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1. Introduction  

Reactions catalyzed by N-heterocyclic carbenes have been known longer than the N-

heterocyclic carbenes themselves. The thiamin catalyzed benzoin reaction engendered 

great excitement over its unusual – and for a while incomprehensible – mechanism, 

but the connection between the thiazolium ylide identified as the key nucleophilic 

catalyst and its characterization as an N-heterocyclic carbene grew only slowly. 

Nowadays, the idea of nucleophilic carbenes acting as highly versatile catalysts is 

widely accepted, and new NHC-catalyzed transformations appear almost weekly in 

the primary literature. In addition to a renaissance in benzoin and Stetter chemistry,  

NHC-catalyzed reactions are now most closely associated with the remarkable 

collection of transformation of α,β-unsaturated and α-functionalized aldehydes. This 

field has exploded since 2004 and now constitutes one of the most dynamic areas of 

homogeneous catalysis.  

Even a brief survey of the literature reveals one recurring catalyst motif of N-mesityl 

substituted N-heterocyclic carbenes, with the triazolium derivatives capturing the 

majority of the catalysts used. In this chapter we seek to give an overview of the 

development of these catalysts, a survey of the diverse and mechanistically intricate 

reactions they catalyzed, and an explanation for the origin of the superiority of these 

catalysts on new generation of NHC-catalyzed reactions. 

 

1.1. Historical background 

Liebig reported the first Benzoin dimerization of aldehyde catalyzed by cyanide ion in 

18331, but it was not until 1903 that Lapworth elucidated the mechanism of this 

remarkable reaction.2 These seminal papers were important not only for the nascent 

field, but they also constituted the first full mechanistic elucidation of an organic 
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reaction. In 1943, almost one hundred years after Liebig’s report of the cyanide 

catalyzed benzoin reaction, Ugai3 disclosed the use of thiamine (Vitamin B1) as the 

catalyst for the same transformation (Figure 9.1). This unexpected finding emerged 

from biological studies of thiamine-dependent enzymes involved in many biological 

pathways.4 Breslow5 extensively studied the mechanism of the thiamine-catalyzed 

benzoin reaction and proposed the structure of the key enaminol intermediate, now 

commonly referred to as “the Breslow intermediate.” While these efforts were 

thorough, reexaminations of the mechanism has continued and revealed complicated 

nuances in the rate-determining step6 and the nature of the reactive intermediates.7 

 

Figure 9.1. The mechanism of thiamine-catalyzed benzion reaction 

 
1.2. State of the art prior to 2004 

 

Figure 9.2. The progression of NHC precatalysts 
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Ugai’s report encouraged improvements in the efficiency of the Benzoin reaction and 

attempts to control the stereochemistry. The first major innovation arrived when 

Stetter simplified thiamine by replacing the heterocycle with an aryl or alkyl groups in 

1976.8 Another twenty years progressed before Enders and Teles disclosed a new 

catalyst design and detailed studies of a triazolium salt (Figure 9.2). 9 

Contemporaneously, Miyashita introduced imidazolium NHC catalyst in his studies.10 

The introduction of both the imidazole and triazole cores for N-heterocyclic carbene 

sparked the surge in finding more reactive and essentially led to the development of 

chiral NHC precatalysts for both the benzoin and the related Stetter reactions.11 

Enders and Teles were able to improve the enantioselectivity of both processes in 

comparison to the first attempt by Sheehan with a chiral thiazolium salt12, but it was 

still many years before an effective catalyst was to be found. Another breakthrough in 

designing chiral triazolium salt for carbene catalysis arose from the use of chiral 

amino alcohol, reported by Knight and Leeper in 1998. Chiral triazolium salts such as 

1 were found to be effective for dimerization of aldehyde, affording the products up to 

ca. 80% ee (Scheme 9.1a).13 A significant improvement was reported by Rovis, who 

employed chiral aminoindanol for the preparation of a series of catalyst of type 2,14 

which were competent for highly enantioselective intramolecular Stetter 15  and 

benzoin16 reactions (Scheme 9.2b). Modifying the protocol from Knight and Leeper, 

Rovis was able to introduce the electron-withdrawing N-C6F5 moiety into the chiral 

triazolium salts (i.e. 3) and used it to catalyze a highly enantioselective intermolecular 

Stetter reaction (Scheme 9.1c).17 The modular nature of this new procedure18 allowed 

the generation and identification of diverse, new NHC catalysts for challenging 

transformations.  
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Scheme 9.1  
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that the bulky mesityl moiety would shepherd the reactions of the conjugated Breslow 

intermediate to the distal position. Indeed, NHC-precatalysts lacking N-mesityl 

groups gave poor results for the desired reaction (Figure 9.3). The bis N-mesityl 

imidazolium catalyst 8 was a good catalyst, but we found that this catalyst was poorly 

effective for the redox esterification of other α,β-unsaturated aldehydes. By 

combining the N-mesityl substituent and the triazolium core of 7, we synthesized the 

novel catalyst 9, which has emerged as the prototypical catalyst for a remarkable 

range of new NHC-catalyzed reactions.19 As this chapter will show, nearly all of these 

reactions require the N-mesityl group or similar substituent20 for effective reactions.  

 

Figure 9.3. Our impetus for developing N-mesityl NHC catalysts  
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versatile and widely used NHC catalysts. Figure 9.4 depicts the syntheses of azolium 

salts bearing the N-mesityl moiety. 

 

Figure 9.4. N-mesityl NHC catalysts and their syntheses  
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mechanistic rationale for the exceptional catalytic activity of triazolium NHCs 

bearing the N-mesityl moiety. In the subsequent sections, we will elucidate this 

phenomenon and highlight recent, exciting chemistry that these catalysts offer.         

 

Figure 9.5. Catalytic generation of five discreet intermediates via NHC catalysis 
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A brief survey of the literature, along with accumulated experience, confirms that 

essentially all reactions with α,β-unsaturated aldehydes require the N-mesityl 

catalysts (Figure 9.6). While other NHC catalysts such as those bearing N-C6F5 

groups have proven to be useful for many transformations (vide supra), they are less 

reactive or in certain cases displayed no reactivity for enals. 

 

Figure 9.7. Relative basicity and acidity of various N-heterocyclic carbenes 
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knowledge and the reactions in Figure 9.6 as mechanistic probes, we undertook 

careful comparison studies by catalyst analog synthesis, labeling experiments, and 

consideration of all the elementary steps. Contemporaneous with our investigation, 

Mayr reported that the N-mesityl carbenes are not very nucleophilic but are highly 

Lewis basic (Figure 9.7).29 

 

Figure 9.8. The kinetic effects of the N-mesityl group. 
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a slower leaving group, which renders the barrier of the back reaction higher in 

energy (k-a; Figure 9.8). Second, the formation (kb) of the Breslow intermediate (i.e. 

homoenolate or acyl anion equivalents) is accelerated and appears to also be 

irreversible. The electron-rich nature of the mesityl moiety results in a highly reactive 

Breslow intermediate towards electrophile or oxidant. This step (kc) for the N-mesityl 

catalyst is faster than the other NHCs. The two energy diagrams in Figure 9.8 

summarize our finding and compare the reaction profile for the N-C6F5 and N-mesityl 

catalysts. 

 

Scheme 9.2 
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3. NHC Catalysis by Class of Reactive Intermediates  

3.1 Acyl Anion Equivalent 

The N-mesityl catalysts are not always required for simple benzoin and Stetter 

reactions, but are still often among the best catalysts for enantioselective or product-

selective variants. In certain cases, we27 and others36 have noted a decrease in 

catalytic activity of the N-mesityl catalysts, such as during an intramolecular 

cyclization event where the steric bulk of the mesityl group impedes the reaction rate. 

Despite of this, recent literature has shown that exciting new reactivities can be 

garnered from the N-mesityl triazolium catalysts for challenging transformations. 

Glorius has reported two impressive examples of chemoselective crossed-benzoin 

reactions37 between two aromatic aldehydes (Scheme 9.3a).38 The sterically hindered 

catalyst 12 prefers to add at the least hindered aldehyde, resulting in a highly 

nucleophilic Breslow intermediate/acyl anion that adds quickly to the electron-

deficient aldehyde. Glorius also reported another case of an addition of aromatic 

aldehyde to paraformaldehyde (Scheme 9.3b).39 While the formation of the Breslow 

intermediate derived from simple aldehyde is reversible27, lower effective 

concentration of the needed formaldehyde in equilibrium led to the NHC addition first 

to benzaldehyde and the resulting chemoselectivity. 
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Scheme 9.4  
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amino acid derivatives by means of NHC-catalyzed enantioselective intermolecular 

Stetter reaction (Scheme 9.4c). Mechanistic studies revealed a diastereoselective 

protonation as the key stereocontrol element. 

 

Scheme 9.5 
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NHCs in these transformations by precluding the reverse reaction reactions that might 

otherwise occur prior to the favored pathways. 

 

3.2 Homoenolate Equivalent 
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Scheme 9.6 
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of enolate equivalents from aldehydes and ketones using proline-derived catalysts. 

The synthetically valuable homoenolate equivalent, in contrast, could be effectively 

formed only under harsh or operationally difficult conditions. Furthermore, no 

enantioselective homoenolate additions were known. Our successful conversion of 

cinnamaldehyde to dihydrocinammic esters (Figure 9.3) implied the generation of a 

homoenolate equivalent and invited attempts to trap it with carbon electrophiles, 

rather than allowing it to undergo protonation. With this idea formulated, its 

execution proved to be surprisingly straightforward: simply combining 

cinnamaldehyde and an electrophilic aldehyde in the presence of IMesCl (8) and base 

led to formation of a γ-lactone product resulting from electrophilic trapping of a 

catalytically generated homoenolate equivalent in which both our group 50  and 

Glorius’51 simultaneously reported (Scheme 9.6a). Our work also extended to the 

syntheses of γ-lactam via homoenolate addition to N-sulfonyl imines52 (Scheme 9.6b) 

and saccharine derived imines (Scheme 9.6c).53 A general catalytic cycle of these 

reactions is shown below.  

Although these reactions are often diastereoselective, rendering these processes 

enantioselective using the existing chiral N-mesityl catalysts is still challenging.54 For 

example, low enantioselectivity was observed during our formal synthesis of 

salinosporamide 55  (Scheme 9.7a). Similar level of enantioinduction was also 

documented by You 56  during their attempt to render γ-lactone synthesis 

enantioselective (Scheme 9.7b) or by Zhang and Ying57 during their synthesis of 

protected β-amino ester 23 (Scheme 9.7c). While a solution by new catalyst design 

has not truly emerged, Scheidt focuses on the use of nitrone substrate 58  or 

preorganization by Lewis acids59 with either uncommon protecting group60 or more 

activated substrate61 (Scheme 9.8). 
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Scheme 9.7 

 

 

Scheme 9.8 
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The conjugated Breslow intermediate can also act as nucleophile for conjugate 

addition with various unsaturated electrophiles.62 One commonly used catalyst for this 

transformation is again the bismesityl imidazolium salt 8 (IMesCl). Nair reported the 

first example of what appeared to be the trapping of a catalytically generated 

homoenolate by a Michael-type addition. Surprisingly, the products observed were 

not the expected cyclopentanones but rather cyclopentenes, which are formed by an 

intramolecular aldol cyclization, lactonization, and decarboxylation.63 Later they were 

able to further optimize the reaction to employ chalcones bearing heterocycles 

(Scheme 9.9a).64 Using the same protocol, certain dienones such as 27 were found to 

be excellent coupling partners, this time forming the originally expected 

cyclopentenones (Scheme 9.9b).65  

 

Scheme 9.9 
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Cope reaction (Scheme 9.10a).66 The key decarboxylative formation of cyclopentenes 

26 and 18 results in the loss of a stereocenter and a synthetic handle. This 

stereochemical information can be preserved in other variations of this annulation. 

For example, unsaturated imines (i.e. 29) undergo a remarkable annulation leading to 

the formation of bicyclic β-lactams with outstanding yields and enantioselectivities 

(Scheme 9.10b).67 Alternatively, enone 31 contains a pendant hydroxyl group, which 

can intercept the activated carboxylate formed during the cascade annulation reaction 

and prevent the cyclopentene-forming decarboxylation reaction (Figure 9.9). 68 

Remarkably, changing the catalyst from N-mesityl substituted triazolium 10 to the 

nearly identical N-mesityl substituted imidazolium 11 resulted in different products. 
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Figure 9.9. Stereodivergence from chiral N-mesityl triazolium vs. imidazolium catalysts  

 

 

Scheme 9.11  
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catalyst turnover.69 Besides enones or enals as conjugate acceptors, β-nitrostyrene 

derivatives70 can also be used as demonstrated by Liu, who showcases the versatility 

of this method in the synthesis of δ-lactam 34 (Scheme 911b).71 Chi shows that the 

use of dienones such as 35 can furnish exquisite homoenolate-enolate cyclization 

cascade, yielding enantiopure product with high level of molecular complexity (36 in 

Scheme 9.11c).72   

 

3.3 Enolate Equivalent 

 

Scheme 9.12 
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halo-aldehydes. At the outset of our studies the enantioselective trapping of this 

catalytically generated ester enolate equivalent with carbon electrophiles seemed like 

a far-fetched idea. We were, however, pleasantly surprised to find that both the 

generation and utility of this species is one of the most facile and versatile 

enantioselective C–C bond forming processes to have been disclosed in NHC 

catalysis. 

In 2006 we reported the first successful generation and enantioselective C–C bond 

formation featuring the catalytically generated ester enolate equivalents. This work, 

which also debuted N-mesityl substituted aminoindanol-derived triazolium salt 10, 

revealed the azadiene -Diels Alder reaction of unsaturated imines and the catalytically 

generated enolates (Scheme 9.12a).21a Already then, we recognized that the 

generation of the NHC-bound, chiral ester enolate equivalents was not limited to α,β-

unsaturated aldehydes as substrates. Our group pioneered highly enantioselective 

NHC-catalyzed oxo-diene Diels-Alder reactions from chloroaldehydes (Scheme 

9.12b) 73 and their bisulfite salts adduct surrogates (Scheme 9.12c).74 With improved 

underlying mechanistic understanding garnered over the years, our group 

demonstrated that protonation of homoenolate derived from simple aldehyde (i.e. 

cinnamaldehyde instead of 37) requires a weak base – which generates a strong 

conjugate acid – and employed this knowledge for oxo-diene Diels-Alder reactions of 

simple enals75 (Scheme 9.12d). Computational studies in collaboration with the group 

of Prof. Marisa Kozlowski at the University of Pennsylvania indicated that the 

reaction proceeds via the deprotonated enolate, in which the oxygen of the enolate 

preassociates with the carbonyl of the diene (so called “oxy-anion steering 

mechanism” in Figure 9.10).76  The calculated transition state follows a concerted, yet 
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highly asynchronous [4+2] cycloaddition, rather than an alternative stepwise Michael 

addition-cyclization pathway. 

 

Figure 9.10. The mechansim of NHC-catalyzed Diels-Alder reactions 
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fact that the redox reaction of α-chloroaldehyde proceeds via an elimination 

mechanism proposed by Nowak77 and not through the Breslow intermediate (the rate 

acceleration effect from the mesityl moiety is not essential). The yields, however, 

were far lower than with the N-mesityl substituted catalysts. Computational model 

suggests a C-H π interaction between the substrate and the N-aryl moiety of the 

catalyst as the key enantiocontrol element (Figure 9.10). Electron-withdrawing group 

decreases this interaction and causes erosion in the enantioselectivity of the product 

(i.e. 78% ee for the C6F5 group) in comparison to the mesityl group (>99% ee), which 

maximizes this favorable interaction.  

 

Scheme 9.13 
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Beyond the work from our group, important contributions from Ye (Scheme 9.13a)24 

and Chi (Scheme 9.13b)78 have extended the suitable precursors to stable ketenes, 

other	α-functionalized aldehydes, and even saturated esters.79 Subsequent works have 

expanded the substrate scope80 of NHC-catalyzed [4+2] cycloadditions to include, for 

example, those of enals with vinyl ketones81 or modified chalcones,82 and Scheidt83 

also demonstrated an intramolecular variant of these reactions (Scheme 9.13c).  
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the catalytic generation of a conjugated enolate as a novel nucleophilic species in 

NHC chemistry. The group of Lin and Sun has reported an enantioselective 

fluorination by mean of internal redox reaction of enals bearing a leaving group at the 

γ position, using NFSI as the electrophilic fluorinating agent (Scheme 9.14c).86 Using 

trisubstituted enals together with an external oxidant 38, Chi reported an 

enantioselective aldol-cyclization cascade from unsubstituted conjugated enolate to 

trifluoromethyl ketones (Scheme 9.14d).87 We anticipate that this mode of reactivity 

via conjugated enolate will find new discovery and more application in the future.  
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carboxylic acid derivatives containing neighboring stereocenters, i.e. amino acid 

residues, there are few catalytic methodologies for the direct synthesis of carboxylic 

acid derivatives from constituent fragments with concomitant introduction of 

stereochemical complexity.88 The synthesis of carboxylic acid derivatives typically 

progresses through the intermediacy of “activated carboxylates” usually formed by 

the combination of a carboxylic acid and a coupling reagent. Given that these 

intermediates are rarely isolated, we believed that ester and amide forming processes 

featuring catalytically generated activated carboxylates should be feasible. This idea, 

coupled with a report from Townsend89 on the thiamine mediated biosynthesis of 

clauvulanic acid, led us to postulate that NHCs could effect the catalytic generation of 

activated carboxylates from α-functionalized aldehydes. The advantage of using N-

heterocyclic carbene is the ability to catalytically generate activated carboxylate in a 

redox neutral fashion and without any superstoichiometric byproducts (Figure 9.11b).  

 

Figure 9.12. Catalytic cycle for a redox esterification reaction of formylcyclopropane. 
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of these aldehydes, the N-mesityl substituted catalysts are not essential; the N-C6F5 

ones are often superior. But in redox reaction of unsaturated aldehydes, in particular, 

the use of N-mesityl catalysts is preferred. Our group has also reported a redox 

esterification reaction with achiral N-mesityl salt 9 and formylcyclopropanes bearing 

an electron-withdrawing group (Scheme 9.11a).90 The mechanism of this reaction 

follows the course of protonation of enolate 39 to form acyl azolium 40, which serves 

the role of the activated carboxylate for the esterification step (Figure 9.12). Similar to 

this approach, Smith has reported another redox esterification of α-aroyloxyaldehydes 

using the same catalyst (Scheme 9.11b)91 while the intramolecular variants of this 

particular reaction with ribose and protected carbohydrate derivatives were reported 

by the group of Wendeborn at Syngenta (Scheme 9.11c). 92  This example is 

synthetically useful for rapid diversification of sugar commodities.   

 

Scheme 9.15 
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You has shown that dihydropyranone 41 can be synthesized from the same 

formylcyclopropane in the absence of an external nucleophile and a proton source 

(Scheme 9.16a). 93  Likewise, She combined the redox processes of enal and 

epoxyaldehyde in a relay redox/ring-expansion cascade leading to another 

dihydropyranone (43 in Scheme 9.16b).94 Lastly Gravel shows that tetrahydrofurfural 

can be opened and lactonized intramolecularly by NHC 44 (Scheme 9.16c).95 

 

Scheme 9.16 

 

The first reaction catalyzed by N-mesityl azolium salts was the IMesCl-catalyzed 

transesterification pioneered by Nolan, Waymouth, and Hedrick in 2002.96 Based on 

this and biological studies of thiamine-phosphate dependent enzymes97, Movassaghi 

observed that acyl azolium species does not react with amine – an intriguing property 

that could be used for catalytic esterification of amino alcohols (Scheme 9.17a).98 

While this is impressive, a direct catalytic amidation is still highly desirable and 

potentially synthetically powerful. In 2007, our group and Rovis’ simultaneously 

reported the use of cocatalytic reagent such as imidazole99 or HOAt100 as a general 

solution to NHC-catalyzed amidation reactions of α-functionalized aldehydes 

9 (5 mol %)
30 mol % DBU

4 Å MS
dioxane
65 °C

H

O

Ph

O

Ph

N
N N Mes

BF4

O

Ph Ph

O

44 (10 mol %)
8 mol % DBU

CH2Cl2
20 °C

N N Ar

O
H

O O O

Ar
Cl

Ar = 2,6-(iPr)2C6H3

42 (30 mol %)
30 mol % tBuOK

S N Mes
ClO4

O

H
O

Ph

43 (67%)

O

O

Ph

41 (92%)

CH2Cl2 
reflux

45 (78%)

(a)

(b)

(c)



 30 - 43 

(Scheme 9.17b). To avoid the formation of imine from aldehyde and amine, our group 

has introduced α'-hydroxyenone 101  as aldehyde surrogate for amidation 102  and 

others103 (Scheme 9.17c). 

 

Scheme 9.17 

 

 

Figure 9.13. Synergistic catalytic kinetic resolution of cyclic secondary amines. 
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With this knowledge in hand, our group was also able to engineer a general solution 

to catalytic kinetic resolution of cyclic secondary amines 104  – compounds of 

contemporaneous interests for which other catalytic methods of resolution have not 

proven successful. With the help of the chiral hydroxamic acid cocatalyst 49, this 

reaction has a broad substrate scope; substituted piperidines, morpholines, piperazines 

and azepane all reacted in high selectivity. Figure 9.13 summarizes the synergistic 

catalytic cycle of this kinetic resolution. It is worth noting here that all approaches to 

catalytic amidation rely on the same strategy of transferring the acyl azolium (46; 

unreactive towards amine) to acyl imidazole 47, acyl triazole 47, or acyl hydroxamate 

50 (Scheme 9.17). 

 

Figure 9.14. A brief summary of NHC-catalyzed oxidative acylation reactions  
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While the previous redox approach to esters and amides is desirable in terms of 

efficiency and sustainability, oxidative esterification, in which the aldehyde stating 

materials can be oxidized to generate the activated carboxylate in mild condition, is 

also synthetically useful. This reaction operates by oxidation of the Breslow 

intermediate directly to the acyl azolium105 without the protonation sequence (Figure 

9.14). This concept has gained much attention from researchers in the field. Many 

oxidants such as azobenzene,106 MnO2
107

, or diquinone 38108 have been used together 

with a number of N-mesityl NHCs for oxidative esterification of simple aromatic 

aldehydes and enals. Contemporaneously, the works from our group109 and Zhang110 

have shown that air (O2) can be used as the stoichiometric oxidant instead of small 

molecule organic oxidant. The last remaining challenge in this field is the NHC-

catalyzed oxidation of aliphatic aldehyde, in which Takemoto has reported the only 

solution up to date.111 Figure 9.14 summarizes these approaches.   

 

3.5 α ,β-Unsaturated Activated Carboxylate Equivalent 

 

Figure 9.15. Catalytic generation of α,β-unsaturated acyl azolium for NHC catalysis 
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reported a protocol for the stereoselective generation of unsaturated acyl azolium with 

IMesCl (8) and ynals as acylating agents (Scheme 9.18a).112 A conceptually related 

redox esterification from α-bromo-enals has been recently reported by Du (Scheme 

9.18b).113 Zeitler’s mechanistic proposal involves the intermediacy of conjugated 

Breslow intermediate such as 53 above and its allenoate tautomer, which has been 

recently verified by trapping in another study by Sun (Scheme 9.18c).114  

   

Scheme 9.18 
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functionalizations of ethyl pyruvate 59 and kojic acid derivative 60 (Scheme 9.19a-

b).28a We were able to extend this methodology to the coupling of stable, unprotected 

enamines (i.e. 61) with enals in the presence of oxidant 38 to afford enantioenriched 

dihydropyridinones, which are of pharmaceutical interest but no method for catalytic 

asymmetric synthesis previously existed (Scheme 9.19c).115 More recently we showed 

that the enamine tautomer of various saccharine-derived N-sulfonylimines such as 62 

may be intercepted in a highly stereoselective manner with trisubstituted enals116 – a 

class of substrates whose reaction is a long-standing challenge in organocatalysis 

(Scheme 9.19d). 
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Figure 9.16. A general mechanism of NHC-catalyzed Claisen rearrangements  
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origin of stereocontrol and confirmed once again the proposed [3,3]-sigmatropic 

rearrangement mechanism.122 

 

Scheme 9.20  
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that of Lupton, Xiao128 and Studer129 employed 1,3-dicarbonyl compounds such as 66 

as the enol component in a related cascade reaction via the intermediacy of 

unsaturated acyl azolium in good yield and enantioselectivity (Scheme 9.20c). This 

mode of reactivity has received much attention between 2011 and 2012.130 Recently, 

Studer has further increased the scope of activated ketones to include sulfur ylide 67 

in his oxidative cyclopropanation reaction of enals with iPrOH as the terminal 

nucleophile (Scheme 9.20d).131 

 

3.6 Conclusion and Outlook 

Although NHC-catalysis is by no means limited to catalysts bearing N-mesityl or 

related groups, the role of N-mesityl substituted triazolium precatalysts in unlocking 

many of the new reaction manifolds cannot be underestimated. Few would have 

anticipated the diversity of the reactions and products or the outstanding stereocontrol 

offered by essentially one class of catalysts. As this field progresses, opportunities for 

new catalyst designs to open further pathways and expand the class of substrates 

amenable to NHC-catalysis abound. Most importantly, we anticipate that future 

innovations in catalyst design will make possible reactions from even simpler starting 

materials so that NHC-catalysis can move beyond its current niche of fine chemical 

products to impacting the industrial production of organic molecules – a field 

currently dominated by heterogeneous metal catalysis. 

 

Suggested Reading 

(a) Sohn, S. S.; Rosen, E. L.; Bode, J. W., J. Am. Chem. Soc. 2004, 126, 14370–
14371.  

(b) Sohn, S. S.; Bode, J. W., Org. Lett. 2005, 7, 3873–3876 
(c) Struble, J. R.; Kaeobamrung, J.; Bode, J. W. Org. Lett. 2008, 10, 957–960 
(d) Kaeobamrung, J.; Kozlowski, M. C.; Bode, J. W. Proc. Natl. Acad. Sci. 2010, 

107, 20661–20665 



 38 - 43 

(e) Mahatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192–197. 
(f) Chiang, P.-C.; Bode, J. W. TCI MAIL. 2011, 149, 2–17. 
(g) Chiang, P.-C.; Bode, J. W. In N-Heterocyclic Carbenes; The Royal Society of 

Chemistry: 2011, p 399–435. 
(h) Nair, V.; Menon, R. S.; Biju, A. T.; Sinu, C. R.; Paul, R. R.; Jose, A.; 

Sreekumar, V. Chem. Soc. Rev. 2011, 40, 5336–5346. 
(i) Vora, H. U.; Wheeler, P.; Rovis, T. Adv. Synth. Catal. 2012, 354, 1617–1639. 
(j) Douglas, J.; Churchill, G.; Smith, A. D. Synthesis 2012, 44, 2295–2309. 

 
 
Reference Section 
																																																								
1. Wöhler, F.; von Liebig, J. Annalen der Pharmacie 1832, 3, 249–282. 
2. (a) Lapworth, A. J. Chem. Soc., Trans. 1903, 83, 995–1005. (b) Lapworth, A. J. 
Chem. Soc., Trans. 1904, 85, 1206–1214. 
3. Ugai, T.; Tanaka, S.; Dokawa, S. J. Pharm. Soc. Jpn 1943, 63, 296–300. 
4. (a) Frank, R.; Leeper, F.; Luisi, B. Cell. Mol. Life Sci. 2007, 64, 892–905. (b) 
Kluger, R.; Tittmann, K. Chem. Rev. 2008, 108, 1797–1833. 
5. (a) Breslow, R. J. Am. Chem. Soc. 1958, 80, 3719–3726. (b) Breslow, R.; McNelis, 
E. J. Am. Chem. Soc. 1960, 82, 2394–2395. (c) Breslow, R.; Kim, R. Tetrahedron 
Lett. 1994, 35, 699–702. 
6. White, M. J.; Leeper, F. J. J. Org. Chem. 2001, 66, 5124–5131. 
7. (a) Teles, J. H.; Melder, J.-P.; Ebel, K.; Schneider, R.; Gehrer, E.; Harder, W.; 
Brode, S.; Enders, D.; Breuer, K.; Raabe, G. Helv. Chim. Acta 1996, 79, 61–83. (b) 
Berkessel, A.; Elfert, S.; Etzenbach-Effers, K.; Teles, J. H. Angew. Chem. 2010, 122, 
7063–7063. 
8. Stetter, H. Angew. Chem. Int. Ed. 1976, 15, 639–647. 
9. (a) Enders, D.; Breuer, K.; Raabe, G.; Runsink, J.; Teles, J. H.; Melder, J.-P.; Ebel, 
K.; Brode, S. Angew. Chem. Int. Ed. 1995, 34, 1021–1023. (b) Enders, D.; Breuer, K.; 
Runsink, J.; Henrique Teles, J. Liebig Ann. 1996, 1996, 2019–2028. 
10. (a) Miyashita, A.; Matsuoka, Y.; Suzuki, Y.; Iwamoto, K.; Higashino, T., Chem. 
Pharm. Bull. 1997, 45, 1235–1242. (b) Miyashita, A.; Suzuki, Y.; Nagasaki, I.; 
Ishiguro, C.; Iwamoto, K.; Higashino, T., Chem. Pharm. Bull. 1997, 45, 1254–1258. 
11. (a) Enders, D.; Breuer, K.; Teles, J. H. Helv. Chim. Acta 1996, 79, 1217–1221. (b) 
Enders, D.; Breuer, K.; Runsink, J.; Teles, J. H. Helv. Chim. Acta 1996, 79, 1899–
1902. 
12. Sheehan, J. C.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666–3667. 
13. Knight, R. L.; Leeper, F. J. J. Chem. Soc., Perkin Trans. 1 1998, 1891–1893. 
14. Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Org. Chem. 2005, 70, 5725–5728. 
15. Kerr, M. S.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2002, 124, 10298–
10299. 
16. Takikawa, H.; Hachisu, Y.; Bode, J. W.; Suzuki, K. Angew. Chem., Int. Ed. 2006, 
45, 3492–3494. 
17. Liu, Q.; Perreault, S.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14066–14067. 
18. Vora, H. U.; Lathrop, S. P.; Reynolds, N. T.; Kerr, M. S.; Read de Alaniz, J.; 
Rovis, T. Org. Synth., 2010, 87, 350–361. 
19. Sohn, S. S.; Bode, J. W. Org. Lett. 2005, 7, 3873–3876. 
20. In this Chapter, the authors will consider other ortho, ortho dialkyl-substituted N-
aryl catalysts to be of essentially the same effect as the N-mesityl counterparts.  



 39 - 43 

																																																																																																																																																															
21. (a) He, M.; Struble, J. R.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 8418–8420. 
(b) Struble, J. R.; Bode, J. W. Org. Synth. 2010, 87, 362–376. 
22. (a) Struble, J. R.; Kaeobamrung, J.; Bode, J. W. Org. Lett. 2008, 10, 957–960. (b) 
Struble, J. R.; Bode, J. W. Tetrahedron 2008, 64, 6961–6972. 
23. Lebeuf, R.; Hirano, K.; Glorius, F. Org. Lett. 2008, 10, 4243–4246. 
24. Huang, X.-L.; He, L.; Shao, P.-L.; Ye, S. Angew. Chem. Int. Ed. 2009, 48, 192–
195. 
25. (a) Chiang, P.-C.; Bode, J. W. TCI MAIL. 2011, 149, 2–17. (b) Mahatthananchai, 
J.; Bode, J. W. In Asymmetric Synthesis: The Essentials II; Wiley: 2012, p 67–77. 
26. Rovis, T. Chem. Lett., 2008, 37, 2–7. 
27. Mahatthananchai, J.; Bode, J. W. Chem. Sci. 2012, 3, 192–197. 
28. (a) Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J. W. J. Am. Chem. 
Soc. 2010, 132, 8810–8812. (b) Bugaut, X.; Liu, F.; Glorius, F. J. Am. Chem. Soc. 
2011, 133, 8130–8133. 
29. Maji, B.; Breugst, M.; Mayr, H. Angew. Chem., Int. Ed. 2011, 50, 6915–6919. 
30. Chow, K. Y.-K.; Bode, J. W., J. Am. Chem. Soc. 2004, 126, 8126–8127. 
31. Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 
9518–9519. 
32. (a) Concellón, C.; Duguet, N.; Smith, A. D. Adv. Synth. Catal. 2009, 351, 3001–
3009. (b) Wang, X.-N.; Lv, H.; Huang, X.-L.; Ye, S. Org. Biomol. Chem. 2009, 7, 
346–350. 
33. Johnson, J. S., Angew. Chem., Int. Ed. 2004, 43, 1326–1328. 
34. (a) Kano, T.; Sasaki, K.; Maruoka, K. Org. Lett. 2005, 7, 1347–1349. (b) Suzuki, 
Y.; Muramatsu, K.; Yamauchi, K.; Morie, Y.; Sato, M. Tetrahedron 2006, 62, 302–
310. 
35. (a) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith, A. D. Org. Biomol. 
Chem. 2008, 6, 1108–1113. (b) He, L.; Lv, H.; Zhang, Y.-R.; Ye, S. J. Org. Chem. 
2008, 73, 8101–8103. (c) Zhang, Y.-R.; Lv, H.; Zhou, D.; Ye, S. Chem. Eur. J. 2008, 
14, 8473–8476. (d) Shao, P.-L.; Chen, X.-Y.; Ye, S. Angew. Chem. Int. Ed. 2010, 49, 
8412–8416. (e) Jian, T.-Y.; Shao, P.-L.; Ye, S. Chem. Commun. 2011, 47, 2381–
2383.  
36. (a) Rong, Z.-Q.; Li, Y.; Yang, G.-Q.; You, S.-L. Synlett 2011, 7, 1033–1037. (b) 
Kim, S. M.; Jin, M. Y.; Kim, M. J.; Cui, Y.; Kim, Y. S.; Zhang, L.; Song, C. E.; Ryu, 
D. H.; Yang, J. W. Org. Biomol. Chem. 2011, 9, 2069–2071. (c) Mao, H.; An, S. L.; 
Kim, S.-M.; Yang, J.-W., Bull. Korean Chem. Soc. 2011, 32, 4408–4410. 
37. Other examples include (a) Jin, M. Y.; Kim, S. M.; Han, H.; Ryu, D. H.; Yang, J. 
W., Org. Lett. 2011, 13, 880–883. (b) O'Toole, S. E.; Rose, C. A.; Gundala, S.; 
Zeitler, K.; Connon, S. J., J. Org. Chem. 2010, 76, 347–357. 
38. Piel, I.; Pawelczyk, M. D.; Hirano, K.; Fröhlich, R.; Glorius, F., Eur. J. Org. 
Chem. 2011, 2011, 5475–5484. 
39. Kuhl, N.; Glorius, F., Chem. Commun. 2011, 47, 573–575. 
40. Read de Alaniz, J.; Rovis, T. Synlett 2009, 8, 1189–1207. 
41. Fang, X.; Chen, X.; Lv, H.; Chi, Y. R., Angew. Chem., Int. Ed. 2011, 50, 11782–
11785. 
42. Liu, G.; Wilkerson, P. D.; Toth, C. A.; Xu, H., Org. Lett. 2012, 14, 858–861. 
43. Jousseaume, T.; Wurz, N. E.; Glorius, F., Angew. Chem., Int. Ed. 2011, 50, 1410–
1414. 
44. Biju, A. T.; Kuhl, N.; Glorius, F., Accounts. Chem. Res. 2011, 44, 1182–1195. 



 40 - 43 

																																																																																																																																																															
45. Piel, I.; Steinmetz, M.; Hirano, K.; Fröhlich, R.; Grimme, S.; Glorius, F., Angew. 
Chem., Int. Ed. 2011, 50, 4983–4987. 
46. Biju, A. T.; Glorius, F., Angew. Chem., Int. Ed. 2010, 49, 9761–9764. 
47. Liu, F.; Bugaut, X.; Schedler, M.; Fröhlich, R.; Glorius, F., Angew. Chem., Int. 
Ed. 2011, 50, 12626–12630. 
48. DiRocco, D. A.; Rovis, T. Angew. Chem. Int. Ed. 2011, 50, 7982–7983. 
49. Schedler, M.; Fröhlich, R.; Daniliuc, C.-G.; Glorius, F., Eur. J. Org. Chem. 2012, 
2012, 4164–4171. 
50. Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370–
14371. 
51. Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205–6208. 
52. He, M.; Bode, J. W. Org. Lett. 2005, 7, 3131–3134. 
53. Rommel, M.; Fukuzumi, T.; Bode, J. W. J. Am. Chem. Soc. 2008, 130, 17266–
17267. 
54. Zheng, P.; Gondo, C. A.; Bode, J. W. Chem. Asian J. 2011, 6, 614–620. 
55. Struble, J. R.; Bode, J. W. Tetrahedron 2009, 65, 4957–4967. 
56. Li, Y.; Zhao, Z.-A.; He, H.; You, S.-L. Adv. Synth. Catal. 2008, 350, 1885–1890. 
57. Seayad, J.; Patra, P. K.; Zhang, Y.; Ying, J. Y. Org. Lett. 2008, 10, 953–956.. 
58. Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 
2416–2417. 
59. Cohen, D. T.; Scheidt, K. A. Chem. Sci. 2012, 3, 53–57. 
60. Raup, D. E. A.; Cardinal-David, B.; Holte, D.; Scheidt, K. A. Nature Chem. 2010, 
2, 766–771. 
61. Dugal-Tessier, J.; O'Bryan, E. A.; Schroeder, T. B. H.; Cohen, D. T.; Scheidt, K. 
A. Angew. Chem. Int. Ed. 2012, 51, 4963–4967. 
62. Nair, V.; Vellalath, S.; Babu, B. P. Chem. Soc. Rev. 2008, 37, 2691–2698. 
63. Nair, V.; Vellalath, S.; Poonoth, M.; Suresh, E., J. Am. Chem. Soc. 2006, 128, 
8736–8737. 
64. Nair, V.; Paul, R. R.; Padmaja, D. V. M.; Aiswarya, N.; Sinu, C. R.; Jose, A., 
Tetrahedron 2011, 67, 9885–9889. 
65. Nair, V.; Babu, B. P.; Vellalath, S.; Suresh, E., Chem. Commun. 2008, 747–749. 
66. Chiang, P.-C.; Kaeobamrung, J.; Bode, J. W., J. Am. Chem. Soc. 2007, 129, 3520–
3521. 
67. He, M.; Bode, J. W., J. Am. Chem. Soc. 2008, 130, 418–419. 
68. Kaeobamrung, J.; Bode, J. W., Org. Lett. 2009, 11, 677–680. 
69. Cohen, D. T.; Cardinal-David, B.; Roberts, J. M.; Sarjeant, A. A.; Scheidt, K. A., 
Org. Lett. 2011, 13, 1068–1071. 
70. Nair, V.; Sinu, C. R.; Babu, B. P.; Varghese, V.; Jose, A.; Suresh, E., Org. Lett. 
2009, 11, 5570–5573. 
71. Maji, B.; Ji, L.; Wang, S.; Vedachalam, S.; Ganguly, R.; Liu, X.-W., Angew. 
Chem., Int. Ed. 2012, 51, 8276–8280. 
72. Fang, X.; Jiang, K.; Xing, C.; Hao, L.; Chi, Y. R., Angew. Chem., Int. Ed. 2011, 
50, 1910–1913. 
73. He, M.; Uc, G. J.; Bode, J. W. J. Am. Chem. Soc. 2006, 128, 15088–15089. 
74. He, M.; Beahm, B. J.; Bode, J. W. Org. Lett. 2008, 10, 3817–3820. 
75. Kaeobamrung, J.; Kozlowski, M. C.; Bode, J. W. Proc. Natl. Acad. Sci. 2010, 
107, 20661–20665. 
76. Allen, S. E.; Mahatthananchai, J.; Bode, J. W.; Kozlowski, M. C. J. Am. Chem. 
Soc. 2012, 134, 12098–12103. 



 41 - 43 

																																																																																																																																																															
77. Nowak, R. M. J. Org. Chem. 1963, 28, 1182–1187. 
78. Fang, X.; Chen, X.; Chi, Y. R. Org. Lett. 2011, 13, 4708–4711. 
79. Hao, L.; Du, Y.; Lv, H.; Chen, X.; Jiang, H.; Shao, Y.; Chi, Y. R. Org. Lett. 2012, 
14, 2154–2157. 
80. (a) Kobayashi, S.; Kinoshita, T.; Uehara, H.; Sudo, T.; Ryu, I., Org. Lett. 2009, 
11, 3934–3937. (b) Rong, Z.-Q.; Jia, M.-Q.; You, S.-L., Tetrahedron 2011, 67, 9329–
9333. (c) Jian, T.-Y.; Sun, L.-H.; Ye, S., Chem. Commun. 2012, DOI: 
10.1039/C2CC35273G. 
81. Nair, V.; Paul, R. R.; Seetha Lakshmi, K. C.; Menon, R. S.; Jose, A.; Sinu, C. R. 
Tetrahedron Lett. 2011, 52, 5992–5994. 
82. Fang, X.; Chen, X.; Chi, Y. R. Org. Lett. 2011, 13, 4708–4711. 
83. Phillips, E. M.; Wadamoto, M.; Chan, A.; Scheidt, K. A. Angew. Chem., Int. Ed. 
2007, 46, 3107–3110. 
84. Wadamoto, M.; Phillips, E. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 
2007, 129, 10098–10099. 
85. Kawanaka, Y.; Phillips, E. M.; Scheidt, K. A. J. Am. Chem. Soc. 2009, 131, 
18028–18029. 
86. Zhao, Y.-M.; Cheung, M. S.; Lin, Z.; Sun, J. Angew. Chem. Int. Ed. 2012, DOI: 
10.1002/anie.201204521. 
87. Mo, J.; Chen, X.; Chi, Y. R. J. Am. Chem. Soc. 2012, 134, 8810–8813. 
88. Pattabiraman, V.; Bode, J. W. Nature 2011, 480, 471–479. 
89. Khaleeli, N.; Li, R.; Townsend, C. A., J. Am. Chem. Soc. 1999, 121, 9223–9224. 
90. Sohn, S. S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021–6024. 
91. Ling, K. B.; Smith, A. D. Chem. Commun. 2011, 47, 373–375. 
92. Ling, K. B.; Smith, A. D. Chem. Commun. 2011, 47, 373–375. 
93. Li, G.-Q.; Dai, L.-X.; You, S.-L. Org. Lett. 2009, 11, 1623–1625. 
94. Qi, J.; Xie, X.; He, J.; Zhang, L.; Ma, D.; She, X. Org. Biomol. Chem. 2011, 9, 
5948–5950. 
95. Wang, L.; Thai, K.; Gravel, M. Org. Lett. 2009, 11, 891–893. 
96. (a) Grasa, G. A.; Kissling, R. M.; Nolan, S. P. Org. Lett. 2002, 4, 3583–3586. (b) 
Nyce, G. W.; Lamboy, J. A.; Connor, E. F.; Waymouth, R. M.; Hedrick, J. L. Org. 
Lett. 2002, 4, 3587–3590. 
97. (a) Breslow, R.; McNelis, E. J. Am. Chem. Soc. 1960, 82, 2394–2395. (b) Daigo, 
K.; Reed, L. J. J. Am. Chem. Soc. 1962, 84, 659–662. (c) White, F. G.; Ingraham, L. 
L. J. Am. Chem. Soc. 1962, 84, 3109–3111. (d) Bruice, T. C.; Kundu, N. G. J. Am. 
Chem. Soc. 1966, 88, 4097–4098. (e) Lienhard, G. E. J. Am. Chem. Soc. 1966, 88, 
5642–5649. (f) Owen, T. C.; Richards, A. J. Am. Chem. Soc. 1987, 109, 2520–2521. 
(g) Owen, T. C.; Harris, J. N. J. Am. Chem. Soc. 1990, 112, 6136–6137. (h) Ferreira, 
L. M.; Lobo, A. M.; Prabhakar, S.; Marcelo-Curto, M. J.; Rzepa, H. S.; Yi, M. Y. J. 
Chem. Soc., Chem. Commun. 1991, 1127–1128. 
98. (a) Movassaghi, M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453-2456. (b) Schmidt, 
M. A.; M¸ller, P.; Movassaghi, M. Tetrahedron Lett. 2008, 49, 4316–4318. 
99. Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798–13799. 
100. Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796–13797. 
101. Unlike enals, this substrate can be synthesized from an aldol reaction in one step 
from inexpensive materials: (a) Palomo, C.; Oiarbide, M.; García, J. M.; González, 
A.; Arceo, E., J. Am. Chem. Soc. 2003, 125, 13942–13943. (b) Monge, D.; Martín-
Zamora, E.; Vázquez, J.; Alcarazo, M.; Álvarez, E.; Fernández, R.; Lassaletta, J. M. 
Org. Lett. 2007, 9, 2867–2870. (b) Lee, S.; Lim, C. J.; Kim, S.; Subramaniam, R.; 



 42 - 43 

																																																																																																																																																															
Zimmerman, J.; Sibi, M. P. Org. Lett. 2006, 8, 4311–4313. (c) Sakai, T.; Yamawaki, 
A.; Ito, H.; Utaka, M.; Takeda, A. J. Heterocycl. Chem. 1986, 23, 1199–1201. 
102. Chiang, P. C.; Kim, Y.; Bode, J. W. Chem. Commun. 2009, 4566–4568. 
103. Chiang, P.-C.; Rommel, M.; Bode, J. W., J. Am. Chem. Soc. 2009, 131, 8714–
8718. 
104. (a) Binanzer, M.; Hsieh S.-Y.; Bode, J. W. J. Am. Chem. Soc. 2011, 133, 19698–
19701. (b) Hsieh, S.-Y.; Binanzer, M.; Kreituss, I.; Bode, J. W. Chem. Commun. 
2012, 48, 8892–8894. 
105. (a) Castells, J.; Llitjos, H.; Moreno-Mañas, M. Tetrahedron Lett. 1977, 18, 205–
206. (b) Inoue, H.; Higashiura, K. J. Chem. Soc., Chem. Commun. 1980, 549–550. (c) 
Castells, J.; Pujol, F.; Llitjos, H.; Morenomanas, M. Tetrahedron 1982, 38, 337–346. 
(d) Tam, S.-w.; Jimenez, L.; Diederich, F. J. Am. Chem. Soc. 1992, 114, 1503–1505. 
106. (a) Rose, C. A.; Zeitler, K. Org. Lett. 2010, 12, 4552–4555. (b) For a related 
report, see Noonan, C.; Baragwanath, L.; Connon, S. J. Tetrahedron Lett. 2008, 49, 
4003–4006. 
107. Maki, B. E.; Chan, A.; Phillips, E. M.; Scheidt, K. A. Org. Lett. 2007, 9, 371–
374. 
108. (a) De Sarkar, S.; Biswas, A.; Song, C. H.; Studer, A. Synthesis 2011, 12, 1974–
1983. (b) For the preparation of the oxidant, Kharasch, M. S.; Joshi, B. S. J. Org. 
Chem. 1957, 22, 1439–1443. 
109. (a) Chiang, P.-C.; Bode, J. W. Org. Lett. 2011, 13, 2422–2425. (b) For a related 
report, see Maji, B.; Vedachalan, S.; Ge, X.; Cai, S.; Liu, X.-W. J. Org. Chem. 2011, 
76, 3016–3023. 
110. (a) Meng, J.-J.; Gao, M.; Wei, Y.-P.; Zhang, W.-Q. Chem. Asian. J. 2012, 7, 
872–875. (b) For a related report, see Arde, P.; Ramanjaneyulu, B. T.; Reddy, V.; 
Saxena, A.; Anand, R. V. Org. Biomol. Chem. 2012, 10, 848–851. 
111. Uno, T.; Inokuma, T.; Takemoto, Y. Chem. Commun. 2012, 48, 1901–1903. 
112. (a) Zeitler, K., Org. Lett. 2006, 8, 637–640. (b) The cyanide catalyzed variant 
was reported much earlier: Walia, J. S.; Vishwakarma, L. C., J. Chem. Soc., Chem. 
Commun. 1969, 396. 
113. (a) Wang, X.-B.; Zou, X.-L.; Du, G.-F.; Liu, Z.-Y.; Dai, B. Tetrahedron 2012, 
68, 6498–6503. (b) The cyanide catalyzed variant was also reported much earlier: 
Roedig, A.; Hagedorn, F., Liebigs Ann. 1965, 683, 30–41. 
114. Zhao, Y.-M.; Tam, Y.; Wang, Y.-J.; Li, Z.; Sun, J., Org. Lett. 2012, 14, 1398–
1401. 
115. Wanner, B.; Mahatthananchai, J.; Bode, J. W., Org. Lett. 2011, 13, 5378–5381. 
116. Kravina, A. G.; Mahatthananchai, J.; Bode, J. W., Angew. Chem., Int. Ed. 2012, 
51, 9433–9436. 
117. Mahatthananchai, J.; Zheng, P.; Bode, J. W., Angew. Chem., Int. Ed. 2011, 50, 
1673–1677. 
118. Merski, M.; Townsend, C. A., J. Am. Chem. Soc. 2007, 129, 15750–15751. 
119. Samanta, R. C.; Maji, B.; De Sarkar, S.; Bergander, K.; Fröhlich, R.; Mück-
Lichtenfeld, C.; Mayr, H.; Studer, A., Angew. Chem., Int. Ed. 2012, 51, 5234–5238. 
120. (a) Coates, R. M.; Rogers, B. D.; Hobbs, S. J.; Curran, D. P.; Peck, D. R., J. Am. 
Chem. Soc. 1987, 109, 1160–1170. (b) Coates, R. M.; Hobbes, S. J. J. Org. Chem. 
1984, 49, 140−152. 
121. Mahatthananchai, J.; Kaeobamrung, J.; Bode, J. W., ACS Catal. 2012, 2, 494–
503. 
122. Lyngvi, E.; Bode, J. W.; Schoenebeck, F. Chem. Sci. 2012, 3, 2346–2350. 



 43 - 43 

																																																																																																																																																															
123. Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2009, 131, 14176–
14177. 
124. Candish, L.; Lupton, D. W. Org. Biomol. Chem. 2011, 9, 8182–8189. 
125. (a) Ryan, S. J.; Candish, L.; Lupton, D. W. J. Am. Chem. Soc. 2011, 133, 4694–
4697. (b) Ryan, S. J.; Stasch, A.; Paddon-Row, M. N.; Lupton, D. W. J. Org. Chem. 
2012, 77, 1113–1124. 
126. Candish, L.; Lupton, D. W. Org. Lett. 2010, 12, 4836–4839. 
127. Candish, L.; Lupton, D. W. Chem. Sci. 2012, 3, 380–383. 
128. (a) Zhu, Z. Q.; Xiao, J. C. Adv. Syn. Catal. 2010, 352, 2455–2458. (b) Zhu, Z.-
Q.; Zheng, X.-L.; Jiang, N.-F.; Wan, X.; Xiao, J.-C. Chem. Commun. 2011, 47, 8670–
8672. 
129. (a) De Sarkar, S.; Studer, A. Angew. Chem., Int. Ed. 2010, 49, 9266–9269. (b) 
Biswas, A.; Sarkar, S. D.; Frohlich, R.; Studer, A. Org. Lett. 2011, 13, 4966–4969.  
130. (a) Rong, Z.-Q.; Jia, M.-Q.; You, S.-L. Org. Lett. 2011, 13, 4080–4083. (b) Sun, 
F.-G.; Sun, L.-H.; Ye, S. Adv. Synth. Catal. 2011, 353, 3134–3138. (c) Yao, C.; 
Wang, D.; Lu, J.; Li, T.; Jiao, W.; Yu, C. Chem. Eur. J. 2012, 18, 1914–1917. (d) Du, 
D.; Hu, Z.; Jin, J.; Lu, Y.; Tang, W.; Wang, B.; Lu, T. Org. Lett. 2012, 14, 1274–
1277. (e) c) Romanov-Michailidis, F.; Besnard, C. l.; Alexakis, A. Org. Lett. 2012, 
14, 4906–4909. 
131. Biswas, A.; De Sarkar, S.; Tebben, L.; Studer, A. Chem. Commun. 2012, 48, 
5190–5192. 


