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Abstract
Purpose Success of ablation treatment depends on the accurate placement of the target ablation focus and the complete
destruction of the pathological tissue. Thus, monitoring the formation, location, and size of the ablated lesion is essential.
As ablated tissue gets stiffer, an option for ablation monitoring is ultrasound elastography, for imaging the tissue mechanical
properties. Reconstruction of elasticity distribution can be achieved by solving an inverse problem from observed displace-
ments, based on a deformable tissue model, commonly discretized by the finite element method (FEM). However, available
reconstruction techniques are prone to noise and may achieve suboptimal accuracy.
Methods We propose a novel inverse problem formulation and elasticity reconstruction method, in which both the elasticity
parameters and the model displacements are estimated as independent parameters of an unconstrained optimization problem.
Total variation regularization of spatial elasticity distribution is introduced in this formulation, providing robustness to noise.
Results Our approach was compared to state of the art direct and iterative harmonic elastography techniques. We employed
numerical simulation studies using various noise and inclusion contrasts, given multiple excitation frequencies. Compared
to alternatives, our method leads to a decrease in RMSE of up to 50% and an increase in CNR of up to 11dB in numerical
simulations. The methods were also compared on an ex vivo bovine liver sample that was locally subjected to ablation, for
which improved lesion delineation was obtained with our proposedmethod. Ourmethod takes∼ 4 s for 20×20 reconstruction
grid.
Conclusions We present a novel FEM problem formulation that improves reconstruction accuracy and inclusion delineation
compared to currently available techniques.

Keywords Ultrasound elastography · Optimization · Lesion monitoring

Introduction

Minimally invasive therapy is an attractive alternative to
surgery [12,20]. Tissue ablation represents the destruction
of pathologic tissue, with the aim to cure a disease [35].
Tissue destruction can be achieved by thermal methods, or
by application of chemical substances. Ablation can be used
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in clinical applications such as treatment of heart arrhyth-
mia [24], uterine bleeding [6] or tumor ablation [10,22].

The clinical application of minimally invasive treat-
ment modalities such as radiofrequency ablation [13,28],
microwave ablation [36], cryoablation [19] or high-intensity
focused ultrasound [14] is challenging due to lack of intra-
operative information such as pathological tissue location
and to high dependency on probe or catheter placement [34].
Because the success of ablation treatment depends on the
destruction of the pathological tissue, imaging techniques
that allow fast pre and post treatment localization of patho-
logical tissues are essential. Monitoring lesions during their
formation is essential because the pathological tissue can
be targeted accurately and nearby tissues spared. More-
over, real-time monitoring could provide feedback regarding
intensity and duration, ensuring that coagulation occurs [32].
Ultrasound is amedical diagnosticmodalitywhich allows for
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in-vivo, real-time imaging of tissue [18]. Ultrasound elastog-
raphy is a particularly useful technique, as it measures tissues
elasticity and is not affected by increased echogenicity due to
ablation, which could impede proper lesion delineation [23].
Techniques such as strain imaging [29], harmonic elastog-
raphy [33], shear wave elastography [1] and speed of sound
imaging [3] can be used tomeasure tissue elasticity andmon-
itor ablation.

In this paper, we used harmonic elastography and the finite
element method (FEM) to monitor tissue elasticity for lesion
delineation. There are a variety of FEM-based methods in
literature, which can be divided into direct and iterativemeth-
ods. In the direct methods [15,27], a closed-form solution of
the inverse problem of elasticity is calculated directly in a
least square sense under certain assumptions. In the iterative
methods [7,8], the inverse problem is considered an opti-
mization problem, and the elasticity parameter distribution
is changed iteratively to minimize the error between mea-
sured and model displacements.

We propose a novel inverse problem formulation in
which both the elasticity parameters and the reconstructed
displacements are estimated as independent parameters of
an unconstrained optimization problem. We evaluated our
method on various numerical simulations and compare it to
the direct and iterative approaches. Finally, the method was
tested on an ex vivo ablated bovine liver sample.

Methods

The equation of motion for an elastic isotropic and linear
material is given by [16]:

∇ · [μ(∇u + (∇u)T ) + γ (∇ · u)I ] = ρü. (1)

Here,μ is the shearmodulus, u is the displacement vector,ρ is
the density of the material, ω is the excitation frequency, and
γ is the first Lame parameter. Equation (1) can be discretized
using the finite element method (FEM) [37] and, considering
harmonic motion, written in Fourier domain as

[
K(μ, γ ) − ω2M(ρ)

]
· û = f̂, (2)

where K is the stiffness matrix, which is a function of the
elasticity parameter vectors μ (Shear modulus) and ν (Pois-
son’s ratio); M is the mass matrix, as a function of density
ρ; ω is the angular excitation frequency [37]; and û and f̂
are the displacement and force phasors, respectively. Since
density does not vary much in tissue [31], a known constant
value (≈1000kg/m3) can be used for ρ .

In nearly incompressible materials (i.e., ν → 0.5), a prob-
lem called locking may occur in the FEM integration that
yields over-stiff elements [2]. To overcome this, a mixed

displacement-pressure formulation of the FEM was pro-
posed [17]

[
Kμ(μ) − ω2M K p

]
·
[
û
p̂

]
=

[
f̂
]
, (3)

where p is the pressure term and the stiffness matrix K is
written as split in two matrices Kμ and K p, which corre-
spond to the shear modulus and pressure term, respectively.
Using an imaging modality, the displacements in the region
of interest are observed,wherewe denote thesemeasured dis-
placements by d. Then, a reconstruction method aims to fit
the displacements u estimated by a model to these observed
displacements d, by optimizing the model parameters, i.e.
elastic distribution. Below, we provide a brief summary of
existing reconstructionmethods, prior to introducing our pro-
posed method.

Direct methods

In the direct methods, the measured displacement are re-
substituted as themodel estimates, i.e. û = d̂, which neglects
the noise on displacement observations. The system of equa-
tions (3) is then rearrangedwith respect to the unknown shear
modulus and pressure terms, resulting in a linear equation
that can be solved in a closed form:

[
Ku(d̂) K p

]
·
[

μ̂

p̂

]
=

[
f̂ + ω2Md̂

]
. (4)

Here, Ku(u) is the result of reshuffling (3). To improve
robustness of the inversion, it is essential to add regular-
ization to (4). Different regularization techniques have been
used, such as Tikhonov regularization [27] and sparsity regu-
larization [17]. Here, we used a Tikhonov regularization, by
augmenting (4) in the following way:

[
Ku(u) K p

λΔ 0

]
·
[

μ̂

p̂

]
=

[
f̂ + ω2M

0

]
. (5)

where Δ is the discrete Laplace operator and λ is the regu-
larization parameter. Equation (5) is then solved for elastic
parameters in the least squares sense.

Iterativemethods

In iterative methods, the model displacements are consid-
ered to be unknown and the goal of the inverse problem (IP)
is to find the elastic parameters that approximate measured
displacements, i.e. û ≈ d̂. The IP can be formulated as an
optimization problem [8,11], to find the optimalμ� that min-
imizes the residual between the measured displacements d̂
and the model displacements û(μ), defined by Eq. (2):

123



International Journal of Computer Assisted Radiology and Surgery (2018) 13:885–894 887

μ� = argmin
μ≥0

||û(μ) − d̂||22 + λ||Δμ||22. (6)

At each iteration of this optimization problem, the model
displacement û was updated by inverting (2), using current
estimate of the elastic parameters. In this study, we used the
reflective trust region [5] to solve the problem in (6).

Proposed hybrid method

Herein,wepropose a hybridmethod. Similarly to the iterative
method, the model displacements are considered unknown;
however, they are not parametrized as a function of elastic
parameters, but both elastic parameters and model displace-
ments are solved as separate variables. For this, we formulate
the following optimization problem:

argmin
μ≥0,û, p

1

2ρ
||û − d̂||22 + ||(Kμ(μ) − ω2M)û

+K p p||22 + λ||Dμ||1
= argmin Fcost(μ, û, p), (7)

where the first part is the data fidelity term weighted by 1
2ρ ,

the second part is the FEM discretized motion equation, and
the third part is the anisotropic total variation term, where
D is a sparse matrix that implements finite differences in
spatial domain, and λ controls the amount of spatial coher-
ence. This optimization problem is nonlinear and non-convex
with a non-differentiable cost function due to the �1 norm
used, and hence, the global optimality of a solution cannot
be guaranteed. Nevertheless, in practice, gradient-based opti-
mizationmethods have been used [21]. In this paper, we used
the limited-memory BFGS solver provided by minFunc
package.1 LBFGS is the quasi-Newton unconstrained opti-
mization method that maintains a low-rank approximation
of the Hessian matrix to achieve improved convergence. The
gradients of the cost function (7) were calculated as follows:

Gcost =
[
∂Fcost
∂ û

,
∂Fcost
∂μ

,
∂Fcost
∂ p

]
, (8)

∂Fcost
∂ û

= 1

ρ
(û − d̂) + (Kμ(μ) − ω2M)T

(Kμ((μ) − ω2M)û + K p p), (9)
∂Fcost
∂μ

= Ku(u)T (Ku(u)μ − ω2Mû + K p p)

+ λDT sign(Dμ), (10)
∂Fcost
∂ p

= K p
T (Ku(u)μ − ω2Mû + K p p). (11)

1 M. Schmidt. minFunc: unconstrained differentiable multivariate
optimization in Matlab. http://www.cs.ubc.ca/~schmidtm/Software/
minFunc.html, 2005.

We also compare the LBFGS solver to the alternating direc-
tionmethod of multipliers (ADMM) [26], which implements
a series of proximal mappings to solve (7) based on the fol-
lowing constrained problem formulation:

argmin
μ≥0,û, p,z

1

2ρ
||û − d̂||22 + ||(Kμ(μ) − ω2M)û + K p p||22

+ λ||z||1,
s.t. Dμ − z = 0.

(12)

Experiments and results

Simulation framework and evaluationmetrics

To test our method, we used 40mm× 40mm 2-D phantoms,
that approximate the field of view of a linear-array ultrasound
transducer. The density and Poisson’s ratio of the phantoms
was chosen to be similar to tissue values: 1000kg/m3 and
0.499, respectively. Three phantoms shown in Fig. 1 were
simulated: (a) a homogeneous phantomwith a Young’s mod-
ulus of 4kPa, chosen to mimic healthy liver tissue [9], (b)
phantom with a 10mm radius circular inclusion of 8kPa,
which is a representative value for liver fibrosis [4], (c) phan-
tom with three 4mm radius inclusions of 2, 8and 12kPa, to
capture common values for various pathologies [30]. For all
simulations, the phantoms were displacement constrained at
the bottom edges, while being excited harmonically in the
axial direction on the top surface. Simulated groundtruth
displacement data (d̂T ) was obtained from the numerical
phantoms, using (2) and the aforementioned boundary con-
ditions. To simulate noise in the acquisition process, different
levels of Gaussian noise were added to the groundtruth
displacements, yielding simulated observed displacements
d̂.

A 40 × 40 mesh with 4 node rectangular elements was
used for all reconstructions. The reconstruction quality was
quantitatively evaluated using the root-mean-squared error
(RMSE) between estimated elasticities μ and the known
groundtruth μT . Contrast-to-noise ratio (CNR) was used to
measure sharpness of the reconstruction.

RMSE = ‖μ − μT ‖2√
n

(13)

CNR = 2(μinc − μbg)
2

σ 2
inc + σ 2

bg

(14)

whereμinc andμbg aremean elasticity values of the inclusion
and background regions, respectively, while σinc and σbg are
their corresponding standard deviations.
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Fig. 1 Numerical models for simulation studies with fixed bottom and
harmonically oscillating top boundaries. Three 40mm× 40mmnumer-
ical phantoms were simulated: a homogeneous phantom of 4kPa, b

single 10mm radius inclusion of 8kPa, and c three 4mm radius inclu-
sions of 8, 2, and 12kPa

Parameter sensitivity

The convergence of our proposed method was tested using
displacement data obtained from the numerical phantom in
Fig. 1b by varying the initialization values of elasticityμ and
pressure p. Both parameters were initialized by homoge-
neous maps with values ranging from 2 to 20kPa in steps on
2kPa, i.e. μ = p = {2, 4, .., 20}. The model displacements
were initialized with the simulated displacement, i.e. û = d̂.
Due to nonconvexity of our hybrid formulation (7), LBFGS
is not theoretically guaranteed to find the global minimum.
However, the results shown in Fig. 2 indicate that our method
converges to the same function cost and RMSE from differ-
ent initializations, given sufficient number of iterations. It
can also be seen that initializing with physically plausible
values of 4 and 6 kPa yields the fastest convergence rate.
We also observe that ADMM solver achieved similar recon-
struction quality to LBFGS (see Fig. 3), while ADMM was
approximately 6 times slower (21.2 s for ADMMvs. 3.7 s for
LBFGS for a reconstruction on a 20 × 20 grid). Therefore,
we are using LBFGS to solve (7) in further experiments.
To determine the optimal model parameter set, we varied
the data fidelity weight ρ on a logarithmic scale between
10−3 and 10−10, and the regularization weight (λ) between
10−3 and 102. Reconstructions were run for all aforemen-
tioned parameter combinations (≈ 1024 simulations) on the
numerical phantom in Fig. 1b. The variation of the residual
of the data fidelity term of the optimization cost function are
reported for varying parameter settings in Fig. 4a.

To test whether the model coefficients that minimize the
residual of the data fidelity term are also the ones leading
to correct reconstructions, we computed RMSE of all these
reconstructions, given different acquisition noise levels. For
each dataset, the method was applied as in the aforemen-
tioned case, by varying the model parameters ρ and λ. The

RMSE values of the reconstruction can be seen in Fig. 4b.We
observe that for high SNR level (> 30dB) there is a large set
of parameter combinations that lead to accurate reconstruc-
tions (< 0.2 RMSE). An increase in the noise level leads
to an increase in RMSE values, and the optimal parameter
region becomes narrower. Results from Fig. 4a, b show that
parameter values that provide high data fidelity also result
in higher reconstruction accuracy. This observation gives a
practical approach to parameter tuning. In Fig. 4c the RMSE
for ideal parameter values (in terms of minimum RMSE) for
each noise level was compared to those with the parame-
ter values determined unsupervised based on the minimum
residual from Fig. 4a.

Numerical phantom results

In our simulation study, we first compared the RMSE of
the Direct, Iterative, and the proposed Hybrid methods on
the homogeneous 4kPa phantom in Fig. 1a in a noise-free
environment, see Fig. 5a. Gaussian noise was added to the
displacement data for an SNR of 30dB in axial direction and
10dB in lateral direction, to simulate noise levels similar to
ultrasound acquisition with results seen in Fig. 5b. To test
the robustness of the methods in noisier conditions, that can
occur during clinical settings such as RF ablation, we con-
ducted another experiment at an even higher noise level of
10dB SNR in both axes; see results in Fig. 5c. Note that as
the pixel size was kept constant, an increase in frequency cor-
responds to an increase in the r ratio. For these noise experi-
ments, 10 random realizations were generated with the mean
values and standard deviations depicted in the result in Fig. 5.

As noted in [16], the frequency of excitation, as well as
the wavelength of the harmonic wave induced in the tissue is
an important parameter for reconstruction. The wavelength
is related to the excitation frequency and elasticity, i.e. Λ ∝
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Fig. 2 The optimization cost function value (a) and RMSE of current estimate to the ground truth (b) at every LBFGS iteration, for different
initializations of pressure and elasticity parameters ranging from 2 to 20kPa

Fig. 3 RMSE and CNR of the reconstructions using the proposed Hybrid method and the ADMM method in the case of a single 8kPa inclusion
inside a 4kPa phantom for the following cases: noise-free, SNR=30dB axial/SNR=10dB lateral

Fig. 4 a The residual data fidelity cost ‖û�
(λ, ρ)− d̂‖22 plotted against

varying model parameters λ and ρ, where an optimal area leading to the
minimum residual can be seen in dark blue. b RMSE for noise levels

ranging between 0 and 40dB and different values of λ and ρ. c Com-
parison of the RMSE for optimal parameter values and pre-determined
values for different noise levels

√
μ
ρ
/ f .Moreover, to be able to compare resultswith different

mesh sizes, the ratio of the voxel size v to wavelength Λ

was used during reporting the results, with r = v/Λ. In all
studies, the mesh grid size of 40 × 40. Excitation frequency
was varied between 10 and 500Hz, in increments of 10Hz

with the upper frequency limit corresponding to ≈ 2.3 mesh
grids (pixels) per wavelength.

All three methods gave comparable results for the noise-
free case, with ratios r < 0.25. Given any noise, the error of
theDirect and Iterativemethods increase. For the noisy cases,
the RMSE decreases rapidly with increasing frequency, until
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Fig. 5 RMSE of the reconstructions using the Direct, Iterative and proposed Hybrid method, in case of a homogeneous phantom for the following
cases: a noise free, b SNR=30dB axial/10dB lateral direction, and c SNR=10dB

certain ratios r , after which it increases again. For our pro-
posed method, the RMSE does not appear to increase after
this point. The Iterative method outperforms the Hybrid
method up to r < 0.1, however, after r > 0.1 our Hybrid
method outperforms both alternatives by up to 50% RMSE.
Considering only the ranges where all methods were stable,
our proposed method improves the RMSE by 11% compared
to the other methods, for the simulated noisy acquisition. We
repeated the previous study for the 4kPa phantom with a
single 8kPa, 10mm radius inclusion, as in Fig. 1b. Similar
results were obtained (Fig. 6), where the proposed method
improves the CNR by up to 11dB in the noisy cases, for all
r > 0.1. There was no significant difference between the
Iterative and Direct methods in terms of reconstruction met-
rics, but it is important to note the smaller stable area of the
former methods.

We tested whether the errors metrics between themethods
are affected by the choice of the finite difference operator
used, with no significant difference observed between the
Gradient and Laplace finite difference operators, Fig. 7.

Simulations on a phantomwith 3 inclusions (Fig. 1c) were
intended tomimic varying stiffnesses that can be encountered
in the same field of view. We investigated a noise-free and a
noisy case with SNR=30dB axial/10dB lateral direction at r
ratios of 0.05, 0.1 and 0.25. The RMSE of the reconstruction
results and the profile through the center of the phantom are
presented in Fig. 8. It can be seen that the proposed method
achieves the best results over all three ranges. The profiles
plotted in Fig. 8d show a sharper inclusion delineation com-
pared to the other methods.

Ex vivo results

Ultrasound images were acquired using a SonixTouch Ultra-
sound machine (Ultrasonix Medical Corp., Richmond BC,
Canada) and a SonixDAQ data receiver module. Harmonic
mechanical excitationwas used to excite tissue at a frequency

of 75Hz using a voice coil actuator (BEI KIMCO). A L14-
5/38 128-element linear-array ultrasound transducer with
a center-frequency of 5MHz was used. Image acquisition
was performed using a frame rate of 1kHz, with Sonix-
DAQ module, in plane wave configuration. We conducted
our experiments on ex vivo bovine liver samples. Thermal
ablationwas emulated in this work by removing a small piece
of liver tissue, thermally ablating it and then reinserting it at
the removed location. The extracted piece had dimensions of
5mm × 11mm, and thermal ablation was induced by heat-
ing the extracted piece. The inclusion was barely visible in
the B-mode image, as it is shown with a delineated circle in
Fig. 9a. The inclusion is somewhat visible in all elastographic
reconstructions, shown in Fig. 9b–d. In the Direct method,
the inclusion is difficult to locate, with elasticity values con-
siderably underestimated, hence making it almost invisible.
The Iterative method leads to a better inclusion delineation;
however, several other artifacts are seen in the image, in the
center as well as near the boundaries. A piece-wise constant
inclusion is clearly identified with the Hybrid method, with
minimal boundary and background artifacts.

Discussion and conclusions

In the presented approach, we avoid direct inversion of the
elasticity model (2), allowing a level of physical inconsis-
tency of the elasticity parameters. Results from Fig. 4b allow
us to conclude that it is feasible to demand a high level of
physical plausibility (achieved with high values of ρ) only
for low noise levels. By tuning this parameter, our method
achieves higher noise robustness. The initial decrease in
RMSE inFig. 6,with increasing frequency,was shown in [16]
to be due to a decrease of the effect of noise with increase in
frequency. We hypothesis that the further decrease in quality
metrics with frequency is because of the decreasing number
of pixels per wavelength in the model displacement. The
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Fig. 6 RMSE and CNR of the reconstructions using the Direct, Iterative and the proposed Hybrid method in the case of a single 8kPa inclusion
inside a 4kPa phantom for the following cases: a noise-free, b SNR=30dB axial/SNR=10dB lateral, and c SNR=10dB

Fig. 7 RMSE and CNR of the reconstructions using a finite difference Laplacian (blue) and Gradient operator (red) regularizers in the case of a
single 8kPa inclusion inside a 4kPa phantom for the following cases: noise-free, SNR=30dB axial/SNR=10dB lateral

stability of our method at various r ratios is observed in
Fig. 8. We believe that it is more stable at lower frequen-
cies compared to the direct method, as it does not require
inertial forces, which are close to 0 at low frequencies, i.e.
ω2M → 0. In the case of the Iterative method, it was shown
in [16], that because (2),which contains a frequency term,
has to be inverted, a larger number of nodes per wavelength
are required for the method to converge, hence it is unstable
at higher frequencies. The sharp inclusion delineation and
elasticity underestimation of our method from Fig. 8 is to be
expected due to the TV regularization.

In the case of ex vivo liver, the elasticity values using the
Direct method were considerably underestimated, a similar
effect can be seen in the phantom simulations in Fig. 8a, b.
We assume that this was because the r ratio was below its
stable region. Reconstruction artifacts can be observed in the
Direct and Iterative method, possibly due to the L2 regular-

ization norm. In the Hybrid method, the inclusion is clearly
delineated, however axis-aligned artifacts due to anisotropic
TV regularization are present. To solve this, isotropic TV
regularization could be implemented as future work. In the
presented examples, TV yields better results due to its ability
to emphasize contrast, important for ablation delineation.

Ablation can be a relatively slow process, withHIFU abla-
tion of a single spot taking up to 12s [25]. Our proposed
method performs quasi real-time (a median reconstruction
runtime of 3.7 s at a resolution of 2 × 2mm for 40 × 40mm
field of view), that can be sufficient to facilitate elastographic
imaging for ablation control. This is faster than the Iterative
method (< 15s) and is comparable to the Direct method
(< 1s), with the reconstructions performed with a Matlab
implementation on an Intel Core i7, 4.00GHz, 16GB RAM
machine.
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Fig. 8 Reconstruction results on a three 8mm inclusion phantom, at three frequencies (r = 0.05, 0.1, 0.25 in noise-free and noisy conditions)

Fig. 9 a B-mode of the ex vivo liver, where the inclusion was manually delineated. Reconstruction results using the Direct (b), Iterative (c) and
the proposed hybrid (d) method are presented
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In this work, we presented a novel FEM inverse problem
formulation which contains a data fidelity term, a physi-
cal constraint—the FEM discretized motion equation, and
a TV spatial coherence regularization term, that was solved
in an unconstrained optimization.Numerical phantom results
indicate a stability for a wider range of frequencies or wave-
lengths and higher noise robustness, essential factors to
consider in the case of medical procedures such as RF abla-
tion. Reconstruction results were improved by up to 50%
RMSE and 11dB compared to other FEM-based methods.
Our proposed method also improved lesion delineation in an
ex vivo liver sample that was locally subjected to ablation.
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