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Abstract

Background: Finding potential drug targets is a crucial step in drug discovery and development. Recently, resources
such as the Library of Integrated Network-Based Cellular Signatures (LINCS) L1000 database provide gene expression
profiles induced by various chemical and genetic perturbations and thereby make it possible to analyze the relationship
between compounds and gene targets at a genome-wide scale. Current approaches for comparing the expression
profiles are based on pairwise connectivity mapping analysis. However, this method makes the simple assumption
that the effect of a drug treatment is similar to knocking down its single target gene. Since many compounds can
bind multiple targets, the pairwise mapping ignores the combined effects of multiple targets, and therefore fails to
detect many potential targets of the compounds.

Results: We propose an algorithm to find sets of gene knock-downs that induce gene expression changes similar to
a drug treatment. Assuming that the effects of gene knock-downs are additive, we propose a novel bipartite
block-wise sparse multi-task learning model with super-graph structure (BBSS-MTL) for multi-target drug repositioning
that overcomes the restrictive assumptions of connectivity mapping analysis.

Conclusions: The proposed method BBSS-MTL is more accurate for predicting potential drug targets than the simple
pairwise connectivity mapping analysis on five datasets generated from different cancer cell lines.

Availability: The code can be obtained at http://gr.xjtu.edu.cn/web/liminli/codes.

Keywords: Drug repositioning, Multi-task learning, L1000

Background
In recent years, multi-target drugs - that is, drugs that
affect more than one gene or protein - have been mov-
ing into the focus of drug discovery and development
[1, 2]. The first reason for this phenomenon is that
multi-target drugs have been found to be more effective
than single-target alternatives for several complex dis-
eases, such as cancer and metabolic diseases [1, 3–5].
The rationale behind this observation is that the effi-
cacy of the inhibition of a single target may often not
be strong enough to affect the entire biological process,
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which means that multiple targets with weaker inhibition
may have a stronger combined effect than a single blocked
target. A second reason to study multi-target drugs is that
many drugs fail to be approved because of their severe side
effects in clinical trials [2, 6], which is a negative conse-
quence of more than one target being affected. Therefore,
finding potential compound targets is a crucial step in
drug profiling, the process that seeks those compounds
with a desired target or those without undesired side
effects.

Many machine learning methods have been proposed
for finding potential drug targets based on compound
structure [5]. The rationale is that if two compounds are
similar in structure, they may have similar targets. The
targets of the compounds are inferred by comparing their
structures to known drugs. However, it has been shown
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that many compounds with similar structure have dif-
ferent effects [7]. Therefore, considering only structure
information is not sufficient to accurately detect potential
drug targets. Several other types of information are also
used for drug target prediction, such as drug sensitivity,
drug side effects, gene expression, gene/protein structure,
gene/protein function, Protein Protein Interaction (PPI)
or metabolic network [8–12]. In recent work, Liu et al.
[13] sought to solve the drug targeting problem by using
a new type of information in form of the LINCS L1000
dataset [14], which includes expressions levels of single
gene knock-downs and drug treatments. This information
connect drugs and gene knock-downs directly through
their regulation effects on all the genes in a cell.

This LINCS L1000 dataset [14] is a part of the
Library of Integrated Network-Based Cellular Signa-
tures (LINCS) Program (http://www.lincsproject.org/)
that generates and publishes large datasets of measure-
ments that quantify how cells respond to a variety of
perturbing agents. Specifically, the LINCS L1000 plat-
form (http://www.lincscloud.org/) provides large-scale
gene expression assays in which cultured cells have been
exposed to various chemical and genetic perturbations
[14]. The LINCS L1000 dataset includes 20,413 small-
molecule compounds and 18,493 shRNAs knock-downs
tested in 18 different cancer cell lines. After each per-
turbation, a gene expression profile for each cell line is
obtained. This huge dataset creates the opportunity to
analyze the relationship between compounds and gene
targets at a genome-wide level.

Liu et al. [13] explored this relationship based on the
assumption that a drug treatment and the knock-down of
a target gene of this drug will induce similar gene expres-
sion changes in a sample. Using this idea, drug targets
can be inferred by connectivity mapping analysis [15],
that is, by finding knock-downs and drugs with similar
gene expression profiles. Similarity between gene expres-
sion profiles is determined using the gene set enrichment
analysis [16] that quantifies whether a drug and a gene
knock-down up- or down-regulate the same set of genes.

Connectivity mapping-based approaches [13, 15] lead
to a one-to-one mapping between drugs and gene knock-
downs. However, the effect of a drug may not resemble
that of only knocking down its single-target gene. Many
drugs are able to inhibit several known target genes and
many closely related genes on various biology pathways.
If a drug inhibits many genes, the gene expression mea-
sured after the drug treatment may be different from
those measured after each of the gene knock-down exper-
iments. Connectivity mapping ignores the additive effects
of gene knock-downs which exist in many biological
systems [17–19].

Therefore, our goal in this paper is to develop an
approach for multi-target drug repositioning using the

LINCS L1000 dataset that could overcome the restrictive
assumptions of connectivity analysis. We model the prob-
lem as finding combinations of gene knock-downs that
induce gene expression changes similar to a drug treat-
ment. Furthermore, we assume that the effect of a drug
treatment can be modelled as the additive effects of all its
single target gene knock-downs, which is reasonable since
additive effects of gene knock-downs exist in many bio-
logical systems [17–19]. Finally, we propose an efficient
and effective multi-task machine learning approach for
detecting the potential drug targets, using both expression
data and compound structure information. The assump-
tion of additive effects of gene knock-downs may not
reveal the true underlying biology system. However, our
experiments show that, in a practical sense, it works much
better than pairwise connectivity mapping in predicting
the potential drug targets.

The analysis of the LINCS L1000 dataset is further
complicated by the fact that each drug treatment is repli-
cated in several plates, each of which represents one
gene expression signature of the drug treatment. This is
similar for the gene knock-down, where each genetic per-
turbation is performed as a knock-down of one of the
shRNAs of the gene. Therefore, each gene knock-down
is represented by several signatures as well, which may
vary for different shRNAs. These replication experiments
make the data set more reliable, as the redundancy in
measurements will lead to noise reduction and to a bet-
ter representation of the spectrum of the effects of a
drug. However, this also makes the data analysis more
complicated. For example, the enrichment analysis-based
methods cannot be directly applied to test the association
between drugs and gene knock-downs, since drug treat-
ments and gene knock-downs are represented by set of
signatures.

We propose a novel bipartite block-wise sparse multi-
task learning method that detects the relationships
between groups of drug signatures and groups of gene
signatures in an unsupervised manner. The optimization
problem can be solved based on the accelerated proximal
gradient method, which is more efficient than the compu-
tationally demanding enrichment analysis-based test. In
terms of effectiveness, our extensive experiments on five
cancer cell lines from the LINCS L1000 data [14] provided
more accurate predictions of potential drug targets than
the simple connectivity mapping-based test, validated by
known drug targets from the DrugBank database [20],
together with the Gene ontology (GO) function informa-
tion from the GO database [21], or with PPI information
from the HPRD PPI network [22]. The prediction results
generate an interesting unified connected bipartite graph
of drugs and genes across different cell lines, where we
can find co-modules of drugs and genes, duplicate edges
across multiple cell lines, and meaningful connections of

http://www.lincsproject.org/
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genes in the same pathways. These novel and meaning-
ful discoveries from the L1000 database demonstrate the
effectiveness of our approach.

Methods
Materials
We downloaded the small-molecule compound and
shRNA data in the L1000 dataset, which was released by
the Broad Institute LINCS Data Generation Center [14].
In our experiments, we used the expressions for the 978
landmark genes in the five cell lines of SW480, HT29,
HCC515, MCF7, and PC3. A landmark gene is one whose
gene expression has been determined as being informative
to characterize the transcriptome and which is measured
directly in the L1000 assay. The 978 landmark genes were
selected as those widely expressed across lineage and were
found to have good predictive power for inferring the
expression of other genes that are not directly measured
in the assay. For each of these cell lines, we generated a
smaller dataset, which included only the treatment effects
for the approved drugs and shRNA genes in the Drug-
Bank Database [20]. For the drug treatments or the gene
knock-downs in each dataset, the same treatment condi-
tions were used. For all the cell lines except SW480, the
drug treatment with dose of 10μm and duration of 24h
was used. For the SW480, there are no experiments for
drug treatments with duration 24h, so we used the dura-
tion of 6h instead. The details of the data information are
shown in Table 1.

We also downloaded the drug structure from the KEGG
database [23] and computed the structure similarities
among the drugs by applying the software Simcomp [24]
on the drug structures.

Approach
Suppose we have tested the responses of a cell line after
b treatments with small-molecule compounds and a gene
knock-downs. After the treatments, the expression levels
of p selected landmark genes are evaluated. As there are
several replicates of each perturbation, there are several
signatures for each drug treatment or gene knock-down
treatment. For gene knock-downs we obtain a p × m dif-
ferential gene expression matrix A, where m is the total
number of experiments with a gene knock-down. The

effect of each gene therapy i ∈ {1, · · · , a} is represented
by a column block of A, as demonstrated in Fig. 1, with
mi replicating experiments, where

∑
i mi = m. Similarly,

we get another p × n differential gene expression matrix
B for the drug treatment. The effect of each drug therapy
j ∈ {1, · · · , b} is represented by a column block of B with
nj replicating experiments, where

∑
j nj = n. For the sake

of simplicity, we have assumed the columns with the same
gene knock-down in A or the same drug in B are grouped
together. Table 2 summarizes the notations used in this
paper.

As mentioned, the aim of this paper is to find sets
of gene knock-downs that could induce gene expression
changes similar to those of a drug treatment. In other
words, we would like to learn a weight matrix W (see
Fig. 1), such that each block of B can be approximated by
a combination of blocks in A.

Therefore, our objective function can be represented as:

�(W ) = L(A, B, W ) + �(W ), (1)

where L(A, B, W ) is a loss function and �(W ) is a regular-
ization term. This is a typical multi-task learning problem
[25], where a task corresponds to a column of W and a
feature corresponds to a row of W.

In our biological application, a task represents a specific
signature for a drug treatment and a feature represents
a specific signature for a gene knock-down. Thus, each
drug treatment with multiple signatures corresponds to a
group of tasks, and each gene knock-down with multiple
signatures corresponds to a group of features.

As we consider a multivariate regression model, the
loss function can be represented as L(A, B, W ) = 1

2‖B −
AW‖2

F . Since a drug often affects a few genes [20], we
would like W to have a sparsity structure. Two common
regularization terms for sparsity are

�1(W ) = ‖W‖1 = ∑m
k=1

∑n
l=1 |W (k, l)|, (�1)

which enforces sparse entries in W, and

�2,1(W ) = ‖W‖2,1 = ∑m
k=1 ‖W (k, :)‖2, (�2,1)

which enforces row sparsity in W. Here, W (k, l) and
W (k, :) represent the (k, l) entry and the k-th row of W,
respectively. The �1 and �2,1 regularizations are widely

Table 1 Data information for the five datasets

Cell line No.drugs No.d-treats D-dose D-time No. genes No.g-treats G-time

HCC515 144 504 10 μm 24h 156 1715 96h

HT29 44 160 10 μm 24h 174 2543 96h

PC3 329 2513 10 μm 24h 223 2954 96h

SW480 4 8 10 μm 6h 6 36 96h

MCF7 293 1608 10 μm 24h 219 2655 96h
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Fig. 1 Illustration of the proposed model. Each block of A and B represents differential gene expression data after gene knock-down and drug
treatment. W is the association matrix we would like to learn

used in multi-task learning approaches in various appli-
cations, including bioinformatics [25–28]. �2,1 sparsity is
usually called group sparsity or block sparsity in multi-
task learning since it is generalized from group lasso and
assumes that only a few features should be selected for all
the tasks.

However, in our scenario we do not want sparse entries
in W with �1 regularization or sparse rows in W with �2,1
group sparsity regularization. As demonstrated in Fig. 1,
we would like W to be sparse block-wise in a bipartite way,
such that a few groups of features are selected for a group
of tasks. As a result, each drug only has a small number of
potential targets.

Table 2 List of notations

Notation Description

A p × m matrix with gene expressions for gene therapies.

B p × n matrix with gene expressions for drug treatments.

K b × b similarity matrix among b drugs.

p number of landmark genes whose gene expressions are measured.

a number of knockout genes, or the number of column blocks in A.

b number of drugs, or the number of column blocks in B.

mi number of signatures for knocking down gene i.

nj number of signatures for treatments using drug j.

m
∑

i mi ,total number of experiments with gene knockout.

n
∑

j nj ,total number of experiments with drug treatment.

W m × n matrix with multivariate factors

Wij mi × nj matrix, the (i, j) block in W

W :j m × nj matrix, the (·, j) sub-matrix in W

Wi: mi × n matrix, the (i, ·) sub-matrix in W

K(s, t) kst , the (s, t) entry in K.

wj
l the lth column in the block W :j

w̄j mean of the columns in W :j

In “Bipartite block-wise sparse multi-task learning”
section, we propose a bipartite block-wise sparse multi-
task learning model and an efficient optimization algo-
rithm to solve the problem. In “Graph structure on group
of tasks” section we integrate the compound struc-
ture information into the proposed bipartite block-wise
sparse multi-task learning model. In “Association stability
score” section we introduce the stability selection strategy
for parameters.

Bipartite block-wise sparse multi-task learning
In this section, we propose a new type of sparsity called
bipartite block sparsity that enforces sparse blocks in the
W matrix such that a few groups of features are selected
for each group of tasks. Suppose W ij ∈ R

mi×nj represents
the (i, j) block in W corresponding to the i-th gene and j-
th drug. Our bipartite block sparsity (�bb) regularization is
represented as

�bb(W ) = ∑a
i=1

∑b
j=1

∥
∥W ij∥∥

F (�bb)

With slightly changed �1 regularization and our �bb reg-
ularization together, we proposed a bipartite block-wise
sparse multi-task model as

min
W

1
2‖B − AW‖2

F +
a,b∑

i,j
αij(λ1

∥
∥W ij∥∥

1 + λ2
∥
∥W ij∥∥

F)

(2)

where αij is a weight factor for each block and can be sim-
ply chosen as number of entries in the (i, j) block in W.
Note that when αij = 1, the first regularization term is
equal to the �1 regularization.

Graph structure on group of tasks
The chemical structure of the drugs is commonly used in
drug target discovery, since similar drugs often share sim-
ilar targets [5]. Suppose we are given a matrix of K ∈ R

b×b
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that contains structure similarity among all the b drugs
in our scenario. K can be considered as a graph matrix
or adjacent matrix of a graph. To integrate drug structure
information in the above model (2), we further develop
a novel multi-task learning model with a super-graph
structure.

In general multi-task learning, graph structure on tasks
may increase the accuracy for multi-task learning [28].
Instead of graph structure on tasks, our application should
consider the graph structure on groups of tasks, which we
refer to as super-graph structure.

Suppose the j1-th task group (j1-th drug) has a weight
score of kj1j2 = K(j1, j2) with the j2-th task group (j2-th
drug). Denote the submatrix in W corresponding to the j-
th drug by W :j, the lth column in the matrix W :j by wj

l, and
the mean of the columns in W :j by w̄j. The super-graph
structure can be used for another type of regularization:

�s(W ) =
b∑

j=1
nj

nj∑

l=1

∥
∥
∥wj

l − w̄j

∥
∥
∥

2

2
+ ∑

j1j2

∥
∥w̄j1 − w̄j2

∥
∥2

2 kj1j2 .

(3)

The first term ensures that the tasks in each group are as
close to the group center as possible, and the second term
ensures that the group centers have the graph structure
that is represented by K.

Putting all these components together, we propose the
bipartite block-wise sparse multi-task learning model with
super-graph structure (BBSS-MTL)

min
W

�(W ) = min
W

1
2 ‖B − AW‖2

F + ∑

i,j
αij

(
λ1

∥
∥W ij∥∥

F

+λ2
∥
∥W ij∥∥

1
) + λ3�s(W ).

(4)

Optimization algorithm
To solve this optimization problem, we first simplify the
terms in (3). The first term in (3) can be rewritten as

b∑

j=1
nj

nj∑

l=1

∥
∥
∥wj

l − w̄j

∥
∥
∥

2

2
=

b∑

j=1

∥
∥√njW :jHj

∥
∥2

F = tr
(
W H̃W T

)
,

(5)

where Hj = Inj − enj eT
nj/nj is a centering matrix, enj is

an nj-dimensional column vector with all ones, and H̃ =
diag (n1H1, · · · , nbHb). Suppose the Laplacian matrix of
the graph is L = D − K , where D = diag(d1, · · · , db)
is a diagonal matrix with dj = ∑

k K(j, k). The second
term in (3) can be simplified as tr(W̄ LW̄ T ), where W̄ =
[ w̄1, · · · , w̄b]. Note that W̄ can be further simplified as

W̄ =
[

W :1en1

n1
, · · ·, W :benb

nb

]

=
[
W :1, · · · , W :b

]
diag

(
en1

n1
, · · ·, enb

nb

)

= WE,

where E = diag(en1/n1, · · · , enb/nb) is a block diagonal
matrix. Thus the second term in (3) can be simplified as

tr
(
WELET W T)

. (6)

From (5) and (6), we can obtain that the equation in (3) is
equivalent to

�s(W ) = tr
(
W

(
H̃ + ELET)

W T) = tr
(
W L̃W T)

(7)

where L̃ = H̃ + ELET .
Thus the BBSS-MTL in model (4) can be rewritten as

min
W

1
2

(

‖B − AW‖2
F + ∑

i,j
αij(λ1

∥
∥W ij∥∥

F +λ2
∥
∥W ij∥∥

1

)

+λ3tr
(
W L̃W T

)

(8)

To solve the optimization problem in Eq. 8, we pro-
pose an accelerated proximal gradient-based algorithm.
The key step is to generate the proximal operator:

prox(V ) = argminW
1
2‖W − V‖2

F+
∑a

i=1
∑b

j=1 αij
(
λ1‖W ij‖1 + λ2‖W ij‖F

)

Fortunately, this can be obtained block-by-block, as
follows:

proxbb(V ij) = argminW ij
1
2

∥
∥W ij − V ij∥∥2

F +
αij

(
λ1

∥
∥W ij∥∥

1 + λ2
∥
∥W ij∥∥

F
)

It can be proved that the above operator exhibits a
certain decomposition property, based on which we can
efficiently obtain the proximal operator in two stages.

proxbb (
V ij) = proxb2

λ2

(
proxb1

λ1

(
V ij)

)
,

where the �1 proximal operator on the matrix V ij is

proxb1
λ1

(
V ij) = argminW ij

1
2

∥
∥W ij − V ij∥∥2

F + αijλ1
∥
∥W ij∥∥

1= (
W ij − λ1αij

)
+ − (−W ij − λ1αij

)
+

(9)

and the �2 proximal operator on the matrix V ij is

proxb2
λ2

(V ij) = argminW ij
1
2

∥
∥W ij − V ij∥∥2

F + αijλ2
∥
∥W ij∥∥

F= (
1 − λ2αij/

∥
∥W ij∥∥

F
)
+ W ij

(10)

The pseudocode of the proposed method BBSS-MTL is
shown in Algorithm 1.

Association stability score
In this section, we provide a stability selection strategy
to deal with parameters in the proposed models. Sup-
pose we have the sets �1, �2 and �3 for the parameters
λ1, λ2 and λ3, respectively. For each combination of the
parameters λ = {λ1, λ2, λ3} ∈ �1 × �2 × �3 = �, we
define a probability score Pλ ∈ R

a×b for all blocks in W
in the following way. We first subsample {At , Bt} from the



Li et al. BMC Systems Biology 2018, 12(Suppl 4):55 Page 90 of 166

Algorithm 1 BBSS-MTL
Input: A, B, λ1, λ2
Parameters: max number of iterations:Tmax; step size:βk , γ k

Output: W
1: Initialize W0 and W1 := W0
2: Compute �(W1) using the equation in (8)
3: for k = 1 : Tmax do
4: Vk+1 := Wk + βk(Wk − Wk−1)
5: ∇f (Vk+1) := AT (AVk+1 − B) + 2λ3W L̃
6: Vk+1 := Vk+1 − γ k∇f (Vk+1)
7: for i ∈ 1 : a, j ∈ 1 : b do
8: Update (i, j)-block of W by two steps:
9: Update W ij

k+1 := proxb1
λ1

(V ij
k+1) (Eq. (9))

10: Update W ij
k+1 := proxb2

λ2
(W ij

k+1)(Eq. (10))
11: end for
12: Compute �(Wk+1) using the equation in (8)
13: if �(Wk+1)−�(Wk)

�(Wk)
< 1e − 3 then

14: W := Wk+1; break;
15: end if
16: end for
17: return W

data {A, B} with the number of rows being p/2. Using our
BBSS-MTL model, we can obtain Wt .

We repeat the procedure T times and compute the
probability of hitting for each block {i, j} as Pλ(i, j) =
∑

t

(
W ij

t �= 0
)

/T . We then compute these probability val-
ues for each combination of the parameters λ ∈ �,
and define the association stability score of block {i, j} by
averaging these probabilities over different parameters as
score(i, j) = meanλ∈�Pλ(i, j).

Results
In this section, we evaluate our approaches on eight sim-
ulated datasets and show the effectiveness of the BBSS-
MTL for bipartite block sparsity and the super-graph
structure. We then apply our approach to find potential
targets for drugs on datasets from five cell lines.

Simulation
A. Data Generation
We simulate data using the following scenario with p =
50, m = 200, n = 80, a = 20, b = 10. We first simulate
A ∈ R

p×m, W ∈ R
m×n, and then generate B ∈ R

p×n =
AW +E, where the elements of E are sampled from a stan-
dard normal distribution N(0, 1). We assume the groups
of correlated input variables in A have an equal size of 10.

To generate A, we first generate a prototype column vec-
tor Āi for each group i, where Āi ∼ N(0, 5I50) and I50 is
a 50-dimensional identity matrix. We then generate the
columns in this group by Aik = Āi+ε, where ε ∼ N(0, I50),
ik ∈ Ii, Ii represents the indices in i-th column group of

A. The procedure is repeated for each column group of A,
and we get A with column group structure.

To generate W ∈ R
m×n, we first generate a prototype

W0 ∈ R
a×b using the following scenario. We assume

three groups of columns with sizes {4, 3, 3} in W0, respec-
tively. First, the input features are randomly selected for
the three output groups (two for the first group, three for
the second group, and three for the third group). We then
randomly choose another feature, which is used for all
the three groups, and further choose another feature for
only the second and third groups. Hence, three features
in total are chosen for the first group, five for the second
group, and five for the third group, such that the spatial
relationships between the three groups are different. We
then generate W by putting its entries in (i, j)-th block
W ij = W0(i, j) + ε, where ε ∼ N(0, 0.1), in either a sparse
or dense way. Two datasets, Data1.0 and Data2.0, are gen-
erated with the sparse and the relatively dense scenarios,
respectively.

We then obtain the similarity among the groups of tasks
by the Gaussian kernel calculated among the columns
of W0. To show the effectiveness of using the super-
graph structure, we randomly perturb W0 by changing
t nonzero entries to zero and changing t zeros entries
to nonzero, in different levels with t = 2, 5, 10. With
the same A and the perturbed W0s, we generate datasets
Data1.1, Data1.2, Data1.3 and Data2.1, Data2.2, Data2.3
based on Data1.0 and Data2.0, respectively. Note that the
first digit in the name of the dataset indicates whether
the entries in the nonzero blocks of W is sparse or
not, while the last digit represents the levels of the
perturbation.

B. Evaluating the BBSS-MTL without super-graph structure
With the eight datasets, we first check the prediction per-
formance of the proposed block sparse multi-task learning
method BBSS-MTL without super-graph structure, i.e.
λ3 = 0. We compare BBSS-MTL with other multi-task
methods, including �1 regularization and �2,1 regulariza-
tion. For each dataset, we first randomly split the p =
50 samples into five folds. Four of the folds are taken
as training data and the remaining fold is taken as test
data, in turn. Parameters are chosen by cross-validation
on the training data only. Once W ∗ is calculated from
the training data, the mean squared error on the test
data (MSEW∗ = ‖B − AW ∗‖F ) is used to measure the
performance of the learning.

Table 3 shows the mean and standard deviation of the
MSEs calculated by 50 different split of the datasets. The
results show that our BBSS-MTL method performs best
for all of the datasets. For Data1.*, where each block of
W has sparse entries, �1 regularization is the second best
and �2,1 is the worst. For Data2.*, both �1 and �2,1 perform
poorly, but our approach performs well.
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Table 3 The mean squared error of different regularization methods

�1 �2,1 BBSS-MTL(λ1, λ3 = 0) BBSS-MTL(λ3 = 0)

Data1.0 3.472 ±0.023 4.272 ±0.055 3.328 ± 0.018 3.325 ± 0.017

Data1.1 3.401 ±0.020 4.324 ±0.058 3.269 ± 0.016 3.268 ± 0.018

Data1.2 3.409 ±0.019 4.238 ±0.072 3.265 ± 0.016 3.266 ± 0.016

Data1.3 3.513 ±0.019 4.430 ±0.076 3.388 ± 0.019 3.391 ± 0.020

Data2.0 1.313 ±0.031 1.315 ±0.018 1.014 ± 0.007 1.016 ± 0.007

Data2.1 1.331 ±0.037 1.337 ±0.025 1.031 ± 0.007 1.029 ± 0.007

Data2.2 1.372 ±0.028 1.383 ±0.026 1.087 ± 0.008 1.089 ± 0.008

Data2.3 1.506 ±0.025 1.529 ±0.030 1.199 ± 0.011 1.200 ± 0.008

Best results are shown in bold

In Fig. 2, we show the calculated W for Data2.0,
Data2.1, Data2.2, and Data2.3, using a connectivity map-
ping analysis test (introduced in “Connectivity mapping
analysis” section) and different types of regularization.
The selected regularization parameters are chosen to
be 0.005, 0.01 and 0.2 for �1, �2,1 and BBSS-MTL,
respectively. We observe that both �1 regularization
and �2,1 regularization have false positive discoveries,
and that BBSS-MTL could enforce the non-interes-
ting blocks in W to be exactly zero for all the four
datasets.

C. Evaluating the BBSS-MTL with super-graph structure
To further evaluate the performance of our BBSS-MTL
approach, we designed the following experiments. Sup-
pose we have A and B, the latter of which is generated
by a ground truth W : the nonzero blocks in W can be
discovered by BBSS-MTL without super-graph structure.
However, if the given B is generated by a perturbation W̃
of W, can we recover the useful information in W from A
and B?

Note that Data2.1, Data2.2, and Data2.3 are generated
based on the perturbations from the W in Data2.0. For

Fig. 2 The calculated W of different methods for Data2.0 (1st row), Data2.1 (2nd row), Data2.2 (3rd row) and Data2.3 (4th row). Column (a): Ground
truth W ; (b): W connectivity mapping analysis test; (c): W �1 regularization; (d): �2,1 regularization; (e): BBSS-MTL with λ3 = 0. BBSS-MTL performs
best among all the methods in all simulated data set for learning the W
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this W, we also have the similarity matrix K among the
task groups, which was computed as a Gaussian ker-
nel among the columns of its prototype W0. With the
side information K, we could apply our BBSS-MTL with
super-group structure on the three datasets to determine
whether the computed W ∗ matches the ground truth W.
The Fig. 3 shows the results, in which the nonzero blocks
in the true W can be recovered by BBSS-MTL from all the
three levels of perturbation.

Connectivity mapping analysis
As a baseline to compare the effect of the compound
treatment and the gene knock-down, our adopted method
is based on the connectivity mapping analysis test [15],
which is based on the Kolmogorov-Smirnov statistic [29].
Given a set of up- and down-regulated genes Sup and
Sdn and a vector of differential gene expressions E with
length n, where Sup and Sdn are subsets of n genes whose
differential expression are measured in the given vector,
the connectivity mapping analysis tests whether the given
gene set is enriched in the given gene expression vector
using the Kolmogorov-Smirnov test. Specifically, the anal-
ysis starts by ranking the expression vector E and then
constructs a new vector V indicating the position of each
gene. The up-connectivity score CSup is then calculated
from the following two values:

a = max
i∈sup

(
i

|sup| − V (i)
n

)

, b = max
i∈sup

(
V (i)
|sup| − j − 1

|sup|
)

.

Then CSup = a if a > b or CSup = −b if b > a.
Similarly, we can calculate CSdn for the down-regulated
gene set. The connectivity score CS = 0 if CSup and
CSdn have the same sign; otherwise CS = CSup −
CSdn. The null distribution is obtained by randomly
permuting E 1000 times and then calculating the test
statistic.

We then consider the case in which we compare
two signature vectors of differential gene expressions:
one from a drug treatment and the other one from a
gene knock-down. We follow the method used in [30].
Firstly, we rank the two vectors to get the two up-
and down-regulated gene sets. We then use the connec-
tivity mapping analysis test twice to test whether the
up- and down-regulated gene sets from one vector are
enriched in the other ones. Finally, the p-values are sum-
marized using the Fisher inverse chi-square test statis-
tic. The null distribution is also obtained by random
permutations.

As mentioned, the above-described method cannot be
directly applied to compare a drug treatment and a gene
knock-down, as the drug treatment and gene knock-
down are represented by groups of signatures in L1000
dataset. Therefore, we have compared all the pairs of sig-
natures from a drug treatment and a gene knock-down
and chosen the smallest p-value. Finally, we performed
one-to-one mapping on all the pairs of drug treat-
ments and gene knock-downs and ranked them using the
p-values.

Fig. 3 The simulation results for BBSS-MTL with super-graph structure. (a): The structure similarity matrix K ; (b, c, d): The perturbed Ws for Data2.1,
Data2.2 and Data2.3; (e): The ground truth W ; (f, g, h): The recovered W with K by BBSS-MTL. BBSS-MTL can recover the true W with the help of
structure similarity, even when the datasets are perturbed
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Experimental results
For each of the induced real datasets, we applied our
BBSS-MTL approach to find the associations among the
drugs and the knock-down genes. For the parameters, we
set λ1 = 1 and λ3 = 1e + 4. We chose the parameter set
�2 such that the smallest one could get dense W and the
largest one could get W with all zeros. With these param-
eter setting, stability analysis was used to obtain a stability
score for each drug-gene pair.

Since the approved drug-target pairs are limited, we
evaluated our predicted potential drug targets by integrat-
ing the gene function information in the Gene Ontology
or the protein-protein interactions in the PPI network. We
define potential drug targets of a drug as those genes that
are down- or upstream and closely related to the real tar-
gets in pathways. We first computed the semantic scores
among all the genes in each of our five datasets using the
R software package Gosim [31]. Two genes with a high
semantic score are considered to have similar gene func-
tions. If a predicted gene’s semantic similarity score with
any known target gene of a drug is higher than 0.8, it
is considered as a potential target for the drug. By com-
paring our results with the GO-based scores, we could
calculate the AUC (area under curve) values AUC_GO
for each cell line dataset. We also evaluated our results
by using a human PPI network, Human Protein Reference
Database (HPRD) [22]. We computed pairwise distances
among all genes in each of our induced datasets by their
shortest paths. Two genes with a connection on the PPI
network are considered to have physical interactions with
each other. Thus, if a predicted gene is connected to any
known target gene of a drug, it is considered as a potential
target for a drug. We computed AUC_PPI by comparing
our results with the PPI-based scores.

Table 4 shows the AUC values using Lasso, connec-
tivity mapping and our BBSS-MTL for the five cell line
datasets. For Lasso, we simply average the expression lev-
els of different treatments (different knock-downs) for
each drug (gene), and apply single task lasso to calcu-
late association stability scores similar to the BBSS-MTL
approach. We can see that for the small dataset of cell
line SW480, our method could achieve the highest AUC
values among all the five datasets, based on either GO

information or PPI information. The results obtained for
the other four cell lines are slightly lower. For almost all
the datasets, our approach performs significantly better
than the connectivity mapping approach, which attempts
to find the associations by one-to-one mapping. Our
approaches obtained higher AUC values based on either
GO information or PPI information, which may suggest
that the multi-task learning could discover useful multiple
targets that are affected by the same drugs.

Discussion
Additive effects of NFKB1 and 1KBKB for immunologic
drugs
We first investigated the results obtained from the small-
est dataset generated from the SW480 cell line. Table 5
shows a list of potential targets for the drugs discov-
ered from the SW480 cell lines. The SW480 dataset
only includes four drugs and six genes. The four drugs
are Thalidomide, Valproic acid, Sirolimus and Auranofin
and the six genes are IKBKB, NFKB1, MTOR, HDAC2,
PPARG and AR. Among these genes and drugs, NFKB1
is an approved target for Thalidomide, and IKBKB is
an approved target for Auranofin. The results show that
these known targets for the two drugs are discovered (in
rows 3 and 7 of the table, respectively), and NFKB1 and
IKBKB could both have additive effects on the drug treat-
ment of Thalidomide or Auranofin. This is highly likely
because NFKB1 and IKBKB are close in the NF-Kappa-B
signaling pathway, which is a critical pathway for immune
response. NFKB1 forms the NF-kappa-B complex and is
known to be inhibited by I-kappa-B proteins, while IKBKB
is a kinase which phosphorylates serine residues on the
I-kappa-B proteins and further activates the NF-kappa-B
complex. Our approach successfully recovers the con-
nection between these two genes. The discovered link
between the drug Auranofin and the gene NFKB1 could be
further supported by studies on Auranofin [32]. In addi-
tion, Sirolimus is also known to be also highly related
to the immune system. Also, studies have shown that
Valproic acid can induce neural tube defects, which is
related with maternal immune system [33, 34]. There-
fore, NFKB1 and IKBKB may also have additive effects for
the treatments with immunologic agents. The top eight

Table 4 The area under the ROC curve (AUC) for the prediction

Cell line
Lasso Connectivity mapping BBSS-MTL

AUC_GO AUC_PPI AUC_GO AUC_PPI AUC_GO AUC_PPI

HCC515 0.528 0.510 0.456 0.549 0.592 0.537

HT29 0.458 0.563 0.479 0.556 0.558 0.603

PC3 0.491 0.503 0.509 0.561 0.550 0.580

SW480 0.500 0.400 0.444 0.609 0.769 0.719

MCF7 0.541 0.588 0.492 0.541 0.571 0.606
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Table 5 Top predictions of potential drug targets on SW480 cell
line

Drug Gene Stability score

Thalidomide IKBKB 0.927

Valproic acid IKBKB 0.920

Thalidomide NFKB1 0.913

Valproic acid NFKB1 0.900

Sirolimus IKBKB 0.880

Sirolimus NFKB1 0.873

Auranofin IKBKB 0.847

Auranofin NFKB1 0.847

predicted pairs show strong connections between the two
above-mentioned genes and all four immunologic drugs.

A unified bipartite graph of drugs and targets in three cell
lines
Figure 4 shows our findings across the three cell line
datasets of HT29, MFC7 and PC3. The top 30 associ-
ations between drugs and genes detected by the pro-
posed method BBSS-MTL on the datasets from the three
cell lines are depicted in a bipartite graph of drugs
and genes. Interestingly, all the drugs and genes in the
three datasets are connected in a unified bipartite graph,
and co-modules of drugs and genes could be observed.
There are some novel findings from the unified bipar-
tite graph. There are roughly five co-modules of drugs
and targets in the graph, including the co-module of
the drugs Fluorometholone, Tropicamide, Budesonide,
Indapamide, Nabumetone, Warfarin and Fluocinonide
and the genes VDR and TEK, the co-module of Borte-
zomib and its several potential targets CA1, ADA,FASN
PRKDC,RRM2, PPARD, COMT,GGCX, PRKCZ, the co-
module of PTGER4 and several drugs of Amlodip-
ine, Gefitinib, Nilutamide, Norfloxacin, Acetylcysteine,
Biperiden, Flutamide, Mycophenolatemofetil, Amifos-
tine, Disopyramide and Bortezomib, the co-module of
the gene NTRK1 and drugs Amifostine, Disopyramide,
Bortezomib, Felodipine, Fenofibrate, Dimenhydrinate,
Astemizole, Lofexidine, Acitretin, Acetazolamide, Ben-
droflumethiazide, Amifostine and Disopyramide, the co-
module of the gene PRKCZ and the drugs Bortezomib,
Amifostine, Acitretin, Acetazolamide and Bendroflume-
thiazide.

Some of the novel findings can be supported by
other references or pathway analysis. For example, using
the dateset of HT29 cell line, a group of drugs Flu-
orometholone, Tropicamide, Budesonide, Indapamide,
Nabumetone, Warfarin and Fluocinonide are predicted
to be related with a group of genes VDR and TEK. The
gene VDR is a vitamin D receptor in lipid metabolism and
calcium reabsorption. In the presence of a ligand, VDR

binds to vitamin D response elements to either increase
or repress transcription of target genes. Two known tar-
gets of Nabumetone - PTGS1 and PTGS2 - are also known
to be in the pathway of lipid metabolism. Nabumetone is
used for the treatment of osteoarthritis and rheumatoid
arthritis. McAlindon et al. [35] showed that vitamin D may
prevent progression of osteoarthritis, and Athanassiou
et al. [36] pointed out that reduced vitamin D intake has
been linked to increased susceptibility to the development
of rheumatoid arthritis. This implies that knocking down
VDR might have similar effects to taking Nabumetone,
and that VDR could be a potential target for Nabumetone.
The known targets of Tropicamide - CHRM1, CHRM2,
CHRM3 and CHRM4 - are known to be in the pathway
of calcium signaling pathway, which is likely to be related
to VDR. The primary target of the drug Fluorometholone
is the glucocorticoid receptor (GR). The bound receptor-
ligand complex further binds to many glucocorticoid
response elements (GREs) in the promoter region of the
target genes. The VDR gene contains a number of puta-
tive GREs, and it has been proven that VDR could regulate
the expression of glucocorticoid [37]. Therefore, the gene
VDR could have an additive effect for the treatment of Flu-
orometholone. The gene TEK, a receptor tyrosine kinase,
is also likely to have an effect on this drug. Kuo et al. [38]
showed that many glucocorticoid-regulated genes affect
receptor tyrosine kinase signalling. GR primary targets
could inhibit the insulin/IGF1 pathway, which propagates
through receptor tyrosine kinases. Knocking down TEK
may modulate the activity of this pathway and further
regulate the expression of GR. There is little evidence
that VDR is close to TEK in the same pathway, and
our results suggest that the two genes might be affected
together in different pathways by the five drugs, including
Fluorometholone and Nabumetone.

It is also interesting that we found edges between
drugs and genes in multiple cell lines by BBSS-MTL. For
example, we found that genes NTRK1, PTGER4, POLA1,
VKORC1, GPRC5a, VDR, KCNMA1, IMPDH2 and PNP
could be potential targets of the drug Bortezomib in
both cell lines of MCF7 and PC3. The stability score of
Bortezomib and NTRK1 is ranked first in the MCF7 cell
line and second in the PC3 cell line by BBSS-MTL. Borte-
zomib is known to inhibit the 26S proteasome, which
modulates the activity in the division of multiple myeloma
and leukemic cells, and further induces apoptosis. The
gene NTRK1 also modulates the activity of the apoptosis
pathway. Therefore, it is likely that NTRK1 is the poten-
tial target of the drug Bortezomib or close to its target in
the downstream pathways. We note that TEK is also pre-
dicted to be related to the drug Bortezomib, in the cell
line of PC3, which means that the results from the two
cell lines connect NTRK1 and TEK through Bortezomib.
In fact, the genes NTRK1 and TEK are both receptor
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Fig. 4 The unified bipartite graph by BBSS-MTL across the three cell line datasets of HT29, MFC7 and PC3

tyrosine kinases and it is known that 26S proteasome
can degrade receptor tyrosine kinases [39]. The epidermal
growth factor receptor (EGFR) is a known target for the
drug Gefitinib. From the PC3 cell line, we could recover
the connection between Gefitinib and the gene PGE4. It is
known that the association of PGE4 with β-arrestin 1 and
c-Src signaling complex could result in the transactivation
of EGFR [40], which shows the high probability that PGE4
could take effect with EGFR together for the treatment of
the drug Gefitinib.

To summarize, the results across different cell lines in
whole graph presented in Fig. 4 show plenty of interest-
ing and novel findings, including the unified connected
bipartite graph, the co-modules of drugs and genes in the
graph, the duplicate edges across multiple cell lines, and
meaningful connections of genes.

Conclusion
In this paper, we have proposed a bipartite block-wise
sparse multi-task learning approach BBSS-MTL for dis-
covering multiple targets for drugs using the LINCS L1000

dataset. We assume that the effect of a drug treatment
can be approximated by adding the effects of all its single-
target knock-downs and considering additive effects of
multiple targets for a drug treatment. Our results show
that our model could achieve higher accuracy in detect-
ing potential drug targets than the widely used but simpler
pairwise connectivity mapping. Interesting and novel dis-
coveries by our methods, such as new biologically mean-
ingful drug target candidates, the modules of the drugs
and genes from the three different cell lines, and the dupli-
cate edges predicted from different cell lines, also reflect
the effectiveness of our approaches.

However, there are some limitations of our proposed
approaches. For example, the agonistic effect cannot be
reflected from the knock-down experiments. A drug gen-
erally only inhibits part of the protein functions, while
knocking down a gene may reduce all its functions.
Besides, our additivity assumption is a simplification of
the complexity of the underlying biological system. Still,
its better performance implies that it describes the bio-
logical system in the L1000 problem much better than the
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widely used pairwise mapping. It might be possible to get
rid of the additivity assumption by constructing a more
complicated nonlinear model that considers the interac-
tions among multiple targets of a drug treatment. How-
ever, this will lead to a much higher computational load,
which currently renders genome-wide analyses infeasible.
This problem will be a topic of future work.
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