magnitude is referred to as pmiss
T . 

Events with detector- and beam-related noise that can mimic event 
topologies with high energy and large pmiss

T are filtered out by use 
of dedicated noise reduction algorithms [25–27].
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3. Event simulation

Simulated event samples are used to model the SM Higgs back-
grounds in the search regions, and to calculate the selection effi-
ciencies for SUSY signal models. Samples of SM Higgs production 
via gluon fusion, vector boson fusion, associated production with 
a W or a Z boson, bbH, and ttH are generated using the next-
to-leading order (NLO) MadGraph5_amc@nlo v2.2.2 [28] event 
generator. The Higgs mass is assumed to be 125.0 GeV for the 
simulated event samples and is within the uncertainty of the cur-
rently best measured value [29]. For the gluon fusion production 
mode, the sample is generated with up to two extra partons to 
model initial-state radiation (ISR) calculated at the matrix element 
level with NLO accuracy with the matching scheme described in 
reference [30]. The SUSY signal MC samples are generated using
MadGraph5_amc@nlo at leading order accuracy with up to two 
extra partons in the matrix element calculations with the matching 
scheme described in reference [31]. In both cases, pythia v8.2 [32]
is used to model the fragmentation and parton showering with 
the CUETP8M1 tune [33]. The NNPDF3.0LO and NNPDF3.0NLO [34]
parton distribution functions (PDFs) are used for the LO and NLO 
accuracy generators respectively. The SM Higgs background and 
bottom squark pair-production signal samples are simulated us-
ing a Geant4-based model [35] of the CMS detector, while the 
chargino–neutralino and neutralino-pair production signal samples 
are simulated with the CMS fast simulation package [36]. While 
generally providing an accurate description, the fast simulation 
does sometimes yield inaccurate predictions of the missing trans-
verse momentum tail. These inaccuracies are accounted for by 
larger systematic uncertainties for the signal yield prediction in 
the relevant phase space estimated as the difference between sig-
nal yields predicted using the generator level missing transverse 
momentum and the missing transverse momentum reconstructed 
based on the fast simulation. All simulated events include the ef-
fects of pileup and are processed with the same chain of recon-
struction programs used for collision data.

To improve the MadGraph modeling of ISR in the SUSY signal 
MC samples, we apply a correction as a function of the multiplic-
ity of ISR jets for sbottom pair production, and as a function of 
the transverse momentum (pISR

T ) of the chargino–neutralino sys-
tem for chargino–neutralino production, derived from studies of 
tt and Z+jets events, respectively. The correction factors vary be-
tween 0.92 and 0.51 for ISR jet multiplicity between one and six, 
and between 1.18 and 0.78 for pISR

T between 125 and 600 GeV. The 
correction has a small effect on the signal yields at the level of 
about 1%. The full size of this correction is taken as a systematic 
uncertainty.

The Higgs production cross sections are obtained from the rec-
ommendations of the LHC Yellow Report 4 of the LHC Higgs Cross 
Section Working Group [37]. The SUSY signal production cross sec-
tions are calculated to NLO plus next-to-leading logarithmic (NLL) 
accuracy [38–43], assuming all SUSY particles other than those in 
the relevant diagram to be too heavy to participate in the interac-
tion. These NLO+NLL cross sections and their associated uncertain-
ties [43] are used to derive the exclusion limits on the masses of 
SUSY particles.

4. Event selection and search categories

We select events with two photons that satisfy the selection 
criteria described above. Both photons must be in the barrel region 
of the electromagnetic calorimeter, with |η| < 1.44, and have pT >

20 GeV. At least one of the two photons must have pT > 40 GeV. If 
multiple photon pairs are identified, the pair with the largest scalar 

sum of the transverse momenta is chosen as the Higgs boson can-
didate in the event. The Higgs boson candidate mass is required to 
be between 103 GeV and 160 GeV in order to cover a sufficiently 
large background dominated sideband region.

The Higgs boson candidate and any additional identified jets 
with pT > 30 GeV and |η| < 3.0 are clustered into two hemi-
spheres (megajets) according to the Razor megajet algorithm [15], 
which minimizes the sum of the squared-invariant-mass values of 
the two megajets. To converge, the algorithm requires at least one 
such identified jet in the event. Next, the razor variables [14] MR

and R2 are computed as follows:

MR ≡
√

(|�p j1 | + |�p j2 |)2 − (p j1
z + p j2

z )2, (1)

R2 ≡
(

MR
T

MR

)2

, (2)

where �p is the momentum of a megajet, pz is its longitudinal com-
ponent, and j1 and j2 are used to label the two megajets. In the 
definition of R2, the variable MR

T is defined as:

MR
T ≡

√
pmiss

T (p j1
T + p j2

T ) − �p miss
T · (�p j1

T + �p j2
T )

2
. (3)

The razor variables MR and R2 provide discrimination between 
SUSY signal models and SM background processes with SUSY sig-
nals typically having large values of MR and R2, while the SM 
background exhibits an exponentially falling spectrum in both vari-
ables.

The selected events are separated into four mutually exclu-
sive categories. An event is categorized as “HighPt” if the trans-
verse momentum of the selected Higgs boson candidate is larger 
than 110 GeV. Otherwise, if the event contains two b-tagged jets 
whose invariant mass is between 76 and 106 GeV, or between 110 
and 140 GeV, it is categorized as “H(γ γ )–HZ(bb)”. The remaining 
events are categorized as “HighRes” and “LowRes” if the diphoton 
mass resolution estimate σM/M is smaller or larger than 0.85%, 
respectively, where σM is computed as:

σM = 1

2

√
(σEγ 1/Eγ 1)2 + (σEγ 2/Eγ 2)2, (4)

where Eγ 1,2 is the energy of each photon and σEγ 1,2 is the es-
timated energy resolution for each photon. A graphical represen-
tation of the categorization procedure is shown in Fig. 2. The 
“HighPt” category isolates SUSY events producing high-pT Higgs 
bosons; the “H(γ γ )–HZ(bb)” category isolates SUSY signals that 
produce two Higgs bosons or a Higgs boson and a Z boson in the 
final state; and the HighRes and LowRes categories further improve 
the discrimination between signal and background in the remain-
ing event sample. The “H(γ γ )–HZ(bb)” category combines events 
with two Higgs bosons or a Higgs boson and a Z boson in order 
to achieve a sufficiently large number of events in the sideband 
for the background estimation method described in Section 5 to 
remain unbiased.

Each event category is further divided into bins in the MR and 
R2 variables, which define the exclusive search regions. A signifi-
cant excess of events above the SM expectation in one or several 
bins would provide evidence of BSM physics. The search regions 
are chosen based on an optimization procedure that maximizes 
the expected sensitivity to the simplified bottom squark pair pro-
duction model discussed further in Section 7, and are summarized 
in Table 1. The bins in the MR and R2 variables are kept identical 
for the HighRes and LowRes categories to allow for simultaneous 
signal extraction, since the ratio of the event yields in these two 
categories does not depend on the details of the signal model.
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Table 1
A summary of the search region bins in each category is presented. The functional form used to model the non-
resonant background is also listed. An exponential function of the form e−amγ γ is denoted as “single-exp”; a linear 
combination of two independent exponential functions of the form e−amγ γ and e−bmγ γ is denoted as “two-exp”; 
a modified exponential function of the form e−amb

γ γ is denoted as “mod-exp”; and a Bernstein polynomial of degree 
n [44] is denoted by “poly-n”. The bin labels 9–13 are used for both the HighRes and LowRes categories because the 
data in these categories are always fitted simultaneously with potentially different nonresonant background models 
used. Further details on the simultaneous fit are discussed in Section 5.

Bin number Category MR (GeV) R2 Nonresonant bkg. model

0 HighPt ≥600 ≥0.025 single-exp
1 HighPt 150–600 ≥0.130 single-exp
2 HighPt ≥1250 0.000–0.025 single-exp
3 HighPt 150–450 0.000–0.130 poly-3
4 HighPt 450–600 0.000–0.035 poly-3
5 HighPt 450–600 0.035–0.130 single-exp
6 HighPt 600–1250 0.000–0.015 two-exp
7 HighPt 600–1250 0.015–0.025 single-exp

8 H(γ γ )–HZ(bb) ≥150 ≥0.0 single-exp

9 HighRes 150–250 0.000–0.175 mod-exp
LowRes 150–250 0.000–0.175 poly-3

10 HighRes 150–250 ≥0.175 single-exp
LowRes 150–250 ≥0.175 single-exp

11 HighRes ≥250 ≥0.05 single-exp
LowRes ≥250 ≥0.05 poly-2

12 HighRes 250–600 0.000–0.05 poly-2
LowRes 250–600 0.000–0.05 mod-exp

13 HighRes ≥600 0.000–0.05 single-exp
LowRes ≥600 0.000–0.05 single-exp
Fig. 2. A flowchart showing the event categorization procedure.

5. Background prediction

There are two main classes of background events that pass the 
search selection criteria: SM Higgs production and nonresonant 
photon production, with either two promptly produced photons 
or one prompt photon and one jet that is wrongly identified as a 
photon. The SM Higgs background is estimated from the MC sim-
ulation, while the nonresonant background prediction is estimated 
using a fit to the diphoton mass distribution observed in data.

Within each search bin, we extract a potential signal by per-
forming an unbinned extended maximum likelihood fit to the 
diphoton mass spectrum. An example of such a fit is shown in 
Fig. 3. The nonresonant background is modeled with a decaying 
functional form given in Table 1 for each individual search region 
bin. All parameters of the function are unconstrained in the fit. 
The functional form of the model used for each search region bin 
is selected on the basis of its Akaike information criterion (AIC) 
score [45], which quantifies the trade-off between goodness-of-

Fig. 3. The diphoton mass distribution in the search region bin with MR > 600 GeV
and R2 > 0.025 in the HighPt category, along with the background-only fit (top) 
and the signal-plus-background fit (bottom). The red dot-dashed curve represents 
the fitted background prediction; the green dashed curve represents the best-fit 
signal; and the blue solid curve represents the sum of the best-fit signal and the 
background.

fit and model complexity. Each functional form is tested for fit 
biases with respect to a set of alternative models, all of which 
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Table 2
The predicted yields for an example SUSY signal and the SM Higgs boson background processes for each search 
region are shown for an integrated luminosity corresponding to 35.9 fb−1. The signal yields given assume a bottom 
squark mass of 500 GeV and an LSP mass of 1 GeV. The contributions from each SM Higgs boson process are shown 
separately, and the total is shown in the rightmost column, along with its full uncertainty. The bin labels 9–13 are 
used for both the HighRes and LowRes categories as they are always fitted simultaneously.

Bin Category Signal yield Expected SM Higgs yield

b̃ b̃, b̃ → bHχ̃0
1 ggH ttH VBF H VH bbH Total

0 HighPt 10.2 3.4 1.4 0.49 0.78 0.02 6.1 ± 1.2
1 HighPt 0.2 1.7 0.58 0.18 1.8 0.01 4.3 ± 0.8
2 HighPt 5.7 5.1 0.64 2.5 0.17 0.04 8.5 ± 1.7
3 HighPt 0.2 55 0.96 11 6.3 0.41 74 ± 21
4 HighPt 0.6 17 0.50 4.7 1.1 0.18 23 ± 7
5 HighPt 0.6 3.5 0.61 0.55 0.59 0.04 5.3 ± 1.2
6 HighPt 5.7 19 0.80 7.6 0.82 0.15 29 ± 8
7 HighPt 4.0 5.4 0.46 1.1 0.45 0.02 7.4 ± 2.1

8 H(γ γ )–HZ(bb) 0.9 0.76 1.3 0.12 0.25 0.19 2.6 ± 0.4

9 HighRes 0.0 60 0.24 7.6 4.4 0.89 75 ± 22
LowRes 0.0 30 0.11 3.8 2.3 0.50 36 ± 11

10 HighRes 0.0 1.1 0.12 0.12 0.46 0.02 1.8 ± 0.6
LowRes 0.0 0.44 0.07 0.08 0.27 0.01 0.9 ± 0.2

11 HighRes 0.3 3.0 0.73 0.54 0.55 0.13 5.0 ± 1.4
LowRes 0.1 1.8 0.38 0.29 0.22 0.06 2.7 ± 0.8

12 HighRes 0.1 37 0.66 8.9 1.4 0.83 50 ± 14
LowRes 0.1 21 0.33 4.7 0.79 0.42 26 ± 6

13 HighRes 1.0 5.0 0.50 3.1 0.21 0.21 9.1 ± 2.7
LowRes 0.5 3.3 0.29 1.5 0.13 0.10 5.2 ± 1.5
adequately describe the data in the diphoton mass sideband re-
gion (103–121 GeV and 129–160 GeV). The shape of the Higgs 
boson resonance from SM Higgs production and from decays of 
SUSY signals is modeled with a double Crystal Ball function [46,47]
with two independent tail parameters that is fitted to the diphoton 
mass distribution obtained from the MC simulation. The parame-
ters of each double Crystal Ball function are held constant in the 
signal extraction fit procedure, with the exception of the parameter 
controlling the location of the peak, which is discussed further in 
Section 6 below. The normalization of the SM Higgs boson back-
ground in each bin is predicted from the MC simulation and is 
constrained to that value in the fit within uncertainties. For the 
HighRes and LowRes categories, bins in the MR and R2 variables 
are fitted simultaneously. For a given search bin, the relative yields 
in the HighRes and LowRes categories are observed in the sim-
ulation to be largely process independent and are therefore con-
strained according to the simulation prediction. Based on these in-
dependent fits in each search bin, we obtain a model-independent 
search result, which can be used to evaluate whether the yield in 
any bin exhibits a statistically significant deviation from the back-
ground prediction.

We also perform a combined simultaneous fit using all of the 
search bins, to test specific SUSY simplified model signal hypothe-
ses. In the combined fit, the yield in each bin for the SM Higgs 
background and the signal model under test are constrained to the 
MC simulation predictions within uncertainties. These uncertain-
ties are modeled by use of nuisance parameters that account for 
various theoretical and instrumental uncertainties that can affect 
the SM Higgs boson background and SUSY signal normalization, 
and are profiled in the fit. A more detailed discussion of systematic 
uncertainties can be found below in Section 6. The MC simulation 
predictions for the SM Higgs boson background normalization are 
shown in Table 2 for each bin in the search region.

6. Systematic uncertainties

There are broadly two types of systematic uncertainties. The 
first and dominant systematic uncertainty is in the shape and nor-
malization of the nonresonant background. This is propagated by 

Table 3
Summary of systematic uncertainties on the SM Higgs 
background and signal yield predictions, and the size of 
their effect on the signal yield.

Uncertainty source Size (%)

Integrated luminosity 2.5
PDFs/renormalization/factorization scales 15–30
Trigger and selection efficiency 3
Jet energy scale 1–5
Photon energy scale 1
σM/M categorization 10–24
b tagging efficiency 4
ISR modeling (signal only) 1
Fastsim pmiss

T modeling (signal only) 1–34

profiling the normalization and shape parameters of the nonres-
onant background functional form in an unconstrained way. The 
second and subdominant type of systematic uncertainty is in the 
predictions of the SM Higgs background in the various search bins. 
These shape uncertainties are propagated through the use of sev-
eral independent nuisance parameters, where both theoretical and 
instrumental effects are taken into account. The nuisance param-
eters are constrained in the fit using log-normal prior functions, 
whose width reflects the size of the systematic uncertainty. The 
independent systematic effects considered include missing higher-
order corrections, PDFs, trigger and selection efficiencies, jet en-
ergy scale uncertainties, b tagging efficiencies, and the uncertainty 
in the integrated luminosity. The uncertainty due to jet energy res-
olution uncertainties were also estimated and were found to be 
negligible. The typical size of these effects on the expected limit is 
summarized in Table 3. Due to effects of pileup and transparency 
loss in the ECAL crystals, we observe some simulation mismodel-
ing of the estimated mass resolution, which results in a systematic 
uncertainty of 10–24% in the prediction of the SM Higgs back-
ground and SUSY signal yields in the HighRes and LowRes event 
categories. The systematic uncertainty in the photon energy scale 
is implemented as a Gaussian-distributed nuisance parameter that 
shifts the Higgs boson mass peak position, constrained in the fit to 
lie within approximately 1% of the nominal Higgs boson mass ob-
served in simulation. The systematic uncertainty for the modeling 
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Table 4
The nonresonant background yields, SM Higgs boson background yields, best fit signal yields, and 
observed local significance in units of standard deviations (σ ) are shown for the signal plus back-
ground fit in each search region bin. The SM Higgs boson background yields are slightly altered 
with respect to the pre-fit predictions from Table 2. The uncertainties include both statistical and 
systematic components. The nonresonant background yields correspond to the yield within the mass 
window between 122 and 129 GeV and are intended to estimate the background under the signal 
peak. The observed significance for the bins in HighRes and LowRes categories are identical because 
they are the result of a simultaneous fit. The significance is computed using the profile likelihood, 
where the sign reflects whether an excess (positive sign) or deficit (negative sign) is observed.

Bin Category Yields Obs. local 
significance (σ )Nonresonant bkg SM Higgs Best fit signal

0 HighPt 36±2 6.1±1.0 4.8± 6.7 0.7
1 HighPt 37±2 4.3±0.7 −11± 6 −1.4
2 HighPt 24±2 8.4±1.6 −5.1± 5.3 −0.9
3 HighPt 790 ±27 74 ±21 14± 41 0.4
4 HighPt 160 ±15 24 ±6 10± 15 0.6
5 HighPt 34±2 5.2±1.2 12± 8 1.6
6 HighPt 127 ±3 29 ±5 1.1± 7.9 0.1
7 HighPt 40 ±3 7.4±2.0 −0.3± 7.4 −0.0

8 H(γ γ )–HZ(bb) 65±3 2.6±0.4 8± 8 1.0

9 HighRes 1792 ±17 77 ±24 −9± 44 −0.2
LowRes 2108 ±28 43 ±17 −4± 19

10 HighRes 44 ±3 1.9±0.6 1± 8 0.1
LowRes 68 ±3 1.0 ±0.3 0± 3

11 HighRes 127 ±4 5.2±1.4 −8± 12 −0.6
LowRes 158 ±10 3.0 ±1.2 −4± 7

12 HighRes 1066 ±19 51 ±16 10± 34 0.2
LowRes 1310 ±14 29 ±9 5± 18

13 HighRes 151 ±5 9.5±3.1 2± 11 0.2
LowRes 193 ±5 5.8±2.1 1± 6
of the ISR for the signal process is also propagated and is below 1%. 
For chargino–neutralino and neutralino-pair production signal pro-
cesses, the fast simulation was used to predict signal yields and an 
additional systematic uncertainty is propagated for inaccuracies in 
the modeling of the missing transverse momentum tail. This sys-
tematic uncertainty ranges between 1% and 34% depending on the 
search region bin.

7. Results and interpretations

The fit results for all search region bins are summarized in Ta-
ble 4, along with the data yields, fitted background, and signal 
yields. An example fit result for the search bin with MR > 600 GeV
and R2 > 0.025 in the HighPt category is shown in Fig. 3. The ob-
served signal significance in each bin is summarized in Fig. 4 for all 
the search region bins, which are statistically independent. None of 
the 14 bins exhibits a deviation from the background expectation 
larger than two standard deviations.

We interpret the search results in terms of limits on the pro-
duction cross section times branching ratio for simplified models 
of bottom squark pair-production and chargino–neutralino produc-
tion. Diagrams of these simplified models are shown in Fig. 1. In 
the case of bottom squark pair production, we consider the sce-
nario where the bottom squark decays to a bottom quark and the 
next-to-lightest neutralino (χ̃0

2 ), and the χ̃0
2 decays to a Higgs bo-

son and the LSP (χ̃0
1 ), and the production cross sections are com-

puted at NLO plus next-to-leading-log (NLL) precision with all the 
other sparticles assumed to be heavy and decoupled [38–43]. We 
restrict ourselves to the scenario where the mass splitting between 
the χ̃0

2 and the χ̃0
1 is 130 GeV, slightly above threshold to produce 

an on-shell Higgs boson. In the case of chargino–neutralino pro-
duction, we consider two different scenarios. In the first one, pure 
wino-like charginos (χ̃±

1 ) and the next-to-lightest neutralino χ̃0
2

are mass-degenerate and are produced together, with the chargino 
decaying to a W boson and the LSP (χ̃0

1 ) and the χ̃0
2 decaying 

to a Higgs boson and the LSP (χ̃0
1 ). The production cross sec-

Fig. 4. The observed significance in units of standard deviations is plotted for each 
search bin. The significance is computed using the profile likelihood, where the sign 
reflects whether an excess (positive sign) or deficit (negative sign) is observed. The 
categories that the bins belong to are labeled at the bottom. The bins in the High-
Res and LowRes categories are fitted simultaneously and yield a single combined 
significance. The yellow and green bands represent the ±1 and ±2 standard devia-
tion regions, respectively. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

tions are computed at NLO plus next-to-leading-log (NLL) precision 
in a limit of mass-degenerate wino χ̃0

2 and χ̃±
1 , light bino χ̃0

1 , 
and with all the other sparticles assumed to be heavy and de-
coupled [48–50]. In the second scenario, we consider a GMSB [7,
8] simplified model where Higgsino-like charginos and neutralinos 
are nearly mass-degenerate and are produced in pairs through the 
following combinations: χ̃0

1 χ̃0
2 , χ̃0

1 χ̃±
1 , χ̃0

2 χ̃±
1 , and χ̃±

1 χ̃∓
1 . Because 

of the mass degeneracy, both the χ̃0
2 and the χ̃±

1 will decay to 
χ̃0

1 and other low-pT (soft) particles, leading to a signature with 
a χ̃0

1 pair. Each χ̃0
1 will subsequently decay to a Higgs boson and 

the goldstino (G̃), which is the LSP, or to a Z boson and the gold-
stino. We consider the case where the branching fraction of the 
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Fig. 5. The observed 95% CL upper limits on the bottom squark pair production cross 
section (top) and wino-like chargino–neutralino production cross section (bottom) 
are shown. The solid and dotted black contours represent the observed exclusion 
region and its ±1 standard deviations (1σ ) of their experimental and theoretical 
uncertainties, while the analogous red contours represent the expected exclusion 
region and its 1σ band. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

χ̃0
1 → HG̃ decay is 100%, and the case where the branching frac-

tion of the χ̃0
1 → HG̃ and χ̃0

1 → ZG̃ decays are each 50%. The cross 
sections for higgsino pair production are computed at NLO plus 
NLL precision in a limit of mass-degenerate higgsino χ̃0

2 , χ̃±
1 , and 

χ̃0
1 with all the other sparticles assumed to be heavy and decou-

pled [48–50]. Following the convention of real mixing matrices and 
signed neutralino or chargino masses [51], we set the mass of χ̃0

1
(χ̃0

2 ) to positive (negative) values. The product of the third and 
fourth elements of the corresponding rows of the neutralino mix-
ing matrix N is +0.5 (−0.5). The elements U12 and V 12 of the 
chargino mixing matrices are set to 1.

Following the CLs procedure [52–54], we use the profile likeli-
hood ratio test statistic and the asymptotic formula [55] to eval-
uate the 95% confidence level (CL) observed and expected limits 
on the signal production cross sections. For the bottom squark pair 
production model, the limits are shown on the left of Fig. 5 as 
a function of the bottom squark mass and the LSP mass. We ex-

Fig. 6. The observed 95% CL upper limits on the production cross section for 
higgsino-like chargino–neutralino production are shown. The charginos and neu-
tralinos undergo several cascade decays producing either Higgs or Z bosons. We 
present limits in the scenario where the branching fraction of the χ̃0

1 → HG̃ decay 
is 100% (top) and the scenario where the branching fraction of the χ̃0

1 → HG̃ and 
χ̃0

1 → ZG̃ decays are each 50% (bottom). The dotted and solid black curves repre-
sent the expected and observed exclusion region, and the green and yellow bands 
represent the ±1 and ±2 standard deviation regions, respectively. The red solid and 
dotted lines show the theoretical production cross section and its uncertainty band. 
(For interpretation of the references to color in this figure legend, the reader is re-
ferred to the web version of this article.)

clude bottom squarks with masses below about 450 GeV for all 
LSP masses below 250 GeV. For the wino-like chargino–neutralino 
production simplified model, the limits are shown on the right of 
Fig. 5 as a function of the chargino mass and the LSP mass. We 
exclude chargino masses below about 170 GeV for all LSP masses 
below 25 GeV. For the higgsino-like chargino–neutralino produc-
tion simplified models, the limits are shown in Fig. 6 as a function 
of the chargino mass for the case where the branching fraction of 
the χ̃0

1 → HG̃ decay is 100% on the left, and for the case where 
the branching fraction of the χ̃0

1 → HG̃ and χ̃0
1 → ZG̃ decays are 

both 50%, on the right. We exclude charginos below 205 GeV and 
130 GeV in the former and latter cases, respectively.

8. Summary

A search for anomalous Higgs boson production through decays 
of supersymmetric particles is performed with the proton–proton 
collision data collected in 2016 by the CMS experiment at the LHC. 
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The sample corresponds to an integrated luminosity of 35.9 fb−1

at the center-of-mass energy 
√

s = 13 TeV. Higgs boson candi-
dates are reconstructed from pairs of photons in the central part 
of the detector. The razor variables MR and R2 are used to sup-
press Standard Model (SM) Higgs boson production and other SM 
backgrounds. The non-resonant background is estimated through a 
fit to the diphoton mass distribution in data, while the SM Higgs 
background is predicted using simulation. We interpret the results 
in terms of production cross section limits on simplified models 
of bottom squark pair production and chargino–neutralino produc-
tion. We exclude bottom squark masses below 450 GeV for bottom 
squarks decaying to a bottom quark, a Higgs boson, and the light-
est supersymmetric particle (LSP) for LSP masses below 250 GeV 
and assuming a mass splitting between the χ̃0

2 and χ̃0
1 of 130 GeV. 

For wino-like chargino–neutralino production, we improved the 
search sensitivity by a factor of two with respect to previous re-
sults [11] and we exclude charginos with mass below 170 GeV 
for LSP masses below 25 GeV. In the GMSB scenario, we exclude 
charginos with mass below 205 GeV for neutralinos decaying to a 
Higgs boson and a goldstino LSP (G̃) with 100% branching fraction. 
Finally, we exclude charginos with mass below 130 GeV for the 
case where the branching fractions of the χ̃0

1 → HG̃ and χ̃0
1 → ZG̃

decays are 50% each.
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