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Summary

Helminths are complex multicellular organisms that infect billions of humans and
livestock worldwide causing an immense economic impact. The globally most
important parasite of small ruminants is the blood-feeding parasitic nematode
Haemonchus contortus. This parasite is currently controlled by anthelmintic drugs, but
its increasing resistance indicates the need for new strategies. The development of an
effective vaccine against this parasite would be the best alternative. Native vaccines
have proven to be protective, but every attempt of producing recombinant versions has

failed so far.

Chapter 1 summarizes the current status of vaccine development and provides insights
into recent progress in the components affecting the future progression of producing a
potent recombinant vaccine against this parasite. A special focus is placed on the
unusual and structurally distinct N-glycans of parasitic nematodes as compared to the

glycan structures of their host.

In Chapter 2, we evaluate the potential of a recombinant glycoprotein-based vaccine
for sheep against H. contortus. We produced various vaccine candidates in
glycoengineered insect cells and confirmed by HPLC and MS analysis the presence of
nematode-like N-glycans on these proteins. Furthermore, comparison of native and
recombinantly produced proteins revealed glycosite-specific microheterogeneity.
Unfortunately, no protection was observed in a sheep vaccination trial, despite a
significant immune response stimulated in immunized animals. We postulated that the

lack of other proteins is mainly responsible for the unprotective recombinant vaccines.

Our studies of the protectivity of the novel produced antigens led to new insights on
one of the most promising vaccine candidates. We identified a high rate of
polymorphism specifically in the aminopeptidase family H11 of H. contortus. Chapter
3 focuses on the further analysis of this newly discovered heterogeneity on both protein
and N-glycans. A massive surface variability of H11 was detected due to amino acid
alterations on the protein surface, different positioning of N-glycans and a site-specific

variability in the N-glycan structures. Furthermore, using maximum-likelihood model



positive diversifying selection was acting on the H11 genes could be shown. Which
selection pressures might be responsible for this high variability was further discussed
and a different view on the requirements for vaccine-induced protection is presented.
Our findings suggest that high genetic variations in H. contortus populations are one

of the main reasons for failures in the recombinant vaccine development.

In Chapter 4, we examined in more detail how N-glycan microheterogeneity is
generated in the Golgi apparatus of insect cells and what are the ‘driving forces’ of this
diversity. The model protein, the yeast protein disulfide isomerase 1 (PDI1) was
therefore produced in the insect cell expression system. /In vivo and in vitro studies of
N-glycan processing events showed that the underlying protein sequence had a
defining role in the N-glycan processing. The protein conformation determined the final

glycan structure by interacting with the covalently linked N-glycan.

The final Chapter 5 summarizes the main findings and conclusions of the thesis and

provides potential strategies for future research.



Zusammenfassung

Helminthen sind komplexe, multizellulare Organismen, welche auf der ganzen Welt
Milliarden von Menschen und Vieh infizieren und damit einen immensen
Okonomischen Schaden verursachen. Der weltweit haufigste Parasit in kleinen
Wiederkauern ist der blutsaugende Nematodenwurm Haemonchus contortus. Dieser
Parasit wird derzeit mit Anthelmintika kontrolliert, jedoch zeigt seine zunehmende
Resistenz dagegen die Notwendigkeit zur Erarbeitung neuer Strategien auf. Die
Entwicklung eines wirksamen Impfstoffs gegen diesen Parasiten ware die
bestmdgliche Alternative. Impfstoffe die aus nativem Wurmmaterial extrahiert werden,
haben sich zwar als schutzend erwiesen jedoch sind jegliche Versuche diese Proteine

rekombinant herzustellen bisher gescheitert.

Kapitel 1 fasst den aktuellen Stand der Impfstoffentwicklung zusammen und gibt
Einblicke in die jungsten Fortschritte im Zusammenhang mit den Aspekten, welche die
zukunftige Entwicklung eines potenten rekombinanten Impfstoffs gegen diesen
Parasiten beeinflussen kdnnten. Ein besonderer Schwerpunkt dieses Kapitels liegt auf
den N-Glykanen der parasitiren Nematoden, welche im Vergleich zu den

Glykanstrukturen ihres Wirtes strukturell unterschiedlich und sehr ungewohnlich sind.

In Kapitel 2 untersuchten wir das Potential eines rekombinanten glykoprotein-basierten
Impfstoffs gegen den Parasiten H. contortus, der zum Schutz von Schafen eingesetzt
werden soll. Dabei wurde ein neuartiges Expressionssystem mit glykanoptimierten
Insektenzellen entwickelt um Impfstoffantigene mit nematoden-spezifischen N-
Glykanen herzustellen, welche denen des Pathogens sehr gleichen. Mit dieser
Methode haben wir verschiedene Darmproteasen des Parasiten rekombinant
produziert. Hochleistungsflussigkeitschromatographie und zwei massenspektrometrie-
basierte Analysen verifizierten die nematoden-spezifischen N-Glykanstrukturen auf
den rekombinant produzierten Antigenen und zeigten eine unterschiedliche
Prozessierung dieser Strukturen (Mikroheterogenitat), welche abhangig von der Lage
der N-Glykanbindung sind. Obwohl eine signifikante Immunantwort bei geimpften

Tieren festgestellt wurde, konnte gleichwohl kein Schutz gegen den Parasiten erzielt



werden. Unserer Meinung nach war das Fehlen anderer relevanter Proteine
hauptsachlich dafur verantwortlich, dass die rekombinanten Impfstoffe nicht ihre

erhoffte Wirkung erzielten.

Unsere Untersuchungen Uber die Wirksamkeit der rekombinanten Antigene flihrten
gleichzeitig zu wichtigen, neuen Erkenntnissen im Zusammenhang mit einem dieser
aussichtsreichen Impfstoffkandidaten. Wir entdeckten insbesondere in der
Aminopeptidase Familie H11 von H. contortus eine hohe Polymorphismusrate. In
Kapitel 3 konzentrierten wir uns auf die weitere Analyse dieser neu entdeckten
Variabilitat. Diese erfolgte sowohl auf Protein- als auch auf N-Glykanebene. Dabei
wurde insbesondere aufgrund der Aminosaureveranderungen auf der Oberflache, der
unterschiedlichen Positionierungen der N-Glykane und einer ortsspezifischen
Variabilitdt in den N-Glykanstrukturen, eine massive Oberflachenvariabilitat der H11-
Proteine nachgewiesen. Durch die Verwendung von Maximal-Wahrscheinlichkeits-
Modellen entdeckten wir, dass ein positiver Selektionsdruck auf die H11 Gene wirkt.
Des Weiteren werden die Selektionsdricke, welche fur diese hohe Variabilitat
verantwortlich sein kdnnten, diskutiert. Aufgrund der prasentierten Resultate wird eine
andere Auffassung Uber Anforderungen an den impfstoff-induzierten Schutz
vorgestellt. Unsere Ergebnisse deuten darauf hin, dass hohe genetische Variationen
in H. contortus Populationen einen der Hauptgrinde fur das Ausbleiben einer

erfolgreichen rekombinanten Impfstoffproduktion darstellt.

In Kapitel 4 untersuchten wir genauer, wie die N-Glykan-Mikroheterogenitat im Golgi
Kompartiment der Insektenzellen erzeugt wird und was die verantwortlichen
Komponenten dieser Glykanvielfalt sind. Hierzu wurde das Modellprotein, die Hefe
Proteindisulfid-lsomerase 1 (PDI1), im Insektenzellexpressionssystem hergestellt. /n
vivo und in vitro Studien von N-Glykanprozessierungen zeigten, dass die
zugrundeliegende Proteinsequenz eine entscheidende Rolle bei der N-
Glykanprozessierung einnimmt. Die Proteinkonformation bestimmte dabei die
endgultige Struktur des Glykans durch ihre Wechselwirkungen mit dem kovalent

gebundenen Glykan.
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Das abschliessende Kapitel 5 fasst die wichtigsten Ergebnisse und
Schlussfolgerungen der vorliegenden Dissertation zusammen und zeigt mogliche

Strategien fur kinftige Forschungsarbeiten auf diesem Gebiet auf.
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Chapter 1

Introduction



1 Introduction

More than 1.5 billion of the world’s poorest people are infected or at risk for infections
with parasitic helminths [1]. This astronomical number means that 24% of the current
human population is affected. Moreover, parasitic diseases are highly prevalent in

livestock causing an immense economic impact worldwide.

Helminths are complex multicellular organisms and compared to viruses and bacteria
relatively large animals, which cannot simply be removed by phagocytosis. Therefore,
many parasitic worms have the capability to survive for decades in the host, also
through their ability to suppress the host’s immune system. Commonly, these parasitic
infections are clinically asymptomatic and do not cause any harm to the host.
Sometimes, they are even beneficial for the host by reducing inflammatory diseases.
However, in some cases, parasitism can cause severe immunopathological

complications in infected individuals, such as granulomatous disease and organ failure
[2].

Despite many years of research and knowledge of the immune response being
capable of expelling parasites upon vaccination in model systems, no vaccines are
currently available for human use [3]. Only a handful of recombinant vaccines against
animal parasites are available to date, including vaccines against cestode infections in
livestock and against hookworm in dog. More often, native antigens have proven to be
protective, while recombinant versions failed to induce the same levels of protection.
This applies also to the globally important parasite of small ruminants, the blood-
feeding nematode Haemonchus contortus. The intent of this chapter is to summarize
the current status of vaccine development and recent progress in each of the
components affecting the future progression of producing a potent recombinant

vaccine against H. contortus.

2.



1.1 Introduction to Haemonchus contortus

Haemonchus contortus (barber’s pole worm) is a gastrointestinal, blood-feeding
parasitic nematode infecting millions of domestic and wildlife ruminants in almost all
regions of the globe. This parasite belongs to the superfamily Trichostrongyloidea in
Clade V in the phylum Nematoda [4]. The roundworm Nematoda and the flatworm
Platyhelminthes (Trematodes and Cestodes) together comprise the Helminths. The
main clinical signs of haemonchosis are anemia (due to average blood losses of 49 ml
per day [5] in hosts infected with 1000 worms), oedema, lethargy, decreased live-
weight gain, impaired wool/milk production and decreased reproductive performance
[6]. Often the infections lead to death in young animals and in severely affected animals

with heavy worm burdens [7].

From a global perspective, H. contortus is the most important blood-feeding parasite
in sheep and goats. It causes a high economic impact worldwide with production losses
estimated at tens of billions of dollars per annum [8]. Two other gastrointestinal
nematodes of economic importance in sheep are Teladorsagia circumcincta and

Trichostrongylus spp [7].

H. contortus is sexually dioecious with obligate sexual reproduction [9] and has a direct
and rapid life cycle (Figure 1) [10]. Adult worms reside and mate in the host abomasum,
the fourth and final stomach compartment in ruminants, where each female worm
produces up to 2000 eggs per day [11], which are excreted with the feces. The eggs
embryonate, develop as first stage larvae (L1) and hatch in the grass. The larvae molt,
within approximately one week, through the second stage larvae (L2) to become third
stage larvae (L3), which migrate onto pasture. Infective L3 larvae are ingested by the
grazing ruminant host and pass through the forestomaches to the abomasum, where
they exsheath and develop through the fourth larval stage (L4) to become adults in two
to three weeks [10]. The last two stages both feed on blood. Due to the rapid life cycle
and high infection rates in a flock, H. contortus has an extremely high fecundity. In a
flock with hundreds of sheep, each harboring hundreds of egg-laying females, billions

of new progeny are passed onto pasture every few days [11].



Currently, the disease is treated with broad-spectrum chemotherapeutics or
anthelminthic drugs, such as benzimidazoles, levamisole or ivermectin [12]. However,
H. contortus resistance to all major anthelmintic drug classes and the rapid spread of
drug-resistant strains indicates the need for new strategies [7, 13]. Therefore,
numerous attempts to either breed genetically resistant sheep or to develop a safe and

effective vaccine against H. contortus have been made over the last decades.

Infective larval

stage 3 (L3)
Larval
stage 2 Amplification
(L2)

Larval

stage 1 H
) N Life cycle
\ adult 4l

Eggs hatch in oo & / ;
the grass \ ;
OO ,, Eggs pass
with feces

Transmission

Figure 1: Life cycle of Haemonchus contortus

Hundreds of adult worms sexually reproduce in the ruminant abomasum (the fourth stomach) and each
female thereby produces 2000 eggs per day. Eggs are excreted with the feces, then they embryonate,
develop as first stage larvae (L1) and hatch in the grass. The larvae molt within approximately one week
through the second stage larvae (L2) to become third stage infective larvae (L3), which migrate onto
pasture. Grazing hosts ingest the larvae reinfecting themselves (amplification) or other grazing
ruminants (transmission). Ingested L3 larvae travel through the four chambered stomach (1. Rumen, 2.
Reticulum, 3. Omasum, 4. Abomasum). After arrival in the abomasum, they exsheath and develop
through the fourth larval stage (L4) to become adults in two to three weeks. The last two stages both

feed on blood. Figure adapted from [14, 15].
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1.2 Genetic Diversity of Haemonchus contortus

The need to combat parasitic diseases has been the primary stimulus for the majority
of the parasitological research, but some aspects of parasite biology, e.g. genetics,
were neglected for many years [16]. Genetic variation in H. contortus was evident
before studying the underlying genetic basis due to several features of the parasite.
For example, the adaptation of H. contortus to a broad range of different host species,
including domestic and wild animals, and the adaption to different climatic zones,
spreading from its origin in sub-Saharan Africa to almost all regions of the globe [17],
suggests underlying genetic diversity. In addition, the different vulva morph types of H.
contortus, smooth, knobbed, linguiform A-right, linguiform A-left or linguiform C-type,
are another example of genetically determined variation [16, 18]. Furthermore, a well-
known hallmark of this parasite is its remarkably high potential of developing
anthelminthic resistance, even after only a few years of drug treatment [11, 19]. This
adaptive capacity is largely due to a high genetic variation in the parasite population
[19].

Many studies on Trichostrongyloidea nematodes, including H. contortus, showed that
this superfamily is characterized by high genetic variability and large effective
population sizes [20, 21]. A first study indicated extremely high levels of within-
population genetic diversity (96 — 99 %) in five species of this superfamily from three
different hosts (Ostertagia ostertagi and H. placei from cattle, H. contortus and
Teladorsagia circumcincta from sheep, and Mazamastrongylus odocoilei from white-
tailed deer) [21]. In addition, H. contortus was shown to have high genetic diversity not
only within, but as well between populations and within and among continents [22].
Moreover, these high levels of genetic diversity are retained in laboratory isolates
passaged for many years [12, 23, 24]. These reports were mainly analyzing the
nicotine amide dehydrogenase (NAD4) locus of the mitochondrial DNA, which has a
higher rate of substitution than in nuclear DNA, making it possible to differentiate the

most closely related species pairs [25].

Other studies confirmed the high genetic diversity in H. contortus populations by
analysis of isozymes [26], analysis of mMRNA [27] and analysis of DNA by amplified
fragment length polymorphism (AFLP) [12, 22], microsatellites [23, 28, 29] and

transposon associated markers [30]. These high levels of sequence polymorphism in



addition to the relatively large genome size (~300 Mb) caused a maijor challenge to the

draft genome assembly of H. contortus [8, 31].

Sequence polymorphisms have generally been ascribed to result from high mutation
rates, large effective population sizes and migration rates [19]. H. contortus has indeed
a mutation rate that is up to ten times higher than the one of vertebrates [21]. However,
the high levels of genetic diversity in H. contortus are predominantly due to its
extremely large effective population sizes [32]. In fact, billions of new genotypes are
passed onto pasture every few days in a flock with hundreds of sheep [11]. Assuming
that H. contortus has a similar mutation rate as C. elegans (2.1 x 108 mutations per
site per generation [33]), enough progeny is created to mutate every single nucleotide
position in the genome each day [11]. Consequently, this parasite has a remarkable
ability to generate new mutations that provides a high adaptive capacity to respond to
selective pressures, such as environmental factors, host immune responses and
chemical treatments [32]. During the parasite's life cycle its different stages are subject
to distinct selection pressures. While in the free-living stages, temperature and
humidity will mainly affect population size, host immune responses and drug

treatments are applying strong selection pressures to the parasitic stages [9].

Nucleotide diversity might lead to non-neutral modifications on the protein level, either
through non-synonymous mutations (amino acid change), frameshift mutations or stop
codons leading to non-functional proteins. A number of studies have analyzed the
diversity of nematode proteins and especially the variability of vaccine candidates [34],
as this could have considerable implications for the production of a globally-effective
protein vaccine. Among the vaccine candidates studied there are the gut-expressed
cysteine proteases of H. contortus, which are predicted to be encoded by 63 genes
[31]. In this protein group an extreme variability was reported by using ESTs
(expressed sequence tags) or PCR-SSCP (Single Strand Conformation
Polymorphism) for analysis [27, 35, 36]. Substantial functional diversity was suggested
for enzymatic properties of the highly variable cysteine proteases [37]. However, they
were shown to hydrolyze similar di- and tetra-peptide substrates under neutral and
acidic pH conditions [38]. In contrast, a relatively low level of diversity was found in the
hookworm vaccine antigen, the Ancylostoma secreted protein termed ASP-1 (10/424

amino acid variation) [39].



In summary, many studies have shown a high genetic diversity in Trichostrongyloidea
nematodes and there is some evidence of variation in vaccine candidates, but more
research is needed to understand the underlying mechanisms and potential

consequences for future vaccine development.

1.3 N-glycans of Haemonchus contortus

1.3.1 Introduction to N-glycosylation

Asparagine-linked glycosylation (N-glycosylation) is one of the most abundant post-
translational modifications on proteins in Eukaryotes, Bacteria and Archaea [40]. It is
important for protein folding, oligomerization, quality control, sorting and transport of
secretory and membrane proteins. The N-glycans not only promote protein folding
directly by stabilizing polypeptides, but also indirectly by serving as recognition “tags”
in the interaction with a variety of lectins (carbohydrate-binding proteins), glycosidases,

and glycosyltransferases [41, 42]

During the synthesis of N-glycans in the Endoplasmic Reticulum, a preassembled core
oligosaccharide unit (GlcsMansGIcNAc2, where Glc is glucose, Man is mannose and
GIcNAc is N-acetylglucosamine) is transferred from the dolicholpyrophosphate lipid
carrier to an asparagine residues of a growing, nascent polypeptide chain by the
oligosaccharyltransferase (Figure 2) [43]. The acceptor sequon for N-linked
glycosylation in eukaryotes is N-X-S/T (whereas X can be any amino acid except for
proline) [42].

The early stages of the classic N-glycan processing pathway in the endoplasmic
reticulum show an extreme degree of conservation across all domains of life [44].
However, some parasitic protists can transfer truncated forms of lipid-linked
oligosaccharides, sometimes shorter “high mannose” or even just the core GIcNAc:2

sequence [45].
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Figure 2: N-linked glycosylation in the endoplasmic reticulum (ER)
The preassembled oligosaccharide is transferred from the dolicholpyrophosphate lipid carrier to

asparagine residues of a growing, nascent polypeptide by the OST. Figure modified from [46].

Once the glycoprotein has folded and reached the Golgi complex, the glycan chains
undergo further trimming or extension, and acquire more complex structures through
a series of nonuniform modifications carried out by the Golgi processing machineries
[41]. As these modifications vary from species to species, the resulting final N-glycan
structures on secreted proteins are highly different among distinct eukaryotic taxa
(Figure 3) [44]. Yeasts do not appear to trim their mannose residues, but often they
further extend them into large high-mannose glycans (mannans). In insects, mannoses
are trimmed like in mammals, leading to simple final structures with only the three core
mannose residues (paucimannose structures) and the addition of core difucosylation.
Plants follow a similar pathway but then often add a bisecting p1-2-linked xylose
residue on the B-linked mannose residue. This glycan epitope, as well as the a1-3-
linked core fucose, are also present in some parasitic helminths (e.g. Schistosoma
mansoni) and are immunogenic in vertebrates. In contrast, vertebrates further decorate
their glycans by producing multi-antennary complex type glycans with terminal
galactose and sialic acid residues [44]. As a result, this heterogeneity of the final N-
glycan structures adds an additional level of information content to the underlying
polypeptide structure [47]. Finally, N-glycans contribute to numerous biological

functions, in particular at the cell surface, where they do not only have many protective,



stabilizing, organizational, and barrier functions, but also influence the interactions with
the extracellular environment by providing ligands for cell adhesion, macromolecule

interactions and pathogen invasion [47, 48].

@ Mannose
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B N-Acetylglucosamine
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Figure 3: N-glycan modifications in the Golgi
Heterogeneity of final N-glycan structures among different eukaryotic taxa. Typical N-glycans are shown
produced by yeast (mannan), insects (paucimannose), plants, and vertebrates (multi-antennary

complex type glycans). Figure modified from [44].



1.3.1 N-glycans of Haemonchus contortus

Many parasitic glycans are unique to helminths or to a particular worm species, they
are highly abundant on the worm surfaces or secretions and most of them are highly

immunogenic to vertebrates [49, 50].

In Haemonchus contortus, an early study from the 1990s revealed unusual
carbohydrate modifications with up to three core fucose residues by FAB-mass
spectrometry on the native H11 antigen [51]. The three fucoses are attached to the
chitobiose core, two of them are found to be a1,3- and a1,6-linked to the proximal
GIcNAc and one fucose is a1,3-linked to the distal GIcNAc (Figure 4). The latter
substitution is unique in N-glycans and stage-specifically expressed in adult worms
[52]. The a1,3-fucosyltransferase transferring the third fucose to the distal GIcNAc has
been identified in C. elegans [53]. The core a1,3 fucose epitope is a common antigen
synthesized by many parasitic helminths and is highly immunogenic to vertebrates
when present on plant or insect glycoproteins [54, 55], whereas the core a1,6 fucose

epitope is commonly found on vertebrate N-glycans (Figure 3).

In nematodes, a1,3 and a1,6 core fucoses are often additionally decorated with
galactose residues, creating another nematode-antigen, the 'GalFuc' epitope [56, 57].
The enzyme GALT-1, a core a1,6-fucoside 1,4-galactosyltransferase-1 is generating
the GalFuc epitope in C. elegans [58]. This glycosyltransferase was identified with a
forward genetics-based target-search screening of C. elegans strains resistant towards
the nematotoxic fungal galectin CGL2 (Coprinopsis galectin 2) [59], which binds to the
'GalFuc' epitope. The CGL2 lectin, as well as CCL2 (Coprinopsis cinerea lectin 2 [60]),
which recognizes the a1,3 Fuc epitope by binding GlcNAc-31,4-(Fuc-a1,3-)GIcNAc,
were shown to be toxic towards H. contortus in an in vitro larval development assay
and bind the digestive tract of the larvae, as well as the brush border of the adult
parasite gut [61]. In addition, the lectins AAL (Fucose [62, 63]) and MOA
(Gala1,3Gal/GalNAc [64, 65]) were toxic against H. contortus in the in vitro larval
development assay, whereas CGL3 (GIcNAcB1-4GIcNAc and GalNAcB1-4GIcNAc
[66]) and Tec2 (2-O-Me-Fucose and 3-O-Me-Mannose [67]) were not. This study
thereby delivered valuable indirect evidence on the potential absence or presence of

N-glycan epitopes in H. contortus.
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The immunogenicity of the glycans and the sensitivity of nematodes towards specific
lectins (carbohydrate-binding proteins) lead to the hypothesis that lectins or anti-glycan
antibodies might be effective anthelminthics [59, 61]. Moreover, there is evidence that

a significant part of the sheep immune response targets carbohydrate epitopes of the

parasite [68]. For example, IgG antibodies from lambs vaccinated with a native vaccine
(H-gal-GP complex) recognize the LDNF epitope (fucosylated GalNAcB1-4GIcNAc)
[69, 70] and IgE antibodies from H. contortus infected sheep bind the core a1,3 fucose

and may contribute to an induction of a Th2 response [55].

The identification of a thrombospondin-like glycoprotein (GP300) in Dictyocaulus
viviparous, lead to the analysis of GP300 orthologues in H. contortus and revealed that
these proteins contained phosphorylcholine-substituted N-glycans, as was shown by
immunoblotting with the PC-specific antibody TEPC-15 [71].

A recent study reappraised the H. contortus N-glycome by using HPLC and MALDI-
TOF MS/MS in combination with selected digestions of N-glycans [56]. Many
previously predicted or identified N-glycan modifications were verified in the study,
trifucosylated glycans, LDNF, GalFuc epitope and phosphorylcholine [56]. In contrast
to earlier studies the trifucosylated glycans were not found to be attached to
trimannosyl cores, but to N-glycans with two mannoses attached to the core and where
the a1,6 mannose is missing. This finding was consistent with the in vitro requirements
of the a1,3-fucosyltransferase FUT-6 [53]. The additional hexose was found to be a
galactose, which is a1,2-linked to the distal a1,3-fucose [56]. Therefore this study

identified a new unusual N-glycan modification in H. contortus.
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1.3.2 N-glycans of other parasitic nematodes

Parasitic nematodes are characterized by the production of glycoproteins containing
many unusual and structurally distinct N-glycans as compared to the N-glycan
structures of their host (Figure 3 and 4). Typically, N-glycans of vertebrates terminate
in sialic acid, whereas nematodes do not synthesize this monosaccharide. Parasitic
nematodes commonly decorate their structures with terminal B-linked GalNAc on a
GIcNAc, leading to the LacdiNAc (LDN) motif [72]. This epitope is found on N-glycans
in the sheep nematode H. contortus, in the cattle lungworm Dictyocaulus viviparous
[73] and in the wide-spread nematode Trichinella spiralis [74] that infects rodents, pigs,
horses, bears, and humans. The LDN motif can further be decorated on the GalNAc
by the unusual tyvelose sugar, found in N-glycans of T. spiralis [75, 76], or by fucose
residues on both GIcNAc and GalNAc residues in the LDN motif, giving rise to FLDN
or LDNF, found in H. contortus [69] and Trichuris suis [77].

Another unusual modification of glycans, such as the phosphorylcholine (PC), is a
more common feature and is generated in several parasitic nematodes on the terminal
GIcNAc in: Ascaris suum [78], H. contortus [56], Onchocerca volvulus [79],
Oesophagostomum dentatum [57] and T. spiralis [74]. There is indirect evidence by
TEPC-15 immunoblotting that also D. viviparous proteins contain phosphorylcholine-
substituted N-glycans [71]. In addition, PC is also detected on GalNAc in LDN and on
GIcNAc in LDNF on N-glycans of T. suis [77].

Some glycoforms or epitopes are not uniquely found on N-glycans of parasitic
nematodes, like the Lewis X antigen, the core a1,3-fucose and high mannose glycans.
The Lewis X antigen is commonly expressed on human milk oligosaccharides [80], but
very limited in helminths, it can only be found in the nematode D. viviparous [73] and
in the trematode S. mansoni [81]. The core a1,3-fucose epitope is present on plant or
insect glycoproteins and a highly immunogenic motif [54]. It can be found in H.
contortus [51], T. suis [77] and many other parasitic helminths [55]. High mannose
glycans (GIcNAc2Mans-g) are known to play a crucial intracellular role in the control of
protein folding in the ER. They are commonly found in invertebrates and parasitic
nematode glycomes, where they might (in part) derive from intracellular proteins, but
they are also found on surface exposed and ES glycoproteins [81]. For example, on
an ES protein of Cooperia onchophora, one of the most common parasitic nematodes

in cattle, GIcNAcz2Mans was found to be the major glycan form [82].

-12-



Some nematodes modify their core fucose residues with galactose, either 31,4-linked
to the core a1,6-fucose leading to the ‘GalFuc’ epitope or a1,2-linked to the distal a1,3-
fucose. The latter has been recently discovered [57]. Both of these unusual
modifications represent motifs particular to a subset of nematodes, occurring in the
model nematode C. elegans, and in some parasitic worms including H. contortus [56],
A. suum [57], and O. dentatum [57], but also in the free-living nematode Pristionchus
pacificus [83]. The substituted or unsubstituted GalFuc epitope is not uniquely found

in nematodes, but also in planaria and some molluscs [84].

Mass spectromety based glycomics has provided insights in the unusual glycan
repertoires for many but not for all parasitic nematodes. Future research will unravel
the specific roles that these distinct N-glycans might play in the parasite's biology and

during parasite-host interactions.
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Figure 4: Overview of representative N-glycan structures and modifications of the parasitic

nematodes where they were identified.
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1.4 Vaccine Development against Haemonchus contortus

Anthelmintic drugs currently control H. contortus infections. However, there are H.
contortus strains that are resistant to all major anthelmintic drug classes and they are
rapidly spreading, which indicates the need for new strategies [7, 13]. The
development of a safe and effective vaccine against this sheep parasite would be the
best alternative to effectively control the disease and to combat the anthelminthic
resistance problem. Over the last decades numerous protective native antigens have
been identified but, so far, the remaining substantial challenge is to produce

recombinant versions inducing the same levels of protection.

1.4.1 Native vaccines

There are two types of native vaccines inducing high levels of protection against
Haemonchus contortus: 1) soluble excretory / secretory (E/S) products from the
nematode and 2) gut-derived 'hidden' antigens from the blood-feeding adult nematode.
Both vaccines have shown to reliably reduce fecal egg counts (FEC) by up to 95 %

and worm burden by up to 82 % (reviewed by [7, 85-89]).

Immunizations with the first type of native vaccine, the adult somatic H. contortus
extracts enriched for the 15 and 24 kDa E/S antigens, showed significant protection
against challenge infection (reductions of 77% in FEC and 85% in worm burden) [90-
92]. Vaccination induced primarily a Th2 response to the ES antigens with specific
IgG1 antibodies and increased mastocytosis in the abomasal tissue of vaccinated
sheep [92]. The authors suggested that vaccination may mimic the natural immunity

mechanism [92], but the actual mechanism has not been defined.

The second type of native vaccine are the protective gut fractions, which derive from
detergent-soluble extracts of the adult parasite and contain 'hidden' antigens. These
are defined as antigens that do not induce an antibody response during the course of
a natural infection [93], but can be used in vaccination strategies. However, there is
evidence that ‘hidden’ antigens are not completely hidden for the immune system, as
unvaccinated animals being exposed to H. contortus for a long time, are able to
generate an immune response against the gut antigens [94, 95]. In addition, the
immune response against H11 primed by immunization can be boosted, presumably

by H11 being released from dead or dying parasites in the sheep stomach [93, 96].
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Protective gut-antigens are expressed on the microvillar surface of the intestine and
show protease activity, believed to be required for the degradation of host blood
proteins like albumin and hemoglobin, the major food source of blood-feeding parasites
[97]. Proteolytic digestion of hemoglobin is conducted in a semi-ordered cascade of
proteases, which is notably similar in distantly related organisms such as hookworms,
Plasmodium and H. contortus [89, 97, 98]. It has been postulated that hemoglobin is
initially cleaved by aspartic proteases, then degraded to smaller peptides by cysteine
proteases, followed by metalloproteases and terminally degraded into free amino acids

by exopeptidases (e.g. aminopeptidases) [97].

To date, the most promising gut-derived native vaccines include the aminopeptidase
H11 enriched in a Concanavalin A (ConA) binding fraction [99], the glycoprotein
complex H-gal-GP containing metallo and aspartic proteases enriched in a galactose-
binding fraction [100], and cysteine proteases enriched in a thiol-binding fraction [101].
The activity of the enzymes H11 and H-gal-GP is inhibited by IgG antibodies from
vaccine-protected sheep [102, 103]. A limitation of ‘hidden’ antigen vaccines is that
protective antibody levels wane rapidly, as there is little natural boosting, thus,
readministration of vaccines need to be done regularly. A major advantage of the gut
antigen approach is, that it is effective in situations where natural immunity is weak,
such as in young lambs [104], and young goats [105] and peri-parturient ewes, where
some protective immunity was shown to be transferred to lambs by maternal antibodies
[106].

A commercial native anti-H. contortus vaccine (Barbervax®, WormVax) based on H11
and H-gal-GP was released in Australia in 2014, where the antigen preparation needs
to be extracted from local adult worms derived from intentionally infected sheep.
Barbervax has a restricted geographic coverage and a cold chain requirement limits

its distribution, features that make it difficult to reach a global market [107].
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Native H11

The best characterized native vaccine against H. contortus is the native H11 vaccine.
The protective fraction derives from detergent-soluble extracts of the adult parasite and
it is purified by lectin-affinity chromatography using Concanavalin A [99], which binds
specifically a-D-mannosyl and a-D-glucosyl residues. This fraction results in a mixture
of numerous different proteins with the H11 aminopeptidases being the most abundant
[108]. H11 is an integral membrane glycoprotein that runs on SDS-PAGE as a doublet
with a mean molecular mass of 110 kDa [99]. It is exclusively expressed on the
intestinal microvillar surface of the parasitic stages and exhibits both aminopeptidase
A and M activity [109] that is believed to degrade small peptides of host blood proteins

into free amino acids [97].

Immunization with native H11 induces high levels of protection leading to a reduction
of fecal egg counts by up to 95% and worm burden by 82% (reviewed in [7]). Correct
conformation and enzymatic activity of the native aminopeptidase H11 are important
to induce full protection, as the efficacy of the vaccine is reduced when H11 is
denatured with SDS or SDS and DTT [102]. Protective IgG antibodies inhibit the activity
of the H11 enzyme in vitro, and levels of inhibition highly correlate with levels of
protection in vivo [102]. Protection is thought to be mediated by antibodies that, when
taken up with the blood meal, inhibit the enzyme activity and disrupt nutrient absorption

[109]. Therefore, the enzyme H11 is considered to be critical for parasite survival.

Recently, 13 aminopeptidases were discovered in the complement of the family M1 of
H. contortus [110], and the native H11 vaccine comprises a family of five different
isoforms (termed H11, H11-1, H11-2, H11-4 and H11-5) [85, 109, 111]. The five
members of the family share 62-75% amino acid identity and are tandemly arranged
in the genome, suggesting that the gene family has arisen through recent duplication
and divergence [111]. Different transcriptional pattern of the isoforms were identified
by semi-quantitative RT-PCR, where H11 and H11-1 were shown to be expressed in
infective L3 larvae and all five isoforms in adult worms, with H11-4 being the most
abundant form and H11-5 being female-specific [111]. H11 isoforms form dimers, but
little is known about the interaction amongst its isoforms, for example whether they

form heterodimers.
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Each H11 isoform has the predicted structure of a type || membrane protein, with a
short N-terminal cytoplasmic tail, a single transmembrane domain, and an extracellular
region organized into the four-domain structure characteristic of the M1
metallopeptidases (Figure 5) [7, 112]. Domain Il has a thermolysin-fold and possesses
an internal cavity surrounding the active site with the zinc-binding HEXXHX1sE and
exo-peptidase GXMEN catalytic motifs [112]. All H11 proteins contain N-glycosylation
sites and mass spectrometric analysis of the native H11 vaccine has identified unusual
highly fucosylated core structures including core a1-3 fucosylation which is highly

immunogenic [51].

1335 57 275 * % 535 629 968

I Transmembrane domain 1 Plasma membrane

Figure 5: Modeled structure of the H11-5 isoform

Schematic representation of the domain organization of the H11-5 protein. The cytoplasmic tail is white,
the transmembrane domain is black, the Ser/Thr rich stalk is gray and the remaining domains of the
modeled protein structure are I: lightblue, Il: palegreen, lll: lightpink, 1V: paleyellow. Purple stars show
GXMEN and zinc-binding HEXXHX1sE catalytic motifs. Below the scheme, the modeled H11-5 protein
is shown as a dimer. Its protein structure was modeled by PHYREZ2 [113] on the crystal structure of the
human aminopeptidase N (hAPN [112]). The left monomer is shown in a cartoon and the right monomer
in a surface representation. The dimer is depicted in its proposed orientation with respect to the plasma

membrane and colored according to domains (as described above).
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Native H-gal-GP

The glycoprotein complex H-gal-GP is enriched from detergent-soluble extracts of
whole worms in a galactose-binding fraction by peanut agglutinin affinity
chromatography, with specificity for Galactose-B1,3-N-acetylgalactosamine
dissacharide motifs [100]. This fraction was therefore termed Haemonchus galactose-
containing glycoprotein complex (H-gal-GP) and contains a mixture of various proteins
including a family of zinc metalloproteases (MEP1-4) and pepsinogen-like aspartic
proteases (PEP1-2) [114-116]. In addition, multiple galectins, a cystatin and a
thrombospondin are part of the 1 MDa complex and all are proposed to aid in the
digestion of the blood meal [117-119]. The three-dimensional structure of the protective
H-gal-GP complex, revealed by single particle/cryoelectron microscopy, depicts an
arch conformation formed by two PEP1 proteins over a base laid by multiple MEP3

proteins [120].

H-gal-GP is a highly effective immunogen when used as a vaccine in immunization
trials, leading to consistent reductions of 93 % in fecal egg counts and 72 % in worm
burden [100]. IgG antibodies from vaccine-protected sheep inhibit the hemoglobinase
activity of the protease complex in vitro [103] and IgG concentration correlates with the
degree of protection in vivo, suggesting that protection is antibody-mediated [121].
Conformational epitopes of the glycoprotein complex are important to induce full
protection, as the H-gal-GP loses its protective capacity when it is reduced by SDS
and DTT, but not when it is dissociated by SDS alone [122].
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Native cysteine proteases

Another group of gut-surface antigens with vaccine potential against H. contortus are
the cathepsin B-like cysteine proteases (CBLs). Two distinct cysteine protease
containing fractions have been evaluated in H. contortus immunization trials, a
fibrinogen-degrading complex and the thiol sepharose-binding proteins (TSBP), both

isolated from adult H. contortus worms.

The fibrinogen-degrading complex was protective in immunised lambs against
challenge infection with a 93% reduction in fecal egg counts and a 87% reduction in
worm burden [123]. TSBP proteins get their name from their enrichment by thiol-
sepharose affinity chromatography, which is performed after the removal of H-gal-GP
by peanut lectin affinity chromatography [101]. Three trials with lambs immunized with
TSBP followed by a H. contortus challenge infection showed substantial reductions in
faecal egg outputs by 77% and worm burdens by 47% compared to challenge controls
[101].

CBLs have been implicated in the parasites blood meal digestion due to their ability to
degrade fibrinogen and haemoglobin [124]. They constitute large multigene families
[38] and their designation originates from their sequence similarity to mammalian
cathepsin B [125]. Initially a small family with five proteins was described (AC-1 to AC-
5), which share 64-77% amino acid identity and one of these proteins, AC-3, was found
to be linked in tandem with AC-2 [126]. Additionally, genes encoding a polypeptide
CBL (GCP) [127] and another cysteine family with six members (hmcp1-6) [128], were
identified. Hmcp1, 4, and 6 are the protective targets in the TSBP vaccine [129]. CBL
gene families have undergone a large expansion, probably through recent gene
duplication [31], and represent the most abundant mRNAs (~16%) detected in the adult

female intestine of H. contortus [27].
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1.4.2 Recombinant vaccines

Despite the success of the native anti-H. contortus vaccines, issues with the use of
native antigens include high production costs, quality control and the risk of
contaminants being exported to other countries with the vaccine [88]. Therefore, the
long term aim is to produce a defined, uniform, safe and effective recombinant vaccine
using a cost-effective method. For this reason, there has been a continous effort to
produce recombinant versions of the components of the native antigens using various
expression systems, like bacteria, yeast, insect cells or Caenorhabditis elegans
(reviewed in [88]). However, all recombinant proteins so far, elicit only a partially

protective immune response against H. contortus challenge.

Recombinant H11

Native H11 contains a mixture of various proteins, whereof the most abundant protein,
the aminopeptidase H11, comprises a family of five different isoforms (H11, H11-1,
H11-2, H11-4, H11-5). Each of these isoforms was recombinantly expressed in one of
the multiple studies, evaluating distinct recombinant expression systems and vaccine

efficacy, using single isoforms or combinations of multiple isoforms for vaccination.

Initially, an immunization trial with the active site domain of H11-1, expressed in
inactive form in E. coli as inclusion bodies, reported partial protection with 30—40%
reduction in fecal egg counts (Newton et al., unpublished; cited in [85]). Another
vaccination trial by the same research group using combinations of baculovirus-insect
cell expressed and enzymatically active isoforms for immunization, failed to offer any
protection against challenge infection (Newton et al., unpublished; cited in [85]).
Interestingly, a later study, showed partial protection in sheep immunized with
baculovirus expressed, full-length H11-1 (30% reduction in worm burden) or GST-H11-

1 fusion protein (20% reduction in worm burden) [130].

The lack of another protein present in the protective native H11 or inappropriate
glycosylation of the baculovirus-expressed antigens were discussed to be responsible

for the reduced protective capacity of the recombinant vaccines.

Therefore, the free-living nematode Caenorhabditis elegans was examined as an
alternative recombinant expression system, as similar glycan modifications are found

in C. elegans and in H. contortus [111]. Combinations of two H11 isoforms, H11-1 and
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H11-4 together or H11-1 and H11-5 together, did not yield any protection in a vaccine
/ challenge trial, in spite of similar di- and tri-fucosylated glycan structure decoration on
the C. elegans-expressed recombinant H11 compared to those on native H11. Some
glycan structural differences were observed (e.g. lack of LDNF) compared to the native
H11 vaccine, but the fucosylated N-glycans expressed on recombinant H11 were
suggested not to contribute to the protective effect of H11 and that additional
components present in the native H11 vaccine are required for inducing full protective

immunity [111].

Recombinant versions of H-gal-GP

Multiple components of the H-gal-GP complex were identified by immunoscreening a
H. contortus cDNA library with antisera from lambs successfully vaccinated with H-gal-
GP [118, 119] and subsequently cloned and expressed recombinantly to test their

vaccine efficacy in sheep immunization trials.

Initially, recombinant cystatin CYS-1 was bacterially expressed in a soluble and
functionally active form, as shown by cysteine proteinase inhibition of both mammalian
cathepsin B and native H. contortus cysteine proteases [119]. Vaccination with rCYS-
1 did not confer any protection against infection with H. contortus, despite inducing

high antigen-specific antibody levels [119].

Then, other predominant antigens of the complex were examined, namely the H.
contortus zinc metalloproteases MEP1 and MEP3. No protection was observed, when
sheep were immunized with bacterially expressed recombinant GST-fusion proteins of
MEP1 [131]. Moreover, the principal domains of the MEP3 metalloprotease (41- and
47-kDa domains), did not confer any protection. Sheep immunized with recombinant
MEP1 or MEP3 had significantly lower serum titers against the native H-gal-GP extract
compared to animals immunized with the native extract [131], suggesting that
conformational epitopes were lacking to induce full protectivity, due to incorrect folding

or absence of glycosylation on the bacterially expressed molecules.

In another vaccine/challenge trial, the pepsinogen-like aspartic protease (PEP1), was
bacterially expressed and refolded to a partially soluble and enzymatically active
protein, but did not lead to any protection, although high native PEP1-binding IgG titers

were induced [132].
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Therefore an alternative, eukaryotic expression system based on insect cell cultures
was evaluated for expression of recombinant vaccines. A cocktail vaccine of three
insect cell-expressed metalloproteases (MEP1, MEP3 and MEP4) combined with
refolded bacterially-expressed PEP1 failed to significantly reduce FEC or worm burden
in a sheep vaccination trial, although high levels of H-gal-GP-recognizing serum

antibodies were induced [133].

Recombinant cysteine proteases

Recombinant cysteine proteases hmcp1, 4, and 6 were bacterially expressed as
inactive GST-fusion proteins and used to vaccinate lambs with a cocktail of the three
recombinants prior to H. contortus challenge [129]. Worm burdens in vaccinated
animals were reduced by 38% compared to controls, but the fecal egg counts were not
[129]. The maijority of the vaccination induced IgG response was directed to the GST
component and the trial was repeated using non-fusion proteins with similar results
(29% worm burden reduction) [134]. Unlike their native counterparts, the recombinant
cysteine proteases were not enzymatically active, therefore conformational epitopes
might play a role in protection. In addition, other components of the native TSBP

vaccine and glycans are lacking on the bacterially expressed recombinant proteins.
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1.4.3 Concluding remarks

Vaccination against the blood-sucking parasite H. contortus has shown to be
successful when using native hidden gut-antigens extracted from adult worms. This
approach has led to the commercialization of the first effective vaccine in the world
against a nematode parasite of sheep [88]. The protective mechanism does not mirror
natural immunity and requires high antigen-specific 1gG levels that need to be
restimulated by repeated immunizations. So far, every attempt to produce an effective
recombinant vaccine against H. contortus failed to induce full protective immunity. The
reduced protective capacity of the recombinant vaccines might be due to the absence
of other proteins critical in conferring protection in the native vaccine, due to suboptimal
or incorrect folding or lack of various post-translational modifications, such as N-

glycosylation.

The plethora of studies disclosing only partially protective recombinant vaccines in
sheep immunization trials over the last decades, demonstrates the huge challenge and
complexity of developing a protective recombinant vaccine. Therefore it is important,
that future research unravels the requirements for a correct epitope presentation, the
underlying mechanisms of vaccine protection and the complex immune response

conferring resistance.
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Introduction

From a global perspective, Haemonchus contortus is the most important blood-feeding
parasitic nematode in sheep and goats causing a high economic impact worldwide with
major losses in milk, wool and meat production. Anthelmintic drugs currently control
the disease, however the rapid spread of drug-resistant strains indicates the need for
new strategies [1, 2]. The most practical solution is the development of a safe and
effective vaccine. For Haemonchus contortus, native vaccines from excretory /
secretory products (E/S) as well as gut-derived complexes induce high levels of
protection. A reduction of fecal egg counts by up to 95 % and worm burden by 82 %
could be detected [1, 3, 4]. The protective gut fractions derive from detergent-soluble
extracts of the adult parasite and contain hidden antigens that do not induce an
antibody response during the course of a natural infection [5]. These antigens are
expressed on the microvillar surface of the intestine and show protease activity, which
is believed to degrade host blood proteins such as hemoglobin and albumin [6]. To
date, the most promising native vaccines include the aminopeptidase H11 enriched in
a Concanavalin A lectin-binding fraction [7], the glycoprotein complex H-gal-GP
containing metallo and aspartic proteases enriched in a Peanut lectin binding fraction
[8], and cysteine proteases enriched in a thiol-binding fraction [9]. The activity of the
enzymes H11 and H-gal-GP is inhibited by IgG antibodies from vaccine-protected
sheep [10, 11].

Despite the success of native vaccines, the long term aim is to produce a uniform and
safe recombinant vaccine in a cost-effective method regime. For this reason, there has
been a continuous effort to produce recombinant versions of the native antigens in
bacteria, yeast, insect cells or Caenorhabditis elegans as expression systems [12].
The digestive proteases were successfully expressed in an active form, but induced
only low levels of protection when tested in sheep vaccination trials [13-15]. One might
speculate that this reduced protective capacity of the recombinant vaccines is due to
suboptimal folding, absence of other proteins critical in conferring protection in the
complex or lack of various post-translational modifications. One of the main differences
between recombinant and native proteins is the N-linked glycosylation present on
native proteins. In Haemonchus contortus, unusual carbohydrate modifications with up
to three core fucose residues were identified on the native aminopeptidase H11 [16].

One of these modifications, the core a1,3 Fuc epitope is recognized by parasite
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specific IgE antibody from H. contortus infected sheep and may contribute to an
induction of a Th2 response [17]. The core a1,3 Fuc epitope is a common antigen
synthesized by many parasitic helminths and is highly immunogenic when present on
plant or insect glycoproteins [17, 18]. The Trichoplusia ni cell line BTI-TN-5B1-4 (High
five) produces N-glycan structures with core a1,3 and a1,6 fucosylation [19] equal to
the ones found in nematodes [20] and is therefore an ideal expression system for
recombinant glycoproteins. Moreover, the baculovirus insect cell system offers a fast
and easy production system for secreting high amounts of recombinant glycoproteins
carrying post-translational protein modifications, in particular N-linked glycosylation
[21, 22]. In nematodes, a1,3 and a1,6 core fucoses are often additionally decorated
with galactose residues, creating another nematode-specific antigen, the 'GalFuc'
epitope [23, 24]. Coprinopsis galectin 2 (CGL2, [25]) recognizes the 'GalFuc' antigen
and Coprinopsis cinerea lectin 2 (CCL2 [26]) binds the a1,3 Fuc epitope. These two
fungal lectins were shown to be toxic towards Haemonchus contortus in an in vitro
larval development assay and bind the digestive tract of the larvae, as well as the brush
border of the adult parasite gut [27]. The enzyme GALT-1, a core a1,6-fucoside 31,4-
galactosyltransferase-1 is generating the GalFuc epitope in C. elegans [28]. By
overexpressing the galactosyltransferase-1 in High Five insect cells and thereby
manipulating the insect N-glycosylation pathway, a recombinant glycoprotein carrying

this epitope was successfully produced [29].

Glycoengineered insect cells might therefore be a suitable expression system to
produce recombinant H. contortus vaccine candidates with nematode-like glycans to
mimic the H. contortus N-glycans. In this study, we co-express the C. elegans
galactosyltransferase-1 in insect cells together with three well-studied H. contortus
digestive proteases, H11, AC1, and PEP1, and characterize their overall and site-
specific glycosylation patterns. We test their efficacy in a sheep immunization trial and
analyze the sheep immune response. Our results are relevant for the production of
other nematode vaccines in glycoengineered insect cells and requirements for

vaccine-induced protective immunity.
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Results

Recombinant expression of H. contortus proteases H11, AC1 and PEP1 using

glycoengineered High five insect cells

The baculovirus insect cell system was chosen for protein expression in High five
(Trichoplusia ni) cells due to its ability to produce high amounts of recombinant
glycoproteins carrying post-translational protein modifications. In addition, High five
cells decorate secreted proteins with N-glycan structures similar to the ones found in
Haemonchus contortus [20]. In order to produce recombinant glycoproteins carrying
nematode-like N-glycans we manipulated the insect N-glycosylation pathway by
overexpressing an additional glycosyltransferase, the galactosyltransferase GALT-1
from Caenorhabditis elegans. GALT-1 adds a B1,4-galactose to the a1,6-linked core
fucose residue [28] thereby creating the nematode-like glycoepitope GalFuc. Another
nematode-like glycoepitope, the a1,3-Fuc antigen is occurring on proteins secreted by
High five cells [30].

Three different H. contortus proteins, the proteases H11, AC1 and PEP1, were chosen
for recombinant expression, because they were shown to be components of protective
native vaccines. The H. contortus protease expression constructs were designed for
secretion of H11, AC1 and PEP1 into the medium with a gp67 signal peptide sequence
targeting the proteins to the secretory pathway (Figure 1A). The N-terminal
transmembrane domain of H11 was substituted by the gp67 signal peptide. An N-
(H11, AC1) or C-terminal (AC1, PEP1) His1o-tag was added for affinity purification of
the recombinant proteins. In addition, a MBP-tag was fused to the N-terminus of PEP1
to increase the solubility of the protein and to allow its expression [31]. Over 72 hours,
the expression levels of the H. contortus proteins with GALT-1 were monitored daily
by immunoblotting with antibodies against the tags. The expression of the
galactosyltransferase-1 was stable during these three days and the amount of secreted
proteases was increasing with time of incubation. Therefore, the digestive proteases
were co-expressed with GALT-1 for 72 hours (Figure 1B) and affinity purified from the
culture supernatant (Figure 1C) to further analyze the N-glycosylation patterns on the

recombinant proteins in the next step.

-40-



A B

Ppy SP HIS PSP H. contortus H11 2P S ]

100 100 100 418

75 75 754
Poy SP HIS PSP H. contortus AC1 HIS -
(e —— ]

50 . 50 { 50 ‘ <«— GALT-1
Ppy SP MBP PSP H. contortus PEP1  HIS 37 37 37
e |

25 25 25
+H11 +AC1  +PEP1

kDa L FT W1 W2 W3 E1 E2 E3 E4 kDa L FT W1 W2 E1 E2 E3 E4 kba L FT W1 W2 W3 E1 E2 E3 E4
250 250 = 250
150 [
150 100} 150
75|
L 100
100 [ram— <rH11 'PEP1
50 — <-TrAC1 75\ - Y
75
37|
50
50 251 -
20
. a7
| — 7 % SDS-PAGE — - 10 % SDS-PAGE [ —— 7 % SDS-PAGE

Figure 1: Purification of recombinant H. contortus H11, AC1, and PEP1 from glycoengineered
High five insect cells

(A) Schematic representation of the H11, AC1, and PEP1 expression constructs cloned into pFastBac1
vector downstream of the Polyhedrin promotor (Pen). All constructs encode a gp67 secretion signal
peptide (SP), one or two tags (HIS: His1o-tag, MBP: Maltose binding protein) and a PreScission Protease
cleavage site (PSP) between the N-terminal tag and the respective gene. (B) GALT-1 expression in
High five cells co-expressing GALT-1 and H11, AC1 or PEP1 (+H11, +AC1, +PEP1) was confirmed by
immunoblotting with anti-FLAG antibody. Equal amounts of cells were harvested and lysed 72 hours
post co-infection with H. contortus proteins. (C) Ni-NTA affinity purification of secreted recombinant H.
contortus proteins H11, AC1 and PEP1 from culture supernatant 72 hours post co-expression with
GALT-1. Samples of load (L), flow-through (FT), wash (W1-W3) and elution (E1-E4) fractions were
analyzed by SDS-PAGE and stained with Coomassie. Purified proteins were identified by MS peptide

sequencing.

Glycoengineered High five-expressed proteases are decorated with nematode-

like N-glycans

To identify the specific N-glycans present on glycoengineered High five-expressed
proteases, an overall N-glycan profiling by HPLC analysis was performed as well as a
detailed glycosite-specific N-glycan analysis using a nanoHPLC-HCD-MS/MS mass
spectrometry method [29]. To get the overall N-glycan profile, N-glycans were
fluorescently-labelled with 2-aminobenzamide (2-AB) after enzymatic release with
peptide-N-glycosidase A (PNGase A) and fractionated by HPLC using a normal-phase-

amino column. Mostly, the HPLC chromatograms of the glycoengineered recombinant

-41-



proteases appear to be similar. However, three additional elution peaks (P7, P9 and
P11) emerge in the chromatogram of H11 when co-expressed with the
galactosyltransferase-1 compared to an empty vector control (Figure 2). The same
could be shown for AC1 and PEP1 (Figure S1). To identify the composition of the N-
glycans in the chromatogram, all elution peaks were collected and analyzed by MALDI-
TOF MS and MS/MS (Figure S2, Table S1).

VY H11 ev)
—H11 (GALT-1)
%01 —Mannose Standard
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Figure 2: Glycoengineered High five-expressed H11 is decorated with nematode-like N-glycans
Overall N-glycan HPLC profile of recombinant H11 purified from insect cells co-expressing either an
empty vector control (eV, blue) or the C. elegans galactosyltransferase-1 (GALT-1, orange). Purified
proteins were reduced, alkylated, and proteolyzed with trypsin. The oligosaccharides were released with
PNGase A, 2-AB labelled, and separated by HPLC using a normal-phase-amino column and
fluorescence detection. Peaks were collected and analyzed by MALDI-TOF MS and MS/MS. The
chromatography shows the relative amount of each glycoform. A HPLC profile of a high mannose

standard is shown in grey (GlcNAc2Mans.9) from RNase B).
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MALDI-TOF MS analysis verified N-glycan compositions for high mannose structures
ranging from GIcNAc2Mans to GIcNAc2Mang, preassigned based on the HPLC
chromatogram of a mannose standard (Figure 2, grey, peaks 8, 10 and 12-14). The Y
ions were observed as single-charged potassium adducts [M+K]*. The
GIcNAcz2MansFuct1 composition, pre-assigned to peak 4 by a standard, was also
confirmed with a major peak of m/z 1215.4 by MS and upon MS/MS, a dominant
fragment of m/z 526.2 (2-AB-HexNAc1Fuc+) verified the core position of the fucose
residue. Whether the fucose residue is a1,3- or a1,6-linked to the core N-
acetylglucosamine cannot be distinguished. In addition, two other core
monofucosylated N-glycans were detected in fraction 1 (m/z 1053.4 (2-AB-
HexNAcz2Hexz2)Fuc1) and fraction 7 (m/z 1418.6 (2-AB-HexNAc2Hexs)HexNAc1Fuct,
Figure S2A). Furthermore, difucosylated N-glycans were detected, as previously
identified on proteins secreted by High five cells [30]. MS/MS fragmentation of N-
glycans in fraction 3 (m/z 1199.4 (2-AB-HexNAcz2Hexz)Fucz2), fraction 6 (m/z 1361.5 (2-
AB-HexNAc2Hexs)Fucz) and fraction 9 (m/z 1564.6 (2-AB-
HexNAczHexs)HexNAciFuc2) yielded a major fragment of m/z 672.2 (2-AB-
HexNAc1Fucz), indicative of difucosylation of the core N-acetylglucosamine (data not

shown).

Finally, the additional peaks emerging uniquely in the chromatogram of the proteases
co-expressed with the galactosyltransferase-1 were analyzed (Figure 2 and S1, peaks
7,9 and 11). The appearance of these peaks suggests that these N-glycan structures
are further decorated with a galactose residue due to the GALT-1 activity. MS analysis
of fraction 7 (m/z 1377.6, Figure S2B), fraction 9 (m/z 1523.5 and m/z 1580.5) and
fracton 11 (m/z 1726.6) indicated the addition of a hexose (2-AB-
HexNAczHexs)HexNAco-1Fuci2Hex1). Additional evidence came from the MS/MS
analysis, where dominant fragments of m/z 688.2 and m/z 834.3 (2-AB-HexNAc1Fuci-
2Hex1) verified the core position of the additional hexose (Figure S2C and D). This
hexose is most likely a galactose modification due to the co-expression with the

galactosyltransferase-1.

Taken together, the HPLC N-glycan analysis on glycoengineered recombinant
proteases H11, AC1, and PEP1 revealed that 42-67 % of all difucosylated structures
were decorated with a galactose and overall an amount of 18-26 % galactosylated N-

glycan structures were found (Table 1).
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The proteases H11 and AC1 have four N-glycosylation sites, whereas PEP1 has five.
Therefore, together with the overall N-glycan analysis by HPLC, a detailed glycosite-
specific N-glycan analysis was performed. After proteolytic cleavage of purified
proteins with trypsin, the trypsin digested glycopeptides were analyzed by nanoHPLC-
HCD-MS/MS mass spectrometry to assess the N-glycan microheterogeneity at each
N-glycosylation site. The respective percentage of the carbohydrates attached to these
N-glycosylation sites was calculated (Table S2, Figure 3). We observed, that the first
two N-glycosites of H11 and AC1 were modified mainly by oligomannose structures;
and the last two N-glycosites were decorated with further processed N-glycans
harboring core fucoses and an additional galactose when co-expressed with GALT-1.
This explained the low levels of galactosylated N-glycan structures found on H11 and
AC1 (18 % and 20 % respectively). In contrast, four out of five N-glycosites of PEP1
were detected to be decorated with core difucosylated N-glycan structures and

approximately half of them were galactosylated when co-expressed with GALT-1.
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Figure 3: Recombinant H11, AC1, and PEP1 purified from glycoengineered insect cells show site-
specific modification with oligomannosidic and nematode-like N-glycans.

Glycosite-specific N-glycosylation profile of H11 (top), AC1 (middle) or PEP1 (bottom) purified from
insect cells co-expressing either an empty vector control (eV, upper panel, grey) or the
galactosyltransferase GALT-1 (lower panel, white). Trypsin digested glycopeptides were analyzed by
nanoHPLC-HCD MS/MS mass spectrometry. H11 and AC1 have four N-glycosylation sites and PEP1
has five, their location is marked by red N's representing the asparagine residue where the glycan is
attached. Trypsin digested peptide sequences of these four to five glycosylation sites are shown with
the most abundant (>10 %) carbohydrates attached and their respective percentage. Detailed data

analysis can be found in Supplementary Table 2.
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Vaccine trial using recombinant H11, AC1, and PEP1

To examine the immunoprotective properties of the recombinantly produced
glycoengineered proteins, we designed a sheep vaccination trial. Six lambs per group
were vaccinated three times at three weekly intervals with recombinant proteins or with
native H11 extract [7] (Table 2). Vaccinations were done using PEP1 alone (-) or with
a clostridial vaccine (+Covexin 8), as well as combinations of PEP1 with the proteases
AC1 and H11 (AP+, HAP+, HAP-). Two different adjuvant combinations were used,
the saponin QuilA alone or in combination with the aluminium based adjuvant

Rehydragel. As a control group, six lambs were not treated with any vaccine (Control).

Table 2: Group design of the vaccine trial
Sheep were immunized with 30 - 100 ug of protein listed in the 'applied antigen' column with the

corresponding adjuvant. Clostridial Covexin 8 vaccination is indicated in the last column.

Trial group Applied antigen Amount Adjuvant Covexin 8

Native+ Native H11 extract 30 ug QuilA +
P+ PEP1 100 pg QuilA +

P- PEP1 100 ug QuilA -
AP+ AC1/PEP1 100 pg each QuilA +
HAP+ H11/AC1/PEP1 100 pg each QuilA / Rehydragel +
HAP- H11/AC1/PEP1 100 ug each QuilA / Rehydragel -
Control - - - -

All animals were orally infected with 5000 infective H. contortus larvae one week after
the third vaccination. Fecal egg counts (eggs per gram feces, EPG) were monitored
for four weeks until necropsy (Figure 4A). PEP1 vaccinated sheep showed only a minor
reduction in egg counts (up to 28.4 % reduction) and no reduction in worm burden as
compared to the unvaccinated control group. This reduction was not increased by the
additional vaccination with other recombinant proteins (up to 23.9 % EPG reduction,
up to 13.5 % worm reduction). In contrast, lambs vaccinated with native H11 extract
showed significant reductions in both egg counts (98.7 %) and worm burden (83.4 %)

as compared to the control group (Figure 4B and C, Table S3).
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Figure 4: Sheep vaccine trial using glycoengineered recombinant H11, AC1, and PEP1

(A) Timeline of the sheep vaccination and challenge trial with the different treatments indicated to the
left (vaccination, serum sampling etc.) and their respective time points to the right (purple arrows). (B)
Eggs per gram feces (EPG) were monitored at day 0, 14, 21 and 28 post oral infection with 5000 H.
contortus larvae and the worm burden (C) was counted at necropsy day. Mean group counts (group

size = 6) are shown with error bars representing the standard deviation of the mean.

Antibody response to recombinant and native H11 extract proteins

To test whether the vaccinations with recombinant and native H11 extract proteins
induced specific immune responses, sera of vaccinated animals were analyzed by
ELISA (Figure 5). Sheep immunized with recombinant proteases showed comparable
IgG antibody titres against the tested antigens (H11, AC1, PEP1) that reached the
maximum one week after the third vaccination (day 49) and maintained high levels for
four weeks (Figure 5B, C, and D). Maximum response was observed against the
respective protein used in the vaccination (e.g. highest recognition of PEP1 by PEP1
vaccinated sheep serum). Some cross-recognition to other recombinant proteins was
observed, most likely due to anti-glycan antibodies, as all recombinant proteins are
decorated by identical nematode-like glycans (Figure 5B). Another possibility are
antibodies against the His-tag which they have in common. Recombinant H11, AC1,

and PEP1 were equally recognized when lambs were vaccinated with all three proteins
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(Figure 5D). Antibody responses to the recombinant proteins rose earlier and to a
higher maximum level when lambs were immunized with recombinant proteins as
compared to lambs immunized with native H11 extract proteins (Figure 5A). This was
expected, as the native H11 extract contains a number of other proteins in addition to
H11 and the antibody response towards these extract proteins is probably higher.
Nevertheless, lambs immunized with native extracts recognized recombinant H11
decorated with nematode-like glycans, as well as recombinant AC1 and PEP1 even if

to a lower extent.
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Figure 5: Protein specific immune responses in sheep

ELISA ODaso values of sheep IgG antibody reactivity to recombinant proteins H11 (black), AC1 (black
dashed) or PEP1 (grey) following immunization with native H11 extract proteins (A) or PEP1+ (B), AC1
PEP1+ (C) or H11 AC1 PEP1+ (D). Blood was sampled at weekly intervals. Vaccinations were done at
three weekly intervals (V) before oral infection with H. contortus (I). Representative immune responses
from single sheep antiserum are shown. Error bars represent the standard deviation of duplicate

measurements.
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Antibody responses of sheep vaccinated with recombinant or native H11 extract
proteins were further examined by immunoblots to identify qualitative differences
(Figure 6). Non-protective sheep serum derived from animals vaccinated with the three
recombinant proteins H11, AC1 and PEP1 (HAP+) recognized various proteins in the
native H11-enriched extract, potentially also native H11 (Figure 6A). However,
protective sheep serum derived from animals vaccinated with this native H11 extract
detected even more proteins and with at least 10 times greater intensity. The detection
of more than three proteins by the non-protective sheep serum could be explained with
the potential presence of anti-glycan antibodies identifying the glycan modification of
the extract proteins. Indeed, recognition of some native H11 extract proteins by the
non-protective serum was lost when the native protein glycans were cleaved by N-
Glycosidase F (PNGase F) prior to separation on a gradient gel and immunoblotting
(Figure 6B). In contrast, the protective serum recognized all the proteins in the native
H11 extract even after PNGase F digestion, either by antibodies binding to the proteins
themselves or by anti-glycan antibodies recognizing epitopes that are not cleaved by
PNGase F (e.g. N-glycans with a core a1,3 fucose). For an effective response,
antibodies against these protein antigens and/or antigenic glycans recognized by the

protective sheep serum might be required.

To study whether the immunization with recombinant proteins evoked anti-glycan
antibodies targeting specifically the nematode-like glycan epitopes on the recombinant
proteins we expressed the yeast protein PDI1 (Protein disulfide isomerase 1) with
nematode-like glycans in glycoengineered insect cells co-expressing the GALT-1
(Figure 6C). Secreted PDI1 proteins are decorated with both nematode glycan
epitopes, the a1,3 Fuc and the GalFuc epitope [29]. His-tagged PDI1 was purified from
insect cell supernatant as described previously and further treated with PreScission
protease to enable the cleavage of the His-tag. Similarly, His- and un-tagged PDI1
carrying nematode glycans are recognized by sheep serum derived from animals
vaccinated with native H11 extract and even to a higher extent by sheep serum derived
from animals vaccinated with recombinant proteins (Figure 6C, lanes 1 and 2). In
contrast, the protein PDI1 bearing high-mannose glycans (lane 3) or without N-glycans
was not detected by any vaccinated nor non-vaccinated sheep serum (Figure 6C, lanes
3 and 4). Thus, vaccination with recombinant proteins or native H11 extract induces a

substantial antibody response to nematode-like glycan epitopes.
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Figure 6: Nematode glycan-specific antibodies in sheep

(A) Native H11 extract was separated by SDS-PAGE, transferred onto a PVDF membrane and probed
with different dilutions (1:1000, 1:5000 and 1:10'000) of pooled sheep serum (day 56) vaccinated with
either native H11 extract (Native+) or the three recombinant proteins H11, AC1, and PEP1 (HAP+). (B)
Native H11 extract was treated either with (+) or without (-) PNGase F prior to separation by SDS-PAGE.
The proteins were either silver stained or immunoblotted onto PVDF membrane and probed with
different sheep serum (Native+ 1:5000 dilution; P+, HAP+, control 1:1000 dilution) (C) Left: Schematic
representation of the different versions of yeast PDI1 proteins (1-4) and native H11 extract proteins (5)
were tested for recognition by sheep sera. HIS-PDI1 with nematode-like glycans (1) was co-expressed
with GALT-1 and affinity purified from the insect cell culture supernatant, before cleavage of the HIS-tag
with PreScission protease (2). ER-retained PDI1 with high-mannose glycans was affinity purified from
High five cells. The tag was removed by PreScission protease cleavage (3) and high-mannose glycans
were cleaved by PNGaseF digest (4). PDI1 proteins and native H11 extract were separated by SDS-
PAGE and either stained with Coomassie or transferred onto a nitrocellulose membrane and probed
with pooled sheep serum (day 56, 1:1000 dilution). Blue squares symbolize N-acetylglucosamine, red

triangles fucose, green circles mannose and yellow circles galactose.
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Discussion

The development of an effective recombinant vaccine against the sheep parasite H.
contortus would be the best solution to effectively control the disease and to combat
the anthelminthic resistance problem. Over the last decades, numerous protective
native antigens have been identified, but so far all attempts of producing recombinant
versions have failed or induced only partial protection against H. contortus challenge.
High five cells offer a fast and flexible expression system for secreting high amounts
of proteins carrying N-linked glycans, and allow additional manipulation of the N-
glycosylation pathway to engineer desired N-glycans, such as complex mammalian-
type [32]. In this study, we tested the suitability of glycoengineered High five cells as
an expression system for the production of recombinant proteins decorated with
nematode-like glycans as a vaccine against H. contortus. Our experimental system
allowed us to characterize the immune response of sheep against protein- and

glycoepitopes in more detail.

To date, the most effective native vaccine antigens that protect against H. contortus
challenge are purified via lectin columns specifically enriching for glycoproteins.
Glycans are good immune stimulators and many parasitic modifications are unique to
parasites [33]. Also, H. contortus possesses a range of unusual N-glycan modifications
absent from mammals: fucosylated LacdiNAc (LDNF) and trifucosylated cores
including the antigenic core a1,3 fucose, galactosylated fucose (proximal a1,6 fucose
and distal a1,3 fucose), galactosylated GalNAc and phosphorylcholine [23]. Here we
showed by HPLC and mass spectrometry, that glycoengineered High five cells are
able to express H. contortus proteins decorated with two nematode-like epitopes, the
galactosylated core a1,6 fucose and the immunogenic core a1,3 fucose. However,
other H. contortus glycan modifications could not be found. There is potential to further
manipulate the N-glycosylation pathway in insect cells to produce additional H.
contortus modifications by overexpressing further glycosyltransferases, e.g. the C.
elegans fucosyltransferase FUT-6 [34], to produce trifucosylated core N-glycans after
the removal of the a1,6 mannose. The fact that proteins are easily produced in high
quantities in glycoengineered High five cells and decorated by nematode-like N-
glycans shows that they are a suitable heterologous system for expressing H. contortus

vaccine candidates in the future.
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The immunogenicity of the glycans and the sensitivity of nematodes towards specific
carbohydrate-binding proteins (lectins) lead to the hypothesis that lectins or anti-glycan
antibodies might be effective anthelminthics [25, 27]. Moreover, there is evidence that
a significant part of the host immune response targets carbohydrate epitopes of the
parasite [35]. For example, IgG antibodies from lambs vaccinated with native H-gal-
GP complex recognize the LDNF epitope [36, 37] and IgE antibodies bind the core
a1,3 fucose [17]. In this study, we showed by ELISA and immunoblotting that a
significant amount of the sheep immune response vaccinated with recombinant
proteins is directed against the nematode-like glycan structures. They specifically
recognize the galactosylated a1,6 fucose and/or the core a1,3 fucose, but not high-
mannose structures. This finding is consistent with the response found in sheep
vaccinated with native H11 extract, although the binding to these epitopes by the anti-
glycan antibodies is lower. Despite the significant anti-glycan response stimulated in
sheep vaccinated with recombinant glycoengineered proteins, no protection was
observed, suggesting that these glycans might contribute to the antigenicity but do not
induce protective immunity. Alternatively, other protective glycan structures might still

be missing on the recombinant proteins.

In the vaccination trial of this study, we evaluated the efficacy of three different H.
contortus proteins, H11, AC1 and PEP1, all shown to be a component of protective
native vaccines. These proteases are derived from different detergent-soluble extracts
of the adult parasite, namely H11 is enriched in a ConA binding fraction, AC1 in a thiol-
binding fraction, and PEP1 is part of the glycoprotein complex H-gal-GP in a galactose-
binding fraction. Here, we tested whether combining these diverse digestive proteases

in a multivalent vaccine could enhance the protective features of each protease.

Earlier studies failed to express PEP1 as a soluble recombinant protein in insect cells
and the E. coli expressed and refolded PEP1 was inactive [14]. Here, we report that
MBP-fused PEP1 was successfully purified from the insect cell culture medium. PEP1
was enzymatically active between pH 3.4 and 4 (Saboti¢, unpublished data),
suggesting that the protein is properly folded. Despite the activity of PEP1, it did not
provide protection in the sheep vaccination trial. Our explanation is that other proteins
are missing in the recombinant PEP1 vaccine for presenting all native conformational
epitopes necessary for the induction of protective immunity. For example, including the
metalloprotease MEP3 in the vaccine might be necessary, as the three-dimensional

structure of the protective H-gal-GP complex depicts an arch conformation formed by
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two PEP1 proteins over a base laid by multiple MEP3 proteins [38]. In addition, multiple
galectins, a cystatin and a thrombospondin are part of the 1 MDa complex and all are
proposed to aid in the digestion of the blood meal [39, 40]. Conformational epitopes of
the glycoprotein complex are indeed important to induce full protection, as the H-gal-
GP loses its protective capacity when it is reduced by SDS and DTT, but not when it is
dissociated by SDS alone [41]. Similar to H-gal-GP, correct conformation of the native
aminopeptidase H11 is also essential for protection, as efficacy is reduced when H11
is denatured [10]. To date, only one study could show partial protection using
baculovirus-produced H11 in a sheep immunization trial (30 % reduction in worm
burden) [13]. It was suggested that the use of a commercial adjuvant instead of the
baculovirus extract, might further improve protection levels. Here we used QuilA and
Rehydragel as adjuvant for the immunization with H11, AC1 and PEP1, but no
protection and even a lower reduction in worm burden (13.5 %) was observed. This
was not due to the lack of immune response stimulated by the recombinant vaccines,
as all immunized animals showed strong antibody responses against the respective
proteins they were vaccinated with, and also displayed cross-reaction with the
counterpart proteins (e.g. serum of sheep vaccinated with native H11 extract
recognized recombinant proteins and vice versa). In contrast to previous studies [13-
15], the sheep immune response towards the recombinant proteins was not short lived
and stayed stable for at least 5 weeks after the last immunization. Thus this does not
explain the absence of protection. But the protective response might include other Ig
isotypes, which were not tested here. Remarkable differences in the recognition of the
native H. contortus proteins by the protective or non-protective sheep serum were
encountered by immunoblot analysis. Not only, did the protective sheep serum
recognize all proteins of the native H11 extract before and after PNGase F digestion,
but also with at least 10 times greater intensity. This reflects that the native H11 extract
is a complex mixture containing different isoforms of aminopeptidases and many other
proteins and induces higher levels of antibody responses providing sufficient

protection.

We suggest here, that nematode-like N-glycans might be important for the proper
folding of the recombinantly produced proteins, but it is mainly due to the lack of other
proteins that recombinant versions are not protective so far. Therefore, further antigens
need to be included in a multivalent vaccine to mimic the overall complexity of the

native vaccine and to induce full protective immunity against H. contortus infection.
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Methods

Construction of plasmids for baculovirus protein expression

Plasmids were generated using standard cloning protocols and are listed in
Supplementary Table 4. Open reading frames of all plasmids constructed in this study

were confirmed by nucleotide sequencing.

pUC57-H11, pUC57-AC1 and pUCS57-PEP1: Haemonchus contortus genes H11
(GenBank X94187.1), AC1 (GenBank M31112.1) and PEP1 (GenBankAF079402.1)
were codon optimized for expression in insect cells and synthesized at Genscript in a
pUC57 plasmid with inserted Xbal / Xhol restriction sites (H77) or Sacl / Xhol restriction
sites (AC71 and PEPT1).

pSF10, pSF11 and pSF14: These plasmids were constructed to allow for expression

and secretion of N-terminally His-tagged Haemonchus contortus digestive proteases
H11 (pSF10), AC1 (pSF11), and PEP1 (pSF14). The coding sequences of pUC57-
H11, pUC57-AC1 and pUC57-PEP1 were either excised by Sacl and Xhol (H11) after
PCR-amplification using primers H11-TM-FwStulSacl (5-AAA AAA GGC CTG AGC
TCT ACT ACT TCA CAA GGA AGG CTT TCG-3") and H11-TM-RevXholnew (5'-AAA
AAA CTC GAG TTA CAG GGT AGC CTT CTT GAA GAA AG-3') or cut directly by Sacl
and Xhol (AC1 and PEP1). Fragments were ligated into the respective restriction sites
of plasmid pRG105 downstream of the PreScission protease cleavage site and thus

replacing the PDI1 gene.

pSF12 and pSF15: Cloning of an additional C-terminal His1o-tag to improve expression
and purification of secretory AC1 (pSF12) and PEP1 constructs (pSF15). The 3’-region
of the genes was PCR-amplified using plasmid pSF11 (AC17) or pSF14 (PEP1) as
template and the following primer pairs: AC1-FwHis_Xbal (5'-AAA AAA ATC TAG AAA
TGA AGT ACC TGG TTC TCG CC-3') and AC1-RvHis_Xhol (5'-AAA AAA ACT CGA
GTC AGT GGT GGT GGT GGT GGT GGT GGT GGT GGT GGA GGG ATTCTG TGT
CCA CGATA-3') for pSF11; PEP1-FwHis_Xbal (5-AAA AAAATC TAGAAATGC TGT
ACT TGC TCC TCC TC-3') and PEP1-Rvhis_Xhol (5'-AAA AAA ACT CGA GTC AGT
GGT GGT GGT GGT GGT GGT GGT GGT GGT GCT TAG GTT CAG CGA AGC
CGAT-3'") for pSF14. The respective PCR products were either cloned into the Alel and
Xhol restriction sites of pSF11 or into the Stul and Xhol restriction sites of pSF14,

replacing the 3’- region of the genes and adding a C-terminal His1o-tag.
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pSF22: Substitution of the N-terminal His-tag by a maltose binding protein (MBP)-tag
to improve expression and purification of secretory PEP1 (C-terminally His-tagged).
The coding sequence was subcloned as Sacl-Xhol fragment from pSF15 into plasmid

pRG132 downstream of the PreScission protease cleavage site.

Expression in insect cells

Trichoplusia ni "High Five" and Spodoptera frugiperda Sf21 cells were obtained from
Prof. K. Locher (ETH Zurich, Switzerland) and cultivated in Sf-900 Il SFM medium
(Invitrogen # 10902104) without fetal calf serum at 27 °C in shaker flasks. Recombinant
bacmids were generated using DH10Bac E. coli cells and viruses were produced in

Sf21 cells according to standard procedures (Invitrogen).

Proteins were expressed in High Five cells by diluting the culture to 1 million cells per
ml and either single or co-infected 1:100 (v:v) with each recombinant viruses.
Expression levels were detected 72 hours post infection as described in [28]. Briefly, 1
million cells were pelleted by centrifugation (600 x g, 5 min), washed with PBS and
lysed in 125 pL lysis buffer (PBS, 1 % Triton X-100, 1x Protease Inhibitor cocktail
(Roche #11873580001)) by rotating at 4 °C for 10 min. The whole cell lysates were
centrifuged (16'000 x g, 5 min), and the supernatant was analyzed by immunoblotting.
For secreted proteins, the culture supernatants of cells were harvested 72 hours post
infection by centrifugation at 3800 x g for 10 min and filtered through a PES-membrane
0.22 uM filter (Techno Plastic Products).

Protein purification

Affinity purification was performed on gravity flow columns filled with 1 ml Ni-NTA
agarose beads (Protino #745400.100) equilibrated with 10 column volumes (CV) of
Sf900 Il SFM medium. The culture supernatant was loaded and the resin was washed
afterwards with 10 to 15 CV washing buffer (10 mM imidazole in PBS, pH 7.4). Proteins
were eluted four times with 1 CV of elution buffer (250 mM imidazole in PBS, pH 7.4)
Elution fractions were concentrated and buffer exchanged to PBS on Amicon Ultra-4
Centrifugal Filter Devices (Millipore). Purification of GST-tagged ER retained-Pdi1p
and secreted His-tagged Pdi1p and subsequent tag cleavage using PreScission
protease (VWR #27-0843-01) were described in (Chapter 4, [29]). Native H11 extract
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was prepared from H. contortus adult worms by solubilization of a PBS homogenate
pellet in 2 % Triton X-100 (Sigma-Aldrich #T9284) and purified using Concanavalin A
Sepharose (Sigma-Aldrich #C9017) according to patent WO1990011086 A1 by Munn
and Smith [42].

SDS-PAGE and Immunoblotting

Protein samples were boiled at 95 °C for 5 min in reducing sample buffer (62.5 mM
Tris-HCI pH 6.8, 2 % SDS (v/w), 5 % B-mercaptoethanol (v/v), 10 % glycerol (v/v), 0.01
% bromophenol blue (w/v)) and separated by SDS-PAGE (10 % acrylamide, 120 Volt,
150 min or 4-12 % Bis-Tris gradient gels BioRad #3450125, XT MOPS running buffer,
200 Volt, 55 min). Proteins were visualized with Coomassie blue or silver staining or
immunoblotting on PVDF (Merck Millipore #SEQO00010) or nitrocellulose (GE
Healthcare #10600002). Blots were blocked with 5 % milk in PBST (PBS, 0.1 %
Tween-20) and probed with sheep antiserum to different proteins (1:1000 - 1:10'000
dilutions in PBST with 5 % milk), followed by bovine anti-sheep IgG-HRP (Santa Cruz
#sc-2701; 1:5000 dilution in PBST with 5 % milk). After extensive washing with PBST,
the membranes were developed using ECL detection solution (GE Healthcare
#RPN2105) and exposure to photographic films (Super RX-N Fuijifilm #57164152).

Protein identification by mass spectrometry

Major bands were excised from Coomassie-stained SDS-PAGE gels of purified
recombinant protein sample. Standard mass spectrometry procedure was performed
with in-gel trypsin digest, extraction of trypsin digested peptides and fractionation by
LC-MS/MS. Samples were analyzed on a calibrated LTQ-Orbitrap Velos mass
spectrometer (Thermo Fischer Scientific, Bremen, Germany) coupled to an Eksigent-
Nano-HPLC system (Eksigent Technologies, Dublin (CA), USA). Peptides were
resuspended in 2.5% acetonitrile and 0.1% formic acid and loaded on a self-made tip
column (75 ym x 80 mm) packed with reverse phase C18 material (AQ, 3 um 200 A,
Bischoff GmbH, Leonberg, Germany) and eluted with a flow rate of 200 nl per min by
a gradient from 3 to 30% of B in 22 min, 50% B in 25min, 97% B in 27 min. One scan
cycle comprised of a full scan MS survey spectrum, followed by up to 20 sequential
CID MS/MS on the most intense signals above a threshold of 1500. Full-scan MS
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spectra (300—-2000 m/z) were acquired in the FT-Orbitrap at a resolution of 60,000 at
400 m/z, while CID MS/MS spectra were recorded in the linear ion trap. CID was
performed with a target value of 1e4 in the linear trap, collision energy at 35V, Q value
at 0.25 and activation time at 30 ms. AGC target values were 5e5 for full FTMS scans
and 1e4 for ion trap MSn scans. For all experiments, dynamic exclusion was used with
1 repeat count, 15 s repeat duration, and 60 s exclusion duration. Data was searched
against the NCBI and SwissProt (Version 201408) database using the Mascot search

engine (Version 2.4).

Sample preparation for glycopeptides

Purified proteins (usually 50-200 ug) were reduced by 50 mM dithiothreitol in 50 mM
ammonium bicarbonate buffer (AmBic buffer, pH 8.5) at 37°C for 1 hour on a filter
device (Microcon YM-30, Millipore) and subsequently alkylated by 65 mM
iodoacetamide in 50 mM AmBic buffer at 37°C in the dark for 1 hour. After extensive
washing of the filter with AmBic buffer, the proteins were digested by trypsin (molar
ratio 60:1, Promega #V5111) at 37°C for 16 hours. Trypsin digested peptides and
glycopeptides were collected by centrifugation and vacuum-dried in a speedvac.
Samples were either desalted by Zip-Tip C18 (Millipore #ZTC18S960) prior to
glycosite-specific nanoHPLC-HCD-MS/MS analysis or further processed for HPLC

analysis.

Glycosite-specific  N-glycosylation analysis by NanoHPLC-HCD-Mass
Spectrometry

For a glycosite-specific N-glycan analysis of intact glycopeptides the nanoHPLC-HCD-
MS/MS method was used as previously described (Chapter 4, [29]). A calibrated LTQ-
Orbitrap Velos mass spectrometer (Thermo Scientific) coupled to an Eksigent-Nano-
HPLC system (Eksigent Technologies) was used for sample analysis. Peptides were
resuspended in 2.5% acetonitrile (ACN) with 0.1% formic acid (FA) and loaded on a
self-made tip column (75 um x 80 mm) packed with reverse phase C18 material (AQ,
3 um 200 A, Bischoff GmbH) and eluted by a gradient (from 3 to 30% of solution B
(99.9% ACN, 0.1% FA) for 22 min, 50% of B for 25 min, 97% of B for 27 min, with a

flow rate of 200 nl/min). One scan cycle included a full scan MS survey spectrum,
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followed by up to 10 sequential HCD MS/MS on the most intense signals (>2,000).
Full-scan MS spectra (700—2,000 m/z) and HCD MS/MS spectra were recorded in the
FT-Orbitrap (resolution of 60,000 at 400 m/z for MS and 15,000 at 400 m/z for MS/MS).
HCD was performed with a target value of 1e5 and stepped collision energy rolling
from 35, 40 and 45 V was applied. For full Fourier Transform MS, AGC target values
were 5e5. Dynamic exclusion with a single repeat count, 15 s repeat duration, and 60

s exclusion duration was used for all experiments.

MS and MS/MS data were processed into the Mascot generic format (mgf) files and
searched against the SwissProt database (Version 201408) database using the
Mascot search engine (Version 2.4) with the consideration of carbamidomethylation at
cysteine and oxidation at methionine. The monoisotopic masses of charged peptides
(2+ or more) were searched with a peptide tolerance of 10 ppm and a MS/MS tolerance
of 0.25 Da for fragment ions. XCalibur (Version 2.2 sp1.48) was used for glycosite-
specific N-glycosylation analysis and all data were inspected manually. First extractmgf
was written in Perl and then glycopeptides were extracted from mgf file by identifying
glycan oxonium ions ([HexNAc]* 204.09 and [HexNAc+Hex]" 366.12) and
glycopeptides specific for each glycosite by sorting out the Y1 ions individually from
extracted mgf files. For quantification, extracted_ion chromatography (XIC) of each
glycoform was plotted by its individual m/z with the mass tolerance of 10 ppm. Peak
area was defined manually and integrated by XCalibur. The relative amount of each

glycoform sharing the same peptide backbone was calculated with the following

. . Peak f h glycofi
equation: Relative amount of each glycoform (%) = — "2 8V T_ x100%

Sum of peak area of all glycoforms

N-glycan analysis by high pressure liquid chromatography (HPLC)

N-glycans were enzymatically released from trypsin digested glycopeptides with 1 pyL
of PNGase A (Roche #11642995001) in 100 yL of 50 mM sodium acetate buffer (pH
5) at 37°C for 16 hours. Released glycans were supplemented with ACN to a 2 % final
concentration and purified using prepacked C18 Sep-Pak columns (Waters
#WAT051910) and self-made fritted carbon columns (Supelclean ENVI-carbon
120/400, Sigma-Aldrich #57210-U). The glycans were eluted from the latter column in
25 % ACN and vacuum-dried. N-glycan samples were fluorescently labeled with 2-
aminobenzamide (2-AB, Sigma #A8980-4) by incubation in 25 pL of labeling solution
(1 M 2-AB, 70 % DMSO, 30 % acetic acid, 0.35 M cyanoborohydride (Sigma-Aldrich

-50-



#71435) at 65 °C for 2 hours. Labelled glycans were purified over 4 layers Whatman
filter paper in 95 % ACN using 100 pL deionized water for elution and vacuum-dried in
a speedvac. Then, they were dissolved in acetonitrile:H20 (75:25; v:v) and filtered
(0.45 pm, Millipore #UFC30HVNB) before loading on the HPLC.

2-AB labelled glycans were separated using a linear gradient (from acetonitrile:H20
(75:25; v:v) to acetonitrile:H20 (50:50; v:v) for 90 min with a flow rate of 0.8 ml/min) on
a normal-phase column (Supelcosil LC-NH2, Sigma #58338 with a Supelguard
Cartridge Sigma #59568) and fluorescence detection (Aex=330 nm, Aem=420) at room
temperature. The Dionex HPLC system consisted of a LC20 chromatography
enclosure, one GP40 gradient pump, an autosampling device and a Jasco FP920
fluorescence detector controlled by a personal computer using Chromeleon 6.0
software. Two standards were used for calibration and pre-assignment of N-glycan
retention times, a purchased standard of 2-AB labelled GIcNAc2ManszFuc (Prozyme
#GKSB-102) and a mannose standard ranging from GlcNAc2Mans to GIcNAc2Mang
isolated from RNase B (Sigma). All HPLC elution fractions were collected and analyzed
by MALDI-TOF MS and MS/MS to identify the composition of the N-glycans in the

chromatogram. Peak areas were quantified using the Chromeleon program (Dionex).

MALDI-TOF Mass Spectrometry for 2-AB labelled glycans

2-AB labelled glycans, collected from the HPLC and vacuum-dried, were mixed 1:1
with dihydroxybenzoic acid matrix (DHB, 10 mg/mL in 75 % ACN with 0.1 % formic
acid) and analyzed by MALDI-TOF mass spectrometry in positive ion mode on a
MALDI-TOF/TOF machine (SCIEX 5800). A 20 pmole permethylated Lewis B standard
was used for external calibration. All N-glycan structures with given m/z values were
further analyzed by MALDI-TOF MS/MS. The spectra were assigned manually and

annotated with the GlycoWorkbench software (version 1).

Sheep vaccine trial

Lambs (White Mountain breed, approx. 6 months old), which were raised indoors under
conditions that minimized helminth infections, were distributed into groups of six,
balanced for sex and weight. Intramuscular vaccinations were done three times at

three weekly intervals with either 100 pg recombinant protein (100 pg of each protein
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and administered separately) or with 30 ug native H11 extract. Additionally, a clostridial
vaccine (Covexin 8, Merck Animal Health) was applied at the first and third vaccination
in the opposing leg to the vaccinated one. One week after the last vaccination, the
sheep were orally challenged with 5000 infective larvae (L3) of H. contortus. One
control group was orally infected with H. contortus but not treated with any vaccine.
QuilA (SEPPIC, 2.5 mg/ 0.5 mL dose) or QuilA in combination with Rehydragel (Fisher
Scientific, 1 mg / 1 mL dose) was used as adjuvant. Blood was sampled at weekly
intervals and EPG (eggs per gram of feces) monitored at day 0, 14, 21 and 28 after
oral infection and until necropsy at days 28 to 30, when worm burden was counted. All

experimental procedures were approved by national veterinary authorities.

Enzyme-linked Immunosorbent Assay (ELISA)

Coating of 96 well plates (TPP #92096) was done by 24 hours incubation at 4 °C with
either 0.5 pyg (AC1 or PEP1) or 1ug (H11) recombinant protein per well (PBS pH 8
coating buffer). Plates were washed with an excess of washing solution (PBS, pH 8,
0.05 % Tween, 0.05 % Casein) and blocked with blocking solution (PBS, pH 8, 0.05 %
Tween, 1 % Casein). After one hour incubation on a shaking platform at room
temperature, a 1:1000 dilution of primary sheep serum or a 1:5000 dilution of anti-His
antibody (Qiagen #34670) in washing solution was added per well. Plates were
incubated one hour on a shaking platform at room temperature and washed 5 times
with an excess of washing solution. A 1:1000 dilution of secondary antibody in washing
solution was added (either anti-sheep IgG-HRP antibody (Santa Cruz #sc-2701) for
sheep serum or goat anti-mouse IgG-HRP (Santa Cruz #sc-2005) for anti-His
antibody). Plates were incubated one hour on a shaking platform at room temperature
and washed 5 times with an excess of washing solution. Development of the ELISA
plates was performed by adding TMB development solution (0.05 M phosphate-citrate
buffer, pH 5 containing 0.1 mg/mL 3,3',5,5'-Tetramethylbenzidine dihydrochloride, 10
% DMSO and 0.004 % H20:2). The reaction was stopped with an equal amount of stop
reagent BioFX (SurModics #STPR-1000-01) and plates were analyzed on a Tecan

reader at 450nm.
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Figure S1: Glycoengineered High five-expressed AC1 and PEP1 are decorated with nematode-

like N-glycans

Overall N-glycan HPLC profiles of recombinant AC1 (top) and PEP1 (bottom) purified from insect cells
co-expressing either an empty vector control (eV, blue) or the C. elegans galactosyltransferase-1
(GALT-1, orange). Purified proteins were reduced, alkylated, and proteolyzed with trypsin. The
oligosaccharides were 2-AB labelled after their release with PNGase A, and separated by HPLC using

a NP-amino column and fluorescence detection. Peaks were collected and analyzed by MALDI-TOF

MS and MS/MS. The chromatography shows the relative amount of each glycoform.
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Figure S2: MALDI-TOF MS and MS/MS of 2-AB labelled N-glycans collected from HPLC peaks

(A) MALDI-TOF MS spectrum of Peak 7 collected from HPLC chromatogram of H11 (eV) shown in
Figure 2. (B) MALDI-TOF MS spectrum of Peak 7 collected from HPLC chromatogram of H11 (GALT-
1) shown in Figure 2. (C) MALDI-TOF MS/MS of molecular ion m/z 1377.6 detected in MS spectrum of
H11 (GALT-1) HPLC Peak 7 in spectrum B. (D) MALDI-TOF MS/MS of molecular ion m/z 1523.7
detected in MS spectrum of H11 (GALT-1) HPLC Peak 9 in Figure 2. All molecular ions are [M + K]*.

The spectra were assigned manually and annotated with the GlycoWorkbench software.
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Table S3: Eggs per gram feces (EPG) and worm burden (WB) counted on respective days post
oral infection (DPOI) and at necropsy day for each trial group with six animals.

Mean group counts are listed with standard deviation (SD) of the mean.

Counts DPOI Native+ Mean SD
do 0 0 0 0 0 0 0 0
EPG d14 0 0 0 0 0 0 0 0
d21 0 0 0 0 100 0 17 40.8
d28 0 50 200 50 150 250 117 98.3
WB d30 230 360 570 440 890 260 458 245.1
Counts DPOI P+ Mean SD
do 0 0 0 0 0 0 0 0
EPG d14 0 0 0 0 0 0 0 0

d21 6850 8530 9000 6400 5850 4550 6863 1669.5
d28 6350 13050 6100 9700 9150 10400 9125 2615.9
wB d30 2910 3280 2820 2980 3140 3350 3080 211.2

Counts DPOI P- Mean SD
do 0 0 0 0 0 0 0 0
d14 0 0 0 0 0 0 0 0
EPG

d21 4500 2300 5200 2300 3450 0 20568  1858.1
d28 7550 7750 5400 5600 8700 3550 6425 1907.6
wB d30 2870 2490 2250 2930 3120 2510 2695 328.9

Counts DPOI AP+ Mean SD
do 0 0 0 0 0 0 0 0
d14 0 0 0 0 0 0 0 0
EPG

d21 3400 6350 2400 6000 7450 700 4383 2621.2
d28 5500 8700 7400 5300 18300 6800 8667 4883.7
wB d30 2800 3070 2240 2700 2690 2510 2668 278.8

Counts DPOI HAP+ Mean SD
do 0 0 0 0 0 0 0 0
d14 0 0 0 0 0 0 0 0
EPG

d21 500 2550 9500 3700 5350 4450 4342 3033.7
d28 5050 7250 10400 8250 15000 5400 8558 3714.2
wB d30 1800 1390 2840 2650 3170 2450 2383 667.8

Counts DPOI HAP- Mean SD
do 0 0 0 0 0 0 0 0
d14 0 0 0 0 0 0 0 0
EPG

d21 1400 3100 3400 4050 1500 3650 2850 1128.7
d28 6100 9150 6800 9850 5300 3800 6833 2304.7
wB d30 2290 3100 2650 2590 2770 2180 2597 332.8

Counts DPOI Control Mean SD
do 0 0 0 0 0 0 0 0
d14 0 0 0 0 0 0 0 0
EPG

d21 5050 6100 3150 1650 7850 8650 5408 2694.5
d28 7100 8550 8900 5800 13500 10000 8975 2657.4
wB d30 2880 2370 2340 2570 3080 3290 2755 390.4
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Introduction

Haemonchus contortus is a blood-feeding parasitic nematode in sheep and goats. This
successful parasite infects a broad range of domestic and wildlife ruminants and has
spread from sub-Saharan Africa to almost all regions of the globe [1]. It belongs to the
Trichostrongyloidea nematodes, which are characterized by high genetic variability
and large population sizes [2, 3]. Five species of this superfamily, including H.
contortus, display extremely high levels of within-population genetic diversity (96 — 99
%) [3]. H. contortus shows not only high genetic variability within, but also between
populations within and among continents [4]. Sequence polymorphisms result from
high mutation rates, large effective population sizes and migration rates [5]. In the case
of H. contortus, the high levels of genetic diversity within populations are predominantly
due to its large effective population size [6]. A single ruminant host can harbor
hundreds of adult female worms with each sexually producing thousands of eggs per
day, resulting in the excretion of billions of new genotypes onto pasture every few days
[7]. Moreover, H. contortus has an up to ten times higher mutation rate than that of
vertebrates [3]. This parasite provides a high adaptive capacity to respond to selective
pressures, imposed by environmental factors, host immune responses or chemical
treatments [6]. Indeed, the rapid development of resistances to anthelminthic drugs
within a few years of drug usage is well documented [5, 7]. To overcome the fast spread
of drug-resistant strains, the development of a safe and effective vaccine is the best

practical alternative.

The most characterized native vaccine against H. contortus is the native H11 vaccine
purified by lectin-affinity chromatography that contains a mixture of numerous different
proteins with the H11 aminopeptidases being the most prevalent [8]. H11 is an integral
membrane glycoprotein with a molecular mass of 110 kDa [9], exclusively expressed
on the intestinal microvillar surface of the parasitic stages. It shows an aminopeptidase
activity and degrades small peptides of host blood proteins [10]. Immunization with
native H11 containing extracts induce high levels of protection leading to a reduction
of fecal egg counts by up to 95 % and worm burden by 82 % [11]. Protective 1gG
containing sera inhibit the activity of the H11 enzyme in vitro, and levels of enzyme
inhibition correlate with levels of protection in vivo [12]. Thus, protection is thought to

be mediated by antibodies, taken up with the blood meal, inhibiting the enzyme activity
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and disrupting nutrient absorption [13]. Therefore, the enzyme H11 is considered to be

critical for parasite survival.

Despite the success of the native vaccine, the long term aim is to generate a defined
and safe recombinant vaccine using a cost-effective production method. For this
reason, there has been a continous effort to produce recombinant versions of native
antigens using various expression systems, like bacteria, yeast, insect cells or
Caenorhabditis elegans [14]. Although numerous vaccine candidates were
successfully expressed, to date, the highest protection was reached with baculovirus-
expressed H11 inducing a partial protection of 30 % when tested in a sheep
vaccination trial [15-17]. This reduced protective capacity of recombinant vaccines
might be due to suboptimal folding, absence of other proteins or lack of post-
translational modifications, such as N-glycosylation. H. contortus possesses a range
of unusual N-glycan modifications absent from mammals, with up to three core fucose
residues and two types of galactosylated fucoses [18, 19]. In a previous study, we
tested glycoengineered High five cells, co-expressing the C. elegans
galactosyltransferase GALT-1, to decorate H. contortus digestive proteases with
nematode-like N-glycans, specifically the galactosylated core a1,6 fucose and the
immunogenic core a1,3 fucose (S. Fleurkens, manuscript in preparation). Despite a
significant anti-glycan and anti-protein immune response stimulated in sheep
vaccinated with these recombinant glycoengineered proteins, no protection was
observed when challenged with H. contortus. We postulated that due to the lack of

other proteins, recombinant vaccines are not protective so far.

Interestingly, the native H11 vaccine is not a single protein preparation. It comprises a
family of five different H11 isoforms (termed H11, H11-1, H11-2, H11-4 and H11-5), all
found in protective H11 preparations purified by lectin-affinity chromatography [17].
The five family members share 62-75 % amino acid identity and are tandemly arranged
in the genome, suggesting that the gene family has arisen through recent duplication
and divergence [17]. Semi-quantitative RT-PCR showed that H11 and H11-1 are
expressed in infective L3 larvae and all isoforms are expressed in adult worms, with
H11-4 being the most abundant form and H11-5 being female-specific [17]. Thus
different transcriptional pattern of the aminopeptidase H11 were identified, but little is

known about the interaction amongst its isoforms (e.g. building isoform heterodimers).
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To date, studies tested only single recombinant isoforms of H11, or combinations of
two isoforms, e.g. C. elegans expressed H11-1/-4 or H11-4/-5, which induced not or
only partially a protection of sheep in vaccination trials [17]. H11 isoforms might provide
functional redundancy concerning the inhibition of H11 activity by antibodies, but H11
diversity might be further extended considering the high genetic variability detected

within and among H. contortus populations.

In this study, we identified, characterized and compared the diversity of the
aminopeptidase H11 family present in three geographically different H. contortus
populations. We examined whether the H7117 isoform genes were under selection and
correlated the genetic diversity with structural changes of H11 proteins and variable N-
linked glycans. Our results are relevant for the development of a globally effective
Haemonchus vaccine and point to possible requirements for vaccine-induced
protective immunity in future vaccination approaches, also to be considered for

strategies against other parasite induced diseases.
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Results

H11 isoform sequences display an extreme genetic diversity in three

geographical distant populations of H. contortus

To test whether different populations of H. contortus express different H11 alleles,
cDNA sequences of three different populations, each from one sheep, were analyzed.
Fifty to hundred Swiss (CH), Scottish (SCO) or South African (ZA) mixed adult worms
were used for RNA isolation and subsequent cDNA synthesis. cDNA for all H71 loci,
as well as for two other loci encoding intestinal proteins, AC71 and PEP1, and the

housekeeping protein SOD1 were amplified from H. contortus cDNA.

Full open reading frames were obtained for all genes with the exception for Swiss worm
derived H11 isoforms, where the forward primers were designed to amplify sequences
downstream of the N-terminal transmembrane domain encoding cDNA. Sequence
analysis revealed high nucleotide polymorphism amongst most of the H11 isoforms,
resulting in many different unique sequences among a cDNA length of approximately
2900 base pairs (Table 1). Only the Swiss H11-4 and the South African H11-5
sequences did not show any sequence variation. The genetic diversity indices for the
different genes analyzed are summarized in Table 1. Between 176 to 511 segregating
sites were identified among the 25 - 29 sequences analyzed for each of the five H11
isoforms, resulting in 15 - 29 unique nucleotide haplotypes. In contrast, only 10 and 11
haplotypes with 57 and 44 segregating sites were identified among 28 and 29
sequences analyzed for AC1 and PEP1, respectively. SOD1 revealed 18 haplotypes

with 69 segregating sites among the 480 base pairs of coding sequence.

Average nucleotide diversity was higher for H11 isoforms m = 0.038, (range 0,025 to
0,059) as compared to the average 7= 0.021 (range 0,01 to 0,032) estimated for AC1,
PEP1 and SOD1 respectively. The difference was marginally not significant, though
(t-value = 1.80856, p-value = 0.06). Likewise, average haplotype diversity was higher
for H11 isoforms (h = 0.957, range 0,911 to 1,000) as compared to AC7, PEP1 and
SOD1 (h = 0.833, range 0,768 to 0,901). This difference was significant (t = 3.45972,
p = 0.007). None of the H11 isoform sequences identified in this study was identical to

any previously published H11 sequence.
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Table 1: Genetic diversity indices (excluding indels) for the H11 isoforms, AC1, PEP1 and SOD1

genes of H. contortus.

Gene n M S T (Sd) h (Sd)
H11-1 29 29 366 0,033 1,000
H11-2 29 22 310 0,029 0,966
H11-4 25 15 176 0,025 0,927
H11-5 29 21 511 0,059 0,911
H11 25 22 433 0,044 0,980
H11 average 137 21.8 359.2 0.038 0.957
AC1 28 10 57 0,021 0,831
PEP1 29 11 44 0,010 0,768
SOD1 30 18 69 0,032 0,901
control average 87 13 56.7 0.021 0.833

n, number of sequences sampled; M, number of haplotypes; S, number of segregating sites; m,

nucleotide diversity; h, haplotypic diversity

We considered it unlikely that the observed nucleotide diversity was a result of
amplifying or sequencing artifacts for several reasons: the polymerase used in this
study was of high quality and the base-calling from the sequencing chromatograms
was unambiguous. Furthermore, if the nucleotide polymorphisms were the result of a
methodical error one would expect to observe a similar degree of diversity among all
sequences. However, nucleotide diversity was unevenly distributed. For example, we
did not observe a single nucleotide polymorphism (SNP) among Swiss samples for
H11-4 as compared to other populations at this locus. Therefore, we are confident that
we are looking at true polymorphisms within and among genetic loci and between

geographic locations.

We explored the phylogenetic relationships of the H11 gene family on the amino acid
level using all sequences obtained in this study. Additionally, we included the
previously published reference sequences for each isoform for comparison (GenBank
accession: H11-1, AJ249941.1; H11-2, AJ249942.2; H11-4, AJ311316.1; H11-5,
KF381362.1; H11, X94187.1). The sequences clustered in five distinct phylogenetic

groups with maximal statistical bootstrap support. All groups were exclusively
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comprised of sequences originating from the same H11 isoform (Figure 1). Within
these phylogenetic groups, sequences representing different sampling locations were
randomly distributed, hence, no geographic sub-structure according to isolation-by-
distance was detected. We conducted specific regression analyses by plotting pairwise
geographic against genetic distances to confirm this observation. The Pearson
correlation coefficients for all 5 isoform groups were low (ranging from r = 0.18 to 0.39)

and all were non-significant (Supplementary Table 1).

H11
100
CHi1 4 A
H11-4 ZA H114 N
ZA 11 4 A
25 Wit
114
100 A H11 4 B
T4K
SCO_H11.4.B
ZA H11 4 L
ZAH11.4. K
ZAHIT 41
SCO_HT1 4 |
ZA'H11.4D
CO HI1 4 F
SCO HI1 4 E
SCO HI1-4D
SCO_H1174_A
SCO HI1 4 M
SCO_H1T_4_G
CH_H11_2_H
H11-2
100 CE'H }11 12K
17 2
CH H11.2.L
CHH112J
CH H11-2 1
GHH112.C
CH_H11 2°A
ZA H112 0
ZA_H1 2D
ZATHTI 2.1
ZAHIT 2K *
H11_2 AJ249942.2
SCO_H11.2 B
_H11 2 A
ZAHIT2 N
SCO H11 2 N
SCO_HI12 H
SCO H112 A
SCOH1172.G
SCOH112L
ZAHI1 5 N
ZATH1175°0
ZATH11T5M
ZATHIT 5L
ZATHIT 5 K
ZATH1175 1
ZATHIT5.G
ZAHI1 5 E
ZAHI1 5 B
H11-5 CO_H1145_F
- | L Hi15 kF3s1362. 1
CH_H1
100
CH_H11_5_R
H11-1
16
100 M
1u
HI1 1N
H111°Q
ZAHI11C
1
AJ249941.1
1
TN
1K
T1TK
1.0
iR
111 P
L
1S
T

-79-



Figure 1: Molecular Phylogenetic analysis by Maximum Likelihood method

The evolutionary relationship was inferred by using the Maximum Likelihood method based on the JJT
matrix model [20]. The tree with the highest log likelihood (-11962) is shown. Gamma distribution was
used to model evolutionary rate differences among sites (5 categories (+G, parameter = 0.7279)). The
percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (100
replicates) is shown next to the branches. The tree is drawn to scale, with branch lengths measured in
the number of substitutions per site. The analysis involved 137 amino acid sequences, including the
published sequences (marked with a star) and experimentally determined sequences of this study,
labelled according to their geographic isolation from Switzerland (CH), Scotland (SCO) or South Africa
(ZA). There were a total of 901 positions in the final dataset. Evolutionary analyses were conducted in
MEGAG [21].

The H11 amino acid diversity is found on the protein surface

Due to the potential of H11 aminopeptidases as vaccine candidates against H.
contortus, we were interested in evaluating the potential of sequence diversity to create
antigenic variation. We created consensus sequences for each of the five isoforms with
amino acid positions showing 100 % identity in alignments with all sequences analyzed
for one isoform (Figure 2A). These consensus sequences showed that 78 - 95 % of
amino acid positions were conserved within one isoform, with the highest variable site
value identified in H11-5 (223 amino acid exchange / 993 total amino acids). The N-
terminal transmembrane domain was excluded from this analysis, as the sequence
information was lacking for the Swiss population due to a different isolation strategy. A
few constructs (H11: 3, H11-1: 6, H11-5: 2) had a mutation leading to a stop codon,

these truncated sequences were excluded from the diversity calculations.

An alignment of the five consensus sequences revealed that the same variable sites
were often found in more than one isoform at the same position (Figure 2A). Diversity
occurred throughout all domains of the protein, except the areas surrounding the
HEXXHX1sE zinc-binding and GXMEN catalytic motifs (purple). To identify the location
of the amino acid diversity on the protein structure, one sequence of each H11 isoform
was modeled on the crystal structure of the homologous human aminopeptidase N
(hAPN [22]). As the human aminopeptidase, the H. contortus H11 proteins are type-2
membrane glycoproteins. They form dimers and each monomer possesses the
characteristic four-domain structure of the M1 metallopeptidases [22]. A model for the

orientation of H11 on the cell surface is shown in Figure 2B. The modeled proteins are
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shown in the closed form with an internal cavity in domain Il (palegreen) surrounding

the active sites.

Interestingly, the variable sites of all isoforms were found almost exclusively on the
surface of the protein (Figure 2C, Supplementary Figure 1). Among the many amino
acid mutations observed in H11, only a few (<12 % on average) were located inside
the protein and no mutations were detected within the active sites. The protein surfaces
exposed towards the microvilli plasma membrane (Supplementary Figure 1E) and the
surface where potential dimerization takes place (Supplementary Figure 1C) were

showing the least mutations.

Overall 50 % of all amino acid replacements were shared among the Swiss (CH),
Scottish (SCO) and South African (ZA) population for H11-2, H11-4 and H11 (Table
2). In contrast, 93 % of the mutations identified in H11-5 were unique to one of the
populations analyzed, leading to distinct surface patches when marked on the modeled
protein (Figure 2D). Variability of protein sequences is expected to rise with more H11
sequences being analyzed, as we did not reach saturation in finding identical
sequences for many of the subsets. Subsequently, amino acid diversity on the surface

might increase as well.
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Figure 2: Localization of the amino acid variation on the surface of the modelled H11 protein

(A) Conservation of H11 isoform sequences. Alignment of consensus sequences of H11 isoform show
positions with 100 % identity within the sequences analyzed for one isoform (including the published
sequence and all sequences of this study). A red dash shows lack of conservation and a black dot lack
of an amino acid. HEXXHXi1sE zinc-binding and GXMEN catalytic motifs are conserved and marked in
purple. The alignment background is colored according to the different domains of the modeled protein
structure. (B) Dimeric H11 protein structure modeled by PHYREZ2 [23] on the crystal structure of the
human aminopeptidase N (hAPN [22]) by using the sequence of H11-5 variant A of the Swiss isolate.
The protein forms a dimer and the left monomer is shown in a cartoon and the right monomer in a
surface representation. The dimer is depicted in its proposed orientation with respect to the plasma
membrane and colored according to domains (I: lightblue, Il: palegreen, llI: lightpink, IV: paleyellow).
The grey arrow indicates the view on the protein surface used for figure C and D. (C) Variable amino
acid residues found on a given isoform are marked in red on the modeled monomeric protein structures.
The monomer is rotated (y, 90° x, 45°) with respect to the dimer in B. (D) Amino acid variability found in
the different geographical populations of H11 isoforms is marked according to the localization of the
diversity in Switzerland (orange), Scotland (cyan) or South Africa (green) or in two / three populations
(purple) on the modeled monomeric protein structures. H11-4 and H11-5 represent two populations only
as no polymorphism was found in Switzerland for H11-4 and in South Africa for H11-5. The monomer is
rotated (y, 90° x, 45°) with respect to the dimer in B. The following sequences were used for the modeling
of the protein structure: H11-4 variant A of the South African isolate, H11-1 variant D, H11-2 variant A,

H11-5 variant A and H11 variant D of the Swiss isolate.

Table 2: Summary of variable amino acid sites in the H11 proteins
Overall includes all variable amino acid sites found among the published and newly identified amino
acid sequences. Overall (geographic) depicts the amount of variable amino acid sites found among the

new sequences and is the summary of the variable sites that are Unique or Shared (geographic).

Protein  Overall Overall Shared Unique  Unique  Unique
(geographic) (geographic) CH SCO ZA
H11-1 72 64 23 17 3 21
H11-2 87 79 40 33 1 5
H11-4 49 45 23 - 4 18
H11-5 223 207 15 84 108 -
H11 90 80 40 23 7 10
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H11 sequences are under strong diversifying selection

The high number of variable amino acid residues and their localization on the surface
of the modeled H11 proteins, suggested that these genes may be under positive
diversifying selection. A widely used approach to estimate the degree of selection is to
compare dN (the number of non-synonymous changes per non-synonymous site) with
dS (the number of synonymous changes per synonymous site). A ratio dN / dS of 1 (w
= 1) indicates neutrality, while w < 1 is suggesting purifying, and w > 1 is suggesting
diversifying selection, respectively. We estimated dN and dS for all pairwise sequence
comparisons using DnaSP [24]. Figure 3 summarizes the results in a box plot graphic.
Both, dN and dS values are significantly higher in the H11 family as compared to AC1,
PEP1and SOD1 (T-test, p <0.001), supporting our hypothesis of accelerated evolution

in the former group. However, the ratio w was not > 1 for any of the genes.

H11 family Control genes
Sample size: 1818 1219 1
03 Median : 0.192 0.006 0.06 = .
Min: 0.050 0.000
Max: 0.301 0.019 H H11 family Control genes
1stQuart 0.141 0.000 H
3rdQuart: 0243 0013 s Sample size: 1818 1219
. - i Median 0.015 0.006
LR ’ 905 ! Min 0.009 0.000
Max: 0.064 0.019
— 1stQuart 0.013 0.000
3rdQuart 0.023 0013
02 — 0.04 =
ds dN
0.15 0.03 =
01 — 0.02 =4
0.05 0.01 =4 |
0 I 0 -
H11 family Control genes H11 family Control genes

Figure 3: Ratios of synonymous (dS) and non-synonymous changes (dN)
Comparison of dS (A) and dN (B) estimates between all pairwise gene comparisons within the H711
family and the genes AC1, PEP1 and SOD1 (control genes).

However, since diversifying selection is unlikely to affect all sites of a gene over
prolonged time, w averaged over all sites is almost never > 1. Thus interest has been
focused on detecting positive selection that affects only specific codon sites. We
therefore applied the maximum-likelihood method CodeML implemented in PAML [25,
26] to test for codon-specific selection in the aminopeptidase genes. The selection

model M8 (allowing w to exceed 1 among codon sites) fitted the data significantly better
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than the neutral model M7 (allowing w to range from 0 to 1) for all of the H11 isoform
groups (p < 0.01). This suggested that strong diversifying selection is acting on all
members of this gene family (Table 3). In contrast, SOD1 and PEP1 showed no
significant deviation from neutrality (p = 0.490 and p = 1). The gene sequences coding

for the intestinal protein AC1 also showed evidence of diversifying selection.

The majority of the individual codon sites was under purifying selection, however, up
to 17 sites (H11-4) were identified to be under positive diversifying selection (Table 3).
The positions for the positively selected codons and the corresponding w-values are

listed in the Supplementary Table 2.

Table 3: Likelihood ratio test for positive selection of amino acid sites

Protein Model 7 Model8  LRT  pygye Ppositively selected  jnference of evolution
-In (M7)  -In (M8) statitics™ codons**

H11-1  -9433.26 -9371.37 123.77 <0.001 8 strong diversifying selection
H11-2 -8152.14 -8132.81 38.65 <0.001 12 strong diversifying selection
H11-4 -5822.52 -5786.74 7156 <0.001 17 strong diversifying selection
H11-5 -9541.13 -9536.82 8.60 0.014 3 diversifying selection
H11 -9581.47 -9567.78 27.39 <0.001 15 strong diversifying selection
AC1 -1879.84 -1870.71 18.25 0.010 3 diversifying selection
PEP1 -2135.05 -2133.64 2.81 0.490 0 neutral

SOD1 -1248.96 -1248.96 -0.01 1.000 0 neutral

*LRT statistics follow a x2 distribution with degrees of freedom of 2.

** Positively selected sites with posterior probability (P) values of > 0.95
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H11 amino acid diversity rearranges N-glycosylation sites on the protein

H11 is a glycoprotein and therefore, this post-translational modification can contribute
to the variability of the isoform and allelic proteins. N-glycans can change the surface

structure of a protein dramatically due to their size and variability in composition.

First, we analyzed whether N-glycosylation sites (N-X-S/T) were affected by amino
acid replacements. Individually, each H11 isoform harbors between 3 and 8 glycosites,
but overall a total of 15 different glycosites, all located on the surface of the modeled
protein, were found (Figure 4A). One site (glycosite 7) was conserved among all
isoforms, two glycosites (3 and 13) were shared among four isoforms, glycosite 2 was
shared among two isoforms and all others were uniquely found in one isoform only.
Single nucleotide polymorphism (SNP) in the analyzed H. contortus populations led to
the loss or gain of 8 N-glycosylation sites within the isoforms when compared to the
published sequences, as shown in the glycosite sequence alignment (Figure 4B and
3C). In more detail, a SNP led to an aspartic acid replacement by asparagine and
creates thereby a new glycosite in H11-1 (DYT -> NYT, Figure 4C), found in all three
populations analyzed. Like in H11-1, also in H11-2 a SNP introduced a new glycosite
in the Swiss population (KVS -> NVS, Figure 4G). In contrast, a SNP or a frame shift
by three guanine insertions mutated a N-glycosylation site in the Swiss H11-5 (Figure
4D). Alternatively, mutations to serine or threonine on the third position of the N-X-S/T
sequon generated new glycosites. For example in the Swiss and South African
population, NYR was replaced by NYT or NYS in H11 (Figure 4E), NYA was replaced
by NYT in Swiss and Scottish H11-5 (Figure 4F), and NGE was replaced by NGT in
Scottish H11-2 (Supplementary Figure 2B). In contrast, none of the amino acid

replacements found in H11-4 isoform affected glycosites.

In summary, 8 out of 15 glycosites among the isoforms were affected by the amino
acid replacements and individually per isoform the following amount of glycosites were
variable: H11-1 (1 out of 5), H11-2 (2 out of 4), H11-4 (none of the 5), H11-5 (4 out of
8), and H11 (2 out of 5) (Figure 4 and Supplementary Figure 2).
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Figure 4: H11 amino acid diversity affects the loss or gain of N-glycosylation sites
(A) Dimeric Swiss H11-5 allele (CH-H11-5A) protein structure modeled by PHYREZ2 [23] on the crystal

structure of the human aminopeptidase N (hAPN [22]). The Pymol surface model is colored to indicate

the different domains (I: lightblue, 1l: palegreen, lll: lightpink, 1V: paleyellow). 15 asparagines, or the

corresponding aligned amino acid in H11-5A, are highlighted on the protein surface and colored by

conservation of the glycosite among isoforms, if shared among all five H11 isoforms: pink (glycosite 7),

among four: magenta (glycosite 3 and 13), among two: purple (glycosite 2) or uniquely found in one
isoform: orange (glycosite 1, 4, 5, 6, 8-12, 14, 15) (B) Alignment of glycosites of H11-1 (AJ249941.1),
H11-2 (AJ249942.2), H11-4 (AJ311316.1), H11-5 (KF381362.1) and H11 (X94187.1). All 15 glycosites
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are either found in the aligned published sequences (bold type and underlined) or in sequences of the
other populations analyzed (bold type). The N-glycosylation site is marked in red, when it is lost or
gained compared to the published sequence. (C) - (G) Detailed view of alignment of different H11
isoform (vertical) nucleotide sequences of different populations (Swiss, CH; Scottish, SCO; South
African, ZA). Nucleotide mutations or insertions (red) causing amino acid replacements in the N-
glycosylation sequon (bold type and underlined) leading to the loss or gain of a N-glycosylation site
when compared to the published sequence (Publ).
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Recombinantly expressed H11 isoforms show site-specific differences in the N-

glycan modifications

To examine whether variations of the primary amino acid sequence had an effect on
the N-linked glycan structures of the H11 isoforms we recombinantly expressed H11
proteins in insect cells and assessed their site-specific N-glycan modifications. Site-
specific glycan heterogeneity is primarily affected by the structure of the protein and

the glycosylation potential of the expressing cell [27].

H11 proteins were produced in glycoengineered High five insect cells co-expressing
the C. elegans galactosyltransferase-1 GALT-1 [28] (Supplementary Figure 3). This
enzyme adds a 31,4-galactose to the a1,6-linked core fucose residue (GalFuc) in the
Golgi apparatus of High five insect cells, thereby creating the glycoepitope GalFuc
found on native H. contortus proteins. Secreted His1o-tagged H11 proteins were affinity
purified from the culture supernatant. Proteins were proteolytically cleaved with trypsin
and the digested glycopeptides were subsequently analyzed by nanoHPLC-HCD-
MS/MS mass spectrometry (Supplementary Table 3) [27]. Due to the complexity of the
analysis, this was done for some Swiss variants only. Different glycoforms of the
glycosylated peptides were quantified for every N-glycosylation site (Supplementary
Table 4) and grouped into high mannose, hybrid, paucimannose, core fucosylated and
core difucosylated structures according to the level of processing in High five cells
(Figure 5A).

Recombinantly produced H11 isoforms co-expressed with GALT-1 were decorated
with nematode-like N-glycans similar to the ones found on native H11 from H.
contortus, namely with the galactosylated core a1,6 fucose (the GalFuc epitope) and
the core a1,3 fucose. As expected, we observed an N-glycan heterogeneity at all N-
glycosylation sites analyzed (Supplementary Table 4). For example, the analysis of the
N-glycosylation sites of the Swiss variant C of isoform H11-1 revealed differences in
the processing of N-glycans on all five glycosites (2, 3, 5, 7 and 13) (Figure 5B).
Importantly, the processing of glycans was site-specific. Glycosite 2 and 13 carried
mainly high mannose structures, whereas glycosite 3 was decorated with hybrid and
paucimannose glycans, and glycosite 5 and 7 were processed the most with core

mono- and di-fucosylated structures.
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Figure 5: Recombinant H11 isoforms purified from glycoengineered insect cells show
differences in the site-specific N-glycan modifications

(A) N-glycan-processing pathway in the ER and Golgi apparatus of glycoengineered High five insect
cells overexpressing the C. elegans galactosyltransferase. The main pathway is underlined with a grey
bar and all glycan structures and enzymes involved are shown (MI, MIl, MIll: a-mannosidase |, Il and
llI; GnTI, GnTII: N-acetylglucosamine transferase | and Il; GA: N-acetylglucosaminidase; FT6, FT3:
a1,6- and a1,3-fucosyl transferase, GALT-l: C. elegans B1,4-galactosyltransferase). The glycan
structures are grouped according to the level of processing into high mannose, hybrid, paucimannose,
core fucosylated and core difucosylated structures. (B) Site-specific N-glycan profile of the Swiss variant
C of the H11-1 isoform. The relative abundance of the different glycoforms at a given glycosite (2, 3, 5,
7 and 13) is shown. (C) Site-specific N-glycan profile of the shared glycosite NWT (Glycosite 3) of
isoforms H11-1, H11-4, H11-5 and H11. The relative abundance of the different glycoforms for the
different isoform variants (H11-1C, -D, -J, -N; H11-4C; H11-5A, -B, -C, -D, -E, -G, -I, -J, K, -L, -Q and
H11-X) is shown. (D) Site-specific N-glycan profile of the shared glycosite NSS (Glycosite 13) of
isoforms H11-1, H11-4, H11-5 and H11. The relative abundance of the different glycoforms for the
different isoform variants (H11-1C, -D, -J, -N; H11-4C; H11-5A, -B, -C, -D, -E, -G, I, -J, K, -L, -Q and
H11-X) is shown. All H11 isoforms were purified from insect cells co-expressing the C. elegans
galactosyltransferase GALT-1. Site-specific glycan profiles of trypsin digested glycopeptides were
analyzed by nanoHPLC-HCD MS/MS mass spectrometry. Data represent the mean values of grouped
glycan ratios of two (5E, 5F and 5I) or three (other variants) different experiments with error bars

indicating the standard deviation. Detailed data analysis can be found in Supplementary Table 3 and 4.

We further compared the site-specific glycostructures at conserved N-glycosylation
sites among the different H11 isoforms and within alleles of one isoform. We observed
that all three shared N-glycosylation sites (3, 7 and 13) showed distinct processing
patterns among the four isoforms. While isoform H11-4 showed mainly un-processed
high mannose structures at glycosite 3, H11-5 exhibited hybrid structures and in
contrast, H11-1 and H11 presented further processed paucimannose glycan structures
(Figure 5B). An interesting difference in N-glycan processing was detected on the
shared glycosite 13 (Figure 5C). Here, the isoform H11 showed 50 % more
difucosylated core structures as compared to the other isoforms analyzed. This
glycosite also showed differences in the galactosylation of the core fucose with variable
rates ranging from 13 to 49 % (Supplementary Table 4). Our results clearly
demonstrated that the sequence diversity between and within isoforms strongly
affected N-glycan processing, adding an additional level of surface variability to H11
(Figure 5B and 5C).
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We evaluated the variability of our experimental approach to determine glycan
heterogeneity by expression in an adapted insect-cell expression system and analyzed
site-specific N-glycan heterogeneity in native H11 preparations. Due to the analytical
method (analysis of glycopeptides), we were able to characterize isoform-specific sites
in native extracts. We extracted native H11 from a detergent-soluble extract of H.
contortus adult worms, with or without further enrichment by lectin affinity purification,
and analyzed the site-specific N-glycosylation of both preparations by mass
spectrometry (Supplementary Table 5). Highly similar glycosylation patterns were
identified for both proteins, the recombinantly expressed H11 from glycoengineered
insect cells and the native H11 present in adult worms (Figure 6). In both samples,
glycosite 1 was modified mainly by high-mannose and hybrid N-glycan structures,
whereas glycosite 3 showed mainly paucimannose structures and glycosite 13 was
decorated by highly processed nematode-specific N-glycans (GalFuc). We concluded
that the recombinant H11 site-specific glycosylation resembled closely the

glycosylation pattern of the native H11 protein.
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Figure 6: Native H11 and recombinant H11 show site-specific and similar N-glycan modifications
Glycosite-specific N-glycosylation profile of recombinant H11 purified from insect cells co-expressing
the galactosyltransferase GALT-1 (upper panel, grey) and native H11 purified from adult H. contortus
worms (lower panel, white). Trypsin digested glycopeptides were analyzed by nanoHPLC-HCD MS/MS
mass spectrometry. H11 has four N-glycosylation sites, their location is marked by red N's representing
the asparagine residue where the glycan is attached. Trypsin digested peptide sequences of these four
glycosylation sites are shown with the four most abundant carbohydrates attached and their respective

percentage. Detailed data analysis can be found in Supplementary Table 4 and 5.
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Discussion

As we proceed in combating the anthelminthic resistance problem of the sheep
parasite H. contortus, developing an effective recombinant vaccine would be the best
alternative to effectively control the disease. Over the last decades, numerous
protective native antigens have been identified, with the native H11 vaccine being one
of the most effective against H. contortus infection. Vaccination studies with
recombinant H11 used single isoforms or combinations of two isoforms and were
unsatisfying in reaching the necessary protection rate. The Haemonchus genome
encodes five different H11 isoforms [17] and, in combination with the high level of
genetic diversity in H. contortus [4], this might explain the failure of recombinant H11
protein to elicit a protective immune response. Based on this hypothesis, we examined
the distribution and conservation of H11 antigen genes within and between parasite
populations, as this might have fundamental implications on the development of a

globally or locally active recombinant H11 vaccine.

We identified an extreme genetic diversity specifically within the H77 aminopeptidase
family of three different H. contortus populations. Both, average nucleotide diversity as
well as haplotype diversity, was higher for H11 isoforms as compared to the average
estimated for AC1, PEP1 and SOD1 respectively. This level of diversity was
comparable to previously reported variation in cysteine proteases of H. contortus
(range 0.0129 to 0.1024) [29-31]. Specifically, for the cysteine protease AC1, also
tested in our study, the nucleotide diversity was found to be similar to the one reported
in a first study [30], but lower as compared to the one in a more recent publication [31].
Previous studies attributed the high genetic diversity within H. contortus populations to
a high mutation rate and large effective population sizes [2, 3]. In fact, billions of new
genotypes are passed onto pasture every few days in a flock with hundreds of sheep,
each harboring hundreds of adult female worms of which each produces thousands of
eggs per day [7]. Moreover, enough progeny is created to mutate every single
nucleotide position in the genome each day [7], assuming that H. contortus has a
similar mutation rate as C. elegans, 2.1 x 10-® mutations per site per generation [32].
Furthermore, these high levels of genetic diversity are retained in laboratory isolates
passaged for many years [33-35]. These properties of H. contortus explain the high

levels of genetic diversity found in this study.
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One consequence of high nucleotide diversity is, that it might lead to non-neutral
modifications of the protein sequence, either through non-synonymous mutations
leading to an amino acid change or a frame shift, or introduction of stop codons leading
to non-functional proteins. In this study, up to 22 % of the H11 protein sequence was
affected by amino acid replacements (223 out of 993 amino acids). This extent of
variation is at an extreme level, and up to 10 times higher as compared to other
reported nematode proteins and vaccine candidates tested so far [36]. For example, a
relatively low level of 2 % diversity was found in the hookworm vaccine antigen, the

Ancylostoma secreted protein termed ASP-1 (10 out of 424 amino acids) [37].

Importantly, the sequence variation of the H11 proteins was found almost exclusively
on the surface of the modeled protein structure (>88 % on average), leaving the
internal structure of the protein unaffected. Additionally, no amino acid replacements
were found within the catalytic motifs of the proteins. We concluded that the biological
activity (hydrolysis of peptides) of the H11 enzymes was not significantly modified by
the sequence diversity within one isoform. No estimation on the absolute level of H11
diversity in H. contortus was made, as we did not reach saturation for many of the
sequence subsets. None of the H11 isoform sequences identified in this study was
identical to any of the previously published ones, indicating sequence diversity in
different H. contortus populations from different geographic locations. Indeed, a
minimum of 50 % of the amino acid replacements were specific for one geographical
isolate. However, also 50 % of the amino acid variation was found in the two or three
populations analyzed in this study. Variability of protein sequences is expected to rise
with more H11 sequences and more parasite populations being analyzed. Amino acid
diversity might increase further and might enhance diversity of H11 proteins even

more.

Surface variability in the H11 population was increased further by post-translational
modifications, in particular N-linked glycosylation. Genetic changes resulted in the gain
or loss of 8 out of 15 N-glycosylation sites among the isoforms due to alteration of the
N-X-S/T glycan acceptor sequon. As the surface structure of a glycoprotein also directs
N-glycan processing in the Golgi compartment [27], we expected differentially
structured N-glycans on H11 isoforms and allelic H11 variants. Indeed, mass
spectrometry-based analysis revealed varying N-glycan structures between isoforms

and between the variants of one single H11 isoform. This site-specific N-glycan
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processing was not only detected in recombinantly expressed proteins from insect

cells, but also in the native H11 isoforms purified from adult H. contortus worms.

This high surface variability of H11 asks for the biological factors promoting H11
diversity in H. contortus. Using maximume-likelihood models, we showed that positive
diversifying selection is acting on the H171 genes and we hypothesize that the host
antibody-mediated immune response exerts the selective pressure. This might be in
conflict with the “hidden antigen hypothesis® that explains the protective mode of action
of native H11 vaccine [38]. There is evidence that “hidden antigens” are not completely
hidden from the host's immune system, as unvaccinated animals after being exposed
to H. contortus for a long time are able to generate an immune response against the
gut antigens [39, 40]. In addition, the immune response against H11 primed by
immunization can be boosted, presumably by H11 released from dead or dying

parasites in the sheep stomach [38, 41].

Why would an antibody-mediated immune response against the surface of the H11
protease be growth inhibiting for H. contortus? The answer might lay in the mode of
action of the protease. As suggested for the human homolog, the arch-like structure of
the closed dimeric form showed that the internal cavity harboring the catalytic site is
not connected to bulk solvent by an appreciable channel or opening [22]. It was
suggested that a large conformational change from the closed dimer to an open S-
shaped dimer configuration makes the catalytic center accessible to bulk solvent and
the substrates, the interconversion of the open to the closed form is essential for
enzymatic activity and the reaction cycle [22]. We propose that antibody binding to the
monomers of the H11 enzyme prevents such a conformational change, thereby
inhibiting the H11 activity, as was shown for sera from vaccinated sheep [12].
Consequently, the broad surface variability might outcompete the adaptive immune
system in reoccurring infection cycles and prevents protection in vaccination using
recombinant protein. However, priming the immune response with a highly variable
mixture of H11 isoforms and allelic variants as achieved by vaccination with native H11

extract is sufficient for prevention of primary infection.

One very well studied example for immense surface variation including rearrangement
of N-glycans to avoid recognition by the host immune response is the highly variable
human immunodeficiency virus 1 (HIV-1). Approximately 50 % of the gp120 surface

was shown to have a variability of greater than 10 % [42]. In addition, the acquisition
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and rearrangement of N-glycans are building a glycan shield allowing HIV-1 to conceal
itself from neutralizing antibodies. As a consequence, only 3 % of the surface is still
immunoglobulin-domain accessible, when the genetic variation was combined with
glycan shielding [42]. Interestingly, there are broadly neutralizing human antibodies

against HIV infection [43].

In summary, H11 proteins of H. contortus show a massive surface variability due to
amino acid alterations on the surface, different positioning of N-glycans, and varying
N-glycan structures between the isoforms and between the variants of one isoform. In
our view, the very high structural complexity in epitopes is the result of a selection,
where the host immune system inactivates the essential activity of the intestinal H11
protease by inhibiting the catalytic reaction cycle of the enzyme. A detailed analysis of
H11 variability might lead the way to a properly designed recombinant vaccine that can
counteract the high variability of the target in H. contortus populations. To the best of
our knowledge, this is the first study that analyzed the variability of a eukaryotic surface
glycoprotein at the level of the sequence structure and glycan composition. In the case
of the H11 protein family in H. contortus, selection seems to act on the surface
properties of the glycoprotein, resulting in protein sequence and N-glycan variability.
The analysis of N-glycan variability is therefore essential to understand the selective

forces that shape glycoprotein function.

-96-



Methods

H. contortus parasite material and RNA extraction

Fifty to hundred Swiss (CH), Scottish (SCO) or South African (ZA) whole, mixed adult
worms, amplified from field isolates, were used for total RNA extraction using an
RNeasy kit (Qiagen # 74804). cDNA was synthesized using the transcriptor universal
cDNA master kit (Roche # 05893151001) following the manufacturer’s instructions.

Amplification of H. contortus coding genes and construction of plasmids for

baculovirus protein expression

Open reading frames of all plasmids constructed in this study were confirmed by

nucleotide sequencing.

Plasmids were generated using standard cloning protocols and are listed in
Supplementary Table 6 and all primers used in this study are listed in Supplementary
Table 7. 0.5-2 ug cDNA was used as a template and the following thermal cycle was
used for the gradient Touch Down PCR: 98°C 30 sec; [98°C 10 sec, 72-60°C (AT(°C)=
-1) 30 sec, 72°C *sec] 12 cycles; [98°C 10 sec, gradient (60.3°C, 62.4°C, 65.2°C,
68.2°C, 70.8°C) 30 sec, 72°C *sec] 32 cycles; 72°C 5 min (* dependent on the size of
the gene). PCR amplified coding genes were either ligated into pGEM-T- Easy for
nucleotide sequencing or further cloned into the insect cell expression vector

pFastBac™ Dual.

pSF23-Dual-GALT: The plasmid was constructed to allow for simultaneous expression

of C. elegans galactosyltransferase GALT-1 and another gene. C. elegans FLAG-
GALT1 was amplified by PCR using pMA148 as template and primers 'GALT Fw Xmal'
and 'GALT Rv Nsil'. The insert was cloned as Xmal-Nsil fragment into the respective

restriction sites of vector pFastBac™ Dual downstream of the p10 promoter.

pSF25 and pSF34-56: These plasmids were constructed to allow simultaneous

expression of C. elegans GALT-1 and secretion of N-terminally His-tagged

Haemonchus contortus H11 isoforms in the pFastBac™ Dual.

After Touch Down PCR amplification from cDNA using primers 'H11-1 fw Apal' and
'H11-1 rv Stul' for H11-1, 'H11-2 fw Apal' and 'H11-2 rv Stul' for H11-2, 'H11-4 fw Apal’'
and 'H11-4 rv HindllI' for H11-4, 'H11-5 fw Apal' and 'H11-5 rv Stul' for H11-5, the PCR
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products were cloned as either Stul/Apal fragment (H11-1, H11-2, H11-5) or
Hindlll/Apal fragment (H11-4) into pRG101 downstream of the N-terminal gp67
secretion signal peptide (SP), His1o-tag (HIS) and PreScission protease cleavage site
(PSP). Finally, the coding genes (including SP, HIS and PSP) were excised by
digestion with either Cpol/XmadJl (H11-1C, -1D; H11-2A, -2D; H11-4C, H11-5A, -5B, -
5C, -5D, -5E, -5F, -5J, -5K) or with Paul/XmaJl (H11-1J, -1N; H11-2F, -2H; H11-5G, -
51, -5L, -5Q, -5R) and introduced into pSF23-Dual-GALT downstream of the Polyhedrin
promotor generating pSF34 - pSF56. In contrast, the H11 gene was cloned as BamHl|-
Hindlll fragment from a Genscript synthesized plasmid downstream of the Polyhedrin
promoter of the pFastBac™ Dual (S. Fleurkens, manuscript in preparation). Then the
C. elegans GALT-1 was cloned as Xmal-Nsil fragment into this vector downstream of
the p10 promoter (PCR-generated using pMA148 as template and 'GALT Fw Xmal'
and 'GALT Rv Nsil' as primers) generating pSF25.

Genetic diversity and phylogenetic reconstruction

Nucleotide sequences were aligned using MAFFT version 7 [44] and gene diversity
estimates were calculated using the program DnaSP version 5.10.1 [24]. Since we did
not detect significant geographic structure among sampled populations (Figure 1),
diversity parameters were estimated for the pooled samples for each H11 isoform
group.

The phylogenetic relationship of the entire H11 gene family was assessed on the entire
data set after sequence alignment on the amino acid level with MAFFT. The data file
was tested for goodness of fit to 48 models of amino acid evolution to select the most
appropriate evolutionary model for the analysis using the “find best model” option
implemented in MEGA6 [21] (Supplementary Table 1). The final analysis was
conducted in MEGAG6 using the Maximum Likelihood method based on the Jones-
Taylor—Thornton matrix model with a gamma distribution to model evolutionary rate
differences among sites (JTT +G) [20]. Confidence values for the phylogenetic tree

were inferred with 100 bootstrap replicates.
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Selection analysis using maximum likelihood models

A widely used approach to test for signatures of selection is to compare synonymous
(dS) and non-synonymous substitution rates (dN) for the gene of interest. From the
ratio dN / dS = w the type of selection can be inferred in the following way. If non-
synonymous substitutions are deleterious purifying selection will remove them from the
population and w will be < 1. If non-synonymous mutations are neutral they will be
fixed at the same rate as synonymous mutations and w will be = 1. Finally, if non-
synonymous substitutions are beneficial they will be retained by (positive) diversifying

selection and w will be > 1.

We estimated the average values of dN and dS across all amino acid codons and for
all pairwise sequence comparisons using the approximate method of Nei and Gojobori

[45] as implemented in the DnaSP software package.

However, since diversifying selection is unlikely to affect all sites of a gene over
prolonged time, w averaged over all sites is almost never > 1. Thus interest has been
focused on detecting positive selection that affects only specific codon sites. We
therefore applied the maximum-likelihood method CodeML implemented in PAML [25,
26] to test for codon-specific selection in the aminopeptidase genes. Two codon
substitution models were compared. In the neutral model “M7” the range of w variation
is restricted between 0 and 1 among codon sites (beta distribution). In the alternative
model of diversifying selection “M8”, however, w was allowed to exceed 1 (beta & w).
The resulting likelihood scores for the two model were compared with a likelihood-ratio-

test for better fit with the data set.

Expression in insect cells

Trichoplusia ni "High Five" and Spodoptera frugiperda Sf21 cells were obtained from
Prof. K. Locher (ETH Zurich, Switzerland) and cultivated in Sf-900 Il SFM medium
(Invitrogen # 10902104) without fetal calf serum at 27 °C in shaker flasks. Recombinant
bacmids were generated using DH10EmBacY E. coli cells and viruses were produced

in Sf21 cells according to standard procedures (Invitrogen).

Proteins were expressed in High Five cells by diluting the culture to 1 million cells per
ml and infected with 1:100 (v:v) with recombinant virus. GALT-1 expression levels were

detected 72 hours post infection as described in [28]. Briefly, 1 million cells were
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pelleted by centrifugation (600 x g, 5 min), washed with PBS and lysed in 125 L lysis
buffer (PBS, 1 % Triton X-100, 1x Protease Inhibitor cocktail (Roche #11873580001))
by rotating at 4 °C for 10 min. The whole cell lysates were centrifuged (16'000 x g, 5
min), and the supernatant was analyzed by immunoblotting. For secreted proteins, the
culture supernatants of cells were harvested 72 hours post infection by centrifugation
at 3800 x g for 10 min and filtered through a PES-membrane 0.22 yM filter (Techno

Plastic Products) followed by protein purification.

Protein purification

Affinity purification was performed on gravity flow columns filled with 1 ml Ni-NTA
agarose beads (Protino #745400.100) equilibrated with 10 column volumes (CV) of
Sf900 Il SFM medium. The culture supernatant was loaded and the resin was washed
afterwards with 10 to 15 CV washing buffer (10 mM imidazole in PBS, pH 7.4). Proteins
were eluted four times with 1 CV of elution buffer (250 mM imidazole in PBS, pH 7.4)
Elution fractions were concentrated and buffer exchanged to PBS on Amicon Ultra-4
Centrifugal Filter Devices (Millipore). Native H11 extract was prepared from H.
contortus adult worms by solubilization of a PBS homogenate pellet in 2 % Triton X-
100 (Sigma-Aldrich #T9284) and purified using Concanavalin A Sepharose (Sigma-
Aldrich #C9017) according to patent WO1990011086 A1 by Munn and Smith [46].

SDS-PAGE and Immunoblotting

Protein samples were boiled at 95 °C for 5 min in reducing sample buffer (62.5 mM
Tris-HCI pH 6.8, 2 % SDS (v/iw), 5 % B-mercaptoethanol (v/v), 10 % glycerol (v/v), 0.01
% bromophenol blue (w/v)) and separated by SDS-PAGE (10 % acrylamide, 120 Volt,
150 min). Proteins were visualized with Coomassie blue or immunoblotting on
nitrocellulose (GE Healthcare #10600002). Nitrocellulose membranes were blocked
with 5 % milk in PBST (PBS, 0.1 % Tween-20) and probed with anti-FLAG antibody
M2 (Sigma #F3165, 1:2000 dilution in PBST with 5 % milk) followed by monoclonal
anti-mouse IgG-HRP (Santa Cruz #sc-2005; 1:5000 dilution in PBST with 5 % milk).
After extensive washing with PBST, the membranes were developed using ECL
detection solution (GE Healthcare #RPN2105) and exposure to photographic films
(Super RX-N Fujifilm #57164152).
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Sample preparation for glycopeptides

Purified proteins (between 50-200 ug) were reduced by 50 mM dithiothreitol in 50 mM
AmBic buffer (ammonium bicarbonate buffer, pH 8.5) at 37°C for 1 hour on a filter
device (Microcon YM-30, Millipore) and subsequently alkylated by 65 mM
iodoacetamide in 50 mM AmBic buffer at 37°C in the dark for 1 hour. After extensive
washing of the filter with AmBic buffer, the proteins were digested by trypsin (molar
ratio 60:1, Promega #V5111) at 37°C for 16 hours. Trypsin digested peptides and
glycopeptides were collected by centrifugation and vacuum-dried in a speedvac.
Samples were either desalted by Zip-Tip C18 (Millipore #ZTC18S960) prior to
glycosite-specific nanoHPLC-HCD-MS/MS analysis.

Glycopeptide analysis by nanoHPLC-HCD-mass spectrometry

For a glycosite-specific N-glycan analysis of intact glycopeptides the nanoHPLC-HCD-
MS/MS method was used as previously described [27]. A calibrated LTQ-Orbitrap
Fusion mass spectrometer (Thermo Scientific) coupled to an Easy-nLC™ 1000 system
(Thermo Scientific) was used for sample analysis. Peptides were resuspended in 2.5%
acetonitrile (ACN) with 0.1% formic acid (FA) and loaded on a self-made fritted column
(75 um x 150 mm) packed with reverse phase C18 material (AQ, 3 um 200 A, Bischoff
GmbH, Germany) and eluted by a gradient (from 5 to 35% of solution B (99.9% ACN,
0.1% FA) for 30 min, 55% of B for 10 min, 97% of B for 10 min, with a flow rate of 300
nl/min). One scan cycle included a full scan MS survey spectrum, followed by up to 10
sequential HCD MS/MS on the most intense signals (>50,000). Full-scan MS spectra
(700-2,000 m/z) and HCD MS/MS spectra were recorded in the FT-Orbitrap
(resolution of 60,000 at 400 m/z for MS and 30,000 at 400 m/z for MS/MS). HCD was
performed with a target value of 1e5 and stepped collision energy rolling from 22
V+10% was applied. For full Fourier Transform MS, AGC target values were 5e5.
Dynamic exclusion with a single repeat count, 15 s repeat duration, and 60 s exclusion

duration was used for all experiments.
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Database search and glycosite-specific N-glycosylation analysis

MS and MS/MS data were converted into the Mascot generic format (mgf) files and
searched against the SwissProt database (Version 201408) using the Mascot search
engine (Version 2.4) with the consideration of carbamidomethylation at cysteine and
oxidation at methionine. The monoisotopic masses of charged peptides (2+ or more)
were searched with a peptide tolerance of 10 ppm and a MS/MS tolerance of 0.25 Da
for fragment ions. XCalibur (Version 2.2 sp1.48) and emzed ([47] Version 2) was used
for glycosite-specific N-glycosylation analysis and all data were inspected manually.
First extractmgf was written in Perl and then glycopeptides were extracted from mgf
file by identifying glycan oxonium ions ([HexNAc]* 204.09 and [HexNAc+Hex]" 366.12)
and glycopeptides specific for each glycosite by sorting out the Y1 ions individually
from extracted mgf files (Supplementary Table 3). For quantification, extracted_ion
chromatography (XIC) of each glycoform was plotted by its individual m/z with the mass
tolerance of 10 ppm. MS .raw files were converted to .mzmL files using the program
msconvert frontend version 1. Peak area was integrated using the emzed extension
‘glyx’ (glycosylation explorer, version glyx-0.2.5-py2-none-any.whl). The extension can
be downloaded from 'http://emzed.ethz.ch/downloads/'. All integrated peak areas were
inspected manually. The relative amount of each glycoform sharing the same peptide

backbone was calculated with the following equation:

Peak area of each glycoform
£y x100%

Relative amount of each glycoform (%) =

Sum of peak area of all glycoforms
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Supplementary Data

E

Figure S1: Different views on the H11 amino acid surface diversity

(A) Dimeric CH-H11-5A (Swiss isolate of H11-5 variant A) protein structure modeled by PHYRE2 [23]
on the crystal structure of the human aminopeptidase N (hAPN [22]). The dimer is shown in a PYMOL
surface representation and colored according to domains (I: lightblue, II: palegreen, lll: lightpink, 1V:
paleyellow). The black arrows indicate the view on the protein surface for figures (B) — (F). Different
views on the modeled monomeric protein structures of CH-H11-1D, CH-H11-2A, ZA-H11-4A (South
African isolate of H11-4 variant A), CH-H11-5B and CH-H11-D with rotation details indicated in the
bottom right corner: (B) no rotation (C) side view (D) side view (dimeric interface) (E) top view (F) bottom
view. Amino acids highlighted in red show lack of conservation (<100%) for these positions in alignments

with all sequences analyzed for one isoform (see Figure 2A).
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Figure S2: Additional H11 N-glycosylation site diversity

H11 isoform glycosite diversity is created by nucleotide mutations leading to amino acid replacements
in the N-glycosylation sequon (bold type and underlined) in different isoforms (vertical text) and in
different populations (CH, SCO, ZA) are shown here. This single nucleotide polymorphism leads to the
loss or gain of a glycosites 3 (A), 4 (B) and 14 (C), when compared to the published sequence (Publ).

Localization of these glycosites on the H11 protein surface can be found in Figure 4.
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Figure S3: Purification of recombinant H. contortus H11 isoforms from glycoengineered High
five insect cells

(A) Schematic representation of the H11-GALT-1 expression constructs cloned into pFastBacDual
vector. H11 is cloned downstream of the Polyhedrin promotor (Ppr) with a gp67 secretion signal peptide
(SP), a Histo-tag (HIS), and a PreScission Protease cleavage site (PSP) between the N-terminal tag
and the respective gene. C. elegans galactosyltransferase GALT-1 is cloned downstream of the p10
promotor (Pp10) and a FLAG tag. (B) A representative GALT-1 expression in High five cells co-
expressing GALT-1 and H11, which was confirmed by immunoblotting with anti-FLAG antibody. 1 Mio
cells were harvested and lysed 72 hours post co-infection with H. contortus proteins. (C) Affinity purified
secreted recombinant H. contortus H11 isoforms from culture supernatant 72 hours post co-expression

with GALT-1. Elution samples were analyzed by SDS-PAGE and stained with Coomassie.
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Table S1: Maximum Likelihood fits of 48 different amino acid substitution models

Models with the lowest BIC scores (Bayesian Information Criterion) are considered to describe the
substitution pattern the best. For each model, AICc value (Akaike Information Criterion, corrected),
Maximum Likelihood value (InL) are also presented. Non-uniformity of evolutionary rates among sites
may be modeled by using a discrete Gamma distribution (+G) with 5 rate categories and by assuming
that a certain fraction of sites are evolutionarily invariable (+1). Whenever applicable, estimates of
gamma shape parameter and/or the estimated fraction of invariant sites are shown. For estimating ML
values, a tree topology was automatically computed. The analysis involved 137 amino acid sequences.
All positions containing gaps and missing data were eliminated. There were a total of 901 positions in

the final dataset. Evolutionary analyses were conducted in MEGAG [21].

Model #Param BIC AlCc InL Invariant Gamma
JTT+G 272 27320.4931 24676.9107 -12065.8524 n/a 0.7110
JTT+G+I 273 27332.0295 24678.7324 -12065.7589 0.0298 0.7615
WAG+G 272 27339.3570 24695.7746 -12075.2844 n/a 0.7599
WAG+G+| 273 27350.8271 24697.5300 -12075.1577 0.0349 0.8258
LG+G 272 27379.1395 24735.5571 -12095.1756 n/a 0.6761
JTT+G+F 291 27386.3416 24558.1872 -11987.4036 n/a 0.7054
LG+G+I 273 27390.8378 24737.5408 -12095.1630 0.0107 0.6921
JTT+G+I+F 292 27397.8603 24559.9918 -11987.3011 0.0312 0.7578
WAG+G+F 291 27437.4469 24609.2924 -12012.9562 n/a 0.7475
WAG+G+I+F 292 27448.9178 24611.0494 -12012.8299 0.0349 0.8117
LG+G+F 291 27500.0755 24671.9210 -12044.2705 n/a 0.6710
LG+G+I+F 292 27511.7405 24673.8720 -12044.2413 0.0163 0.6954
WAG+| 272 27578.5808 24934.9984 -12194.8963 0.3145 n/a
JTT+I 272 27588.6967 24945.1143 -12199.9542 0.3187 n/a
JTT+I+F 291 27654.8301 24826.6756 -12121.6478 0.3194 n/a
Dayhoff+G 272 27675.3128 25031.7303 -12243.2623 n/a 0.7226
WAGH+|+F 291 27681.3693 24853.2149 -12134.9174 0.3167 n/a
Dayhoff+G+| 273 27686.2672 25032.9702 -12242.8777 0.0567 0.8304
LG+ 272 27686.9635 25043.3810 -12249.0876 0.3185 n/a
ntREV+G+F 291 27697.4584 24869.3039 -12142.9619 n/a 0.6536
ntREV+G 272 27700.2916 25056.7092 -12255.7517 n/a 0.6778
ntREV+G+I+F 292 27709.0430 24871.1746 -12142.8925 0.0249 0.6901
nREV+G+| 273 27711.9350 25058.6379 -12255.7116 0.0190 0.7070
Dayhoff+G+F 291 27714.4456 24886.2912 -12151.4556 n/a 0.7063
CpREV+G 272 27714.8751 25071.2927 -12263.0435 n/a 0.7461
Dayhoff+G+I+F 292 27725.4597 24887.5912 -12151.1009 0.0546 0.8058
CpREV+G+| 273 27725.4741 25072.1770 -12262.4812 0.0707 0.8846
CpREV+G+F 291 27794.5107 24966.3562 -12191.4881 n/a 0.7458
LG+I+F 291 27803.7968 24975.6423 -12196.1311 0.3219 n/a
CPREV+G+I+F 292 27804.7877 24966.9193 -12190.7649 0.0811 0.9108
MtREV24+G+F 291 27920.9232 25092.7688 -12254.6944 n/a 0.6496
WAG 271 27932.4521 25298.5843 -12377.6937 n/a n/a
MtREV24+G+|+F 292 27932.6468 25094.7784 -12254.6944 0.0000 0.6496
Dayhoff+| 272 27944 .6613 25301.0788 -12377.9365 0.3066 n/a
CpREV+I 272 27958.2498 25314.6673 -12384.7308 0.3091 n/a
JTT 271 27967.2183 25333.3505 -12395.0768 n/a n/a
Dayhoff+|+F 291 27988.6766 25160.5222 -12288.5711 0.3105 n/a
tREV+| 272 28010.9049 25367.3224 -12411.0583 0.3164 n/a
nREV+I+F 291 28013.6193 25185.4648 -12301.0424 0.3226 n/a
CPREV+I+F 291 28029.9552 25201.8007 -12309.2104 0.3103 n/a
JTT+F 290 28036.9291 25218.4887 -12318.5590 n/a n/a
WAG+F 290 28041.8370 25223.3966 -12321.0130 n/a n/a
LG 271 28067.2329 25433.3651 -12445.0840 n/a n/a
LG+F 290 28192.0060 25373.5656 -12396.0975 n/a n/a
MtREV24+|+F 291 28278.3336 25450.1791 -12433.3996 0.2965 n/a
cpREV 271 28328.4239 25694.5561 -12575.6796 n/a n/a
Dayhoff 271 28340.7116 25706.8438 -12581.8234 n/a n/a
Dayhoff+F 290 28390.4053 25571.9649 -12495.2972 n/a n/a
rnREV 271 28402.4356 25768.5678 -12612.6854 n/a n/a
CpREV+F 290 28410.4876 25592.0472 -12505.3383 n/a n/a
ntREV+F 290 28423.6037 25605.1633 -12511.8964 n/a n/a
MtREV24+F 290 28661.8907 25843.4502 -12631.0398 n/a n/a
MtREV24+G 272 28870.0778 26226.4953 -12840.6448 n/a 0.5626
MtREV24+G+| 273 28881.8010 26228.5040 -12840.6447 0.0000 0.5626
MtREV24+| 272 29376.6387 26733.0563 -13093.9253 0.2922 n/a
mtREV24 271 29797.5749 27163.7071 -13310.2551 n/a n/a
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Table S2: Positively selected amino acid sites with posterior probability (P) values of > 0.95 from

the likelihood ratio test (Table 3)

Protein Reference

Total

Positively selected codons

(Pr(w>1), *: P>95%; **: P>99%, post mean +- SE for W)

H11_X94187.1

15

55 T (0.998*, 2.486 +- 0.129), 139 D (0.959*, 2.416 +- 0.374),
146 S (0.983%, 2.459 +- 0.252), 175 G (0.974*, 2.442 +- 0.308),
247 V (0.989*, 2.470 +- 0.211), 286 E (1.000**, 2.489 +- 0.103),
290 G (0.964*, 2.425 +- 0.352), 307 Y (0.992**, 2.475 +- 0.190),
310 Q (0.998**, 2.486 +- 0.132), 487 H (0.955*, 2.407 +- 0.393),
637 K (0.988*, 2.469 +- 0.218), 717 T (1.000**, 2.490 +- 0.101),
740 R (0.997**, 2.485 +- 0.134), 780 N (0.966%, 2.427 +- 0.350),
793 R (0.992**, 2.476 +- 0.187)

H11_1_AJ249941 .1

317 E (1.000**, 4.597 +- 0.797), 691 K (1.000**, 4.597 +- 0.797),
742 E (0.998**, 4.587 +- 0.817), 749 S (1.000**, 4.597 +- 0.797),
762 D (1.000**, 4.597 +- 0.797), 766 G (1.000**, 4.597 +- 0.797),
782 E (0.974*, 4.481 +- 0.992), 789 R (1.000**, 4.597 +- 0.797)

H11_2_AJ249942.2

12

109 S (0.956*, 2.428 +- 0.396), 182 N (0.974*, 2.461 +- 0.309),
195 T (0.976*, 2.465 +- 0.301), 198 T (1.000**, 2.509 +- 0.103),
286 K (1.000**, 2.509 +- 0.097), 302 K (0.995**, 2.501 +- 0.155),
306 A (0.951%, 2.417 +- 0.418), 645 K (0.979*, 2.471 +- 0.280),
731 S (0.992**, 2.496 +- 0.184), 743 T (0.996**, 2.502 +- 0.148),
781 K (0.999**, 2.508 +- 0.107), 784 A (1.000**, 2.509 +- 0.101)

H11_4_AJ311316.1

17

96 E (0.992**, 6.022 +- 1.098), 419 Y (0.991**, 6.021 +- 1.100),
613 S (0.977%, 5.938 +- 1.275), 636 R (1.000**, 6.066 +- 0.986),
667 V (0.973%, 5.916 +- 1.315), 683 V (1.000**, 6.066 +- 0.986),
684 N (0.966%, 5.880 +- 1.379), 696 S (0.988*, 6.002 +- 1.145),
713 P (0.984*, 5.980 +- 1.193), 732 G (0.967*, 5.884 +- 1.371),
733 Y (1.000**, 6.068 +- 0.983), 739 K (0.986%, 5.991 +- 1.169),
742 Q (1.000**, 6.068 +- 0.983), 743 L (1.000**, 6.068 +- 0.983),
745 S (0.988%, 6.002 +- 1.146), 759 A (0.988*, 6.002 +- 1.145),
801 T (1.000**, 6.068 +- 0.983)

SCO_H11_5_Y

550 D (0.998**, 1.921 +- 0.576), 566 V (0.979*, 1.895 +- 0.589),
853 E (0.951%, 1.852 +- 0.607)
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Table S7: Primers used in this study.

Name Sequence

GALT Fw Xmal 5-AAAAAACCCGGGATGGACTACAAGGACGACGACG-3'

GALT Rv Nsil 5-AAAAAAATGCATCTACAAGTCTAAAAGACCAACAACTGAATC-3'
AC-1 fw 5-AAAAATGAAATACTTGGTGCTTGCAC-3'

AC-1rv 5-AAAAGTAATCCAGCTTTTATCGAATACATTAC-3'

H11-fw new 5-AAAAATGACGTCGCAGGGGAG-3'

H11-rv new 5-AAAATTACAAGGTGGCTTTCTTGAAGAAAG-3'

H11-1 fw new 5-AAAAATGACAGCAGAGGAGAGTCAGG-3'

H11-1 fw Apal 5'-AAAAAAGGGCCCCTGTATTACTTTACAAGGAAAGCCTTTGATAC-3'
H11-1 rv Stul 5-AAAAAAAGGCCTTTATGAATTAGATTTTTTGAAGAAAGCTGC-3'
H11-2 fw new 5-AAAAATGACGGCGGAGTGGC-3'

H11-2 fw Apal 5-AAAAAAGGGCCCCTGTATTACTTCACTCGTAAAGCATTCGATAC-3'
H11-2 rv Stul 5-AAAAAAAGGCCTCTATGATCTTGCTCTCTTGAAGAATTC-3'

H11-4 fw new 5-AAAAAATGACGGCACGAGAGAGGAAAC-3'

H11-4 fw Apal 5-AAAAAAGGGCCCCTGTATTTCTTTACTCGGAAAGCATTTGATC-3'
H11-4 rv Hindlll 5-AAAAAAAAGCTTTTACCAGGTAGCGTTCTTAAAGAATG-3'

H11-5 fw new 5-AAAAAATGACGGTACAGTGGACTAAACG-3'

H11-5 fw Apal 5'-AAAAAAGGGCCCCTGTACTACTTTACCAGGAAAGCTTATGATACTACT-3'
H11-5 rv Stul 5-AAAAAAAGGCCTTCATCGAGTAGATTTTTCGAAGAAATC-3'
Hc-sod-1 fw 5-AAAAATGAGTAACCGTGCTGTTGCTG-3'

Hc-sod-1 rv 5-AAAATCACTGGGGAGCAGCG-3'

Pep1 fw 5-AAAAATGCTATATTTATTGCTCTTGGTGAGC-3'

Pep1 rv 5-AAAATTATTTCGGCTCCGCAAAG-3'
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Abstract

The hallmark of N-linked protein glycosylation is the generation of diverse glycan
structures in the secretory pathway. Dynamic, non-template driven processes of N-
glycan remodelling in the ER and the Golgi provide the cellular setting for structural
diversity. We applied newly developed mass spectrometry-based analytics to quantify
site-specific N-glycan remodelling of the model protein Pdi1p expressed in insect cells.
Molecular dynamics simulation, mutational analysis, kinetic studies of in vitro
processing events and glycan flux analysis supported the defining role of the protein

in N-glycan processing.
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Introduction

N-linked glycosylation is an abundant posttranslational modification present on
secretory proteins in all domains of life (Dell et al. 2010). In eukaryotes, attachment
and subsequent modification of N-glycans affect the folding of glycoproteins and
regulate their secretion, e.g. by providing signals to the endoplasmic reticulum (ER)
quality control machinery (Aebi et al. 2010; Shental-Bechor and Levy 2009). On the
final glycoprotein product, N-glycans act as ligands that mediate cell-cell interactions
of cell surface glycoproteins and fine-tune the function of mature glycoproteins (van
Kooyk and Rabinovich 2008).

Biosynthesis of N-glycoproteins starts with the stepwise assembly of a lipid-linked
oligosaccharide precursor at the ER membrane. Oligosaccharyl transferase then
transfers the G3M9Gn2 carbohydrate (G: glucose, M: mannose, Gn: N-
acetylglucosamine) from the isoprenoid lipid carrier onto the asparagine side-chain of
the N-X-S/T consensus sequence of polypeptides in the ER lumen (Kelleher and
Gilmore 2006). Initial modifications of the N-glycan in the ER involve successive
removal of glucose and a-1,2-mannosyl residues to generate oligomannose type
glycans (Hebert et al. 2005; Mast and Moremen 2006). It is in the Golgi where glycosyl
hydrolases (GHs) and transferases (GTs) generate the heterogeneous population of
carbohydrate structures presented on mature glycoproteins (Hua et al. 2012; Moremen
et al. 2012).

GHs, GTs, and nucleotide sugar transporters represent the ‘hardware’ of the Golgi
remodelling pathway that converts oligomannose glycans into hybrid- and complex-
type oligosaccharides (Varki 1998). This network of glycan modifying enzymes can
vary between different species, tissues and cell types and generates variable N-glycan
structures. Glycoproteins expressed in mammalian cells generally carry an array of
complex-type oligosaccharides decorated with terminal galactose and sialic acid
residues (North et al. 2010). In contrast, the glycosylation machinery of insect cells
produces a variety of paucimannose-type products with a1,6- or a1,3-linked fucose
residues attached to the core Gn (Kato et al. 2010; Shi and Jarvis 2007).

N-glycan diversity is the result of the dynamic and competitive nature of N-glycan
synthesis in the Golgi (Stanley 2011). Golgi GTs and GHs usually have different
substrate specificities and act sequentially, but they may also compete for substrates

(Moremen et al. 2012). Analysis of site-specific N-glycosylation of Sindbis virus
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glycoproteins, carboxypeptidase Y, and invertase provided the first evidence that
processing of N-glycans is determined by the physical accessibility of the
carbohydrates (Hsieh et al. 1983a; Hsieh et al. 1983b; Hubbard 1988; Trimble et al.
1983). Subsequently, site-specific N-glycosylation has been found on different proteins
Thy1, lysosomal a-mannosidase, lactoferrin, and HIV envelope glycoproteins (Faid et
al. 2006; Go et al. 2008; Heikinheimo et al. 2003; Hua et al. 2012; Nagae and
Yamaguchi 2012; Parekh et al. 1987) and alterations in the polypeptide sequence can

yield different N-glycan structures (Yu et al. 2013).

To study in detail the factors that affect site-specific N-glycosylation, we expressed a
model protein, yeast Pdi1p, in insect cells and employed newly developed mass
spectrometry-based analytical techniques to quantify site-specific N-glycan structures
produced in the ER and the Golgi. Combining molecular dynamics simulations,
mutational analyses, and in vitro assays we define the intramolecular interactions of
glycans and the protein surface that are major determinants for carbohydrate
modification. Implementing glycan flux analysis we identifed the rate-limiting
processing steps for each glycosite. Our studies confirm the importance of the protein

structure in the pathway of N-glycan processing.
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Results

Establishing an MS-based workflow to analyze site-specific glycosylation

ER-resident protein disulfide isomerase 1 (Pdi1p) from Saccharomyces cerevisiae is
composed of four thioredoxin-like domains (a, b, b' and a') (Tian et al. 2006; Wilkinson
and Gilbert 2004). Unlike mammalian PDlIs, yeast Pdi1p has five N-glycosylation sites
(S1-S5) that are localized in three of the four domains (Figure 1A). Tryptic peptides
that containing these glycosite were used in our study (Table 1). A C-terminal HDEL
sequence retained the protein in the ER and early Golgi, while disruption of this
sequence resulted in the secretion of the protein into the medium (sPdi1p), allowing us
to analyse ER- and Golgi-located processing separately (Figure 1B). Pdi1p proteins
were expressed in Trichoplusia ni insect cells using the baculovirus expression system
and purified by Ni-NTA affinity chormatography via a N-terminal His1o-tag. SDS-PAGE
and immunoblot analysis verified that the purity was suitable for the following MS

measurements (Figure 1C).

Table 1: Glycosylation site of yeast Pdi1p.
A list of the five tryptic peptides containing a glycosylation sequon monitored in this study. C* represents

carbamidomethylated cysteine.

Site sequence [M+H]*

1 NITLAQIDCTENQDLC*MEHNIPGFPSLK 3258.52
2 NSDVNNSIDYEGPR 1579.70
3 QSQPAVAVVADLPAYLANETFVTPVIVQSGK  3212.71
4 IDADFNATFYSMANK 1707.78
5 LAPTYQELADTYANATSDVLIAK 2468.25
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Figure 1. Purification of recombinant Pdi1 and sPdi1p from insect cells.

(A) Model of glycosylated Pdi1p. M9Gn2 N-glycans were modelled onto the five glycosites of the crystal
structure of Pdi1p (PDB: 2B5E; www.glycam.org). Glycans are depicted in colors: S1 green, S2 blue,
S3 purple, S4 red, S5 yellow. Different domains of Pdi1p are in different shades of gray. (B) Schematic
representation of Pdi1p and sPdi1p purification. T. ni cells were infected with recombinant viruses
carrying expression copies of ER retained Pdi1p or secreted Pdi1p (sPdi1p). Pdi1p was purified via
NiNTA chromatography from cell lysates; sPdi1p was isolated from culture supernatants. ER retention
of full-length sPdi1p was disrupted by the presence of two additional amino acids at the protein’s C-
terminus (HDELLE) (Raykhel et al. 2007). SP: signal peptide; His: His1o tag, HDEL: ER retrieval signal.
(C) Purification of Pdi1p and sPdi1p. Samples of input (in), flow-through (out) and eluted (E) fractions
were analyzed by SDS-PAGE and stained with Coomassie (left/middle), or analyzed by immunoblot

using anti-His5 antibodies (right).
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To assess site-specific glycan heterogeneity, we employed the filter-assisted sample
preparation (FASP) method (Wisniewski et al. 2009). Peptides were analysed on a
nanoLC-LTQ Velos Orbitrap operated in scheduled data-dependent acquisition (DDA)
mode, one MS scan followed by ten HCD MS/MS scans. Based on the unique
fragmentation of glycopeptides by the HCD method, we developed the ExtractMgf
algorithm to speed up manual analyses of MS/MS spectra, as exemplified for the S1
glycopeptide (Segu and Mechref 2010) (Figure 2A). From 3648 measured spectra, the
glycan oxonium ions [HexNAc]® 204.09 and [HexNAc+Hex]* 366.14 were used to
identify the MS/MS scans of all glycopeptides from the peak list. Next, the Y1 ion
corresponding to m/z of the peptide plus one HexNAc was used to identify the peptide
backbone. In the case of S1, 1731.3034 corresponding to [S1+HexNAc+2H]** was
used to sort out all MS/MS spectra from that glycopeptide. After two sorting runs, the
remaining twenty spectra were verified manually. Since ©2X ring cleavage on the single
remaining HexNAc was a frequent event and resulted in neutral loss of 120 Da from
the Y1 ion (Figure 2B, Figure S1), we used the triple peaks, Y1, 92X and [peptide+H]*,
to manually confirm the identity of the Y1 ion in HCD spectra. One example of a S1
MS/MS spectrum of the M7Gn2 is shown in Figure 2B.

Since glycopeptides containing the same peptide backbone co-elute when applied to
reverse phase liquid chromatography, we identified the different glycan structures of
one site by grouping MS spectra based on the presence of Y1 ions observed in the
original MS/MS spectra. In the example given, the overall glycosylation profile of S1
ranged from M5Gn2 to M9Gn2 (Figure 2C). Finally, we quantified the amount of each
glycan structure by its extracted ion chromatogram (Figure 2D). We verified the
accuracy of the method by analysing bovine RNase B that carries a known mixture of

oligomannose glycans on a single glycosite (Figure S2).
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Figure 2. Overall workflow for glycopeptide analysis by mass spectrometry.

(A) Purified proteins were processed by the filter-assisted sample preparation (FASP). The mixture of
peptides and glycopeptides was analyzed by LC-HCD mass spectrometry. Raw data was transformed
into a peak list and processed by ExtractMgf. For relative quantification, extract ion chromatography
(XIC) of each glycoform was plotted and its corresponding peak area was integrated. The relative
abundance of each form was calculated. Symbols represent monosaccharides: mannose (green circle),
N-acetyl-glucosamine (blue square), fucose (red triangle) (B) One MS/MS spectrum at m/z
1200.54(z=4) was assigned to the first glycosylation site of Pdi1p containing M7Gn2 glycoform. Glycan
oxonium ions and doubly/triply charged Y1 at m/z 1154.54 (z=3)/1731.31(z=2) are indicated. The
nomenclature of peptide fragment ions and glycan fragmentation ions was described previously(Dell et
al. 1994; Roepstorff and Fohlman 1984). (C) The overall glycosylation profile of S1 obtained by grouping
of MS spectra. Corresponding ions are indicated. (D) XIC of each glycoform sharing the same peptide

backbone. See Figure S2 and Table S2 for quantification of RNaseB glycans.
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Pdi1p glycans are differentially processed

In an initial experiment, we analyzed the N-linked glycans of Pdi1p retained in the ER
and early Golgi. As expected, we found oligomannose structures; yet, we did not
observe a defined structure per site, but rather a mixture of glycans processed to
varying degrees (Figure 2D). The processing of N-glycans was significantly different
for the five sites analyzed: while S2, S3 and S5 mainly carried M7Gn2 to M5Gn2
glycans, S4 contained a higher fraction of M9Gn2 and M8Gn2 glycans (Figure 3A and
3B). S1 showed an intermediate processing pattern with M7Gn2 as the most prevalent
structure. By comparing the glycan profiles for each site using Euclidean distance and
hierarchical clustering analysis, we confirmed that S4 showed the most distinct glycan
pattern (Figure 3C). These results indicated that the location of an N-glycan on Pdi1p
was an essential parameter influencing the processing of the glycan by mannosidases

of the ER and early Golgi.
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Figure 3. Pdi1p retained in the ER and early Golgi displays site-specific glycan profiles.

(A) Analysis of MBGn2 on S4. The MS/MS spectrum of m/z 1705.68 (z=2) was obtained as described
in Figure 2. The peptide was identified by the Y1 ion (S4 peptide plus HexNAc at m/z 1910.78). The
peptide sequence is displayed together with the attached M8Gn2 glycan. The underlined N represents
the N-glycosite and y’ represents y ion without a glycan. (B) Site-specific N-glycan profile of Pdi1p. Pdi1p
was expressed and purified and site-specific glycan profiles were analyzed. The relative abundance of
the different glycoforms at a given site (S1 to S5) is shown. Data represent the mean values of glycan
ratios of four independent experiments with error bars indicating the standard deviation. P values were
calculated by paired Student's t test: * p < 0.05; ** p < 0.01; *** p < 0.001. (C) Similarity representation
of five Pdi1p N-glycosylation sites based on the relative glycoform distribution. Similarity between site-
specific profiles was calculated using the Euclidean distance and the dendogram was obtained by
Centroid Linkage Clustering. The colour scale represents the relative glycoform abundance from Figure
3B. See Figure S3 and Table S3 for spectra and raw data.
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Interactions with the protein surface reduce accessibility of the S4 glycan

In order to test whether glycan-protein interactions influence oligosaccharide
processing, we generated a three dimensional model of a truncated version of Pdi1p
composed of the a and b domain and with a M9Gn2 glycan attached to S4. To remove
any bias from the initial glycan orientation an explicitly-solvated molecular dynamics
simulation was performed for 0.5 ps. Throughout the simulation the B-branch of the S4
glycan remained in close contact with the surface of the b-domain, while the A- and C-
branches formed interactions with the a-domain (Figure 4A and Supplemental Movie).
Once formed, the interactions between the S4 glycan (located on the b-domain) and
the a-domain remained stable over the course of the simulation timescale. The
contacts formed with the a-domain reduced the accessibility of the S4 glycan, which
correlated with the attenuated processing of the S4 glycan by mannosidases (Figure
4B). Notably, the interactions formed by the S4-glycan with the surface of the a-domain
altered the relative orientation and dynamics of the a- and b-domains while the

unglycosylated protein fluctuated about the crystal structure conformation (Figure 4C).

To confirm these in silico predictions we designed truncated variants of Pdi1p, each
containing the glycosylated b-domain with an N-terminal His1o-tag and a C-terminal
HDEL sequence (Figure 5A). The different proteins were expressed, purified, and the
peptides were analyzed by the ExtractMgf workflow (Figure 5B & 5C). The glycan
profiles on S4 of full-length Pdi1p, the abb’- and the ab-domain glycoprotein were
almost identical. However, when we removed the a-domain, the distribution of
glycoforms changed and shifted to smaller, more processed glycans (Figure 5C and
S3), resulting in a different glycosylation pattern (Figure 5D). These findings supported
the hypothesis that the interaction of a glycan with the surface of the covalently linked

protein altered the accessibility of the glycan to the processing machinery.
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Figure 4. Molecular dynamics simulation of glycosylated Pdi1p-ab.

(A) Six snapshots from the molecular dynamics simulation of the S4 glycosylated ab-domain variant of

Pdi1p, showing the contacts formed between the S4 glycan and the a-domain (blue surface). The b-

domains of each snapshot are aligned to the crystal structure coordinates. The glycan is shown as van-

der-Waals spheres, with the A-branch in yellow, the B-branch in green and the C-branch in red. (B) A

plot of the RMSD of the a-domain obtained over the course of the simulation relative to the crystal

structure orientation (blue line: RMSD of the a-domain with S4 glycosylated, orange line: RMSD of a-

domain without S4 glycosylation). (C) The relative solvent accessibility of the non-reducing terminal

disaccharides of the A- (yellow), B- (green) and C-branches (red) of the S4 glycan over the course of

the simulation.
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Figure 5. S4 glycan processing of Pdi1p is improved when the a-domain is removed.

(A) Schematic representation of the Pdi1p variants used. His: N-terminal His1o tag, HDEL: C-terminal
HDEL ER retention signal. (B) Pdi1p variants were expressed and purified. Elution fractions were
analyzed by SDS-PAGE and immunoblot using anti-Hiss antibodies. (C) Relative abundance of
glycoforms on S4 of purified full length and truncated Pdi1p, indicated in different colours. Data represent
the mean values of glycan ratios of four independent experiments with error bars indicating the standard
deviation * p < 0.05; ** p < 0.01; *** p < 0.001. (D) Similarity representation of Pdi1p variants (indicated
at the right) based on the difference in S4 glycoform abundance (given in Fig 6F) to full length Pdi1p.
The color scale represents values calculated by the equation: (x-Pdi1p)/Pdi1p (x is the average
glycoform abundance of a specific variant; Pdi1p is the average glycoform abundance of full length
Pdi1p). Similarity between site-specific profiles was calculated as in described in (Figure 3C). See Figure
S4 and Table S4 for spectra and raw data.
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N-glycans on Pdi1p represent different substrates to Mns1

According to this hypothesis, the five N-linked glycans should display different
processing kinetics by a given enzyme. We addressed this by an in vitro experiment
and analyzed the processing of the glycans of Pdi1p by ER a-mannosidase from S.
cerevisiae, Mns1. Mns1 recognizes the terminal mannose residues of both, the B- and
C-branch of a M9Gn2 glycan and specifically hydrolyses the a-1,2-glycosidic linkage
of the terminal mannose of the B-branch(Jelinek-Kelly et al. 1985; Vallee et al. 2000).
Pdi1p carrying MOGn2 glycans was obtained from insect cells that were incubated with
the a-mannosidase inhibitor kifunensine during protein production. MS analysis
confirmed that Pdi1p was homogeneously glycosylated with M9Gn2 N-glycans on all
five sites (Figure 6A and S4). Mns1p was expressed in T. ni cells and purified by
glutathione affinity chromatography (Figure S4A). In vitro assays were performed with
a 100x molar excess of glycosylated Pdi1p (Karaveg and Moremen 2005). Aliquots
were taken at different time points, and site-specific glycosylation was determined by
quantitative MS analysis. Three minutes after initiating the reaction 84%, 80%, 62%,
and 54% of M9Gn2 were processed to M8Gn2 on S2, S3, S5, and S1 respectively,
whereas the conversion of MOGn2 on S4 was only 37% (Figure 6B). After ten minutes,
all but S4 glycan showed more than 90% processing; conversion to M8Gn2 was
completed for all five glycans after 60 min. We concluded that interaction of a glycan
with the protein surface competed with enzyme binding and, thus, reduced enzymatic

turnover of the glycan: the more favourable this interaction the slower the processing.
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Figure 6. The S4 is processed more slowly by Mns1 in vitro.

(A) N-glycan analysis of MO9Gn2-Pdi1p. T. ni cells were incubated with kifunensine and infected with
virus containing an expression copy of GST-tagged Pdi1p. GST-Pdi1p was affinity purified and the GST
tag was removed. N-glycan profiles were determined by MS analysis. Data represent the mean values
of relative glycan abundances of three independent experiments with error bars indicating the standard
deviation of mean. (B) M9Gn2-Pdi1p was incubated with Mns1. At the indicated time points aliquots
were TCA precipitated and analyzed by MS. Mean values for the relative abundance of M8Gn2 at the
different glycosites from three independent experiments were plotted with error bars representing the
standard deviation of mean. See Figure S5 and Table S5 for spectra and raw data.
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N-glycans of sPdi1p are processed differently in the Golgi

In the absence of the HDEL ER retrieval sequence His1o-tagged sPdi1p was secreted
into the medium, allowing us to analyse the complete glycan processing pathway.
Employing the Extractmfg workflow we found glycan structures reflecting the whole
glycosylation machinery of T. ni cells, yet, glycans on the five glycosites of Pdi1p were
processed differently (Figure 7A and 7B). S1, S2 and S3 glycans showed a similar
distribution of oligomannose, paucimannose-type and complex-type structures.
However, the ratio of di-fucosylated glycans was significantly higher on S2 and S3 as
compared to S1 and oligomannose glycans were almost absent on S5. In contrast to
these glycosites, S4 maintained a high ratio of oligomannose oligosaccharides and
paucimannose-type glycans that were neither fucosylated nor decorated with a second
Gn. Interestingly, one of the abundant glycoforms on S4 was GnM4Gn2, an
intermediate product of a-mannosidase Il processing (Figure 7B and S5). Hierarchical
clustering analysis confirmed that the glycan profiles of S2 and S3, and S1 and S5,
respectively, were closely related while the S4 glycan profile was different to all the
other sites (Figure 7C). These data confirmed that for the remodelling of N-glycans in
the Golgi, the localization of the glycan on the protein surface was a major factor that
determined both the structure of an oligosaccharide and the relative abundance of this
structure. Consequently, the substrate properties of the five N-linked glycans of sPdi1p

differ for a given processing enzyme.

To quantify the in vivo activity of different processing enzymes on the five N-glycans
we performed a glycan flux analysis using a stoichiometric matrix to describe the
connectivity of the network. We calculated the substrate fluxes at each enzyme
employing the assumption that the secreted Pdi1p represented a quasi-steady state of
the glycan-processing in the cell. Conversion for each reaction were normalized to the
incoming fluxes (Figure 7D). This analysis revealed that conversion for enzymes acting
early in the pathway were generally higher than those for enzymes acting late in the
processing. Substrate conversion by a-mannosidase | and Il were significantly lower
for the S4 glycan than for all the other glycans. On the other hand, the S2 and S3
glycans were more preferred substrates for a1,6- and a1,3-fucosyl transferases than
the oligosaccharides on S1 and S5. Thus, altered conversion result in site-specific
processing of the N-glycans. Importantly, this flux analysis revealed that only a subset

of Golgi processing enzymes was sensitive to the localization of the N-glycan.
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Figure 7. Secreted Pdi1p shows site-specific glycan profiles.

(A) N-glycan processing pathway of T. ni showing glycan structures and enzymes (Ml, Mil, Mlll: o-
mannosidase |, Il and lll; GnTl, GnTll: N-acetylglucosamine transferase | and Il; GA: N-
acetylglucosaminidase; FT6, FT3: a1,6- and a1,3-fucosyl transferase). (B) Site-specific glycan profiles
of sPdi1p. Data represent the average values calculated from four independent experiments. Relative
abundances for each glycoform are depicted above the corresponding column placed at the left of
graphic structure representation. The processing pathway from (A) is depicted at the base of the charts.
See Table S6 for the complete data set including all glycoforms detected. (C) Pdi1p N-glycosylation
sites arranged based on the similarity of their glycoprofiles. The similarity between site-specific glycan
profiles and different glycoforms was calculated as described in Figure 3C. (D) Conversions for selected
enzymes for each glycosite (S1 to S5). Site-specific enzyme conversion were obtained by glycan flux
analysis using the relative abundances of each glycoform from (B). Error bars indicate standard
deviation of mean values from four experiments. See Figure S6 and Table S6 for spectra, a complete

set of conversions for every enzyme and raw data.

Site-specific processing profile of N-glycans on sPdi1p is dependent upon the

protein structure and the Golgi processing machinery

We next analyzed whether protein structure also affect site-specific processing of
Pdi1p in the Golgi. Again, we took advantage of the modular structure of Pdi1p and
designed truncated variants as in Figure 4D, yet, without the C-terminal HDEL
sequence. Constructs were expressed in T. ni cells and purified from the culturing
media (Figure 8A). After MS-analysis and data processing, we observed that the
glycans of the b- and bb'-domain constructs were more processed as compared to full-
length sPdi1p and the variants containing the a-domain. The S4 glycan profiles on both
b- and bb'-domain constructs contained significantly lower amounts of oligomannose
type N-glycans, while the paucimannose-type structure M3Gn2 was more abundant
(Figure 8B). Conversion analysis revealed that removal of the a-domain made the S4
glycan a more preferred substrate for a-mannosidases | and Il and N-
acetylglucosaminidase (Figure 8C). We also noted changes in the processing pattern

of the other N-glycans with respect to altered protein structure (data not shown).
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Figure 8. The glycan profile of secreted Pdi1p is altered by changing the protein structure.

(A) Secreted Pdi1p and truncated versions were expressed in insect cells and purified as described in

Figure 1. Eluted fractions were analyzed by SDS-PAGE and stained with Coomassie (left/middle). ER

retention of sPdi1p was disrupted by the presence of two additional amino acids at the protein’s C-

terminus (HDELLE) (Raykhel et al. 2007); truncated versions do not contain a HDEL sequence. (B)

Relative glycan abundances on S4 of purified full length sPdi1p and secreted b-, bb'-, ab-, abb'-variants

shown in different colours. Data represent the mean values of glycan ratios of three independent

experiments with error bars indicating standard deviation of mean values. * p < 0.05; ** p < 0.01; *** p

< 0.001. (C) Conversions of S4 N-glycan on sPdi1p variants were calculated as in Figure 6D.

Conversions for selected enzymes were plotted for each variant. Error bars indicate standard deviation

of mean values from four experiments.
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Expression of an additional glycosyltransferase increases site-specific glycan

diversity

Microheterogeneity of N-glycan structures on sPdi1p is the result of incomplete
conversion by glycan-processing enzymes. In addition, site-specific processing by a
subset of these enzymes resulted in site-specific glycan profiles. It is evident that
increasing the number of processing steps in such a system will elevate the probability
of site-specific  N-glycan processing. We therefore expressed [1,4-
galacosyltransferase (GALT-1) from Caenorhabditis elegans in insect cells (Figure
9A). GALT-1 acts late in the pathway and adds a 1,4-galactose to the a1,6-linked
core fucose residue (Titz et al. 2009). We analyzed site-specific glycosylation profiles
of sPdi1p purified from cells co-infected with GALT-1 recombinant viruses (Figure 9B).
Indeed, we observed site-specific processing: in contrast to S2, S3 and S5
oligosaccharides, GALT-1 did not process the S1 glycan, even though all of the sites
presented suitable GALT-1 substrates. Thus, introducing an additional late acting
enzyme in the pathway allowed us to differentiate the glycans of Pdi1p further; the
glycan profile of S1 deviated from the profile of S5 (Figure 9C). Taken together, the
location of the N-linked glycan on a protein in a given setting of glycan-processing

enzymes in the secretory pathway defines its processing.
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Figure 9. Altering the processing machinery changes the glycan profile of secreted Pdi1p.

(A) GALT-1 expression levels were confirmed by immunoblotting using anti-FLAG antibody in three
independent experiments. (B) sPdi1p was purified from cells infected with either an unmodified bacmid
(-GalT) or a recombinant bacmid carrying an expression copy of GALT-1 (+GalT). Relative glycan
abundances without core fucoses (-F), with core fucoses but without galactose (+F), and with galactose
attached to the core fucose (+F, +Gal) were calculated for each site. The data represent mean values
from three independent experiments. See Table S7 for data on individual glycan structures. (C) Similarity
of the five glycosites was calculated from relative glycan abundances as described in Figure 3C. See
Figure S7 for glycan profiles of S1, S2 and S3, and immunoblot of GALT-1 expression, and Table S7

for raw data.
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Discussion

In this study, we exploited baculovirus-driven expression in insect cells to produce
model glycoproteins that were retained in the ER and early Golgi (Pdi1p), or secreted
into the medium (sPdi1p), respectively (Figure 1). Since yeast Pdi1p carries five N-
glycans distributed over the molecule, we could observe remodeling of individual N-
linked oligosaccharides at different locations on the same protein while they were
presented to the identical cellular glycan-processing machinery for the same amount
of time. In addition, the protein has a modular composition of four thioredoxin-like
domains that fold independently; hence, we were able to express truncated variants of
Pdi1p lacking one or multiple domains without disturbing the structure of the remaining
protein (Kemmink et al. 1996; Kemmink et al. 1999). This set-up allowed us to assess
the influence of the protein on glycan remodeling while keeping the cellular

environment constant.

Mammalian glycans contain sialic acid residues that are easily lost during ionization in
mass spectrometric analyses; consequently, it is difficult to quantify carbohydrates on
mammalian glycoproteins (Powell and Harvey 1996). In contrast, insect cells produce
fucosylated paucimannose structures without galactose or sialic acid, allowing us to
quantify oligosaccharide structures linked to specific glycosites. To assess site-specific
glycan composition, we developed an analytic workflow based on mass spectrometry
operated in HCD fragmentation mode (Figure 2). Detection of Y1, ©2X and peptide
peaks are frequently reported in CID MS/MS of glycopeptides by Q-TOF or TOF-TOF
MS, but this peak triplet has not been exploited for identification in the HCD
fragmentation method (Krokhin et al. 2004; Sparbier et al. 2007). Our data
demonstrated that using the peak triplet and characteristic peptide fragment ions is a
suitable tool for glycopeptide identification without further tandem mass spectrometry.
Moreover, we developed and evaluated a reliable quantification method of each

glycoform that allows to partly automate and speed up data analysis.

Although the glycan-processing machinery of insect cells used in this study is less
complex than in mammalian cells, it implements the same underlying principles.
According to the current view, a glycoprotein may transit through the Golgi too quickly
to be processed completely by every possible enzyme (Moremen et al. 2012; Stanley
2011). In addition, many glycosyl hydrolases and transferases compete for the same

oligosaccharide substrate producing additional heterogeneity of glycan structures
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(Geisler and Jarvis 2012; Schachter 1991). Earlier studies suggested that the local
protein surface influences enzyme accessibility to individual glycans (Hsieh et al.
1983a; Hsieh et al. 1983b; Hubbard 1988; Trimble et al. 1983); however, these studies
did not provide direct evidence to support this hypothesis. Analysing the glycan profiles
of Pdilp and sPdi1lp, we found that the five glycosites displayed individual
carbohydrate profiles throughout the secretory pathway (Figures 3 & 7). In particular,
the S4 glycan was less processed in both, the ER and Golgi compartments relative to
the other glycans. Molecular dynamics simulations showed that the terminal mannose
residues of an M9Gn2 glycan on S4 made long lasting contacts with specific amino
acid residues of the a- and b-domain (Figure 4A). These interactions might reduce
enzyme accessibility and, thus, processing of the S4 glycan. Along this line, ER
mannosidase processed in vitro the S4 glycan more slowly than its counterparts on the
other glycosites. Consequently, when we removed the a-domain from the protein in
vivo, the glycan on S4 became more accessible and the resulting glycan profile shifted
to more processed glycan structures (Figures 4 & 8). In addition, implementing glycan
flux analysis we identified the rate-limiting steps for each glycosite. Interestingly, it is
only a subset of processing enzymes that are kinetically controlled (thereby generating
microheterogeneity of the glycan structures) and some of these enzymes are affected
by the location of the N-glycan on the protein (resulting in site-specific processing).
Taken together, our data show that the structure of a glycoprotein can control the
processing of some N-linked oligosaccharides at different stages of the glycosylation

pathway.

Site-specific N-glycans can affect the function of glycoproteins, e.g. immunoglobulins
(Ferrara et al. 2011; Niwa et al. 2004; Sazinsky et al. 2008; Scallon et al. 2007), but for
most glycoproteins, this has not been addresses experimentally. It is evident that the
qguantitative analysis of site-specific glycans will be essential for future research in this
direction. The MS-based, quantitative glycoproteomics method presented in this report
will become a valuable tool to define more precisely the role of the carbohydrate in
glycoprotein function. Similarly, the mathematical modelling of glycan processing
based on quantitative glycoproteomics data will be essential to experimentally
approach and understand the function of the Golgi and will affect the biotechnological

production of glycoproteins.
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Materials and Methods

Reagents

The monoclonal anti-His antibody was purchased from Qiagen AG (Cat. No. 34670).
Monoclonal anti-GST antibody was purchased from Rockland (Cat. No. 600-101-200).
Spodoptera frugiperda Sf21 and Trichoplusia ni Hi5 cells were obtained from K. Locher
and cultivated in Sf-900 Il SFM medium (Invitrogen, Cat.No 10902104).

Construction of plasmids for baculovirus-based protein expression

Plasmids used in this study are summarized in Supplementary Table 1. Plasmids were
constructed using standard cloning protocols. Open reading frames of all constructs

were confirmed by nucleotide sequencing.

pRG105: The plasmid pRG105 was constructed to allow for baculovirus-based
expression of secreted proteins fused to an N-terminal affinity tag. gp67 secretion
signal peptide followed by GST was PCR-amplified from pAcSecG2T baculovirus
transfer vector (Fischer Scientific, Cat.No. BDB554797) using primers RG395 (5'-TGG
GCG CGC ATG CTA CTA GTA AAT CAG TCA CAC-3') and RG396 (5'-CCC AAG
CTT TTA CTC GAG CTG CAG AGG CCT GAG CTC GGA TCC ACG CGG AAC
CAGA-3'). The resulting PCR fragment was cloned into the BssHII and Hindlll
restriction sites of pPRG74 (Gauss et al. 2011) to generate pPRG100. Next pPRG100 was
used as a template to introduce His1o tag following a cleavable signal sequence by
PCR using RG394 (5'- AAG TGG TTC GCATCC TCG GTTT-3') and RG398 (5'- CCC
GAG CTC CAG GGG CCC CTG GAACAG AACTTC CAGATG GTG ATG GTGATG
GTG ATG GTG ATG GTG GGT ACC CGC AAA GGC AGA ATG CGC-3') primers
producing pRG101. Finally, the PDI1 gene (without the signal peptide) was excised
from pRG84 (Gauss et al. 2011) by digestion with Sacl and Xhol and introduced into
pRG101 generating pRG105. ER retention of sPdi1p is disrupted by the presence of

two additional amino acids at the protein’s C-terminus (HDELLE).

pRG143, pRG144, pRG145, pRG146: Truncated versions of the PDI1 gene were
PCR-amplified from pRG84 using the following primer pairs: RG476 (5'- CCG AGC
TCA CTA GTC CGG CTG TCG CCG TTG TTG CTG ATC-3') and RG477 (5'- CCC
TGC AGC TCG AGG TAG GGC AAG GCT TCC ACT TGC AACC-3') (b-domain);
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RG475 (5'- CCG AGC TCA CTA GTG AGG CTG TGG CCC CTG AAG ACT CC-3)
and RG477 (ab-domains); RG475 and RG478 (5'- CCC TGC AGC TCG AGA CCT
TTC AAG AAG TCC TTA ACC AAAG-3') (abb'-domains); RG476 and RG478 (bb'-
domains). To allow for expression of ER-retained proteins, the respective PCR
products were cloned into the Sacl and Xhol restriction sites of pPRG85 upstream of the
HDEL sequence thus replacing the PDI1 gene and yielding pRG143 (b), pPRG144 (ab),
pRG145 (abb') and pRG146 (bb').

pRG135, pRG136, pRG137, pRG138: To allow for expression and secretion of
truncated Pdi1p variants, the coding sequences of pRG143, pRG144, pRG145, and
pRG146 were excised by Sacl and Xhol. Fragments were ligated into the respective
restriction sites of pPRG105 downstream of the gp67 signal sequence yielding pRG135
(b), pPRG136 (ab), pRG137 (abb') and pRG138 (bb').

Expression and purification of recombinant proteins in insect cells

Standard procedures were used to generate recombinant baculoviruses in Sf21 cells
(Murhammer, 2007). Recombinant viruses were collected after 72 h. Viruses were
amplified by infecting Sf21 cell cultures with virus solution in a 1:10 and 1:100 (v:v)
ratio. Expression of intracellular or secreted recombinant proteins was monitored by
SDS-PAGE and immunoblotting after each virus amplification step. For protein
expression, T. ni Hi5 cells were diluted to 1 million cells per ml in shaker flasks and
infected 1:100 (v:v) with recombinant viruses. For the analysis of site-specific
processing of sPdi1p by GALT-1, sPdi1p was expressed in Hi5 cells co-infected with
GALT-1 recombinant viruses.

T. ni Hi5 cells were diluted to 1 million cells per ml in shaker flasks and infected 1:100
(v:v) with recombinant viruses. Infected cells were incubated at 27°C for 48 h. To purify
Histo-tagged ER retained proteins, cells were pelleted by centrifugation (600 rcf, 5
min), washed with 1xPBS and lysed with lysis buffer (1% TritonX-100, 1x Protease
Inhibitor cocktail (Roche, 11873580001) in 1xPBS). The lysates were centrifuged at
3500 rcf for 10 min and the soluble fraction was filtered using PES-membrane 0.2 uM
filters (TPP). For the purification of secreted proteins, the culture supernatant was
cleared by centrifugation at 3500 rcf for 10 min and filtered. Affinity purification was
performed on gravity flow columns filled with 1 ml NiNTA beads (Protino, 745400.100)

equilibrated either with 10 column volumes (CV) of lysis buffer or medium. The bound
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fraction was washed with 15 CV washing buffer (30 mM imidazole in 1xPBS) and
proteins were eluted with 4 CV of elution buffer (250 mM imidazole in 1xPBS). Eluted
fractions were concentrated on Amicon Ultra-4 Centrifugal Filter Devices. For MS
analysis samples were prepared as described below. Proteins that were stored after

buffer exchange to 1xPBS and kept frozen at -20°C.

To purify GST-tagged M9Gn2-Pdi1p, Hi5 cells were infected with recombinant virus in
the presence of 10 uM kifunensine (Sigma Aldrich, K1140-1MG) and incubated for 48
h. Mns1p was purified from Hi5 cells 48 h after infection with recombinant virus.
Following cell lysis, proteins were bound to Gluthatione Sepharose 4B matrix (GE
Healthcare, 17-0756-01). Bound proteins were washed with 15 CV of 1xPBS and
subsequently with 15 CV of PreScission Protease (PSP; VWR, 27-0843-01) activity
buffer (150 mM NaCl, 1 mM EDTA, 1 mM DTT in 50 mM Tris pH 7.0). On column
cleavage was performed by incubating bound proteins with 20 U of PSP in 1 ml of PSP
activity buffer for 16 hours. Released proteins were collected by gravity flow. Sample
were concentrated and the buffer was exchanged to Mns1p activity buffer (150 mM
NaCl, 5 mM CaClz in 20 mM MES pH 7.0) (Karaveg and Moremen 2005).

In vitro Mns1p activity assay

Fifty uM Pdi1p were mixed with 0.5 yM Mns1p in total volume of 85 ul and incubated
at 37°C. Aliquots of 17 ul were taken at different time points. Each aliquot was mixed
with 3 pl of 100% TCA, vortexed, and incubated on ice for 5 min. After centrifugation
at 20,000xg and 4°C for 5 min, the pellet was washed three times with 500 ul of ice
cold acetone. The pellet was air dried and stored at -20°C. For MS analysis protein
pellets were resuspended in 50 pl of 8M urea in 50mM ammonium bicarbonate (pH
8.5).

Sample preparation and glycopeptide analysis by nanoHPLC-HCD-MS/MS

Purified proteins were loaded onto a filter device (Microcon YM-30, Millipore) and
washed three times with water. Usually, 50 ug were reduced by 50 mM dithiothreitol in
50 mM ammonium bicarbonate buffer (pH 8.5) at 37°C for 1 h, following by alkylation
with 65 mM iodoacetamide at 37°C in the dark for 1 h. After four washing steps with

ammonium bicarbonate buffer, proteins were digested by trypsin (molar ratio 50:1,
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Promega, Cat. No. V5111) at 37°C for 16 h. Digested peptides and glycopeptides were
collected by centrifugation and dried in a speedvac. Samples were desalted by Zip-Tip
C18 (Millipore) prior to nanoLC-MS/MS analysis. Samples were analyzed on a
calibrated LTQ-Orbitrap Velos mass spectrometer (Thermo Fischer Scientific) coupled
to an Eksigent-Nano-HPLC system (Eksigent Technologies). Peptides were
resuspended in 2.5% acetonitrile with 0.1% formic acid and loaded onto a self-made
tip column (75 pm x 80 mm) packed with reverse phase C18 material (AQ, 3 ym 200
A, Bischoff GmbH). Peptides were eluted with a flow rate of 200 nl per min by a gradient
from 3 to 30% of solution B (99.9% ACN, 0.1% FA) applied for 22 min, 50% B applied
for 25 min, 97% B applied for 27 min. One scan cycle comprised of a full scan MS
survey spectrum, followed by up to 10 sequential HCD MS/MS on the most intense
signals above a threshold of 2000. Full-scan MS spectra (800-2000 m/z) were
acquired in the FT-Orbitrap at a resolution of 60,000 at 400 m/z, while HCD MS/MS
spectra were recorded in the FT-Orbitrap at a resolution of 15,000 at 400 m/z. HCD
was performed with a target value of 1e5 and stepped collision energy rolling from 35,
40 and 45 V was applied. AGC target values were 5e5 for full FTMS. For all
experiments, dynamic exclusion was used with a single repeat count, 15 s repeat

duration, and 60 s exclusion duration.

Identification and quantification of different glycoforms sharing the same

peptide backbone

MS and MS/MS data were processed into the Mascot generic format (mgf) file.
Extractmgf was written in Perl to perform the following steps: glycopeptides were
initially extracted from mgf file by identifying glycan oxonium ions, [HexNAc]* 204.09
and [HexNAc+Hex]* 366.12. Glycopeptides corresponding to each site were further
obtained by sorting out the corresponding Y1 ion individually from extracted mgf file.
All MS/MS spectra were confirmed manually. Here, XCalibur 2.2 sp1.48 was used for
data processing. For quantification, extracted_ion chromatography (XIC) of each
glycoform was plotted by its individual m/z with the mass tolerance of 5 ppm. Peak
area was defined manually and integrated by the program. The relative amount of each

glycoform sharing same peptide backbone was calculated as following equation:

. Peak f each glycof
Relative amount of each glycoform (%) = — 22228V Z__ x100%
Sum of peak area of all glycoforms
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Molecular modelling
Three dimensional structure preparation

Initial starting coordinates for the a- and b- subdomains of Pdi1p were taken from PDB:
2B5E. Models were generated for the unglycosylated domains and for a glycoform with
M9OGn2 at site 4 (S4) using the online glycoprotein builder available on GLYCAM-Web
(Kirschner et al. 2008; Woods Group (2005-2014)). Using tleap (Case et al. 2014) the
structures were placed in a truncated octahedron of TIP3P (Jorgensen et al. 1983)
water with an 8 A distance buffer from the solute to the edge of the periodic box and
an 0.5 A spacing between solute and water molecules. Prior to solvation, all waters of
crystallization were removed, and the systems were neutralized with sodium counter-

ions.

Energy minimization and molecular dynamics simulations

Energy minimization (10,000 steps of steepest descent, followed by 10,000 steps of
conjugate gradient) was performed in a stepwise fashion with initially a 5 kcal mol™* A-
2restraint applied to the solute (protein and glycan) heavy atoms. This was followed by
minimization with restraints only on the glycan heavy atoms, before a final minimization
with no restraints on any atoms. Minimizations were performed with sander.MPI in
AMBER14 (Case et al. 2014). Molecular dynamics simulations were performed with
the CUDA implementation of PMEMD (Gotz et al. 2012; Salomon-Ferrer et al. 2013)
in AMBER14 using constant pressure (nPT) conditions. A Berendsen barostat with a
time constant of 1 ps was employed for pressure regulation, while a Langevin
thermostat with a collision frequency of 2 ps' was employed for temperature
regulation. A nonbonded interaction cutoff of 8 A was employed. Long-range
electrostatics were treated with the particle-mesh Ewald (PME) method (Darden et al.
1993). Covalent bonds involving hydrogen were constrained with the SHAKE algorithm
allowing a time step of 2 fs (Ryckaert et al. 1977). Cartesian restraints were applied to
the protein Ca atoms (5 kcal mol™' A2) during a 100 ps heating stage from 5 to 300 K,
which was followed by a 100 ps equilibration phase. All restraints were then removed

for a 1 ns equilibration phase prior to a 500 ns production phase.
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Data analysis

RMSD of the a-domain: The cpptraj (Roe and Cheatham 2013) module was used to
extract 1,000 snapshots from each simulation at 500 ps intervals, these frames were
aligned on the b-domain of the crystal structure, and the root mean squared deviation
(RMSD) computed for the a-domain. Glycan branch accessibility: NACCESS (Hubbard
and Thornton 1993) was employed with a 6 A radius probe to compute the accessibility
of the non-reducing terminal disaccharides in the A-, B- and C-branches of the glycan
over 100 snapshots from the simulation; the approximate end-to-end distance of the
disaccharide being 12 A. The values were normalized relative to the accessibility of a

Mana1-2Mana disaccharide.

Glycan flux analysis of T. ni Golgi glycosylation network

The connectivity of the network was described by the stoichiometric matrix S where
the low activity of a-Manlll from M4Gn2 to M3Gn2 was neglected to obtain an acyclic
system. Assuming a pseudo steady state of the system, the fluxes v were constrained
to (Antoniewicz 2013):

Sv=0(1)

The measured glycosylation species were considered as constant fluxes, vm, out of
the Golgi apparatus and were used to calculate the fluxes, ve, inside the network.
M9Gn2 was assumed as the only structure entering the late ER and Golgi apparatus
(Krambeck et al. 2009). Consequently, equation (1) was split accordingly:

SmVUm + S.v. =0 (2)

where Sm was the stoichiometric matrix for the measured fluxes and S¢ for the

calculated internal fluxes. The inverse (Sc)* was used to solve equation (2):
Ve = _(Sc)#vam (3)

The measured structures fully determined the 19 internal fluxes and the result of
equation (3) was unique. The conversion for every enzymatic step was calculated by

normalizing the outgoing to the incoming flux.
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Figure S1. MS/MS and MS spectra depicting microheterogeniety of the S$2, S3 and S5 N-
glycosylation sites. Related to Figure 3.

(A) MS/MS spectra of m/z 1040.68 (+3) from S2, (B) m/z 1189.08 (+4) from S3 and (C) m/z 1083.98
(+4) from S5 showed respective glycopeptide identity. Corresponding MS spectra of the (D) S2, (E) S3

and (F) S5 depicted the overall glycoform heterogeneity on each site.
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Figure S2. Evaluation of different quantification methods using glycopeptides of bovine RNaseB.
Related to Figure 2.

(A) Chromatography of 2-aminobenozic acid labeled glycan released from RNase B showed the relative
amount of each glycoforms. For quantification of glycopeptides, RNase B was digested by AspN-
peptidase and the peptides were analysed by nanoLC-MS/MS. Two common quantification methods
were evaluated. First, extracted ion chromatography (XIC) of each glycoform was presented by its
corresponding m/z (z=4), shown in (B). The peak area of each precursor ion was integrated for relative
quantification as described in the materials and methods section. (C) Peak height of deconvoluted MS
spectra was used for the evaluation of relative quantification. (D) MS/MS spectrum showed the identity
of this glycopeptide with M5Gn2. (E) The statistic results of different methods for relative quantification

of each glycoform on the same peptide backbone.
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Figure S3. XIC of all glycoforms on S4 from different Pdi1p domain variants.

Related to Figure 4. Peaks corresponding to the glycoforms in the M9Gn2-M5Gn2 range after XIC on
(A) abb'-, (B) ab-, (C) bb'- and (D) b-domain variant of Pdi1.
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Figure S4. In vitro site-specific processing of Pdi1p glycans by Mns1p. Related to Figure 5.

(A) Purification of Mns1p was followed by on column PreScission protease tag cleavage. After 16 h
incubation of the gluthatione sepharose bound GST-tagged Pdi1p with the protease the flow-through
(out) and eluted (E) fraction was analyzed by SDS-PAGE and stained with Coomassie. A time
dependent increase of M8Gn2 N-glycans on (B) S4 and (C) S2 after incubation of kifunensine treated
Pdi1p with Mns1p. The reaction was terminated by TCA at respective time points. After digestion,

resulting glycopeptides were separated by XIC.
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Figure S5. MS/MS spectra from N-glycans of sPdi1.

S1-S5 N- (A) and corresponding MS spectra (B) showing glycopeptide identity and heterogeneity of all
sites from sPDI. (C) Site-specific (S1-S5) conversions for all enzymes in the glycosylation network of T.
ni. Compared to the network depicted in Figure 6A second reaction step of Mlll using M4Gn2 as a
substrate to generate M3Gn2 was omitted and two additional reactions performed by the same enzyme
by using M3FGn2 and M3F2Gn2 to generate M2FGn2 and M2F2Gn2 respectively, were taken into
account. Site-specific enzyme conversions were obtained by glycan flux analysis using the relative
abundances of each glycoform from (Figure 7B). Error bars indicate standard deviation of mean values

from four experiments. Related to Figure 7.
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Table S6: Quantification results for glycopeptides from sPdip B by mass spectrometry

Site 1

ions used for quantification [M+H]+ |peptide [M+H]+ |glycan glycan stucture peptide sequence Average |SD
1384.28 3| 4150.84 3258.52 892.32|(HexNAc2Hex3) NITLAQIDCTENQDLCMEHNIPGFPSLK 0.15 0.012
1432.97! 3| 4296.91 3258.52| 1038.39|(HexNAc2Hex3)Fuc NITLAQIDCTENQDLCMEHNIPGFPSLK 0.08 0.005
1451.98! 3| 4353.94 3258.52| 1095.42|(HexNAc2Hex3)HexNAc NITLAQIDCTENQDLCMEHNIPGFPSLK 0.29 0.021
1481.65 3| 444295 3258.52| 1184.43|(HexNAc2Hex3)Fuc2 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.02 0.004
1492.32! 3| 4474.98 3258.52| 1216.46|(HexNAc2Hex3)Hex2 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.20] 0.028
1500.67 3| 4500.01 3258.52| 1241.49|(HexNAc2Hex3)FucHexNac NITLAQIDCTENQDLCMEHNIPGFPSLK 0.13 0.014
1546.34 3| 4637.02 3258.52| 1378.50|(HexNAc2Hex3)Hex3 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.07 0.008
1568.36 3| 4703.08 3258.52| 1444.56|(HexNAc2Hex3)FucHexNac2 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.02 0.001
1600.36! 3| 4799.08, 3258.52| 1540.56((HexNAc2Hex3)Hex4 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.05 0.009
1654.38 3| 4961.14 3258.52| 1702.62|(HexNAc2Hex3)Hex5 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.01 0.004

Site 2

ions used for quantification [M+H]+ |peptide [M+H]+ |§chan glycan stucture peptide sequence Average [SD
1228.52 2| 2456.03 1579.70 876.33|HexNac2Hex2Fuc NSDVNNSIDYEGPR 0.03 0.004
1236.51 2| 2472.03 1579.70 892.32|(HexNAc2Hex3) NSDVNNSIDYEGPR 0.07 0.005
1301.55 2| 2602.09 1579.70| 1022.39|HexNac2Hex2Fuc2 NSDVNNSIDYEGPR 0.01 0.003
1309.55 2| 2618.09 1579.70| 1038.39|(HexNAc2Hex3)Fuc NSDVNNSIDYEGPR 0.11 0.007
1317.54 2| 2634.09 1579.70| 1054.38|(HexNAc2Hex3)Hex NSDVNNSIDYEGPR 0.01 0.001
1338.05 2| 2675.10 1579.70| 1095.40|(HexNAc2Hex3)HexNAc NSDVNNSIDYEGPR 0.10 0.005
1382.57' 2| 2764.15, 1579.70| 1184.44|(HexNAc2Hex3)Fuc2 NSDVNNSIDYEGPR 0.07 0.006
1390.56 2| 2780.13 1579.70| 1200.42|(HexNAc2Hex3)HexFuc NSDVNNSIDYEGPR 0.00} 0.002
1398.57! 2| 2796.15, 1579.70| 1216.45|(HexNAc2Hex3)Hex2 NSDVNNSIDYEGPR 0.11 0.014]
1411.09 2| 2821.17 1579.70| 1241.47|(HexNAc2Hex3)FucHexNac NSDVNNSIDYEGPR 0.17 0.005
1439.59 2| 2878.18 1579.70| 1298.48|(HexNAc2Hex3)HexNAc NSDVNNSIDYEGPR 0.03 0.009
1479.59 2| 2958.19 1579.70| 1378.48|(HexNAc2Hex3)Hex3 NSDVNNSIDYEGPR 0.04] 0.009
1484.11! 2| 2967.23 1579.70| 1387.52|(HexNAc2Hex3)Fuc2HexNac NSDVNNSIDYEGPR 0.08 0.005
1492.11 2| 2983.22 1579.70| 1403.51|(HexNAc2Hex3)HexHexNAcFuc  |NSDVNNSIDYEGPR 0.02 0.000
1512.63! 2| 3024.25, 1579.70| 1444.55|(HexNAc2Hex3)FucHexNac2 NSDVNNSIDYEGPR 0.06 0.011
1560.62 2| 3120.24 1579.70| 1540.54|(HexNAc2Hex3)Hex4 NSDVNNSIDYEGPR 0.03 0.009
1585.65 2| 3170.30 1579.70|  1590.60|(HexNAc2Hex3)Fuc2HexNac2 NSDVNNSIDYEGPR 0.04] 0.007
1641.65 2| 3282.30] 1579.70| 1702.59|(HexNAc2Hex3)Hex5 NSDVNNSIDYEGPR 0.01 0.002
1722.68 2| 344437 1579.70| 1864.66|(HexNAc2Hex3)Hex6 NSDVNNSIDYEGPR 0.00 0.001

Site 3

ions used for quantification [M+H]+ |peptide [M+H]+ |glycan glycan stucture peptide sequence Average |SD
1363.69 3| 4089.07 3212.71 876.36|HexNac2Hex2Fuc QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.03 0.006
1369.02! 3| 4105.07, 3212.71|  892.36/HexNac2Hex3 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.07 0.009
1412.38 3| 4235.13 3212.71| 1022.42|HexNac2Hex2Fuc2 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.01 0.002
1417.71 3| 4251.13 3212.71| 1038.42|(HexNAc2Hex3)Fuc QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.19 0.029
1466.40 3| 4397.19] 3212.71| 1184.48|(HexNAc2Hex3)Fuc2 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.14] 0.015
1477.06! 3| 4429.18, 3212.71| 1216.47|(HexNAc2Hex3)Hex2 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.10] 0.018
1485.40 3| 4454.20 3212.71| 1241.49|(HexNAc2Hex3)FucHexNac QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.21 0.018
1531.07! 3| 4591.22 3212.71| 1378.51|(HexNAc2Hex3)Hex3 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.06 0.004
1534.09 3| 4600.26 3212.71| 1387.55|(HexNAc2Hex3)Fuc2HexNac QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.09 0.014
1585.09 3| 4753.28 3212.71| 1540.57|(HexNAc2Hex3)Hex4 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.06 0.012
1601.78 3| 4803.34 3212.71| 1590.63|(HexNAc2Hex3)Fuc2HexNac2 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.02 0.003
1639.11! 3| 4915.34, 3212.71| 1702.63|(HexNAc2Hex3)Hex5 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.03 0.007
1693.13 3| 5077.39 3212.71| 1864.68|(HexNAc2Hex3)Hex6 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.01 0.003

Site 4

ions used for quantification [M+H]+  |peptide [M+H]+ [glycan glycan stucture peptide sequence Average [SD
1300.55! 2| 2600.10; 1707.78|  892.33|(HexNAc2Hex3) IDADFNATFYSMANK 0.06 0.017
1373.58 2| 2746.15 1707.78| 1038.38|(HexNAc2Hex3)Fuc IDADFNATFYSMANK 0.00} 0.000
1402.09! 2| 2803.18, 1707.78| 1095.41|(HexNAc2Hex3)HexNAc IDADFNATFYSMANK 0.14] 0.033
1462.60! 2| 2924.20, 1707.78| 1216.43|(HexNAc2Hex3)Hex2 IDADFNATFYSMANK 0.04] 0.007
1475.12! 2| 2949.23 1707.78| 1241.46|(HexNAc2Hex3)HexNAcFuc IDADFNATFYSMANK 0.00] 0.000
1483.12 2| 2965.23 1707.78| 1257.46|(HexNAc2Hex3)HexNAclHex1 IDADFNATFYSMANK 0.17 0.016
1543.62 2| 3086.24 1707.78| 1378.47|(HexNAc2Hex3)Hex3 IDADFNATFYSMANK 0.08 0.013
1564.14 2| 3127.28 1707.78| 1419.51|(HexNAc2Hex3)HexNAcHex2 IDADFNATFYSMANK 0.06 0.014
1624.65 2| 324831 1707.78| 1540.53|(HexNAc2Hex3)Hex4 IDADFNATFYSMANK 0.30] 0.032
1645.17' 2| 3289.33 1707.78| 1581.56|(HexNAc2Hex3)HexNAcHex3 IDADFNATFYSMANK 0.02 0.006
1705.68 2| 341036 1707.78| 1702.58|(HexNAc2Hex3)Hex5 IDADFNATFYSMANK 0.10] 0.011
1786.71! 2| 357241 1707.78| 1864.64|(HexNAc2Hex3)Hex6 IDADFNATFYSMANK 0.02 0.006

Site 5

ions used for quantification [M+H]+ |peptide [M+H]+ [glycan glycan stucture peptide sequence Average |SD
1169.55! 3| 3506.66, 2468.25| 1038.41|(HexNAc2Hex3)Fuc LAPTYQELADTYANATSDVLIAK 0.05 0.020
1188.56 3| 3563.68 2468.25| 1095.43|(HexNac2Hex3)HexNAc LAPTYQELADTYANATSDVLIAK 0.27 0.052
1218.24 3| 3652.71 2468.25| 1184.46|(HexNAc2Hex3)Fuc2 LAPTYQELADTYANATSDVLIAK 0.02 0.004
1228.90! 3| 3684.70, 2468.25| 1216.45|(HexNAc2Hex3)Hex2 LAPTYQELADTYANATSDVLIAK 0.15 0.064
1237.25 3| 3709.74 2468.25| 1241.49|(HexNAc2Hex3)FucHexNac LAPTYQELADTYANATSDVLIAK 0.30] 0.027
1256.25 3| 3766.75 2468.25| 1298.50|(HexNAc2Hex3)HexNAc2 LAPTYQELADTYANATSDVLIAK 0.07 0.023
1285.93 3| 3855.79] 2468.25| 1387.54|(HexNAc2Hex3)Fuc2HexNac LAPTYQELADTYANATSDVLIAK 0.04] 0.010
1304.94 3| 3912.81 2468.25| 1444.56|(HexNAc2Hex3)FucHexNac2 LAPTYQELADTYANATSDVLIAK 0.07 0.009
1339.95 3| 4017.84 2468.25| 1549.59|(HexNAc2Hex3)Fuc2HexNacHex [LAPTYQELADTYANATSDVLIAK 0.00} 0.001
1353.62! 3| 4058.87, 2468.25| 1590.62|(HexNAc2Hex3)Fuc2HexNac2 LAPTYQELADTYANATSDVLIAK 0.02 0.002
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Table S7: Quantification results for glycopeptides from sPdip B by mass spectrometry

Site 1
EV Gal

ions used for quantification [M+H]+ peptide [M+H]+ |glycan glycan stucture peptide sequence Average SD Average SD
1384.28 3 4150.84 3258.52 892.32|(HexNAc2Hex3) NITLAQIDCTENQDLCMEHNIPGFPSLK 0.1598| 0.0033 0.1794/ 0.0043
1432.97 3 4296.91 3258.52 1038. {exNAc2Hex3)Fuc NITLAQIDCTENQDLCMEHNIPGFPSLK 0.1180 0.0017 0.1138] 0.0024|
1451.98 3 4353.94| 3258.52 1095.42|(HexNAc2Hex3)HexNAc NITLAQIDCTENQDLCMEHNIPGFPSLK 0.2880| 0.0107 0.3236| 0.0057
1481.65 3 4442.95 3258.52 1184.43|(HexNAc2Hex3)Fuc2 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.0380 0.0029 0.0108| 0.0007|
1492.32 3 4474.98 3258.52 1216. 2Hex3)Hex2 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.1230| 0.0031 0.1276 0.0064
1500.67 3 4500.01! 3258.52 1241. 2Hex3)FucHexNac NITLAQIDCTENQDLCMEHNIPGFPSLK 0.1595 0.0024 0.1177| 0.0008
1506.00 3 4515.99 3258.52 1257.47|(HexNAc2Hex3)HexHexNac NITLAQIDCTENQDLCMEHNIPGFPSLK 0.0214 0.0020 0.0260| 0.0014
1546.34 3| 4637.02 3258.52 1378.50|(HexNAc2Hex3)Hex3 [NITLAQIDCTENQDLCMEHNIPGFPSLK 0.0376) 0.0014 0.0386 0.0017
1560.02 3 4678.05 3258.52 1419.53|(HexNAc2Hex3)Hex2HexNac NITLAQIDCTENQDLCMEHNIPGFPSLK 0.0030 0.0013 0.0064| 0.0005,
1568.36! 3 4703.08! 3258.52 1444.56|(HexNAc2Hex3)FucHexNac2 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.0243 0.0052 0.0202 0.0040
1600.36 3 4799.08 3258.52 1540.56|(HexNAc2Hex3)Hex4 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.0241 0.0032 0.0327| 0.0018
1654.38 3 4961.14 3258.52 1702.62|(HexNAc2Hex3)Hex5 NITLAQIDCTENQDLCMEHNIPGFPSLK 0.0033 0.0009 0.0032 0.0019

Site 2
1228.52 2 2456.03 1579.704 876.33|HexNac2Hex2Fuc NSDVNNSIDYEGPR 0.0422 0.0004 0.0270 0.0005
1236.51 2 2472.03 1579.704 892.32|(HexNAc2Hex3) NSDVNNSIDYEGPR 0.0504/ 0.0008 0.0643| 0.0014
1301.55 2 2602.09 1579.704 1022.39|HexNac2Hex2Fuc2 NSDVNNSIDYEGPR 0.0316 0.0012 0.0122 0.0004
1309.55 2 2618.09! 1579.704 1038.39|(HexNAc2Hex3)Fuc NSDVNNSIDYEGPR 0.1281 0.0037 0.1199| 0.0021]
1317.54 2 2634.09 1579.704 1054.38|(HexNAc2Hex3)Hex NSDVNNSIDYEGPR 0.0020 0.0002 0.0030| 0.0001]
1338.05 2 2675.10] 1579.704 1095.40|(HexNAc2Hex3)HexNAc NSDVNNSIDYEGPR 0.0893 0.0010 0.1251 0.0013
1382.57 2 2764.15 1579.704| 1184.44|(HexNAc2Hex3)Fuc2 NSDVNNSIDYEGPR 0.1291 0.0029 0.0676 0.0003|
1390.56/ 2 2780.13 1579.704] 1200.42|(HexNAc2Hex3)HexFuc NSDVNNSIDYEGPR 0.0000|  0.0000 0.0387|  0.0010
1398.57 2 2796.15 1579.704 1216.45|(HexNAc2Hex3)Hex2 NSDVNNSIDYEGPR 0.0369 0.0010 0.0608| 0.0013
1411.09 2 2821.17 1579.704 1241.47|(HexNAc2Hex3)FucHexNac NSDVNNSIDYEGPR 0.2090 0.0039 0.1414| 0.0054
1419.08 2 2837.16 1579.704 1257.46|(HexNAc2Hex3)HexHexNac NSDVNNSIDYEGPR 0.0090 0.0004 0.0180| 0.0005|
1439.59 2 2878.18 1579.704 1298.48|(HexNAc2Hex3)HexNAc2 NSDVNNSIDYEGPR 0.0106 0.0007 0.0196 0.0007|
1463.61 2| 2926.22 1579.704 1346.52|(HexNAc2Hex3)Fuc2Hex NSDVNNSIDYEGPR 0.0000 0.0000 0.0595 0.0012
1479.59 2 2958.19 1579.704 1378.48|(HexNAc2Hex3)Hex3 NSDVNNSIDYEGPR 0.0087 0.0016 0.0148| 0.0003
1484.11 2 2967.23 1579.704) 1387.52|(HexNAc2Hex3)Fuc2HexNac NSDVNNSIDYEGPR 0.1456| 0.0012 0.0746| 0.0004
1492.11 2 2983.22 1579.704 1403.51|(HexNAc2Hex3)HexHexNAcFuc NSDVNNSIDYEGPR 0.0107 0.0008 0.0783| 0.0019
1512.63 2 3024.25 1579.704 1444.55|(HexNAc2Hex3)FucHexNac2 NSDVNNSIDYEGPR 0.0487| 0.0023 0.0407| 0.0010
1560.62 2 3120.24 1579.704 1540.54|(HexNAc2Hex3)Hex4 NSDVNNSIDYEGPR 0.0061 0.0009, 0.0097| 0.0008
1585.65 2 3170.30 1579.704 1590.60| (HexNAc2Hex3)Fuc2HexNac2 NSDVNNSIDYEGPR 0.0400] 0.0015 0.0212 0.0007
1641.65 2 3282.30 1579.704 1702. HexNAc2Hex3)Hex5 NSDVNNSIDYEGPR 0.0016 0.0003 0.0029| 0.0003
1722.68 2 3444.37 1579.704 1864. HexNAc2Hex3)Hex6 NSDVNNSIDYEGPR 0.0005 0.0002 0.0008| 0.0002

Site 3
1363.69 3 4089.07 3212.71 876.36|HexNac2Hex2Fuc (QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0338| 0.0010, 0.0224 0.0022
1369.02 3 4105.07 3212.71 892.36|HexNac2Hex3 (QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0462 0.0010, 0.0651 0.0024
1412.38 3 4235.13 3212.71 1022.42|HexNac2Hex2Fuc2 (QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0225 0.0027 0.0103| 0.0049
1417.71 3 4251.13! 321271 1038.42|(HexNAc2Hex3)Fuc QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.1847 0.0034 0.1513| 0.0126
1466.40 3 4397.19 3212.71 1184.48|(HexNAc2Hex3)Fuc2 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.2000 0.0103 0.1157| 0.0040
1471.73 3 4413.19 3212.71 1200.48)(HexNAc2Hex3)FucHex QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0000 0.0000, 0.0904/ 0.0033
1477.06 3 4429.18 3212.71 1216.47|(HexNAc2Hex3)Hex2 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0618| 0.0021 0.0871 0.0044
1520.42 3 4559.25 3212.71 1346.54]|(HexNAc2Hex3)Fuc2Hex QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.2481 0.0084 0.1565| 0.0077
1485.40 3 4454.20 3212.71 1241.43|(HexNAc2Hex3)FucHexNac QSQPAVAVVADLPAYLANETFVTPVIVOSGK 0.0242 0.0026 0.0384/ 0.0025
1531.07 3 4591.22 3212.71 1378.51|(HexNAc2Hex3)Hex3 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0000 0.0000 0.1503 0.0095
1534.09 3 4600.26 3212.71 1387.55 NAc2Hex3)Fuc2HexNac (QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.1248 0.0064 0.0663| 0.0020
1585.09 3 4753.28 3212.71 1540.57|(HexNAc2Hex3)Hex4 (QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0186 0.0013 0.0295| 0.0021
1601.78 3 4803.34| 3212.71 1590. 2Hex3)Fuc2HexNac2 QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0263 0.0019 0.0075| 0.0017
1639.11 3 4915.34 3212.71 1702.63|(HexNAc2Hex3)HexS QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0078 0.0018, 0.0066| 0.0013
1693.13 3 5077.39 3212.71 1864.68|(HexNAc2Hex3)Hex6 (QSQPAVAVVADLPAYLANETFVTPVIVQSGK 0.0012 0.0014 0.0026| 0.0007

Site 4
1300.55 2 2600.10 1707.775 892.33|(HexNAc2Hex3) IDADFNATFYSMANK 0.1156 0.0043 0.1070 0.0040
1373.58, 2 2746.15 1707.775 1038.38|(HexNAc2Hex3)Fuc IDADFNATFYSMANK 0.0011|  0.0001 0.0015|  0.0024
1402.09 2 2803.18 1707.775 1095.41|(HexNAc2Hex3)HexNAc IDADFNATFYSMANK 0.3332 0.0074 0.3016| 0.0061
1462.60 2 2924.20| 1707.775 1216.43|(HexNAc2Hex3)Hex2 IDADFNATFYSMANK 0.0290| 0.0012 0.0327| 0.0010
1475.12 2 2949.23 1707.775 1241.46|(HexNAc2Hex3)HexNAcFuc IDADFNATFYSMANK 0.0000 0.0000 0.0023| 0.0016
1483.12 2 2965.23 1707.775 1257.46|(HexNAc2Hex3)HexNAc1Hex1 IDADFNATFYSMANK 0.2710 0.0044 0.2962 0.0027
1543.62 2 3086.24 1707.775 1378.47|(HexNAc2Hex3)Hex3 IDADFNATFYSMANK 0.0533 0.0040 0.0542 0.0024
1564.14 2 3127.28 1707.775 1419.51|(HexNAc2Hex3)HexNAcHex2 IDADFNATFYSMANK 0.0539 0.0017 0.0588| 0.0017
1624.65 2 3248.31! 1707.775 1540.53|(HexNAc2Hex3)Hex4 IDADFNATFYSMANK 0.1003 0.0020 0.1007| 0.0009
1645.17 2 3289.33 1707.775 1581. 2Hex3)HexNAcHex3 IDADFNATFYSMANK 0.0118| 0.0001 0.0140| 0.0011
1705.68 2 3410.36 1707.775 1702.58|(HexNAc2Hex3)Hex5 IDADFNATFYSMANK 0.0268| 0.0005 0.0262 0.0006
1786.71 2 3572.41 1707.775 1864.64|(HexNAc2Hex3)Hex6 IDADFNATFYSMANK 0.0040| 0.0002 0.0048| 0.0002

Site 5
1164.22 3 3490.66 2468.25 1022.41|HexNAc2Hex2Fuc2 LAPTYQELADTYANATSDVLIAK 0.0075 0.0004 0.0028| 0.0005
1169.55 3 3506.66 2468.25 1038.41|(HexNAc2Hex3)Fuc LAPTYQELADTYANATSDVLIAK 0.0837 0.0036 0.0704| 0.0015
1188.56! 3 3563.68! 2468.25 1095.43|(HexNac2Hex3)HexNAc LAPTYQELADTYANATSDVLIAK 0.1405 0.0127 0.2366| 0.0117,
1218.24 3 3652.71 2468.25 1184. 2Hex3)Fuc2 LAPTYQELADTYANATSDVLIAK 0.1054/ 0.0052 0.0604| 0.0021
1223.57 3 3668.72 2468.25 1200.47|(HexNAc2Hex3)FucHex LAPTYQELADTYANATSDVLIAK 0.0000 0.0000 0.0278| 0.0025
1228.90 3 3684.70 2468.25 1216.45|(HexNAc2Hex3)Hex2 LAPTYQELADTYANATSDVLIAK 0.0506 0.0023 0.0874 0.0021
1237.25 3 3709.74 2468.25 1241.49|(HexNAc2Hex3)FucHexNac LAPTYQELADTYANATSDVLIAK 0.2801 0.0133 0.1995| 0.0039
1256.25 3 3766.75 2468.25 1298.50|(HexNAc2Hex3)HexNAc2 LAPTYQELADTYANATSDVLIAK 0.1281 0.0105 0.0975| 0.0050
1272.26 El 3814.77 2468.25 1346.52|(HexNAc2Hex3)Fuc2Hex LAPTYQELADTYANATSDVLIAK 0.0000 0.0000 0.0294/ 0.0021
1285.93 3 3855.79 2468.25 1387.54|(HexNAc2Hex3)Fuc2HexNac LAPTYQELADTYANATSDVLIAK 0.1087 0.0042 0.0633| 0.0021
1304.94 3 3912.81 2468.25 1444.56|(HexNAc2Hex3)FucHexNac2 LAPTYQELADTYANATSDVLIAK 0.0371 0.0052 0.0547| 0.0061
1339.95 3 4017.84| 2468.25 1549.59|(HexNAc2Hex3)Fuc2HexNacHex LAPTYQELADTYANATSDVLIAK 0.0085 0.0003 0.0452 0.0211
1353.62 3 4058.87 2468.25 1590.62|(HexNAc2Hex3)Fuc2HexNac2 LAPTYQELADTYANATSDVLIAK 0.0496 0.0012 0.0249 0.0083|
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Chapter 5

Concluding remarks and future perspectives
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Concluding remarks and future perspectives

The goal of this thesis was to evaluate the potential of a recombinant glycoprotein-
based vaccine for sheep against the blood-sucking parasite Haemonchus contortus.
The vaccine consisted of heterologously expressed H. contortus gut proteases in
glycoengineered insect cells. This system offered the ability to produce antigens
carrying N-glycans very similar to the ones found in the pathogen. Unfortunately none
of the tested candidates induced protection in sheep but during the scope of the study
a high rate of polymorphism was detected in one of the most promising vaccine
candidate proteins. A special focus was therefore set on the analysis of this newly

discovered heterogeneity on both protein and N-glycans.

In Chapter 2, the insect cell expression system was chosen due to the potential of the
targeted manipulation of the N-glycosylation machinery to engineer N-glycans by using
nematode-specific glycosyltransferases. We glycoengineered High five insect cells by
overexpressing the C. elegans galactosyltransferase GALT-1. The suitability of these
manipulated cells as a recombinant expression system for the production of
carbohydrate-based vaccines against H. contortus was tested. Opposed to some
previous studies, the purified recombinant proteins were decorated with N-linked
glycans and they were highly similar to the ones found on native proteins of H.
contortus [1], including the galactosylated core a1,6 fucose and the immunogenic core
a1,3 fucose. Furthermore, we produced various digestive proteases of H. contortus in
our insect cell expression system to test combinations of these putative antigens as
vaccines. We expected to raise protection levels in sheep against H. contortus by
targeting multiple worm proteins, involved in the proteolytic digestion of hemoglobin
(the major food source of the parasite), decorated with native nematode-like N-glycans.
Despite a significant anti-protein and anti-glycan response stimulated in sheep
vaccinated with the glycoengineered proteins, no protection was observed, suggesting
that the glycans might contribute to the antigenicity but do not induce protective

immunity.

Although we were not able to discover a protective antigen among the targets
expressed and purified from insect cells, this system represents an ideal production
system for future vaccine production. High quantities of glycoprotein with extensive

Golgi-modified N-glycans could be generated with this fast and flexible expression
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system. The cells were highly susceptible to N-glycan manipulations which indicates
also future modifications could be possible, e.g. by overexpression of the C. elegans
fucosyltransferase FUT-6 [2] to produce trifucosylated core N-glycans (after the
removal of the a1,6 mannose). Moreover, a recent study reappraised the High five N-
glycome by using HPLC and MALDI-TOF MS/MS in combination with selected
digestions of N-glycans and revealed that other H. contortus N-glycan modifications
like phosphorylcholine and the LDNF motif are evident N-glycan modifications in High
five insect cells [3]. It might be necessary to overexpress the glycosyltransferases
responsible for the generation of the LDNF motif to increase the abundance of this

epitope on the N-glycans.

Previous studies reported that reduced protective capacity of the recombinant vaccines
might be due to (I) suboptimal or incorrect folding, (ll) lack of various post-translational
modifications, such as N-glycosylation or (lll) the absence of other proteins critical in
conferring protection in the native vaccine. We postulated that it was mainly due to the
latter reason that the recombinant vaccines were not protective so far. Since the H.
contortus genome encodes five different H11 isoforms and, in combination with the
high level of genetic diversity in H. contortus [4], this might explain the failure of
recombinant H11 protein to elicit a protective immune response. Based on this
hypothesis, we examined in Chapter 3 the distribution and conservation of H711 antigen
genes within and between three different intercontinental parasite populations, as this
might have fundamental implications on the development of a globally active
recombinant H11 vaccine. H11 isoform sequences were cloned from cDNA and
displayed an extreme genetic diversity in all three worm populations analyzed
(Switzerland, Scotland and South Africa). Interestingly, the resulting amino acid
sequence variation of the H11 proteins was found almost exclusively on the surface of
the modeled protein structure (>88% on average), leaving the internal structure of the
protein unaffected. Furthermore, we showed that the amino acid variation was affecting
the N-linked glycosylation of the isoforms, leading to the loss or gain of half of the N-
glycosylation sites among the isoforms. In addition, a mass spectrometry-based
analysis revealed site-specific N-glycan processing of the proteins with differing N-
glycan structures between isoforms and between the variants of one isoform. This site-
specific N-glycan processing was detected in both, the recombinantly expressed
proteins from insect cells, but also in the native H11 isoforms purified from adult H.

contortus worms.
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This natural structural complexity in epitopes and varying glycosylation of the native
H11 proteins may be the key requirement for stimulating a very broad antibody
response necessary for protection and might explain why antibodies generated by
single recombinant vaccines induce only low levels of protection. Moreover, there was
a substantial genetic diversity within and among H. contortus worm population. The
data of Chapter 3, explain the lack of protection of recombinantly produced H11 in the
sheep immunization trial in Chapter 2. This H11 gene was synthesized by a company
based on the published sequence in GenBank X94187.1, but shows 5 % genetic
variation as compared to the H11 sequences analyzed in the Swiss laboratory strain
used for the H. contortus infection in the vaccination trial performed in Zurich. It remains
a substantial challenge to produce recombinant versions inducing the same levels of
protection as with native vaccines, as demonstrated by over 100 published vaccine
trials with recombinant antigens over the last decades that were unsuccessful against

multiple parasitic helminths.

In Chapter 3, we hypothesized that the H11 variation is driven by the need to evade
the host immune response. Using maximum-likelihood models, we showed that
positive diversifying selection is acting on the H11 genes, offering support for this
hypothesis. We compared the high surface variation and rearrangement of N-glycans
in H11 with the very well-studied example of the highly variable human
immunodeficiency virus 1 (HIV-1) that avoids recognition by the host immune response
with its variability. It has been shown that the combination of the high surface variation
of HIV-1 with the N-glycan shielding allows the virus to conceal itself from neutralizing

antibodies, as only 3 % of the surface was still immunoglobulin-domain accessible [5].

An important next step would be to prove the hypothesis that native H11 vaccinated
sheep sera are protected due to inhibition of the gut protease (in particular H11)
enzyme activities. In a first approach, one could establish in vitro enzyme activity
assays with purified recombinantly expressed H11 antigen candidates and the purified
immunoglobulins from protective sheep sera binding to these antigen. If this can be
shown, an antibody epitope mapping could give a greater insight into the most
important surface regions of H11 to be targeted for future vaccine generation. In a
parallel attempt a focus could be led on the observed N-glycan variability in the different
H11 variants. Earlier studies showed that human immunodeficiency viruses could

acquire a neutralization escape phenotype by introducing the glycosylation pattern of
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the corresponding escape variant, this involved a combination of glycan additions,
removals and shifts in N-glycosylation sites (‘evolving glycan shield’) [6]. Due to this
fact, a reasonable question is if introducing new N-glycosites by site-directed
mutagenesis in H11 leads to inaccessibility of the protein structure by generated host
immunoglobulins. Here the insect cell system again offers a great tool to introduce this
kind of modifications and later on use the recombinantly expressed H11 versions (with
additional N-glycans) in protein-antibody binding studies, e.g. H11 enzyme activity

assays.

We identified distinct geographical surface patches on H11 isoforms when the amino
acid variation was marked on the modelled protein by the different geographical
isolation of the worm population. Not only the genetic background of the parasite
populations is different among the different countries, but also the selection pressures
acting on them might differ from region to region. One might expect that different
mutations are important in different locations. In the case of the benzimidazole
anthelminthic resistance induced by isotype-1 B-tubulin variation, this is known to be
true. For example, the resistant B-tubulin haplotypes with the F167Y and F200Y
mutations are frequently found in the UK but not in India, where the E198A mutation is
widespread [7]. Studying more H11 sequences of different populations will allow to
study geographical selection pressures and in addition will let to the identification of
amino acid replacements that are selected in all populations. The H11 characterization
by single worm sample sequencing would increase the quantitative readout in future
studies. Specific regional studies will be needed to test which amino acid sites are of
general global importance to lead to the development of a globally effective, non-

geographical limited vaccine.

A less well-studied fact is that N-glycan structures add an additional level of information
and variability to the protein surface. In Chapter 4 [8], we examined in more detail how
the differential processing of N-glycans is generated by the non-template driven N-
glycan processing machinery in insect cells and how the processing is influenced by
the underlying protein sequence. The yeast model protein PDI1 was therefore
expressed in insect cells and the novel mass spectrometry-based analytics revealed
site-specific N-glycan processing of the protein. Molecular dynamics simulation,
mutational analysis and kinetic studies of in vitro processing events showed that the

PDI1 protein conformation had a defining role in the N-glycan processing, it determined
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the final glycan structure by interacting with the covalently linked N-glycan. Further
studies are needed, to identify which exact amino acid residues make contact with the
glycans. This information will allow to selectively influence the final glycosylation on
the protein by manipulating the primary amino acid sequence of the protein. This would
lead to a new and useful tool to further reach native state of glycosylation on vaccine

candidates.

In summary, this work presented a different view on the requirements for vaccine-
induced protection. Many parasite vaccine candidates have failed to be protective. It
was always speculated that a lack of native posttranslational modifications resulted in
non-protection. Here we show that high genetic variations in H. contortus populations
might be the main reason for failures in the recombinant vaccine generation. It is
absolutely crucial that future research unravels the requirements for a correct epitope
presentation, the underlying mechanisms of vaccine protection and the complex

immune response necessary for conferring resistance.
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