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Abstract We introduce a newmodel of random d-dimensional simplicial complexes,
for d ≥ 2, whose (d − 1)-cells have bounded degrees. We show that with high
probability, complexes sampled according to this model are coboundary expanders.
The construction relies onKeevash’s recent result on designs (The existence of designs;
arXiv:1401.3665, 2014), and the proof of the expansion uses techniques developed
by Evra and Kaufman in (Bounded degree cosystolic expanders of every dimension;
arXiv:1510.00839, 2015). This gives a full solution to a question raised inDotterrer and
Kahle (J Topol Anal 4(4): 499–514, 2012), which was solved in the two-dimensional
case by Lubotzky and Meshulam (Adv Math 272: 743–760, 2015).
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1 Introduction

The concept of expansion in graphs has proven to be extremely useful in both theo-
retical and practical applications. Given ε > 0, a finite graph G = (V, E) is called an
ε-expander, if for every set S ⊆ V whose size is at most |V |/2 it holds that

|{e ∈ E : e ∩ S = 1}| ≥ ε|S|. (1.1)

For an introduction to this vast topic, see [2,19,27] and the references therein.
A simplicial complex is a natural topological and combinatorial generalization of

the notion of graphs. The success of expander graphs has prompted researchers to
ask: what does it mean for a simplicial complex to be an expander? Several definitions
have been proposed andmuchwork has been done on elucidating the relations between
these definitions aswell as for presenting constructions of high dimensional expanders,
cf. [3,5,6,8,9,11,15–17,20,21,24–26,30–39,41–43]. For a survey on some of these
works see [28].

This paper focuses on coboundary expansion, a concept that came up independently
in the work of Linial and Meshulam [26], where the homology groups of random
complexes analogous to Erdős–Rényi graphs were studied, and in Gromov’s work
on topological expansion [16]. Meshulam and Wallach [33] calculated the cobound-
ary expansion of the complete simplicial complex (see also Gromov’s work [16]),
and found the threshold for the random simplicial complexes defined in [26] to be
coboundary expanders. Their work implies the existence of coboundary expanders
whose (d − 1)-cells have degrees logarithmic in the number of vertices. Dotterrer and
Kahle [5] asked whether there exist coboundary expanders whose (d − 1)-cells have
bounded degrees. Indeed, in the case of graphs, most of the work on expanders has
focused on expanders with bounded degrees, whichmakes this a very natural question.

As a partial answer, Lubotzky and Meshulam [29] presented a model of random
2-dimensional complexes whose 1-cells have bounded degrees and are with high prob-
ability coboundary expanders, namely they are expanders with probability tending to
one as the number of vertices tends to infinity. Their model made use of random Latin
squares, which are combinatorial objects closely related to designs.

In this paperwepresent a newmodel of randomd-dimensional simplicial complexes
whose (d − 1)-cells have bounded degrees. Our model is based on Steiner systems,
which are specific types of designs.

Informally, given k ∈ N, we define X to be the union of k Steiner systems, chosen
randomly and independently according to a certain distribution (see Sect. 2.3 for
further details).

Our main result is that for every d ≥ 2, there exists k0 = k0(d) ∈ N such that for
every k ≥ k0, the complex X is a coboundary expander with high probability.

Being coboundary expanders, the complexes are also topological expanders, i.e.,
they satisfyGromov’s topological overlapping property (see [6,16]). These are the first
known coboundary expanders of dimension d ≥ 3 (for d = 2 see [29]) of bounded
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upper-degree, i.e., complexes in which the codimension 1 cells have a uniformly
bounded degree. It is still an open problem whether there exist complexes which are
coboundary expanders in which all the cells are of a uniformly bounded degree. For
d = 2, it is shown in [21], that such 2-complexes do exist if one accepts an unproven
conjecture of Serre on the congruence subgroup problem. Such bounded degree topo-
logical expanders do exist, see [21] for d = 2 and [10] for general dimension.

2 Results

2.1 Preliminaries

Let X be a finite simplicial complex with vertex set [n] := {1, 2, . . . , n}. This means
that X is a finite collection of subsets of [n], called cells, which is closed under
inclusion, i.e., if τ ∈ X and σ ⊆ τ , then σ ∈ X . The dimension of a cell σ is
|σ | − 1, and X j denotes the set of j-cells (cells of dimension j) for j ≥ −1. The
dimension of X , which we denote by d, is the maximal dimension of a cell in it. We
use the abbreviation d-complex for a simplicial complex of dimension d. Given a
d-complex X and −1 ≤ j ≤ d, we define the j-skeleton of X , denoted X ( j), to be
the set of cells in X of dimension at most j , that is X ( j) := ⋃ j

i=−1 X
i . All of the

d-complexes considered in this paper will have a complete (d−1)-skeleton, by which
we mean that they contain all subsets of [n] whose size is at most d. For a ( j + 1)-cell
τ = {τ0, . . . , τ j+1}, its boundary ∂τ is defined to be the set of j-cells {τ\{τi }} j+1

i=0 .
The degree of a j-cell σ , denoted deg(σ ), is defined to be the number of ( j + 1)-cells
τ which contain σ in their boundary.

For j ≥ −1, let C j (X; F2) denote the space of F2-valued functions on X j . The
elements of C j are also called cochains. Using the natural bijection between elements
of C j (X; F2) and subsets of X j given by A ⊆ X j ↔ 1A ∈ C j (X; F2), we will use
a slight abuse of notation and write A ∈ C j (X; F2) for A ⊆ X j .

The j th coboundary map δXj : C j (X; F2) → C j+1(X; F2) of the d-complex X is
given by

δXj A = {
τ ∈ X j+1 : |∂τ ∩ A| is odd}, for A ∈ C j (X; F2). (2.1)

We will usually omit the indexes j and X from the notation when no confusion may
occur. In particular, δ means δXd−1 unless otherwise stated.

For j ≥ 0, denote by Z j (X; F2) = ker(δ j ) and by B j (X; F2) = im(δ j−1)

the spaces of j-dimensional F2-cocycles and j-dimensional F2-coboundaries respec-
tively. One can verify that (C j , δ j ) is a cochain complex, that is B j ⊆ Z j for every
j ≥ 0. The j th reducedF2-cohomology of X is H̃ j (X; F2) = Z j (X; F2)/B j (X; F2).
For a cochain A ∈ C j (X; F2), let [A] denote the equivalence class of A under the
projection from C j (X; F2) to C j (X; F2)/B j (X; F2).

Following [10,14,21], we define the weighted norm ‖ · ‖ j on C j (X; F2) by

‖A‖ j :=
∑

σ∈A

w(σ), where w(σ) :=
∣
∣
{
τ ∈ Xd : σ ⊆ τ

}∣
∣

(d+1
|σ |

)|Xd | . (2.2)
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The norm above is not the one usually defined on C j (X; F2), that is the counting
norm A 
→ |A|, but it has several advantages: it is always bounded by 1, it induces
a probability measure on X j , i.e.,

∑
σ∈X j w(σ) = 1, it makes it easier to compare

the norm of cochains of different dimension and it simplifies the comparison of dense
complexes versus sparse complexes.Wewill usually abbreviate the notation bywriting
‖ · ‖ instead of ‖ · ‖ j . The induced norm on the space of equivalence classes is defined
by

‖[A]‖ = min
{‖B‖ : [B] = [A]}, for A ∈ C j (X; F2). (2.3)

In particular ‖[A]‖ = 0 if and only if A ∈ B j (X; F2).
For a cochain A ∈ C j (X; F2)/B j (X; F2) we define its coboundary expansion by

h j (A) = ‖δ j A‖
‖[A]‖ . (2.4)

Note that a cochain’s expansion is constant on equivalence classes. The j th coboundary
expansion constant of X is defined to be the minimum of the expansion among all
cochains in C j (X; F2)/B j (X; F2), i.e.,

h j (X) = min
{
h j (A) : A ∈ C j (X; F2)/B

j (X; F2)
}
. (2.5)

A d-dimensional complex X is called a ( j, ε)-coboundary expander if hi (X) ≥ ε for
all 0 ≤ i ≤ j . Similarly, X is called a ( j, k, ε)-coboundary expander if in addition
maxσ∈X j−1 deg(σ ) ≤ k.

Remark 2.1 If X is a d-complex such that 1 ≤ deg(σ ) ≤ k for all σ ∈ Xd−1, then the
definition of (d, k, ε)-coboundary expansion is equivalent to

|δd−1A| ≥ ε̃ · min
{|B| : [B] = [A]}, for A ∈ Cd−1(X; F2) (2.6)

for some ε/(d + 1) ≤ ε̃ ≤ kε/(d + 1). The inequality (2.6) is the original definition
of coboundary expansion, see [26].

Given ρ ∈ X , the link of ρ in X is a simplicial complex of dimension d − |ρ| on
the vertex set [n] \ ρ, defined by

Xρ := {
σ ⊆ ([n] \ ρ) : ρ ∪ σ ∈ X

}
. (2.7)

In addition, let δρ := δ
Xρ

d−|ρ|−1 : Cd−|ρ|−1(Xρ; F2) → Cd−|ρ|(Xρ; F2) be the top

coboundary operator on Xρ . For −1 ≤ j ≤ d − |ρ|, we will denote by ‖ · ‖ j
ρ , and

abbreviate ‖ · ‖ρ , the norm defined by (2.2) on the space C j (Xρ; F2).

Remark 2.2 (Notation) Throughout this paper small Greek letters (except for σ, τ and
ρ) as well as the letter c are used to denote positive constants that might depend on
certain parameters. The notation c = c(d, k) is used to state that c depends only on d
and k. The Greek letters τ, σ and ρ are used to denote cells in a complex.
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2.2 A General Strategy for Proving Coboundary Expansion

The goal of this paper is to introduce (for every fixed d ≥ 2 and sufficiently large but
fixed k = k(d) ∈ N) a model of random d-complexes which are with high probability
(d, k, ε)-coboundary expanders, for some positive ε > 0. The general philosophy
of the proof follows Lubotzky and Meshulam [29], that is, we consider separately
expansion for small cochains, i.e., cochains A ∈ Cd−1(X; F2) such that ‖[A]‖ ≤ c
for some small fixed constant c > 0, and the remaining cochains, which are called
large cochains.

In a recent paper [10], Evra andKaufmangave sufficient conditions for the cobound-
ary expansion of small cochains.

Theorem 2.3 ([10, Thm. 3.2]) Given d ≥ 2 and β > 0, there exist constants γ =
γ (d, β) > 0, c0 = c0(d, β) > 0 and ε0 = ε0(d, β) > 0 such that the following holds:
Let Y be a d-dimensional complex1 satisfying:

(a) For every ∅ 
= ρ ∈ Y (d−2), the link Yρ is a (d − |ρ|, β)-coboundary expander.
(b) For any ρ ∈ Y (d−2), the link Yρ satisfies

‖Eρ(B, B)‖ρ ≤ 4
(‖B‖2ρ + γ ‖B‖ρ

)
, for B ⊆ Y 0

ρ , (2.8)

where Eρ(B, B) ⊆ Y 1
ρ is the set of edges in Y (1)

ρ with both vertices in B.

Then,
‖δA‖ ≥ ε0‖[A]‖, for A ∈ Cd−1(Y ; F2) satisfying ‖[A]‖ ≤ c0. (2.9)

Remark 2.4 Note that in [10], the conclusion of Theorem 3.2 refers to locally minimal
cochains (see [21, Defn. 2.4] for the definition). However, by replacing ‖A‖ by ‖[A]‖,
the conclusion holds for all cochains with sufficiently small norm, asminimal cochains
are locally minimal, see [21] for further details.

Theorem2.3 suggests a strategy for proving coboundary expansion of d-complexes.
In order to state it some additional definitions are needed. Given a graph G = (V, E),
we denote by P = D−1A its normalized adjacency matrix, where D is the diagonal
matrix whose entries are the degrees of the vertices and A is the standard adjacency
matrix Av,w = 1{v,w}∈E . Note that we implicitly assumed here that each vertex is
contained in at least one edge. One can verify that P is self-adjoint with respect to
the inner product 〈 f, g〉 = ∑

v∈V f (v)g(v) deg(v) and hence has real eigenvalues.
Furthermore, the eigenvalues of P lie within the interval [−1, 1] and 1 is always an
eigenvalue with eigenfunction v 
→ 1. Denoting by 1 = λ1 ≥ λ2 ≥ . . . ≥ λ|V |
the eigenvalues of P in decreasing order, let λ(G) := max{|λ2|, |λ|V ||} be its second
largest eigenvalue in absolute value.

The following classical results on expansion in graphs (see [1,2,4,19] for the case
of regular graphs) will be of use to us in the proof of Theorem 2.7. For completeness
we provide its proof in the Appendix.

1 Not necessarily with a complete (d − 1)-skeleton.
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Proposition 2.5 (Expander mixing lemma for irregular graphs) Let G = (V, E) be a
finite graph. Then for any two sets B,C ⊆ V (G)

∣
∣
∣
∣Ê(B,C) −

(∑
v∈B deg(v)

)(∑
v∈C deg(v)

)

2|E(G)|
∣
∣
∣
∣ ≤ λ(G)

√∑

v∈B
deg(v)

√∑

v∈C
deg(v) .

(2.10)
Here we denote by Ê(B,C) the number of edges between B and C, where edges with
both endpoints in B ∩ C are counted twice.

Proposition 2.6 (Discrete Cheeger inequality for irregular graphs) Let G = (V, E)

be a finite graph. Then h0(G) ≥ 1 − λ2.

We are now ready to state and prove the general strategy for showing coboundary
expansion in d-complexes with a complete skeleton. Informally, by assuming suffi-
ciently high spectral expansion of all links of (d − 2)-dimensional cells (which are
graphs) and using the fact that the (d−1)-skeleton is complete, one can guarantee that
condition (b) in Theorem 2.3 holds. By assuming in addition coboundary expansion
for big chains (with big chosen according to Theorem 2.3) one can prove by induction
that all links (including the link of the empty cell) are coboundary expanders.

Theorem 2.7 (General strategy for proving coboundary expansion) Fix d ≥ 2 and
a function ϕ : (0, 1] → (0, 1]. There exist positive constants cd−3, cd−4, . . . , c−1, λ

and ε depending only on d and ϕ such that the following holds. Let X be a d-complex
with a complete (d − 1)-skeleton. Assume further that

(A) For any ρ ∈ X (d−3) the complex Xρ satisfies

‖δρ A‖ρ ≥ ϕ(c j )‖[A]‖ρ, for A ∈ Cd−|ρ|−1(Xρ, F2) such that ‖[A]‖ρ ≥ c j .
(2.11)

(B) For every ρ ∈ Xd−2, λ(Xρ) ≤ λ.

Then, hd−1(X) ≥ ε. In particular, if X also satisfies maxσ∈Xd−1 deg(σ ) ≤ k, then X
is a (d, k, ε)-coboundary expander.

Proof The proof follows by induction on the following hypothesis:

There exists ε j = ε j (d, ϕ) > 0 such that for all
ρ ∈ X j , the link Xρ satisfies hd−|ρ|−1(Xρ) ≥ ε j ,

by letting j run from d − 2 to −1. Indeed, the case j = −1 gives the result with
ε = ε−1.

Startingwith the case j = d−2, assumeλ < 1/2, and note that for everyρ ∈ Xd−2,
the link Xρ is a graph and is thus equal to its 1-skeleton. Due to assumption (B), it is
also a spectral expander relative to P. Consequently, by the Cheeger inequality (see
Proposition 2.6) h0(Xρ) ≥ 1 − λ > 1/2, so h0(Xρ) ≥ εd−2 with εd−2 = 1/2.

Assuming the statement holds for j + 1, j + 2, . . . , d − 2, we turn to prove it
for j . Let ρ ∈ X j . We will apply Theorem 2.3 to Y = Xρ . Due to the induc-
tion hypothesis we know that condition (a) of Theorem 2.3 holds with β j+1 =
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min{εd−2, . . . , ε j+1}, which only depends on d and ϕ. Furthermore, we claim that

for every ρ′ ∈ X
(dim Xρ−2)
ρ = X (d−|ρ|−2), the 1-skeleton of the link (Xρ)ρ′ = Xρ∪ρ′

satisfies condition (b) of Theorem 2.3. Indeed, if ρ ∪ ρ′ ∈ X (d−3), then due to the
assumption that X has a complete (d − 1)-skeleton it follows that X (1)

ρ∪ρ′ is the com-
plete graph on n−|ρ ∪ρ′| vertices and hence satisfies (2.8) with γ = 0. Conversely, if
ρ ∪ ρ′ ∈ Xd−2, then it follows from assumption (b) that λ

(
X (1)

ρ∪ρ′
) = λ(Xρ∪ρ′) ≤ λ,

and therefore, due to the expander mixing lemma (see Proposition 2.5) for every
B,C ⊂ X0

ρ∪ρ′

∣
∣
∣
∣
∣
Êρ∪ρ′(B,C) −

(∑
v∈B degρ∪ρ′(v)

)(∑
v∈C degρ∪ρ′(v)

)

2|X1
ρ∪ρ′ |

∣
∣
∣
∣
∣

(2.12)

≤ λ

√∑

v∈B
degρ∪ρ′(v)

√∑

v∈C
degρ∪ρ′(v) ,

where for v ∈ X0
ρ∪ρ′ , we denote by degρ∪ρ′(v) the vertex degree in the graph X (1)

ρ∪ρ′ .

Taking B = C and dividing both sides by 2|X1
ρ∪ρ′ |, this implies

‖E(B, B)‖ρ∪ρ′ ≤ ‖B‖2ρ∪ρ′ + λ‖B‖ρ∪ρ′ , for B ⊆ X0
ρ∪ρ′ . (2.13)

Thus, if λ < 4γ (d − |ρ|, β j+1), the conditions of Theorem 2.3 hold and one can find
ε′
j > 0 and c j > 0 depending only on β j+1 (and thus only on d and ϕ) so that

‖δρ A‖ρ ≥ ε′
j‖[A]‖ρ, for A ∈ Cd−|ρ|−1(Xρ; F2) satisfying ‖[A]‖ρ ≤ c j . (2.14)

Exploiting assumption (A), it follows that

‖δρ A‖ρ ≥ ϕ(c j )‖[A]‖ρ, for A ∈ Cd−|ρ|−1(Xρ; F2) satisfying ‖[A]‖ρ ≥ c j .
(2.15)

Combining (2.14) and (2.15) we conclude that

‖δρ A‖ρ ≥ ε j‖[A]‖ρ, for A ∈ Cd−|ρ|−1(Xρ; F2), (2.16)

where ε j := min{ϕ(c j ), ε′
j } > 0. Since ε j and c j depend only on d and ϕ, and in

particular are independent of ρ ∈ X j the result follows by setting λ to be the minimum
between 1/2 and

min
{
2γ (d − j − 1, β j+1) : −1 ≤ j ≤ d − 3

}
> 0. ��

2.3 The Model and the Main Result

In this subsection we present a new model for random simplicial complexes and show
that it satisfies the conditions of Theorem 2.7. Thus, we get d-complexes of arbitrary

123



820 Discrete Comput Geom (2019) 62:813–831

dimension d ≥ 2, whose (d − 1)-cells are of bounded degree, and are coboundary
expanders with high probability. The construction is based on the notion of designs
which we now recall.

Let r ≤ q ≤ n be natural numbers and λ ∈ N. An (n, q, r, λ)-design is a collection
S of q-element subsets of [n] such that each r -element subset of [n] is contained in
exactly λ elements of S. For example, an (n, 2, 1, 6)-design is a 6-regular graph on n
vertices.Given n, d ∈ N, an (n, d)-Steiner system is an (n, d+1, d, 1)-design, namely,
a collection of subsets S of size d+1 of [n], such that each set of size d is contained in
exactly one element of S. Using the terminology from the previous section, an (n, d)-
Steiner system is a collection of d-cells such that deg(σ ) = 1 for every (d − 1)-cell.
For every q, r and λ there are several necessary “divisibility conditions” which must
be satisfied by n in order for designs to exist, namely that

(q−i
r−i

)
divides λ

(n−i
r−i

)
for

every 0 ≤ i ≤ r − 1.
Until recently, the most important question regarding Steiner systems and more

generally designs was the existence problem. Namely, for which values of d and
n do (n, d)-Steiner systems exist? In a recent groundbreaking paper [22], Keevash
solved this problem and gave a randomized construction of designs and in particular of
Steiner systems for any fixed d and large enough n satisfying the divisability conditions
(which hold for infinitely many n ∈ N). He was also able to use this construction in
a subsequent paper [23] in order to give an asymptotic estimate for the number of
such systems. From now on, we will assume that given a fixed d ∈ N, the value of n
satisfies the divisibility condition from Keevash’s theorem.

Keevash’s construction of Steiner systems is based on a randomized algorithm
which has two stages. We will explicitly describe the first stage and use the second
stage as a black box.

Given a set of d-cells A ⊆ ( [n]
d+1

)
, we call a d-cell τ legal with respect to A if no

(d−1)-cell in its boundary belongs to the boundary of one of the d-cells in A, namely

∂τ ∩ ∂τ ′ = ∅, for τ ′ ∈ A. (2.17)

Non-legal cells are also called forbidden cells.
In the first stage of Keevash’s construction, also known as the greedy stage, one

selects a sequence of d-cells according to the following procedure. In the first step,
a d-cell is chosen uniformly at random from

( [n]
d+1

)
. Next, at each step a legal d-cell

(with respect to the set of d-cells chosen so far) is chosen uniformly at random and
is added to the collection of previously chosen d-cells. If no such d-cell exists the
algorithm aborts. The procedure stops when the number of (d − 1)-cells which do not
belong to the boundary of the chosen d-cells is at most nd−δ0 for some fixed δ0 > 0
which only depends on d. In particular, if the algorithm does not abort the number of
steps is at least

((n
d

) − nd−δ0
)
/(d + 1) ≥ nd/(2(d + 1)!).

In the second stage, Keevash gives a randomized algorithm that adds additional d-
cells in order to cover the remaining (d − 1)-cells that do not belong to the boundary
of any of the d-cells chosen in the greedy stage. We do not go into the details of this
algorithm. The only two facts about the full algorithm we will use are that with high
probability it produces an (n, d)-Steiner system and in particular does not abort, and
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that the distribution of the resulting Steiner system is invariant under permutations on
the vertex set2.

Fix k ∈ N and let S1, . . . , Sk be k independent copies of (n, d)-Steiner systems
chosen according to the above construction. We define

X (d)
n,k = Kd−1

n ∪
k⋃

i=1

Si , (2.18)

where Kd−1
n is the complete (d − 1)-complex on the vertex set [n].

We denote the probability measure describing the distribution of X (d)
n,k by P(d)

n,k ≡
Pn,k . Note that Kd−1

n ∪ Si for every 1 ≤ i ≤ k is distributed according to P(d)
n,1 .

The following convention is used throughout the rest of the paper. An event L is
said to happen with high probability if limn→∞ Pn,k(L) = 1 when we restrict the
integers n to those satisfying the divisibility conditions.

We start with an estimation on the coboundary expansion of big chains in X (d)
n,k .

Proposition 2.8 Fix d ≥ 2 and c > 0 and let X = X (d)
n,k . There exist η = η(d) > 0

and k0 = k0(c, d) such that for every k ≥ k0 the following holds with high probability:
For every −1 ≤ j ≤ d − 3 and every ρ ∈ X j

‖δρ A‖ρ ≥ ηc‖[A]‖ρ, for A ∈ Cd−|ρ|−1(Xρ; F2) satisfying ‖[A]‖ρ > c. (2.19)

We postpone the proof of Proposition 2.8 to the next section and turn to our main
theorem.

Theorem 2.9 (The main theorem) Let d ≥ 2. There exist k0 = k0(d) ∈ N and η =
η(d) > 0 such that the following holds. Restricting to n ∈ N satisfying the divisibility
conditions, for every k ≥ k0 with high probability X (d)

n,k satisfies the conditions of
Theorem 2.7 with respect to the function ϕ(c) = ηc. In particular, for every k ≥ k0
there exists ε0 = ε0(d) > 0 such that with high probability, X (d)

n,k is a (d, k, ε0)-
coboundary expander.

This is the first construction of coboundary expanders whose (d − 1)-cells have
bounded degrees in dimension d ≥ 3.

Remark 2.10 It follows from the proof of Theorem 2.9 (see also Remark 2.1) that for
every k ≥ k0

|δA| ≥ εk · min
{|B| : [B] = [A]}, (2.20)

with high probability and ε′
0 = ε′

0(d) > 0 as in Theorem 2.9. That is, in the counting
norm, the expansion grows linearly with k.

2 Although this property is not explicitly stated in [22,23] one can note that the algorithm is invariant under
permutations. Indeed in the greedy stage the name of the vertices is not used while in the second stage the
names for the vertices are chosen uniformly at random (see Template 2.3).
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Proof of Theorem 2.9 Let η be as in Proposition 2.8 and denote byϕ0 : (0, 1] → (0, 1]
the function ϕ0(c) = ηc. Also, let c−1, c0, . . . , cd−3 be the constants associated with
the function ϕ0 as given by Theorem 2.7. By Proposition 2.8 applied for each of the
constants c−1, . . . , cd−3, it follows by a union bound argument that condition (A)

holds for every k ≥ max{k0(c j , d) : −1 ≤ j ≤ d − 3} with high probability.
Due to the definition of themodel, for everyρ ∈ Xd−2, the one-dimensional link Xρ

is a randomgraph on n−|ρ| verticeswhich is the union of k independent perfectmatch-
ings chosen uniformly at random. Indeed, since Keevash’s algorithm is invariant under
permutations and a random permutation of the vertices of a perfect matching yields
the uniform distribution on the set of perfect matchings, the one-dimensional links of
Kd−1
n ∪ Si are uniformly random perfect matchings. It follows from Friedman’s result

[12,13], see also [40], that with high probability maxρ∈Xd−2 λ(Xρ) = Od(k−1/2).
Indeed, Friedman’s result combined with Markov’s inequality states that the prob-
ability for the union of k independent uniformly random perfect matchings to have
its second largest eigenvalue in absolute value bigger than Ck−1/2 decays super-
polynomially, provided C is large enough. Using a union bound on all the cells in
Xd−2, the bound maxρ∈Xd−2 λ(Xρ) = Od(k−1/2) follows. Consequently, for large
values of k such that maxρ∈Xd−2 λ(Xρ) ≤ λ, with λ as in Theorem 2.7 condition (B)

of Theorem 2.7 holds and the result follows. ��

3 Proof of Proposition 2.8

Fix d ≥ 2, −1 ≤ j ≤ d − 3 and c > 0. Since the norm ‖ · ‖ is bounded by
1 the case c ≥ 1 holds trivially, so assume 0 < c < 1. Choose ρ ∈ X j and let
A ∈ Cd−|ρ|−1(Xρ; F2) be a cochain such that ‖[A]‖ρ ≥ c.

Denote the complete (d − |ρ|)-complex on the vertex set [n] \ ρ by Kρ . In [16,33]
the coboundary expansion of the complete complex was calculated. One can verify
that their result, when expressed in our norm, yields

∣
∣δ

Kρ
ρ A

∣
∣ ≥ ‖[A]‖ρ

(
n − |ρ|

d − |ρ| + 1

)

≥ c

(
n − |ρ|

d − |ρ| + 1

)

. (3.1)

The main idea of the proof is to show that with sufficiently high probability Xρ has

a large intersection with δ
Kρ
ρ A, i.e.,

∣
∣δ

Kρ
ρ A ∩ Xρ

∣
∣ ≥ η′ck‖[A]‖ρnd−|ρ| for all sets A

satisfying (3.1) and some positive constant η′ = η′(d) > 0. Noting that the number of
(d − |ρ|)-cells in Xρ is at most k

d−|ρ|+1

(n−|ρ|
d−|ρ|

)
, this implies that ‖δρ A‖ρ ≥ ηc‖[A]‖ρ

for some positive constant η = η(d) and therefore yields the required coboundary
expansion for the chain A in the link Xρ . Applying a union bound argument on all
cells ρ then completes the proof.

To this end, observe that if X1 and X2 are two (d−|ρ|)-complexes on the vertex set
[n] − ρ with a complete (d − |ρ| − 1)-skeleton and X1 ⊆ X2, then |δX1 A| ≤ |δX2 A|.
Therefore, it is sufficient to prove the result when observing only those d-cells of X (d)

n,k
that are obtained in the greedy phase of Keevash’s construction. In fact, we only use
the d-cells which are obtained in the construction of the different Steiner systems in
the first
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T :=
⌊ cnd

2d+6(d + 1)2d+4

⌋
(3.2)

steps of the greedy algorithm, because it turns out that a worst case analysis on these
d-cells is sufficient for our purposes.

For 1 ≤ i ≤ k and 1 ≤ t ≤ T , let Yi (t) ⊆ Si be the set of d-cells obtained in
the first t steps of the greedy algorithm constructing the i th Steiner system Si , and set
Yi (0) = ∅. Furthermore, denote

Y ρ
i (t) = {

τ ∈ Kd−|ρ|
ρ : τ ∪ ρ ∈ Yi (t)

}
, (3.3)

that is, the link at ρ induced by Yi (t), abbreviate

Fρ,A := δ
Kρ
ρ A , (3.4)

and for 1 ≤ i ≤ k define

Hi :=
(

Fρ,A \
i−1⋃

j=1

Y ρ
j (T )

)

∩ Y ρ
i (T ) (3.5)

to be the set of cells in Fρ,A which appear in Y
ρ
i (T ) but do not belong to the previously

chosen Y j (T ) for 1 ≤ j ≤ i − 1.
It follows from their definition that

⋃k
i=1 Hi = Fρ,A ∩ ⋃k

i=1 Y
ρ
i (T ), the sets Hi

are disjoint and
⋃k

i=1 Hi ⊆ δρ A. Consequently, for every η̃ > 0

Pn,k

(
|δρ A| ≤ η̃ck‖[A]‖ρn

d−|ρ|)

≤ Pn,k

( k∑

i=1

|Hi | ≤ η̃ck‖[A]‖ρn
d−|ρ|

)

≤ Pn,k

(
∣
∣
{
1 ≤ i ≤ k : |Hi | ≤ 2η̃c‖[A]‖ρn

d−|ρ|}∣∣ ≥ k

2

)

. (3.6)

Denoting Z η̃
i = 1|Hi |≤2η̃c‖[A]‖ρnd−|ρ| (the indicator function of the event |Hi | ≤

2η̃c‖[A]‖ρnd−|ρ|), the right hand side of (3.6) can be rewritten as

Pn,k

( k∑

i=1

Z η̃
i ≥ k

2

)
=

∑


∈{0,1}k
|{i :
i=1}|≥k/2

Pn,k
(
Z η̃
i = 
i : ∀1 ≤ i ≤ k

)

=
∑


∈{0,1}k
|{i :
i=1}|≥k/2

k∏

i=1

Pn,k

(

Z η̃
i = 
i :Z η̃

j = 
 j , ∀1 ≤ j ≤ i − 1

)

,

(3.7)
where for the second equality we used the formula for conditional probability.
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The rest of the proof is based on the following large estimation for the probability
of small intersection between Yi (T ) and Fρ,A.

Lemma 3.1 (Large deviation estimate for |Hi |) Fix d ≥ 2 and 0 < c < 1. There exist
η′ = η′(d) > 0 and κ̂ = κ̂(d, c) > 0 such that for every 1 ≤ i ≤ k and every choice

 ∈ {0, 1}i−1

Pn,k
(
Zη′
i = 1 : Zη′

j = 
 j , ∀1 ≤ j ≤ i − 1
)

= Pn,k
(|Hi | ≤ 2η′c‖[A]‖ρn

d−|ρ| : Zη′
j = 
 j , ∀1 ≤ j ≤ i − 1

) ≤ 3e−κ̂nd−|ρ|
.

(3.8)

We postpone the proof of the lemma and turn to complete the proof of Proposi-
tion 2.8. Taking η̃ = η′ and noting that in (3.7) the product is on at least k/2 terms
with Z ε̃

j = 1, it follows from Lemma 3.1 that the right hand side of (3.7) is bounded
from above by

∑


∈{0,1}k
|{i :
i=1}|≥k/2

(
3e−κ̂nd−|ρ|)k/2 ≤ (12)k/2e−κ̂knd−|ρ|/2. (3.9)

Combining (3.6)–(3.9), we obtain for ε′ as in Lemma 3.1

Pn,k
(|δρ A| ≤ η′ck‖[A]‖ρn

d−|ρ|) ≤ Ce−κ̂knd−|ρ|/2 (3.10)

with C = (12)k/2.
Applying a union bound argument over all possible (d − |ρ| − 1)-cochains A ∈

Cd−|ρ|−1(Xρ; F2) in the link Xρ , we get that

Pn,k
(∃ A ∈ Cd−|ρ|−1(Xρ; F2) such that ‖[A]‖ρ ≥ c and |δρ A| ≤ η′ck‖[A]‖ρn

d−|ρ|)

< 2(
n

d−|ρ|)Ce−κ̂knd−|ρ|/2 < Ce(log(2)−κ̂k/2)nd−|ρ|
.

(3.11)
Using an additional union bound over all ρ ∈ X j we obtain that

Pn,k
(∃ ρ ∈ X j , ∃ A ∈ Cd−|ρ|−1(Xρ; F2) such that ‖[A]‖ρ ≥ c and

‖δρ A| ≤ η′ck‖[A]‖ρn
d−|ρ|)

<

(
n

j + 1

)

Ce(log(2)−κ̂k/2)nd− j−1

< C exp
(
(log(2) − κ̂k/2)nd− j−1 + ( j + 1) log(n)

)
.

(3.12)

Recalling that j ≤ d − 3, by defining k0 := �2 log(2)/η̂� + 1 the result follows.

Proof of Lemma 3.1 Fix 1 ≤ i ≤ k and 
 ∈ {0, 1}i−1. Since |Fρ,A| ≥ c
( n−|ρ|
d−|ρ|+1

)

by (3.1) and since each Y ρ
j (T ) is part of an (n − |ρ|, d − |ρ|)-Steiner system, which
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implies |Y ρ
j (T )| ≤ (n−|ρ|

d−|ρ|
)
, it follows that

∣
∣Fρ,A \⋃i−1

j=1 Y
ρ
j (T )

∣
∣ ≥ |Fρ,A|/2, provided

n is sufficiently large (depending only on d and c). Therefore, it is enough to show
that for an appropriate choice of η′ = η′(d) > 0, conditioned on the event Fρ,A \
⋃i−1

j=1 Y
ρ
j (T ) = B for some B ⊆ Fρ,A such that |B| ≥ |Fρ,A|/2, it holds that

Pn,k
(|Y ρ

i (T ) ∩ B| ≤ 2η′c‖[A]‖ρn
d−|ρ|) ≤ 3e−κ̂nd−|ρ|

, (3.13)

where κ̂ = κ̂(d, c) > 0. Since Y ρ
i are i.i.d. it follows that the probability of the last

event is the same for every 1 ≤ i ≤ k and thus we can, without loss of generality,
assume that i = 1. Abbreviate Y ρ

i (t) = Y ρ(t) and Yi (t) = Y (t). For 1 ≤ t ≤ T − 1,
define the forbidden set of (d − |ρ|)-cells for Xρ at time t by

Forbidden(t) = {
τ ∈ Kd−|ρ|

ρ : ∃ τ ′ ∈ Y (t − 1) such that ∂(τ ∪ ρ) ∩ ∂τ ′ 
= ∅}
.

Note that the Forbidden cells at time t are exactly those cells in Kd−|ρ|
ρ whose union

with ρ is not legal to choose from in the greedy algorithm at time t . Also, for 0 ≤ j ≤
|ρ| and t ≥ 0, let N j (t) be the number of d-cells in Y (t) whose intersection with ρ is
of size j . ��
The proof of Lemma 3.1 is based on the following two claims:

Claim 3.2 For every t ≥ 1, we have

|Forbidden(t)| ≤ (d + 1)nN|ρ|(t − 1) + (d + 1)N|ρ|−1(t − 1). (3.14)

Note that N|ρ|(t) are the number of d-cells containing ρ at time t and N|ρ|−1(t) are
the d-cells that contain all but one vertex of ρ at time t .

Claim 3.3 For every 0 < α < 1/(2(d + 1)d+2), there exists κ = κ(d, α) > 0 such
that for sufficiently large n

Pn,1

(

N|ρ|(t) ≤ 4(d + 1)d+1

n|ρ| t and N|ρ|−1(t) ≤ 4(d + 1)d+2

n|ρ|−1
t for all

α

2
nd ≤ t ≤ αnd

)

> 1 − 2e−κnd−|ρ|
.

(3.15)

We postpone the proof of both claims and turn to complete the proof of Lemma 3.1.
For every 1 ≤ t ≤ T , the probability to choose a d-cell that belongs to the set B in
the t th step is at least

|B| − |Forbidden(t)|
( n
d+1

)

≥
1
2‖[A]‖ρ

( n−|ρ|
d−|ρ|+1

) − (d + 1)nN|ρ|(t − 1) − (d + 1)N|ρ|−1(t − 1)
( n
d+1

) , (3.16)
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where for the inequalityweused the lower bound |B| ≥ |Fρ,A|/2 ≥ ‖[A]‖ρ

( n−|ρ|
d−|ρ|+1

)
/2

(see (3.1) and Claim 3.2). Consequently, by Claim 3.3, for every α < 1/(2(d+1)d+2)

one can find κ = κ(d, α) > 0 such that with probability at least 1 − 2e−κnd−|ρ|
for

every αnd/2 ≤ t ≤ αnd , it holds that

(3.16) ≥
(

n

d + 1

)−1

nd+1−|ρ|
( ‖[A]‖ρ

2(2(d + 1))d+1 − 8(d + 1)d+3α

)

. (3.17)

Taking α = T/(2nd) we can bound the last term from below by

p := ‖[A]‖ρ

4(2(d + 1))d+1 n
−|ρ|. (3.18)

Consequently, under the event in (3.15), the probability to choose an element from B
in each of the steps between time T/4 and T/2 is at least p.

In particular, with {χt }1≤t≤T denoting independent random variables distributed
under Pn,1 as Bernoulli(p) and B denoting the event in (3.15), it follows from Cher-
noff’s bound that for some κ ′ = κ ′(d, c) > 0

Pn,1
(|Y ρ(T ) ∩ B| < pT/8

) ≤ Pn,1
(|Y ρ(T ) ∩ B| < pT/8,B

) + Pn,1(B
c)

≤ Pn,1

( �T/2�∑

t=�T/4�
χt <

pT

8

)

+ Pn,1(B
c) ≤ e−κ ′nd−|ρ| + Pn,1(B

c)

≤ e−κ ′nd−|ρ| + 2e−κnd−|ρ| ≤ 3e−κ̂nd−|ρ|
,

(3.19)

where κ̂ := min{κ, κ ′} and for the one before last inequality we used Claim 3.2.
Noting that pT/4 ≥ 2η′c‖[A]‖ρnd−|ρ| for some η′ = η′(d) > 0, the result

follows. ��
Proof of Claim 3.2 Let τ ′ ∈ Y (t −1). If |τ ′ ∩ρ| < |ρ|−1, then for every σ ∈ ∂τ ′ we
have |σ ∩ρ| < |ρ|−1. However, for every τ ∈ Kd−|ρ|

ρ and every σ ∈ ∂(τ ∪ρ) it holds
that |σ ∩ ρ| ≥ |ρ| − 1. Thus ∂τ ′ ∩ ∂(τ ∪ ρ) = ∅. That is, the only d-cells in Y (t − 1)
that may add cells to Forbidden(t) are τ ′ ∈ Y (t −1) such that |τ ′ ∩ρ| ∈ {|ρ|−1, |ρ|}.
Assuming that τ ′ ∈ Y (t−1) satisfies |τ ′ ∩ρ| = |ρ|, since each of the (d+1) boundary
elements in ∂τ ′ belongs to no more than n different d-cells, it follows that any such
d-cell τ ′ can add to Forbidden(t) at most (d+1)n elements. Similarly, if τ ′ ∈ Y (t−1)
satisfies |τ ′ ∩ ρ| = |ρ| − 1, then each cell σ ∈ ∂τ ′ such that |σ ∩ ρ| = |ρ| − 1 can
contribute at most one cell to Forbidden(t), that is, the one obtained by adding to σ the
missing vertex from ρ. Furthermore each cell σ ∈ ∂τ ′ such that |σ ∩ρ| < |ρ|−1 does
not contribute to Forbidden(t) at all. Because there are no more than d + 1 elements
in ∂τ ′ the result follows. ��
Proof of Claim 3.3 Observe that in each step of the process, the choice of a d-cell can
make at most (d + 1) · (n − d − 1) + 1 ≤ (d + 1)n additional d-cells not legal for
the following steps. Consequently, the number of non-legal d-cells at time t is at most
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n(d + 1)t . Thus, the probability to choose a d-cell in the t th step that contains ρ is at
most ( n−|ρ|

d+1−|ρ|
)

( n
d+1

) − n(d + 1)t
, (3.20)

which for t ≤ αnd < nd/(2(d + 1)d+2) is at most 2(d + 1)d+1n−|ρ|. Therefore, by a
Chernoff bound argument together with a union bound

Pn,1

(

∃ t : such that
α

2
nd ≤ t ≤ αnd and N|ρ|(t) >

4(d + 1)d+1

n|ρ| t

)

≤
�αnd�∑

t=� α
2 n

d�
Pn,1

(

N|ρ|(t) >
4(d + 1)d+1

n|ρ| t

)

≤
�αnd�∑

t=� α
2 n

d�
e−ξ ′t/n|ρ| ≤ e−ξ ′nd−|ρ|

,

(3.21)
for some ξ ′ that only depends on α and d, and sufficiently large n.

Similarly, the probability to choose a d-cell in the t th step that contains exactly
|ρ| − 1 of the vertices of ρ is at most

|ρ|( n−|ρ|
d+2−|ρ|

)

( n
d+1

) − n(d + 1)t
, (3.22)

which for t ≤ αnd < nd/(2(d + 1)d+2) is at most 2|ρ|(d + 1)d+1n1−|ρ| ≤ 2(d +
1)d+2n1−|ρ|. Therefore by the Chernoff bound

Pn,1

(

∃ t : such that
α

2
nd ≤ t ≤ αnd and N|ρ|−1(t) >

4(d + 1)d+2

n|ρ|−1 t

)

≤ e−ξ ′′nd−|ρ|+1
,

(3.23)

for some constant ξ ′′ that depends only on α and d and sufficiently large n.
Combining (3.21) and (3.23) we get the result with κ = min{ξ ′, ξ ′′}. ��

4 Concluding Remarks and Open Questions

4.1 Coboundary Expanders without Keevash’s Construction

As one can see from the proof of Proposition 2.8, Keevash’s algorithm is not really
necessary and it is sufficient to consider the d-cells from the greedy stage. We choose
to use Steiner systems (and thus Keevash’s algorithm) since they induce the union
of k independent, uniformly chosen perfect matching on the links of (d − 2)-cells,
and these are good spectral expanders by a well known result. It should be possible
to show that with high probability the resulting 1-skeletons obtained by the greedy
algorithm (which yields almost perfectmatchings) are good spectral expanders aswell.
If this is indeed the case, then one can apply Theorem 2.7 to show that the union of k
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independent families of d-cells obtained by the greedy algorithm are good coboundary
expanders as well, without relying at all on Keevash’s work.

4.2 Alternative Definitions of High-Dimensional Expansion

As mentioned in the introduction there are several competing definitions for high-
dimensional expansion. Without going into details, our model yields expanders with
respect to topological expansion (see [6,16]), spectral expansion (cf. [7,14,18,24]) as
well as the Cheeger type expansion defined in [37,39].

4.3 Coboundary Expanders Whose Vertices Have Bounded Degree

It is a natural question whether one can construct d-complexes all of whose cells have
bounded degrees and which are coboundary expanders. Such complexes would of
course not have complete (d − 1)-skeletons. An interesting open question is to have
a random model of d-complexes all of whose cells are of bounded degree which are
coboundary expanders, or at least topological expanders. The randommodel described
in [11] gives random d-complexes all of whose cells are of bounded degree which are
geometric expanders, but are not topological expanders.

4.4 Minimal Degree for Coboundary Expansion

It would be interesting to obtain estimates on the value of k0 = k0(d) for which the
theorem holds.

A Expander Mixing Lemma for Irregular Graphs

Proof of Proposition 2.5 Let 〈·, ·〉 denote the inner product on R
V given by 〈 f, g〉 =∑

v∈V f (v)g(v) · deg(v). Recall that with respect to this inner product, the opera-
tor D−1A is self-adjoint, and therefore it has an orthonormal basis of eigenvectors
u1, . . . , un , where n = |V |. The proof is obtained by evaluating the expression
〈D−1A · 1B,1C 〉 in two different ways.

On the one hand,

〈D−1A · 1B,1C 〉 =
∑

v∈V
(D−1A · 1B)(v) · (1C )(v) · deg(v)

=
∑

v∈C

∑

v′∈B
1v∼v′ = Ê(B,C) .

On the other hand, using the orthonormal basis of eigenvectors 1B = ∑n
i=1 αi ui for

scalars αi = 〈1B, ui 〉, and similarly 1C = ∑n
i=1 βi ui . Therefore,
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〈D−1A · 1B,1C 〉 =
n∑

i, j=1

αiβ j 〈D−1Aui , u j 〉

=
n∑

i=1

αiβiλi = α1β1 +
n∑

i=2

αiβiλi .

Recall that the eigenvector of the eigenvalue 1 is given by u1(v) = 1/
√
2|E |

for all v ∈ V , and note that α1 = 〈1B, u1〉 = 1√
2|E | · ∑

v∈B deg(v), and similarly

β1 = 1√
2|E | · ∑

v∈C deg(v). Combining all of the above we obtain

∣
∣
∣
∣Ê(B,C) −

(∑
v∈B deg(v)

)(∑
v∈C deg(v)

)

2|E |
∣
∣
∣
∣ ≤

∣
∣
∣
∣

n∑

i=2

αiβiλi

∣
∣
∣
∣ ≤ λ(G)

n∑

i=2

|αi ||βi |.

By the Cauchy–Schwarz inequality, this is bounded from above by

λ(G)

√
√
√
√

n∑

i=2

|αi |2
√
√
√
√

n∑

i=2

|βi |2 ≤ λ(G)
√〈1B,1B〉√〈1C ,1C 〉

= λ(G)

√∑

v∈B
deg(v)

√∑

v∈C
deg(v) .

B Cheeger’s Inequality for Irregular Graphs

Proof of Proposition 2.6 Recall that the coboundary expansion of a nonempty set
B � V (G) is

h0(B) = ‖E(B, Bc)‖
‖[B]‖ = 2|E(B, Bc)|

min
{∑

v∈B deg(v),
∑

v∈Bc deg(v)
} .

As in the proof of the expander mixing lemma for irregular graphs, we will use
the fact that the operator D−1A is self-adjoint with respect to the inner product
〈 f, g〉 = ∑

v∈V f (v)g(v) deg(v), and therefore it has a basis of orthonormal eigen-
vectors. Recall that the eigenvector corresponding to the maximal eigenvalue 1 is the
constant vector.

We will bound the coboundary expansion of an arbitrary set B ⊂ V (G) in terms
of λ2, the second largest eigenvalue of D−1A. Let f = α1B + β1Bc , where α =
−∑

v∈Bc deg(v) and β = ∑
v∈B deg(v). Note that 〈 f,1〉 = 0, and therefore the

Rayleigh quotient of it satisfies

〈I − D−1A f, f 〉
〈 f, f 〉 ≥ 1 − λ2.

123



830 Discrete Comput Geom (2019) 62:813–831

On the other hand, from the definition of f

〈 f, f 〉 = α2
∑

v∈B
deg(v) + β2

∑

v∈Bc

deg(v)

and

〈D−1A f, f 〉 = α2 Ê(B, B) + 2αβ Ê(B, Bc) + β2 Ê(Bc, Bc) ,

and therefore

〈I − D−1A f, f 〉
〈 f, f 〉 = (α − β)2E(B, Bc)

α2
∑

v∈B deg(v) + β2
∑

v∈Bc deg(v)
.

Plugging in the values for α and β gives

4|E |2 · E(B, Bc)

2|E |(∑v∈B deg(v)
) · (∑

v∈Bc deg(v)
)

≤ 2 · E(B, Bc)

min
{ ∑

v∈B deg(v),
∑

v∈Bc deg(v)
} = h0(B).
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