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ABSTRACT

A finite element program is developed to simulate the packing and coiling of elastic
wires in three-dimensional cavities. The wire is modelled with third order beam theory
and embedded into a corotational formulation to capture the geometric nonlinearity
resulting from large rotations and deformations. Wire-wire contacts are found efficiently
with the aid of linked cell lists. The hyperbolic equations of motion are integrated
in time using two different integration methods from the Newmark family: Implicitly
with a Newton-Raphson iterative solver combined with a line search algorithm, and
explicitly with an adaptive-timestep predictor-corrector scheme. The two methods
reveal fundamentally different suitability for the problem of strongly self-interacting
finite elements as they are encountered in densely packed cavities, in particular, the
implicit scheme is unable to access the dense regime due to convergence failure at
multiple self-contacts. The computational performance of the two methods is compared,
and their parallelization is discussed. With the explicit solver, some aspects of the
packing of frictionless elastic wires with zero intrinisic curvature in hard ellipsoidal
cavities are studied as a first step toward arbitrary or deformable cavities, i.e. away
from the spherical symmetry investigated in recent studies.

i



ACKNOWLEDGEMENT

I am grateful for numerous valuable discussions with Falk Wittel and Norbert Stoop.
Stoop has also kindly offered to share his rich experience in the libMesh finite element
library throughout the development of this thesis, which is much appreciated.

Parts of the numerical simulations were carried out on the IBM BladeCenter HS22
HPC cluster at the Institute for Building Materials at ETH Zurich.

ii



Contents

List of Figures iv

List of Symbols v

1. Introduction 1

2. Finite Element Model 2
2.1. Direct Mass Lumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Linear Two-Dimensional Beam Theory . . . . . . . . . . . . . . . . . . . 4
2.3. Linear Tree-Dimensional Beam Theory . . . . . . . . . . . . . . . . . . . 7
2.4. The Corotational Formulation . . . . . . . . . . . . . . . . . . . . . . . 8
2.5. Strain Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6. Cavity Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7. Self-Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Program Implementation 19
3.1. libMesh and PETSc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Time Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3. Dynamic Mesh Enlargement . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Efficient Self-Contact Search . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5. Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6. Flowcharts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4. Benchmarks & Results 30
4.1. Verification of the Corotated Beams . . . . . . . . . . . . . . . . . . . . 30
4.2. h-Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3. Explicit vs. Implicit Integration . . . . . . . . . . . . . . . . . . . . . . . 36
4.4. A Spherical Sample System . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5. Breaking the Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . 43

5. Conclusion & Outlook 45

Bibliography 46

A. DVD Contents 50

iii



List of Figures

2.1. Direct mass lumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2. Cubic Hermite splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. The corotational formulation: Definition of the triads and local DoFs . . 9
2.4. Self-contact of two almost parallel elements . . . . . . . . . . . . . . . . 18

3.1. Linked cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2. Flowchart of the overall program structure . . . . . . . . . . . . . . . . 27
3.3. Flowchart of an explicit timestep . . . . . . . . . . . . . . . . . . . . . . 28
3.4. Flowchart of an implicit timestep . . . . . . . . . . . . . . . . . . . . . . 29

4.1. 45 degree bend subject to concentrated transverse tip load . . . . . . . . 31
4.2. Bending energy density of a cantilever beam subject to end moment . . 31
4.3. Three-dimensional response of a clamped circular beam to twist . . . . . 32
4.4. Comparison of corotated beam theories in 2D . . . . . . . . . . . . . . . 34
4.5. Quadratic convergence in h . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6. Convergence failure of the implicit solver in 2D . . . . . . . . . . . . . . 37
4.7. Quantification of convergence failure of the implicit solver . . . . . . . . 37
4.8. Convergence failure of the implicit solver in 3D . . . . . . . . . . . . . . 38
4.9. Relative serial performance of program components . . . . . . . . . . . . 40
4.10. A small spherical sample configuration . . . . . . . . . . . . . . . . . . . 42
4.11. Results for a small spherical sample configuration . . . . . . . . . . . . . 43
4.12. Different coiling resulting from different ellispoidal shapes . . . . . . . . 44

iv



List of Symbols

The following is a selected list of the most significant and frequently recurring symbols
in this thesis.

Uppercase scalars:

A Cross section area of the wire . . . . . . . . . . . . . . . . . . . . . . . . 3
D Indentation depth of a wire contact with itself or the cavity . . . . . . . 14
E Young’s modulus of elasticity of the wire . . . . . . . . . . . . . . . . . 5
Ek Total kinetic energy of the wire . . . . . . . . . . . . . . . . . . . . . . . 4
G Shear modulus of the wire . . . . . . . . . . . . . . . . . . . . . . . . . . 5
H The cubic Hermite shape functions . . . . . . . . . . . . . . . . . . . . . 6
I Area moment of inertia of the wire . . . . . . . . . . . . . . . . . . . . . 8
J Polar moment of inertia of the wire . . . . . . . . . . . . . . . . . . . . 7
L Total length of the wire or beam . . . . . . . . . . . . . . . . . . . . . . 12
N Number of elements along the wire . . . . . . . . . . . . . . . . . . . . . 2
P Bulk pressure imposed upon the cavity by the packed wire . . . . . . . 16
Q External load applied to the tip of a beam . . . . . . . . . . . . . . . . . 30
R Radius of the intrinsic curvature of a wire . . . . . . . . . . . . . . . . . 30
Ub Potential energy due to bending . . . . . . . . . . . . . . . . . . . . . . 12
Us Potential energy due to axial stretching . . . . . . . . . . . . . . . . . . 13
Ut Potential energy due to internal twist . . . . . . . . . . . . . . . . . . . 13
Ω Parameter determining the type of beam theory . . . . . . . . . . . . . 5

Lowercase scalars:

a Radius of the ellipsoidal cavity in x-direction . . . . . . . . . . . . . . . 15
b Radius of the ellipsoidal cavity in y-direction . . . . . . . . . . . . . . . 15
c Radius of the ellipsoidal cavity in z-direction . . . . . . . . . . . . . . . 15
cv Viscous damping coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 4
h Mesh spacing (length of a single undeformed finite wire element) . . . . 2
q External uniform load distribution applied to a beam . . . . . . . . . . 33
r Radius of the wire cross section . . . . . . . . . . . . . . . . . . . . . . . 3
rcav Radius of a spherical cavity . . . . . . . . . . . . . . . . . . . . . . . . . 14
t Time (t = 0 at the beginning of a simulation) . . . . . . . . . . . . . . . 2
∆t Step size in the numerical integration of time . . . . . . . . . . . . . . . 19
u Displacement in direction of the x-axis . . . . . . . . . . . . . . . . . . . 2
v Displacement in direction of the y-axis . . . . . . . . . . . . . . . . . . . 2
w Displacement in direction of the z-axis . . . . . . . . . . . . . . . . . . . 2

v



vi List of Figures

Greek scalars:

α Edge length of a cubic cell in the linked cell method . . . . . . . . . . . 24
β Parameter in the family of Newmark methods . . . . . . . . . . . . . . . 19
γ Parameter in the family of Newmark methods . . . . . . . . . . . . . . . 19
δ Additional margin granted to linked cells for efficiency . . . . . . . . . . 24
η Relative error per timestep in the explicit integration . . . . . . . . . . 21
θ Second order Hermite DoF for bending in xz-plane . . . . . . . . . . . . 2
ν Poisson ratio of the wire . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
ρ Mass density of the wire . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
φ Packing density (wire volume divided by cavity volume) . . . . . . . . . 38
ϕ Twist about the x-axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ψ Second order Hermite DoF for bending in xy-plane . . . . . . . . . . . . 2

Matrices:

1k k×k Identity matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
F Transformation matrix from corotated to global DoFs . . . . . . . . . . 10
J Jacobian matrix (for various purposes indicated by a subscript) . . . . . 14
M Mass matrix, containing masses and moments of inertia . . . . . . . . . 2
C Viscous damping matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
K Stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Kt Tangent stiffness matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Vectors:

∆c Vector in R3 connecting the closest points on two element center lines . 17
fext Vector of external forces and torques acting on the wire . . . . . . . . . 2
n Unit vector in R3 (pointing in a context-dependant direction) . . . . . . 14
u Solution vector holding the nodal displacements and orientations . . . . 3
p The effective nodal positions (mesh coordinates + displacement) . . . . 9
q Quaternion (q = [q0, q1, q2, q3]T) . . . . . . . . . . . . . . . . . . . . . . 10
x Invariant vector holding the mesh point coordinates . . . . . . . . . . . 2

Many symbols can carry a subscript like Xn or Xe, in which case the submatrix of X
(or subvector or scalar) belonging to node n or element e is meant. Symbols carrying a
hat like θ̂ refer to quantities w.r.t. the corotated local element frame, whereas quantities
without a hat (θ) are generally expressed in the fixed global cartesian frame.



1. Introduction

Saccular aneurysms are permanent, roughly spherical bulges in mainly arterial blood
vessels. The surgical treatment of saccular aneurysms has been subject to quite some
technological progress in the past two decades. In 1991, a new minimally invasive
technique called endovascular coiling has been successfully applied for the first time by
Guglielmi and co-workers [1]. To reduce internal blood circulation leading to further
increase in size of the aneurysm and eventual rupturing of the vascular walls, the
aneurysm is occluded by inserting a detachable platinum coil through a catheter. A high
packing density of the coiled wire is desired as it leads to better long-term stability of the
embolization [2]. This is one reason among many why the morphological packing and
coiling behavior of wires in three-dimensional cavities depending on material properties
and geometry has attracted increasing interest in recent research.

In the past few years and in a more physics-oriented context, the crumpling of
thin wires has been studied in two dimensions experimentally by Donato, Gomes and
co-workers [3–7] followed by numerical simulations by Stoop et al. [8]. It wasn’t until
very recently that experiments were extended to three dimensions [9, 10]. A numerical
study of the three-dimensional case again by Stoop et al. [10] is now unveiling a rich
range of interesting morphological phases largely dependent on geometry and twist
rather than intrinsic curvature, friction or energy scales of the wire.

The above-mentioned existing studies of crumpled wires have one particular aspect in
common: they all use hard, spherical or cylindrical cavities. Material nonlinearities of
either the wire or the cavity, as well as deformation of the latter, are not adressed. For a
realistic simulation of endovascular coiling, existing models need extensions in this regard.
In the present work, a reimplementation from scratch using finite elements is presented.
The long-term goal of this effort is the development of a fully integrated finite element
program capable of capturing both wire and cavity deformations, material nonlinearities,
plasticity and friction. The wire is modelled with third order beam theory and embedded
into a corotational formulation to capture the geometric nonlinearity resulting from
large rotations and deformations. The hyperbolic equations of motion are integrated in
time using two different integration methods from the Newmark family [11]: Implicitly
with a Newton-Raphson iterative solver combined with a line search algorithm, and
explicitly with an adaptive-timestep predictor-corrector scheme. The two methods are
compared w.r.t. suitability for densely packed systems and computational performance.
With the explicit solver, some aspects of the packing of frictionless elastic wires with
zero intrinisic curvature in hard ellipsoidal cavities are studied as a first step away from
strictly spherical confinement.
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2. Finite Element Model

In this chapter, the finite element description is presented, which is deployed for
modelling the bending deformation of elastic rods, their self-interaction, and spatial
confinement inside a hard ellipsoidal cavity. The wire is represented in terms of
a one-dimensional regular mesh with N elements {e}, i.e. N + 1 nodes {n}. The
mesh has a fixed position x ∈ R3(N+1) parallel to the global x-axis in the simulations.
However, with respect to potential future adaptive mesh refinement and coarsening or
material nonlinearities, the mesh spacing h is generalized to element-dependant values
he throughout the theoretical considerations and implementation. Each mesh node is
populated by six degrees of freedom (DoFs): three cartesian displacements un, vn, wn
in x-, y- and z-direction, respectively, and three Euler angles ϕn, θn, ψn for rotations
around these respective axes, giving each node an orientation in space.

Eventually, the motion of the wire will be described by the nonlinear system of
hyperbolic differential equations

Mü + Cu̇ + K(u)u = fext(u). (2.1)

Here, M is the wire’s mass matrix, C is a damping matrix and K(u) represents the
solution-dependent ‘‘nonlinear’’ stiffness matrix. Each of these matrices is a member of
R6(N+1)×6(N+1). The global solution vector u = u(t) ∈ R6(N+1) contains the six DoFs
for each node at time t. All external forces and torques acting on the wire at time t
enter the solution-dependent right-hand side vector fext(u). This includes self-contact
forces between disjoint wire elements, forces due to penetration of the cavity, and the
boundary force responsible for pushing the wire into the cavity. The left-hand side is
often termed internal force, i.e. (2.1) balances internal and external forces.

As is customary in finite element formulations, all matrices and vectors in (2.1) are
assembled from their element or nodal contributions. That is,

K =
⊕
e

Ke, (2.2)

where the element stiffness matrix Ke ∈ R12×12 describes the stiffness of element e on
its 12 DoFs, and

⊕
denotes the cumulative submatrix assembly operation following a

prescribed local-to-global element DoF mapping. The corresponding formalism applies
to all other terms in (2.1), e.g., the overall solution vector u is built up from nodal
contributions

un = [un, vn, wn, ϕn, θn, ψn]T,∈ R6 n = 0, 1, ..., N, (2.3)

or equivalently, from element contributions

ue = [u1, v1, w1, ϕ1, θ1, ψ1, u2, v2, w2, ϕ2, θ2, ψ2]T,∈ R12 e = 1, 2, ..., N. (2.4)

2



3 2.1. Direct Mass Lumping

In (2.4), the subscript 1 refers to the element’s left node n, while 2 refers to its right node
n+ 1. This submatrix or subvector notation will be used extensively in the following.
For instance, one may conveniently write

u = [uT
0 ,u

T
1 , ...,u

T
N ]T. (2.5)

2.1. Direct Mass Lumping

The first in a series of approximations to be conducted is simplifying M and C in
(2.1) by means of direct mass lumping [12,13]. The masses of each cylindrical element
are effectively destributed to its two end nodes in equal parts:

me = heAρ −→ mn =
hn + hn+1

2
Aρ (2.6)

where A = πr2 is the area cross section of the tubular wire and ρ its mass density. The
nodal moments of inertia that enter the mass matrix are approximated in a similar
fashion. The nodal point masses mn are simply uniformly distributed to balls of the
same radius as the wire, resulting in

Jn =
2

5
mnr

2 =
hn + hn+1

5
πr4ρ. (2.7)

The procedure is visualized in Figure 2.1.

x
x0 x1 x2h1 h2

(u0, v0, w0)

(u1, v1, w1)
(u2, v2, w2)

0

1

2
Element 1

Element 2

r

Figure 2.1.: Lumping of masses and moments of inertia to the nodes. Half of the mass
and moment of inertia of each element is assigned to each node (red). The masses are
concentrated in points, while for the calculation of the nodal moment of inertia J , they
are uniformly distributed in a sphere of radius r.



4 2.2. Linear Two-Dimensional Beam Theory

Direct mass lumping leads to a diagonalization of M, which is then called diagonally
lumped mass matrix. The nodal contribution to M is

Mn = diag(mn,mn,mn, Jn, Jn, Jn). (2.8)

This approach proves particularly useful for explicit time integration (cf. Section 3.2),
where a matrix inversion for the computation of nodal accelerations

ü = M−1
(
fext(u)−Cu̇−K(u)u

)
(2.9)

reduces to a simple componentwise vector multiplication. Moreover, the total kinetic
energy of the wire can now be written as

Ek =
1

2
u̇TMu̇ =

1

2

∑
n

u̇T
nMnu̇n

=
1

2

∑
n

{
mn

(
u̇2
n + v̇2

n + ẇ2
n

)
+ Jn

(
ϕ̇2
n + θ̇2

n + ψ̇2
n

)}
.

(2.10)

In many situations, Rayleigh damping of the form

C = c1M + c2K, c1, c2 ≥ 0 (2.11)

serves as an expedient damping model, especially for irregular meshes. However, in this
thesis the damping matrix is simply lumped to C = cv16(N+1), where cv ≥ 0 is a scalar
viscous damping coefficient acting on all translational and angular velocities equally.
This will be sufficient to effectively control vibrational instability in a first step.

The rest of this chapter is devoted to the construction of the stiffness matrix K
and external forces fext. For implicit integration in time, the need to also provide the
Jacobian matrix for these will come across.

2.2. Linear Two-Dimensional Beam Theory

The deformation of the tubular wire is modelled by means of well-established beam
theory. The most common beam theories differ in the treatment or neglect of transverse
shear and transverse normal effects [14]. The Euler-Bernoulli beam theory (EBT),
as the most elementary version, completely neglects these. The Timoshenko beam
theory (TBT) [15, 16] introduces a constant shear strain, resulting in a linear shear
stress profile. Timoshenko finite elements are known to suffer from a problem called
shear locking [17, 18], which is an overstiff reaction to thinness of the beam due to
inconsistent interpolation of the translational and rotational degrees of freedom. In
1997, Reddy proposed a third-order beam theory that includes the real quadratic shear
stress distribution [14,19]. In a simplified version, hereafter referred to as RBT, where
the differential equations are reduced from sixth to forth order, his theory beautifully
generalizes both EBT and TBT at once, resulting in a ‘‘unified’’ theory that completely
alleviates shear locking without complicating the stiffness matrix. For that reason, RBT
is deployed here for the bending deformation of the rods.



5 2.2. Linear Two-Dimensional Beam Theory

For brevity, the derivation of a beam finite element from the continuum equations
is skipped here. A condensed overview can be found in Ref. [19]. Here only the parts
relevant for implementation are reiterated.

Common beam theories are usually devised in two dimensions and in the linear limit,
i.e. for small deflections and rotations. Reddy’s unified element stiffness matrix for a
small bending deflection w(x) in the xy-plane, assuming constant beam material and
geometry, reads [19]

Ke,2D =


kw −kwθ −kw −kwθ

kθ kwθ kθθ
kw kwθ

symm. kθ

 (2.12)

with entries

kw =
12EIyy
µh3

e

, kθ =
4EIyy
µhe

λ, kwθ =
6EIyy
µh2

e

, kθθ =
2EIyy
µhe

ξ, (2.13)

µ = 1 + 12Ω, λ = 1 + 3Ω, ξ = 1− 6Ω. (2.14)

Ω is the parameter determining the order of the theory:

Ω =

{
0 for EBT
D̂xx

Âxzh2
e

for RBT
. (2.15)

For RBT, the stiffness coefficients

D̂xx = D̄xx − c1F̄xx, Âxz = Āxz − c2D̄xz

D̄xx = E
(
I

(2)
yy − c1I

(4)
yy

)
, Āxz = G

(
A − c2I

(2)
yy

)
F̄xx = E

(
I

(4)
yy − c1I

(6)
yy

)
, D̄xz = G

(
I

(2)
yy − c2I

(4)
yy

)
,

(2.16)

are needed, with

c1 =
1

3r2
, c2 = 3c1 =

1

r2
, (2.17)

where r is the half thickness of the beam, i.e. the cross section radius for a tubular wire.
E denotes the Young’s modulus of elasticity of the wire, and G its shear modulus. I
will use the linear elasticity ansatz

G =
E

2(1 + ν)
, (2.18)

where ν is the Poisson ratio. I
(i)
yy is the i-th moment of inertia of the wire about the

y-axis, and calculates as

I(i)
yy =

∫
A
zi dA. (2.19)

With (2.12), the equilibrium internal element forces are calculated as

fint,e = Ke,2D ue,2D, (2.20)

where ue,2D = [w1, θ1, w2, θ2]T holds the four DoFs of a two-dimensional element.



6 2.2. Linear Two-Dimensional Beam Theory

This element stiffness matrix for a 2D beam holds only for cubic Hermite shape
functions, which have been analytically integrated over the element [0, he] in (2.12).
There is no more need for numerical integration using quadrature rules. Cubic Hermite
splines are C1-shape functions defined on the standard unit element with natural
coordinate 0 ≤ ξ = x

he
≤ 1 by [20]

H1(ξ) = (2ξ + 1)(ξ − 1)2

H2(ξ) = −ξ(ξ − 1)2

H3(ξ) = −ξ2(2ξ − 3)

H4(ξ) = −ξ2(ξ − 1)

(2.21)

These are shown in Figure 2.2. The displacement field w is then interpolated in the
usual way:

w(x) =
4∑
i=1

(ue)iHi(x/he), 0 ≤ x = ξhe ≤ he. (2.22)

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

H1

H2

H3

H4

ξ

Figure 2.2.: The four cubic Hermite shape functions on the standard element.



7 2.3. Linear Tree-Dimensional Beam Theory

2.3. Linear Tree-Dimensional Beam Theory

The extension to three dimensions is straightforward. The deflection field w in
the xy-plane is complemented by another one, v, in the xz-plane. Additionally, a
longitudinal displacement u and a twist angle ϕ are introduced, both of which are
modelled with Hooke’s law. These four fields are completely independent in the linear
theory by construction, which is yet another approximation. This implies for instance
that vanishing mixed-bending Cauchy stresses

σyz = σzy = 0 (2.23)

are assumed. However, in Section 2.4, the embedding of the beam elements into a
corotational formulation will turn the theory nonlinear and thereby couple the fields to
some degree.

Special attention needs to be paid to the sign convention in 3D. For consistency with
literature and other common available FEM software, the signs of H2 and H4 in (2.21)
are flipped for the second bending plane such that the ‘‘slopes’’ φn are equally oriented
as the conventinal Euler angles. Consequently, the stiffness matrix entries coupling
v1 and v2 with ψ1 and ψ2 must flip their signs as well. Let’s order the 12 DoFs of an
element as in (2.4). The full 3D element stiffness matrix then reads

Ke,3D =



ku 0 0 0 0 0 −ku 0 0 0 0 0
kv 0 0 0 kvψ 0 −kv 0 0 0 kvψ

kw 0 −kwθ 0 0 0 −kw 0 −kwθ 0
kϕ 0 0 0 0 0 −kϕ 0 0

kθ 0 0 0 −kwθ 0 kθθ 0
kψ 0 kvψ 0 0 0 kψψ

ku 0 0 0 0 0
kv 0 0 0 −kvψ

symm. kw 0 kwθ 0
kϕ 0 0

kθ 0
kψ


(2.24)

with components from (2.13) and

kv =
12EIzz
µh3

e

, kψ =
4EIzz
µhe

λ, kvψ =
6EIzz
µh2

e

, kψψ =
2EIzz
µhe

ξ. (2.25)

The longitudinal and torsional spring constants are given by

ku =
EA

he
, kϕ =

GJ

he
, (2.26)

where the polar moment of inertia J = Iyy + Izz by the perpendicular axis theorem. For
a wire with circular profile A of radius r, one can write

I(i)
yy = I(i)

zz =: I(i), (2.27)

which implies that
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kv = kw, kψ = kθ, kvψ = kwθ, kθθ = kψψ, (2.28)

and

A = πr2, I := I(2) =
π

4
r4, I(4) =

π

8
r6, I(6) =

5π

64
r8, J = 2I =

π

2
r4. (2.29)

2.4. The Corotational Formulation

Linear beam theories are only valid in the small rotation and small deflection regime.
Wires packed in cavities undergo large rotations and deflections, though. In order to
comprise such deformations in a finite element simulation, geometric nonlinearity of
the form K = K(u) must be introduced to the theory. To this end, three prominent
approaches have been developed, refined, mixed, and broadly applied over decades.
The total Lagrangian formulation (TL) expresses the sought solution w.r.t. an initial
configuration. The updated Lagrangian formulation (UL) can be shown to be effectively
equivalent to TL [21], but making use of a different representation, where the nodal
displacements and rotations are described incrementally, i.e. relative to the last known
values. The corotational formulation (CR) introduces a local reference frame for each
element that continuously moves and rotates with the element, within which the theory
can be considered linear. CR has been acclaimed superiority over TL and UL in
accuracy [22,23], performance [24,25], simplicity [26] and generality [25,27], which is
why it is utilized in the present work.

The corotational formulation appears to root in the work of Wempner [28], Belytschko
& Hsieh [24] and Oran [29]. Based on the polar decomposition theorem, which states
that any general motion can be expressed as the sum of a rigid body motion and a pure
body deformation, it is designed for problems with large rotation and deformation, but
small strains. The idea is to corotate and cotranslate a dedicated frame with each beam
element, exactly passing through the nodes. The 12 global DoFs per element reduce to
seven local ones when expressed w.r.t this corotated frame. In other words, each element
is carefully reduced by its five rigid body DoFs, and the linear beam theory is then
applied to the remaining seven DoFs, which are responsible for deformation in the local
frame. In 1990, Crisfield [27,30] was the first to provide a beam-theory-independent,
three-dimensional CR formulation with consistent treatment of the tangent stiffness
matrix, which is required for acceptable convergence in the Newton-Raphson solver. In
the remainder of this section, a rough outline of Crisfield’s method and its integration
into the presented finite element model is given, adopting most of his original notation.
This may appear somewhat brief for people unfamiliar with the subject. In fact, the CR
formulation is one of the most complex and lengthy parts in the program. The reader
is referred to Crisfield’s literature for more details, especially on the assembly of the
geometric stiffness matrix Kσ,e, see below.
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Let’s denote the actual, global position of a node n in space by the sum of its mesh
coordinates and displacement,

pn = xn + [un, vn, wn]T ∈ R3. (2.30)

Each beam element e is assigned a unit triad Ee = [e1, e2, e3] ∈ R3×3, called the
corotated frame, in such a way that it represents the orientation of e, in particular, e1

is colinear to the line connecting the two nodes,

e1 =
p2 − p1

|p2 − p1|
. (2.31)

The global element Dofs ue are now expressed w.r.t. Ee. All variables carrying a hat
refer to this local element frame in the following. By construction, it holds that

v̂1 = v̂2 = ŵ1 = ŵ2 = 0. (2.32)

Additionally, the longitudinal displacement variables u1, u2 can be reduced to a single
longitudinal spring deflection

ûe = |p2 − p1| − he. (2.33)

Each node is further assigned another unit triad, call it Te = [t1, t2, t3] for node 1 and
Ve = [v1,v2,v3] for node 2 when element e is considered. These triads represent the
nodal orientations, that were previously identified by ϕ1, θ1, ψ1 and ϕ2, θ2, ψ2 in the
linear theory. It turns out that if these three triads are defined and updated properly,
one can compute the six rotational DoFs w.r.t. Ee as

ϕ̂1= sin−1
(
tT
2 e3−tT

3 e2

2

)
− ϕ̂0

1, ϕ̂2= sin−1
(
vT

2 e3−vT
3 e2

2

)
− ϕ̂0

2,

θ̂1= sin−1
(
eT

2 t1−tT
2 e1

2

)
− θ̂0

1, θ̂2= sin−1
(
eT

2 v1−vT
2 e1

2

)
− θ̂0

2,

ψ̂1= sin−1
(
eT

3 t1−tT
3 e1

2

)
− ψ̂0

1, ψ̂2= sin−1
(
eT

3 v1−vT
3 e1

2

)
− ψ̂0

2,

(2.34)

where ϕ̂0, θ̂0, ψ̂0 allow to give the beam an intrinsic equilibrium curvature.

v2

v3

0

p1
p2

t1t2

t3

v1e1
e2

e3

ϕ̂1

θ̂1

ψ̂1

ue
ϕ̂2

θ̂2

ψ̂2

Figure 2.3.: Visualization of the corotated wire element: The nodal triads Te (red)
and Ve (green), the corotated element frame Ee (magenta) and the seven local DoFs.
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This defines the seven local deformation DoFs ûe = [ϕ̂1, θ̂1, ψ̂1, ûe, ϕ̂2, θ̂2, ψ̂2]T from
which the rigid body motion has been completely detached. They are illustrated
together with the triads in Figure 2.3. The 7×7 element stiffness matrix acting on
these local DoFs is now easily devised from any linear beam theory with two nodes per
element and six DoFs per node, three translational and three rotational. All that needs
to be done for RBT is eliminating the stiffness coefficients involving bending deflection
(v, w), as that vanishes in the corotated frame, and condensing the two rows/columns
for the longitudinal stiffness into one. The reduced corotational RBT stiffness matrix
thus simply reads

K̂e =



kϕ 0 0 0 −kϕ 0 0
kθ 0 0 0 kθθ 0

kψ 0 0 0 kψψ
ku 0 0 0

kϕ 0 0
symm. kθ 0

kψ


(2.35)

with coefficients from (2.13), (2.25) and (2.26). The key observation is now that K̂e

can be transformed into the desired 12×12 ‘‘nonlinear’’ global element stiffness matrix
Ke(ue) via a solution-dependent global-to-local transformation matrix Fe(ue) ∈ R7×12:

Ke(ue) = FT
e (ue)K̂eFe(ue). (2.36)

This is where geometric nonlinearity enters the equations of motion. Equivalently, one
can write

fint,e(ue) = FT
e (ue)K̂eûe (2.37)

for the internal forces in static equilibrium. The construction of Fe is done row-wise
and turns out to be somewhat lengthy matrix calculus involving the three triads Ee,
Te and Ve. The details are omitted here, but note that for the undeformed initial state
u ≡ 0, the transformation matrix is exactly such that Ke(ue) is identical to the linear
case from (2.24), Ke,3D.

For an initially straight beam colinear to the x-axis, the nodal triads are just identity
matrices. When the equilibrium equations (2.1) are integrated in time, the wire deforms
and the nodal triads need to be updated in accordance to the nodal rotational degrees
of freedom. In order to avoid the singularities occurring in an Eulerian representation of
large rotations, unit quaternions are used instead. Thus, in a practical implementation,
the three angles ϕn, θn, ψn are replaced by four quaternion components

qn =


q0

q1

q2

q3

 =


cos(ϕn/2) cos(θn/2) cos(ψn/2) + sin(ϕn/2) sin(θn/2) sin(ψn/2)
sin(ϕn/2) cos(θn/2) cos(ψn/2)− cos(ϕn/2) sin(θn/2) sin(ψn/2)
cos(ϕn/2) sin(θn/2) cos(ψn/2) + sin(ϕn/2) cos(θn/2) sin(ψn/2)
cos(ϕn/2) cos(θn/2) sin(ψn/2)− sin(ϕn/2) sin(θn/2) cos(ψn/2)

 .
(2.38)
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The nodal triad Tn can be calculated from the nodal unit quaternion as

Tn =

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) q2
0 − q2

1 − q2
2 + q2

3

 . (2.39)

The incremental update of the nodal quaternions in time is realized by quaternion
multiplication. The nodal quaternions are normalized on a regular basis to preserve
their unit length. The missing vectors e2 and e3 are detemined via a fourth triad
R̄e = [r1, r2, r3]T, which is obtained from Te and Ve as a nonlinear average between
the two. Again, the details are skipped, but are readily available in Refs. [27, 30].

The most significant part in Crisfield’s work is the derivation of a tangent stiffness
matrix

Kt,e(ue) =
∂

∂ue
Ke(ue)ue (2.40)

that is consistent with the rest of the formalism, which enables an efficient application
of the Newton-Raphson method for implicit integration of the equations of motion (2.1)
in time. This is a highly non-trivial task and requires even more linear algebra than the
assembly of Fe. As will be shown in Section 4.3, it is also an expensive one in terms of
required CPU time. By the product rule of differential calculus, it can be written as

Kt,e(ue) = Ke(ue) + Kσ,e(ue) (2.41)

with Ke from (2.36). The so-called geometric stiffness matrix Kσ,e is a lengthy sum
of submatrices expressed in terms of the four triads, the internal forces fint,e, the local
DoFs ûe and the corotational transformation matrix Fe.

In summary, the CR formulation is a very elegant, yet quite intricate method to
introduce geometric nonlinearity to the system. Its beauty lies in the fact that the linear
RBT can be made nonlinear without modification of the original concept of integrating
over the cubic Hermite splines analytically. This is part of the reason why CR usually
beats Lagrangian approaches in efficiency and accuracy. If the equations of motion are
integrated with an explicit scheme, no Jacobian is needed and thus the most complex
part of the implementation, the assembly of Kσ,e, even drops out.
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2.5. Strain Energy

In this section, some formulas for the most significant terms in the total strain
energy of the discretized wire are briefly disclosed. The potential bending energy of a
two-dimensional beam p: [0, L]→ R2 is given by the integrated squared curvature

Ub =
1

2
EI

∫ L

0

(
d2p(s)

ds2

)2

ds (2.42)

which is linearized to

Ub =
1

2
EI

∫ L

0

(
d2w

dx2

)2

dx (2.43)

for small displacements in the linear Euler-Bernoulli theory. This discretizes to the
finite elements via (2.22) as

Ub =
1

2
EI
∑
e

∫ he

0

(
4∑
i=1

(ue)i
d2Hi

dξ2
(x/he)

)2

h2
e dx

=
1

2
EI
∑
e

4

he

(
3
{

∆w2
e + ∆we(θ1 + θ2) + θ1θ2

}
+ ∆θ2

e

)
,

(2.44)

where ∆we = w2 − w1 and ∆θe = θ2 − θ1, and the subscripts 1 and 2 again refer to the
left and right node for each element e. In the corotated frame, one has ŵ1 = ŵ2 = 0 by
construction for each element, and thus the expression simplifies to

Ub =
1

2
EI
∑
e

4

he

(
θ̂2

1 + θ̂2
2 + θ̂1θ̂2

)
. (2.45)

Finally, bending in the second spatial dimension is included to arrive at the full three-
dimensional nonlinear finite element formula

Ub =
1

2
EI
∑
e

4

he

(
θ̂2

1 + θ̂2
2 + θ̂1θ̂2 + ψ̂2

1 + ψ̂2
2 + ψ̂1ψ̂2

)
. (2.46)

It should be noted that the above derivation is only exact for EBT, where the second-
order DoFs represent the actual slope at the element endpoints,

θn = −dwn
dx

and ψn =
dvn
dx

, (2.47)

and the beam center line can be interpolated using the Hermite basis functions (2.21,2.22).
This doesn’t hold for the simplified third-order theory, where the second-order DoFs are
‘‘abused’’ for the shear strain approximation. In Ref. [31], Reddy provides the full strain
energy in variational form for the third order theory, which is impossible to retrieve in
simplified RBT finite elements. However, the CR-EBT formula (2.46) may be used as
a close approximation of the pure bending contribution to the strain energy also for
CR-RBT.
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The axial elastic strain energy of a linear beam is straightforwardly obtained from
Hooke’s law:

Us =
1

2
EA

∫ L

0

(
du

dx

)2

dx (2.48)

with finite element approximation

Us =
1

2
EA

∑
e

∆u2
e

he
, (2.49)

where ∆ue = u2 − u1 as usual. Since ∆ue appears exactly as ûe in the calculation of
the corotational transformation according to (2.33), one can easily calculate the axial
elastic energy as

Us =
1

2
EA

∑
e

û2
e

he
(2.50)

in the corotated frames. Analogously, the torsional potential energy is given by

Ut =
1

2
GJ

∑
e

∆ϕ̂2
e

he
, ∆ϕ̂e = ϕ̂2 − ϕ̂1. (2.51)
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2.6. Cavity Contact

So far, no forces are present in the model that would prevent the wire from equilibrating
toward a straight line. Spatial confinement is now introduced by a hard cavity with a
small opening through which the wire is pushed inside. In the frictionless elastic limit,
the interaction between wire and cavity happens through exchange of forces normal to
the connecting interfaces. A Hertzian contact model [32] is perfectly sufficient for this
purpose. Consider a fixed hard sphere with radius rcav centered at the global origin,
and assume that a mesh node n penetrates this cavity with indentation depth

D = |pn| − (rcav − r) > 0, (2.52)

where pn = [px, py, pz]
T = xn + [un, vn, wn]T is the effective nodal position in space, and

r denotes the radius of the tubular wire as usual. In this case, an external force [33]

fcav,n = −π
4
E∗h̄D nn ∈ R3 (2.53)

is applied to the three displacement DoFs of the node, where nn = pn/|pn| is the normal
vector pointing radially outwards, h̄ = 1

2(hn−1 + hn) is the average standard length of
the two incident rod elements, and E∗ mixes the material parameters (E, ν) of the rod
with those of the vacity, (Ecav, νcav), according to

1

E∗
=

1− ν2

E
+

1− ν2
cav

Ecav
. (2.54)

The force (2.53) is that of a Hertzian contact between two parallel cylinders of length h̄,
which serves as a reasonable rough estimate for the real force exerted by a hard cavity
to a cylinder. Quite conveniently, it is independent of r. An alternative model could
consist of the Hertzian force between a sphere and a half-space, where the force not
linearly proportional to D.

For implicit time integration, the Jacobian Jcav,n ∈ R3×3 of (2.53) is also needed.
Using the standard rules of differential calculus, one easily finds

Jcav,n =
∂fcav,n

∂pn

= −π
4
E∗h̄

(
D
∂nn
∂pn

+ nn
∂D

∂pn

)
= −π

4
E∗h̄

(
D

|pn|2
{
|pn|

∂pn
∂pn

− pn
∂|pn|
∂pn

}
+ nnn

T
n

)
= −π

4
E∗h̄

D

|pn|

(
13 +

{ |pn|
D
− 1
}

nnn
T
n

)
,

(2.55)

which obviously requires D > 0. For D ≤ 0 the nodal Jacobian is zero.
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Next, this interaction is generalized to hard cavities of ellipsoidal shape, to break
spherical symmetry as a first step toward flexible cavities. The calculation of the shortest
distance between an exact ellipsoid and a point in space is known to be equivalent to
the problem of finding the roots of a sixth order polynomial [34], for which no analytical
solution is known. Thus, the indentation depth D required for the appropriate Hertzian
contact force can only be found numerically, and so can the Jacobian, which would
need to be determined for employing an implicit time integration scheme. Particularly
concerning the Jacobian, this is very inconvenient and it can lead to convergence
difficulties in the Newton-Raphson method. Instead, a closed-form approximation is
developed here. Consider an ellipsoidal cavity given by

E(x, y, z) =
(x
a

)2
+
(y
b

)2
+
(z
c

)2
= 1. (2.56)

Since the Hertzian force (2.53) outgrows the internal forces of the wire even for small
indentations D when compared to the length scales of the wire, its magnitude is far less
important than its direction. Therefore, D can be legitimately approximated by

D ≈
(
a+ b+ c

3
− r
)(√

1 + ∆− 1
)

(2.57)

in which ∆ > 0 is a relative measure for the nodal penetration of an effective ellipsoid
Eeff:

1 + ∆ =

(
px
a− r

)2

+

(
py
b− r

)2

+

(
pz
c− r

)2

=: Eeff(pn). (2.58)

A consistent approximation of the surface normal vector assuming that ∆� 1 is found
by the normalized gradient of the effective ellipsoid:

nn ≈
∇Eeff(pn)

|∇Eeff(pn)|
=:

p̃n
|p̃n|

. (2.59)

The effective direction p̃n can be compactly written as

p̃n = R−2pn (2.60)

with a diagonal matrix

R = diag(a− r, b− r, c− r) ∈ R3×3. (2.61)

The resulting Hertzian force is then found by inserting approximations (2.57) and (2.59)
into (2.53). For the Jacobian, note that

∂nn
∂pn

≈ 1

|p̃n|

(
R−2 − 1

|p̃n|2
p̃np̃

T
nR−2

)
(2.62)

and

∂D

∂pn
≈ a+ b+ c

3

1√
1 + ∆

p̃T
n . (2.63)
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Inserting (2.62) and (2.63) in (2.55) yields the final expression

Jcav,n = −π
4
E∗h̄

(
D
∂nn
∂pn

+ nn
∂D

∂pn

)
≈ −π

4
E∗h̄

D

|p̃n|

({
13 −

1

|p̃n|2
p̃np̃

T
n

}
R−2 +

1

1 + ∆−
√

1 + ∆
p̃np̃

T
n

) (2.64)

or zero if ∆ ≤ 0. It’s easy to verify that in the spherical limit a = b = c = rcav, the
Jacobians (2.55) and (2.64) are identical, because the approximations (2.62) and (2.63)
become exact under spherical symmetry.

The impact of approximations (2.62) and (2.63) is twofold. First, the magnitude of
the Hertzian contact force is subject to an error that grows with the disparity of a, b, c.
Since the Hertzian contact model used here is itself only a crude approximation whose
only purpose is to keep the wire inside the hard cavity, this has no negative consequence
in practice. Second, the effective ellipsoid is slightly deformed. This defect is also minor
for reasonbly balanced a, b, c� r and vanishes for arbitrary a, b, c in the slender wire
limit r → 0.

This section is concluded with a note on pressure. The confined, packed wire imposes
a bulk pressure on the cavity that can be measured by the sum of nodal forces divided
by the surface area of the ellipsoid,

P =
1

AE

∑
n

|fcav,n|. (2.65)

The surface area of a general ellipsoid is not known in closed form either. A close
estimate is given by a formula due to Thomson [35]:

AE ≈ 4π

(
(ab)p + (ac)p + (bc)p

3

)1/p

, p =
8

5
. (2.66)
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2.7. Self-Contact

Just like the cavity contacts, the spatial self-interaction of the wire is modelled by
exchange of Hertzian contact forces that enter the equations of motion (2.1) through
the right-hand side fext, frictionless and fully elastic. Self-contact happens among pairs
of wire elements (e1, e2), and the resulting forces act on the four involved nodes n1, n2

of element e1 and n3, n4 of element e2. For simplicity, all wire elements are treated as
if they were exactly cylindrical in shape, which is an approximation given that cubic
Hermite shape functions are used for the beam interpolation. In favor of a compact
and general notation in the following mathematical outline, the four effective nodal
positions are condensed into a single vector

p = [pn1 ,pn2 ,pn3 ,pn4 ]T ∈ R12, (2.67)

and the same ordering for the resulting force vector fself,e1,e2 ∈ R12 and Jacobian
Jself,e1,e2 ∈ R12×12 is used in the following. For the moment being, let’s assume that
an interacting pair of elements has been found together with their closest points of
approach on the center lines,

c1 = pn1 + s1(pn2 − pn1), s1 ∈ [0, 1],

c2 = pn3 + s2(pn4 − pn3), s2 ∈ [0, 1].
(2.68)

A more detailed description of how to find such pairs and their contact parameters s1,
s2 in practice is given in Section 3.4. Analogously to Section 2.6, the direction in which
the forces are pointing is denoted by

n =
∆c

|∆c|
, ∆c = c1 − c2, (2.69)

and the depth of mutual indentation by

D = 2r − |∆c| > 0. (2.70)

Note that this actually treats the elements as spherocylinders, i.e. the cylindrical elements
are capped at both ends by hemispheres. Given these circumstances, the Hertzian normal
force for two cylinders with equal radii, intersecting each other perpendicularly, [33]

f⊥ =
4

3
E∗
√
D3r, (2.71)

is applied and distributed to the four nodes by setting

fself,e1,e2 =
f⊥
2

(ω ⊗ n) (2.72)

with linear nodal weights

ω = [1− s1, s1,−(1− s2),−s2]T. (2.73)

Here, ⊗ denotes the Kronecker product. In words, the closer a node lies to the contact
point between the two elements, the larger the force it experiences, pushing it away
from the other element. This linear interpolation ansatz is of course only a rough
approximation, as is the normal force (2.71) itself, but such a simple model is in fact
fully sufficient for elastic frictionless wires.
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For the implicit solver, one again needs to specify the derivative of (2.72) w.r.t. change
of the nodal positions. By the rules of differential calculus, it reads

Jself,e1,e2 =
∂fself,e1,e2

∂p
=

1

2
(ω ⊗ n)

∂f⊥
∂p

+
f⊥
2

(
∂ω

∂p
⊗ n + ω ⊗ ∂n

∂p

)
∈ R12×12 (2.74)

where

∂f⊥
∂p

= −∂f⊥
∂D

∂|∆c|
∂p

= −2E∗
√
Dr nT∂∆c

∂p
∈ R1×12, (2.75)

∂n

∂p
=

1

|∆c|
(
13 − nnT

) ∂∆c

∂p
∈ R3×12, (2.76)

∂∆c

∂p
=
(
ωT ⊗ 13

)
+
(
pn2 − pn1

)∂s1

∂p
−
(
pn4 − pn3

)∂s2

∂p
∈ R3×12. (2.77)

This is fairly complex already, which is another reason, aside from sufficiency, why a
more elaborate model for fself isn’t worth the effort. From (2.74–2.77), the Jacobian is
fully defined, given that ∂s1

∂p and ∂s2
∂p can be calculated. However, these are exactly the

problem. When the two interacting elements are parallel, s1 and s2 become ill-defined.
In particular, they may jump from one node to the other, rendering ∂s1

∂p and ∂s2
∂p singular

and the Newton-Raphson iterations unstable. This is visualized in Figure 2.4. Therefore,
the exchange of forces between contacting elements is further simplified in the case of
implicit integration in time by distributing the normal force equally to all four nodes,

i.e. ω =
[

1
2 ,

1
2 ,−

1
2 ,−

1
2

]T
, and by discarding

∂s1

∂p
=
∂s2

∂p
= 0. (2.78)

s1 = 0
s2 = 0.1

s1 = 0.1

s2 = 1

n1

n2

n3

n4

r

c1
c2

Figure 2.4.: Self-contact of two almost parallel elements, with closest points of approach
(blue). A small shift in one of the four nodes may cause the contact parameters s1, s2

to jump (red).



3. Program Implementation

3.1. libMesh and PETSc

The implementation of the finite element program has been realized with the aid of
libMesh [36], an open-source C++ library that has gone through active development
for more than than eight years. libMesh provides basic FEM functionality such as
DoF mapping, mesh generation, adaptive mesh refinement and coarsening, matrix and
vector assembly, interfaces to various solving techniques, or parallelism (MPI), via a
predefined class hierarchy. For this work, I have derived from the ExplicitSystem

and NonlinearImplicitSystem classes to implement the dedicated model described in
Chapter 2. libMesh supports the Portable, Extensible Toolkit for Scientific Computation
(PETSc) [37], which has also been exploited.

The efforts in the present work gave rise to a number of bugfixes and feature
enhancements in the official libMesh development, notably trunk revisions 4199, 4200,
4210, 4223, 4224, 4238, 4239, 4273, and 4280.

In the following sections, the most essential algorithms and parts of the program
that have not been covered in Chapter 2 are detailed. The main focus is on the two
implemented schemes for the integration in time (Section 3.2), as well the search for
potentially touching wire element pairs (Section 3.4).

3.2. Time Integration

Newmark’s family of integration schemes [11] is widely used for solving hyperbolic
equilibrium equations in structural dynamics [38,39]. Depending on the choice of its
two parameters, β, γ ∈ [0, 1], it can be made implicit or explicit, and absolutely stable
or conditionally stable. In the Newmark method, the solution vector and its time
derivatives are discretized and integrated according to

u(t+ ∆t) ≈ ut+∆t = ut + ∆t u̇t +
(∆t)2

2

(
(1− 2β)üt + 2βüt+∆t

)
, (3.1)

u̇(t+ ∆t) ≈ u̇t+∆t = u̇t + ∆t
(
(1− γ)üt + γüt+∆t

)
, (3.2)

As usually, ∆t denotes the finite time step, and the accelerations at time t are given by

ü(t) ≈ üt = M−1
(
fext(ut)−Cu̇t −K(ut)ut

)
. (3.3)

19



20 3.2. Time Integration

Implicit Integration

For the implicit integration, the unconditionally stable constant-average acceleration
method that is obtained by setting β = 0.25 and γ = 0.5 is chosen. In this case,
the system of ordinary differential equations (2.1) reduces to the system of algebraic
equations [39]

K̄t+∆tut+∆t = f̄t,t+∆t (3.4)

with

K̄t+∆t = K(ut+∆t) + a0 M + a1 C, (3.5)

f̄t,t+∆t = fext(ut+∆t) + M at + C bt, (3.6)

at = a0 ut + a2 u̇t + a3 üt, (3.7)

bt = a1 ut + a4 u̇t + a5 üt, (3.8)

and Newmark coefficients

a0 =
1

β (∆t)2 , a1 =
γ

β∆t
, a2 =

1

β∆t
, (3.9)

a3 =
1

2β
− 1, a4 =

γ

β
− 1, a5 = ∆t

(
γ

2β
− 1

)
. (3.10)

In each implicit timestep, the nonlinear system of equations (3.4) needs to be solved.
To this end, the line search solver provided by PETSc is used in combination with the
Newton-Raphson method for the direction of descent. Ultimately, libMesh’s interface
to the solver requires two callback functions to be specified. The first function computes
the residual vector based on the current iterated guess for ut+∆t,

rt,t+∆t = K̄t+∆tut+∆t − f̄t,t+∆t, (3.11)

where the external forces in f̄t,t+∆t are assembled according to

fext =
⊕
n

fcav,n +
⊕

(e1,e2)

fself,e1,e2 . (3.12)

fcav,n are the nodal forces due to cavity contacts from (2.53), and fself,e1,e2 are the
forces due to self-contacts from (2.72).

⊕
denotes the subvector/submatrix assembly

operation mentioned in the beginning of Chapter 2. The second callback function
provides the Jacobian

Jt,t+∆t =
∂rt,t+∆t

∂ut+∆t
= a0 M + a1 C +

⊕
e

Kt,e −
⊕
n

Jcav,n −
⊕

(e1,e2)

Jself,e1,e2 , (3.13)

where Kt,e are the corotational element tangent stiffness matrices from (2.41), Jcav,n are
the nodal Jacobians due to cavity contacts from (2.64), and Jself,e1,e2 are the Jacobians
due to self-contacts from (2.74) for all contact pairs (e1, e2). Upon convergence to the



21 3.2. Time Integration

new solution ut+∆t, the corresponding velocity and acceleration vectors are calculated
using

üt+∆t = a0(ut+∆t − ut)− a2 u̇t − a3 üt, (3.14)

u̇t+∆t = u̇t + a6 üt + a7 üt+∆t, (3.15)

where

a6 = (1− γ) ∆t, a7 = γ∆t. (3.16)

Explicit Integration

For the explicit scheme, the constant-average acceleration method is implement in
combination with an adaptive timestepping predictor-corrector algorithm based on an a
posteriori local error estimator by Zienkiewicz and Xie [38,40]. The prediction step is
obtained from the explicit part of (3.1) and (3.2):

up
t+∆t = ut + ∆t u̇t +

(∆t)2

2
(1− 2β)üt, (3.17)

u̇p
t+∆t = u̇t + ∆t(1− γ)üt, (3.18)

üp
t+∆t = M−1

(
fext(u

p
t+∆t)−Cu̇p

t+∆t −K(up
t+∆t)u

p
t+∆t

)
. (3.19)

Based on the predicted acceleration, the predicted solution and velocity are corrected
by the previously omitted part:

uc
t+∆t = up

t+∆t + ut + (∆t)2β üp
t+∆t, (3.20)

u̇c
t+∆t = u̇p

t+∆t + ∆t γ üp
t+∆t. (3.21)

A simple estimator for the relative local error made by performing such a step is then
given by

ηt+∆t =
(
β − 1

6

)
(∆t)2

‖üp
t+∆t − üt‖L∞

‖uc
t+∆t − ut‖L∞

, β 6= 1

6
, (3.22)

where ‖ · ‖L∞ denotes the Chebyshev distance. Ideally, the tradeoff between large
timestep and large error is dealt with in such a way that the local error is approximately
constant over time. Zienkiewicz and Xie found that this can be efficiently achieved by
applying the following adaptive timestepping rules, given a desired target value η for
the relative local error, a maximum tolerated one ηmax > η, and a lower bound ηmin < η
above which the timestep is considered large enough:

� If ηt+∆t > ηmax, reject the timestep and repeat with ∆t :=
(

η
ηt+∆t

) 1
3

∆t.

� If ηt+∆t < ηmin, accept the step by setting ut+∆t = uc
t+∆t, u̇t+∆t = u̇c

t+∆t,

üt+∆t = üp
t+∆t, but continue with a larger timestep ∆t :=

(
η

ηt+∆t

) 1
3

∆t.

� Otherwise, accept without modifying ∆t.

ηmin = 10−5, η = 10−4 and ηmax = 10−3 yields reasonable performance.
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Boundary and Initial Conditions

Boundary conditions are imposed by penalizing any bending deflection vn, wn on
nodes that are still outside the cavity. The penalty term that adds to the stiffness
matrix to this end is taken to be that of regular cavity contacts,

kcav =
π

4
E∗h̄, (3.23)

see (2.53). This models a thin cylindrical pipe through which the wire is injected into
the cavity. In addition, the outermost node n = N is clamped by applying another
penalty stiffness

kclamp =
EI

hN
(3.24)

to θN and ψN . The morphological order of the constrained wire is governed by its
internal twist [10], which can be controlled by introducing an optional penalty stiffness
on ϕN ,

ktwist =
GJ

hN
. (3.25)

To push the wire into the cavity at constant velocity vpush, I set u̇N (t) ≡ vpush and
üN (t) ≡ 0.

The simulations are started with an undeformed straight wire in equilibrium along
the global x-axis, i.e. u(0) ≡ u̇(0) ≡ ü(0) ≡ 0 except that u̇n(0) = vpush for all nodes
n, and that the initial axial symmetry is broken by giving at least two nodes a small
random perturbation perpendicular to the axis. The nodal quaternions are initialized to
qn = [1, 0, 0, 0]T for all nodes n.
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3.3. Dynamic Mesh Enlargement

In order to save a significant amount of computation time while the packing density
is still small, the simulation starts off with a small mesh, i.e. low N , and dynamically
extends it by appending new elements when necessary. To the present day, modifications
of the mesh domain are not officially supported by libMesh. However, only small
extensions to the source code were necessary to enable this feature, that is vital in the
case of increasingly packed cavities.

Whenever the number of wire elements that hasn’t entered the cavity yet drops
below a certain minimum number, the mesh is enlarged by a few nodes and elements
at its outer end. All vector quantities such as the solution, velocities etc. then need
to be copied to larger containers. The new degrees of freedom are oriented in perfect
x-direction, and their axial displacements un are initialized such that the current average
longitudinal compression of the wire outside the cavity is preserved. In case of free
twist ktwist = 0, the same procedure applies to ϕn, i.e. the quaternions qn, preserving
the average internal twist of the wire outside the cavity.

The program is also capable of pulling the wire out of the cavity again. A few elements
can be cut off from the outer end of the mesh as soon as the number of wire elements
outside the cavity exceeds a certain maximum value, increasing the performance of
the simulation. By construction in libMesh, this also requires the remaining parts of
all vectors to be copied to new data structures. It will be found in Chapter 4 that
this overhead is very small compared to the overall speedup, and that the whole mesh
modification effort pays off very well.
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3.4. Efficient Self-Contact Search

In this section, an important part of the simulation program, the search for touching
element pairs (e1, e2), is addressed. Since the number of contacts grows like the square
of the packing density in the uncorrelated thin rod limit in 3D [41], an efficient treatment
of these pairs is crucial for performance. Serial processing is in the focus rather than
parallelization, for reasons discussed in the next section.

Distance between Two Elements

In Section 2.7 the indentation depth D = 2r − |c1 − c2| was used for the calculation
of self-contact forces, where

c1 = pn1 + s1(pn2 − pn1), s1 ∈ [0, 1],

c2 = pn3 + s2(pn4 − pn3), s2 ∈ [0, 1]
(3.26)

are the closest points of approach on the center lines of two linearized wire elements.
Finding the distance between two line segments, or finding the segment parameters
s1 and s2, is a nontrivial task. I have implemented a modified version of the quadric
algorithm by Sunday [42], which provides an efficient implementation based on a note
by Eberly [43]. The modification consists of normalizing the two line segments to unit
length, which fixes the faulty detection of parallel lines for short segments in Sunday’s
algorithm.

Finding the Contacting Element Pairs

From a naive perspective, the problem of finding all pairs of close particles is an
O(N2) task. The use of linked cell lists [44] reduces this complexity to O(N), which has
made them an integral part of modern molecular dynamics. For the problem of finding
touching wire elements, a slightly extended version of the original linked cell method
is applied. The algorithm decomposes the bounding box of the ellipsoidal cavity into
cubic cells of equal edge length α (Figure 3.1). Each mesh element is then assigned to
the cell in which the effective position of its left node, p1, lies. By choosing the cell size

α ≥ 2(r + max
e
he), (3.27)

it is assured that all elements e2 potentially penetrating an element e1 can be found in
either the cell of e1 or one of its 26 = 33− 1 neighboring cells. If α is set such that (3.27)
holds equally, the linked cell lists need to be rebuilt or at least updated in each timestep,
which is quite costly. With implicit integration in time, it’s even much worse, as the
cells would have to be rebuilt or updated every time the residual is evaluated during
the line search, in each iteration of the Newton-Raphson method, for each timestep.
Therefore, each cell is granted a margin δ > 0:

α = 2(r + max
e
he) + δ. (3.28)
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This way, the cell affiliation is valid as long as the cumulated maximum nodal displace-
ment doesn’t exceed δ

2 . The best choice for δ strongly depends on the length scales and
the amount of translational kinematics, and it can even vary with the packing density.
Setting δ ≈ r proved to be a reasonable rule of thumb.

After the linked cell lists have been constructed, the number of potentially interacting
element pairs can be reduced further by rejecting those who are too far apart despite
belonging to neighboring cells. Consistently with (3.28), all pairs (e1, e2) for which
|∆c| > 2r + δ holds are thrown away. Furthermore, pairs that are close to each other
in the chain of wire elements need to be excluded, which is important in the case of
short element lengths h ≤ 2r or large longitudinal compression.

α = 2(h+ r) + δ

(−a,−b,−c)

Figure 3.1.: Visualization of the linked cell method: Spatial decomposition of the
cavity into a regularly spaced cubic grid.



26 3.5. Parallelization

3.5. Parallelization

libMesh and PETSc support parallel processing using the Message Passing Interface
(MPI) standard. A one-dimensional mesh like the one used for rods in this work is
particularly suited for parallelization, because mesh partitioning is trivial and the
subdomain interfaces causing interprocess communication are usually limited to only
O(p) nodes, where p is the number of processors, independent of the mesh size or wire
length. Thus, at first glance, one could be tempted to expect a very high parallel
efficiency for the finite element program. Unfortunately, this is not at all the case,
for the following reason. A priori, self-contact may arise between almost any two
elements at any time. While the linked cell lists provide a naturally parallelizable
spatial decomposition of self-contacts, the construction of the cells requires knowledge
about the positions pn of all nodes. Either before or after filling the cells, they all
need to be communicated among the processors. This is a mere consequence of two
completely diverse spatial arrangements intrinsic to the problem of long densely packed
rods: On the one hand, each element propagates its stiffness to the neighboring elements
and thus the mesh is inherently linearly partitioned into p blocks of N/p consecutive
elements, but on the other hand, self-contacts happen in real space, which is completely
decoupled from the wire contour. Even if the potentially touching element pairs are
sought only once every few thousand timesteps thanks to the cell margin δ, the current
nodal positions must be communicated in each timestep to determine the indentation
depth and force direction. Since there are up to O(N2) contacts in a densely packed
cavity, parallel efficiency is effectively destroyed.

With this said, it is nevertheless possible to solve (2.1) in parallel, albeit very
inefficiently. Indeed, the program presented in this thesis has been implemented with
support for parallelism and small test systems have been successfully simulated in
parallel. The construction of the linked cells simply happens in serial mode after all
nodal positions have been communicated among the processors. Each processor then
calculates the contact forces for all elements involved in self-contacts, which fall into its
realm, based on the repeatedly communicated nodal positions.



27 3.6. Flowcharts

3.6. Flowcharts

The following flowcharts show the major steps within the simulation program to
provide a better understanding of the program structure and computational workflow
depending on the choice for the integration scheme. For clarity, minor conditionals
or subroutines, optimization details like object caching, and technicalities related to
libMesh or parallelism are omitted. Figure 3.2 visualizes the outermost program loop
that is responsible for generic timestepping. In Figure 3.3, the explicit adaptive predictor-
corrector timestep is outlined. The implicit analogon is shown in Figure 3.4, where a
deeper nesting of loops for the nonlinear Newton-Raphson scheme becomes evident.

Start program

Initialize mesh, equation system and
solution vectors, assemble M and C

Input file

Enlarge or shorten mesh if necessary

Execute a timestep

Measure observables & write outputOutput files

Enough timesteps?

End program

yes

no

Figure 3.2.: Flowchart of the overall program structure.
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Build list of self-contact pairs if outdatedStart explicit timestep

Predict via (3.17) and (3.18)

Assemble fext via (3.12)

For each element e:

Compute Fe and ûe from the quater-
nions, following Crisfield [27, 30]

Compute fint,e using (2.37)

Insert fint,e into fint

Predict the accelerations via (3.19)

Correct via (3.20) and (3.21)

Estimate ηt+∆t using (3.22)

ηt+∆t > ηmax?

ηt+∆t < ηmin?

Set ∆t :=
(

η
ηt+∆t

)1/3
∆t

Set ∆t :=
(

η
ηt+∆t

)1/3
∆t

Accept the corrected vec-
tors as the new solution

Build list of self-contact pairs if outdatedEnd explicit timestep

no

no

yes

yes

Figure 3.3.: Flowchart of a timestep in the explicit predictor-corrector scheme.
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Compute the residualStart implicit timestep

Compute the Jacobian

Minimize the residual along the line,
repeatedly computing new residuals

Converged?

Update ü and u̇ using (3.14) and
(3.15), update the quaternions

End implicit timestep

yes

no

Start compute residual

Build list of self-contact
pairs if outdated

Assemble f̄ via
(3.6–3.8) and (3.12)

For each element e:

Compute Fe and ûe
from the quaternions

Compute fint,e using (2.37)

Insert fint,e into fint

Compute r = fint − f̄

End compute residual

Start compute Jacobian

Assemble Jext from
(2.64) and (2.74)

For each element e:

Compute Kt,e using (2.41)

Insert Kt,e into Kt

Assemble the Jacobian (3.13):
J = a0M + a1C + Kt − Jext

End compute Jacobian

Figure 3.4.: Flowchart of a timestep in the implicit scheme with callback subroutines.



4. Benchmarks & Results

4.1. Verification of the Corotated Beams

Before meaningful physics can be done, the implementations need to be verified. In
particular the lengthy technical corotation components are somewhat prone to small
errors with large impacts. I have successfully reproduced examples 1 and 2 in Crisfield’s
paper [27], which have served as static test cases for various implementations of corotated
beams, Refs. [25, 45–47] being only the first ones in a long series. Example 1, cantilever
subject to an end moment, is not shown here.

Test Case A

In example 2, a 45 degree bend, a thin Euler-Bernoulli beam with intrinsic curvature
κ = 1/R, R = 100, forming a 45 degree bend, is clamped at the origin (u0(t) ≡ 0). An
increasing external tip load Q is applied perpendicular to the curvature, resulting in a
three-dimensional bending response. The relevant material and geometry parameters
are E = 107, I = 1, ν = 0, N = 8. Figure 4.1 shows the resulting static equilibrium
solutions for Q = 300, 450, 600, which are consistent with Crisfield’s results within
convergence tolerance. Note that the intrinsic curvature leading to

un(0) = [R(1− sin θn), 0, R(1− cos θn), 0, θn, 0]T, θn =
π

4

n

N
, (4.1)

can easily be established within the corotational framework by subtracting the initial
local rotations

θ̂0
1 = −π

8
, θ̂0

2 =
π

8
(4.2)

in (2.34) for each element.

Test Case B

To verify the corotational formula (2.46) for the bending energy, a simple circular
setup similar to Crisfield’s first example is used, where the exact solution is available.
A cantilever EBT beam with N = 20 elements, clamped at the origin, is subjected to
end moments Mk = k

6
EI
R , k = 0, 1, ..., 6, resulting in the bending energy

Ub,k =
1

2

∫ L

0

M2
k

EI
ds =

(
k

6

)2

π
EI

R
, (4.3)

which is nicely numerically recovered. The configuration is visualized in Figure 4.2.

30
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x

y

z

Q = 600

Q = 450

Q = 300

Q = 0
R = 100

R = 100

45◦

Figure 4.1.: 45 degree corotated Euler-Bernoulli bend subject to concentrated trans-
verse tip load

L = 2πR

R

Ub/L = EI
2

Ub/L = 0

Figure 4.2.: Bending energy density of a cantilever beam with 20 elements and final
curvature κ = 1/R subject to an inreasing end moment.
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Test Case C

As a final three-dimensional stress test of the corotational coupling of twist, axial
displacement and bending deflections, which are independent in linear beam theory, it
is demonstrated here how an increasing external torque is capable of writhing a wire.
An initially straight cylindrical third-order beam (RBT) with tiny random deflection to
break axial symmetry is clamped at the origin (u0(t) ≡ 0). The other end is constrained
to the x-axis according to

u20(t) = [u(t), 0, 0, ϕ(t), 0, 0]T. (4.4)

The simulation parameters are E = 107, I = 1, r = (4/π)1/4, ν = 0, N = 20, ρ = 10−3.
The wire is integrated implicitly in time with ∆t = 10−3 and viscous damping factor
cv = 0.3; self-contacts are switched off. The angle of twist ϕ(t) at the end node is
increased with time until it is large enough to cause the two ends to pass through each
other, resulting in a ring-shaped static equilibrium state. This critical value has been
determined to be 1.375 < ϕcrit/2π < 1.376 for the above settings, and therefore

ϕ(t) = 2πmin{t, 1.376}. (4.5)

The resulting time evolution is illustrated in Figure 4.3.

x

y

z

ϕ(t)

(a) t = 1.5

x

y

z

(b) t = 2.1

x

y

z

(c) t = 2.23

x

y

z

(d) t = 2.26

x

y

z

(e) t = 2.28

x

y

z

(f) t = 3.0 (static solution)

Figure 4.3.: Qualitative stress test of the corotational formulation: Three-dimensional
response of a circular third-order beam to an increasing twist. All shown states except
the last are out of equilibrium.
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4.2. h-Convergence

This section is briefly concerned with the convergence of the corotated finite element
beams to the continuum solution with decreasing mesh spacing h→ 0, as yet another
way of verifying correctness of the program. The two-dimensional bending of a cantilever
beam clamped at the origin is simulated, with E = 107, I = 1, L = 100, using both EBT
and RBT subject to different load cases. The exact solution for two-dimensional linear
Euler-Bernoulli beams can be found for numerous boundary conditions and applied
external loads in many text books, such as Ref. [48]. For a beam of length L with a
single clamped end, subject to a concentrated tip load Q, it is given by

w(Q;x) =
Q

EI

x2(3L− x)

6
, (4.6)

while for a uniform load distribution q(x) ≡ q it reads

w(q;x) =
q

EI

x2(6L2 − 4Lx+ x2)

24
. (4.7)

For simplicity, the corotated cylindrical beams are verified such that linear EBT predicts
a maximal deflection of w(x=L) = 5, 10, 15, i.e. Q = 150, 300, 450 and q = 4, 8, 12. The
results for these loads are plotted in Figure 4.4 for N = 3 and N = 5 elements. For
thin beams, the difference between the beam theories is very small, which is why the
curves for CR-EBT and CR-RBT almost coincide, in particular in the case of uniformly
distributed load.

For measuring the convergence of the finite element solution to the continuum solution,
the unknown maximum static deflection of the tip of a nonlinear continuum beam
is approximated by the solution obtained with 100 elements. The relative error as a
function of the number of elements is then given by

ε(N) =

∣∣∣∣ wNw100
− 1

∣∣∣∣ ∝ N−p, (4.8)

and an algebraic convergence rate p = 2 is expected. Note that since node 0 is clamped,
the number of degrees of freedom is 6N , i.e. directly proportional to the number of
elements. The expected quadratic behavior can be observed in all cases very nicely,
with fitted rates ranging from p = 2.01 to p = 2.06, as shown in Figure 4.5.
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(a) Concentrated end load Q
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(b) Uniform load distribution q

Figure 4.4.: Comparison of corotated beam theories in 2D for different load cases. Note
the aspect ratio of the two axes. The markers denote the nodes, while the connecting
solid lines correspond to the corotated cubic Hermite interpolation of the beam center
lines. In the insets the beam tip of the respective highest load case is magnified for
better visibility of the differences.
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Figure 4.5.: Quadratic convergence in h of the finite element wire for the six load
cases from Figure 4.4 for corotated Euler-Bernoulli and third order beam theory. The
relative error ε of the static end point deflection is plotted against the number of
elements N = {1, 2, ..., 25}, on a double-logarithmic scale. The data for the uniform
load distribution lie on top of each other, as do CR-EBT and CR-RBT in all cases for
such thin beams.
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4.3. Explicit vs. Implicit Integration

An essential part of this thesis is the comparison between implicit and explicit
integration in time. The two schemes described in Section 3.2 reveal fundamentally
different suitability for the problem of dense packing of wires in two- or three-dimensional
cavities. These findings are summarized in this section.

The first focus is on a severe fundamental problem of the technical kind appearing in
wire-wire contacts in implicit integration. Probably like any other comparable FEM
software, libMesh and PETSc fix the sparsity pattern of the Jacobian (3.13) and
all other matrices based on the mesh topology and element interconnectivity at the
beginning of the simulation. For the wire mesh at hand, no memory is allocated for
the off-diagonal blocks connecting two elements unless they are neighbors. A priori,
self-contact may arise between almost any two elements at any time, though. Thus, in
order to insert the full 12×12 Jacobian (2.74) arising from two interacting elements
into the global 6(N+1)×6(N+1) system Jacobian, the latter either needs to be dense,
which makes the Newton-Raphson iterations beyond expensive, or the sparsity pattern
needs to dynamically adapt to the evolving pairs of interacting elements. Apart from
not being currently supported in libMesh, changes in the sparsity pattern in each
Newton-Raphson iteration, for each timestep, are presumably too expensive to be a
valid option, especially when the number of self-contacts approaches O(N2) for dense
packings. In other words, one is left with the fact that only half of the self-contact
Jacobian, namely the two 6×6 blocks on the diagonal, can be used in the overall
Jacobian. The off-diagonal blocks dictating the change of contact forces acting on one
element w.r.t. change of position of the other, are lost, with fatal consequences for the
convergence behavior.

Let’s consider an example to visualize what this implies in practice. A two-dimensional
spherical cavity with effective size rcav/r = 50 is packed. With the explicit predictor-
corrector scheme with adaptive timestepping such that ∆t ≈ 0.057 on average at
a maximum local step error tolerance ηmax = 10−3, the dense packing regime is
accessible without complications, as visible in Figure 4.6(a). The implicit integrator
with significantly smaller timestep ∆t = 10−3, however, soon suffers from convergence
problems and eventually fails to converge within 1000 Newton-Raphson iterations as
early as shown in Figure 4.6(b). The dead end can be marginally protracted by slowing
down the insertion velocity or by further reducing the timestep, but high packing
densities are still unreachable. It has been observed that serious convergence failure
sets in as soon as multiple contacts involving around three to four elements are present,
which is intuitively clear given the missing off-diagonal blocks in the Jacobians.
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(a) Multiple self-contacts cause no trouble with
explicit integration.

(b) Implicit integration. Convergence failure
sets in at self-contacts involving three to four
elements (black circle).

Figure 4.6.: Convergence failure of the implicit solver in 2D. The color encodes the
self-contact energy distribution (blue = 0, red = high). Energies due to cavity contact
are not shown.
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(b) The cumulated wall time in units of hours is
plotted against the packing density.

Figure 4.7.: Quantification of convergence failure of the implicit solver based on the
example system shown in Figure 4.6.
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In Figure 4.7 the problem is quantified more rigorously. Figure 4.7(a) plots the number
of nonlinear iterations per timestep required for convergence in the above-mentioned
sample setting as a function of the packing density for a single simulation run. The
packing density φ computes as

φ =
2rL

πac
(4.9)

in 2D, and

φ =
πr2L

4/3πabc
(4.10)

in 3D, where L =
∑

e he is the ‘‘uncompressed’’ length of the wire inserted into the
cavity. If more than 1000 iterations are needed, the iteration is considered diverged.
Quite evidently, the number of line search iterations quickly increases to infeasible
values. This is also reflected in the total wall time shown in Figure 4.7(b). Long
before the dense packing regime is reached, the required simulation time explodes as a
consequence of convergence difficulties.

The same convergence problems naturally also appear in 3D. Figure 4.8 shows a simple
example of a multi-contact situation where a further advance in implicit integration is
blocked by convergence failure.

Figure 4.8.: Convergence failure of the implicit solver in 3D. Like in two dimensions,
the occurance of wire-wire contacts involving about three elements (black circle) causes
divergence, effectively inhibiting further progress in the simulation.



39 4.3. Explicit vs. Implicit Integration

Toward the end of Section 2.4 it has been indicated that the corotational transfor-
mation makes up a significant fraction of the overall CPU time. This statement is
supported by the following data. The relative performance of single program com-
ponents has been measured using libMesh’s built-in event monitoring tool. For the
implicit solver, the same example system as above in Figure 4.6(b) is chosen, because
the highest packing densities were reached with that one, contrary to three-dimensional
setups, for instance. For the implicit scheme a spherical three-dimensional cavity of
size rcav/r = 10 with element length h = 1.5r is used as shown in Section 4.4. The
fully packed limit φ ≈ 0.8 is attained. Figure 4.9 plots the wall time percentages of the
most expensive operations for both methods, accumulated from the beginning of the
simulation. Note that the disjoint times are measured, i.e. in cases where one component
is a subroutine of another, the wall time of the subroutine doesn’t contribute to that of
the calling function. Also note that if a basic component is missing in one of the plots,
like e.g. self-contact finding in 2D, it’s because the corresponding task contributed less
than 5% to the total. To amplify the contribution from self-contact finding, no buffer
margin (δ = 0) is used in the linked cell method, which leads to heavy exaggeration
of the real time needed to determine the contact pairs. Nevertheless, this part of the
program consumes less than 5% of the total wall time in the implicit two-dimensional
example. Here, the convergence failure of the implicit solver also looms quantitatively.
Soon, the Newton-Raphson line search is dominating the computational costs. Quite
remarkably, the construction of the tangent stiffness matrix Kσ, which is needed for
the implicit scheme, still takes up a large fraction of the overall time. This stands in
strong contrast to the explicit 3D example, which clearly profits from not having to
construct Kσ. Under normal circumstances (δ > 0), the corotational transformation
consisting of assembling and applying Fe and calculating the local DoFs is the most
expensive component there.
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Figure 4.9.: Relative serial performance of program components. The accumulated
wall time percentage of the most expensive program components (> 5%) is plotted
against the packing density for a single simulation run.
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So far, two striking arguments in favor of the explicit predictor-corrector scheme
have been given: Ability to cope with multiple self-contacts and performance. Further
differences between the two methods that need to be taken into consideration include:

� Even though an implicit scheme may in theory profit from a larger timestep, in
practice this is no real advantage, because is has been found that the additional
work, resulting from many more iterations per timestep in the Newton-Raphson
method when the timestep is increased, is consuming most of the saved time.

� Integrating implicitly requires that the Jacobians for all involved external forces
are available. This may or may not be the case in future expansion of the simu-
lation program toward interaction with deformable shells, plasticity or material
nonlinearities.

� Breaking the initial axial symmetry of a wire turns out to be much easier when
time is integrated explicitly, because the implicit solver quickly smoothens any
small random deflection imposed on the wire.

� The explicit scheme cannot handle very stiff wires very well, as the rotational
DoFs appear to have a tendency to explode easily. With the implicit solver, no
such behavior was encountered.

� Internal wave propagation is more problematic when an explicit method is applied.
While with an implicit method all nodes are affected immediately when a force is
applied on any single node, such interaction propagates only node by node in the
explicit method, which results in rather inert waves propagating through the wire.
More damping is thus required in practice.

� Parallelizing an implicit method is more involved and requires more interprocess
communitation than an explicit one.

� Finally, explicit schemes are usually a lot easier to implement.

For the sum of all these arguments, all subsequent results were obtained with the
explicit predictor-corrector method.
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4.4. A Spherical Sample System

In this section, basic results for a small spherical cavity in 3D are briefly presented as
a proof of concept. The measurement data is also compared to results for the identical
system obtained with the discrete element program used in recent studies by Stoop et
al. [10]. A very small sphere is packed with an intrinsically straight elastic wire at zero
friction, entering the sphere in radial direction. The angle of twist at the outermost node
is left free, i.e. all torsional energy is allowed to dissipate out of the system. The relevant
simulation parameters are E = 5, ρ = 2, rcav = 10, r = 1, h = 1.5, cv = 0.1. Figure 4.10
shows the resulting densely packed cavity. The observed bending energy nicely coincides
for both programs, see Figure 4.11(a). So does the force required to push the wire
into the cavity, which is not shown here though. The finite element results (blue) are
averaged over 10 simulation runs. In Figure 4.11(b) the number of wire-wire-contacts
from the finite element simulations is compared to the number of elements involved in
at least one contact from Stoop’s discrete elements. The observed small quantitative
difference is expected due to the differing measures. The asymptotic behavior follows a
power law with an exponent slightly below 2, as theoretically predicted [41] for thick
rods r/rcav � 0.

Figure 4.10.: Visualization of the interior of a packed cavity at φ = 0.7. For better
visibility, the radius of the wire is reduced to 0.8 and the color encodes the insertion
time form early (blue) to late (red).
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(b) The number of self-contact element pairs (e1, e2)
from the present work is compared to the number
of elements contacting at least one other in Stoop’s
DEM program.

Figure 4.11.: Results for a small spherical sample configuration.

4.5. Breaking the Spherical Symmetry

As a final study in this thesis, the effects of spherical cavity symmetry on the wire
morphology is investigated by comparing a few packed ellipsoids to the spherical case.
This may be considerd a preliminary step toward deformable biomaterial cavities as
they are encountered in saccular aneurysms. So far, previous numerical studies have
been limited to the idealized case of exact spherical spatial confinement [8, 10].

Three configurations that are identical except for the cavity aspect ratio in x- and
z-direction have been simulated. One of them is spherical with radius a = b = c = 20r,
the second is an oblate spheroid with radii a = 10r, b = c = 20r, and the third is a
scalene ellipsoid with radii a = 30r, b = 20r, c = 10r. The further simulation settings
are r = 1, E = 5, ν = 0.35, ρ = 1, cv = 0.1, and vpush = 0.005. Figure 4.12 shows
the most insightful snapshots from these simulations. Even though the same wires
are inserted into these cavities under equal physical conditions, the resulting coiling
morphologies are completely distinct. A frictionless elastic wire is highly susceptible to
the presence of a preferred orientation given by different curvatures at the interior cavity
walls. For instance, coiling in a scalene ellipsoid predominantly happens perpendicular
to the shortest semi-principal axis, which leads to open holes in the wire bulk, cf. Figure
4.12(d). This might be relevant to endovascular coiling, where a large fraction of the
arterial wall is sought to be covered.

Despite not being shown here, a few prolate spheroids (a > b = c) have also been
simulated and were found to yield interesting writhing patterns arising from self-contacts
together with tight spacial confinement, which will be worth studying more thoroughly.
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(a) Sphere: a = b = c = 20r at
φ = 0.35. The wire coils to form sev-
eral shells in the outer regions, quickly
covering most of the cavity interface.

(b) Cross section of the sphere at φ =
0.55. Tansverse coiling directions sup-
port the closure of open gaps (left and
right).

Ub = 0

Ub = max

a

b

c

(c) Cross section of an oblate
spheroid at φ = 0.58: a = 10r,
b = c = 20r. Very strongly ordered
morphology with densely aligned
circular coiling at minimum curva-
ture.

a

b

c

(d) Scalene ellipsoid at φ = 0.3: a = 30r, b = 20r, c =
10r. The wire disorderedly coils along the path of lowest
curvature, leaving two gaping holes for very long.

Figure 4.12.: Different coiling structures resulting from different ellispoidal shapes.
The bending energy Ub is used for coloring, from zero (blue) to the respective maximum
(red).



5. Conclusion & Outlook

In the present thesis a detailed description of a finite element model to simulate the
packing of elastic wires in two- and three-dimensional cavities has been given. The
program has been implemented with the aid of the libMesh and PETSc open-source
libraries. Reddy’s locking-free simplified third-order beam theory was emplyed to model
the bending deflections of the wire. Geometric nonlinearity has been introduced to
the theory by means of the corotational formulation provided by Crisfield, assuming
large displacements and rotations, but small strains. Interactions of the wire with hard
ellipsoidal cavities and wire-wire contacts were carefully included into the finite element
model. For efficiency, the popular linked cell lists were implemented for self-contact
searching. By comparison to published analyical and numerical results, it has been
thoroughly verified that the implementations are faultless.

Two numerical recipes for integrating the hyperbolic equations of motion in time have
then been described: The constant-average acceleration method was used as an implicit
scheme, and an adaptive-timestep predictor-corrector method served as the explicit
counterpart. For the former, all internal and external forces needed to be supplemented
by their Jacobians for the Newton-Raphson iterations. Before late, it was found that
the implicit scheme is completely unsuited for the problem of arbitrarily distributed
self-contacts as they occur in the packing of rods, the two main reasons being the
static sparsity pattern of the Jacobian, and performance. It can safely be concluded
that implicit integration in time is not an option in the present case, perhaps unless
combined with explicit treatment of self-contacts in a hybrid method. With the explicit
solver, few small sample configurations were solved, both spherical and ellipsoidal. The
latter is a novel achievement, since published numerical studies concentrate on spherical
confinement.

The long-term goal, toward which the present work contributes the first step, is
the development of an efficient numerical tool for simulating the dynamic interaction
between coiling elasto-plastic wires and ductile cavities of varying shape, including
material nonlinearities and friction. To this end, both the wire and a shell-type cavity
will be unified in a consistent finite element program. The corotational framework
provides a natural setup in which plasticity can easily be added via non-zero intrinsic
curvature in (2.34).
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[1] G. Guglielmi, F. Viñuela, I. Sepetka, and V. Macellari, Electrothrombosis of
saccular aneurysms via endovascular approach. Part 1: Electrochemical basis,
technique, and experimental results, J. Neurosurg. 75 (1991) 1–7.
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A. DVD Contents

Along with this work comes a DVD containing the following folders and data:

Folder or file name Contents

data Raw input and output data from various selected
simulations in 2D and 3D.

report The present thesis in PDF format and the
LATEX sourcecode including all figures.

src All C++ source files, the makefile, and a sample
configuration file.

videos Five DivX-encoded video files showing wire in-
sertions into various two- and three-dimensional
cavities.

readme.txt Informations about compiling libMesh and
PETSc, running the program, and a TODO list.
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