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For nearly two decades, the field of plasmonics1 - which studies the coupling of 10 

electromagnetic waves to the motion of free electrons in a metal2 - has sought to realize 11 

subwavelength optical devices for information technology3-7, sensing8,9, nonlinear 12 

optics10,11, optical nanotweezers12 and biomedical applications13. Although the heat 13 

generated by ohmic losses is desired for some applications (e.g. photo-thermal therapy), 14 

plasmonic devices for sensing and information technology have largely suffered from 15 

these losses14. This has led to a widespread stereotype that plasmonics is simply too lossy 16 

to be practical. Here, we demonstrate that these losses can be bypassed by employing 17 

“resonant switching”. In the proposed approach, light is only coupled to the lossy surface 18 

plasmon polaritons in the device’s off-state (in resonance) where attenuation is desired to 19 

ensure large extinction ratios and facilitate sub-ps switching. In the on-state (out of 20 

resonance), light is prevented from coupling to the lossy plasmonic section by destructive 21 

interference. To validate the approach, we fabricated a plasmonic electro-optic ring 22 

modulator. The experiments confirm that low on-chip optical losses (2.5 dB), high-speed 23 

operation (>>100 GHz), good energy efficiency (12 fJ/bit), low thermal drift (4‰ K-1), 24 

and a compact footprint (sub- radius of 1 m) can be realized within a single device. 25 



Our result illustrates the potential of plasmonics to render fast and compact on-chip 26 

sensing and communications technologies. 27 

 28 

Telecommunication devices, such as electro-optic (EO) modulators must feature low 29 

insertion loss (IL) while providing a large phase (n) or amplitude () change accumulated 30 

over a short device length15. Beyond that, modulators should offer low driving voltages and 31 

high-speed operation.  32 

In recent years, silicon photonic active devices have emerged which benefit from low 33 

propagation losses (3 dB/mm) but have struggled to achieve large modulation depth for sub-34 

mm devices (n and )16. State-of-the-art devices maximize their modulation through the use 35 

of resonant structures17, enabling compact (m2-sized) and energy efficient components18,19. 36 

However, the large Q-factor (on the order of a several 1000) limits the speed and increases the 37 

sensitivity of devices to temperature and fabrication fluctuations20. More recently, surface 38 

plasmonic polariton (SPP) devices have exploited the extreme confinement of light to achieve 39 

exceptional modulation within a few m (n and )3,21. However, the metals that bring such 40 

promise to plasmonics are also the largest hindrance, as such devices suffer from large on-state 41 

loss (~dB/μm). To combat plasmonic losses, some devices employ hybrid-plasmonic-photonic 42 

modes4,7,22 while others minimize the length of the active section6,23. Still, typical IL of 10 dB 43 

due to the plasmonic propagation loss and photonic-to-plasmonic mode conversion loss remain 44 

a concern for high-speed state-of-the-art devices6,7. Thus, plasmonic on-chip technologies have 45 

been unable to replace the existing photonic or electronic solutions, placing the field of 46 

plasmonics at a crossroad to either abandon development or explore additional solutions.  47 

We propose a novel approach, in which losses in plasmonic waveguides can be selectively 48 

used or bypassed to achieve low IL, strong modulation and high speed, simultaneously. This 49 

approach relaxes the prior goal to reduce the ohmic loss as much as possible to minimize the 50 



device’s on-state loss. Instead, we show that plasmonic losses can be harnessed by designing 51 

the device geometry such that light passes through the lossy section when required (in the off-52 

state). To achieve this, we utilize a plasmonic ring resonator coupled to a buried low-loss 53 

silicon photonic waveguide, see Fig. 1. Unlike prior approaches, which aim to reduce the 54 

resonator loss to realize high Q cavities or lasing8,24-27, our resonator exhibits typical 55 

propagation losses within the plasmonic cavity and mostly bypasses this lossy section in the 56 

on-state through destructive interference. Using this design, we demonstrate for the first time, 57 

a plasmonic modulator that is able to meet the key performance metrics of modern optical 58 

communications links.  59 

 60 

Fig. 1: False-colored SEM image of a plasmonic ring resonator and the corresponding transmittance over wavelength. (a) Top 61 

view and (b) cross section of the resonator. Photonic modes propagating in the buried silicon waveguide resonator couple 62 

partially to the SPPs in the metal-insulator-metal-ring when the resonance condition is fulfilled. While out of resonance 63 

operation results in a low loss light transmission. (c) Passive measurements of two identical ring resonators that only differ in 64 

radii (blue - 1030 nm; red - 1080 nm). Due to the resonant approach, insertion losses of 2.5 dB are measured with extinction 65 

ratios (ER) above 10 dB.  66 

Fig. 1 shows the proposed device geometry, which comprises a gold metal-insulator-metal 67 

(MIM) slot waveguide ring coupled to a buried silicon bus waveguide, forming a notch filter 68 

with a resonant wavelength of (res) (supplementary information: chapter II). The slot 69 

waveguide is filled with an organic electro-optic (OEO) material which alters the device’s 70 



resonance condition through the Pockel’s effect (Δ𝑛SPP)28,29. This enables a fast and selective 71 

use of the plasmonic loss to attenuate the signal () in the bus waveguide by applying a 72 

voltage.  73 

Fig. 1(c) shows the measured transmittance over the wavelength of two representative 74 

devices that differ in radius. For these structures, we have observed a distinct off-resonance 75 

(0≠res) and on-resonance (0res) condition at the telecommunication wavelength of 76 

1.54 m with an IL of 2.5 dB, an extinction ratio (ER) of 10 dB, and a Q-factor of ~30. 77 

Alternatively, we note that non-resonant devices based on MIM waveguides with a similar 78 

length feature an IL ranging from 8-10 dB6,7,23. 79 

The reduced IL can be understood by comparing the exemplary operating principles of a 80 

non-resonant Mach-Zehnder (MZ)6, Fig. 2(I) and a resonant ring, Fig. 2(II). The IL of the 81 

device is a function of its coupling efficiency, geometry and accumulated ohmic loss. In both 82 

concepts, light couples to and from the plasmonic structure with a coupling efficiency (C). A 83 

transmission modulation is then induced by the Pockels effect over an active plasmonic section 84 

of length or circumference (l). The modulation depth ( – and also the loss (LSPP) – scale 85 

with the length of the active plasmonic section6. Fig. 2 shows the overall IL over the LSPP in 86 

the active plasmonic area for a MZ and a critically coupled resonator. The arrows indicate the 87 

performance of devices with an equal . 88 



  89 

Fig. 2: Theoretical loss advantage of critical coupled resonant over non-resonant push-pull Mach-Zehnder devices. The IL are 90 

plotted over the active plasmonic loss (LSPP) in the slot waveguide of the MZ (left inset, red) and resonator (right inset, blue). 91 

Losses can be reduced by more than 6 dB. This is due to following reasons: I) bypassing mechanism – only a fraction of light 92 

experiences plasmonic losses; II) resonant enhancement – resonators achieve the same phase shift for shorter devices (indicated 93 

by the arrows); and III) coupling scheme – non-resonant approaches require two photonic/SPP converters while resonant 94 

approaches require only one.  95 

The following points arise from Fig. 2. First, the resonator’s loss is always smaller (blue curve 96 

< red curve) due to the bypassing mechanism30. Second, the resonator has a 1 dB lower IL at 97 

LSPP ≈ 0 dB. This is because the non-resonant device requires two photonic-SPP converters as 98 

both the on- and the off-state propagate through the plasmonic section. Ohmic losses in the 99 

converters limit the conversion efficiency (C) to ~1 dB23,31. Contrarily, the selection 100 

mechanism of the resonator (on-statebus waveguide; off-state ring) requires a converter 101 

which couples only a fraction of the light to the ring. Third, in the ring we take advantage of 102 

the resonantly enhanced  to reduce the device length (supplementary information: chapter 103 

VII). For our resonant structures, we have calculated an enhancement of ~1.5. Consequently, 104 

our ring with a circumference of l = 6 m (LSPP ≈ 4 dB) offers the same transmittance change 105 

as a MZ of l = 9 m (LSPP ≈ 6 dB). In total, the ring device offers a 6 dB IL advantage over the 106 

MZ modulator. Additionally, losses can be further reduced by under-coupling the resonator as 107 

limited ERs of 10 dB are sufficient for many practical applications32.  108 



To illustrate the modulation performance () of the plasmonic resonator, the SPPs’ 109 

effective refractive index (nSPP) is altered by applying a bias between the inner and outer 110 

rings28. Fig. 3(a) shows the transmitted power versus applied voltage for a wavelength of 111 

~1.52 m. We observed an IL < 3 dB, an ER of ~10 dB, and a linear response (dashed green 112 

line) for a peak voltage of 3.5 V with an ER of ~6 dB. This performance in terms of IL and ER 113 

is similar to well-developed CMOS photonic resonators20. We estimate that operation under a 114 

digital driving voltage (1 Vpp)20 is achievable in the near future by utilizing other plasmonic 115 

materials like silver or copper, using the newest OEO-materials and improving fabrication 116 

(supplementary information: chapter VIII). To highlight the mechanism of the modulation the 117 

transmission of the device has been measured under a positive and negative bias of ±3.75 V as 118 

a function of wavelength, see Fig. 3(b). This results in a normalized sensitivity (S/FWHM = 119 

res/(FWHM·n)) of ~17 RIU-1, assuming a relative change in OEO’s refractive index of 120 

~0.03. This can be compared to commercial SPR sensors that achieve values of 50 RIU-1 using 121 

a free-space Kretschmann configuration33. So, currently our approach is already close to the 122 

non-integrated free space approaches.  123 

 124 

Fig. 3 Sensitivity and stability of the plasmonic resonator. (a) Voltage sensitivity of the resonator’s transmittance. (b) 125 

Sensitivity of the ring as a function of the wavelength. A small change (nslot≈0.03) in the refractive index of the slot-filling 126 

material causes a large change of the resonance wavelength (blue/red). (c) The resonator shows stable operation across a large 127 

thermal variation. These characteristics make the plasmonic MIM-ring resonator a promising candidate in the field of optical 128 

modulators and sensors. 129 



The moderate Q-factor guarantees a high operational speed and provides good thermal 130 

stability. For example, the measured resonance frequency is plotted in Fig. 3(c) over a 131 

temperature range from 20°C up to 90°C. In this case, the resonant frequency is found to follow 132 

a linear trend line with a slope of ~0.4% K-1. The insensitivity of the plasmonic resonator to 133 

temperature fluctuations is in strong contrast to photonic resonators, which are two orders of 134 

magnitude more sensitive to temperature fluctuations (~100% K-1)19. This is extremely 135 

beneficial for applications where strong temperature fluctuations occur. For example, a 136 

plasmonic resonant sensor or modulator would be immune to thermal fluctuations of ±5 °C 137 

which normally occur in CPUs while photonic resonators require power-consuming 138 

temperature controls to maintain operation20. Furthermore, the moderate Q factors are also 139 

beneficial for high-speed operation as desired in electro-optic modulators. As a result, we are 140 

able to push the bandwidth of a resonant electro-optic modulator well beyond 100 GHz 141 

(supplementary information: chapter XIII). In comparison, photonic resonators are more likely 142 

limited to bandwidths of ~20 GHz and below19,20.  143 

 144 

Fig. 4: High-speed data experiments with a plasmonic ring resonator used as an EO-modulator. (a) Depicts the experimental 145 

setup. (b) Bit-error-ratio (BER) vs. wavelength for a resonator with resonance = 1549nm. BERs below the hard-decision forward 146 

error correction (HD-FEC) limit show successful data modulation and detection without the use of a temperature control. The 147 

BER increases at the resonance wavelength as expected from the notch-filter response of the resonator. (c) Shows the 148 

bandwidth of the plasmonic resonator in the bottom, which is beyond 110 GHz. 149 



Subsequently, we performed high-speed data experiments to demonstrate the robustness, high 150 

speed and low power switching capability. Although, the “resonant switching” principle can 151 

also be used to optimize sensors, we focus on high speed applications because their sensitivity 152 

and stability requirements are stricter.  153 

In the experiment of Fig. 4(a) the peak driving voltage was ~3.3 Vpeak and the laser 154 

wavelength was varied to capture the response of the modulator. Low device losses of 2.5 dB 155 

and fiber-to-silicon waveguide losses of ~7 dB resulted in fiber-to-fiber coupling losses of 16.5 156 

dB enabling successful operation with low laser powers of 4 dBm and below. The resulting bit-157 

error-ratio (BER) versus wavelength for a 72 Gbit/s signal is shown in Fig. 4(b) where a peak 158 

in the BER is observed at res. A high BER is observed at res since applying the same voltage 159 

with an opposing sign results in the same optical amplitude but a different phase. Consequently, 160 

we confirmed that the operating mechanism relies on amplitude modulation. Off-resonance, 161 

the BER quickly dropped to ~ 1×10-3 which is below the hard-decision forward error correction 162 

(HD-FEC) limit and allows for successful data modulation and detection34. No thermal heater 163 

was required for stabilization. Additionally, we reduced the data-rate to 36 Gbit/s and 18 Gbit/s 164 

and found BERs of ~ 2×10-6 and < 1×10-6, respectively, indicating that the BER at 72 Gbit/s is 165 

mainly limited by the electrical equipment (supplementary information: chapter XIV). We 166 

estimate the energy consumption of the modulator to be ~ 12 fJ/bit at 72 Gbit/s15 for a device 167 

capacitance of 1.1fF. 168 

 169 

We demonstrate that low-Q resonant designs can enable low-loss active plasmonic devices 170 

with a good modulation depth by utilizing highly confined SPPs. We believe that our approach 171 

– unlike conventional resonant photonics – breaks the trade-off between sensitivity (high-Q) 172 

on the one hand and speed and temperature stability (low-Q) on the other. Our work can be 173 

seen as a step towards practical plasmonics that ultimately serves as a compact and fast gateway 174 



between electronics (local signal processing) and photonics (broad bandwidth and low-loss 175 

data stream). The proposed slot waveguide approach could also open many applications in 176 

sensing because the resonant response can be exploited for many other material systems 177 

ranging from low index materials like aqueous solutions to high index materials such as silicon. 178 

 179 

Supplementary information and methods are given in the supplementary 180 

information manuscript. The datasets generated during and/or analysed during the current 181 

study are available from the corresponding author on reasonable request. 182 
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