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Abstract
This thesis deals with the stabilization of open-loop unstable systems. The thesis is divi-

ded into four parts. The first two parts discuss the stabilization of two particular unstable

systems: a three-dimensional inverted pendulum and a flying vehicle. The third part in-

troduces a general approach for controlling systems that have input or state constraints.

The last part presents an approach for the state estimation of distributed networked

systems, which is particularly suited for feedback loops that stabilize unstable systems.

The inverted-pendulum system that is discussed in the first part has two main fe-

atures: the ability to balance on its edge or corner and to jump from lying flat to its

corner by suddenly braking its reaction wheels. It is an ideal testbed for nonlinear control

algorithms. Applications include space exploration (locomotion in low-gravity environ-

ment), self-assembly, balance assistance, and inertially stabilized platforms that are used,

for example, for sensor calibration and image stabilization. For realizing the jump-up

we relied on a computationally efficient gradient-based learning algorithm that is shown

to perform well in practice. Although the approach is discussed and illustrated on the

jump-up example, the methods and intuition used generalize and can be translated to

other learning problems. The first part concludes with the discussion of a nonlinear algo-

rithm for determining the state (mainly tilt) of the inverted pendulum system based on

accelerometer measurements. The approach applies to arbitrary rigid bodies that have a

non-accelerated pivot point.

The flying vehicle presented in the second part is actuated by three electric ducted

fans. Thrust vectoring is essential for stabilizing the vehicle. Controlling the vehicle is

challenging due to the fact that it is open-loop unstable, non-minimum phase, and has

limited control authority. The flaps used for thrust vectoring have a limited radius of

movement leading to input constraints. The thesis discusses the design and the control of

the flying vehicle. The control authority is optimized by a systematic trade-off between

the lever arm of the actuation and the total inertia of the system. The low-complexity

model that is derived from first principles is refined with a system identification. It is

shown that the ducted fan actuation leads to aerodynamic effects that are not captured

by the low-complexity model. The flying vehicle is used as a testbed for evaluating control

schemes that take input and state constraints into account.

The third part discusses approximations of the constrained linear quadratic regulator

problem that are obtained by representing input and state trajectories by a linear combi-

nation of basis functions. The constrained linear quadratic regulator problem represents

the basis for model predictive control, which is, due to its ability of taking constraints

explicitly into account, one of the most successful and widely used control techniques. We
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show that with our parametrized approach an infinite prediction horizon can be retained,

leading to inherent closed-loop stability and recursive feasibility. Compared to the stan-

dard model predictive control approach proposed in the literature, the presented approach

provides a different trade-off between approximation quality (performance) and compu-

tation, leading to computational advantages in certain applications. We conjecture that

the computational benefits are particularly apparent for unstable or marginally stable

systems, since these system often require fast sampling and a relatively large prediction

horizon when applying the standard approach.

The thesis concludes with presenting a state estimation algorithm tailored to dis-

tributed networked systems. Each agent reconstructs the entire state of the system by

sporadically exchanging data via a common bus network, and as such, the method is par-

ticularly suitable for the stabilization of open-loop unstable systems. Compared to earlier

work, we further reduce the network communication load by taking the distributed na-

ture of the system into account. Furthermore, performance and stability guarantees are

provided.
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Kurzfassung
Die vorliegende Arbeit befasst sich mit der Stabilisierung von instabilen Systemen. Die

Arbeit ist in vier Teile gegliedert. Die ersten zwei befassen sich mit der Stabilisierung

eines dreidimensionalen, invertiertem Pendel-Systems und einer Drohne. Der dritte Teil

befasst sich mit einer allgemeinen Regelstrategie für Systeme, die Zustands- oder Stell-

grössenbeschränkungen aufweisen. Der letzte Teil stellt einen Algorithmus zur effizienten

Zustandsschätzung bei verteilten Systemen vor, welcher sich besonders zur Regelung in-

stabiler Systeme eignet.

Das invertierte Pendel-System, welches im ersten Teil betrachtet wird, hat die fol-

genden zwei Eigenschaften: Es kann auf einer Kante oder Ecke balancieren und von

flachliegender Position auf die Ecke aufspringen durch gezieltes und schnelles Bremsen

seiner Schwungräder. Das System bildet eine ideale Testumgebung für nichtlineare Re-

gelalgorithmen, die Anwendungen in der Raumfahrtstechnik, in der Medizin, und in der

Technik finden könnten. Das Aufspringen wird durch einen recheneffizienten gradient-

basierten Lernalgorithmus realisiert, der in der Praxis gut funktioniert. Auch wenn der

Lernalgorithmus an einem spezifischen Beispiel vorgestellt wird, generalisiert der Ansatz

und die Intuition darüber hinaus. Der erste Teil schliesst mit der Diskussion eines nicht-

linearen Zustandsschätzungsalgorithmus ab, der auf Beschleunigungsmessungen basiert.

Der Ansatz lässt sich zur Zustandsschätzung beliebiger Starrkörpersysteme die einen un-

beschleunigten Fixpunkt aufweisen, erweitern.

Der zweite Teil befasst sich mit einer neu entwickelten Drohne, welche durch drei

elektrische Impeller angetrieben wird. Die Drohne wird durch Schubvektorsteuerung sta-

bilisiert. Das System ist instabil, nicht-minimalphasig, und hat eine geringe Steuerbarkeit.

Die Stabilisierung eines solchen Systems stellt somit ein anspruchvolles Regelproblem dar.

Die Steuerklappen weisen einen relativ geringen Aktuationsradius auf und führen damit

zu einem beschränkten Systemeingang. Die Arbeit diskutiert die Konstruktion und die

Regelung der Drohne. Es wird aufgezeigt, dass die Steuerbarkeit durch ein geschick-

tes Abwägen von Hebelarm der Aktuation und Gesamtträgheit optimiert werden kann.

Ein physikalisches Modell wird hergeleitet, dessen Parameter durch eine Systemidentifi-

kation bestimmt werden. Die Messergebnisse werden genutzt um das Modell um einen

zusätzlichen Dämpfungsanteil zu erweitern, der eine wesentliche Eigenschaft der Impel-

leraktuation charakterisiert. Die Drohne eignet sich als Teststrecke für Regelalgorithmen,

die Eingangs- und Zustandsschranken explizit berücksichtigen.

Im dritten Teil werden Approximationen zum beschränkten linear-quadratischen Reg-

ler vorgestellt, welche auf einer Parametrisierung von Eingangs- und Zustandstrajektorien

mittels Basisfunktionen basieren. Der beschränkte linear-quadratische Regler wird oft als
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Ausgangslage für die modellprädiktive Regelung verwendet und ist somit von zentraler

Bedeutung. Aufgrund der expliziten Berücksichtigung der Eingangs- und Zustandsbe-

schränkungen mittels modellprädiktiver Regelung, geniesst der Ansatz eine grosse Be-

liebtheit und wurde erfolgreich für diverse Anwendungen eingesetzt. Es wird aufgezeigt,

dass man dank der vorgeschlagenen Parametrisierung einen unendlichen Voraussagehori-

zont beibehalten kann, was zu inherenten Stabilitäts- und Lösbarkeitsgarantien führt. Im

Gegensatz zu den geläufigen modellprädiktiven Regelansätzen, führt der vorgeschlagene

Algorithmus zu anderen Kompromissen zwischen Approximationsqualität und Rechen-

aufwand, was zu kürzeren Ausführungszeiten in gewissen Anwendungen führt. Es wird

vermutet, dass sich der vorgeschlagene Ansatz besonders zur Regelung instabiler oder

grenzstabiler Systeme eignet, da diese im Allgemeinen hohe Abtastraten und einen rela-

tiv langen Voraussagehorizon (im standard Ansatz) benötigen.

Der letzte Teil der Arbeit stellt einen Algorithmus zur Zustandsschätzung bei verteil-

ten Systemen vor. Jedes Teilsystem rekonstruiert den Zustand des Gesamtsystems durch

einen geschickten Austausch von Daten über ein gemeinsames Bus-Netzwerk. Als solches

ist der Algorithmus besonders zur Regelung von instabilen Systemen geeignet. Verglichen

mit vorangegangenen Ansätzen wird durch die Berücksichtigung der (verteilten) Struk-

tur des Systems die Kommunikation über das Bus-Netzwerk reduziert. Zusätzlich wird

Stabilität garantiert und die Zustandschätzgüte quantifiziert.
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Foreword
This thesis documents the research carried out by the author during his doctoral stu-

dies under the supervision of Professor Raffaello D’Andrea at the Institute for Dynamic

Systems and Control at ETH Zurich between January 2013 and December 2017.

The work is presented in the form of a cumulative thesis: its main content consists

of five self-contained research journal articles that have been published or submitted for

publication during the doctoral studies.

The work is divided into four parts: the control of a nonlinear inverted-pendulum

system is presented in Part A, followed by the design, implementation, and control of

a novel flying vehicle in Part B. Part C deals with approximations of the constrained

linear quadratic regulator problem and Part D presents a state estimation algorithm for

distributed networked systems.

The articles are put into context by three introductory chapters, which are structured

as follows: Chapter 1 introduces and motivates this work, including the problems consi-

dered, related work, and the approaches used. Chapter 2 describes the key contributions

of the research papers included in this thesis and how the individual papers relate to each

other. Chapter 3 then provides a discussion of potential extensions and new directions of

this research.
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1

Introduction

Feedback mechanisms are omnipresent in nature, technology and our everyday life. A

prominent example is the earth’s climate, where an increased amount of water vapor in

the atmosphere leads to further warming, representing a positive feedback loop. Like-

wise, the higher radiation heat losses as the earth’s temperature increases exemplifies a

negative feedback loop. Other well-known examples are the insulin regulation of blood

sugar, heat regulation (buildings, warm-blooded animals), voltage and frequency control

in power grids, self-driving cars, and autopilots to name a few. Feedback mechanisms are

particularly apparent for open-loop unstable systems, which would fail in the absence of

regulation. Unstable modes impose constraints on the bandwidth of the feedback loop,

which renders the control of these systems particularly challenging. As a result, unstable

systems are often used as testbeds for control algorithms, see [1]–[5].

The research in this thesis is divided into four parts and discusses certain aspects

related to the stabilization of unstable systems. The first part presents a nonlinear inverted

pendulum system. Compared to the classical control benchmarks, [1]–[3], the system

presented in the following evolves on the three-dimensional rotation group, which makes

the system inherently nonlinear. In addition, the reaction-wheel based actuation leads

to the conservation of the total angular momentum in yaw direction. Another unique

feature is that by braking the reaction wheels, the inverted pendulum can jump-up to its

upright equilibrium. Control algorithms that deal with equilibrium and non-equilibrium

motion will be presented. The second part discusses the design, implementation, and

control of a novel flying machine. Unlike other flying vehicles that are frequently used

as testbeds, it is actuated by three electric ducted fans. Due to the fact that the ducted

fans are all rotating in the same direction, thrust vectoring is required to stabilize yaw.

The actuation limits resulting from the thrust vectoring render the control of the vehicle

particularly challenging. This motivates the third part of the thesis, which deals with

approximations of the constrained linear quadratic regular problem. The constrained

linear quadratic regulator problem represents the foundation for model predictive control,

a control strategy that takes input and state constraints explicitly into account. The

last part discusses an estimation algorithm for distributed networked systems, which is

particularly suitable for the control of unstable systems. In fact, the method extends

previous work that was motivated by the inverted pendulum system presented in [5]. The

context for each part is presented below, while the contributions made in the thesis (and

specifically the contributions of the papers in this thesis) are discussed in Chapter 2.
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Chapter 1. Introduction

1.1 A three-dimensional reaction-wheel based inverted

pendulum system

Inverted pendulum systems have a long history as control benchmarks. A particularly

well-known example is the inverted-pendulum-on-a-cart system, [6]. In addition to its

conceptual simplicity, the inverted-pendulum-on-a-cart system often serves as an ab-

straction of problems encountered in the flight of rockets and missiles at low speeds, [7,

p. 100]. Several variants have been proposed, and include multi-link pendulum systems,

[8], parallel-type pendulum systems, [9], the Furuta pendulum, [2], the flying inverted

pendulum, [10], and the reaction-wheel pendulum, [3].

The inverted pendulum system considered here is unique: It is able to balance in

upright position, but can also jump up from lying flat to its corner by braking its reaction

wheels with a mechanical braking system. Its configuration includes the three-dimensional

rotation group and the total angular momentum about yaw is conserved while balancing.

This must be taken into account by the control design, since, depending on the initial

condition, it may be impossible to bring the system (reaction wheels and housing) to rest.

For example, a yaw motion in the upright position can be slowed down by increasing the

velocity of the reaction wheels. However, the yaw motion and the reaction wheel velocity

cannot be driven to zero at the same time.

Practical applications that share certain aspects include space exploration, [11], self-

assembly, [12], balance assistance, [13], and inertially stabilized platforms, [14].

The work on the inverted pendulum system motivated the design of an attitude es-

timation algorithm that exploits the fact that the system has a pivot point at rest. The

algorithm uses only accelerometer measurements and is able to estimate tilt (pitch and

roll), angular velocities, and angular accelerations.

The problem of determining the attitude of a rigid body relative to an inertial frame

occurs in many engineering disciplines, and has applications in robotics, aeronautics,

and space engineering. Traditional approaches include extended or unscented Kalman

filtering and complementary filtering. In complementary filtering, a gyroscope and an

accelerometer-based tilt estimate are combined, exploiting the fact that the gyroscope-

based estimate is corrupted mainly by low frequency noise (drift of the gyroscope), whe-

reas the accelerometer-based estimate is mainly accurate at low frequencies, see [15,

p.290]. However, the accelerometer is typically assumed to be at rest in order to extract

the attitude information form the accelerometer measurement, see for example [16]. Kal-

man filter approaches (as presented in [17]) exploit a dynamic model of the system that

captures the temporal correlation of the sensor data. These models include a process

noise model, and might require knowledge of physical parameters, such as the inertia,

the mass, and the center of mass, which might not be available or only approximately

known. Compared to these approaches, the proposed estimation algorithm maximizes

the measurement likelihood without taking the temporal correlation of the sensor data

into account, thereby not relying on a dynamic model of the system. The underlying
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assumption that is exploited is that the rigid body has a non-accelerated pivot point.

Compared to complementary filtering approaches, the accelerometers are therefore not

assumed to be at rest, and the resulting angular and centripetal acceleration terms are

explicitly taken into account.

1.2 A flying vehicle actuated by ducted fans

Advances in microelectromechanical systems (MEMS) technology contributed to an in-

creasing interest in autonomous aerial vehicles in the last decades, not least because

of the numerous applications ranging from surveillance, data acquisition, aerial photo-

graphy, construction, and transportation to entertainment. The operation of these sys-

tems introduces a large diversity of engineering problems, for example related to the state

estimation, the control of equilibrium and non-equilibrium motion, failsafe mechanisms,

and the software architecture. This renders autonomous flying vehicles attractive research

platforms. The flying vehicle introduced in this thesis, was built for two reasons: 1) as a

testbed for control algorithms that take input and state constraints into account; 2) for

investigating ducted fan actuation and thrust vectoring.

Ducted fans are an appealing propulsion system for flying machines, where size is

limited, but high static thrusts are required. This includes flying vehicles combining effi-

cient forward flight, high maneuverability with vertical take-off and landing capabilities,

such as tailsitters and hovercrafts. The research findings might be also useful for actuated

wingsuit flight, [18]. The high exit velocities can be exploited for thrust vectoring.

Previous work mainly focused on the design and control of a flying vehicle with a single

duct, [19], [20]. The vehicle presented here comprises three ducted fans with relatively

small diameters, each of which can vector the thrust. We also investigate the aerodynamic

effects resulting from the ducted fan actuation. In particular, a system identification about

hover reveals the presence of so-called momentum drag: During horizontal movements,

the incoming air is redirected downwards and leaves the exit nozzle with a translational

velocity component, explaining the presence of a drag force that is roughly linear in the

translational velocity of the vehicle. As highlighted in [21], this force introduces a pitching

moment on the center of gravity rendering the system open-loop unstable. The thrust

vectoring mechanism is implemented with two orthogonally mounted flaps mounted at

the exit of the duct. The fact that the flaps are constrained to an actuation radius of ±18◦

limits the thrust vectoring capabilities. The resulting input constraints combined with the

open-loop unstable dynamics render the control of the vehicle particularly challenging.

In addition, the sheer size, weight, and power of the vehicle (weight 8kg, requires 6.6kW

during hover) require a careful implementation and modular testing of the mechanical

and electrical components, as well as the software running the control algorithms.
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1.3 Approximations of the constrained linear quadratic regulator

problem

The constrained linear quadratic regulator problem is central to control theory, as it re-

presents the basis for model predictive control. Model predictive control is one of the most

successful control strategies due to its ability of treating input and state constraints in a

systematic way. It is widely used in various applications ranging from the process indu-

stry to the control of autonomous vehicles, see for example [22] and [23]. The underlying

constrained linear quadratic regulator problem is often approximated by discretizing the

dynamics and truncating the prediction horizon. The resulting quadratic program is then

either solved online, [24] or offline using parametric programming techniques, [25]. Both,

online and offline (parametric) solutions are challenging for high-dimensional systems in-

volving long prediction horizons. In case of the parametric programming approach the

difficulty stems from an exponential growth in complexity of the resulting feedback policy

with the prediction horizon, [26]. In case of an online solution the challenge results from

the limited execution time available for the numerical solution, which is often on the

order of milliseconds. In addition, the truncation of the prediction horizon leads to issues

regarding recursive feasibility and closed-loop stability. Several approaches addressing

these issues are proposed in the literature. These include terminal equality constraints, a

combination of terminal cost and terminal state constraints, and establishing contraction

properties of the running cost, see for example [27] and [28].

In contrast, we propose to represent input and state trajectories using a linear com-

bination of basis functions as an alternative to the standard approximation. By choosing

exponentially decaying basis functions, an infinite prediction horizon can be retained,

leading to inherent recursive feasibility and closed-loop stability. The basis functions can

be used to encode a priori knowledge of the system’s dynamics and therefore the appro-

ach typically results in a relatively small finite-dimensional optimization problem that

is solved at every time step. Changing the number of basis functions leads to a trade-

off between approximation quality and computational effort, and duality is exploited for

quantifying the approximation quality. We further show that for well-chosen basis functi-

ons the approximate solutions converge to the solutions of the underlying constrained

linear quadratic regulator problem.

We believe that the proposed approach is particularly suitable for the control of un-

stable systems, since these systems often require a fast sampling time combined with a

relatively large prediction horizon in the classical model predictive control setting. Thus,

the computational advantages obtained with a parametrization of input and state trajec-

tories might be particularly apparent in these cases.
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1.4 A state estimation algorithm for distributed networked

systems

The advances in computation and the emerge of low-cost sensing capabilities has greatly

improved the capabilities of embedded systems in the last decades. More and more, these

system are connected with each other, leading, for example, to large sensor networks,

whose sensing and monitoring capabilities exceed those of a single sensing device, [29]–

[31]. However, the analysis of such systems is very challenging, due to the fact that the

classical control and analysis tools mainly apply to centralized or hierarchical control

architectures and do not scale well in the system’s dimension.

Here, a distributed control system is considered, where multiple sensor and actuator

agents observe and control a dynamic system. The agents are linked by a common bus

network, over which they can communicate and exchange data. An event-based proto-

col is proposed for reducing, respectively averaging communication. Thereby, the agents

transmit information only when necessary, instead of communicating periodically at fixed

rates. We focused on the state estimation problem and applied Lyapunov-based techni-

ques to provide stability and performance guarantees. Compared to previous work, [32]

we came up with performance and stability guarantees that explicitly take the distribu-

ted structure into account. These guarantees are formulated in terms of linear matrix

inequalities and can be used for the synthesis of stabilizing estimators.
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Contributions

This chapter describes the scientific contributions for each of the papers that are contained

in this thesis. In total, five journal publications are discussed. A list of other contributions

such as conference publications, results from unpublished student projects, and outreach

activities are provided in this chapter.

2.1 A three-dimensional reaction-wheel based inverted

pendulum system

[1] M. Muehlebach and R. D’Andrea, “Nonlinear analysis and control of a

recation-wheel-based 3-D inverted pendulum”, IEEE Transactions on

Control Systems Technology, vol. 25, no. 1, pp. 235–246, 2017

The article presents a nonlinear analysis and several control strategies for a three-dimen-

sional reaction-wheel based inverted pendulum. The equations of motion are conveniently

expressed using generalized momenta and it is shown that the total angular momentum

about yaw is conserved. In order to deal with the fundamental limits imposed by this

conservation law, a reduced attitude description based on the gravity vector (expressed

in the body-fixed frame) is introduced and the angular momentum is divided into a con-

trollable part (orthogonal to gravity) and an uncontrollable part (in direction of gravity).

The fact that the dynamics have strict-feedback form is exploited for designing a nonli-

near controller based on backstepping. This leads to a smooth control law that stabilizes

the upright equilibrium (in the almost-everywhere sense and in the absence of input con-

straints). The control law is parametrized by four tuning parameters, which are related

to the closed-loop behavior. In addition, the system is shown to be feedback linearizable,

which is exploited for tracking non-equilibrium motions. A low-complexity model is used

to derive a gradient-based learning strategy for determining the reaction wheel velocities

(before braking) that enable a successful jump up. To enhance robustness, a predefined

jump-up trajectory is tracked.

[2] M. Muehlebach and R. D’Andrea, “Accelerometer-based tilt determination

for rigid bodies with a nonaccelerated pivot point”, IEEE Transactions on
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Control Systems Technology, 2017, accepted, to appear

The article describes a tilt estimation algorithm that is based on accelerometer measure-

ments. The estimate is obtained by maximizing the likelihood of the sensor measurements,

taking the structure of the angular and centripetal acceleration terms into account. As

a byproduct, an angular velocity estimate and an estimate of the rate of change of the

angular velocities are obtained. The resulting constrained least-squares problem is solved

with a dedicated optimization algorithm that takes advantage of the fact that projecti-

ons on the feasible sets can be evaluated in closed-form. Moreover, the Fisher information

matrix is derived and is used to characterize the information content in the accelerometer

measurements and to deduce optimal sensor placements.

2.2 A flying vehicle actuated by ducted fans

[3] M. Muehlebach and R. D’Andrea, “The Flying Platform - a testbed for

ducted fan actuation and control design”, Mechatronics, vol. 42, no. 1,

pp. 52–68, 2017

The article presents the design of a flying vehicle that is actuated by three electric ducted

fans. Experimental results are presented, characterizing a single fan unit, comprising of

an electric ducted fan, an exit nozzle, and two control flaps. Both static and dynamic

measurement results are provided. A low-complexity model is used to investigate the

controllability of the vehicle. The mechnical design is shown to maximize the determinant

of the controllability Gramian that results from a systematic trade-off between the lever

arm of the actuation and the total inertia. Moreover, the low-complexity model motivates

a cascaded control structure that is shown to work reliably in flight experiments. A non-

parametric system identification about hover reveals the limitations of the low-complexity

model. The gyroscopic effects of the fans, as well as the so-called momentum drag are

found to be two dominant unmodeled effects and are included in an augmented model. The

augmented model is shown to roughly match the measured frequency response function

of the system.

2.3 Approximations of the constrained linear quadratic regulator

problem

[4] M. Muehlebach and R. D’Andrea, “On the approximation of constrained

linear quadratic regulator problems and their application to model predictive
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control”, Automatica, 2017, submitted, in review

We discuss the approximation of the constrained linear quadratic regulator problem ba-

sed on a parametrization of input and state trajectories with basis functions. A sequence

of upper and lower bounds on the cost of the underlying problem is derived, providing

a means to quantify the suboptimality. We provide conditions guaranteeing the con-

vergence of these upper and lower bounds to the cost of the underlying problem. The

approximations are applied in the context of model predictive control, where it is shown

that an infinite prediction horizon can be retained if the basis functions are chosen to

be decaying. As a result, closed-loop stability and recursive feasibility are shown to be

inherent to the resulting model predictive control algorithm. Although, the optimization

problem that is solved at every time step is finite dimensional, has a quadratic cost, and

linear equality constraints, it includes linear semi-infinite inequality constraints. These

originate from the continuous-time formulation, where it is necessary to impose input

and state constraints over a compact time interval, rather than at a finite number of

sampling instances. We propose a dedicated active-set-based optimization algorithm for

dealing with these semi-infinite constraints and highlight its numerical effectiveness on

the example of a quadruple integrator system. The approach is compared to the standard

model predictive control solvers FORCES, [33] and qpOASES, [34].

2.4 A state estimation algorithm for distributed networked

systems

[5] M. Muehlebach and R. D’Andrea, “Distributed event-based state

estimation for networked systems: An LMI-approach”, IEEE Transactions on

Automatic Control, 2017, accepted, to appear

This article is concerned with the state estimation of a dynamic system that is control-

led by multiple sensor-actuator agents. The agents exchange sporadically measurements

over a common bus network. Each agent triggers a communication whenever the local

measurement’s prediction deviates too much from the actual local measurement. The

closed-loop dynamics are brought in strict feedforward form by expressing them in terms

of the agent errors (deviation of the agents’ estimates from the real state), the inter-agent

errors (the difference in the agents’ state estimates), and the system’s state. This enables

a Lyapunov-based stability analysis that can also be used for the synthesis of stabilizing

observer gains. A flexible performance objective is derived, such that the estimator de-

sign is formulated as an optimization problem. Compared to earlier work, [32], both the

triggering threshold and the observer gains are obtained by solving convex optimization

problems, whereby the distributed nature of the system is taken into account. A nume-

rical example based on a vehicle platoon demonstrates the scalability of the proposed

approach.
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2.5 List of publications

Publications in this Thesis

[1] M. Muehlebach and R. D’Andrea, “Nonlinear analysis and control of a recation-

wheel-based 3-D inverted pendulum”, IEEE Transactions on Control Systems Techno-

logy, vol. 25, no. 1, pp. 235–246, 2017.

[2] M. Muehlebach and R. D’Andrea, “Accelerometer-based tilt determination for rigid

bodies with a nonaccelerated pivot point”, IEEE Transactions on Control Systems

Technology, 2017, accepted, to appear.

[3] M. Muehlebach and R. D’Andrea, “The Flying Platform - a testbed for ducted fan

actuation and control design”, Mechatronics, vol. 42, no. 1, pp. 52–68, 2017.

[4] M. Muehlebach and R. D’Andrea, “On the approximation of constrained linear

quadratic regulator problems and their application to model predictive control”,

Automatica, 2017, submitted, in review.

[5] M. Muehlebach and R. D’Andrea, “Distributed event-based state estimation for

networked systems: An LMI-approach”, IEEE Transactions on Automatic Control,

2017, accepted, to appear.

Related publications

[6] M. Muehlebach and R. D’Andrea, “Basis functions design for the approximation of

constrained linear quadratic regulator problems encountered in model predictive

control”, Proceedings of the International Conference on Decision and Control,

2017, accepted.

[7] C. Sferrazza, M. Muehlebach, and R. D’Andrea, “Trajectory tracking of an un-

manned aerial vehicle with a parametrized model predictive control approach”,

Proceedings of the International Conference on Decision and Control, 2017, accep-

ted.

[8] M. Muehlebach, C. Sferrazza, and R. D’Andrea, “Implementation of a parametrized

infinite-horizon model predictive control scheme with stability guarantees”, Procee-

dings of the International Conference on Robotics and Automation, pp. 2723–2730,

2017.

[9] M. Muehlebach and R. D’Andrea, “Approximation of continuous-time infinite-

horizon optimal control problems arising in model predictive control”, Proceedings

of the International Conference on Decision and Control, pp. 1464–1470, 2016.

[10] M. Hofer, M. Muehlebach, and R. D’Andrea, “Application of an approximate mo-

del predictive control scheme on an unmanned aerial vehicle”, Proceedings of the

International Conference on Robotics and Automation, pp. 2952–2957, 2016.
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[11] M. Muehlebach and R. D’Andrea, “Parametrized infinite-horizon model predictive

control for linear time-invariant systems with input and state constraints”, Procee-

dings of the American Control Conference, pp. 2669–2674, 2016.

[12] M. Muehlebach and S. Trimpe, “Guaranteed H2 performance in distributed event-

based state estimation”, Proceedings of the International Conference on Event-based

Control, Communication, and Signal Processing, 2015.

[13] M. Muehlebach and S. Trimpe, “LMI-based synthesis for distributed event-based

state estimation”, Proceedings of the American Control Conference, pp. 4060–4067,

2015.

[14] M. Muehlebach, G. Mohanarajah, and R. D’Andrea, “Nonlinear analysis and con-

trol of a reaction wheel-based 3D inverted pendulum”, Proceedings of the Interna-

tional Conference on Decision and Control, pp. 1283–1288, 2013.

[15] M. Gajamohan, M. Muehlebach, and R. D’Andrea, “The Cubli: A reaction wheel

based 3D inverted pendulum”, Proceedings of the European Control Conference,

pp. 268–274, 2013.

2.6 Student supervision

Masters thesis

The masters thesis is a six-month, full-time project.

[1] S. Nacht, “Nonlinear MPC applied to the pendulum swing-up”, Masters thesis,

ETH Zurich, 2017.

[2] J. Kohler, “Aggressive quadrocopter maneuvers”, Masters thesis, ETH Zurich, 2017.

[3] C. Sferrazza, “Parametrized model predictive control on the Flying Platform: Tra-

jectory tracking and full constraint satisfaction”, Masters thesis, ETH Zurich, 2016.

[4] M. Hofer, “Parametric model predictive control of the Flying Platform”, Masters

thesis, ETH Zurich, 2015.

Semester project

The semester project is a semester-long, part-time project.

[1] Z. Zhejun, “Improving the trajectory tracking of a parametrized model predictive

control approach”, Semester project, ETH Zurich, 2017.

[2] E. Kaufmann, “Nonlinear infinite-horizon model predictive control using multi-

interval polynomial trajectories”, Semester project, ETH Zurich, 2016.

[3] L. Fröhlich, “Improvement of the parametric model predictive control on the Flying

Platform”, Semester project, ETH Zurich, 2016.
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[4] J. Carius, “Nonlinear infinite-horizon model predictive control with parametric tra-

jectories”, Semester project, ETH Zurich, 2015.

[5] D. Dugas, “Cubli choreographer”, Semester project, ETH Zurich, 2015.

[6] A. Widmer, “Feedback linearization of the Cubli”, Semester project, ETH Zurich,

2014.

[7] T. Meier, “Implementation of the Flying Platform”, Semester project, ETH Zurich,

2014.

Internship

[1] A. Ali, “Design of the One-Wheel Cubli (Octahedronli)”, Internship, ETH Zurich,

2015.

[2] Y. Yih Tang, “Developing the wingsuit flying platform”, Internship, ETH Zurich,

2014.

2.7 Outreach

Talks

Note that the talks at scientific conferences corresponding to the publications [8], [9],

[11]–[14] are not listed.

Jun. 2017 Seminar, Automatic Control Laboratory (EPFL).

Nov. 2016 Seminar, Lehrstuhl Automatisierungstechnik und Prozessinforma-

tik (University of Bochum).

Mar. 2016 Coffee Talk, Automatic Control Laboratory (ETH Zurich).

Oct. 2015 Lecture, IFM Institute for Facility Management (ZHAW).

Demonstrations

During the period of this thesis, the reaction-wheel based inverted pendulum was demon-

strated at various events.

Jan. 2017 Davos World Economic Forum

Oct. 2016 Zurich National Council Switzerland

Oct. 2015 Brussels Soirée Suisse

Apr. 2014 Zurich Haus Konstruktiv

In addition to the above, smaller demonstrations were also conducted for visitors

(ranging from primary school students to distinguished professors) at the Institute for

Dynamic Systems and Control.
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Youtube videos

The following videos were created as an addition to research articles and for consumption

by the general public, demonstrating some of the research results.

[1] M. Muehlebach, C. Sferrazza, and R. D’Andrea, Online model predictive cont-

rol of the flying platform, Sep. 2016. [Online]. Available: https://youtu.be/

GgIwrnoNvTY.

[2] M. Hofer, M. Muehlebach, and R. D’Andrea, Approximate model predictive control

on the flying platform, Mar. 2016. [Online]. Available: https://youtu.be/_hE_

bN1ylB4.

[3] M. Muehlebach and R. D’Andrea, Flying Platform, Dec. 2015. [Online]. Available:

https://youtu.be/NYY9q-vs4Nw.

Media coverage

The reaction-wheel based inverted pendulum was featured in Galileo, a TV show of the

German TV station Prosieben (on January 2016).
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Future work

This chapter provides an overview of potential future work based on the research presen-

ted in this thesis.

A three-dimensional reaction-wheel based inverted pendulum system

A controllability analysis revealed that a single reaction wheel is enough for stabilizing

the upright equilibrium provided that the principle components of the pendulum’s inertia

(roll and pitch axis) are not equal and the reaction wheel is placed such that the mo-

tor’s reaction torque affects both tilt directions. This is due to a separation of the time

constants associated to the unstable poles. A rigid-body model is used to quantify and

optimize the controllability in terms of the determinant of the controllability Gramian. It

is found that for maximum controllability (in a natural set of coordinates) the principle

inertia components I1 and I2 need to satisfy the relationship

I1

I2

= (
√

2− 1)2. (3.1)

We were in the process of manufacturing a carefully designed prototype at the time of

writing the thesis. Future work thus includes the experimental realization of a single-wheel

three-dimensional inverted pendulum system.

A flying vehicle actuated by ducted fans

As highlighted in the introduction, the ducted fans have the property of redirecting

crosswinds resulting in drag terms that are linear in the forward velocity. This drag

term is commonly referred to as momentum drag. Compared to other flying vehicles

(for example quadrotors) the duct renders the momentum-drag particularly pronounced.

We conjecture that the momentum drag can be exploited for estimating the vehicle’s

translational velocities by means of accelerometer measurements. Thus, the addition of

ducts for flying vehicles might not only improve the aerodynamic characteristics, but

might also facilitate the on-board state estimation.

Potential future work could therefore aim at studying the influence of ducts and

shrouded propellers on the on-board estimation capabilities of flying vehicles.
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Approximations of the constrained linear quadratic regulator problem

The article discuss a numerical optimization routine that deals with semi-infinite con-

straints. As an alternative, a discrete-time point of view could be adopted, which provides

a means to reduce the semi-infinite constraint (in continuous-time) to a finite number of

inequality constraints, ultimately resulting in a standard quadratic program. Still, the

number of inequality constraints that must be imposed for guaranteeing constraint sa-

tisfaction might be very large. Future work could aim at finding optimization algorithms

that are particularly efficient for dealing with a large number of constraints and applying

these in the proposed model predictive control framework.

In addition, the framework could be extended to time-varying systems and/or general

nonlinear systems. The dynamics could likewise be encoded via a Galerkin approach.

However, due to the fact that the dynamics are only approximated, the stability and

recursive feasibility guarantees would most probably cease to hold in that case (without

further assumptions). The student projects [1, masters thesis], [4, semester project] pre-

sent first results of such an approach applied to an inverted-pendulum-on-a-cart system.

A state estimation algorithm for distributed networked systems

Each agent tries to estimate the whole state of the system with the proposed appro-

ach. Arguably, for large scale systems this might not be a very sensible approach, since

certain states might be only weakly coupled. Potential future work might therefore aim

at changing the architecture in such a way that each agent estimates only parts of the

system’s state. However, this renders the analysis of the closed-loop system much more

complicated, and one must probably rely on robust control arguments (for example the

small-gain theorem) to bound the effect of the states that are neglected.
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Abstract

This article presents control and learning algorithms for a reaction wheel-based
3D inverted pendulum. The inverted pendulum system has two main features: the
ability to balance on its edge or corner and to jump from lying flat to its corner by
suddenly braking its reaction wheels. Algorithms which address both features are
presented. For balancing, a backstepping based controller providing global stability
(almost everywhere) is derived, together with a simple tuning method based on
the analysis of the resulting closed-loop system. For jump-up, a computationally
efficient, gradient-based learning algorithm is provided, which is shown experimen-
tally to converge to the correct angular velocities enabling a successful jump-up.
Moreover, a controller based on feedback linearization is derived and used to track
an ideal trajectory during jump-up, increasing robustness and reliability.
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1. Introduction

This article presents control and learning algorithms for a reaction wheel-based 3D inver-

ted pendulum. The inverted pendulum system consists of three perpendicular reaction

wheels embedded in a cubic housing. Due to its relatively small footprint, i.e. a side length

of 150 mm, it is called Cubli, which is derived from the Swiss German diminutive for cube.

Figure 1.1 shows the Cubli balancing on a corner. Unlike other inverted pendulum test

beds, [1]–[7], and references therein, it has the ability to jump-up from a resting position

without any external support by suddenly braking its reaction wheels rotating at high

angular velocities. While the mechatronic design is covered in [8], and a linear controller is

discussed in [9], this paper presents nonlinear control strategies and a learning algorithm

enabling a successful jump-up.1

In [10] several design variants of a reaction wheel-based 3D inverted pendulum are

compared. Moreover, a swing-up control strategy is presented based on feedforward and

linear state feedback, for which local stability is shown. However, no braking system is

used, which has the drawback that the design is not capable of swinging up from arbitrary

positions, as the electric motors provide only limited torques.

Based on a reduced system description two nonlinear controllers are proposed herein.

The first control design is based on backstepping and provides a smooth, globally (almost

everywhere) stabilizing control law characterized by four tuning parameters. In contrast to

earlier work, e.g. [10]–[12] the full 3D case is treated and global stability is proved (almost

everywhere). The work presented in [13] is extended by relating these parameters to the

closed-loop behavior, leading to a simple tuning strategy suitable for implementation.

The second control design is based on feedback linearization; an appropriate state

transformation is introduced allowing for feedback linearization in the 3D case. This

extends the result of [14], where the 1D (planar) case is discussed.

Both controllers are implemented on the Cubli: The controller based on backstepping

is used for balancing. The controller based on feedback linearization is used for tracking

predefined non-equilibrium motions; compared to other methods, such as time-varying

LQR control, feedback linearization has the advantage of providing a time-invariant feed-

back law.

Additionally, a low-complexity model describing the jump-up is derived. The model

is used to apply a gradient-based learning algorithm, similar to [15], to the Cubli and is

shown experimentally to converge. To enhance the reliability of the jump-up, a predefined

jump-up trajectory is tracked using the controller based on feedback linearization.

The remainder of this article is structured as follows: The dynamics are introduced

in Section 2, followed by the control design in Section 3. Aspects related to the jump-up

are covered in Section 4. Finally, experimental results are presented in Section 5, and the

conclusions are summarized in Section 6.

1A video showing the Cubli can be found under https://www.youtube.com/watch?v=n_6p-1J551Y.

24



2. Dynamics of the Reaction Wheel-based 3D Inverted Pendulum

Figure 1.1. The Cubli balancing on a corner.

2. Dynamics of the Reaction Wheel-based 3D Inverted

Pendulum

In this section the reaction wheel-based 3D inverted pendulum dynamics are briefly out-

lined. After introducing the notation, the equations of motion are presented and are used

to demonstrate the conservation of angular momentum. As will be pointed out, this has

important consequences for control design. Additionally, in the absence of motor torques

energy is conserved. This will become important in Section 4, where an ideal jump-up

trajectory is determined via the conservation of energy.

2.1 Notation

Let Θwi, i = 1, 2, 3 denote the moment of inertia of each reaction wheel (in the direction

of the corresponding rotation axis, referred to the corresponding suspension point), and

define Θw := diag(Θw1,Θw2,Θw3). Let Θ0 + Θw denote the total moment of inertia of

the Cubli around the pivot point O (see Figure 1.2). Next, let ~m denote the position

vector from the pivot point to the center of gravity multiplied by the total mass and

~g denote the gravity vector. The projection of a tensor onto a particular coordinate

frame is denoted by a preceding superscript, i.e. KΘ0 ∈ R3×3, Km ∈ R3. The arrow

notation is used to emphasize that a vector (and tensor) should be a priori thought of as

a linear object in a normed vector space detached from its coordinate representation in a

particular coordinate frame. The transformation matrix RIK ∈ SO(3) relates vectors from

the body-fixed frame to their representation in the inertial frame, that is Iv = RIK
Kv,
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for all vectors Kv ∈ R3. Moreover, the skew symmetric matrix corresponding to a vector

a ∈ R3, denoted by ã, is defined as a×b = ãb, for all b ∈ R3, where a×b refers to the cross

product of the two vectors a and b. The Euclidean norm is referred as | · |, i.e. |a|2 = aTa,

and a ‖ b is used to indicate that the two vectors a ∈ R3 and b ∈ R3 are parallel (that is

a× b = 0). Additionally, the sphere of radius |g| is denoted by S2.

Since the body-fixed coordinate frame {K} is the most commonly projected coordinate

frame, its preceding superscript is usually removed for ease of notation. That is, Km = m,
KΘ0 = Θ0, etc.

Moreover, vectors are expressed as n-tuples (x1, x2, . . . , xn) with dimension and stacking

clear from context.

2.2 Equations of Motion

It was derived in [9] and [13] that the equations of motion are given by

ṗωh = −ω̃hpωh + m̃g, ṗωw = T, ṘIK = RIKω̃h,

pωh := Θ0ωh + Θw(ωh + ωw), pωw := Θw(ωh + ωw),
(1.1)

where ωh ∈ R3 denotes the angular velocity of the Cubli housing, ωw ∈ R3 the angular

velocity of the reaction wheels, and T ∈ R3 the motor torque applied to the reaction

wheels. The fixed-body coordinate frame is aligned with the Cubli housing and therefore

the first component of ωw denotes the angular velocity of the reaction wheel pointing

in K~e1 direction, the second component the reaction wheel pointing in K~e2, etc. The

components of the motor torque T have a similar interpretation.

The following observations are worth pointing out: The dynamics are invariant to the

initial reaction wheel positions, leading to the conservation of the angular momentum pωw
in the absence of motor torques. Moreover, the evolution of all possible initial conditions

over time2 is symmetric around the gravity vector leading to the conservation of angular

momentum pTωhg. This can be easily checked by explicit calculation:

d

dt

(
pTωhg

)
= ṗTωhg + pTωh ġ = pTωhω̃hg − p

T
ωh
ω̃hg = 0, (1.2)

where ġ is expressed by ġ = ṘT
IK

Ig = −ω̃hg, or by noting that gravity exerts no torque

in direction I~e3. The conservation of the angular momentum gTpωh has an important

consequence for control design: Independent of the control input applied, the momentum

in direction ~g is conserved and, depending on the initial condition, it may be impossible

to bring the system to rest. For example, a yaw motion in the upright position can be

slowed down by increasing the velocity of the reaction wheels. However, the yaw motion

and the reaction wheel velocity cannot be driven to zero at the same time. Note that the

conservation of angular momentum in direction ~g is independent of the mass distribution

2Commonly referred to as the flow of the system.
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or inertia of the Cubli and independent of the motor torque T .

In the presence of friction between the pivot point and the ground, exerting a friction

torque about I~e3, the angular momentum pTωhg is no longer conserved, and as a result, a

yaw motion in the upright position will slowly decay.

In addition, in the absence of motor torques, the total energy given by

H =
1

2
ωh

TΘ0ωh +
1

2
(ωh + ωw)TΘw(ωh + ωw)−mTg − |m| |g|, (1.3)

is conserved. Due to the fact that pωw = Θw(ωh + ωw) is constant for T = 0, the energy

related to the Cubli housing, given by

Hh =
1

2
ωh

TΘ0ωh −mTg − |m| |g|, (1.4)

is conserved as well. Note that the energy is normalized such that it attains zero for

the upright equilibrium. The conservation of energy will become important in Section 4,

where it will be used to derive an ideal jump-up trajectory.

Using the gravity vector expressed in the Cubli’s body-fixed coordinate frame, i.e.

g = RT
IK

Ig, to represent the attitude, the dynamics given by (1.1) can be reduced to

ṗωh = −ω̃hpωh + m̃g, ṗωw = T, ġ = −ω̃hg,
pωh = Θ0ωh + Θw(ωh + ωw), pωw = Θw(ωh + ωw).

(1.5)

This comes however at the cost of losing the yaw information. A formal treatment of this

reduction step can, for example, be found in [16].

2.3 Equilibria

In this section the equilibria of the Cubli are briefly discussed. The reduced equations of

motion (1.5) give rise to equilibria corresponding to limit cycles in the full configuration,

so called relative equilibria, [17].

The relative equilibria are obtained by setting the right-hand side of (1.5) to zero,

leading to

−ω̄h × p̄ωh +m× ḡ = 0, T̄ = 0, −ω̄h × ḡ = 0, (1.6)

where ḡ, p̄ωh , and ω̄h denote the equilibrium configurations. The last equation implies that

ω̄h ‖ ḡ or likewise ω̄h = λ1ḡ, with λ1 ∈ R. Thus, the relative equilibria are characterized

by

ω̄h = λ1ḡ, λ1p̄ωh +m = λ2ḡ, T̄ = 0, (1.7)

with λ1, λ2 ∈ R, ḡ ∈ S2, and ω̄h, p̄ωh , T̄ ∈ R3. The hanging and upright equilibria, which
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{I}
I~e3

I~e2

I~e1

O

K~e3

K~e2

K~e1{K}
O

Figure 1.2. The Cubli balancing on its corner. The vectors K~ei and I~ei, i = 1, 2, 3, denote
the principle axes of the body fixed frame {K} and inertial frame {I}. The pivot point O is
the common origin of coordinate frames {I} and {K}. For illustration purposes the coordinate
system {I} is shifted to the left.

are of interest for the remainder of this article, are obtained by setting λ1 = 0 implying

ḡ ‖ m. As expected, a linear analysis reveals that the upright equilibrium is unstable,

while the hanging equilibrium is marginally stable.

3. Nonlinear Control

In the next section two different control strategies are presented, which asymptotically

stabilize the upright equilibrium. The first approach is based on backstepping and pro-

vides a smooth control law characterized by four tuning parameters. In a subsequent

step the tuning parameters are related to the closed-loop behavior, extending the result

presented in [13]. The second approach is based on feedback linearization and extends

the result in [14] to the 3D case.

For the control design and subsequent analysis the reduced dynamics (1.5) are used.

The state space is chosen to be (g, pωh , pωw) ∈ X := S2 × R3 × R3. By using the reduced

attitude representation, the feedback control laws derived next will naturally be invariant

to the orientation around the gravity vector and to the reaction wheel positions.

Since the component of the angular momentum pωh in the direction of gravity is a

conserved quantity, only the component of pωh that is orthogonal to g can be affected

by feedback control. Hence, it is convenient to split the angular momentum pωh into two
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parts: one in the direction of gravity, and one orthogonal to it, i.e.

pωh =: p⊥ωh + pgωh
g

|g| , pgωh := pTωh
g

|g| . (1.8)

The control objective consists of balancing the Cubli in the upright position, and at the

same time requiring ωh → 0 together with p⊥ωh → 0 as time goes to infinity. Thus, the

control objective for balancing can be formulated as driving the system to the closed

invariant set

T = {(g, pωh , pωw) ∈ X | gTm = −|g| |m|, p⊥ωh = 0, pωh = pωw}. (1.9)

Note that ωh is given by Θ−1
0 (pωh − pωw) and therefore pωh = pωw implies zero angular

velocity of the Cubli housing.

3.1 Backstepping Approach

In the following section a nonlinear controller is presented, which stabilizes the set T
asymptotically. In a subsequent step its closed-loop behavior is analyzed leading to a

geometric interpretation of closed-loop trajectories and a simple tuning strategy.

For ease of notation, the hanging relative equilibria with ωh = 0 are denoted by x−, i.e.

x− = {(g, pωh , pωw) ∈ X | g =
|g|
|m|m, p

⊥
ωh

= 0, pωh = pωw}.

Next, the control law

T = K1m̃g +K2ωh +K3pωh −K4pωw , (1.10)

with

K1 =I + (α + βγ + δ)Θ0,

K2 =Θ0

(
αp̃⊥ωh + βm̃g̃

)
+ p̃ωh ,

K3 =γ(I + αΘ0(I − ggT

|g|2 )),

K4 =γI, α, β, γ, δ > 0,

and I ∈ R3×3 the identity matrix, is shown to asymptotically stabilize the upright equi-

librium. More precisely:

Theorem 1. The controller (1.10) renders the closed invariant set T of the system (1.5)

stable and asymptotically stable on x ∈ X \ x−.
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Proof. Consider the following Lyapunov candidate function V : X → R,

V (x) =
1

2
αp⊥Tωh p

⊥
ωh

+mTg + |m| |g|+ 1

2δ
zTΘ−2

0 z, (1.11)

with z := Θ0

(
αp⊥ωh + βm̃g

)
+ pωh − pωw .

Clearly, there exists a K∞ function3 a : [0,∞)→ [0,∞) such that V (x) ≥ a(|x− x0|)
for all x ∈ X and all x0 ∈ T . Furthermore V (x = x0) = 0 implies x = x0, where x0 ∈ T .

Therefore V is a positive definite function and a valid Lyapunov candidate.

Next, V̇ is evaluated along trajectories of the closed-loop system:

V̇ (x) = αp⊥Tωh ṗωh
⊥ +mTġ +

1

δ
zTΘ−2

0 ż

= mTg̃(αp⊥ωh + ωh) +
1

δ
zTΘ−2

0 ż.

From the identity Θ−1
0 z = αp⊥ωh + βm̃g + ωh it follows that

V̇ (x) = mTg̃(βg̃m+ Θ−1
0 z) +

1

δ
zTΘ−2

0 ż

= −β(g̃m)T(g̃m) + zTΘ−1
0 m̃g +

1

δ
zTΘ−2

0 ż.

Moreover, the control input T can be rewritten as

T =
d

dt
(z + pωw) + γz + δΘ0m̃g. (1.12)

Using the fact that ṗωw = T , the closed loop evolution of the auxiliary variable z is given

by

ż = −γz − δΘ0m̃g, (1.13)

which can be used to simplify V̇ to

V̇ (x) = −β(g̃m)T(g̃m)− γ

δ
zTΘ−2

0 z ≤ 0, ∀x ∈ X .

Since V̇ (x) ≤ 0, for all x ∈ X , we conclude from Lyapunov’s stability theorem, [18,

Theorem 4.8] that the equilibria x0 ∈ T are stable.

To prove asymptotic stability of the set T for x ∈ X \ x−, the set

R := {x ∈ X \ x− | V̇ (x) = 0} (1.14)

3A continuous function belongs to class K∞ if it is strictly increasing and radially unbounded, see
e.g. [18, Definition 4.2, p. 144].
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is considered in more detail. From V̇ (x) < 0 for all x ∈ X \ (R⋃x−) it can be inferred

that any trajectory in X \ x− is converging to an invariant set contained in R. The

condition V̇ (x) = 0 leads to z = 0, m parallel g, such that R can be rewritten as

R = {x ∈ X \ x− | m ‖ g, pωw = αΘ0p
⊥
ωh

+ pωh}. The dynamics on R can be simplified

to:

g ‖ m⇒ g = − m

|m| |g| ⇒ ġ = 0

⇒ ωh ‖ g because ġ = −ω̃hg (1.15)

g ‖ m, z = 0⇒ ωh = αp⊥ωh

⇒ ωh ‖ p⊥ωh (1.16)

However, since p⊥ωh is orthogonal to g by definition, equations (1.15) and (1.16) imply

ωh = 0 and p⊥ωh = 0. Therefore T is the largest invariant set contained in R. This implies

by the Krasovskii–LaSalle principle [18, Theorem 4.4], that for any trajectory x(t),

lim
t→∞

x(t) = xf , x(0) ∈ X \ x−, xf ∈ T .

1) Remarks

a) Interpretation of the Lyapunov Function: The Lyapunov function given by (1.11) can

be found via a backstepping approach, see for example [18] or [19] for an introduction to

backstepping. The reduced Lyapunov function

VR(x) =
1

2
αp⊥Tωh p

⊥
ωh

+mTg + |m| |g|, (1.17)

which is independent of the momentum pωw can be used to demonstrate stability given

that pωw = αΘ0p
⊥
ωh

+ pωh + βm̃g (corresponding to z = 0). Therefore, z accounts for the

momentum pωw and penalizes indirectly non-zero wheel velocities.

b) Extension of the Controller: In practice, modeling errors can cause steady-state devi-

ations, e.g. an erroneous estimate of the center of gravity leads to non-vanishing steady-

state reaction wheel velocities when balancing. Integral control can be used to prevent

these steady-state deviations. Therefore the controller is extended with the state zint, i.e.

û = u+ νzint, where

zint(t) = z0 +

∫ t

0

z(τ)dτ

and ν > 0. In that case, closed-loop stability can be proved by augmenting the Lyapunov

function given by (1.11):

VI(x) = V (x) +
ν

2δ
zTintΘ

−2
0 zint.
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In [13] an alternative approach to account for non-zero steady-state wheel velocities is

presented, which has the advantage of directly providing an estimate of the center of

gravity.

c) Interpretation of the Control Law: Rewriting (1.10) yields

u = ṗωh + γpωh + αΘ0(ṗ⊥ωh + γp⊥ωh) + Θ0m̃(βġ + (δ + γβ)g)− γpωw , (1.18)

where

pωw = u0 +

∫ t

0

u(τ)dτ. (1.19)

Therefore the controller given by (1.10) is a linear PID controller in the variables pωw , p
⊥
ωh

and g. The only nonlinearity of the controller lies in the projection of pωh into p⊥ωh and pgωh .

Nevertheless, the control law guarantees global asymptotic stability (almost everywhere)

as has been shown previously.

2) Closed-loop behavior Due to its smoothness and its dependence on only four tuning

parameters, the controller is well-suited for practical implementation. A simple tuning

strategy based on the closed-loop behavior is outlined next. We will analyze the closed-

loop response subject to two different initial conditions, providing an interpretation of

the tuning parameters. In the first case, the Cubli will be released at rest, but with a

non-zero inclination angle. For this specific initial condition the closed-loop dynamics of

the inclination angle are given by a third-order differential equation, which allows for

pole placement. It will be shown that there is a set of tuning parameters matching every

desired pole location (provided that the desired poles have negative real parts). This

determines three of the four tuning parameters (α, β and δ). In the second case, a pure

yaw motion will be analyzed and related to the remaining tuning parameter γ.

Proposition 1. Consider the controller (1.10) applied to the system governed by (1.5)

with initial conditions at t = 0 such that pωh(0) and ωh(0) are parallel to m × g(0) 6= 0.

Then it holds for all t > 0 that ωh(t), pωh(t), and m× g(t) remain parallel.

Proof. Since pωh(0) ‖ m× g(0) it implies that p⊥ωh(t) = pωh(t) for all t > 0. Moreover, by

combining the control law given by (1.10) with the system dynamics it follows that

ω̇h = Θ−1
0 (ṗωh − T )

= αωh × pωh − (α + βγ + δ)m× g + βm× (ωh × g)− γ(αpωh + ωh), (1.20)

together with

ṗωh = pωh × ωh +m× g and
d

dt
(m× g) = m× (g × ωh).
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Note also that from the Lagrange identity, [20],

m× (g × (m× g)) = −mTg m× g (1.21)

follows. Assume that pωh(t∗), ωh(t
∗), and m× g(t∗) are parallel at time t = t∗. Together

with equations (1.20)-(1.21) these assumptions imply that

d

dt
(m× g(t∗)) ‖ m× g(t∗), (1.22)

ω̇h(t
∗) ‖ m× g(t∗), and (1.23)

ṗωh(t∗) ‖ m× g(t∗). (1.24)

Hence, pωh(t), ωh(t), and m×g(t) will remain parallel for an infinitesimal time increment

dt, that is at time t = t∗ + dt. By induction, the vectors pωh(t), ωh(t), and m× g(t) will

therefore remain parallel for all times t > t∗. Note that the right-hand side of the closed-

loop dynamics is locally Lipschitz, which implies the local existence and uniqueness of

closed-loop trajectories, [21]. Since the initial conditions at t = 0 are such that pωh(0),

ωh(0), and m× g(0) are parallel, the result follows.

Note that the previous proposition applies especially in the case where the Cubli is

initialized with zero body angular velocity and zero wheel velocity (ωh(0) = ωw(0) = 0),

and states that the Cubli’s center of mass will never leave the plane normal to m× g(0)

for all times t > 0. This sets the stage for deriving a differential equation describing the

inclination angle in closed-loop provided that pωh , ωh, and m× g are parallel at t = 0.

It is convenient to introduce the unit vector

eϕ :=
m× g(0)

|m× g| , where m× g(0) 6= 0, (1.25)

and define the inclination angle by

ϕ := arccos

(
− mTg

|m| |g|

)
, (1.26)

with ϕ ∈ [0, π] for g ∈ S2. Note that

sinϕ =
| − g ×m|
|m| |g| =

|m× g|
|m| |g| (1.27)

holds. By Proposition 1 it follows that ωh is parallel to m × g and eϕ for all times

t > 0. Furthermore, from (1.26) and the system dynamics (1.5) it can be confirmed that
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ωh = ϕ̇eϕ. Rewriting (1.20) yields

ω̇h = αωh × pωh − (α + βγ + δ)m× g + βm× (ωh × g)− γ(αpωh + ωh)

= −eϕ(α + βγ + δ)|m| |g| sinϕ− eϕβ|m| |g|ϕ̇ cosϕ− γ(αpωh + eϕϕ̇).
(1.28)

Taking the time derivative of the previous equation and using the fact that ėϕ = 0 and

ṗωh = eϕ|m| |g| sinϕ results in

...
ϕ+ (β|m| |g| cosϕ+ γ)ϕ̈+ (α + βγ + δ)|m| |g|ϕ̇ cosϕ

− β|m| |g|ϕ̇2 sinϕ+ γα|m| |g| sinϕ = 0.
(1.29)

Linearizing (1.29) around the upright equilibrium, i.e. ϕ = 0 yields

...
ϕ+ (β|m| |g|+ γ)ϕ̈+ (α + βγ + δ)|m| |g|ϕ̇+ γα|m| |g|ϕ = 0 (1.30)

and provides a method to relate the closed-loop poles to the parameters {α, β, γ, δ}. To

simplify notation the following scaling is introduced, α̂ := α|m| |g|, β̂ := β|m| |g|, γ̂ := γ,

and δ̂ := δ|m| |g|, such that (1.30) reads as

...
ϕ+ (β̂ + γ̂)ϕ̈+ (α̂ + β̂γ̂ + δ̂)ϕ̇+ γ̂α̂ϕ = 0. (1.31)

Moreover, the parameter γ̂ is related to the closed-loop yaw motion, by considering the

case where the Cubli is initialized in an upright relative equilibrium, with non-zero angular

velocity, ωh(0) 6= 0. Hence, it follows that ωh(0) ‖ pωh(0) ‖ g(0) ‖ m and that the closed-

loop dynamics read as

ġ = 0, ṗωh = 0, and ṗωw = −γ̂(pωw − pωh). (1.32)

This leads to the interpretation of γ̂ as a time constant prescribing how fast the yaw

rotation is slowed down.

Ideally, the parameters α̂, β̂, γ̂, δ̂ are chosen such that the desired closed-loop poles of

the inclination angle are matched and that a prescribed time constant of the closed-loop

yaw motion is met. However, it turns out that depending on γ̂, this might be impossible,

i.e. for a fixed γ̂ > 0 it might be impossible to obtain α̂, β̂, γ̂, δ̂ such that the pole

configuration is met, while guaranteeing nonlinear closed-loop stability with the proposed

controller. This fact is illustrated in the following.

For given closed-loop pole locations of the inclination angle, let the third order cha-

racteristic polynomial corresponding to (1.31) be denoted by

s3 + As2 +Bs+ C = 0, (1.33)
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where the coefficients {A,B,C} are related to the pole locations by a homeomorphism.

Therefore it is sufficient to analyze the function4 f : R4
+ → R3

+ mapping the tuning

parameters {α̂, β̂, γ̂, δ̂} to the constants {A,B,C}. According to the Routh-Hurwitz cri-

terion the poles have strictly negative parts if and only if the conditions A > 0, B >

0, AB > C > 0 are fulfilled, see e.g. [22]. Clearly, if α̂, β̂, γ̂, δ̂ > 0, it follows that

A > 0, B > 0, AB > C > 0, which corresponds to a stable pole configuration (as expected,

nonlinear closed-loop stability implies linear closed-loop stability). The converse is not

true; for a fixed γ̂ > 0 there might be no α̂, β̂, δ̂ > 0, such that the desired pole location

is matched. This fact is illustrated by expressing the level set of f(α̂, β̂, γ̂, δ̂) = (A,B,C)

as

{(α̂, β̂, γ̂, δ̂) ∈ R4 | α̂γ̂ = C, β̂ = A− γ̂, γ̂δ̂ = γ̂3 − Aγ̂2 +Bγ̂ − C}. (1.34)

Hence, given that A,B,C > 0 the condition α̂, β̂, γ̂, δ̂ > 0 reduces to

A > γ̂ > 0, h(γ̂) := γ̂3 − Aγ̂2 +Bγ̂ − C > 0. (1.35)

Note that h(−s) = −(s3 + As2 + Bs + C) holds, which implies that the zeros of h(γ̂)

are just the negative values of the desired poles. Thus, if the desired pole locations, s0,

s1, and s2, with s2 < s1 < s0 < 0, are all real and distinct, then there are two different

γ̂-regions, e.g. γ̂ ∈ (−s0,−s1), γ̂ ∈ (−s2, A), where h(γ̂) > 0, see Fig. 1.3. If there are two

complex conjugated poles or non-distinct poles then there might be only one γ̂-region,

where h(γ̂) > 0, see Fig. 1.4.

Note that in all cases γ̂ needs to be greater than mini{−real(si)}, where s0, s1, s2 are

the desired pole locations. Hence, the closed-loop yaw motion needs to have a time con-

stant at least as fast as the smallest pole of the (closed-loop) inclination angle dynamics,

in order to guarantee global closed-loop stability with the proposed controller.

Summarizing, the following tuning recipe is proposed:

1) Choose the desired pole locations of the closed-loop inclination angle dynamics,

which determines possible intervals for γ̂.

2) Choose γ̂ within those intervals such that the time constant of the yaw-dynamics

matches the desired one as close as possible. Solving (1.34) yields the parameters

{α̂, β̂, γ̂, δ̂}.

3.2 Feedback Linearization

Next an explicit input-to-state feedback linearization is found extending the result presen-

ted in [14]. The generalized momentum pωh is chosen to be the virtual output. However,

to remove the conserved component (in direction ~g), it is convenient to project pωh in the

4The positive real numbers are denoted by R+ := {x ∈ R|x > 0}.
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−s0 −s1 −s2

−C

A

γ̂

γr1 γr2

h(γ̂)

Figure 1.3. Example for a desired pole
configuration with three real poles. The ad-
missible regions for γ̂ are denoted by γr1 and
γr2.

−s0

real(−s1)

−C

A

γ̂

γr3

h(γ̂)

Figure 1.4. Example for a desired pole
configuration with one complex pole pair.
The admissible region for γ̂ is denoted by
γr3.

inertial frame, where the dynamics of the Cubli are given by

Iṁ = Iωh × Im,
Iṗωh = Im× Ig,
Iṗωw = IT + Iωh × Ipωw .

(1.36)

The virtual output y is formed by the first two elements of Ipωh , i.e.

y :=
(
Ipωh1,

Ipωh2

)
, (1.37)

since the third component of Ipωh is conserved. This choice can be motivated by the

feedback linearization of the 1D reaction wheel-based inverted pendulum presented in

[14]. Using the matrices

J =

(
0 1

−1 0

)
and P =

(
1 0 0

0 1 0

)
, (1.38)

the first two components of the cross product a× b with a ∈ R3, b ∈ R3 can be expressed

by

P (a× b) = −a3JPb+ b3JPa. (1.39)

Thus, P (Im× Ig) simplifies to P (Im× Ig) = −|g|JP Im.

Taking the time derivative of y, ẏ, and ÿ leads to

ẏ = −|g|JP Im, (1.40)

ÿ = −|g|JP (Iωh × Im), (1.41)
...
y = −|g|JP (Iω̇h × Im+ Iωh × Iṁ). (1.42)
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Additionally, Iω̇h is given by

Iω̇h = RIKΘ−1
0 (ṗωh − ṗωw) = RIKΘ−1

0 (m× g − ωh × pωh − T ). (1.43)

Solving for the input torque T , i.e. using the change of variable T → Iv with

T = −ωh × pωh +m× g −Θ0R
T
IK

Iv (1.44)

leads to Iω̇h = Iv. Using the identity given by (1.39) allows us to rewrite (1.42) as

...
y = |g|

(
Im3P

Iv − Iv3P
Im− JP Iω̃h

Iω̃h
Im
)
. (1.45)

Choosing the first two components of Iv to be

P Iv =
1

Im3

(Iv3P
Im+ JP Iω̃h

Iω̃h
Im+

1

|g|w) (1.46)

with w ∈ R2 leads to
...
y = w. Note that the transformation is not defined for Im3 = 0.

This parallels the 1D case, where it was shown that a feedback linearization exists only

for an inclination angle ϕ such that ϕ 6= ±π
2
, see [14].

Hence, by choosing the state transformation

x = (y, ẏ, ÿ, Iωh3), (1.47)

together with the input transformation given by (1.44) and (1.46) the following linear

system dynamics are obtained for the case Im3 6= 0:

ẋ =


02×2 I2×2 02×2 02×1

02×2 02×2 I2×2 02×1

02×2 02×2 02×2 02×1

01×2 01×2 01×2 0

x+

(
04×3

I3×3

)(
w
Iv3

)
. (1.48)

4. Jump Up

By suddenly braking its reaction wheels spinning at high angular velocities, the Cubli is

able to “jump up” from lying flat to its upright equilibrium as shown in Figure 1.5.

The jump-up is divided into two parts: the braking phase, where the reaction wheels

are almost instantaneously slowed down and the guiding phase, where additional control

action is used to guide the Cubli to its upright equilibrium. Identifying and modeling the

braking phase exactly is difficult due to large process uncertainties such as the friction
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Figure 1.5. The Cubli jumping from lying flat to its upright equilibrium.

between the brake and the wheel, the timing of the different brakes and the inaccura-

cies in the state estimation due to high accelerations. However, these uncertainties are

mostly time invariant and can therefore be circumvented by using a low-order model in

combination with a learning algorithm. The learning algorithm accounts therefore for

the repeatable modeling errors, and is used to adapt the initial wheel velocities of the

reaction wheels.

To further improve the reliability of the jump-up, an ideal trajectory is tracked during

the guiding phase using feedback linearization. Compared to a linear reference tracking

approach, this has the advantage of providing a time-invariant control law.

The next section is divided into the following parts. First, a low-complexity model for

the jump-up is outlined for both the braking and the guiding phase. Then, the learning

framework is introduced and discussed in general, before being applied to the Cubli jump-

up.

4.1 Impact-based Braking Model

The jump-up is modeled by assuming that the reaction wheels are stopped instanta-

neously. To simplify the analysis further, it is assumed that after braking the angular

momentum associated with the reaction wheels is zero, that is pωw(0)+ = Θw(ωh(0)+ +

ωw(0)+) = 0. This assumption is used to determine an ideal jump-up trajectory; it gua-

rantees the conservation of angular momentum around the figure axis in the absence

of control inputs, reducing the Cubli model to a symmetric spherical pendulum (see

Section 4.2). Note that this assumption is not entirely fulfilled since in reality the wheel

speed ωw(0)+ is actually zero after braking. Compared to the reaction wheel momentum

before braking, pωw(0)+ is however negligible. The braking is assumed to happen at the
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time instant 0; ωw(0)− and ωw(0)+ denote the left and right limits of the reaction wheel

angular velocity ωw. Note that the left and right limits of a discontinuous function f (of

locally bounded variation) are defined by

f(0)− := lim
t↑0

f(t) and f(0)+ := lim
t↓0

f(t). (1.49)

The impact is modeled by using conservation of angular momentum. More formally, an

impact torque density dΛ ([dΛ] = Nms) is introduced and the equations of motion given

by (1.5) are integrated over the impact time singleton {0}. This yields∫
{0}

dpωh = pωh(0)+ − pωh(0)− =

∫
{0}

(−ω̃hpωh + m̃g) dt = 0, (1.50)∫
{0}

dpωw = pωw(0)+ − pωw(0)− =

∫
{0}

(Tdt+ dΛ) = Λ(0)+ − Λ(0)−, (1.51)

where dpωh and dpωw are the differential measures of pωh and pωw , containing a density

with respect to the Lebesgue measure dt and the atomic measure dη, i.e.

dpωh = ṗωhdt+ (p+
ωh
− p−ωh)dη,

dpωw = ṗωwdt+ (p+
ωw − p−ωw)dη.

(1.52)

The time singleton {0} has zero Lebesgue measure. By assumption, it holds that Θw(ωh(0)++

ωw(0)+) = pωw(0)+ = 0. Since the Cubli is at rest when activating the brakes, ωh(0)− = 0,

and therefore (1.50) yields

pωh(0)+ = Θ0ωh(0)+ = pωh(0)− = Θwωw(0)−, (1.53)

which relates the body angular momentum after braking to the initial wheel velocity.

4.2 Guiding Phase

During the guiding phase, the Cubli is guided along an “ideal” trajectory to the upright

equilibrium. The trajectory is tracked using feedback linearization, resulting in a time-

invariant control law. Next, this predefined trajectory is derived by using first integrals

of the equations of motion.

To simplify the analysis, the following assumption is made:

Assumption 4.1. (Symmetric housing inertia) The inertia tensor Θ0 has an eigenvector in

direction m. The associated eigenvalue is denoted by I3. The remaining two eigenvalues

are equal, i.e. I1 = I2.

In case T = 0 and pωw = 0, this assumption leads to an additional conserved quantity,
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which is nothing but the angular momentum around the figure axis, i.e.

d

dt

(
mTpωh

)
= mT(ωh × pωh) = mTω̃hΘ0ωh +mTω̃hpωw = 0, (1.54)

where the first term of the previous expression vanishes due to Assumption 4.1 and the

second due to the fact that pωw = 0.

The “ideal” trajectory is defined as the trajectory leading from the state just after

braking, i.e. the right limit at time t = 0, to the upright equilibrium without using any

motor torque. By assumption, the right limit of pωw vanishes at time t = 0, which implies

that pωw(t) remains zero for all t > 0, see Section 2. In the absence of motor torque,

energy, the angular momentum in direction ~g, and the angular momentum in direction

~m are conserved (see (1.2), (1.4), and (1.54)), that is

Hh =
1

2
ωT
hΘ0ωh −mTg − |m| |g| = const,

pgωh = pTωh
g

|g| = const, pmωh = pTωh
m

|m| = const.
(1.55)

In other words, the Cubli is modeled as a symmetric spherical pendulum during the

guiding phase. It has as many first integrals as degrees of freedom. This suggests to

parametrize the attitude of the Cubli by the inclination angle

ϕ := arccos

(−mTg

|m| |g|

)
∈ [0, π]. (1.56)

Since the ideal trajectory is supposed to lead to the upright equilibrium, with g0 =

− m
|m| |g|, pωh0 = 0 and pωw0

= 0 it follows that pgωh = 0, pmωh = 0, and H = 0 along the

motion. Thus, the angular momentum can only have a component orthogonal to g and

m, and is therefore simplified to

pωh = pϕωh eϕ,

where the unit vector eϕ is given by

eϕ =
m× g
|m× g| , for m× g 6= 0. (1.57)

From the condition that the ideal trajectory lies on the zero energy surface it can be

inferred that

(pϕωh)2 =
2(mTg − |m| |g|)

eTϕΘ−1
0 eϕ

= 2I1|m| |g|(1− cosϕ), (1.58)

with I1 = eTϕΘ0eϕ, which is constant. Due to a vanishing wheel momentum pωw = 0, it
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follows from ωh = Θ−1
0 pωh and the system dynamics that

ωh =
1

I1

pϕωheϕ = ϕ̇ eϕ. (1.59)

Hence, along the ideal trajectory the Cubli follows the great circle of S2 passing

through the upright equilibrium represented by the north pole. The trajectory is impli-

citly parametrized by (1.58), by prescribing the angular momentum as a function of the

inclination angle ϕ.

This “ideal” trajectory is tracked using the controller presented in Section 3.2. To

that extent the error y − ydes is introduced, with y defined according to (1.37). From

Section 3.2 it can be inferred that

...
e =

...
y − ...ydes = Iw − ...ydes := u1

Iω̇h3 − Iω̇h3des = Iv3 − Iω̇h3des := u2.
(1.60)

Using x = (e, ė, ë, Iωh3 − Iωh3des), the error dynamics are rewritten as

ẋ =


02×2 I2×2 02×2 02×1

02×2 02×2 I2×2 02×1

02×2 02×2 02×2 02×1

01×2 01×2 01×2 0

x+

(
04×3

I3×3

)(
u1

u2

)
. (1.61)

Thus, a time-invariant state feedback controller, e.g. u = (u1, u2) = Kx can be used to

stabilize the error dynamics. The controller gain K ∈ R3×7 can be found by linear control

strategies such as a linear quadratic regulator approach or pole placement. Once the

virtual control inputs u1 and u2 are determined, the resulting input torque is calculated

by solving Iw and Iv3 for T . This transformation, given by (1.44) and (1.46) is bijective,

except when the Cubli is inclined by 90 degrees.5

For tracking the ideal jump-up trajectory we impose that Iωh3des = 0 and Iω̇h3des = 0

together with

ydes = I1ϕ̇des PRIKeϕ,

ẏdes = |m| |g| sinϕ PRIKeϕ,

ÿdes = |m| |g| cosϕ ϕ̇des PRIKeϕ,

...
ydes =

|m|2|g|2
I1

sinϕ (3 cosϕ− 2) PRIKeϕ,

ϕ̇des :=

√
2|m| |g|
I1

(1− cosϕ).

(1.62)

5In practice, an inclination of 90 degrees can never occur.
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The formulas are obtained by mere differentiation and using (1.58), which prescribes the

desired angular momentum as a function of the inclination angle.

4.3 Learning Algorithm

For adapting the initial wheel velocities ωw(0)− a learning algorithm is used. The Cubli

therefore makes multiple jump trials and evaluates the quality of each jump according to

predefined criteria. The initial wheel velocities are adjusted using a model-based gradient

descent method. In the next section the learning framework is elaborated in more detail.

1) Gradient-based Learning The learning strategy used can be seen as a variation of the

Newton procedure for finding the roots of a differentiable function. It has recently been

presented and successfully implemented in [15].

The underlying process, e.g. the Cubli jump-up, is assumed to be dependent on the

parameter vector θ ∈ Rp, which can be adjusted, as well as the unknown parameters

s ∈ Rq.6 The goal is to adjust the parameters θ such that a certain error e ∈ Rm

vanishes. In the case of the Cubli jump-up, we would like to adapt the initial wheel

velocities ωw(0)− such that the upright equilibrium is reached without using additional

control. The dependence of the error on the parameters (θ, s) is described by the mapping

E : Rp × Rq → Rm. The error dimension m is assumed to be smaller or equal than the

number of parameters p that can be adjusted (m ≤ p).

A model based on nominal parameters s0 is assumed to be known, which predicts

the error E(θ, s0). Based on this model, the parameters θ0 leading to a vanishing error

E(θ0, s0) = 0 can be inferred, together with the gradient of E with respect to θ, evaluated

at θ0 and s0. Still, the parameters of the real system, s∗, are unknown. By performing

experiments, e.g. jump-up attempts, we can access noisy measurements of the error,

Ei = E(θ, s∗) + N i, where N i are bounded disturbances, |N i| < D, i = 0, 1, 2, . . . . The

goal is therefore to iteratively find the zero of the function E(·, s∗) for unknown parameters

s∗. A natural solution is to use Newton’s method. However, since the gradient of E with

respect to θ is unknown for s = s∗, the model-based approximation is used instead.

This leads to the following, simple and computationally efficient update rule for the

parameters θ

θi+1 = θi − λi ∂E
∂θ

∣∣∣∣†
θ0,s0

Ei, i = 0, 1, 2, . . . , (1.63)

with λi ∈ (0, 2) a predefined sequence of step sizes, i = 0, 1, 2, . . . , and where † denotes

the pseudoinverse.

2) Application to the Cubli Next, the learning algorithm is applied to the Cubli jump-

up. By suddenly braking its reaction wheels rotating at high speeds the Cubli is able to

jump up from lying flat to the edge-balancing position, from the edge-balancing position

to the corner balancing position, and from lying flat to the corner balancing position.

6As pointed out in [15] the vector of unknown parameters can be infinite dimensional.
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The analysis is restricted to the face to the corner jump-up (initially lying flat, jump-up

to the corner), as the other cases can be treated in a similar manner.

From the modeling in Section 4.1 and 4.2 it can be concluded that the Cubli has

essentially three degrees of freedom. The analysis suggests further to split them into

a rotation around its center of mass ~m, a rotation around the gravity vector ~g and a

rotation around the direction perpendicular to ~m and ~g. For a successful jump-up, where

the upright equilibrium is reached with zero angular velocity, each degree of freedom must

be controlled. Therefore, the error is chosen to be composed of the angular momentum

in direction ~m, the angular momentum in direction ~g and the energy Hh, each of them

evaluated at the top point

E(ωw(0)−, s) =

 pmωh(tt)

pgωh(tt)

Hh(tt)

 .

The top point is defined as the time instant t = tt at which the Cubli has either reached

the upright position

g(tt) = − m

|m| |g|

or has no angular momentum in direction ~m × ~g, i.e. pωh(tt)
T(m × g(tt)) = 0. The

parameters to be adjusted are the initial wheel velocities ωw(0)− ∈ R3, whereas the

vector s contains unknown system parameters, e.g. the inertia, the center of mass, the

parameters related to the brake properties, etc. Clearly, the error vanishes only if the

Cubli reaches the upright equilibrium.

According to the model derived in Section 4.1 and 4.2 the error components are all

conserved quantities in the absence of the input torque T . Hence

pmωh(tt) = pmωh(0)+ = pmωh(0)− = mTΘwωw(0)−

pgωg(t
t) = pgωh(0)+ = pgωh(0)− = g(0)TΘwωw(0)−

(1.64)

and

Hh(t
t) = Hh(0)+ =

1

2
(ωh(0)+)TΘ0ωh(0)+ −mTg(0)− |m| |g|

=
1

2
(ωw(0)−)TΘwΘ−1

0 Θwωw(0)− −mTg(0)− |m| |g|.
(1.65)

This implies that the gradient with respect to ωw(0)− evaluated for the model parameters
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s0 yields

∂E

∂ωw(0)−

∣∣∣∣
s0

=

 mTΘw

(g(0)−)TΘw

(ωw(0)−)TΘwΘ−1
0 Θw

 . (1.66)

The initial guess θ0 = (ωw(0)−)0 is calculated by requiring the model-based error to

vanish. This yields according to Section 4.2

(ωw(0)−)0 =
√

2I1|m| |g|(1− cosϕ0) eϕ(0),

eϕ(0) =
m× g(0)

|m× g(0)| ,
(1.67)

with ϕ0 the inclination angle when the Cubli is lying on its face.

3) Compensation for the Guiding Control Action In the previous section the error

function evaluating the quality of a jump-up trial has been introduced and its gradient

based on the jump-up model has been derived. Therefore the update rule given by (1.63)

can be applied to learn the initial wheel velocities, which lead the Cubli to its upright

equilibrium without any control action.

In practice however, not every jump-up succeeds as the process noise, e.g. the rand-

omness in the braking mechanism is too high. To increase the chances of a successful

jump-up the guiding controller introduced in Section 4.2 is used. The controller tries to

maintain the Cubli on a successful jump-up trajectory and is activated after releasing the

brakes. Naturally, the control effort of the guiding controller must be considered when

evaluating the error criterion E(θi, s∗). In other words, given the value E(θi, s∗), the

jump-up performance E ′(θi, s∗) which would have been obtained if no additional control

action would have been applied needs to be determined. Since the error E is composed of

conserved quantities (in the absence of motor torque) it suffices to estimate their values

shortly after braking, which yields

E ′(ωw(0)−, s) =

 pmωh(tt)−
∫ tt

0
ṗmωhdt

pgωh(tt)

Hh(tt)−
∫ tt

0
Ḣhdt

 . (1.68)

Note, that the momentum around the g axis is constant, regardless of the motor torque.

The time derivative of the momentum around m is obtained from the reduced system

dynamics, (1.5) and is given by

ṗmωh =
m

|m|
T

(−ωh × pωh).

44



5. Experimental Results

Moreover the rate of change of the energy related to the Cubli housing, Hh, can be

calculated to be Ḣh = −ωT
hT .

Clearly, if the jump-up is ideal (in the sense of Section 4.2), no correction is applied

and therefore E and E ′ agree. Moreover, the error E ′ can be simplified to

E ′(ωw(0)−, s) =
(
pmωh(0)+, pgωh(0)+,Hh(0)+

)
, (1.69)

leading to the conclusion that the gradient of E ′ with respect to θ is likewise given by

the right hand side of (1.66) for s = s0.

The jump-up procedure is summarized by Algorithm 1.

Procedure 1 Cubli Jump Up

1: procedure JumpUp(Initial guess (ωw(0)−)0, Step sizes λi)
2: θ0 ← (ωw(0)−)0

3: i = 0
4: while Not converged do
5: Set θi to be the initial wheel velocities
6: Speed up wheels, brake and apply guiding controller
7: while Top point is not reached do
8: Approximate

∫ tt
0
ṗmωhdt and

∫ tt
0
Ḣhdt by trapezoidal integration

9: end while
10: Calculate E ′(θi, s∗) according to (1.68)

11: θi+1 ← θi − λi ∂E′
∂θ

∣∣†
θ0,s0

E ′(θi, s∗) according to (1.63)
12: i← i+ 1
13: end while
14: end procedure

5. Experimental Results

In the following section the experimental results are discussed. The control algorithms

are implemented on a Cortex M4 processor with a sampling time of 20 ms, except for the

guiding controller, which runs at 10 ms. The algorithm presented in [2] is used for state

estimation. The state estimation exploits the fact that there is a single pivot point being

always at rest to derive a computationally light-weight, nonlinear attitude estimator. It

is therefore “model free”, in the sense that the estimation is solely based on a kinematic

model and does not require knowledge of the center of gravity nor the inertia.

5.1 Balancing Performance

For balancing, an additional offset-correction filter is implemented, which accounts for

modeling errors in the parameter m. Details of the implementation can be found in [13].
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The controller parameters are tuned using the strategy presented in Section 3 and are

chosen to be α = 15, β = 18, γ = 12 and δ = 10−5. This yields closed-loop poles of

the inclination angle located at −32.7 rad/s, −12.0 rad/s, and −0.86 rad/s and a time

constant for the yaw motion of 0.083 s. With those parameters a root mean squared

inclination angle error (at steady state) below 0.025 ◦ can be observed.

Disturbance rejection measurements are depicted in Figure 1.6 and 1.7. The distur-

bance was chosen to be 0.17 Nm and was applied to a single wheel for 60 ms. After

less than 1.8 s the inclination angle reaches steady state. Note that the reaction wheels

are barely turning in steady state (the jitter visible in Figure 1.7 is due to measurement

noise).

5.2 Tracking Performance

Next, the tracking performance is evaluated. Simple state feedback in the transformed

error variable e is used, that is u = Kx with x and u defined according to (1.61). The

feedback gain K is chosen such that the linearization of the controller around the upright

equilibrium agrees with the linearization of the balancing controller.

Figure 1.8 shows the evolution of ẏ. Note that according to (1.40), ẏ2 is proportional

to Im1 and −ẏ1 to Im2. Therefore the graph can be interpreted as the time evolution of

the center of mass in the inertial frame. Although the center of mass is initially away

from the ideal trajectory, the tracking controller manages to guide the Cubli back to the

desired path. As soon as the center of mass is close enough to the upright equilibrium, i.e.

reaches the region indicated by the dotted arc in Figure 1.8, the balancing controller takes

over. Figure 1.9 shows the time evolution of the controller states y, which is associated

to the momentum Ipωh and ÿ, which is proportional to Iωh× Im. The reference trajectory

is again depicted by the dashed curves. It follows from Figure 1.9 that the generalized

momentum Ipωh is accurately tracked. The error in the second derivative ÿ is initially

larger, but is decreased by the controller as time evolves. However, a slight overshoot can

be observed.

5.3 Learning Performance

The learning algorithm proposed in the previous section is implemented for the face to

corner jump. A constant step size of λi = 0.8 for all iterations i = 0, 1, 2 . . . is used.

Figure 1.10 shows the evolution of the initial wheel speeds ωw1 and ωw2 . Due to the

geometry of the Cubli, the third reaction wheel is only slightly used to correct for a non-

zero momentum pgωh and is therefore not depicted. The initial wheel speeds were chosen

to be around 100 rad/s away from the angular velocities leading to a successful jump-up.

Hence, for the initial wheel speeds the Cubli barely moves or falls on the opposite side.

After around 5 trials, the error of the angular momentum pωh(t0)+ is small enough such

that the guiding controller can lead the Cubli to its upright equilibrium. At this point the

learning algorithm is only compensating for the control action of the guiding controller

leading to small correction steps.
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Figure 1.6. Disturbance rejection measurements. Depicted is the inclination angle over time.
Note the inclination angle is not measured directly but estimated using the algorithm presented
in [2].
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Figure 1.7. Disturbance rejection measurements. Depicted are the reaction wheel velocities
over time, which are directly measured via a hall sensor. The different colors correspond to the
different elements of the vector ωw.

6. Conclusion

This article presents aspects related to the dynamics and control of a reaction wheel-based

3D inverted pendulum. The analysis of the equations of motion revealed the existence

of conserved quantities and relative equilibria, and allowed to find a reduced description

of the dynamics. In particular, the reduced description was used for the control design.

Two different nonlinear control approaches were presented and subsequently discussed.

Finally, aspects related to the jump-up were presented, where the effect of repeatable

disturbances was decreased by an iterative learning algorithm. To enhance robustness,

feedback linearization was used to guide the inverted pendulum system to its upright

equilibrium on a predefined trajectory. All control and learning algorithms were evaluated

in experiments, which confirmed their effectiveness.
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Figure 1.8. Trajectory tracking: Depicted is the evolution of ẏ1 and ẏ2 together with the ideal
trajectory (dashed) for a successful jump-up. The black crosses indicate the sampling instants.
The starting points (right after braking) of the ideal and actual trajectory are marked by black
circles. The point (0, 0) denotes the upright equilibrium. The area around the upright equilibrium
separated by the dotted circle arc represents the balancing region, i.e. the region where the
tracking controller is turned off and the balancing controller takes over.
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Figure 1.9. Trajectory tracking: Depicted is the evolution of y and ÿ (solid), where the crosses
indicate the sampling instants. The ideal trajectories, ydes and ÿdes are shown by the dashed
curves.
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Figure 1.10. Depicted are the initial wheel speeds of the reaction wheels starting from five
different initial conditions. The learning algorithm converges after few iterations to feasible wheel
speeds resulting in a successful jump-up.

References

[1] D. S. Bernstein, N. H. McClamroch, and A. Bloch, “Development of air spindle

and triaxial air bearing testbeds for spacecraft dynamics and control experiments”,

American Control Conference, pp. 3967–3972, 2001.

[2] S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation of a rigid body

with only rotational degrees of freedom”, International Conference on Robotics and

Automation, pp. 2630–2636, 2010.

[3] M. W. Spong and D. J. Block, “The Pendubot: A mechatronic system for con-

trol research and education”, International Conference on Decision and Control,

pp. 555–556, 1995.
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Accelerometer-Based Tilt Determination for

Rigid Bodies with a Non-Accelerated Pivot

Point

Michael Muehlebach and Raffaello D’Andrea

Abstract

An estimation algorithm is proposed for determining pitch and roll angles (tilt),
angular velocities, and angular accelerations of a rigid body with a non-accelerated
pivot point. The estimation uses only accelerometer measurements. It is based on
a kinematic model of the rigid body and is therefore independent of its dynamics;
only the mounting positions of the sensors need to be known. Simulation results
indicate a significant performance increase compared to an existing method, a claim
which is supported by experimental results.
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1. Introduction

The problem of determining the attitude of a rigid body relative to an inertial frame

occurs in many engineering disciplines ranging from robotics to aeronautics and space

engineering. We propose an algorithm that estimates the tilt (pitch and roll angles) of a

rigid body based on accelerometer measurements only, by exploiting the assumption of a

non-accelerated pivot point. The tilt estimate is obtained by maximizing the likelihood of

the sensor measurements. Hence, the approach does not require temporal correlation in

the accelerometer data (e.g. as given by a dynamical model) and only relies on a kinematic

rigid-body model, where only the mounting positions of the accelerometers relative to the

pivot need to be known. As such, the method is independent of physical parameters such

as the inertia, the mass, and the center of mass, and less susceptible to modeling errors,

as, for example, a process noise model is not required.

The method has been successfully applied to estimate the tilt of balancing robots,

see for example [1], [2]. Other potential applications are inertially stabilized platforms,

[3], including various gimbal mountings that are used, for example, for sensor calibration

and image stabilization, [4], or to orient and stabilize optical elements such as mirrors,

wedges, prisms, and lenses, [5].

A tri-axis accelerometer7 is sufficient to determine the pitch and roll of a non-moving

(or uniformly translating) rigid body directly from a single (tri-axis) accelerometer me-

asurement. In case the rigid body is rotating or is accelerated, however, the body-fixed

accelerometer also measures angular and centripetal acceleration terms.

One method to compensate for these effects is complementary filtering, where a gy-

roscope and an accelerometer-based tilt estimate are combined, see e.g. [6, p. 165]. The-

reby the fact that the gyroscope-based estimate is corrupted mainly by low frequency

noise (drift of the gyroscope) and the accelerometer-based estimate is mainly accurate at

low frequencies is exploited. Various applications and extensions of complementary filte-

ring can be found in the literature, for instance [7], [8], [9], [10]. Typically, the implicit

assumption of the accelerometer being at rest is made in order to extract roll and pitch

estimates from the accelerometer measurements, see for example [7]. In contrast to the

non-accelerated pivot assumption made here, this assumption is even more stringent and

might often be violated in practice.

Alternative approaches include for example extended or unscented Kalman filtering,

see for example [11]–[14], [15]. These approaches are typically based on local approxi-

mations of the attitude dynamics. Moreover, the estimation relies on a dynamic model

of the system in order to capture the temporal correlation of sensor data. The model

includes a process noise model, and as such, the filter might be susceptible to modeling

errors and/or might require careful tuning. In case a model based on the kinetics of the

rigid body is used, as for example done in [13], physical parameters, such as the iner-

tia, the mass, and the center of mass are needed. In case of a kinematics-based model,

7Throughout this article, we will refer to a tri-axis accelerometer simply as an accelerometer.

52



1. Introduction

again (stringent) assumptions on the acceleration of the acceleremoters (e.g. zero mean,

or at rest) are required. Most approaches therefore rely on additional sensors, such as

magnetometers in [14] and vector sun sensors and star trackers in [12].

In contrast to these Kalman filter-based approaches, we obtain a tilt estimate by

maximizing the measurement likelihood. Thereby, we do not rely on a dynamic model

that describes the temporal correlation of the sensor data (although the method might be

extended to account for temporal correlation by including prior distributions). As a re-

sult, the attitude estimation is formulated as an optimization problem that fully respects

the nonlinearities of the attitude dynamics. We exploit the fact that measurements from

multiple accelerometers are available to compensate for the angular and centripetal acce-

leration terms. However, if an accurate dynamic model of the system is available, our

approach might be outperformed by strategies that indeed consider the temporal corre-

lation of the accelerometer measurements. Moreover, the approach leads to an iterative

optimization algorithm, where the number of iterations needed for convergence depends

on the initial guess. Therefore, unless early termination is used, the proposed estimation

algorithm might have a variable execution time, which might be undesirable in some

applications.

In [16], it is shown that with the fixed pivot assumption one can determine the atti-

tude by solving a linear least-squares problem. The algorithm is successfully implemented

on various balancing robots, see for example [1], [2], [17]. However, the particular mat-

hematical structure of the angular and centripetal acceleration terms is not taken into

account, thereby sacrificing estimation performance.

In this work, we extend the approach from [16] by formulating the attitude estimation

as a maximum likelihood estimate and taking the structure of the angular and centripe-

tal acceleration terms explicitly into account. This leads to a constrained least-squares

problem for which a dedicated solution algorithm is proposed. A criterion ensuring local

convergence of the algorithm is presented. In addition, an estimate of the angular velo-

city and its rate of change is obtained. Simulation examples and real-world experiments

indicate that a significantly higher estimation performance is achieved compared to [16].

Outline

In Section 2, the kinematic model of the rigid body is presented and used to formulate

the attitude estimation in a maximum likelihood framework. Section 3 discusses the

projection of an arbitrary matrix onto a particular non-convex set given by the structure of

the angular and centripetal accelerations. An analytic solution to the projection is derived

and is used in the later sections. An optimization algorithm for the resulting constrained

least-squares problem is presented in Section 4 and is based on the augmented Lagrangian

approach. A criterion for local convergence, and the generation of initial conditions for the

solution algorithm is subsequently elaborated. The Fisher information matrix quantifying

the information content of the accelerometer measurements is discussed in Section 5 and

is used to optimize the accelerometer placements. Simulation results are presented in

Section 6 and experimental results are provided in Section 7. The article concludes with
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final remarks in Section 8.

2. Problem Formulation

In this section we formulate the problem of tilt estimation as a constrained least-squares

problem. The derivation is similar to [16], except that the angular and centripetal acce-

leration terms are explicitly taken into account. In Section 2.1 the notation is briefly

introduced, before deriving the kinematic model in Section 2.2 and discussing the as-

sumption of a non-accelerated pivot in Section 2.3. The formulation of the tilt estimation

in the maximum likelihood framework is presented in Section 2.4.

2.1 Notation

The representation of a tensor and vector in a particular coordinate frame is denoted by a

preceding superscript, i.e. B(A) = BA ∈ R3×3, B(v) = Bv ∈ R3. The body-fixed coordinate

frame is denoted by {B}. The rotation matrix RIB ∈ SO(3) relates vectors from the

body-fixed frame to their representation in the inertial frame {I}, that is Iv = RIB
Bv,

for all vectors Bv ∈ R3. The set SO(3) denotes the special orthogonal group of rigid-

body rotations. Moreover, the skew symmetric matrix corresponding to a vector a ∈ R3,

denoted by ã, is defined as a × b = ãb, for all b ∈ R3, where a × b refers to the cross

product of the two vectors a and b. The sphere of radius g0 := 9.81 m/s2 is denoted by S2.

The Frobenius scalar product of two matrices A ∈ R3×3 and B ∈ R3×3 is defined as

〈A,B〉F := tr(BTA), (2.1)

where tr(A) denotes the trace of the matrix A, that is, the sum of its diagonal elements.

The induced norm (Frobenius norm) is then given by

||A||2F := 〈A,A〉F , (2.2)

whereas the (induced) two norm is denoted by || · ||2 and the (induced) maximum norm

is denoted by || · ||∞.

Vectors are expressed as n-tuples (x1, x2, . . . , xn) with dimension and stacking clear

from context.

2.2 Kinematic Model

In this section we use a kinematic model to derive the maximum likelihood estimate of the

tilt of the rigid body. Let Bpi denote the position of the i’th accelerometer with respect to

the pivot point represented in the body-fixed frame. We assume that there are L sensors

on the body, i = 1, . . . , L. The variables are illustrated with the sketch shown in Fig. 2.1.
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From the fact that the pivot point is not accelerated, it follows that (see [16])

Ip̈i = R̈IB
Bpi and Bp̈i = RT

IBR̈IB
Bpi.

The kinematics yield additionally

ṘIB = RIB
Bω̃, (2.3)

where Bω denotes the angular velocity of the body-fixed frame relative to the inertial

frame, represented in the body-fixed frame. Taking the time derivative of (2.3) results in

R̈IB = ṘIB
Bω̃ +RIB

B ˙̃ω = RIB

(
Bω̃

2
+ B ˙̃ω

)
. (2.4)

Note that the matrix B ˙̃ω is skew-symmetric, whereas Bω̃
2

is symmetric. Defining BΩ to

be
BΩ := Bω̃

2
+ B ˙̃ω, (2.5)

leads to the following expression for the acceleration Bp̈i:

Bp̈i = BΩ Bpi. (2.6)

The accelerometer measures the acceleration with respect to an observer in free fall, and

therefore the acceleration measurement of the i’th sensor is given by

Bmi = Bp̈i − Bg + Bni (2.7)

= BΩ Bpi − Bg + Bni, (2.8)

where Bg ∈ S2 denotes the gravity vector in the body-fixed frame and Bni is the mea-

surement noise. The measurement noise is assumed to be independent (for the different

accelerometers), Gaussian, with zero mean and variance σ2
nI, where I ∈ R3×3 is the

identity. We assume that the sensors are well-calibrated, such that the bias is negligible.

2.3 The Assumption of a Non-Accelerated Pivot

If the pivot point is not at rest, the acceleration of the i’th accelerometer is given by

Ip̈i = Ip̈0 + R̈IB
Bpi, (2.9)

where p̈0 denotes the acceleration of the pivot point. Expressing the acceleration of the
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Figure 2.1. The sketch shows the inertial coordinate frame {I}, consisting of the vectors Ie1,

Ie2, and Ie3, the body-fixed coordinate frame {B}, consisting of the vectors Be1, Be2, and Be3,
and the vectors p1, . . . , pL. The pivot point is assumed to be at the origin of the coordinate
frames.

i’th accelerometer in the body frame and inserting (2.6) yields

Bp̈i = Bp̈0 + BΩ Bpi, (2.10)

and therefore
Bmi = Bp̈0 + BΩ Bpi − Bg + Bni (2.11)

captures the measurement of the i’th accelerometer. As a result, given the accelerometer

measurement Bmi, there is no possibility to distinguish between the measurement noise,

the acceleration of the pivot, and the Bg vector capturing the tilt without further assump-

tions on the acceleration Bp̈0. Hence, if an extended (or unscented) Kalman filter based

on rigid-body kinematics or a complementary filter is used, a potential, often implicit

assumption is that Bp̈i is white noise, e.g. [7]. As such, it may be combined with the

measurement noise, and is nothing but an implicit non-accelerated pivot assumption. An

alternative approach is to use rigid body kinetics, which provide a model for Bp̈0. Howe-

ver, as discussed in the introduction, such a model depends on the properties of the rigid

body, e.g. the center of mass and the inertia, and is therefore susceptible to parameter

errors. Moreover, such a model might not be available, as the forces and torques applied

to the rigid body might not be known.

2.4 Maximum Likelihood Estimation

In the following, the superscript referring to the body-fixed coordinate frame {B} is

omitted to simplify notation, e.g. Bg = g, Bpi = pi, etc.
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The noise assumption yields the following combined likelihood for the L sensors:

f(m1, . . . ,mL|g,Ω) =
L∏
i=1

1

(2πσ2
n)

3
2

exp

(
− 1

2σ2
n

||mi − Ω pi + g||22
)

=
1

(2πσ2
n)

3L
2

exp

(
− 1

2σ2
n

L∑
i=1

||mi − Ω pi + g||22

)
.

(2.12)

Additional gyroscope measurements, if available, could be included by extending the

likelihood accordingly, provided that these measurements are assumed to be corrupted

by uncorrelated Gaussian noise.

Note that Ω is given by (2.5) and contains the angular and centripetal acceleration.

In particular, the symmetric part has the form ω̃2 and therefore Ω ∈M, where

M := {A ∈ R3×3|A+ AT = ã2, a ∈ R3}. (2.13)

Likewise, the gravity vector has length g0 and is therefore an element of S2.

The maximum likelihood estimate is thus obtained by maximizing f(m1, . . . ,mL|g,Ω)

with respect to g ∈ S2 and Ω ∈M, which is equivalent to the following constrained least-

squares problem

min
Ω∈M,g∈S2

L∑
i=1

||mi − Ω pi + g||22. (2.14)

In [16], the optimization was simplified to the following linear least-squares problem

min
Ω∈R3×3,g∈R3

L∑
i=1

||mi − Ω pi + g||22. (2.15)

Note that the linear least-squares problem has 12 unknowns, whereas the solutions of

(2.14) are constrained to the manifolds S2 and M, which are 2 and 6-dimensional, re-

spectively. Numerical examples, as presented in Sections 6 and 7, indicate that solving

(2.14) instead of (2.15) improves the estimation performance significantly.

The optimization problem (2.14) is non-convex, since bothM and S2 are non-convex

sets. Compared to (2.15), (2.14) is therefore computationally more demanding and there

will be no guarantee that a global minimum is found. However, the projection (with

respect to the Frobenius norm) of a matrix A ∈ R3×3 toM can be determined analytically.

We will exploit this fact to derive a computationally tractable solution algorithm for

(2.14) using the augmented Lagrangian approach. Subsequently, a criterion ensuring local

convergence will be presented.
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3. Projection to M

In the following the projection

proxM(A) := argmin
A∗∈M

||A− A∗||2F , (2.16)

where A is an arbitrary matrix in R3×3 is discussed. This projection will be used in the

later sections to derive a computational efficient solution algorithm to the constrained

least-squares problem (2.14).

The decomposition ofA−A∗ into its symmetric (denoted symm(·)) and skew-symmetric

(denoted skew(·)) parts, where

symm(A) :=
1

2
(A+ AT), skew(A) :=

1

2
(A− AT), (2.17)

yields

||A− A∗||2F = ||symm(A− A∗)||2F + ||skew(A− A∗)||2F
+ 2〈symm(A− A∗), skew(A− A∗)〉F

= ||symm(A− A∗)||2F + ||skew(A− A∗)||2F ,

since symmetric and skew-symmetric matrices are orthogonal with respect to the Fro-

benius inner product. This decomposition implies that the minimizer of (2.16) reduces

to

argmin
A∗∈M

||A− A∗||2F = skew(A) + argmin
A∗∈Ms

||symm(A)− A∗||2F ,

where the set Ms contains the symmetric elements of M, i.e.

Ms := {A ∈M|A = AT}. (2.18)

Furthermore, the set M and the set Ms are invariant under rotations, that is

A∗ ∈M ⇔ TA∗TT ∈M, (2.19)

A∗ ∈Ms ⇔ TA∗TT ∈Ms, (2.20)

for all T ∈ SO(3), which is due to the invariance of the cross product under rotations, or

more specifically,

T̃ a = T ãTT, (2.21)

for any vector a ∈ R3 and for all T ∈ SO(3). The same is true for the Frobenius norm,
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and therefore, the projection argminA∗∈Ms ||symm(A)− A∗||2F can be simplified to

argmin
A∗∈Ms

||TTsymm(A)T−TTA∗T ||2F = argmin
B∗∈Ms

||Λ−B∗||2F , (2.22)

where Λ is a diagonal matrix containing the eigenvalues of symm(A) and T is the matrix

containing the eigenvectors. An element B∗ ∈ Ms can be parametrized by ã2, for some

a = (a1, a2, a3) ∈ R3. Thus, writing the term ||Λ−B∗||2F out yields

||Λ−B∗||2F =
[
(λ1 + a2

2 + a2
3)2 + a2

1a
2
2 + a2

1a
3
3

+ (λ2 + a2
1 + a2

3)2 + a2
1a

2
2 + a2

2a
2
3

+(λ3 + a2
1 + a2

2)2 + a2
1a

2
3 + a2

2a
2
3

]
,

where Λ = diag(λ1, λ2, λ3). This can be simplified further to a quadratic objective function

by the change of variables x = (a2
1, a

2
2, a

2
3),

||Λ−B∗||2F = 2xT11Tx+ 2bTx+ λ2
1 + λ2

2 + λ2
3,

with

b = (λ2 + λ3, λ1 + λ3, λ1 + λ2),

and where 1 := (1, 1, 1). Evaluation of the KKT-conditions of argminB∗∈Ms ||Λ − B∗||2F
results in the following linear complementarity problem, [18, p. 4]:

4xT11T + 2bT = µT,

µ ≥ 0, x ≥ 0, µTx = 0.

These conditions can be interpreted in a geometric way, c.f. [18, p. 20]: The unit vectors

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and the vector −1 = (−1,−1,−1) partition R3

into four convex cones. A solution x is found by decomposing 1/2 b using the unit vectors

spanning the cone that contains 1/2 b. The components in direction e1, e2, and e3 yield

the optimal multiplier µ, whereas the component in direction −1 represents the solution

vector x, see Fig. 2.2.8

This implies that at most one component of x is nonzero. Let j denote the minimum

8We consider the non-degenerate case only. If 1/2 b is colinear with −1, then there are multiple
solutions. Note however, that the set of vectors 1/2 b, which are colinear with −1 is of (Lebesgue)
measure zero.
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e1

e3

e2

1
2
b

−1

−x11

µ2e2

µ3e3

Figure 2.2. Decomposition of the vector 1/2 b (blue) using the vectors −1 (red), e2 (black),
and e3 (black). In this case the solution is given by x = (x1, 0, 0), where x1 is the component
along −1, with µ = (0, µ2, µ3), where µ2, µ3 are the components along e2 and e3, respectively.

element of b, i.e. j = argmini∈{1,2,3} bi. If bj < 0 it follows that

x =


x1 = −1

2
(λ2 + λ3), x2 = x3 = 0, for j = 1

x2 = −1
2
(λ1 + λ3), x1 = x3 = 0, for j = 2

x3 = −1
2
(λ1 + λ2), x1 = x2 = 0, for j = 3.

In case bj ≥ 0, the vector 1
2
b lies in the cone spanned by e1, e2, e3 (the positive orthant)

and therefore x1 = x2 = x3 = 0.

Let λ1, λ2, λ3 be the eigenvalues of symm(A) with corresponding (normalized) eigen-

vectors u1, u2, u3, such that λ1 ≤ λ2 ≤ λ3. The solution of problem (2.16) is therefore

given by

argmin
A∗∈M

||A− A∗||2F = skew(A) + TT

 1
2
(λ1 + λ2) 0 0

0 1
2
(λ1 + λ2) 0

0 0 0

T

= skew(A)− 1

2
(λ1 + λ2)TTẽ3ẽ3T

= skew(A)− 1

2
(λ1 + λ2)ũ3ũ3, (2.23)
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in case 1
2
(λ1 + λ2) < 0 and

argmin
A∗∈M

||A− A∗||2F = skew(A) (2.24)

otherwise. Hence to compute the minimizer of (2.16) we only need to perform an eigen-

decomposition of symm(A), which can be performed very efficiently (for a symmetric

3× 3 matrix there is an analytic solution, see [19]).

4. Proposed Solution Method

In the following, the augmented Lagrangian approach is used to derive a computationally

efficient solution method to the constrained least-squares problem (2.14). Criteria ensu-

ring local convergence are derived in Section 4.2 and the computation of initial conditions

for the solution method is addressed in Section 4.3.

4.1 Augmented Lagrangian Approach

We use the so-called augmented Lagrangian approach, see e.g. [20, p. 515] to divide the

optimization problem

argmin
Ω∈M,g∈S2

1

2

L∑
i=1

||mi − Ω pi + g||22 (2.25)

into two subproblems. This provides a means to exploit the fact that one can easily

project on M and on S2 (see previous section). Compared to other solution methods

(e.g. second-order methods), this approach leads to a simple solution algorithm which

is straightforward to implement, even on embedded hardware. Numerical experiments

indicate rapid convergence.

The optimization over M and S2 is separated from the remaining optimization by

adding additional artificial equality constraints. Thus, using the Lagrangian multipliers

Λ ∈ R3×3 and λ ∈ R3, the problem (2.25) is reformulated as

min
Ω∈R3×3,g∈R3,
A∈M,a∈S2

sup
Λ∈R3×3,
λ∈R3

L(Ω, g, A, a,Λ, λ)
(2.26)

where the Lagrangian L is defined as

L(Ω, g, A, a,Λ, λ) :=
1

2

L∑
i=1

||mi − Ω pi + g||22 + λT(a− g)

+〈Λ, A− Ω〉F +
1

2r
||A− Ω||2F +

1

2q
||a− g||22,

(2.27)
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with r and q arbitrary positive scalars (they are used as tuning parameters in a later

stage). Completing the squares yields

L(Ω, g, A, a,Λ, λ) =
1

2

L∑
i=1

||mi − Ω pi + g||22 −
r

2
||Λ||2F

+
1

2r
||A− (Ω− rΛ)||2F +

1

2q
||a− (g − qλ)||22 −

q

2
||λ||22.

(2.28)

Note that the term 1
2r
||A− (Ω−rΛ)||2F leads to a projection of Ω−rΛ onM and likewise

the term 1
2q
||a − (g − qλ)||22 to a projection of g − qλ on S2. Thus, equation (2.26) is

stationary with respect to A and a if

A = proxM(Ω− rΛ), (2.29)

a = proxS2(g − qλ), (2.30)

where

proxS2(g − qλ) := argmin
a∗∈S2

||a∗ − (g − qλ)||22.

The stationary points of (2.26) with respect to Ω, g, λ, and Λ are given by

−1

r
(A− Ω + rΛ)−

L∑
i=1

(mi − Ω pi + g)pTi = 0, (2.31)

−1

q
(a− g + qλ) +

L∑
i=1

[mi − Ω pi + g] = 0, (2.32)

A− Ω = 0, (2.33)

a− g = 0. (2.34)

Moreover, from (2.31) and (2.32) we obtain

Ω− rΛ = A+ r
L∑
i=1

(mi − Ω pi + g)pTi , (2.35)

g − qλ = a− q
L∑
i=1

(mi − Ω pi + g), (2.36)
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which can be combined with (2.29), (2.30), (2.33), and (2.34) to yield

Ω = proxM

(
Ω + r

L∑
i=1

(mi − Ω pi + g)pTi

)
, (2.37)

g = proxS2

(
g − q

L∑
i=1

(mi − Ω pi + g)

)
. (2.38)

Equations (2.37) and (2.38) are necessary conditions for a minimum of (2.25). We propose

to use fixed-point iteration to solve (2.37) and (2.38), that is

Ωk+1 = proxM

(
Ωk + r

L∑
i=1

(mi − Ωk pi + gk)pTi

)
, (2.39)

gk+1 = proxS2

(
gk − q

L∑
i=1

(mi − Ωk+1 pi + gk)

)
. (2.40)

4.2 Local Convergence

In the following section the convergence of the fixed-point iteration given by (2.39) and

(2.40) will be elaborated. We will apply the Banach fixed-point theorem to provide con-

ditions ensuring local convergence. The main result is summarized by Theorem 2. In

addition, special cases leading to a simplification of the conditions for local convergence

are discussed at the end of this section.

Theorem 2. Assume that the matrix

As :=

( ||I − rP ||F r||p||2
q||p||2||I − rP ||F |1− qL|+ qr||p||22

)
,

with

p :=
L∑
i=1

pi, P :=
L∑
i=1

pip
T
i , 0 < q, r <∞,

has eigenvalues strictly within the unit circle, and let g∗ ∈ S2 and Ω∗ ∈ M be the fixed

points of (2.39), respectively (2.40). Let Ω∗ = (ω̃∗)2 + ˙̃ω∗ and assume that ω∗ 6= 0. Then,

provided that ||g0 − g∗||2, ||Ω0 − Ω∗||F ,

q
∣∣∣∣∣∣ L∑

i=1

mi − Ω∗pi + g∗
∣∣∣∣∣∣

2
, and r

∣∣∣∣∣∣ L∑
i=1

(mi − Ω∗pi + g∗)pTi

∣∣∣∣∣∣
F

(2.41)
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are small enough, ||gk − g∗||2 and ||Ωk − Ω∗||F remain bounded for all k = 1, 2, . . . , and

lim
k→∞
||gk − g∗||2 → 0, lim

k→∞
||Ωk − Ω∗||F → 0.

Proof. We use the fact that proxM and proxS2 are locally Lipschitz and apply the Banach

fixed-point theorem. It is shown in the appendix (Prop. 4) that for every ε > 0 there exists

a constant δM > 0, such that for all Ω1,Ω2 ∈ R3×3 with ||Ω∗−Ω1||F < δM, ||Ω1−Ω2||F <
δM implies

||proxM(Ω1)− proxM(Ω2)||F ≤ (1 + ε)||Ω1 − Ω2||F . (2.42)

In order for Prop. 4 to hold we must have ω∗ 6= 0, which is true by assumption. Likewise

it is shown by Prop. 5 that for all ε > 0 there exists a δS2 > 0 such that for all g1, g2 ∈ R3

with ||g∗ − g1|| < δS2 , ||g1 − g2||2 < δS2 implies

||proxS2(g1)− proxS2(g2)||2 ≤ (1 + ε)||g1 − g2||2. (2.43)

By assumption Ω∗ and g∗ fulfill (2.37), respectively (2.38). Combined with (2.39) and

(2.40), it follows that

Ωk+1 − Ω∗ = proxM
(
Ωk + r(m̄− ΩkP + gkpT)

)
− proxM

(
Ω∗ + r(m̄− Ω∗P + g∗pT)

)
,

gk+1 − g∗ = proxS2

(
gk − q(m− Ωk+1p+ Lgk)

)
− proxS2 (g∗ − q(m− Ω∗p+ Lg∗)) ,

where m :=
∑L

i=1mi and m̄ :=
∑L

i=1mip
T
i . It holds therefore that ||Ωk+1 − Ω∗||F can be

bounded by

(1 + ε)||(Ωk − Ω∗)(I − rP )+r(gk − g∗)pT||F
≤ (1 + ε)

(
||I − rP ||F ||Ωk − Ω∗||F + r||p||2||gk − g∗||2

)
,

provided that

(1 + ε)
(
||I − rP ||F ||Ωk − Ω∗||F + r||p||2||gk − g∗||2

)
< δM (2.44)

is fulfilled. Similarly, ||gk+1 − g∗||2 can be bounded by

(1 + ε)||(1−qL)(gk − g∗) + q(Ωk+1 − Ω∗)p||2
≤ (1 + ε)

(
|1− qL|||gk − g∗||2 + q||p||2||Ωk+1 − Ω∗||F

)
≤ (1 + ε)

(
q||p||2||I − rP ||F ||Ωk − Ω∗||F +

(
|1− qL|+ rq||p||22

)
||gk − g∗||2

)
,
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provided that (2.44) and

(1 + ε)
(
q||p||2||I − rP ||F ||Ωk − Ω∗||F +

(
|1− qL|+ rq||p||22

)
||gk − g∗||2

)
< δS2 (2.45)

are fulfilled. The conditions can be simplified and written in compact form with vk :=

(||Ωk − Ω∗||F , ||gk − g∗||2), δ′ := min{δM, δS2}, and Âs(ε) defined as

(1 + ε)

( ||I − rP ||F r||p||2
q||p||2||I − rP ||F |1− qL|+ qr||p||22

)
,

as

||Âs(ε)vk||∞ < δ′ ⇒ vk+1 ≤ Âs(ε)v
k,

where || · ||∞ denotes the infinity-norm.

Note that Âs(0) = As, v
k ≥ 0, and by assumption, As has eigenvalues strictly within

the unit circle. The eigenvalues are continuous functions with respect to the matrix ele-

ments, [21, p. 26], and therefore, there exists an ε′ > 0 such that the eigenvalues of

Âs(ε) are strictly within the unit circle for all ε < ε′. Fixing ε < ε′ and using a spectral

decomposition of Âs(ε) implies that the sequence vk can be bounded by

||vk||∞ ≤ ||Âs(ε)kv0||∞ ≤ ||T ||∞||T−1||∞||v0||∞, (2.46)

provided that ||T ||∞||T−1||∞||v0||∞ < δ′ holds, where T is the matrix containing the

eigenvectors of Âs(ε).
9 Therefore, given an ε′′ > 0, we choose

||v0||∞ < δ := min

{
ε′′

||T ||∞||T−1||∞
,

δ′

||T ||∞||T−1||∞

}
,

implying ||vk||∞ < ε′′ for all k = 1, 2, . . . .

Moreover, the eigenvalues Âs(ε) are strictly within the unit circle (ε was picked such

that ε < ε′) and hence,

lim
k→∞
||vk||∞ ≤ lim

k→∞
||Âs(ε)kv0||∞ = 0.

Given the problem data - the matrix P , the vector p, and the number of accelerometers

L - the parameters q and r can be chosen to minimize the absolute values of the eigenvalues

of the matrix As. If eigenvalues with magnitudes less than 1 are obtained, local stability

9The Perron-Frobenius Theorem asserts that the matrix Âs(ε) is always diagonalizable, provided that
all entries are strictly positive. In case some entries are zero, simple arguments ensure that the matrix
Âs(ε) is still diagonalizable.
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of the fixed-point iteration given by (2.39) and (2.40) is guaranteed, provided that the

assumption ω∗ 6= 0 is fulfilled and that

q||
L∑
i=1

mi − Ω∗pi + g∗||2 and r||
L∑
i=1

(mi − Ω∗pi + g∗)pTi ||F

are small. Note that ω∗ = 0 is a set of Lebesgue measure zero and due to measurement

noise it will occur with zero probability in practice. The other two requirements, (2.41),

can be interpreted as bounds on the measurement noise. Simulation results indicate ra-

pid convergence for realistic measurement noise, even when ω∗ = 0, see Section 6. The

experimental results presented in Section 7 suggest that the fixed point iteration might

even converge in case the matrix As has eigenvalues with magnitude greater than one.

Choosing the tuning variables q and r: In case the tuning variable q is chosen to be

1/L, simple expressions for the eigenvalues of the matrix As can be obtained. Note that

the choice q = 1/L might be suboptimal in the sense that the absolute values of the

eigenvalues of As might be further reduced if q is chosen differently.

For q = 1/L the eigenvalues of As are given by

λ1(As) = 0, λ2(As) = ||I − rP ||F +
r

L
||p||22. (2.47)

Minimizing λ2(As) with respect to r yields the optimizer r∗,10

r∗ :=


tr(P )−

√
tr(P )2−c||P ||2F
||P ||2F

c ≥ 0

tr(P )+
√

tr(P )2−c||P ||2F
||P ||2F

c < 0,
c :=

tr(P )2 − 3||p||42
L2

||P ||2F −
||p||42
L2

. (2.48)

Numerical experiments indicate that the choices r = r∗ and q = 1/L provide reasonable

initial guesses for the tuning parameters r and q.

Special Case p = 0: In addition, further simplifications are obtained if the accelero-

meters are placed such that p = 0, i.e. the mean of the accelerometer positions relative to

the fixed pivot is zero. In that case the matrix As is diagonal. Furthermore its eigenvalues

are minimal with q = 1/L and r = tr(P )/||P ||2F , and are given by

λ1(As) = 0, λ2(As) =

√
3− tr(P )2

||P ||2F
. (2.49)

According to Theorem 2, we must have |λ2(As)| < 1 for local convergence, which is

10The additional condition ||P ||F > ||p||22/L guaranteeing that r∗ is actually a minimizer is always
fulfilled and can be verified using Jensen’s inequality. Jensen’s inequality implies further that r∗ is
always real-valued.
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equivalent to √
2||P ||F < tr(P ). (2.50)

In case the accelerometers are placed such that P has eigenvalues which are all equal,

i.e. P = λ(P )I, it follows (directly from the definition of As) that choosing r = 1/λ(P )

results in λ2(As) = 0. Hence, in that case, λ1(As) = λ2(As) = 0, and it can be concluded

that the optimization routine given by (2.39) and (2.40) converges in one step, regardless

of the initial condition (in the almost everywhere sense).

4.3 Generation of Initial Conditions

The algorithm presented in [16] is used to generate the initial conditions, i.e. g0 and Ω0,

for the fixed-point iteration given by (2.39) and (2.40). Let the solutions to the linear

least-squares problem given by (2.15) be denoted by (Ω̂, ĝ). Then the initial conditions

are obtained via the projections

Ω0 = proxM(Ω̂), g0 = proxS2(ĝ). (2.51)

5. Information Content of the Accelerometer Data

In the following, the information content of the accelerometer measurements is quantified

and analyzed using the Fisher information, [22, p. 196]. The analysis is motivated by the

fact that in the high signal-to-noise ratio limit, the maximum likelihood estimate (Ω, g)

reaches the Cramér-Rao bound, which is given by the inverse of the Fisher information

matrix, [23]. We will determine the minimum number of accelerometers needed for the

Fisher information matrix to have full rank. In addition, we will find optimal sensor

placements by maximizing the determinant of the Fisher information matrix.

5.1 Derivation of the Fisher Information Matrix

We recall that the log-likelihood function for the L sensors is proportional to

l(m1, . . . ,mL|g,Ω) = −
L∑
i=1

||mi − Ωpi + g||22. (2.52)

We will express the Fisher information using a parametrization of M and S2. More

precisely, we choose the parameters ω ∈ R3, ω̇ ∈ R3, and n ∈ R2, with Ω = ω̃2 + ˙̃ω ∈ M
and

g = exp(Π̃n)ḡ ∈ S2 (2.53)

for a fixed ḡ ∈ S2, where exp denotes the matrix exponential and Π ∈ R3×2 is a constant

matrix containing two linearly independent vectors as columns, which are both orthogonal
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to ḡ.11 The derivative of the log-likelihood function with respect to the parameters x :=

(ω, ω̇, n) evaluated at (ω, ω̇, 0) is then found to be proportional to

∂l

∂x
= −

L∑
i=1

(mi − Ωpi + ḡ)T
(
2ω̃p̃i, p̃i,−˜̄gΠ

)
, (2.54)

which by virtue of (2.8) (with g = ḡ) reduces to

∂l

∂x
= −

L∑
i=1

nT
i (2ω̃p̃i, p̃i,−g̃Π)︸ ︷︷ ︸

=:Ui

. (2.55)

The evaluation at (ω, ω̇, 0) is without loss of generality, as the vector ḡ can be chosen

arbitrarily. As a result, the Fisher information evaluated at (ω, ω̇, 0) is proportional to

I(x) := E

[
∂l

∂x

T ∂l

∂x

∣∣∣g,Ω] =
L∑
i=1

UT
i E[nin

T
i ]Ui = σ2

n

L∑
i=1

UT
i Ui. (2.56)

5.2 Minimum Number of Accelerometers

In case of the (linear) least-squares solution given by (2.15), at least 4 accelerometers,

which are not aligned on a plane are needed to obtain unique estimates. However, we will

show that the Fisher information matrix is regular even in the case when 3 accelerometers

are used. Due to the fact that the maximum likelihood estimator reaches the Cramér-

Rao bound in the high signal-to-noise ratio limit, [23], this indicates that the proposed

approach might be effective even for configurations with 3 accelerometers. This can be

confirmed by the simulation shown in Section 6.

Proposition 2. Provided that ω 6= 0, the Fisher information matrix has full rank if and

only if span{p1, . . . , pL} = R3.

Proof. The Fisher information was shown to be proportional to I(x). We first note that

I(x) is symmetric and at least positive semi-definite. Moreover, I(x) is singular if and

only if a nonzero set of parameters (v, h, n) ∈ R8 exists such that Ui(v, h, n) = 0 for all

i = 1, 2, . . . , L, which is equivalent to

2ω̃p̃iv + p̃ih− g̃Πn = 0 (2.57)

for all i = 1, 2, . . . , L.

We first argue that in case the vectors p1, . . . , pL do not span R3, the matrix I(x)

is necessarily rank deficient. Indeed, if p1, . . . , pL do not span R3 there exists a nonzero

11In case the coordinate system is chosen such that ḡ = (0, 0,−9.81 m/s2), the columns of Π could be
chosen as (1, 0, 0) and (0, 1, 0).
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vector v0 ∈ R3 that is orthogonal to p1, . . . , pL, and hence, the set of equations (2.57)

vanishes for v = v0, h = 0, and n = 0, for example.

We now show that I(x) has full rank provided that p1, . . . , pL spans R3. The set of

equations (2.57) can be rewritten as

−(2ω̃ṽ + h̃)pi − g̃Πn = 0, (2.58)

which can be used to conclude that

2ω̃ṽ + h̃ = 0 (2.59)

must hold (by adding and subtracting (2.58) for different i and using the fact that

p1, . . . , pL span R3). Taking the trace of (2.59) reveals that v must be orthogonal to

ω in order for (2.59) to be fulfilled. Hence, the symmetric part of (2.59) reduces to

−4vTωI + 2(vωT + ωvT) = 2(vωT + ωvT) = 0,

which implies v = 0 (by assumption ω 6= 0). From (2.59) and (2.58) it follows therefore

that h = 0 and n = 0 must hold, which concludes the proof.

5.3 Accelerometer Placement

The Fisher information can be used to optimize the accelerometer placement. The in-

formation content in the accelerometer data can be quantified, for example, using the

trace (T-optimal), the determinant (D-optimal), or the trace of the inverse of the Fisher

information (A-optimal), see e.g. [24]. We will focus here on the D-optimal design and

treat all estimation variables, that is, ω̇, ω, and g, on equal footing.

An alternative approach would be to focus on the variance (in the high signal-to-

noise ratio limit) corresponding to the angular rate and the g estimate only, or simply on

the variance of the g estimate only. This would naturally lead to an optimization of the

determinant of the inverse Fisher information matrix, where only the parts corresponding

to the angular rates and orientation, or the orientation alone, are considered. It turns out,

however, that the results are similar; in case the optimization contains only the variance

of the g estimate, the optimum accelerometer configuration is one where the “center of

mass” of the sensors (assuming all sensors have equal weight) lies at the pivot; in case

the optimization is based on the combined angular rate and g estimate, essentially the

same result as in the derivation below is obtained.12

In order to proceed, we assume that the tilt g is fixed (the choice of g will be im-

material) and that the components of ω are mutually independent, zero mean, and have

variance σ2
ω. The expected value (with respect to ω) of the Fisher information matrix is

12In that case, (2.64) (see below) reduces to det(Lg20Θ− p̃g̃Π ΠT g̃ p̃).
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then proportional to

L∑
i=1

 4p̃iE[ω̃ω̃]p̃i 2p̃iE[ω̃]p̃i −2p̃iE[ω̃]g̃Π

−2p̃iE[ω̃]p̃i −p̃ip̃i p̃ig̃Π

2ΠT g̃E[ω̃]p̃i ΠT g̃ p̃i −ΠT g̃ g̃Π

 . (2.60)

Without loss of generality, we choose the coordinate system such that g = (0, 0,−9.81 m/s2),

and choose (1, 0, 0) and (0, 1, 0) as the column vectors of the matrix Π. The expression

ΠT g̃ g̃Π simplifies then to −g2
0I2, where I2 ∈ R2×2 is the identity matrix. From the fact

that E[ω̃] = 0 and E[ω̃ω̃] = −2σ2
wI, we obtain

E[I(x)] =
L∑
i=1

 −8p̃ip̃iσ
2
w 0 0

0 −p̃ip̃i p̃ig̃Π

0 ΠT g̃ p̃i g2
0I2

 . (2.61)

In order to simplify notation we introduce

Θ :=
L∑
i=1

−p̃ip̃i, p :=
L∑
i=1

pi, (2.62)

where Θ can be regarded as the inertia of the sensors (each sensor has unit mass) with

respect to the pivot point. As a result, we obtain

E[I(x)] =

 8σ2
wΘ 0 0

0 Θ p̃g̃Π

0 ΠT g̃ p̃ Lg2
0I2

 , (2.63)

and by applying the Schur determinant identity, the determinant of (2.63) is therefore

found to be proportional to

det(Θ)det(Lg2
0Θ− p̃g̃Π ΠT g̃ p̃). (2.64)

From the fact that the expression g̃Π ΠT g̃ reduces to −g2
0diag(1, 1, 0) it can be inferred

that (2.64) is only dependent on the accelerometer placement, but not on the orientation

g. In most applications there are specific requirements on the location of the sensors that

must be taken into account. Given these requirements, one could then try to maximize

(2.64) in order to determine suitable accelerometer placements. We emphasize that such

an optimization optimizes a measure of the information content in the accelerometer

measurements, which is independent of the estimation technique used for inferring the tilt.

However, such an optimization tends to be application specific, due to the requirements

on the sensor locations. We therefore conclude the section by discussing the simple case,
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where the accelerometer placements are restricted to a unit ball around the pivot point.

The main motivation lies not necessarily in the practical relevance of the problem, but

rather in the fact that symmetric and geometrically appealing solutions are obtained.

Proposition 3. Provided that accelerometer placements fulfilling

Θ =
2L

3
I, p = 0, (2.65)

exist, then these conditions are necessary and sufficient for maximizing

det(Θ)det(Lg2
0Θ− p̃g̃Π ΠT g̃ p̃) (2.66)

subject to ||pi||22 ≤ 1 for all i = 1, 2, . . . , L.

Proof. From the fact that p̃g̃Π ΠT g̃ p̃ is positive semi-definite it follows that

det(Lg2
0Θ− p̃g̃Π ΠT g̃ p̃) ≤ det(Lg2

0Θ), (2.67)

where equality holds if and only if p = 0, see [25, p. 274]. Moreover, det(Θ) is upper

bounded by

det(Θ) ≤ (1/3tr(Θ))3 =

(
2/3

L∑
i=1

||pi||22

)3

≤ (2L/3)3,

which follows from the inequality of arithmetic and geometric means, and the constraint

||pi||2 ≤ 1. Moreover, the first inequality reduces to an equality if and only if Θ is pro-

portional to the identity matrix, whereas the second inequality reduces to an equality if

and only if ||pi||2 = 1 for all i = 1, 2, . . . , L. As a result, we therefore obtain that (2.66)

is upper bounded by

(Lg2
0)3 (2L/3)6, (2.68)

where the upper bound is attained if and only if the conditions (2.65) are met. Note that

the condition Θ = 2L/3 I implies implicitly that tr(Θ) = 2L = 2
∑L

i=1 ||pi||22, which is

only fulfilled if ||pi||2 = 1 for all i = 1, 2, . . . , L.

For most applications the optimality conditions given by Prop. 3 are too stringent, as

particularly the condition p = 0 might be impossible to satisfy (see e.g. [2]). However, in

applications where the rigid body is suspended in a gimbal (e.g. for inertially stabilized

platforms), the “center of mass” of the sensors might be chosen to collide with the pivot

resulting in p = 0. In that case, according to [26], Θ is diagonal if the placement of the

accelerometers is such that at least two n-fold symmetry axes exist with n ≥ 3 (or at

least one n-fold symmetry axis (n ≥ 3) and a non-orthogonal 2-fold symmetry axis). This
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Figure 2.3. Depicted are the five Platonic solids and the first three Archimedean solids (from
left to right: Tetrahedron, Cube, Octahedron, Icosahedron, Dodecahedron, truncated Tetrahe-
dron, Cuboctahedron, truncated Cube). All these solids possess at least one of the point group
symmetries T , Tn, Th, O, Oh, I, Ih. Placing accelerometers at the vertices of any of these solids
would therefore yield an optimal accelerometer configuration according to Prop. 3, provided that
the pivot lies at the center.

implies that an optimal placement is achieved if the configuration has one of the following

point group symmetries: T ; Tn; Th; O; Oh; I; Ih (see e.g. [27] for an introduction to point

group symmetries). Potential configurations therefore include accelerometer placements

on the vertices of Platonic solids, the Archimedean solids or the Catalan solids, some of

which are shown in Fig. 2.3.

6. Simulations

We consider a rigid body with four accelerometers, placed at

r1 = (1, 0, 0)T, r2 = (0, 1, 0)T,

r3 = (0, 0, 1)T, r4 =
1√
3

(0.2, 0.2, 0.2)T.

The motion of the rigid body is generated by

ω̇(t) = qk, t ∈ [kTs, (k + 1)Ts),

ṘIB = RIBω̃, RIB(0) = I, ω(0) = 0,

with qk ∼ N (0, (10 rad/s2)2 · I), where N (0,Σ) denotes a multivariate Gaussian random
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6. Simulations

variable with zero mean and variance Σ. The differential equation ṘIB = RIBω̃ is integra-

ted numerically with MATLAB’s ode45 routine using a relative tolerance of 10−5. The

noise on the accelerometer is assumed to be additive:

mi(k) =
(
ω̃(kTs)

2 + ˙̃ω(kTs)
)
pi − g(kTs) + ni(k), (2.69)

k = 0, 1, . . . , i = 1, 2, 3, 4, where Ts = 20ms denotes the sampling time, and ni(k) is

independent Gaussian noise (independent across time and across the different sensors),

with ni(k) ∼ N (0, (7.70 · 10−3 m/s2)2 · I).13 A typical trajectory realization is depicted in

Fig. 2.4.

The fixed-point iteration given by (2.39) and (2.40) is initialized with (2.51). We chose

q = 1/4 and r = 0.975 according to (2.48) in Section 4.2. The resulting matrix As as

defined in Theorem 2 has eigenvalues located at λ1(As) = 0, λ2(As) = 0.9479, which

according to Theorem 2 guarantees local convergence provided that the noise is small

enough. As stopping criterion a relative tolerance of 10−8 was used, i.e. if

||gk − gk−1||2
||gk||2

≤ 10−8, and
||Ωk − Ωk−1||F
||Ωk||F

≤ 10−8

was met, the fixed-point iteration was stopped. For the trajectory shown in Fig. 2.4,

an average of 28 iterations was needed for convergence (with a standard deviation of

approximately 9 iterations), see Fig. 2.5.

Fig. 2.6 shows the two-norm of the estimation errors related to the gravity vector

and the angular velocity. Note that the error of the angular velocity estimate decreases

over time. This is due to the small angular velocities occurring initially. Since the angular

velocity enters the estimation as ω̃2, the sensitivity to the measurement noise is higher

for small angular velocities. The error in the gravity vector is compared to the method

proposed in [16]. On average, the estimation error of the gravity vector (two-norm) can

be reduced by around 35%, for the trajectory depicted in Fig. 2.4. The estimation per-

formance and the number of iterations needed is evaluated over a set of 50 randomized

trajectories, see Tab. 1 and Tab. 2. On average, the tilt estimation error (two-norm) is

reduced by approximately 45% compared to the approach presented in [16]. An average

of 26 iterations with a standard-deviation of approximately 9 iterations is needed for

convergence.

The influence of accelerometer-bias on the estimation performance (quantified by

E[||ĝ − g||2]) is shown in Tab. 3. The estimation performance is again evaluated over

a set of 50 randomized trajectories, where a different accelerometer-bias is introduced

for each trajectory (uniformly sampled, for each sensor and each direction). The results

indicate a linear correlation between the bias and the estimation performance. The re-

13The noise variance is taken from the specifications of the InvSense MPU6000 accelerometer, see
http://www.invensense.com.
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Figure 2.4. Trajectory of the gravity vector g (top) and the angular velocity ω (bottom).

lative performance increase compared to the approach presented in [16] remains roughly

constant.

We also study the influence of the magnitude of ω on the estimation performance.

According to Thm. 2, local convergence of the algorithm can be guaranteed as long as

ω∗ 6= 0. Thus, one might expect a deterioration of the estimation performance when ω

approaches zero. Indeed, this can be confirmed numerically, as shown in Fig. 2.8, where

we chose g = (0, 0,−9.81 m/s2), ω̇ = 0, ω = (ωx, 0, 0), and successively reduced ωx from

1 rad/s to 0. In contrast, the performance of the tilt estimate and the estimate of the rate

of change of the angular velocities are not affected by the magnitude of ω.

In addition, the estimation is evaluated for a configuration with three accelerometers

located at (0.05, 0, 0), (0, 0.05, 0), (0, 0, 0.05), and the trajectory given by Fig. 2.4. The

optimization is solved with q = 1/3 and r = 400, which is obtained from (2.48) in

Section 4.2. The estimation performance decreases significantly when using only three

accelerometers, as can be seen in Fig. 2.7. In particular, if one component of the angular

velocity is close to zero, the estimation error increases by up to two magnitudes. Still, the

algorithm given by (2.39) and (2.40) converges, yielding a unique gravity vector estimate

and a unique angular velocity estimate (possibly a local minimum). This is in contrast

to the method presented in [16] where a configuration with three accelerometers would

not provide unique estimates.
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Figure 2.5. Number of fixed-point iterations needed to reach convergence for the trajectory
depicted in Fig. 2.4.
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Figure 2.6. Estimation performance for the trajectory depicted in Fig. 2.4. The two-norm of
the angular velocity error (absolute value, since we can only infer ω̃2) is depicted on top. The
two-norm of the error related to the gravity estimate is depicted on the bottom.

7. Experimental Results

We conducted experiments on a real-world testbed (we used a balancing robot, see e.g.

[2]), where four inertial measurement units (of the type InvSense MPU6000), each con-
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Figure 2.7. Estimation performance for the trajectory depicted in Fig. 2.4 for the configu-
ration with three accelerometers. The two-norm of the angular velocity error (absolute value,
since we can only infer ω̃2) is depicted on top. The two-norm of the error related to the gravity
estimate is depicted on the bottom.

Table 1. Evaluation of the tilt estimation for 50 randomized trajectories and comparison to
the approach presented in [16] (denoted previous approach below).

E[||ĝ − g||2] Var[||ĝ − g||2]

Approach herein 0.8 · 10−3 2.1 · 10−7

Previous approach 1.5 · 10−3 6.1 · 10−7

Reduction 45% 65%

sisting of an accelerometer, gyroscope, and magnetometer, were placed at (in m)

r1 = (0.122, 0.013, 0.145)T, r2 = (0.145, 0.122, 0.013)T,

r3 = (0.028, 0.013, 0.005)T, r4 = (0.005, 0.122, 0.013)T.

The ground-truth data for the tilt was obtained using a motion capture system, whereas

the ground-truth data for the angular velocity was collected using the gyroscopes, which

were part of the inertial measurement units. The ground-truth rate of change of the

angular velocity was obtained by first-order finite differences with a step size of 20 ms. The
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Table 2. Evaluation of the estimation errors and the number of iterations required for con-
vergence for 50 randomized trajectories.

E[|||ω̂| − |ω|||2] E[|| ˙̂ω − ω̇||2] av. iter.

App. herein 0.9 · 10−3 1.1 · 10−3 26

Table 3. Evaluation of the tilt estimation for 50 randomized trajectories and comparison to the
approach presented in [16] (denoted previous approach below) with increasing accelerometer-bias.
For each trajectory the accelerometer-bias is uniformly sampled and the estimation performance
is quantified by E[||ĝ − g||2].

Unif([−0.1, 0.1]) Unif([−0.5, 0.5]) Unif([−1, 1])

App. herein 0.065 0.323 0.643

Prev. app. 0.116 0.582 1.165

accelerometers were calibrated prior to the experiments in order to account for the bias

and the tuning parameters q and r were chosen to approximately minimize the eigenvalues

of the matrix As, as defined in Theorem 2. This resulted in q = 0.1 and r = 11.5. The

same stopping criterion as in the previous section was used. The resulting trajectories are

depicted in Fig. 2.9. For space reasons only the first component of each vector is plotted.

A good fit of the gravity vector and the rate of change of the angular velocity can be

observed. The angular velocity enters the optimization as ω̃2, which inherently decreases

its estimation accuracy. In addition, the quality of the estimate is further decreased due to

uncertainties in the accelerometer placements. This was confirmed in experiments, where

the angular velocity estimate was found to be relatively noisy.

Fig. 2.10 compares the error in the gravity estimate resulting from the algorithm

presented here to the method proposed in [16], and indicates a significant performance

increase. The corresponding numerical values are shown in Tab. 4. The angular velocity

error, the error of the rate of change of the angular velocity, and the number of iterations
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Figure 2.8. Influence of the magnitude of ω on the performance of the angular rates estimate.
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Table 4. Evaluation of the tilt estimation on real-world measurements and comparison to the
approach presented in [16] (denoted previous approach below).

E[||ĝ − g||2] Var[||ĝ − g||2]

Approach herein 1.1 · 10−1 1.6 · 10−3

Previous approach 1.7 · 10−1 4.1 · 10−3

Reduction 37% 60%

Table 5. Evaluation of the estimation errors on real-world measurements and the number of
iterations required for convergence.

E[||ω̂ − ω||2] E[|| ˙̂ω − ω̇||2] av. iter.

App. herein 7.8 · 10−1 1.1 209

needed for convergence are presented in Tab. 5. The time history of the error (two-norm)

of the rate of change of the angular velocity is shown in Fig. 2.11. Compared to the

simulation example, more iterations are needed in the real-world experiment. This can

be explained by the accelerometer placement resulting in a matrix As with eigenvalues of

larger magnitude. In fact, the matrix As has eigenvalues of magnitude greater than one,

and therefore the requirements for guaranteeing local convergence according to Theorem 2

are not fulfilled. Nevertheless, the estimates were found to converge in practice, which

highlights the robustness of the algorithm. Note that the accelerometer configuration used

in the experiments was fixed and not specifically adjusted to our needs.

Compared to the simulations in Section 6, the overall performance of the algorithm is

inferior in the real-world experiment although the noise characteristics in the simulation

were chosen to match the experiment. We conjecture that this is partly related to the

accelerometer placement, but also due to uncertainties in the accelerometer positions and

calibration biases.

8. Conclusion

A method for accelerometer-based state determination of a rigid body with a single pivot

is presented. The pivot is assumed to be at rest or to move uniformly. The proposed

approach extends the method from [16] by accounting for the angular and centripetal

acceleration, which allows estimation of the gravity vector and the angular velocity, as

well as the rate of change of the angular velocity. Simulation results indicate that the

method works reliably (convergence after few iterations) and outperforms [16] in terms

of precision. This was confirmed in real-world experiments.
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Figure 2.9. Depicted is the first component of the gravity vector g (top), the absolute value of
the first component of the angular velocity ω (middle), and the first component of rate of change
of the angular velocity ω̇ (bottom). The estimated quantities are shown in blue, the ground-truth
data is shown in red.
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Figure 2.10. Estimation performance on real measurements. Depicted is the two-norm of the
estimation error of the gravity vector.
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Figure 2.11. Estimation performance on real measurements. Depicted is the two-norm of the
estimation error of the rate of change of the angular velocity.

A. Bound on the Lipschitz constant of proxM

A bound on the Lipschitz constant of proxM, denoted by LM, is computed in four steps.

The Einstein summation convention and index notation will be used in the following.
We first note that for a diagonal matrix A0 := diag(λ1, λ2, λ3) ∈ R3×3 with λ1 ≤

λ2 < λ3, λ1 + λ2 < 0, the partial derivatives of the projection on M can be calculated
analytically and are given by

∂proxM
∂A11

∣∣∣∣
A0

=
∂proxM
∂A22

∣∣∣∣
A0

=
1

2

 1 0 0

0 1 0

0 0 0

 ,

∂proxM
∂A12

∣∣∣∣
A0

=
1

2

 0 1 0

−1 0 0

0 0 0

 ,

∂proxM
∂A21

∣∣∣∣
A0

=
1

2

 0 −1 0

1 0 0

0 0 0

 ,

∂proxM
∂A13

∣∣∣∣
A0

=
1

4

λ1 + λ2
λ3 − λ1

 0 0 1

0 0 0

1 0 0

+
1

2

 0 0 1

0 0 0

−1 0 0

 ,

∂proxM
∂A23

∣∣∣∣
A0

=
1

4

λ1 + λ2
λ3 − λ2

 0 0 0

0 0 1

0 1 0

+
1

2

 0 0 0

0 0 1

0 −1 0

 ,

∂proxM
∂A31

∣∣∣∣
A0

=
1

4

λ1 + λ2
λ3 − λ1

 0 0 1

0 0 0

1 0 0

+
1

2

 0 0 −1

0 0 0

1 0 0

 ,

∂proxM
∂A32

∣∣∣∣
A0

=
1

4

λ1 + λ2
λ3 − λ2

 0 0 0

0 0 1

0 1 0

+
1

2

 0 0 0

0 0 −1

0 1 0

 ,

∂proxM
∂A33

∣∣∣∣
A0

= 0. (2.70)
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We show that

Lemma 3. Let A ∈ R3×3, B ∈ R3×3, T ∈ SO(3), and Aij denote the ij’th entry of the

matrix A. Then it holds that∥∥∥∥ ∂proxM
∂Aij

∣∣∣∣
A

Bij

∥∥∥∥
F

=

∥∥∥∥ ∂proxM
∂Aij

∣∣∣∣
TATT

(TBTT)ij

∥∥∥∥
F

,

provided that the partial derivative of proxM evaluated for A is well defined.

Proof. The projection onto the set M is rotationally invariant. Therefore it holds that

for any matrix A ∈ R3×3,

proxM(A) = TTproxM(TATT)T, (2.71)

or equivalently (using index notation and the Einstein summation convention),

proxMjl(A) = TijproxMik(TAT
T)Tkl. (2.72)

Taking the derivative with respect to the element Amn yields

∂proxMjl

∂Amn

∣∣∣∣
A

= Tij
∂proxMik

∂Aop

∣∣∣∣
TATT

∂(TATT)op
∂Amn

Tkl. (2.73)

The squared Frobenius norm is the sum of all squared entries of a matrix, and therefore

∥∥∥∥ ∂proxM
∂Amn

∣∣∣∣
A

Bmn

∥∥∥∥2

F

=
∂proxMjl

∂Amn

∣∣∣∣
A

Bmn
∂proxMjl

∂Aqr

∣∣∣∣
A

Bqr. (2.74)

From (2.73) it follows that

∥∥∥∥ ∂proxM
∂Amn

∣∣∣∣
A

Bmn

∥∥∥∥2

F

=
∂proxMik

∂Aop

∣∣∣∣
TATT

∂proxMst

∂Auv

∣∣∣∣
TATT

TijTklTomTpnBmnTsjTtlTuqTvrBqr

=
∂proxMik

∂Aop

∣∣∣∣
TATT

∂proxMik

∂Auv

∣∣∣∣
TATT

TomBmnTpnTuqBqrTvr

=

∥∥∥∥ ∂proxM
∂Auv

∣∣∣∣
TATT

(TBTT)uv

∥∥∥∥2

F

,

where TTT = I has been used.

Next, an upper bound to the difference proxM(A1) − proxM(A2) is derived. More

precisely,

Lemma 4. Let A1, A2 ∈ R3×3 be symmetric matrices such that A1t + A2(1 − t) has

eigenvalues λ1(t) ≤ λ2(t) < λ3(t) with λ1(t) + λ2(t) < 0 for all t ∈ [0, 1]. Then it holds
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that ‖proxM(A1)− proxM(A2)‖F can be bounded by

∫ 1

0

∥∥∥∥∥ ∂proxM
∂Aij

∣∣∣∣
B1(t)+(1−t)B2(t)

(B1(t)−B2(t))ij

∥∥∥∥∥
F

dt,

where B1(t), B2(t) are such that

B1(t) := T (t)A1T (t)T, B2(t) := T (t)A2T (t)T,

for some T (t) ∈ SO(3), t ∈ [0, 1].

Proof. The matrix A1t+A2(1− t) is symmetric and has eigenvalues λ1(t) ≤ λ2(t) < λ3(t)

with λ1(t)+λ2(t) < 0 for all t ∈ [0, 1] and therefore the derivative of proxM(A1t+(1−t)A2)

with respect to t is well defined, see also Lemma 3. Therefore

||proxM(A1)− proxM(A2)||F =
∣∣∣∣∣∣ ∫ 1

0

d

dt
proxM(A1t+ (1− t)A2)dt

∣∣∣∣∣∣
F

≤
∫ 1

0

∣∣∣∣∣∣ d

dt
proxM(A1t+ (1− t)A2)

∣∣∣∣∣∣
F

dt

=

∫ 1

0

∣∣∣∣∣∣ ∂proxM
∂Aij

∣∣∣∣
A1t+(1−t)A2

(A1 − A2)ij

∣∣∣∣∣∣
F

dt.

The result follows by invoking Lemma 3.

Lemma 5. For symmetric matrices A1, A2, such that A1t + (1 − t)A2 has eigenvalues

λ1(t) ≤ λ2(t) < λ3(t) with λ1(t) + λ2(t) < 0 for all t ∈ [0, 1], it holds that

‖proxM(A1)− proxM(A2)‖F ≤ L1||A1 − A2||F , (2.75)

with

L1 := max
t∈[0,1]

(
1,

√
2

4

|λ1(t) + λ2(t)|
λ3(t)− λ2(t)

)
. (2.76)

Proof. From Lemma 4 it follows that ||proxM(A1)− proxM(A2)||F can be bounded by

∫ 1

0

∥∥∥∥∥ ∂proxM
∂Aij

∣∣∣∣
B1(t)+(1−t)B2(t)

(B1(t)−B2(t))ij

∥∥∥∥∥
F

dt, (2.77)
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where B1(t), B2(t) are such that

B1(t) := T (t)A1T (t)T, B2(t) := T (t)A2T (t)T,

for T (t) ∈ SO(3). The matrices A1 and A2 are symmetric and therefore T (t) can be

chosen such that for all t ∈ [0, 1], B1(t) + (1 − t)B2(t) is diagonal with real eigenvalues

λ1(t) ≤ λ2(t) < λ3(t), λ1(t) + λ2(t) < 0. By inserting (2.70) and accounting for the fact

that B1(t) and B2(t) are symmetric, it follows that

∣∣∣∣∣∣ ∂proxM
∂Aij

∣∣∣∣
B1(t)+(1−t)B2(t)

(B1(t)−B2(t))ij

∣∣∣∣∣∣2
F

=
1

2
(B̄11(t) + B̄22)2

+

(
1

4

λ1(t) + λ2(t)

λ3(t)− λ1(t)
(B̄13(t) + B̄31(t))

)2

+

(
1

4

λ1(t) + λ2(t)

λ3(t)− λ2(t)
(B̄23(t) + B̄32(t))

)2

,

(2.78)

where B̄(t) := B1(t)−B2(t). Using Jensen’s inequality results in

∣∣∣∣∣∣ ∂proxM
∂Aij

∣∣∣∣
B1(t)+(1−t)B2(t)

(B1(t)−B2(t))ij

∣∣∣∣∣∣2
F

≤ max

{
1, 2

(
1

4

λ1(t) + λ2(t)

λ3(t)− λ1(t)

)2

, 2

(
1

4

λ1(t) + λ2(t)

λ3(t)− λ2(t)

)2
}∥∥B̄(t)

∥∥2

F
,

= max

{
1, 2

(
1

4

λ1(t) + λ2(t)

λ3(t)− λ2(t)

)2
}∥∥B̄(t)

∥∥2

F
.

(2.79)

The Frobenius norm is invariant under rotations and therefore ||B̄(t)||2F = ||A1 − A2||2F
for all t ∈ [0, 1]. Thus, this yields

||proxM(A1)− proxM(A2)||F ≤
∫ 1

0

max

{
1,
√

2

(
1

4

|λ1(t) + λ2(t)|
λ3(t)− λ2(t)

)}
dt||A1 − A2||F

≤ sup
t∈[0,1]

{
1,
√

2

(
1

4

|λ1(t) + λ2(t)|
λ3(t)− λ2(t)

)}
||A1 − A2||F .

The supremum is bounded since λ2(t) < λ3(t) for all t ∈ [0, 1], and is attained since [0, 1]

is closed.

Lemma 6. For arbitrary matrices A1, A2, such that

symm(A1)t+ (1− t)symm(A2)
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has eigenvalues λ1(t) ≤ λ2(t) < λ3(t) with λ1(t) +λ2(t) < 0 for all t ∈ [0, 1], it holds that

‖proxM(A1)− proxM(A2)‖F ≤ LM ‖A1 − A2‖F , (2.80)

with

LM := max
t∈[0,1]

{
1,

√
2

4

|λ1(t) + λ2(t)|
λ3(t)− λ2(t)

}
. (2.81)

Proof. From the analytic solution of proxM, Lemma 5, and the fact that LM ≥ 1, it can

be inferred that

||proxM(A1)− proxM(A2)||F = ||skew(A1)− skew(A2)+

proxM(symm(A1))− proxM(symm(A2))||F
≤ LM||symm(A1)− symm(A2)||F + ||skew(A1)− skew(A2)||F
≤ LM (||symm(A1 − A2)||F + ||skew(A1 − A2)||F )

≤ LM||A1 − A2||F .

From the previous result it follows that

Proposition 4. Let A∗ ∈ M be such that symm(A∗) has eigenvalues λ1 = λ2 < λ3 =

0. Then, for any ε > 0 there exists a δ > 0, such that for all A1, A2 ∈ R3×3, with

||A1 − A∗||F < δ, ||A1 − A2||F < δ implies

||proxM(A1)− proxM(A2)||F ≤ (1 + ε)||A1 − A2||F .

Proof. Note that ||A1 − A2||F < δ and ||A1 − A∗||F < δ implies ||A2 − A∗||F < 2δ. The

eigenvalues are continuous functions of the matrix elements, [21, p. 26], and therefore

there exists a δ > 0 such that for all ||A1 − A2||F < δ it holds that the eigenvalues of

symm(A1)(t) + (1− t)symm(A2)

fulfill λ1(t) ≤ λ2(t) < λ3(t) and λ1(t) + λ2(t) < 0 for all t ∈ [0, 1], and

LM = max
t∈[0,1]

{
1,

√
2

4

|λ1(t) + λ2(t)|
λ3(t)− λ2(t)

}
≤ 1 + ε.

Note that for δ → 0 it follows that A1 → A∗, A2 → A∗ and therefore LM → 1. Therefore

by Lemma 6 the result follows.
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B. Bound on the Lipschitz constant of proxS2

Similar to the derivation of the Lipschitz constant of proxM, the rotational invariance

of the two norm can be exploited to derive bounds on the Lipschitz constant of proxS2 .

Without loss of generality, we consider the case where x0 = (0, 0, r), r > 0. It can be

shown that

∂proxS2

∂x1

∣∣∣∣
x0

=

 g0
r

0

0

 ,
∂proxS2

∂x2

∣∣∣∣
x0

=

 0
g0
r

0

 ,
∂proxS2

∂x3

∣∣∣∣
x0

= 0. (2.82)

Using a similar argument to the proof of Lemma 4 it follows that ||proxS2(g1)−proxS2(g2)||2
can be bounded by

∫ 1

0

∣∣∣∣∣∣ ∂proxS2

∂xi

∣∣∣∣
g1t+(1−t)g2

(g1 − g2)i

∣∣∣∣∣∣
2
dt

≤ g0

mint∈[0,1] ||g1t+ (1− t)g2||2
||g1 − g2||2. (2.83)

This leads to

Proposition 5. Let the vector a∗ be such that a∗ ∈ S2. Then, for all ε > 0 there exists

a δ > 0 such that for all a1, a2 ∈ R3 with ||a1 − a∗||2 < δ, ||a1 − a2||2 < δ implies that

||proxS2(a1)− proxS2(a2)||2 ≤ (1 + ε)||a1 − a2||2.

Proof. We have that mint∈[0,1] ||a1t + (1 − t)a2||2 > g0 − 2δ, since ||a1 − a∗||2 < δ and

||a2 − a∗||2 < 2δ. Therefore

||proxS2(a1)− proxS2(a2)||2 ≤
g0

g0 − 2δ
||a1 − a2||2. (2.84)

Choosing δ = g0ε/(2(1 + ε)) implies g0/(g0 − 2δ) = (1 + ε) and the result follows.
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A flying vehicle actuated by
ducted fans





Paper P3

The Flying Platform - A testbed for ducted

fan actuation and control design

Michael Muehlebach and Raffaello D’Andrea

Abstract

This article discusses the design of an unmanned aerial vehicle whose purpose
is to study the use of electric ducted fans as control and propulsion system. Thrust
vectoring is essential for stabilizing the vehicle. We present measurement results
characterizing the thrust vectoring capabilities of the propulsion system (both sta-
tically and dynamically), discuss a first-principle model describing the behavior of
the flying machine, and analyze and quantify the controllability about hover. The
first-principle model is subsequently used for a cascaded control design, which is
shown to work reliably in practice. Furthermore, system identification results are
discussed and used to extend the model. The resulting augmented model is shown
to match the measured frequency response function.

Published in Mechatronics.
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1. Introduction

The design and control of unmanned aerial vehicles has been an active field of research in

the past years, not least because of the numerous applications including surveillance, data

acquisition, aerial photography, construction, transportation, and entertainment. Often,

flying vehicles combining efficient forward flight, high maneuverability, and vertical take-

off and landing capabilities are highly desirable. This article aims therefore at studying the

properties of electric ducted fans as control and propulsion system for flying machines,

where size is limited, but high static thrusts are required. This includes, for example,

tailsitters, hovercrafts or even actuated wingsuit flight, [1].

To that extent, the Flying Platform, a flying vehicle actuated by three electric ducted

fans is introduced, see Fig. 3.1.14 In addition to their aerodynamic efficiency, [2, p. 322],

resulting in high thrusts at moderate sizes, ducted fans have the advantage that the

moving parts are shielded, protecting the propeller blades from undesired contacts with

the environment. Moreover, the high exit velocities can be exploited for thrust vectoring.

Thus, each ducted fan of the Flying Platform is augmented with an exit nozzle and control

flaps to direct the airflow. The thrust vectoring is essential for stabilizing the vehicle.

The article includes experimental results characterizing the static maps from flap

angles to thrusts, as well as the transfer functions from fan and servo commands to

thrusts, thereby quantifying the available actuation bandwidth. For control and analysis

purposes a low-complexity model is introduced. The mechanical design of the Flying

Platform is optimized for maximum control authority; a closed-form expression for the

determinant of the controllability Gramian is derived, providing a means to quantify

and optimize the controllability of the vehicle by trading off the total inertia with the

lever arm of the thrust vectoring system. The low-complexity model is used to derive a

cascaded control law, stabilizing the vehicle about hover. The parameters of the control

law are related to time constants of the closed-loop dynamics, which enables an intuitive

tuning. The controller is shown to work reliably in flight experiments. A frequency domain

system identification is presented, showing the limitations of the low-complexity model at

frequencies below 1 Hz. We extend the model by including gyroscopic and aerodynamic

effects, such as momentum drag (due to the redirection of the airflow by the ducted fans)

yielding an augmented model that roughly matches the measured frequency response

function.

Related work: Previous work, see e.g. [3], [4], [5], [6], focused on aspects related to

the modeling, the design and the control laws of flying vehicles with a single duct. The

authors of [3] present a controller based on dynamic inversion of a low-complexity model

in combination with a neural network for capturing the unmodeled dynamics. The con-

trol design is shown to work reliably in real world experiments. In [4], nonlinear control

techniques are applied for simultaneous force and position tracking by a ducted-fan vehi-

cle. The authors emphasize the unstable zero dynamics of the open-loop system, which is

14A video showing the Flying Platform can be found under https://www.youtube.com/watch?v=

NYY9q-vs4Nw.
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Figure 3.1. The Flying Platform hovering in the Flying Machine Arena.

attributed to the fact that the thrust vectoring acts below the center of gravity, see also

[7]. Other nonlinear control approaches include a sliding mode controller, [8], and nonli-

near receding horizon control accounting for actuator saturations in [9]. In contrast, the

authors in [10] present a linear cascaded control design and a linear estimator design for a

ducted-fan vehicle with two counter-rotating rotors. The authors emphasize the benefits

of the cascaded control design with regards to a practical implementation. In [5] and [6],

the effects of crosswinds on the aerodynamics of a ducted fan vehicle are discussed. It is

pointed out that the redirection of crosswinds by the propeller and the duct results in

a drag force, linearly dependent on the forward velocity of the flying vehicle. This force

induces a pitching moment on the center of gravity leading to an unstable open-loop sy-

stem. This effect is further investigated in [11] by means of computational fluid dynamics

and wind tunnel testing (see also [12] for further experimental results). The authors of

[13] use a planar particle image velocimeter system to investigate the velocity profile in

ducted fans. Both experimental data and computational predictions based on the Navier-

Stokes equation are shown to agree at hover, as well as for horizontal movements. The

results confirm that a horizontal movement redirects, respectively distorts the incoming

airflow.

In [14] and [15], 4 ducted fans are assembled in a quadrotor configuration and the

resulting flight performance is analyzed. Thereby two ducted fans are counter rotating

for stabilizing yaw. In a more recent work, the authors of [16] compare and implement

several extensions to a standard quadrotor configuration: 1) a quadrotor that can tilt its

rotors, 2) a quadrotor that is extended with two ducted fans, both of which can vector the

thrust, 3) four ducted fans aligned in a quadrotor configuration, all of which can vector

the thrust. Thrust vectoring is achieved by moving the whole exit nozzle. The designs

are motivated by the fact that these vehicles can perform position set point changes or

compensate cross winds without requiring the vehicle to tilt. In all the designs, thrust

vectoring is enhancing the maneuverability of the vehicle, but is not crucial for stability.

Compared to the ducted fan vehicles presented in the literature, the Flying Platform
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is significantly different. Instead of a relatively large shroud, covering a single or two

counter-rotating propellers with rotary speeds of roughly 10000 rpm, see e.g. [3], three

electric ducted fans, each of which can vector the thrust, are used to actuate the Flying

Platform. Thurst vectoring is essential for stabilizing the vehicle. The electric ducted fans

have a diameter of 90 mm, which is small compared to the overall dimension of the Flying

Platform (about 1 m). Nevertheless, they provide a total thrust of roughly 45 N each, at

around 30000 rpm, and achieve exit velocities up to 90 m/s.15 The high exit velocities

enable efficient thrust vectoring; compared to the single-duct vehicle presented in [3],16

the thrust generated by the control surfaces of the Flying Platform is roughly 5-10 times

larger. Moreover, the high rotation speeds of the ducted fans lead to gyroscopic torques,

which are quantified by analyzing real flight data.

The characterization and modeling of flying vehicles with system identification techni-

ques has a long history, [17]. In the past years, various models for different types of un-

manned aerial vehicles have been identified. Helicopters are for example considered in [18],

a fixed-wing aircraft in [19], and multirotors in [20]. A survey and categorization of these

identification results can be found in [21]. We will present a non-parametric frequency

domain-based system identification of the Flying Platform, which provides a means to

asses the accuracy of two first-principle models with various degrees of complexity.

Outline: The hardware design is covered in Sec. 2, where the properties of a single

actuation unit, comprising an electric ducted fan, an exit nozzle, and control flaps for

thrust vectoring, are investigated. Both static and dynamic thrust measurements are

presented. The section concludes by discussing how the actuation units are combined in

the Flying Platform design. In Sec. 3, a low-complexity model describing the dynamics of

the Flying Platform is presented. The dynamic model is used for optimizing the control

authority of the thrust vectoring by the mechanical design, leading to a systematic trade-

off between the lever arm and the total inertia of the vehicle. The model is also used for

a cascaded control design as presented in Sec. 4. Flight tests show the effectiveness of

the proposed control design. Sec. 5 discusses the results of a frequency domain system

identification. It is shown that the low-complexity model explains the frequencies above

1 Hz well, but has limited predictive power at lower frequencies. It is argued that the

model mismatch is possibly due to unmodelled aerodynamic effects, which are inherent

to the ducted fan actuation. Therefore an augmented model is derived providing a better

explanation of the measured data. The article concludes with final remarks in Sec. 6.

2. Hardware design

This section describes the hardware design of the Flying Platform. We start by presenting

the design of a single actuation unit, before explaining how these are combined to actuate

15These values are taken from the datasheet of the fans.
16Other previously presented vehicles seem to be similar; [4]-[6] do not provide measurement results

explicitly quantifying the thrust vectoring.
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electric ducted fan

exit nozzle

motor controller mount

servo

control flap 2

control flap 1

Figure 3.2. The different components of a single actuation unit.

the Flying Platform.

2.1 Actuation unit

An actuation unit consists of an electric ducted fan, an outlet nozzle, and two control

flaps for thrust vectoring, see Fig. 3.2.

The thrust is generated by the Schübeler DS-51-DIA HST electric ducted fan driven

by the brushless DC motor DSM4640-950. According to the datasheet of the manufactu-

rer the ducted fan is optimized for high static thrust, yielding exit velocities up to 90 m/s.

This makes thrust vectoring particularly interesting, since the force resulting from a re-

direction of the airflow is proportional to the square of the airflow velocity. The electric

ducted fan is embedded in a convergent exit nozzle, which has an inlet area of 6940 mm2

and an outlet area of 5540 mm2. Thus, the cross section is reduced by around 20% cau-

sing the airflow to accelerate through the nozzle. The motor controller (YGE 90HV) is

mounted to the exit nozzle and is cooled by the airflow. More precisely, the fins that are

attached to the motor controller are inserted in the airflow through the hole in the exit

nozzle, as shown in Fig. 3.2. The hole in the exit nozzle is designed such that the motor

controller holds in place (press fit). In addition, the outlet nozzle has a mount for the two

servos (Dynamixel RX-24F), where each of them actuate a control flap. Both the outlet

nozzle and the control flaps are 3D-printed in ABS-M30. The roughness average charac-

terizing the surface roughness of the flaps and the exit nozzle is estimated to be around

Ra = 3.2µm. In [22], the impact of roughness on the lift characteristics of a NACA0015
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Figure 3.3. Side and top view of control flap 2. The flap has 80mm length (chord length)
and 83mm width. Compared to the control flap 1, which has the same dimensions and the same
airfoil (NACA0015), a triangular part of control flap 2 is cut out.

airfoil is characterized. It is found that at a Reynolds number of 220000, which is com-

parable to our set-up, an increased roughness would reduce the produced lift up to 40%.

However, an increased roughness also delays the airfoil’s stall to higher angles of attacks

(up to a factor of two). In our case, the flaps, which have likewise a NACA0015 profile,

operate at relatively high angles of attack, and therefore the roughness of the airfoil is

not necessarily a disadvantage, as it might prevent stall. Note that the effect of roughness

seems strongly influenced by the Reynolds number and the specific airfoil. For example,

the reduction of lift due to roughness reported in [23], where windtunnel tests with the

DU300-mod airfoil at Reynolds numbers above 3.6 · 106 are presented, are less drastic.

The two control flaps are aligned orthogonally to simplify the mechanical design of the

actuation mechanism. To achieve an actuation radius of ±18◦ for both flaps, a triangular

part of control flap 2 is cut out, thereby reducing the maximum thrust deviation achieved

by control flap 2 approximately by a factor of two. A chord length of 80 mm is chosen for

both flaps. The choice of the airfoil (NACA0015) is based on an optimization of the stall

angle with the XFoil software package17 at a Reynolds number of 350000, corresponding

to a typical airflow velocity of 70 m/s.18

Characterization of a single actuation unit: The available thrust, and the ability of

the control flaps to vector thrust is characterized using force measurements with the

transducer ATI Mini-40 using the SI-20-1 calibration. This results in a sensing range of

±60 N in the vertical direction and ±20 N in the horizontal direction, with a resolution

of 0.01 N. The experimental results are presented in the following.

17See http://web.mit.edu/drela/Public/web/xfoil/.
18The airflow velocity estimate is based on momentum theory, [2, p. 322, equation (6.41)]. For the

calculation of the Reynolds number a temperature of 30◦ C is assumed, which is motivated by the heat
loss of the motor controller and the electrical motor. The parameter Ncrit that describes the transition
criterion in XFoil is set to 7.
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Static thrust measurements are shown in Fig. 3.4. A single actuation unit is attached

to the load cell. The motorcontroller, the servos, and the load cell are interfaced using

the PX4 flight management unit, [24]. The fan is run at a constant pulse-width modula-

tion (PWM) rate, resulting in a constant thrust of 26.4 N when both control flaps point

straight down (this corresponds roughly to the hover condition of the Flying Platform).

Measurements are taken at 7 different flap angles, which is found to be enough for guaran-

teeing that the 68% confidence interval of a resulting linear fit is below 0.024 N/◦ (slope)

and 0.27 N (offset). The flap angle is set by the servo, which has a resolution of 0.29◦. For

each flap angle, 500 measurement points are taken at a sampling frequency of 50 Hz. The

standard deviation obtained at each measurement point is indicated by the bars shown

in Fig. 3.4. The thrust measurements display a relatively large standard deviation, which

is possibly due to the turbulent flow in the exit nozzle induced by the high Reynolds

number, the roughness of the 3D print, and the motor controller mount, but also due to

a slight play in the connection of the control flaps with the servos. Summarizing, a max-

imum horizontal thrust of 3 N can be generated by control flap 1, whereas control flap 2

generates a maximum horizontal thrust of 1.5 N. This is not unexpected, since compared

to control flap 1, control flap 2 has roughly half the area available for deviating the thrust.

Moreover, if control flap is fully inclined, the total thrust magnitude is reduced by around

2 N, as shown in Fig. 3.4 (bottom). The decrease in total thrust is not entirely symmetric.

This might be caused by the motor controller mount that destroys the symmetry of the

airflow through the exit nozzle.

Similar experiments are carried out for characterizing the total thrust as a function of

the PWM rate given to the motorcontroller, see Fig. 3.5. The plateau that is visible above

a duty cycle of 0.8 is most likely due to limitations of the motor controller. The rotational

speed of the ducted fan is found to be roughly constant at a fixed PWM rate, as can be

inferred from current measurements of a single motor phase. A linear fit through the data

points neighboring the PWM rate of 0.6 is performed, and will be used later. The 65%

confidence interval of the fit is 0.127 N/% for the linear part and 0.7 N for the offset.

Dynamic measurements reveal that the flap angle to thrust maps can be approximated

by second-order systems, with a natural frequency of around 80 rad/s and a damping of

roughly 0.4. The map from PWM rate to total thrust (in case the control flaps are

pointing straight down) behaves as a first-order system with a time constant of 0.01 s.

The dynamic measurements were carried out using a similar procedure as presented in

Sec. 5. The control flaps and the ducted fan are excited using multisine signals containing

a flat frequency spectrum up to 20 Hz, respectively 10 Hz. The excitation signals have

an amplitude below 10◦ for the flaps and an amplitude below 0.05 for the PWM rate

controlling the fan. The sampling frequency is set to 100 Hz for the horizontal thrusts

and 50 Hz for the vertical thrust, which is due to the limited update rate of the motor

controller. The transfer function estimates are based on data collected over 62 periods,

where the first two periods are discarded for eliminating transients. The experimental

results are shown in Fig. 3.6 (control flap 1, control flap 2 is similar) and Fig. 3.7 (total

thrust). The sharp resonance peak at 100 rad/s visible in Fig. 3.6 is attributed to the
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Figure 3.4. Shown are the x and y-components of the thrust (top row) and the total thrust
magnitude (bottom row), when moving control flap 1 (left row), respectively control flap 2 (right
row). The x-axis is aligned with control flap 1, the y-axis with control flap 2.

measurement setup. More precisely, it corresponds to the first eigenmode of the beam

holding the load cell and the actuation unit. The parametric fit is obtained by minimizing

a weighted residual, similar to Sec. 5.

2.2 Flying Platform

The Flying Platform design combines three actuation units, which are aligned with the

corners of an equilateral triangle of 20 cm side length, as shown in Fig. 3.8. The actua-

tion units are oriented such that the axis of the larger flap points to the center of the
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Figure 3.6. Transfer function from the flap angle to the horizontal thrust.

equilateral triangle. The fan units are mounted on a honeycomb carbon fibre sandwich

structure. Three legs support the weight of the Flying Platform when it is on the ground.

The electronics are located close to the estimated center of gravity. Tab. 3 in App. B

summarizes the mechanical specification of the Flying Platform.

The PX4 flight management unit, [24] is used to run the control algorithms. The
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Figure 3.7. Transfer function from the PWM rate to the vertical thrust.

motor controllers of the electric ducted fans are interfaced via PWM. Servo commands

for actuating the control flaps are sent to the servos via a serial RS485 bus. Power is

delivered by three 4-cell Thunderpower Magma batteries with 6600 mAh each. The power

consumption at hover is around 6kW resulting in a flight time of around 3 min. The

batteries weigh 680 g each, leading to a total weight of the Flying Platform of 8.0 kg.

3. Dynamics

This section presents a low-complexity model of the Flying Platform. The nonlinear

equations of motion are linearized about hover for control and analysis purposes. We will

optimize the determinant of the controllability Gramian as a function of the actuator

placements and thereby maximize the controllability about hover.

Notation: We introduce an inertial coordinate system {I}, a body-fixed coordinate

system {B}, and local body-fixed coordinate systems {i} oriented along the control flaps

of the actuation units, see Fig. 3.9. The projection of a tensor onto a particular coordinate

frame is denoted by a preceding superscript, i.e. BΘ ∈ R3×3, BF ∈ R3. The arrow

notation, e.g. in Fig. 3.9, is used to emphasize that a vector (and tensor) should be a

priori thought of as a linear object in a normed vector space detached from its coordinate

representation in a particular coordinate frame. The transformation matrix RIB ∈ SO(3)
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Figure 3.8. The Flying Platform.
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Figure 3.9. Schematic outline of the Flying Platform showing the coordinate frames {I}, {i},
i = 1, 2, 3, and {B} (courtesy of Tobias Meier).
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Figure 3.10. Free body diagram of a single actuation unit (courtesy of Tobias Meier). The

motor torque ~MTi is aligned with the z-axis of the local coordinate frame {i}. The vertical thrust,
as well as the horizontal thrust generated by the two the control flaps are combined in the force
~F i.

relates vectors from the body-fixed frame to their representation in the inertial frame,

that is Iv = RIB
Bv, for all vectors Bv ∈ R3. Moreover, the skew symmetric matrix

corresponding to a vector a ∈ R3, denoted by ã, is defined as a × b = ãb, for all b ∈ R3,

where a × b refers to the cross product of the two vectors a and b. Since the body-fixed

coordinate frame {B} is the most commonly projected coordinate frame, its preceding

superscript is usually removed for ease of notation, that is, Bm = m, BΘ0 = Θ0, etc.

The standard unit vectors in R3 are denoted by ex, ey, and ez. Vectors are expressed as

n-tuples (x1, x2, . . . , xn) with dimension and stacking clear from the context.

Dynamics: The equations of motion can be derived, for example, by using the prin-

ciple of virtual power, [25, Ch. 3]. To that extent, the moving parts of the i’th actuation

unit (turbine blades and shaft of the electrical motor) are separated from the remai-

ning structure by introducing the constraint forces ~Λi and the motor torques ~MT i, see

Fig. 3.10. Requiring the virtual power to vanish for all virtual velocities (translational

and rotational) yields the following characterization of the dynamic equilibrium,

Θω̇ +
3∑
i=1

Θiω̇i = −ω̃
(

Θω +
3∑
i=1

Θiωi

)
+

3∑
i=1

r̃iFi, (3.1)

mIv̇ = mIg +
3∑
i=1

RIBF i, (3.2)

CeTz (ω̇ + ω̇i) = Mi, i = 1, 2, 3, (3.3)
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where Θ denotes the total inertia of the Flying Platform referred to its center of gravity S,

Θi the inertia of the moving parts of the i’th ducted fan referred to its center of rotation,

and m the total mass. The velocity of the center of mass of the vehicle is denoted by v,

whereas ω refers to its angular velocity, i.e. the angular velocity of the frame {B} with

respect to frame {I}. The thrust generated by the i’th actuation unit, that is, the vertical

thrust from the electric ducted fan, vectored by the two control flaps, is denoted by Fi.

The vector from the center of gravity to the point of origin of the force Fi is denoted by

ri. Aerodynamic effects except the forces generated by the control flaps and the thrust

of the fans are neglected. These will be included in an augmented model as presented

in Sec. 5. The scalar Mi and the vector ωi denote the torque of the electrical motor,

respectively the angular rate (relative to the body-fixed frame {B}) of the i’th ducted

fan. The rotating parts (turbine blades and electrical motor) of the actuation units are

assumed to be symmetric and rotate about their respective center of gravity resulting

in19

Θi =: diag(C̄, C̄, C). (3.4)

The angular velocity vector ωi is assumed to have only a component along the z-axis of

the body-fixed frame. Therefore its rate of change ω̇i appearing in (3.1) can be eliminated

with (3.3) resulting in

Θ̂ω̇ = −ω̃
(

Θω +
3∑
i=1

Θiωi

)
+

3∑
i=1

(r̃iFi − ezMi), (3.5)

where

Θ̂ := Θ− 3 Ceze
T
z . (3.6)

We will consider the thrusts generated by the actuation units and expressed in their lo-

cal coordinate frames {i} to be the inputs to the system. The servo and PWM-commands

for the electric ducted fans are then calculated by inverting the linearization of the static

maps presented in Sec. 2.1. The total thrust and the resulting torque are linear in the

thrusts generated by the actuation units (the inputs), more precisely,

3∑
i=1

Fi = T1u,
3∑
i=3

r̃iFi = T2u, (3.7)

where u := (1F 1,
2F 2,

3F 3),

T1 :=

(
T11

T12

)
, T2 :=

(
T21

T22

)
, (3.8)

19In fact, the expression remains unchanged if the inertia is expressed in the local frame {i} or in a
frame attached to the moving parts of fan i.
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with

T11 :=

(
1 0 0 −1/2 −

√
3/2 0 −1/2

√
3/2 0

0 1 0
√

3/2 −1/2 0 −
√

3/2 −1/2 0

)
, (3.9)

T12 :=
(

0 0 1 0 0 1 0 0 1
)
, (3.10)

T21 := l3JT11 + 2
√

3/3l1V1, (3.11)

T22 := −2
√

3/3l1
(

0 1 0 0 1 0 0 1 0
)
, (3.12)

V1 :=

(
0 0 0 0 0 −

√
3/2 0 0

√
3/2

0 0 1 0 0 −1/2 0 0 −1/2

)
, (3.13)

J :=

(
0 1

−1 0

)
. (3.14)

As a result, the evolution of the center of gravity and the evolution of the angular velocity

are given by

mIv̇ = mIg +RIBT1u, (3.15)

Θ̂ω̇ = −ω̃
(

Θω +
3∑
i=1

Θiωi

)
+ T2u− ez

3∑
i=1

Mi. (3.16)

Linearization: For control and analysis purposes the dynamics are linearized about

hover. The three ducted fans are assumed to be identical and to rotate in the same

direction. Thus, at hover, the torques Mi have the same values, that is, Mi = M , i =

1, 2, 3. Moreover, the torques M and the weight of the vehicle must be balanced by the

thrust generated by the ducted fans and deviated by the control flaps, which is achieved

by the thrust command

ū := (0, −M
√

3/(2l1), mg0/3, 0, −M
√

3/(2l1), mg0/3, 0, −M
√

3/(2l1), mg0/3),

where g0 := 9.81 m/s2 denotes the gravitational acceleration. For better readability the

components of the vector ū in the above equation are grouped according to the different

actuation units, that is, the first line contains the x, y, and z-components of the thrust

assigned to the first fan unit, the second line contains the thrust assigned to the second

fan unit, etc. We further introduce Euler angles (α, β, γ) (roll, pitch, yaw) to parametrize

the rotation matrix RIB. Using the matrix exponential, the rotation matrix RIB can be

expressed as

RIB = eẽzγeẽyβeẽxα. (3.17)

For control purposes it will be convenient to obtain a linearization that is invariant to

yaw. Therefore the position and velocity of the center of gravity will be expressed in a

separate coordinate system {J} obtained by rotating the inertial system {I} about I~ez
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by the angle γ. Hence, the rotation matrix RIB is decomposed according to

RIB = RIJRJB, RIJ = eẽzγ, RJB = eẽyβeẽxα, (3.18)

and (3.15) is reformulated as

mJv̇ = −mγ̇ez × Jv +mJg +RJBT1u, (3.19)

where the convective derivative enters due to the fact that the frame {J} is non-inertial.

Linearizing the translational dynamics around hover, i.e. Jv̄ = 0, R̄JB = I, ω̄ = 0, yields

Jv̇ ≈ −αẽxJg − βẽyJg +
1

m
T1(u− ū) (3.20)

= g0 (αẽxez + βẽyez) +
1

m
T1(u− ū) (3.21)

= g0 (−eyα + exβ) +
1

m
T1(u− ū), (3.22)

which holds independent of the angle γ. Similarly, linearizing the rotational dynamics

(3.16) around ω̄ = 0, and neglecting the gyroscopic term CΘ̂−1ω̃ωi results in

ω̇ ≈ Θ̂−1T2u− Θ̂−1ez

3∑
i=1

Mi. (3.23)

From (3.22) and (3.23) it can be inferred that the poles of the open-loop system all lie at

0, and that the height and yaw dynamics are decoupled from the x, y, and roll and pitch

dynamics.

Assuming further that the mass distribution of the Flying Platform has a three-fold

rotational symmetry about its figure axis B~ez simplifies the inertia tensor Θ̂ to

Θ̂ =: diag(I1, I1, I3). (3.24)

This is a reasonable assumption due to the symmetric placement of both the actuation

units and the batteries, and the symmetry of the frame, which together constitute the

main mass of the Flying Platform. Thus, the x, y, and roll and pitch dynamics can be

rewritten as(
v̇x
v̇y

)
≈ g0J

(
α

β

)
+

1

m
T11(u− ū),

(
α̈

β̈

)
≈ 1

I1

T21(u− ū), (3.25)
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whereas the vertical and the yaw dynamics are given by

v̇z ≈
1

m
T12(u− ū), γ̈ ≈ 1

I3

T22u−
1

I3

3∑
i=1

Mi. (3.26)

Controllability analysis: We determine the overall dimensions of the Flying Platform,

that is the lengths l1 and l3 by maximizing the determinant of the controllability Gramian

subject to the dynamics (3.25). This amounts to maximizing the volume of the state space

from which the Flying Platform can be steered to zero within a fixed time T and with

unit energy (assuming linear dynamics, i.e. near hover conditions), [26, Ch. 8]. We focus

entirely on the actuation via thrust vectoring, and therefore the differential thrust is set

to zero. As we will show in the remainder, this leads to a simple closed-form expression of

the determinant of the controllability Gramian, which enables a physical interpretation,

and leads to a straightforward optimization of the mechanical design.

By defining the state vector to be

x := (vx, vy, α, β, α̇, β̇), (3.27)

the linearized system dynamics (3.25) can be rewritten in the standard form

ẋ = Ax+B(u− ū), (3.28)

for which the controllability Gramian, [26, p. 227], is defined as

Wc(T ) :=

∫ T

0

e−AtBBTe−A
Ttdt. (3.29)

The values of the matrices A and B are given in (3.59) in App. A. Given that we have

unit energy at our disposal, the system can be steered within the time T to the origin

from any initial condition within the ellipsoid

W(T ) := {z ∈ R6 | zTWc(T )−1z ≤ 1}. (3.30)

The area ofW(T ) is proportional to the square root of the determinant of Wc(T ). For the

given dynamics, the determinant of Wc(T ) can be calculated in closed form, see App. A,

leading to

det(Wc(T )) =
g4

0T
18

102400

(
l3
I1

)12

. (3.31)

The following observations can be made:

1) For any I1 6= 0, l3 6= 0 the Flying Platform can be steered from any initial condition
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to the origin, provided that T is sufficiently large. This is not surprising, as the

system’s poles all lie at 0.

2) The area ofW(T ) only depends on the inertia I1 and the length l3. The total mass,

for example, enters the expression only through the inertia I1.

3) For a fixed, but arbitrary T , the area of W(T ) attains its maximum if the ratio

l3/I1 is maximized.

Hence we chose the dimensions of the Flying Platform, l1 and l3, such that the ratio

l3/I1 is as large as possible. Clearly, I1 is implicitly dependent on l3, as the actuation

units have substantial mass. This dependence is captured by approximating the inertia

I1 as

I1 ≈ I0 + 2(l21 + l23δ
2)mt, (3.32)

where mt refers to the mass of a single actuation unit, whose center of gravity lies at a

height of δl3 below the center of gravity of the vehicle, and I0 refers to the remaining

inertia, which is independent of l3. As a result, we seek to maximize the ratio

l3
I0 + 2l21mt + 2mtδ2l23

, (3.33)

which is achieved by decreasing I0 and l1 as much as possible. Moreover, for a fixed inertia

I0, length l1, and mass mt, the previous expression is maximized for

l3,max =

√
I0

2mt
+ l21

δ2
. (3.34)

By assuming that the weight of the Flying Platform is mainly given by the actuation

units and the weight of the batteries, which are located at a horizontal distance l1 from

the B~ex, respectively the B~ey axis, we obtain I0 ≈ 1.4 kg l21. Together with mt ≈ 1.2 kg,

and δ ≈ 0.75 this yields l3,max ≈ 1.7l1. In the design the length l1 was bounded from

below to l1 = 10 cm for ease of assembly, and therefore l3 was chosen to be roughly 17 cm.

The optimization over l3 can be viewed as a trade-off between the total inertia of the

flying vehicle and the lever arm of the thrust vectoring; the further away the actuation

units are placed, the larger the lever arm, and the higher the torque generated by the

thrust vectoring, but at the same time the inertia is increased. The lever arm grows

linearly with l3, whereas the inertia grows quadratically leading to the optimum captured

by (3.34).

Moreover, the formula (3.31) is valid irrespective of the sign of l3. Thus, the above

derivation remains valid even in case the thrust vectoring is placed above the center

of gravity. Note that having the thrust vectoring below the center of gravity leads to

a nonminimum phase zero in the transfer function from the horizontal thrust to the

horizontal velocity, as for example noted in [4]. It stems from the fact that the thrust
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Figure 3.11. Overview of the control architecture. FP stands for Flying Platform. The angular
rates ω are measured with an onboard gyroscope. The position, velocity and attitude of the
vehicle are obtained from a motion capture system.

vectoring generates lateral forces, which induce a torque with respect to the center of

gravity, causing the vehicle to accelerate horizontally and tilt in the opposite direction

at the same time. In case the thrust vectoring is placed above the center of gravity two

complex conjugated, pure imaginary zeros are obtained instead. For ease of construction

we decided to choose l3 > 0.

4. Control Design

We present a linear control design for stabilizing hover. The controller has a cascaded

structure, with a part running onboard at 50 Hz, accessing onboard sensor measurements

and controlling the angular rates of the vehicle, and a part running offboard, controlling

the position and attitude, see Fig. 3.11.

Control system overview: The position, velocity, and attitude of the vehicle is estima-

ted using a motion capture system, [27]. The system estimates position with a precision

of roughly 0.3 mm, and attitude with a precision of roughly 0.3◦ (2σ-bounds, sampled at

200 Hz). The velocity is obtained by low-pass filtering and numerical differentiation of

the position estimate. The data from the motion capture system is sent to an offboard

computer, which implements a user interface and calculates the desired angular rates for

the flying vehicle. The offboard computer runs at a sampling rate of 50 Hz. The desired

angular rates are sent to the vehicle via a low-latency protocol, and are then tracked by

the flying vehicle using the gyroscope included on the PX4 flight computer. The onboard

control algorithm runs at 50 Hz. Telemetry data from the flying vehicle is sent out via a

separate wireless radio.

Onboard control: The onboard controller tracks the desired angular rates ωdes, which

are obtained from the offboard computer. About hover, the rotational dynamics can be

approximated by, c.f. (3.23),

ω̇ = Θ̂−1T2(u− ū), (3.35)

where the torques Mi are approximated as constants, compensated by the steady-state
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control input ū. A linear quadratic regulator, with state weight 512 · I and input weight

diag( 1, 2, 2,︸ ︷︷ ︸
1st actuation unit
x,y,z-components

1, 2, 2,︸ ︷︷ ︸
2nd actuation unit
x,y,z-components

1, 2, 2︸ ︷︷ ︸
3rd actuation unit
x,y,z-components

) (3.36)

is used to compute a constant feedback gain K, rendering (3.35) asymptotically stable

with

u = ū−K(ω − ωdes) + (0, 0, 1, 0, 0, 1, 0, 0, 1)F z, (3.37)

where F z denotes the collective thrust of the three electric ducted fans. The collective

thrust does not affect the angular rates and will be used in a later stage to control the

height of the flying vehicle. The obtained feedback gain K results in closed-loop poles at

42 rad/s (for ωx), 42 rad/s (for ωy), and 25 rad/s (for ωz).

Offboard control: Under the assumption that the inner control loop has a substantially

faster time constant, we consider ωdes to be the control input of the outer control loop,

controlling the position, attitude, and velocity of the flying vehicle. As a result, (3.22)

simplifies to

v̇x ≈ βg0, v̇y ≈ −αg0, v̇z =
3

m
F z, (3.38)

where Jv =: (vx, vy, vz). Differentiating the first two equations with respect to time yields

v̈x = ωdes,yg0, v̈y = −ωdes,xg0. (3.39)

Thus we choose

ωdes,x =
1

g0

(
−(2dywy + py)g0α + (w2

y + 2dywypy)vy + pyw
2
y(y − ydes)

)
, (3.40)

ωdes,y =
1

g0

(
−(2dxwx + px)g0β − (w2

x + 2dxwxpx)vx − pxw2
x(x− xdes)

)
, (3.41)

ωdes,z = − 1

g0

pz(γ − γdes), (3.42)

Fz =
m

3
(−2dzwzvz − w2

z(z − zdes)), (3.43)

where di, wi, pi with i = x, y, z are constants, x, y, z and xdes, ydes, zdes denotes the actual

and desired position of the vehicle expressed in the {J} frame, and γdes the desired yaw

angle. The constants di, wi, pi with i = x, y are chosen such that the translational closed-

loop dynamics in the {J} frame result in two decoupled third-order systems with one pole

located at −px (respectively −py) and a remaining second-order system with damping dx
(respectively dy) and natural frequency wx (respectively wy). The constant pz determines
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rms error (x,y,z component)
Ir 0.013 m 0.029 m 0.005 m
φ 0.007◦ 0.004◦ 0.008◦

ω 0.029 rad/s 0.022 rad/s 0.011 rad/s

Table 1. Root-mean-squared errors when hovering in steady state.

the time-constant of the yaw dynamics, whereas the closed-loop dynamics for the height

result in a second-order system with damping dz and natural frequency wz. The constants

are set to the following values

dx = dy = dz = 1,

ωx = ωy = 3 rad/s, ωz = 2 rad/s,

px = py = 1 rad/s, pz = 2 rad/s,

leading to a clear separation of the time constants associated with the inner and the outer

control loop. This results in a symmetric behavior in the x and y-directions, whereas the

height is controlled in a slightly less aggressive manner (ωz < ωx, ωy). The damping is set

to 1, leading to critically damped systems.

Flight experiments are carried out in the Flying Machine Arena, [27]. Tab. 1 shows

the root-mean-squared errors when hovering in steady state. It follows that the vehicle

maintains its position within a few centimeters. Disturbance rejection measurements are

shown in Fig. 3.12. The disturbance is generated by commanding a constant angular rate

in y-direction, ωy = 0.3 rad/s for 0.18 s, leading to a pitch of approximately 4◦ from which

the vehicle is able to recover.

5. System Identification

The following section describes a frequency domain-based approach for identifying the

parameters of the Flying Platform. Specifically, the aim is to quantify the model quality

and identify the matrices T1/m and Θ̂−1T2, essentially determining the rotational and

translational dynamics, (3.15) and (3.16). This is done by exciting the system while ho-

vering with periodic, sinusoidal inputs, and measuring its reaction. Due to the fact that

the system has nine inputs defined as the thrust commands of each actuation unit, at le-

ast nine different experiments are used to measure the corresponding frequency response

function. In order to reduce the noise influence we performed in total 18 different ex-

periments, which are based on two different excitation signals (for increasing robustness

against nonlinearities, [28, Ch. 3]). The experiments, which are referred to by the subscript

e, e ∈ {1, 2, . . . , 18}, can be grouped in three parts: Part 1) (e ∈ {1, 4, 7, 10, 13, 16}): ex-

citation of the control flaps 1 of each actuation unit; Part 2) (e ∈ {2, 5, 8, 11, 14, 17}):
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Figure 3.12. Disturbance rejection. At time t = 0.4 s the disturbance is injected, by comman-
ding angular rates of (0, 0.3 rad/s, 0) for 0.18 s. The time instances at which the disturbance is
active are highlighted. The position and attitude (yaw) is shifted to zero at time 0.
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Figure 3.13. Excitation signal S1(jω). The low frequencies have a larger magnitude to com-
pensate the fact that the signal to noise ratio is worse at low frequencies. The excitation signal
S2(jω) has the same magnitude, but a different phase realization.

excitation of the control flaps 2 of each actuation unit; Part 3) (e ∈ {3, 6, 9, 12, 15, 18}):
excitation of the vertical thrusts of each actuation unit. The different excitation sig-

nals are obtained by multiplying two scalar random phase multisine signals S1(jω) and

S2(jω) (to be made precise below) with the 3-point discrete Fourier transform matrix

V (jω) ∈ C3×3, resulting in

R(jω) =

(
(V (jω)⊗ diag(λ))S1(jω)

(V (jω)⊗ diag(λ))S2(jω)

)
, R(jω) ∈ C18×9, (3.44)

where λ ∈ R3, λ > 0 represents a positive gain for scaling the excitation, and ⊗ re-

fers to the Kronecker product. Multiplying the scalar multisine signals with the 3-point

discrete Fourier transform matrix leads to an improved condition number of the pseudo-

inverse needed to calculate the frequency response function, [28, p. 66]. The matrix R(jω)

contains the excitation signals for the different inputs as rows. Hence, for example in

the first experiment of Part 1), the excitation signals λ1V11(jω)S1(jω), λ1V12(jω)S1(jω),

λ1V13(jω)S1(jω) are used to excite the control flaps 1 of each actuation unit (the remai-

ning control flaps and the vertical thrusts are not excited). The multisine signals S1(jω)

and S2(jω) have a random phase uniformly distributed in [0, 2π), are sampled with 50 Hz,

and have a period of 250 samples. The Crest-factor, [28, p. 153] is reduced by optimizing

over 1000 different phase-realizations. The resulting signal S1(jω) used for the identifi-

cation is shown in Fig. 3.13, the signal S2(jω) has the same magnitude, but a different

phase realization. Note that due to their periodicity, the random phase multisine signals

prevent spectral leakage.

Thus, while hovering, the Flying Platform is excited with the signal Re(jω), where

Re(jω) denotes the e’th row of R(jω). The setup is illustrated in Fig. 3.14. The perio-
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G

K̄

re

ni no

u y

Figure 3.14. The block diagram of the system identification procedure. The Flying Platform
(G) is controlled by the nominal linear feedback controller K̄, as presented in Sec. 4, and is
excited by the random phase multisine signal re, that is, the time-domain representation of the
signal Re(jω). The noise on the input and on the output is denoted by ni, respectively n0.

dic excitation leads naturally to a periodic input Ue(jω) and a periodic output Ye(jω)

(assuming the system is linear). The input is given by the thrust commands to each ac-

tuation unit, u := (1F 1,
2F 2,

3F 3) and the output is taken to be the angular velocity and

the velocity of the center of mass, y := (Jv, ω). By averaging over multiple periods the

impact of the noise can be reduced, leading to

Ye(jω) =
1

P

P∑
p=1

Yep(jω), Ye(jω) ∈ C12, (3.45)

Ue(jω) =
1

P

P∑
p=1

Uep(jω), Ue(jω) ∈ C9, (3.46)

where P = 10 refers to the number of periods, and Yep(jω) refers to the Fourier transform

of the output of the e’th experiment and the p’th period. In order to reduce the effect of

transients the first 200 samples are discarded. In a similar way, the sample covariances

are given by

σ̂2
XZe(jω) =

1

P (P − 1)

P∑
p=1

(Xep(jω)−Xe(jω)(Zep(jω)− Ze(jω))∗, (3.47)

where X = U, Y , and Z = U, Y .

An estimate of the transfer function G(jω) is obtained by combining the inputs

and outputs of all experiments, i.e. Y (jω) = (Y1(jω), Y2(jω), . . . , Y18(jω)), U(jω) =

(U1(jω), U2(jω), . . . , U18(jω)), and evaluating

G(jω) = Y (jω)U(jω)†, (3.48)
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Figure 3.15. Estimated transfer function (black crosses) from the control flap 1 (bigger flap)
of the first actuation unit to the angular rates ωx. The resulting fit of the simplified model is
shown in black (solid line) and the estimate of the standard deviation is depicted in red (squares).

where † denotes the pseudo-inverse. Due to the fact that the input and output noise is

correlated, the pseudo-inverse leads to small biases in the estimate of G(jω) (dependent

on the signal to noise ratios). However, even for a moderate signal to noise ratio of 6dB

these biases are on the order of few percents (relative to the true G(jω)), [28, p. 46].

The resulting transfer functions from the inputs to the angular velocity and the velo-

city of the center of mass are depicted in Fig. 3.15 and Fig. 3.16 (blue dots). The variance

of the transfer function is estimated via

σ̂2
G(jω) =

1

E(E − 1)

E∑
e=1

(Ue(jω)Ue(jω)∗)−1 ⊗ (σ̂2
Y Y e(jω)−G(jω)σ̂2

Y Ue(jω)∗

− σ̂2
Y Ue(jω)G(jω)∗ +G(jω)σ̂2

UUe(jω)G(jω)∗), (3.49)

where E = 18 refers to the number of experiments. Note that the variance σ̂G(jω) has

size 54 × 54 and refers to the variance of the vector vec(G(jω)), where vec denotes

vectorization.

5.1 Low-complexity model

We fit the parameters of the low-complexity model as derived in Sec. 3 to the measured

frequency response. The parameters, denoted by θ, are given by the matrices T1, T2, and

the inertia I1 and I3. We denote the parametric transfer function corresponding to the

dynamics (3.25) by Gθ(jω). In addition, the parametric transfer function is augmented

with a delay modeling the sample and hold. The parameters θ are obtained by optimizing
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Figure 3.16. Estimated transfer function (black crosses) from the control flap 1 (bigger flap)
of the first actuation unit to the velocity vy. The resulting fit of the simplified model is shown
in black (solid line) and the estimate of the standard deviation is depicted in red (squares).

the cost function

V (θ) :=
∑
ω∈Ω

vec(Gθ(jω)−G(jω))∗(σ̂2
G(jω))−1vec(Gθ(jω)−G(jω)), (3.50)

where the set Ω is given by all frequencies that are excited by the excitation signal,

that is, Ω := 2π {0.2, 0.4, . . . , 4}. Note that V is formed by the squared distance of the

matrix elements of Gθ from G, weighted with the variance σ̂2
G. If Gθ(jω) is assumed to

be circularly-symmetric complex normally distributed with variance σ̂2
G(jω), then (3.50)

corresponds to the maximum likelihood cost function.

The cost is optimized using a quasi-Newton method, where the Jacobian and Hessian

are obtained via numerical differentiation. An absolute tolerance of 10−8 of the optimizer

θ is used as a stopping criterion. The resulting fit is exemplarily shown for the angular

velocity ωx and the linear velocity vy in Fig. 3.15, respectively Fig. 3.16. It can be conclu-

ded that the model explains well the frequencies above 1 Hz, but is not able to represent

the lower frequencies accurately, which is most likely due to lack of aerodynamic effects

in the model, as will be discussed in the following.

5.2 Augmented model

In order to explain the frequencies below 1 Hz the model is augmented to account for the

following two effects, which were found to be dominant:

1) gyroscopic torques due to the fact that the ducted fans are all rotating in the same

direction,

2) the redirection of a horizontal inlet airflow due to forward motion by the ducted
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fan leading to so-called momentum drag, [1].

According to (3.16), the gyroscopic torques are given by the term

−ω̃
(

Θω +
3∑
i=1

Θiωi

)
, (3.51)

whose linearization about hover yields

3CωT0 ẽzω, (3.52)

with ωT0 the angular velocity of a single ducted fan at hover.

The second effect stems from the fact that the airflow is redirected by the electric

ducted fan and the outlet nozzle, leading to drag-like forces acting on the Flying Platform,

see Fig. 3.17. This force is modeled to be proportional to the velocity at a certain point

Pi (to be determined by the measured data), [5],

FMi
= −Cα(v + ω × rPi), i = 1, 2, 3, (3.53)

Cα := diag(cα1 , cα1 , cα2), (3.54)

where rPi denotes the vector from the center of gravity to the point Pi and cα1 > 0, cα2 > 0

are two constants. The different constants cα1 and cα2 aim at modeling a potentially

different behavior for horizontal and vertical motions. In addition, these forces induce a

torque with respect to the center of gravity. As a result, due to the three-fold rotational

symmetry of the fan configuration, the total force is modeled as

FM :=
3∑
i=1

FMi
= −3Cαv + 3lα1Cα ẽzω, (3.55)

and the total torque (with respect to the center of gravity) is modeled as

MM := −3lα2Cα ẽzv − 3LαCαω, (3.56)

where

Lα := diag(lα3 , lα3 , lα4), (3.57)

and cα, lα1 , lα2 , lα3 , and lα4 refer to different lengths describing the points Pi and the

lever arms of the forces FMi
. Note that the constants cα1 and cα2 have units Ns/m, lα1

and lα2 have units m, and lα3 and lα4 have units m2.
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S

Figure 3.17. A single actuation unit with a body-fixed control volume (dashed line). The
arrows refer to the inlet, respectively the outlet flow. An incoming airflow having a lateral
component, which might stem from a translational motion is redirected by the electric ducted
fan and the outlet nozzle, leading to a drag-like force acting on the Flying Platform (as can be
seen from a momentum balance over the control volume).

Combining these three effects yields the augmented linear model

ẋa = Aaxa +Ba(u− ū), (3.58)

where xa := (Jv, α, β, γ, ω), and

Aa :=



−3
cα1
m

0 0 0 g0 0 0 −3
lα1cα1
m

0

0 −3
cα1
m

0 −g0 0 0 3
lα1cα1
m

0 0

0 0 −3
cα2
m

0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 3
lα2cα1
I1

0 0 0 0 −3
lα3cα1
I1

−3
CωT0
I1

0

−3
lα2

cα1
I1

0 0 0 0 0 3
CωT0
I1

−3
lα3

cα1
I1

0

0 0 0 0 0 0 0 0 −3
lα4

cα2
I3


,

Ba :=


1
m
T11

1
m
T12

03×9
1
I1

(l3JT11 + 2
√

3/3l1V1)
1
I3
T22

 .

The parameters θa, describing the augmented parametric transfer function are given

by cα1 , cα2 , lα1 , lα2 , lα3 , lα4 , T1, T2, V1, and are found by optimizing (3.50) (with respect

to the augmented model). The remaining parameters m, l1, and I1 are fixed to m = 8 kg,

l1 = 10 cm, and I1 = 0.07 kg m2 (a rough estimate from the CAD-model) to eliminate

redundancies, and a delay accounting for the sample-and-hold is included. The resulting
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Figure 3.18. Estimated transfer function (black crosses) from the control flap 1 (larger flap)
of actuation unit 1 to the angular rate ωx. The fit resulting from the augmented model is shown
in black (solid line) and the standard deviation is indicated in red (squares).

fit is exemplarily shown for the angular velocity ωx and the linear velocity vy in Fig. 3.18

and Fig. 3.19. Compared to the low-complexity model, the augmented model captures the

behavior at frequencies below 1 Hz substantially better. By introducing the augmented

model, the cost function V (θ) is decreased by roughly two orders of magnitude, which

corresponds to a reduction of 99%. Most of the decrease can be attributed to introduction

of the momentum drag, as the introduction of the gyroscopic effects leads to a decrease

of the cost of roughly 1.3%.

We further investigated the sensitivity of the cost function with respect to shifts in the

center of gravity, variations of the inertia, and misalignment of coordinate systems used

for measuring Jv and ω. To that extent, we analyzed the standard deviation of the cost

function when sampling these parameter variations uniformly. The results are reported in

Tab. 2. The cost is most sensitive to shifts in the center of gravity. However, even in case

all effects are included, the cost alters by less than 3%, which is small especially when

considering the number of additional degrees of freedom that these variations introduce.

Thus, although a higher-order model might explain the data even better, we believe

that the augmented model we presented yields a reasonable trade-off between model

complexity and accuracy. The resulting numerical parameter values are listed in App. B.

The full fit of the augmented model to the experimental data can be found on the first

author’s homepage20.

We validated the model on a different dataset. The resulting time-domain fit of the

angular velocities ωx and ωy is exemplarily depicted in Fig. 3.20.

20http://www.idsc.ethz.ch/research-dandrea/people/person-detail.html?persid=156097
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Figure 3.19. Estimated transfer function (black crosses) from the control flap 1 (larger flap)
of actuation unit 1 to the velocity vy. The fit resulting from the augmented model is shown in
black (solid line) and the standard deviation is indicated in red (squares).
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Figure 3.20. Validation of the augmented model. The Flying Platform is excited by a random
phase multisine signal acting on the control flaps 1. The measurements are averaged over 8 periods
to reduce the noise influence. The estimated standard deviation of the measurements is on the
order of few percent and is therefore not shown.

6. Conclusion

This article presented the mechatronic design of the Flying Platform, an aerial vehicle

whose purpose is to study ducted fan actuation. We discussed the mechanical design of a

single actuation unit, including the control flap design to vector the thrust. The resulting
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parameter var. std[V (θ)]/E[V (θ)] number samples
COG shift 0.027 104

inertia 0.0045 105

misalignment 0.0085 105

all 0.029 107

Table 2. Sensitivity of the cost function V (θ) estimated from monte-carlo sampling. The
parameter variations, that is, a shift in the center of gravity (COG shift), variations in the inertia
(inertia), and a misalignment of coordinate systems (misalignment) are uniformly sampled, and
the corresponding variation of the cost is quantified by the ratio between its standard deviation
and its expected value. The shift in the center of gravity is restricted to a radius of 2 cm and
the variations of the inertia are obtained by varying the diagonal elements of diag(I1, I1, I3) by
5% and rotating the resulting matrix along a uniformly sampled direction by an angle of less
than 2◦ (also uniformly sampled). The misalignment of coordinate systems is characterized by
rotations comprising a uniformly sampled direction and a uniformly sampled rotation angle of
less than 2◦.

thrust vectoring capabilities were characterized by static and dynamic measurements. A

low-complexity rigid body model was introduced for control and analysis purposes. In

particular, it was shown that the determinant of the controllability Gramian is a function

of the ratio between lever arm and inertia. As a result, the mechanical design of the Flying

Platform was chosen to maximize controllability. A linear control design was presented

subsequently, which was shown to work reliably in practice. The quality of the model

was assessed via a frequency domain system identification. It was shown that the low-

complexity model captures roughly the frequencies above 1 Hz, but is unable to explain

the lower frequencies. As a result, the model was extended to incorporate gyroscopic

and aerodynamic effects, while keeping the model order fixed. The augmented model was

found to roughly explain the measured transfer function from vectored thrusts to angular

and linear velocities even at frequencies below 1 Hz.

It is hoped that the modeling and the measurement results presented throughout

this article are useful for future aerial vehicle designs, and/or feasibility studies of aerial

vehicles propelled by ducted fans.

Possible future work includes performing more aggressive maneuvers and evaluating

advanced control algorithms, that account, for example, for input and state constraints,

or incorporate the nonlinearities in the attitude dynamics. The ducted fan actuation, as

presented in this paper, could be used for controlling aerial vehicles with lifting surfaces,

thereby enabling efficient forward flight combined with high maneuverability, and vertical

take-off and landing capabilities.
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A. Determinant of controllability Gramian

The system matrices in (3.28) are given by

A :=

 0 g0J 0

0 0 I

0 0 0

 , B :=

 1
m
T11

0
l3
I1
JT11

 . (3.59)

The matrix exponential e−At yields therefore

e−At =

 I −g0tJ
g0t2

2
J

0 I −tI
0 0 I

 , (3.60)

leading to

e−AtB =
l3
I1

 ( I1
l3m
− g0t2

2
)T11

−tJT11

JT11

 , (3.61)

and

e−AtBBTe−At =

(
l3
I1

)2

diag(I, J, J)

 ζ2 −ζt ζ

−ζt t2 −t
ζ −t 1

⊗ T11T
T
11diag(I, J, J)T, (3.62)

where ζ := I1/(l3m)− g0t
2/2. This yields

det(Wc(T )) =

(
l3
I1

)12

det

∫ T

0

 ζ2 −ζt ζ

−ζt t2 −t
ζ −t 1

 dt

2

det(T11T
T
11)3, (3.63)

where the fact that det(diag(I, J, J)) = 1 and the property det(X⊗Y ) = det(X)m det(Y )n

of the Kronecker product has been used (where X ∈ Rn×n and Y ∈ Rm×m). Moreover,

T11T
T
11 simplifies to 3I, and therefore, we obtain

det(Wc(T )) = 93

(
l3
I1

)12

det

∫ T

0

 ζ2 −ζt ζ

−ζt t2 −t
ζ −t 1

 dt

2

. (3.64)
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Using straightforward manipulations it can be shown that

det

∫ T

0

 ζ2 −ζt ζ

−ζt t2 −t
ζ −t 1

 dt

 =
g2

0

8640
T 9, (3.65)

which results in

det(Wc(T )) =
g4

0T
18

102400

(
l3
I1

)12

. (3.66)

B. Parameter Values

The parameter values of the augmented model are listed below.

value comment
m 8 kg mass
l1 0.1 m lever arm of actuation
l3 0.079 m lever arm of actuation
I1 0.07 kg m2 inertia (roll, pitch, estimate)
I3 0.11 kg m2 inertia (yaw)
C 7 · 10−6 kg m2 inertia of moving parts (motor and fan)
cα1 2.388 Ns/m drag force
cα2 4.939 Ns/m
lα1 0.242 m
lα2 −0.138 m drag force - lever arm
lα3 −0.0084 m2

lα4/I3 0.362 kg−1

CωT0 0.018 kg m2/s gyroscopic effects
Td 0.045 s time delay

Table 3. Scalar parameters of the augmented model. Note that the values of I1 and I3 are
estimated using a CAD model. The value of C is obtained by dividing CωT0

by a rough estimate
of the fan velocity at hover (obtained from the datasheet of the manufacturer of the ducted fan).

The matrices T1 and T2 are given by

T11 =

(
0.6966 −0.0311 0 −0.3643 −0.7165 0 −0.3867 0.7286 0

0.0330 0.8656 0 0.6447 −0.3826 0 −0.6196 −0.3775 0

)
,

T12 =
(

0 0 0.0967 0 0 0.0896 0 0 0.0670
)
,

V1 =

(
0 0 0.0156 0 0 −0.3433 0 0 0.3873

0 0 0.4450 0 0 −0.2501 0 0 −0.2068

)
,

1

I3
T22 =

(
0 −0.7062 −0.1536 0 −0.6859 −0.1030 0 −0.7037 −0.1076

)
.
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This leads to the following system matrices

Aa =



−0.896 0 0 0 9.810 0 0 −0.217 0

0 −0.896 0 −9.810 0 0 0.217 0 0

0 0 −1.852 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

0 −14.136 0 0 0 0 0.856 −0.751 0

14.136 0 0 0 0 0 0.751 0.856 0

0 0 0 0 0 0 0 0 −5.366


, (3.67)

Ba =



0.087 −0.004 0 −0.046 −0.090 0 −0.048 0.091 0

0.004 0.108 0 0.081 −0.048 0 −0.077 −0.047 0

0 0 0.097 0 0 0.090 0 0 0.067

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0.037 0.980 0.026 0.730 −0.433 −0.566 −0.702 −0.427 0.639

−0.789 0.035 0.734 0.413 0.811 −0.413 0.438 −0.825 −0.341

0 −0.706 −0.154 0 −0.686 −0.103 0 −0.704 −0.108


. (3.68)
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On the Approximation of Constrained Linear

Quadratic Regulator Problems and their

Application to Model Predictive Control

Michael Muehlebach and Raffaello D’Andrea

Abstract

This article is concerned with the approximation of constrained continuous-
time linear quadratic regulator problems, which are, for example, encountered in
model predictive control. By representing input and state trajectories using basis
functions, the underlying infinite-dimensional optimal control problems are reduced
to convex finite-dimensional optimization problems that can be solved efficiently.
The article quantifies the suboptimality and establishes convergence of the obtained
approximations. The results are applied in the context of model predictive control.
In particular, it will be shown that the truncation of the prediction horizon can be
avoided, leading to recursive feasibility and closed-loop stability guarantees. The
resulting finite-dimensional convex optimization problems typically include semi-
infinite constraints. Several strategies to handle these constraints are discussed.
The approach is shown to be numerically efficient. It is shown to outperform state-
of-the-art model predictive control algorithms on a quadruple integrator system,
without necessarily degrading closed-loop performance.
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1. Introduction

Model predictive control (MPC) has become a well-known and widely used control stra-

tegy for solving challenging control problems. Unlike many other approaches, MPC ad-

dresses input and state constraints in a systematic way. It is based on repeatedly solving

an optimal control problem, including the actual state as an initial condition and a

prediction of the system’s evolution. This leads naturally to an implicit feedback law,

providing robustness against modeling errors and disturbances, [1].

Due to the fact that an optimal control problem has to be solved at each sampling

interval, online MPC, where the optimization is solved online, is computationally deman-

ding. Thus, in order to render MPC computationally tractable, the underlying optimal

control problem is simplified, typically by discretizing the dynamics and truncating the

prediction horizon.

Herein, we propose an alternative approach that relies on a parametrization of input

and state trajectories using basis functions. A Galerkin method is used to formulate the

dynamics as an equality constraint relating the parameter vectors describing the input

and the state. We will show on an example that this parametrized approach leads to

different trade-offs between computational effort and achieved closed-loop cost. Moreover,

the basis functions can be used to encode a priori knowledge of the system’s dynamics (e.g.

different time scales), and even provide a means to retain an infinite prediction horizon.

We will show that this leads to an MPC algorithm with inherent recursive feasibility

and closed-loop stability guarantees. This contrasts the discrete-time approach where

stability is often imposed indirectly using a combination of a terminal cost and a terminal

set constraint. The proposed parametrized MPC approach is benchmarked against state-

of-the-art discrete-time MPC strategies for underlining the numerical efficiency of the

parametrized approach. Simulations of a quadruple integrator system are presented, where

it is shown that the average execution time for achieving a given closed-loop cost can be

reduced by roughly one order of magnitude. This is particularly interesting for embedded

systems with fast dynamics, where fast sampling is required but where the available

computational power is limited.

Outline of the paper: The paper is divided into three parts. The first part is con-

cerned with the approximation of constrained continuous-time linear quadratic regulator

problems. The discussion is not restricted to infinite-horizon problems, which are of-

ten encountered in MPC, but also includes finite-horizon problems, with terminal costs

and/or terminal state constraints. By approximating input and state trajectories using

basis functions and exploiting duality, two different finite-dimensional optimization pro-

blems are derived, whose optimal costs yield upper and lower bounds on the cost of the

underlying infinite-dimensional problem. By increasing the basis functions’ complexity

(which might correspond to the polynomial order, for example), the resulting optimal

costs are found to yield monotonic sequences approximating the underlying optimal con-

trol problem from above and below. This makes it possible to quantify the suboptimality

of the obtained approximation, and, as we will show in the remainder, also bounds the
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L2-distance from the optimal trajectories. Moreover, conditions guaranteeing convergence

to the underlying optimal control problem will be established, thereby providing a theo-

retical justification of the proposed approach.

The second part deals with the application of the proposed approach to MPC. By

choosing exponentially decaying basis functions, a truncation of the prediction horizon

can be avoided, and as a result, closed-loop stability and recursive feasibility are shown

to be inherent to the resulting parametrized MPC formulation.

The third part is concerned with numerical solution routines for solving the resulting

finite-dimensional optimization problems. Due to the fact that the parametrization is done

in continuous time, input and state constraints, which are enforced over a certain time

interval and not only at a finite number of time instants, lead to semi-infinite constraints.

These constraints describe convex sets that are not necessarily polytopic. To that extent,

several strategies for handling these semi-infinite constraints are presented. In particular, a

dedicated active-set approach is proposed, which is shown to perform well in the numerical

experiments that are conducted subsequently. Moreover, we show that this active-set

method indeed converges and derive an upper bound on the number of iterations the

method takes to achieve a given tolerance.

Related work: For our analysis of the approximations to constrained continuous-time

linear quadratic regulator problems we adopt a similar point of view than presented in [2],

where (weighted) Sobolev spaces are introduced as state space and (weighted) Lebesgue

spaces are introduced as control spaces. By doing so, the author establishes a Pontryagin

type of Maximum Principle for linear infinite-horizon optimal control problems. These

problems have proven to be difficult to analyze as the standard transversality conditions

cannot be extended directly to the infinite-horizon case, see for example [3] or [4, Ch. 3.7,

Ch. 6.5].

In [5], polynomials are used for approximating continuous linear programs.21 Duality is

exploited for constructing approximations yielding upper and lower bounds on the under-

lying continuous linear program. The resulting semi-infinite constraints are reformulated

using sum-of-squares techniques yielding semidefinite programs. Our approach is similar

in the sense that the lower bounds are also derived using duality. However, the optimal

control problem that we consider cannot be cast as a continuous linear program, and as

a result, our approach for constructing the lower bounds differs significantly. Moreover,

we do not restrict ourselves to polynomial basis functions, and treat equality constraints

in the form of linear ordinary differential equations by means of a Galerkin approach.

The optimal control problems that are discussed in the following can also be approxi-

mated by “standard” numerical optimization approaches such as shooting or collocation

methods, see for example [6] or [7] and references therein. However, these approaches

are typically tailored to nonlinear problems and as such, do not yield guarantees on the

approximation quality in general. Moreover, these approaches tend to be computationally

21Continuous linear programs are related to the constrained linear quadratic regulator problems con-
sidered herein by the fact that the constraints occurring in continuous linear programs could be used to
encode linear dynamics.
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expensive.

Constrained linear quadratic infinite-horizon problems are often encountered in MPC,

which is the main motivation for our work. In contrast to our formulation, the “standard”

MPC approach relies mostly on a discrete-time finite-horizon formulation, [1]. In order

to guarantee closed-loop stability, terminal cost and terminal state constraints are often

needed, [8]. Moreover, as remarked in [9], truncating the prediction horizon leads to a dis-

crepancy between the closed-loop performance objective and the finite-horizon open-loop

performance objective that is minimized at every time step. An alternative approach is

proposed in [10, Ch. 3, Ch. 6] and [11], where the finite differences (in the discrete-time

setting), respectively the time-derivatives (in the continuous-time setting) of the control

inputs are described with so-called Laguerre or Kauz basis functions. An analytical ex-

pression for the corresponding state trajectory as a function of the parametrized inputs

is derived, eliminating thereby the state variables in the resulting optimization problem.

Still, a finite prediction horizon is retained. In contrast, by choosing exponentially de-

caying basis function for parametrizing input and state trajectories, our MPC formulation

avoids the truncation of the prediction horizon. As a consequence, we will show that re-

cursive feasibility and closed-loop stability are guaranteed, provided that the resulting

optimization problem is feasible at time t = 0. If the basis functions are well-chosen, only

few basis functions are needed for obtaining a relatively good approximation. This leads

to optimization problems with relatively few optimization variables that can be solved

efficiently. Compared to state-of-the-art MPC solvers [12] and [13], the average execution

time can be reduced by roughly one order of magnitude for the quadruple integrator

system presented in Sec. 5, without degrading closed-loop performance. Compared to the

approach presented in [11], we parametrize the control inputs directly, which avoids lif-

ting the system, and consequently reduces the number of variables. In our approach, the

dynamics are represented by linear equality constraints, which may or may not be elimi-

nated. In our experience, the numerical optimization routines tend to be more effective

if the equality constraints are not eliminated.22

The suboptimality of the “standard” MPC without terminal constraints and terminal

cost with respect to the underlying infinite-horizon problem is discussed and quantified

in [16, Ch. 6], [17], [18], and [19]. These approaches are based on approximate dynamic

programming and typically involve finding so-called control Lyapunov functions. The

approach presented in the following is constructive in the sense that the suboptimality

can be quantified by solving two finite-dimensional convex optimization problems.

Due to the fact that an infinite prediction horizon can be retained, the optimal open-

loop cost of our approach always acts as an upper bound on the achieved closed-loop

cost. Similarly, it is shown in [20] that the infinite-horizon closed-loop cost can be upper

bounded by a corresponding discrete-time receding-horizon scheme including a terminal

cost and a terminal state constraint. This leads naturally to stability guarantees and

constraint satisfaction for all times (even between the sampling instants).

22This observation is well-known in the literature, see e.g. [14, p. 522], [15, p. 455].
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The authors from [21] and [22] propose to solve the discrete-time infinite-horizon linear

quadratic regulator problem directly, by means of an operator splitting technique in [21] or

by successively extending the prediction horizon of a finite-horizon approximation in [22].

These schemes require successive solutions of the discrete-time finite-horizon problem with

varying prediction horizons. This contrasts the proposed approach, where the number of

optimization variables is fixed and can be adjusted for trading off the computational

complexity with the approximation quality.

Exploiting a parametrization of the input for reducing the computational complexity

of MPC has already been explored by previous work, see for example [23], [24], [25],

and [26]. In [23], the implications regarding closed-loop stability and recursive feasibi-

lity of an input parametrization are investigated in the context of nonlinear MPC. The

input parametrization is required to be invariant to time shifts, which parallels the ap-

proach presented in the following. The formulation is based on a finite prediction ho-

rizon, and a terminal equality constraint (if the prediction horizon remains fixed) or a

contraction property (if the prediction horizon enters the optimization) is required for

guaranteeing closed-loop stability. In case the prediction horizon is fixed, the input pa-

rametrization is assumed to be translatable, see [23, Def. 1.5], which results either in a

standard sample-and-hold parametrization, a nonlinear input parametrization, or requi-

res additional assumptions compared to the parametrization presented in the following.

In case the contraction property in combination with a varying prediction horizon is used

for guaranteeing closed-loop stability, a nonlinear and in general non-convex optimiza-

tion problem is obtained. We show that our parametrization evolves naturally from a

time-shift requirement related to closed-loop stability and the fact that the open-loop

trajectories should achieve a finite cost. In contrast to [23], the infinite-horizon formula-

tion avoids the use of additional equality constraints for guaranteeing closed-loop stability

and leads to a finite-dimensional convex optimization problem with a quadratic cost and

linear constraints.23

In [27], multiresolution analysis is used for parametrizing the input trajectory. Howe-

ver, the approach is mainly applicable to open-loop stable systems, where the impulse

response is assumed to be negligible after a certain time horizon. For dealing with un-

stable systems, the proposed approach would require additional terminal constraints on

the unstable modes. Similarly, the authors from [28] apply the wavelet transformation

for simplifying the control laws obtained with explicit model predictive control. They

show that the resulting simplified control law is everywhere feasible and quantify the

suboptimality.

The problem of imposing semi-infinite constraints (in our case due to the fact that

we require input and state constraints to be fulfilled for a certain time interval) has been

extensively studied in the literature. In [29] and [30], a stochastic constraint sampling

23In the following, a continuous-time point of view is adopted, resulting in semi-infinite constraints due
to the fact that the constraints are imposed over compact time intervals. These semi-infinite constraints
can be avoided in a discrete-time setting. Moreover, we will present a computationally efficient approach
to deal with semi-infinite constraints.
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approach is presented. The authors provide bounds on the probability that constraint

violations occur, when solving the problem with sampled constraints. Alternative appro-

aches include relaxation techniques, for example based on sum-of-squares programming,

as presented in [31]. The exactness of certain relaxations is established in [32]. We will

discuss several possibilities for handling these semi-infinite constraints and introduce a

dedicated active-set method. Unlike stochastic constraint sampling strategies, our ap-

proach is deterministic, and does not require the solution of semidefinite programming

problems. We will establish convergence of our approach and derive an explicit bound on

the number of iterations needed to achieve a given tolerance.

Preliminary results to the ones presented herein appeared in the conference papers

[33] and [34]. In [33], the application of our strategy to MPC and the implications re-

garding closed-loop stability and recursive feasibility are discussed in detail. In [34], the

approximation quality with respect to the underlying optimal control problem is discus-

sed. The results from [34] are extended herein by deriving a bound on the approximation

error of the resulting optimal input and state trajectories in the L2-norm. We state con-

ditions guaranteeing that our approximations will actually converge to the solutions of

the underlying optimal control problem, when increasing the basis functions complexity.

Moreover, compared to [34], the results presented herein are derived using a different

approach (for example not relying on conjugate functions), which we think is more acces-

sible. Compared to earlier work, we also discuss in detail how to solve the resulting

optimization problems that typically include semi-infinite constraints. We propose and

analyze a dedicated active-set method, which we benchmark against a state-of-the-art

MPC solver.

2. Part I: Theoretical Foundation

2.1 Problem Formulation

In a first step, we present and analyze approximations to the following optimal control

problem

J∞ := min
1

2

(
||x||2 + ||u||2

)
+ ψ(xT ) (4.1)

s.t. ẋ = Ax+Bu, x(0) = x0, x(T ) = xT ,

Cxx+ Cuu ≤ b, xT ∈ X ,
x ∈ L2

n, u ∈ L2
m,

where the space of square integrable functions mapping from the interval I := (0, T ) to

Rq is denoted by L2
q, where q is a positive integer; and the L2

q-norm is defined as the map
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L2
q → R,

x→ ||x||, ||x||2 :=

∫
I

xTx dt, (4.2)

with dt the Lebesgue measure. The function ψ : Rn → R is assumed to be positive

definite and strongly convex, A ∈ Rn×n, B ∈ Rn×m, Cx ∈ Rnc×n, Cu ∈ Rnc×m, and

b ∈ Rnc are constant, and the set X is closed and convex. The dynamics as well as the

stage constraints are assumed to be fulfilled almost everywhere. Thus we simply write

f = g, f ≤ g, (4.3)

when we mean f(t) = g(t), respectively f(t) ≤ g(t) for all t ∈ I almost everywhere, with

f, g ∈ L2
q, or equivalently,

∫
I

δpT(f − g)dt = 0,

∫
I

δp̂T(f − g)dt ≤ 0, (4.4)

for all smooth compactly supported test functions δp and δp̂, with δp̂(t) ≥ 0 for all t ∈ I.

The weak derivative of x is denoted by ẋ.24 To simplify notation we abbreviate the domain

of the objective function by

X := L2
n × L2

m × Rn. (4.5)

We assume throughout the article that the constraints in (4.1) are nonempty, i.e. there

exist trajectories x and u, fulfilling the dynamics, the initial condition, the constraints,

and thus achieve a finite cost.

The main motivation for studying problem (4.1) comes from the fact that (4.1) often

serves as a starting point for MPC.

Discussion of the assumptions: The assumption of linear time-invariant dynamics will

be important in the following, as it leads to approximate solutions of (4.1) that fulfill

the equations of motion exactly. The assumption of a quadratic cost could be relaxed

to include strongly convex running costs; we will comment on such extensions in due

course. However, these extensions will generally increase the computational complexity

needed for obtaining (approximate) numerical solutions. From a practical point of view,

a quadratic running cost often represents a good compromise between generality and

computational tractability.

The interval I is not restricted to have finite measure. The subsequent analysis remains

valid even if T →∞, with ψ = 0, X = {0}, and xT = limt→∞ x(t) = 0. Furthermore, the

more general cost
1

2

∫
I

xTQx+ uTRu dt (4.6)

24The equations of motion imply that ẋ ∈ L2
n, which can be used to conclude that x has a unique

absolutely continuous representative defined on the closure of I (a classical solution of the equations of
motion). With x(t) we refer to the value this unique absolutely continuous representative takes at time
t ∈ [0, T ].
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can be cast into (4.1) by means of a linear coordinate transformation, provided that the

matrices Q ∈ Rn×n and R ∈ Rm×m are positive definite. In addition, the L2
q space can be

replaced by the weighted Lebesgue space with squared norm∫
I

xTx e−αt dt, (4.7)

where α > 0 is constant, without changing the subsequent analysis. The assumption that

b is constant can be relaxed, for example by requiring b to be square integrable.

The strong convexity of the running cost and the terminal cost ψ is important for gua-

ranteeing uniqueness of the corresponding minimizer. This will be established in Sec. 2.5,

where we also argue that the minimum in (4.1) is indeed attained.

2.2 Motivation

In the remainder we will construct two series of finite-dimensional approximations to

(4.1) yielding upper and lower bounds on J∞. We will do this in three steps; 1) para-

metrization of input and state trajectories using basis functions, 2) approximation of the

dynamics, 3) approximation of the constraints. We will show that the upper and lower

bounds will get tighter and tighter as more and more basis functions are included in the

approximation. Furthermore, we provide conditions guaranteeing convergence to J∞ as

the number of basis functions tends to infinity. As the following derivations and proofs

are fairly technical, we would like to convey and motivate the underlying concepts using

the following simple example

min
z∈Z
|z|2, (4.8)

where Z is taken as the closed convex set

Z := {z ∈ R2 | z1 ≥ 1, z2 ≥ 1}, (4.9)

and | · | denotes the Euclidean norm. Clearly, an upper bound on (4.8) is obtained by

restricting the variable z to a subspace of R2, for instance z1 + z2 = 3. This results in

min
z∈ZU

|z|2 ≥ min
z∈Z
|z|2, (4.10)

with

ZU := {z ∈ R2 | 1 ≤ z1 ≤ 2, z1 + z2 = 3} ⊂ Z. (4.11)

We will follow exactly the same strategy to obtain upper bounds on the cost J∞ in

(4.1), that is, we simply restrict the trajectories x and u to be spanned by a fixed (and

finite) number of basis functions. We therefore restrict the trajectories x and u to a linear
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Z

ZL

z1

z2

21

2

1

ZU

Figure 4.1. Illustration of the sets Z, ZU, and ZL. The sets Z, ZU, and ZL are all closed and
convex.

subspace. If this subspace is dense, the optimal cost of the underlying problem might be

recovered.

Moreover, the constraints in (4.8) form a closed convex set and can be rewritten as

the intersection of all closed half-spaces that pass through the point (1, 1) and contain

Z. More precisely, a vector z is an element of Z if and only if

δz1(z1 − 1) + δz2(z2 − 1) ≥ 0, ∀δz1 ≥ 0, δz2 ≥ 0 (4.12)

holds. Thus, by restricting the variations δz1 and δz2 to lie in a subspace, for instance

δz1 = δz2, we obtain an approximation to the set Z, that is,

ZL := {z ∈ R2 | δz1(z1 − 1) + δz2(z2 − 1) ≥ 0,∀δz ∈ R2 : δz ≥ 0, δz1 = δz2}. (4.13)

As a result, Z is a subset of ZL, simply because compared to (4.12), fewer variations

are allowed in (4.13). This leads naturally to a lower bound on (4.8), which is obtained

by optimizing over ZL instead of Z. Again, if the subspace to which the variations are

restricted is dense, the original problem might be recovered. Moreover, (4.13) is in general

still an intersection of closed half-spaces and is therefore closed. The sets Z, ZU, and ZL

are illustrated in Fig. 4.1. The same strategy is applied in the following: The feasible

set of problem (4.1) will be described using a variational formulation, that is, as the

intersection of half-spaces in a Hilbert space. Restricting the variations will lead to a

finite-dimensional optimization problem, approximating (4.1) from below.

137



Paper P4. On the Approximation

2.3 Finite-dimensional approximations of (4.1)

1) Parametrization with basis functions We will parametrize input and state trajectories

using basis functions, that is,

x̃(t) = (In ⊗ τ s(t))Tηx, ũ(t) = (Im ⊗ τ s(t))Tηu,

where ηx ∈ Rns and ηu ∈ Rms are the parameter vectors, τ s(t) := (τ1(t), τ2(t), . . . , τs(t)) ∈
Rs contains the first s basis functions, ⊗ denotes the Kronecker product, and Iq ∈ Rq×q

refers to the identity matrix for any integer q > 0. The superscript s refers to the number

of basis functions used for the approximation. For ease of notation the superscript s will

be dropped, whenever it is clear from context, and we will indicate vectors as n-tuples,

where the dimension and stacking can be inferred from context. The basis functions are

required to satisfy the following assumptions:

A1) The basis functions τi ∈ L2
1, i = 1, 2, . . . , s are linearly independent and orthonormal

with respect to the standard L2
1-scalar product.

A2) The basis functions fulfill τ̇ s(t) = Msτ
s(t) for all t ∈ I, for some Ms ∈ Rs×s.

Note that in case I has infinite measure, Ms is required to have strictly negative ei-

genvalues. This is a natural requirement, since a feasible state trajectory x in (4.1) is

guaranteed to decay due to the fact that it is required to be square integrable and to

have a weak derivative in L2
n, see [35, Cor. 8.9].

The assumption of linearly independent basis functions is necessary for the approxi-

mations to be unique. The assumption of orthonormal basis functions is without loss of

generality, since orthonormal basis functions can be constructed from linearly independent

ones via the Gram-Schmidt procedure. Assumption A2 is more restrictive. Well-known

examples fulfilling Assumption A2 are sinusoids or polynomials. Assumption A2 implies,

however, that the basis functions are able to capture an arbitrary time-shift, and can be

used to conclude that the equations of motion are (depending on the formulation) fulfilled

exactly by the parametrized input and state trajectories, [33]. If the basis functions are

assumed to be continuously differentiable, the converse is also true, as we illustrate next.

Thus, we set forth that the basis functions should be able to capture time-shifts, that is,

for every vector η ∈ Rs and every time-shift Ts ≥ 0 there exists a vector η̂(η, Ts) such

that

τ(t− Ts)
Tη = τ(t)Tη̂(η, Ts), ∀t ∈ (Ts, T ). (4.14)

We will now show that this implies that the basis functions must fulfill Assumption A2.

In order to do so, we take the derivative with respect to Ts and evaluate the resulting

expression for Ts → 0, leading to

−τ̇(t)Tη = τ(t)T
∂η̂

∂Ts

∣∣∣∣
Ts↓0

, ∀t ∈ I. (4.15)
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We may choose the canonical unit vectors for η, which readily implies that τ̇ must be

a linear combination of the vector τ . This concludes that any set of continuously diffe-

rentiable basis functions that can capture an arbitrary time-shift must fulfill Assumption

A2. In the context of MPC, Assumption A2 is used to guarantee recursive feasibility and

closed loop stability and will therefore be of paramount importance. In a discrete-time

finite-horizon setting, the importance of the time-shift property regarding closed-loop

stability has already been emphasized in [23], resulting in similar requirements on the

basis functions, see for example [23, Def. 1.8].

In the infinite-horizon case, that is for T →∞, examples fulfilling Assumptions A1 and

A2 are given by exponentially decaying polynomials, or exponentially decaying sinusoids.

In the case of polynomials, this leads to so-called Laguerre functions, which are given by

τi(t) =
√

2νLi(2νt)e
−νt, (4.16)

where Li denotes the ith Laguerre polynomial, i = 1, 2, . . . , s, and ν > 0 is the rate of

the exponential decay. The corresponding matrix Ms has then the form

Ms =


−ν 0 0 . . .

−2ν −ν 0 . . .

−2ν −2ν −ν . . .
...

. . .

 . (4.17)

These basis functions will be used to approximate infinite-horizon problems arising in the

context of MPC, see Sec. 3 and Sec. 5.

We will denote the finite-dimensional subspace spanned by the first s basis functions

as Xs,

Xs := {(x, u, xT ) ∈ X | ηx ∈ Rns, ηu ∈ Rms,

x = (In ⊗ τ s)Tηx, u = (Im ⊗ τ s)Tηu}. (4.18)

The fact that Xs is finite-dimensional can be used to conclude that Xs is complete, i.e.

that every Cauchy sequence in Xs converges and has its limit in Xs. As a result, it

follows that Xs is a closed subspace of X.25 This will become important for arguing that

the minima of the resulting optimization problems are indeed attained. In addition, the

following straightforward, but important relation

Xs ⊂ Xs+1 (4.19)

holds for all integers s > 0.

25In a metric space a set is closed if and only if it is sequentially closed.
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We can think of an element in Xs not only as an element in X (i.e. a tuple of a finite-

dimensional vector and two square integrable functions), but also as a finite-dimensional

vector given by the corresponding parameter vectors ηx and ηu. To make this distinction

explicit, we introduce the map πqs : L2
q → Rqs, defined as

x→
∫
I

(Iq ⊗ τ s)xdt, (4.20)

which maps an arbitrary element x ∈ L2
n to its first s basis function coefficients. Similarly,

we define πs : X → Rns × Rms × Rn as

(x, u, xT )→ (πns(x), πms(u), xT ). (4.21)

As a consequence, we write πs(x) for describing the finite dimensional representation of

x ∈ Xs, that is, its representation in terms of the parameter vectors ηx and ηu. The

adjoint map (πqs)∗ : Rqs → L2
q is given by

η → (In ⊗ τ)Tη, (4.22)

and is used to obtain the trajectory corresponding to the vector η ∈ Rqs, containing the

first s basis function coefficients. Similarly, we define (πs)∗ : Rns × Rms × Rn → X as

(ηx, ηu, xT )→ ((πns)∗(ηx), (π
ms)∗(ηu), xT ). (4.23)

The composition (πs)∗πs : X → X yields the projection of an element x ∈ X onto the

subspace Xs ⊂ X.

2) Approximation of the constraints In the following we seek to approximate the con-

straint

C := {(x, u, xT ) ∈ X | Cxx+ Cuu ≤ b, xT ∈ X}, (4.24)

characterizing all square integrable functions x and u, satisfying the inequality con-

straints. The first approximation is obtained by restricting the trajectories x and u to be

spanned by the first s basis functions, i.e.

CsU := {(x̃, ũ, xT ) ∈ Xs | Cxx̃+ Cuũ ≤ b, xT ∈ X}.

In other words, CsU is defined as the intersection of C with Xs.

140



2. Part I: Theoretical Foundation

The set (4.24) can be reformulated using a variational formulation, leading to

C = {(x, u, xT ) ∈ X |
∫
I

δpT(−Cxx− Cuu+ b)dt ≥ 0

∀δp ∈ L2
nc : δp ≥ 0,

∣∣∣ ∫
I

δpTbdt
∣∣∣ <∞;xT ∈ X}, (4.25)

where in case I has finite measure the Lebesgue integral of δpTb over I is guaranteed

to be finite. In the light of (4.25), a second approximation is thus naturally obtained by

restricting the test functions δp to be spanned by the first s basis functions, that is,

CsL := {(x, u, xT ) ∈ X |
∫
I

δp̃T(−Cxx− Cuu+ b)dt ≥ 0

∀δp̃ = (Inc ⊗ τ)Tδηp : δp̃ ≥ 0, δηp ∈ Rncs;xT ∈ X}. (4.26)

The sets CsU, CsL, and C have the following properties:

B1) the sets CsU, CsL, and C are closed and convex.

B2) the sets πs(CsU), πs(CsL) are closed and convex.

B3) CsU ⊂ Cs+1
U ⊂ C.

B4) CsL ⊃ Cs+1
L ⊃ C.

B5) (πs)∗πs(CsU) ⊂ CsU, (πs)∗πs(CsL) ⊂ CsL.

Property B1 ensures that the resulting optimizations over CsU, CsL, and C will be convex,

and that the corresponding minima will be attained. The sets CsU and CsL are represented as

subsets of the Euclidean space through the map πs. As a result, Property B2 ensures that

the corresponding (finite-dimensional) optimization problems will be convex and that the

corresponding minima will be attained. Property B3 is used to obtain a monotonically

decreasing sequence bounding J∞ from above, whereas Property B4 is used to construct

a montonically increasing sequence bounding J∞ from below. Property B5 will guarantee

consistency of the corresponding finite-dimensional optimization problems.

The proof of Properties B1-B5 can be found in App. A. A schematic illustration of

the sets CsL, C, and CsU is shown in Fig. 4.2.

It follows from the property of the set CsU being contained in Cs+1
U , and Cs+1

L being

contained in CsL, that the limits

lim
s→∞
CsU =

∞⋃
s=1

CsU, lim
s→∞
CsL =

∞⋂
s=1

CsL (4.27)
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CsL
C

CsU

πs(CsL)

X Rns × Rms × Rn

πs(C)

πs(CsU)

πs

(πs)∗

Figure 4.2. Schematic illustration of the Properties B1-B4 and the maps πs and (πs)∗.

exist, [36, p. 18, p. 21].26 Next, we will provide conditions asserting that the two limits

agree. To that extent we introduce the following definition: The set A is an algebra, if it

is closed under addition, scalar multiplication, and multiplication, that is,

f + g ∈ A, fg ∈ A, cf ∈ A, (4.28)

for any f, g ∈ A, c ∈ R, [37, p. 161].

Lemma 7. Given that the basis functions form an algebra and that the basis functions

are dense in the set of smooth functions with compact support in I, it holds that

lim
s→∞
CsU = lim

s→∞
CsL.

Proof. We consider the case where I has finite measure. The proof for the case where I

has infinite measure is given in App. C. We claim that lims→∞ CsU ⊃ lims→∞ CsL. We prove

the claim by contradiction. Let (x, u, xT ) ∈ lims→∞ CsL be such that there exists an open

set U with

Cxkx(t) + Cuku(t) > bk, ∀t ∈ U a.e., (4.29)

for some k ∈ {1, 2, . . . , nc}, where Cxk and Cuk denotes the kth row of Cx, respectively

Cu. Thus, it holds that ∫
I

δv(−Cxkx− Cuku+ bk)dt < 0 (4.30)

for all smooth test functions δv : I → R, vanishing outside U , with δv(t) > 0 ∀t ∈ U .

We pick one of these test functions and denote it by δp. Due to the fact that the basis

functions are dense in the set of smooth functions with compact support, there exists

a sequence
√
δp̃i, which converges uniformly to

√
δp, that is, for any given ε > 0 there

26Moreover, lims→∞ CsL is closed, as it can be written as the intersection of the closed sets CsL.
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exists an integer N > 0 such that

||
√
δp̃i −

√
δp||∞ < ε, ∀i > N, (4.31)

where || · ||∞ denotes the supremum norm. From the assumption that the basis functions

form an algebra that is closed under multiplication, we can infer that δp̃i lies likewise in

the span of the basis functions. Moreover, we have that

||δp̃i − δp||∞ = ||(
√
δp̃i −

√
δp)(

√
δp̃i +

√
δp)||∞ (4.32)

≤ ||
√
δp̃i −

√
δp||∞||

√
δp̃i +

√
δp||∞ (4.33)

< ε||
√
δp̃i −

√
δp+ 2

√
δp||∞ (4.34)

< ε(ε+ 2||
√
δp||∞) ≤ C1ε, (4.35)

for all integers i > N , where C1 > 0 is constant (for ε sufficiently small). By assumption,

(x, u, xT ) ∈ CsL, for all integers s > 0, and therefore∫
I

δp̃i(−Cxkx− Cuku+ b)dt ≥ 0, (4.36)

for all integers i > 0. However, the above integral can be rewritten as

0 ≤
∫
I

δp(−Cxkx− Cuk + b)dt (4.37)

+

∫
I

(δp̃i − δp)T(−Cxkx− Cuku+ b)dt, (4.38)

where the last term can be bounded by (using Hölder’s inequality twice)

εC1

∫
I

|Cxkx+ Cuku− b|dt ≤ εC1||Cxkx+ Cuku− b||2
√
T , (4.39)

for all integers i > N . The fact that the expression (4.38) converges to zero as i → ∞
leads to a contradiction with (4.30). It follows therefore that lims→∞ CsU ⊃ lims→∞ CsL,

which, combined with CsU ⊂ CsL for all integers s > 0, leads to the desired conclusion.

2.4 Approximation of the dynamics

We define the the set

D := {(x, u, xT ) ∈ X|ẋ = Ax+Bu, x(0) = x0, x(T ) = xT}, (4.40)

containing all trajectories x and u fulfilling the equations of motion in a weak sense. We
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obtain a first approximation to the set D by restricting x and u to be spanned by the

first s basis functions, that is,

DsU := D
⋂

Xs. (4.41)

It was shown in [33] that the linearity of the dynamics implies that the set DsU can be

rewritten as the elements (x̃, ũ, xT ) ∈ Xs, satisfying x̃(0) = x0, x̃(T ) = xT , and∫
I

δp̃T( ˙̃x− Ax̃−Bũ)dt = 0, (4.42)

for all variations δp̃ that are spanned by the first s basis functions. In particular, (4.42)

reduces to a linear equation in the coefficient vectors ηx and ηu defining the trajectories

x̃ and ũ compatible with the equations of motion.

In order to obtain a second approximation, we reformulate the dynamics in terms of

the variational equality∫
I

δpT(ẋ− Ax−Bu)dt+ δp(0)T(x(0)− x0) + δp(T )T(xT − x(T )) = 0, (4.43)

for all test functions δp ∈ Hn, where Hn denotes the set of functions in L2
n having a weak

derivative in L2
n. As remarked earlier, δp has therefore a unique absolutely continuous

representative to which we refer when writing δp(0), δp(T ). In case I has infinite measure,

the above equation reduces naturally to∫
I

δpT(ẋ− Ax−Bu)dt+ δp(0)T(x(0)− x0) = 0,

for all test functions δp ∈ Hn. The formulation (4.43) is equivalent to the one in (4.40),

which is implied by the fundamental lemma of the calculus of variations [38, p. 18].

Applying integration by parts results in

−
∫
I

δṗTxdt−
∫
I

δpT(Ax+Bu)dt− δp(0)Tx0 + δp(T )TxT = 0, ∀δp ∈ Hn, (4.44)

and is often referred to as weak formulation of the dynamics. The above equation is well-

defined for all x ∈ L2
n (and equivalent to (4.40)). Therefore, by restricting the variations

in (4.44) to be spanned by the first s basis functions, we obtain

DsL := {(x, u, xT ) ∈ X | δp̃ = (In ⊗ τ)Tδηp,

−
∫
I

δ ˙̃pTxdt−
∫
I

δp̃T(Ax+Bu)dt− δp̃(0)Tx0 + δp̃(T )TxT = 0, ∀δηp ∈ Rns}, (4.45)
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as an approximation to D. Note that while the formulation (4.40) (and likewise (4.44))

implies x ∈ Hn, the set DsL contains also elements x ∈ L2
n that do not necessarily have

a weak derivative in L2
n. The use of the weak formulation for the definition of DsL is

motivated by the fact that the resulting set DsL is closed (see below), which is important

to ensure that the minimum is attained, when optimizing over DsL.

The sets DsU, DsL, and D have the following properties:

C1) the sets DsU, DsL, and D are closed and convex.

C2) the sets πs(DsU) and πs(DsL) are closed and convex.

C3) DsU ⊂ Ds+1
U ⊂ D.

C4) DsL ⊃ Ds+1
L ⊃ D.

C5) (πs)∗πs(DsU) ⊂ DsU, (πs)∗πs(DsL) ⊂ DsL.

The above properties are in complete analogy to the previous section, and will be used to

draw analogous conclusions. In particular, Properties C1 and C2 ensure that the resulting

optimization problems will have unique well-defined minimizers. Properties C3 and C4

will lead to a monotonically decreasing sequence bounding J∞ above, respectively to

a monotonically increasing sequence bounding J∞ below. Property C5 will guarantee

consistency. A proof of Properties C1-C5 can be found in App. B.

2.5 Resulting optimization problems

Using the definitions of the previous section we can rewrite (4.1) as

J∞ = min ||x||2 + ||u||2 + ψ(xT )

s.t. (x, u, xT ) ∈ C ∩ D. (4.46)

By assumption, there exists a feasible trajectory satisfying the dynamics and the con-

straints. Therefore the set C ∩ D is nonempty and the objective is bounded above. As a

consequence, (4.46) reduces to an optimization over a closed convex and bounded set in

the Banach space X (the set C ∩ D is closed). Thus, the minimum in (4.46) is attained

and due to the strong convexity of the objective function the corresponding minimizer

(x, u, xT ) ∈ X is unique, [39, Thm. 26, p. 93].

By combining the approximation of the constraints in Sec. 2 and the approximation

of the dynamics in Sec. 2.4 we obtain the two auxiliary problems

Js := inf ||x̃||2 + ||ũ||2 + ψ(xT )

s.t. (x̃, ũ, xT ) ∈ CsU ∩ DsU, (4.47)
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and

J̃s := min ||x̃||2 + ||ũ||2 + ψ(xT )

s.t. (x̃, ũ, xT ) ∈ CsL ∩ DsL. (4.48)

We make the assumption that there exists an integer s0 > 0 large enough such that

Cs0U ∩ Ds0U is nonempty. The closedness and convexity of the sets CsU, DsU, CsL, and DsL
leads to the conclusion that the infimum in (4.47) is attained and that the corresponding

minimizer is unique for s = s0. From the fact that DsU is contained in Ds+1
U and CsU is

contained in Cs+1
U it follows that Js+1 ≤ Js for all integers s ≥ s0. This implies that the

infimium in (4.47) is attained and that the corresponding minimizers are unique for all

integers s ≥ s0. Moreover, the fact that DsU ⊂ D and CsU ⊂ C implies that Js ≥ J∞ for

all integers s ≥ s0. Similar arguments show that J̃s ≤ J̃s+1 ≤ J∞ for all integers s > 0,

that the minimum in (4.48) is indeed attained, and that the corresponding minimizers

are unique for all integers s > 0. The results are summarized with the following lemma.

Lemma 8. Let the sets C ∩ D and Cs0U ∩ Ds0U be nonempty for some integer s0 > 0. Then

the optimization problems (4.46), (4.47), and (4.48) are well defined and the correspon-

ding minima are attained and are unique. Moreover, the costs Js form a monotonically

decreasing sequence bounding J∞ above for all integers s ≥ s0, whereas the costs J̃s form

a monotonically increasing sequence bounding J∞ below for all integers s > 0.

By definition of the constraints CsU and DsU, the minimizer of (4.47) (for s ≥ s0) is

required to be an element of Xs. Consequently, the problem (4.47) is equivalent to

Js = inf |ηx|2 + |ηu|2 + ψ(xT )

s.t. (ηx, ηu, xT ) ∈ πs(CsU) ∩ πs(DsU), (4.49)

which corresponds to a convex finite-dimensional optimization problem. Note that the

orthonormality of the basis functions can be used to conclude |ηx|2 = ||x̃||2 and likewise

|ηu|2 = ||ũ||2. Similarly, the minimizer (x, u, xT ) ∈ X of (4.48) is guaranteed to lie in

Xs. This can be shown by contradiction: We assume therefore (x, u, xT ) ∈ X \ Xs. We

construct x̃ := (πns)∗πns(x), and ũ := (πms)∗πms(u). As a consequence of Properties B5

and C5 it follows that (x̃, ũ, xT ) ∈ CsL ∩ DsL. Moreover, by orthonormality of the basis

functions it holds that ∫
I

x̃T(x− x̃)dt = 0,

∫
I

ũT(u− ũ)dt = 0, (4.50)

which leads to

||x||2 = ||x− x̃||2 + ||x̃||2, ||u||2 = ||u− ũ||2 + ||ũ||2. (4.51)
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This implies that x̃, ũ, and xT achieve a cost that is below J̃s, contradicting the fact that

(x, u, xT ) are the minimizer of (4.48).

This shows that the convex finite-dimensional problem

J̃s = min |ηx|2 + |ηu|2 + ψ(xT )

s.t. (ηx, ηu, xT ) ∈ πs(CsL) ∩ πs(DsL), (4.52)

is equivalent to (4.48) in the sense that its (unique) minimizer (ηx, ηu, x̄T ) is related to

the minimizer (x, u, xT ) ∈ X of (4.48) by x = (πns)∗(ηx), u = (πms)∗(ηu), x̄T = xT , and

achieves the same cost. By virtue of Lemma 8 we therefore conclude

Theorem 9. Let the sets C∩D and Cs0U ∩Ds0U be nonempty for some integer s0 > 0. Then,

the optimization problems (4.46), (4.49), and (4.52) are well-defined and the correspon-

ding minima are attained and are unique. Moreover, the costs Js form a monotonically

decreasing sequence bounding J∞ above for all integers s ≥ s0, whereas the costs J̃s form

a monotonically increasing sequence bounding J∞ below for all integers s > 0.

From the fact that Js and J̃s form monotonically increasing, respectively monotoni-

cally decreasing sequences it follows at once that

lim
s→∞

Js, lim
s→∞

J̃s (4.53)

exist. We will argue that not only the optimal cost, but also the optimal trajectories

converge (strongly). In addition, this will provide a means to quantify the L2-error of the

input and state trajectories with respect to the trajectories corresponding to (4.1).

Proposition 6. Let the assumptions of Thm. 9 be fulfilled. Let the optimal trajectories

of (4.47), respectively (4.49) be denoted by x̃s, ũs, xTs, and the optimal trajectories of

(4.1) by x, u, xT . It is further assumed that ψ is µ-strongly convex. Then, x̃s, ũs, and

xTs converge strongly, and for all integers s ≥ s0 it holds that

||x̃s − x||2 + ||ũs − u||2 +
µ

2
|xTs − xT |2 ≤ 2(Js − J∞). (4.54)

Proof. We first note that the strong convexity of ψ implies that for any real numbers x1

and x2 it holds that

ψ(
1

2
(x1 + x2)) ≤ 1

2
(ψ(x1) + ψ(x2))− 1

4

µ

2
|x1 − x2|2, (4.55)

where µ is a strictly positive constant. We construct from the two optimizers (x̃s, ũs, xTs)
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and (x̃s+1, ũs+1, xTs+1) the feasible candidate

(
1

2
(x̃s + x̃s+1),

1

2
(ũs + ũs+1),

1

2
(xTs + xTs+1)) ∈ Cs+1 ∩ Ds+1. (4.56)

Feasibility is guaranteed due to the convexity of both Cs+1 and Ds+1. This results in

Js+1 ≤ ||1
2

(x̃s + x̃s+1)||2 + ||1
2

(ũs + ũs+1)||2 + ψ(
1

2
(xTs + xTs+1)). (4.57)

Applying the relation (4.55), which holds with µ = 2 in case of the L2-norm, yields

Js+1 ≤
1

2
(Js + Js+1)− 1

4
(||x̃s − x̃s+1||2 + ||ũs − ũs+1||2)− 1

4

µ

2
|xTs − xTs+1 |2. (4.58)

This implies

||x̃s − x̃s+1||2 + ||ũs − ũs+1||2 +
µ

2
|xTs − xTs+1|2 ≤ 2(Js − Js+1), (4.59)

and from the convergence of Js it follows therefore that the elements (x̃s, ũs, xTs) ∈ Xs

form a Cauchy sequence, which, due to the completeness of Xs, converges (strongly). The

above argument can be repeated by replacing x̃s+1, ũs+1 and xTs+1 by the optimizer of

(4.1), resulting in the inequality (4.54).

The inequality (4.54) is particularly interesting, as it can be used to determine the

quality of the approximation of (4.47) (or likewise (4.49)) with respect to (4.1). This is

because the suboptimality in the cost can be bounded by

Js − J∞ ≤ Js − J̃s, (4.60)

which stems from the fact that J̃s ≤ J∞ for all integers s > 0. As a result, by solving

the two finite-dimensional problems (4.47) and (4.48) (or likewise (4.49) and (4.52)) not

only the suboptimality of the cost Js compared to J∞ can be quantified, but also the

L2-distance of the corresponding optimal input and state trajectories.

The same reasoning can be applied to the trajectories obtained by solving (4.48) or

(4.52).

Proposition 7. Let the assumptions of Thm. 9 be fulfilled. Let the optimal trajectories

to (4.48), respectively (4.52) be denoted by x̃s, ũs, xTs, and the optimal trajectories to

(4.1) by x, u, xT . It is further assumed that ψ is µ-strongly convex. Then, x̃s, ũs, and
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xTs converge strongly, and for all integers s ≥ 0 it holds that

||x̃s − x||2 + ||ũs − u||2 +
µ

2
|xTs − xT |2 ≤ 2(J∞ − J̃s). (4.61)

In case the assumption of ψ being strongly convex is dropped, strong convergence of

x̃s and ũs can still be established. Moreover, in the absence of the terminal cost ψ, for

instance in the infinite-horizon case, the bounds (4.54) and (4.61) continue to hold, and

it remains true that x̃s and ũs converge strongly.

We now provide conditions under which Js and J̃s converge both to J∞.

Theorem 10. Given that the basis functions form an algebra and are dense in the set of

continuous functions with compact support in I, it holds that

lim
s→∞

Js = lim
s→∞

J̃s = J∞. (4.62)

Proof. From Thm. 9 it can be inferred that Js and J̃s converge, and that the corresponding

sequence of optimal input and state trajectories is bounded. Furthermore, by virtue of

Lemma 7 we have that lims→∞ CsU = lims→∞ CsL, and as a consequence we can apply

Prop. 3.6 in [34] (the proposition extends naturally to the finite-horizon case), which

leads to the desired result.

By combining Thm. 10 with Prop. 6 or Prop. 7 it follows that not only the opti-

mal value function but also the corresponding sequence of optimal trajectories converges

strongly to the optimal trajectories of (4.1).

2.6 Remarks

In the previous section the basis functions were assumed to be continuous throughout

the time interval I. It is, however, straightforward to extend the previous results in case

the interval is split up, for example in I1, I2, . . . , IN , with ∪Ni=1Ii = I, and piecewise

continuous basis functions defined over the intervals Ii, i = 1, 2, . . . , N are used. The

basis functions are then required to fulfill Assumptions A1 and A2 over the intervals Ii
separately, i = 1, 2, . . . , N . This includes for example the case where polynomials are used

as basis functions on (0, 1) and exponentially decaying polynomials on (1,∞). Thereby,

the basis functions complexity is in general increased, which potentially improves the

approximation quality and leads to tighter upper and lower bounds on J∞. However, in

the context of MPC, closed-loop stability and recursive feasibility is in general lost when

splitting the interval I, due to the fact that the obtained (potentially discontinuous)

solutions cannot be shifted in time (see Sec. 3).

Moreover, Thm. 9, Prop. 6, Prop. 7, and Thm. 10 can be generalized to a strongly

convex running cost instead of a quadratic one. In practice, a quadratic running cost

has the advantage of yielding a quadratic objective function, facilitating the numerical

solution of the resulting optimization problem.
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2.7 A remark on the discrete-time formulation

The main results presented earlier can be translated to the discrete-time case. Due to the

high similarity, we will restrict the discussion to the following few remarks.

In the discrete-time case the trajectories x, u corresponding to the discrete-time coun-

terpart of (4.1) are approximated via

x̃(k) = (In ⊗ τ(k))Tηx, ũ(k) = (Im ⊗ τ(k))Tηu, (4.63)

for all k ∈ I, where I is a subset of all non-negative integers. We will slightly abuse

notation and denote both discrete-time and continuous-time trajectories with the same

variables, that is, x̃, τ , etc. The discrete-time analogue of Assumption A2 is given by

A2D) The basis functions fulfill τ s(k + 1) = Mdsτ
s(k) for all k ∈ I.

The subscript ’d’ highlights that the matrix Mds and Ms are a priori unrelated. However,

we may choose Mds = eMsTd , for a fixed time Td > 0, in which case the discrete-time

basis function τ(k) matches the corresponding continuous-time basis function τ(t) at

time t = kTd for all k ∈ I. In complete analogy to the continuous-time case, Assumption

A2D leads to an invariance of the basis functions with respect to shifts in the index k.

Hence, in the context of MPC, closed-loop stability guarantees can be shown by the same

arguments as in the continuous-time setting (see Sec. 3).

The major difference compared to the continuous-time formulation is that the inequa-

lity constraints in the discrete-time version of (4.1) are at most enforced at a countable

number of time indices. No matter whether I has finite or infinite cardinality, this always

leads to a finite number of inequality constraints that need to be enforced in the correspon-

ding approximations.27 Hence, in the discrete-time setting the resulting approximations

can always be reduced to standard quadratic programs.

3. Part II: Model Predictive Control

The proposed approximations can be applied in the context of MPC. We will show that by

repeatedly solving the infinite-horizon optimal control problem (4.49) (with I = (0,∞),

ψ = 0, xT = limt→∞ x(t) = 0), recursive feasibility and closed-loop stability are inherent

to the resulting MPC algorithm. Due to the fact that the basis functions are decaying the

constraint limt→∞ x̃(t) = 0 is satisfied by construction and does not lead to an additional

27In case I has not a finite cardinality, the basis functions are required to be exponentially decaying,
due to Assumption A2D and the fact that they are square summable. Hence, as will be shown in the
following (the results translate to the discrete setting), it is enough to check the inequality constraints
at a finite number of points.
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terminal constraint. For the sake of completeness, (4.49) is written out as

min ηTx (Q⊗ Is)ηx + ηTu (R⊗ Is)ηu (4.64)

s.t. (In ⊗MT
s − A⊗ Is)ηx − (B ⊗ Is)ηu = 0,

(In ⊗ τ(0))Tηx = x0,

(Cx ⊗ τ(t))Tηx + (Cu ⊗ τ(t))Tηu ≤ b,∀t ∈ [0,∞),

where the input and state costs are weighted with the matrices Q > 0 and R > 0, which

is common in MPC.

The MPC algorithm consists of two steps: In a first step, input and state trajectories

x̃ and ũ are obtained by solving (4.64) subject to the current state as initial condition

x0. In a second step, the first portion of the input ũ is applied to the system, and the

procedure is repeated in the next sampling interval. As a consequence, feedback control

is achieved.

We recall that Assumption A2 implies that the basis functions can capture arbitrary

time-shifts in the sense that for every time-shift Ts and any given trajectory f(t) =

τ s(t)Tη, where η ∈ Rs is the parameter vector, there exists a different set of parameters

η̂, such that f(t − Ts) = τ s(t)Tη̂ for all times t. This result can be easily established by

rewriting the basis functions in terms of a matrix exponential as done in [33].

We now discuss the stability properties of the proposed control strategy. Without loss

of generality we set t = 0. According to the first step of the MPC algorithm we solve (4.64)

to obtain the optimal trajectories x̃ and ũ. The input ũ is then applied to the system over

the time span [0, Td), where Td is the sampling time. In the absence of modeling errors,

the system will evolve along the predicted trajectory x̃, which is due to the fact that the

predictions x̃ and ũ are exact (as shown in [33]). Due to the time-shift property of the

basis functions, there exist parameters η̂x and η̂u for expressing the shifted trajectories

x̃(t+ Td), ũ(t+ Td) as a linear combination of the same basis functions, that is

x̃(t+ Td) = (In ⊗ τ(t))Tη̂x, ũ(t+ Td) = (Im ⊗ τ(t))Tη̂u, (4.65)

for all times t ∈ [0,∞). The trajectories x̃ and ũ are guaranteed to satisfy the equations

of motion and the stage constraints for all times and therefore the parameters η̂x and η̂u
are feasible candidates for the optimization (4.64) with x0 = x̃(Td) at the time instant

t = Td. Recursive feasibility follows then by induction. Moreover, the resulting optimal

cost (obtained by solving (4.64) at time t = Td) is certainly lower than the cost achieved

by the feasible candidates η̂x and η̂u corresponding to the trajectories x̃(t + Td) and

ũ(t + Td). The optimal cost at time t = Td is therefore bounded by the difference of

the optimal cost at time t = 0 with the integral of the running cost over the interval

[0, Td). As a consequence, the cost is guaranteed to decrease over time, acts therefore as

a Lyapunov function, and can be used to conclude closed-loop stability. The previous
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argument is summarized with the following proposition.

Proposition 8. Provided that the optimization (4.64) is feasible at time t = 0, it remains

feasible for all times t > 0, and the resulting closed-loop system is guaranteed to be

asymptotically stable.

Proof. A formal proof can be found in [33] and is included in App. D.

The previous result continues to hold even if (4.64) is not solved to full optimality

(which is often not practicable), provided that the numerical solution algorithm is mono-

tonic in the cost. Given that the numerical solution algorithm is initialized with feasible

trajectories at time t = 0, a single iteration of the solver at each time-step is enough for

the stability guarantee to hold, as follows from the above argument.

3.1 Implementation of the semi-infinite constraint

The optimization (4.64) is a convex finite-dimensional optimization problem. However, it

is not a quadratic program, as it includes the semi-infinite constraint

(Cx ⊗ τ(t))Tηx + (Cu ⊗ τ(t))Tηu ≤ b,∀t ∈ [0,∞). (4.66)

As a result, (4.64) cannot be solved by a standard quadratic programming solver. Three

different approaches to deal with the semi-infinite constraint are immediate:

1) global polyhedral approximation

2) sum-of-squares approximation

3) local polyhedral approximation (active-set approach).

The first is based on a fixed polyhedral approximation, leading to a quadratic program.

The second is based on exploiting polynomial basis functions for obtaining a characteriza-

tion using linear matrix inequalities, whereas the third is based on an iterative constraint

sampling scheme, resulting in a local polyhedral approximation. All approaches aim at

leaving Prop. 8, Prop. 6, and Prop. 7 intact. In the following subsections we will focus

on approach 1 and 2. We will describe an efficient solution algorithm based on approach

3 in detail in Sec. 4.

It turns out that it is enough to check the constraint (4.66) over a compact time inter-

val, instead of the unbounded interval t ∈ [0,∞). This is because the basis functions are

assumed to be linearly independent and exponentially decaying according to Assumption

A1 and A2. A formal proof of this claim can be found in App. E. The compact time in-

terval for which the constraint (4.66) has to be checked is denoted by [0, Tc] and depends

on the choice of basis functions, on the order s, and in some cases also on the bound b

(see App. E).
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In case the presented approach is used for situations with a changing set-point, the

semi-infinite constraint must be adapted accordingly. This leads to changes in the right-

hand side of (4.66), resulting in a translation of the finite-dimensional convex set described

by (4.66).

1) Global polyhedral approximation In order to construct a global polyhedral approxi-

mation of the set CsU we assume that an upper bound on the achievable cost Js, denoted

by J̄s, is available. In order to simplify the discussion, we assume further that for now

Cx and Cu are row vectors, and that b is a scalar. The proposed scheme can be readily

extended to the case where Cx and Cu are matrices, and b is a vector. The approximation

is based on constraint sampling, where we tighten the constraint slightly to

Cxx̃(ti) + Cuũ(ti) ≤ (1− ε)b, (4.67)

with ε > 0, and where ti, denotes the constraint sampling instances, i = 1, 2, . . . , ni,

which are to be determined. The algorithm is based on the following two steps:

1) Compute

h(t) := max Cxx̃(t) + Cuũ(t)− b
s.t. Cxx̃(ti) + Cuũ(ti) ≤ (1− ε)b, i = 1, . . . , ni,

(x̃, ũ, lim
te→∞

x̃(te)) ∈ DsU,

||x̃||2 + ||ũ||2 ≤ J̄s,

for all times t ∈ Is, where Is contains a finite number of sampling instances (to be

made precise below).

2) Find the local peaks of h(t), denoted by t∗i . Add each t∗i to the constraint sampling

points if h(t∗i ) > −bε/2. Repeat the procedure until h(t) ≤ −bε/2 for all t ∈ Is.
Note that the function h(t) is again only evaluated at the discrete time points t ∈ Is.

The index set Is has to be chosen such that h(t) ≤ −bε/2 for all t ∈ Is implies that

h(t) ≤ 0 for all t ∈ [0,∞). As remarked earlier, due to the fact that the basis functions

are exponentially decaying and linearly independent it is enough to check h(t) ≤ 0 for all

t ∈ [0, Tc], for a fixed time Tc, as h(t) ≤ 0 for all t ∈ (Tc,∞) will be fulfilled automatically.

Moreover, a Lipschitz constant of

Cxx̃(t) + Cuũ(t)− b (4.68)

can be found by using an upper bound on its time-derivative, that is, for example,

|τ(t)TMT((Is ⊗ Cx)ηx + (Is ⊗ Cu)ηu)| ≤ |τ(t)||MT((Is ⊗ Cx)ηx + (Is ⊗ Cu)ηu)|, (4.69)

153



Paper P4. On the Approximation

where the first term can be bounded for all t ∈ [0,∞) due to the fact that the basis

functions are exponentially decaying and the second term can be bounded using the fact

that the cost Js is below J̄s. We therefore choose the index set Is as

Is = {tk < Tc | tk = k
2L

bε
, k = 0, 1, 2, . . . }, (4.70)

where L denotes a Lipschitz constant of (4.68).

It is important to note that the optimization in step 1 imposes the dynamics and

the upper bound J̄s on the cost. Both constraints tend to reduce the number of con-

straint sampling points ti greatly. The initial condition x0 enters the optimization as an

optimization variable. The optimization in step 1 represents a quadratically constrained

linear program for each time instant t ∈ Is, and as such, it can be solved using standard

software packages. The whole procedure for determining the constraint sampling points

is done offline. Once these time instances are found, the optimization problem that is

solved online reduces to a quadratic program. The number of constraint sampling points

ti is upper bounded by the cardinality of the index set Is, and thus guaranteed to be

finite. Due to the fact that the above procedure is greedy, it will not necessarily lead to

the smallest number of constraint sampling points.

In case the presented approach is used for situations with a changing set-point, the

upper bound J̄s might have to be adapted, requiring a re-computation of the constraint

sampling points ti. If the upper bound J̄s is still valid, the constraint sampling points ti
do not have to be recomputed and it suffices to adapt the right-hand-side of (4.67).

2) Sum-of-squares approximation In case exponentially decaying polynomials are used

as basis functions, c.f. (4.16), sum-of-squares techniques can be applied. In particular, it

is shown in [32] that the set

{η ∈ Rs | ηT(1, t, . . . , ts−1) ≥ 0, ∀t ∈ [0,∞)} (4.71)

can be expressed using matrix inequalities that are linear in the coefficients η. In the case

of exponentially decaying polynomials it is therefore enough to approximate the expo-

nential decay by a polynomial upper bound (for example by appropriately truncating a

Taylor series expansion at 0), in order to approximate the constraint (4.66) in a slightly

conservative manner. As a result, by applying the results from [32], the optimization pro-

blem (4.64) is approximated by a semidefinite program that can be solved using standard

optimization routines.

4. Part III: An efficient optimization routine

In the following section we present an efficient optimization routine for solving (4.49)
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(and likewise (4.64)). The method is an extension of traditional active set methods and

generalizes to optimization problems with a linear quadratic cost function, linear equality

constraints, and linear semi-infinite inequality constraints, i.e.

Ĵ(Ic) := min zTHz (4.72)

s.t. Aeqz = beq, (4.73)

lb ≤ (Inc ⊗ τ(t))TCzz ≤ lu, ∀t ∈ Ic, (4.74)

where Ic is any subset of the non-negative real line. In case of (4.64), the interval Ic is taken

to be [0,∞). Note that an optimization problem, whose objective function has a linear

part, can be brought to the form (4.72) by completing the squares. It is assumed that

the optimization problem (4.72) is feasible, that lb ≤ 0 and lu ≥ 0, and that the Hessian

H is positive definite, which guarantees existence and uniqueness of the corresponding

minimizer28.

The method is based on the observation that if the set Ic consists merely of a collection

of time instants (constraint sampling instances) ti, (4.72) reduces to a quadratic program

that can be solved efficiently. Moreover, due to the fact that the basis functions fulfill

Assumptions A1 and A2, a trajectory parametrized with the basis functions has a finite

number of maxima and minima, as is shown in App. F. Consequently, (4.72) has only

a finite number of active constraints. The collection of the time instants corresponding

to these active constraints will be denoted by I∗c . If this finite collection of constraint

sampling instants is known ahead of time, one could simply solve (4.72) with respect to

I∗c instead of Ic, resulting in Ĵ(I∗c ) = Ĵ(Ic). In addition, for any subset Ikc of Ic it holds that

Ĵ(Ic) ≥ Ĵ(Ikc ), and likewise, if Ikc is a subset of Ik+1
c we have that Ĵ(Ik+1

c ) ≥ Ĵ(Ikc ). Hence,

a monotonically increasing sequence J(Ikc ), bounded above by Ĵ(Ic) can be constructed

using any sequence of sets Ikc that fulfill Ikc ⊂ Ik+1
c ⊂ · · · ⊂ Ic. In particular, such sets

are obtained by starting with an arbitrary initial guess I0
c containing a finite number of

constraint sampling points (or even the empty set), and by adding at least one constraint

violation point at each iteration. Moreover, at each iteration the inactive constraints

contained in the set Ikc can be removed, as this will not alter the optimizer nor the

optimal value Ĵ(Ikc ). In that way, the number of constraint sampling instances contained

in Ikc remains finite. This motivates Alg. 2, which solves (4.72) up to a given tolerance,

by constructing an approximation to the set of active constraints I∗c .

Proposition 9. Alg. 2 converges, that is, limk→∞ Ĵ(Ikc ) = Ĵ(I∗c ) = Ĵ(Ic). In order to

achieve constraint violations smaller than ε at most

4cτ (Ĵ(Ic)− Ĵ(I0
c ))

σε2
(4.75)

28This is due to the fact that the constraints describe a closed convex set and due to the strong
convexity of the objective function.
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Procedure 2 Iterative constraint sampling

Initialize: initial guess for the constraint sampling points: I0
c = {t1, t2, . . . , tN}; maxi-

mum number of iterations: MAXITER; constraint satisfaction tolerance: ε;
1: k = 0
2: for k <MAXITER do
3: solve (4.72) for Ikc → zk, Ĵ(Ikc )
4: if infeasible then
5: abort
6: else if zk fulfills (4.74) for all t ∈ I (with tol. ε) then
7: algorithm converged
8: return zk

9: end if
10: find at least one constraint violation instant → tc
11: remove inactive time instants in Ikc
12: Ik+1

c = Ikc ∪ {tc}, k = k + 1
13: end for

steps are required, where cτ is defined as

cτ := sup
t∈Ic
|τ(t)|2, (4.76)

and σ denotes the smallest eigenvalue of the Hessian H.

Proof. From the above arguments it can be concluded that Ĵ(Ikc ) is monotonically increa-

sing whenever Ĵ(Ikc ) < Ĵ(Ic). Therefore the sequence Ĵ(Ikc ) converges. It remains to show

that Ĵ(Ikc ) converges to Ĵ(Ic). Similar to Prop. 6, the strong convexity of the objective

function can be used to establish

|zk+1 − zk|2 ≤ 4σ−1(Ĵ(Ik+1
c )− Ĵ(Ikc )), (4.77)

where zk+1 and zk are the minimizer corresponding to Ĵ(Ikc ) and Ĵ(Ik+1
c ). As a re-

sult we can conclude that zk converges, and that limk→∞ z
k is well defined and satis-

fies the constraint (4.74). It is therefore a feasible candidate for (4.72), implying that

limk→∞ Ĵ(Ikc ) ≥ Ĵ(Ic), which, combined with Ĵ(Ikc ) ≤ Ĵ(Ic) for all integers k, leads to

limk→∞ Ĵ(Ikc ) = Ĵ(Ic).

It remains to show that (4.75) is fulfilled. To that extent, let ε > 0 denote the smallest

constraint violation that occurs within the first N steps. For all k ≤ N − 1, there exists

the constraint violation point tkj , which will be added to Ikc , and therefore

ε ≤ |(e(tkj )⊗ τ(tkj ))
T(zk − zk+1)|, (4.78)

where e(tkj ) is a canonical unit vector. Combining the Cauchy-Schwarz inequality and the
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above bound on |zk+1 − zk| results in

ε2 ≤ 4cτσ
−1(Ĵ(Ik+1

c )− Ĵ(Ikc )). (4.79)

By summing over the first N steps we arrive at

Nε2 ≤ 4σ−1cτ (Ĵ(INc )− Ĵ(I0
c )) ≤ 4σ−1cτ (Ĵ(I∗c )− Ĵ(I0

c )), (4.80)

since the sequence Ĵ(Ikc ) is strictly increasing and bounded above by Ĵ(I∗c ). Dividing by

ε2 on both sides concludes the proof.

4.1 Implementation details

Alg. 2 can be naturally embedded in an active-set method. An introduction to active-set

methods for solving quadratic programs can be found for example in [40, Ch. 10]. Starting

from an initial guess of the active constraint sampling instants, which is denoted by I0
c , the

quadratic program with optimal cost Ĵ(I0
c ) is solved: This is done by initially assuming

that all constraints in the set I0
c are active. The resulting optimization problem reduces to

an equality constrained quadratic program, whose solution can be calculated by solving

a linear system of equations. The Lagrange multipliers corresponding to (4.74), which

are denoted by µ(t), t ∈ I0
c , are evaluated subsequently. If all the constraints are indeed

active, then the optimizer to the quadratic program with cost Ĵ(I0
c ) has been found. If,

however, not all the constraints are found to be active, that is, if there are some Lagrange

multipliers that are zero, the standard active-set procedure, see [40, Ch. 10] is used to

find the subset of active constraints Ia ⊂ I0
c . Provided that the active set Ia ⊂ I0

c and the

optimizer to the quadratic program with cost Ĵ(I0
c ) has been found, the constraint (4.74)

is then checked for all t ∈ Ic. If no constraint violations occur, the solution to (4.72)

has been found. If constraint violations occur, the time instant tc for which a violation

occurs, is added to the set of active constraints Ia resulting in I1
c = Ia ∪ {tc}. The above

procedure is then repeated until convergence.

Each iteration requires solving equality constrained quadratic programs of the type

min zTHz (4.81)

s.t. Aeqz = beq, (c(t)⊗ τ(t))TCzz = la(t), ∀t ∈ Ia, (4.82)

where c(t) ∈ Rnc , la(t) ∈ R, t ∈ Ia, and Ia ⊂ Ikc describe the active constraints correspon-

ding to (4.74). Due to the fact that very few constraints are expected to be active, we use

a range space approach, [40, p. 238]. To that extent, the equality constraint is eliminated

and the optimizer z∗ corresponding to (4.81) is rewritten as

z∗ = b̂+ ĤCT
z

∑
t∈Ia

(c(t)⊗ τ(t))Tµ(t), (4.83)
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where the dual variable µ(t) ∈ R, defined for t ∈ Ikc , satisfies

(c(tj) ⊗ τ(tj))
TCzĤC

T
z

∑
t∈Ia

(c(t) ⊗ τ(t))µ(t) = la(tj) − (c(tj) ⊗ τ(tj))
TCzb̂, (4.84)

for all tj ∈ Ia ⊂ Ikc , and µ(t) = 0 for all t ∈ Ikc \ Ia, with

Ĥ := H−1AT
eq(AeqH

−1AT
eq)−1AeqH

−1 −H−1, (4.85)

b̂ := H−1AT
eq(AeqH

−1AT
eq)−1b. (4.86)

The dual variable µ(t) is therefore obtained by solving (4.84), and the optimizer z∗ is then

determined via (4.83). At each iteration, a single constraint is either added or removed.

Therefore, in order to efficiently find a solution to (4.84), a Cholesky factorization (more

precisely a LDLT-decomposition) of the matrix

{(c(tj)⊗ τ(tj))
TCzĤC

T
z (c(ti)⊗ τ(ti))}(tj ,ti)∈Ia×Ia (4.87)

is computed and adapted at each step by performing rank-1 updates. The matrix Ĥ and

the vector b̂ are precomputed. For additional details regarding the regularity of (4.87),

and issues related to cycling and stalling we refer to [40, Ch. 10] and [15, p. 467].

4.2 Constraint check

It remains to explain how to efficiently check whether the constraint (4.74) is fulfilled for

a given solution candidate z. We assume that the interval Ic has the form Ic = [0, Tc]. As

it has been explained in Sec. 3.1, the constraint check over the interval [0,∞) reduces to

the check over a compact interval, provided that the basis functions fulfill Assumptions

A1 and A2.

A straightforward approach would be to exploit the specific structure of the basis

functions. For example, if the basis functions consist of exponentially decaying polyno-

mials having a degree of at most 4, determining the stationary points of (4.74) amounts

to solving a quartic equation, which can be done analytically. As a result, it would be

enough to check the constraints at these stationary points in order to determine if the

constraint is satisfied or not.

We propose a more general approach that is based on local Taylor approximations,

and thus valid for arbitrary basis functions compatible with Assumptions A1 and A2. In

order to simplify the discussion, we consider the special case of (4.74), where Cz is the

identity and nc = 1. The resulting algorithm extends naturally to the more general case.

According to Taylor’s theorem we obtain the following identity

τ(t)Tz = τ(0)Tz + τ̇(0)Tzt+ τ̈(0)Tz
t2

2
+ τ (3)(t̄)Tz

t3

6
, (4.88)
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where t̄ ∈ [0, t]. As will become clear in the following, a third-order Taylor expansion

represents a good compromise between approximation quality and computational effort.

The last term of the previous equation can be bounded by the Cauchy-Schwarz inequality

leading to

|τ (3)(s)Tz| ≤ sup
t̄∈Ic
|τ(t̄)||(MT)3z| =: R(z), ∀s ∈ [0, t]. (4.89)

As a consequence, the following upper and lower bounds are obtained

bl(t) ≤ τ(t)Tz ≤ bu(t), (4.90)

for all t ∈ Ic, with

bl(t) := τ(0)Tz + τ̇(0)Tzt+ τ̈(0)Tz
t2

2
−R(z)

t3

6
, (4.91)

bu(t) := τ(0)Tz + τ̇(0)Tzt+ τ̈(0)Tz
t2

2
+R(z)

t3

6
. (4.92)

The situation is exemplarily depicted in Fig. 4.3. Given that τ̇(0)Tz ≥ 0 the lower bound

attains its maximum at time

tu :=
τ̈(0)Tz +

√
(τ̈(0)Tz)2 + 2R(z)τ̇(0)Tz

R(z)
> 0, (4.93)

whereas if τ̇(0)Tz < 0 the upper bound attains its minimum at time

tl :=
−τ̈(0)Tz +

√
(τ̈(0)Tz)2 − 2R(z)τ̇(0)Tz

R(z)
> 0. (4.94)

Thus, if the lower bound exceeds lu or the upper bound drops below ll, that is, if

bl(tu) > lu, or bu(tl) < ll, (4.95)

the constraint (4.74) is guaranteed to be violated at time tu, respectively at time tl. If this

is not the case, we are guaranteed that the constraint (4.74) is satisfied in the interval

[0, ts], with

ts := min{t1, t2 | bu(t1) = lu, bl(t2) = ll}. (4.96)

Thus, finding the value ts requires the solution of two cubic equations, which stems from

the fact that a third order Taylor approximation was used as a starting point. By shifting

the parameter vector in time by ts and repeating the above procedure, the constraint is
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τ(t)Tz

bu(t)

bl(t)

t

lu

ll

ts

tu

Figure 4.3. Illustration of the upper and lower bounds bu(t) and bl(t) obtained from the Taylor
expansion of τ(t)Tz. In that case the test (4.95) is indecisive, and constraint satisfaction over the
interval [0, ts] can be guaranteed.

either found to be satisfied for all t ∈ Ic or a constraint violation is detected. Shifting the

parameter vector by ts amounts in multiplying z with the matrix exponential

eM
Ttsz → z. (4.97)

The procedure is illustrated by the flow chart depicted in Fig. 4.4.

The efficiency of the proposed strategy can be improved via the following observa-

tion. A constraint violation occurring close to t = 0, is often found within the first few

iterations. However, if no constraint violation occurs, the whole interval Ic needs to be

traversed, which tends to increase computation. The computational effort may be reduced

by including additional conservative constraint satisfaction checks. For example, upper

and lower bounds can be tightened by a factor γ ∈ (0, 1) such that the satisfaction of

γll ≤ τ(ti)
Tz ≤ γlu (4.98)

for certain time instances ti implies (4.74) (for all t ∈ Ic). As a result, at each iteration,

the above inequality is checked. If it is found to be fulfilled, then constraint satisfaction

can be guaranteed.

5. Simulation example

The proposed approach is illustrated on an quadruple integrator system, that is,

x
(4)
qi = u, (4.99)

where xqi corresponds to the quadruple integrator state and u to the input. The example is
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check (4.98)

Ic = [0, Tc], z

constraint
satisfaction

check (4.95)
constraint
violation

t+ ts > Tc
eM

Ttsz → z
t + ts → t

constraint
satisfaction

0→ t

true

compute tu, tl

compute ts

true

true

Figure 4.4. Flow chart that illustrates the proposed constraint satisfaction check.

used to highlight the potential of the proposed MPC approach. However, we do not claim

that our approach is superior in general, but believe that it leads to a different trade-off

(basis function complexity vs. computation) compared to “standard” MPC, which might

be beneficial for some applications. We define the state vector as x := (xqi, ẋqi, ẍqi,
...
xqi)

and consider the task of driving the system from x(0) = x0 back to the origin. We penalize

input and state deviations with the following cost∫ ∞
0

1

2
xTx+

1

2
u2 dt, (4.100)

and constrain the input u to lie in [−0.5, 0.5] and the state xqi to be non-negative, that

is, xqi ≥ 0. The basis functions τ are designed to be orthonormal and spanned by

τ ∈ exp(−νt) span(1, t, t2, . . . , ts−1), (4.101)

where ν is set to 0.7 s−1 (this corresponds approximately to the closed-loop poles of an

LQR design). This leads to so-called Laguerre functions, c.f. (4.16) that fulfill Assumpti-

ons A1 and A2. Note that the theorem of Stone-Weierstrass, [41, p. 147], states that the

basis functions given by (4.101) are dense in the set of continuous functions vanishing
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at infinity. The set of smooth compactly supported functions is contained in the set of

continuous functions vanishing at infinity, [42, p. 70] and as a result, the assumptions of

Lemma 7 are fulfilled.29

The open-loop state and input trajectories resulting from solving (4.49) with x0 =

(0.3, 0.3, 0.3, 0.3) and s = 12 are shown in Fig. 4.5. The resulting cost amounts to J12 =

13.95. By solving the problem (4.52), we obtain the lower bound J̃12 = 11.0. Thus we can

conclude that the cost corresponding to (4.1) is at most 20% below J12.

Fig. 4.5 compares open-loop and closed-loop trajectories. The closed-loop trajectories

are obtained when resolving the optimization problem (4.49) every Td = 20ms, and ap-

plying the obtained input trajectory ũ(t) in between. In practice this could be realized

with two different processes running at different frequencies, one solving (4.49) at a slower

rate and one applying the input ũ(t) at a higher rate.30 Closed-loop and open-loop tra-

jectories are significantly different, which is due to the fact that a high polynomial order

is required to approximate the bang-bang behavior accurately. The achieved closed-loop

cost is J12cl = 13.06, lying between J̃12 and J12.

Next, the proposed parametrized MPC approach is benchmarked against the discrete-

time MPC approach used by FORCES, [12], and qpOASES, [13]. The MPC solver FOR-

CES implements an interior point method that exploits the so-called multistage formu-

lation obtained from the discrete-time MPC formulation. The quadratic programming

solver qpOASES implements an active set method tailored to MPC. A terminal cost

that matches an LQR design is included in the discrete-time formulation. No terminal

set constraint is added, hence closed-loop stability is not guaranteed in the discrete-time

approach. The evolution of the system, starting from x0 is simulated over 20s and is used

to compute the closed-loop cost according to

1000∑
k=1

(
1

2
x(kTd)Tx(kTd) +

1

2
u(kTd)2

)
Td. (4.102)

The time horizon (in the discrete-time approach) is increased from 93 to 130 samples

with a step length of two samples. A time horizon of 92 samples was found to yield an

unstable closed-loop trajectory for the given initial condition. The optimization routine

FORCES was run with the standard settings, including an absolute tolerance of 10−6

for the duality gap and a constraint satisfaction tolerance of 10−6. The standardized

MPC-settings were used for qpOASES. For the parametrized approach the number of

basis functions is increased from 8 to 12. The semi-infinite constraint is handled via the

active-set method proposed in Sec. 4, where an absolute tolerance of 10−6 is used for

29The exponential decay can be expressed using polynomials, which shows that the basis functions
form an algebra.

30We applied the proposed parametrized approach in practice, see [43], [44], by using zero-order hold.
Although the stability guarantees are lost when applying zero-order hold, we did not experience any
issues due to the robustness of MPC. By relying on a discrete-time formulation of our parametrized
approach closed-loop stability can be guaranteed with zero-order hold.
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Figure 4.5. Open-loop (black, thick) and closed-loop (red,thin) trajectories for s = 12. The
quadruple integrator state xqi is depicted in the first graph (top), and the input is shown in the
second graph (bottom).

constraint satisfaction. The results are displayed in Fig. 4.6, where the average execution

time (averaged over the 20 s simulation) is plotted as a function of the achieved closed-

loop cost. The parametrized MPC approaches is shown to outperform FORCES and

qpOASES by up to one order of magnitude in terms of the average execution time. The

achieved closed-loop cost with parametrized approach increases for s = 11, 12 compared

to s = 10. This can most probably be attributed to the relative large discrepancy between

closed-loop and open-loop trajectories.

The benchmark is repeated for 100 random initial conditions, that are uniformly

distributed in [0, 0.2]4. The corresponding results are shown in Fig. 4.7. Note that the

initial conditions are guaranteed to be stabilizable, and were indeed stabilized by the

parametrized MPC approach. In the discrete-time case, a time horizon below 36 was found

to yield unstable closed-loop trajectories. In addition, Fig. 4.7 displays the sensitivity of

the execution time of the parametrized approach with respect to the chosen constraint

satisfaction tolerance. The constraint satisfaction tolerance was also varied for FORCES,

but found to influence the execution time only insignificantly. In the result shown the

constraint satisfaction tolerance for FORCES was set to 10−6.

In order to demonstrate the scalability of the parametrized approach with the number
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of states, a chain of n integrators is considered,

x
(n)
ni = u, (4.103)

where xni corresponds to the first integrator state and u to the input. We define the

state vector to be x := (xni, ẋni, . . . , x
(n−1)
ni ), and penalize input and state deviations with

the cost function (4.100). The basis function are chosen to be orthonormal and spanned

according to (4.101) with ν = 0.7 s−1 and s = 12. The input constraint u ∈ [−0.5, 0.5]

and the state constraint xni ≥ 0 is included. The execution time required to compute a

single solution of (4.49) subject to the initial condition x0 = (0.1, 0.1, . . . , 0.1) is shown

in Fig. 4.8. No feasible solution was found with the given basis functions for values of

n larger than 7. For n = 7 a time horizon of approximately 450 samples is required to

achieve closed-loop stability with the discrete-time formulation, which amounts to 3607

optimization variables. In contrast, for s = 12 and n = 7 the optimization problem

resulting from the parametrized approach includes 91 optimization variables.

Summarizing, we can conclude that the parametrized approach might be promising,

in particular for systems with marginally stable or unstable dynamics that require high

sampling frequencies. On the example of the quadruple integrator system, the parame-

trized approach outperformed the standard discrete-time approach in terms of execution

time, without necessarily degrading performance. We believe that the computational ad-

vantages stem from a reduction in the number of optimization variables and the fact

that only very few constraints are typically active (consider for example the open-loop

trajectory shown in Fig. 4.5), which is exploited by our active-set approach. Hence, it is

conjectured that the computational benefits are even higher for systems with higher state

and/or input dimensions.

6. Conclusion

The article discussed approximations to the constrained linear quadratic regulator pro-

blem, which are based on representing input and state trajectories with basis functions.

In particular, a sequence of lower and upper bounds on the cost of the underlying optimal

control problem is derived. The approximations are shown to converge. The proposed fra-

mework is applied to MPC, where it is shown that an infinite prediction horizon can be

retained, leading to recursive feasibility and closed-loop stability. Efficient solution met-

hods are presented to solve the resulting finite-dimensional convex optimization problems.

The results are illustrated on a quadruple integrator system. The proposed approach le-

ads to different computational trade-offs compared to “standard” MPC, which might be

beneficial for some applications. In case of the quadruple integrator system, it is shown to

outperform the state-of-the-art discrete-time solvers in terms of execution time, without

necessarily degrading performance.
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Figure 4.6. Shown is the average execution time as a function of the closed-loop cost obtained
from a 20s simulation starting at x0. The dashed line indicates the 68% confidence interval of
the execution time (plus one standard deviation) for the parametrized approach. The execution
time was found to vary only insignificantly for FORCES and qpOASES, and hence, the standard
deviation is not shown. To trade-off the execution time with the closed-loop cost, the prediction
horizon is changed from 93 to 130 (first in steps of two, then in steps of five) in the discrete-
time formulation (used by FORCES and qpOASES), whereas the number of basis functions is
increased from 8 to 12 in the parametrized formulation.

A. Properties B1-B5

We will sketch the proofs of Properties B1-B5 in the following. It follows from the linearity

of the stage constraint, and the fact that the terminal constraint X is convex, that the

sets C, CsU, and CsL are likewise convex. We will sketch the proof that the set CsL is closed.

The argument can be translated to the set C by using the formulation according to (4.25).

We will argue indirectly, i.e. that the complement of CsL is open. To that extent we choose

(x, u, xT ) ∈ X \ CsL. As a result, there exists a test function δp̃, with δp̃ ≥ 0, which is

spanned by the first s basis functions and is such that∫
I

δp̃T(−Cxx− Cuu+ b)dt < 0. (4.104)

For any x̂ ∈ L2
n, û ∈ L2

m, and x̂T ∈ Rn, with ||x̂−x|| < ε, ||û−u|| < ε, and |x̂T −xT | < ε,

it follows that ∫
I

δp̃T(−Cxx̂− Cuû+ b)dt =

∫
I

δp̃T(−Cxx− Cuu+ b)dt

+

∫
I

δp̃T(Cx(x− x̂) + Cu(u− û))dt, (4.105)
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Figure 4.7. Simulation of 100 random initial conditions. Depicted is the average execution
time as a function of the average closed-loop cost. The dashed line indicates the 68% confidence
interval of the average execution time for the parametrized approach. The execution time was
found to vary only insignificantly for FORCES and qpOASES, and therefore the corresponding
standard deviation is not shown. In order to trade-off the execution time with the closed-loop
cost, the prediction horizon is changed from 36 to 60 (36,38,40,42,44,45,50,55,60) in the discrete-
time formulation (used by FORCES and qpOASES), whereas the number of basis functions is
increased from 8 to 12 in the parametrized formulation.
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Figure 4.8. Execution time required for solving (4.49) subject to the initial condition x0 =
(0.1, 0.1, . . . , 0.1) for the nth order integrator system.

where the last integral can be bounded by (using the Cauchy-Schwarz inequality)

||δp̃||(|Cx|||x− x̂||+ |Cu|||u− û||) < ||δp̃||(|Cx|+ |Cu|)ε. (4.106)

We can infer from X being closed, that there exists an open ball centered at xT , which
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does not intersect X . As a result, by choosing ε small enough, it can be concluded that∫
I

δp̃T(−Cxx̂− Cuû+ b)dt < 0, x̂T 6∈ X , (4.107)

and therefore (x̂, û, xT ) ∈ X \ CsL, for all x̂ ∈ L2
n, û ∈ L2

m, x̂T ∈ Rn with ||x − x̂|| < ε,

||u− û|| < ε, and |x̂T − xT | < ε. Hence, the complement of CsL is open, and therefore CsL
is closed.

Note that the set CsU is given by the intersection of the set C with the linear subspace

Xs spanned by the first s basis functions. Both of these sets are closed31 implying that

CsU is closed as well.

The projection πs is linear, which asserts the convexity of the sets πs(CsU) and πs(CsL).

Moreover, it is surjective, and hence, by the open mapping theorem, it follows directly

from CsL and CsU being closed that πs(CsL) and πs(CsU) are closed as well.

The inclusion CsU ⊂ Cs+1
U follows directly from CsU = C ∩ Xs and the inclusion

Xs ⊂ Xs+1. In other words, given (x, u, xT ) ∈ CsU, the parameter vectors ηx and ηu,

corresponding to the state and input trajectories x and u, can be extended with zeros

resulting in trajectories x̂, û spanned by s + 1 basis functions. But x̂ = x and û = u

and therefore (x, u, xT ) ∈ Cs+1
U . The inclusion CsL ⊃ Cs+1

L follows from the fact that the

dimension of the subspace to which the test functions δp̃ are constrained increases with

s.

The claim (πs)∗πs(CsU) ⊂ CsU follows from the fact that (πs)∗πs is a projection from

X onto Xs ⊂ X and that CsU ⊂ Xs. The claim that (πs)∗πs(CsL) ⊂ CsL follows from

the linearity of the stage constraints. More precisely, it follows by noting that for any

δp̃ = (Inc ⊗ τ)Tδηp and any x ∈ L2
n,∫

I

δp̃TCxxdt = δηTpCxπ
ns(x)

=

∫
I

δp̃TCx (πns)∗πns(x)dt (4.108)

holds.

B. Properties C1-C5

We will sketch the proof of Properties C1-C5 below.

The convexity of the sets DsU, DsL, and D follows directly from the linearity of the

dynamics.

The fact that the set DsL is closed can be seen by a similar argument used for showing

closedness of C̃s in App. A, that is, showing that X \ DsL is open. The set D can be

31Xs is finite-dimensional, thus complete, and hence also closed.
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rewritten using the variational equality (4.44), and thus, again a similar argument can

be applied to show that D is closed. It follows that DsU is closed, since DsU is defined as

the intersection of D with the closed set Xs.

The linearity and surjectivity of the map πs implies that πs(DsU) and πs(DsL) are

indeed closed (by the open mapping theorem) and convex.

The inclusion DsU ⊂ Ds+1
U ⊂ D for all s follows directly from the fact that Xs ⊂

Xs+1 ⊂ X and DsU = D ∩Xs. The inclusion Ds+1
L ⊂ DsL for all s can be seen by noting

that the variational equality in (4.45) has to hold for variations spanned by more and

more basis functions as s increases. The claim that D is contained in DsL follows from the

equivalence of (4.44) with the formulation in (4.40). The properties (πs)∗πs(DsU) ⊂ DsU
and (πs)∗πs(DsL) ⊂ DsL can be shown using the same arguments as in App. A, where the

latter relies on the linearity of the dynamics.

C. Proof of Lemma 7 (infinite measure case)

We prove Lemma 7 for the case where I has infinite measure.

Proof. The idea of the proof is the same as in the finite measure case: We claim that

lims→∞ CsU ⊃ lims→∞ CsL. We assume that the claim is incorrect and show that this leads

to a contradiction. Thus, we choose (x, u, xT ) ∈ lims→∞ CsL, such that there exists an open

set U (bounded) and a k ∈ {1, 2, . . . , nc}, for which∫
I

δv(−Cxkx− Cuku+ bk)dt < 0 (4.109)

holds for all smooth test functions δv : I → R, δv ≥ 0, with support in U , and δv(t0) > 0

for some t0 ∈ U . Due to the smoothness of the test functions, δv(t0) > 0 readily implies

that there is an open neighborhood of t0, denoted by N (t0), such that δv(t) > 0, ∀t ∈
N (t0). The above integral exists, since δv is bounded, has compact support and x ∈ L2

n,

u ∈ L2
m. We fix t0 ∈ U and pick one of these variations that is positive, strictly positive at

time t0, and has support in U , which we name δp. Due to the fact that the basis functions

are dense in the set of smooth functions with compact support, there exists a sequence√
δp̃i that converges uniformly to

√
δp. It was shown in the proof of Lemma 7 that δp̃i

lies likewise in the span of the basis functions and that for a given ε > 0 (small enough)

there exits an integer N > 0 such that

||δp̃i − δp||∞ < C1ε

holds for all integers i > N , where C1 > 0 is constant.

We claim that there is an integer p > 0 such that the basis function τp : I → R
is nonzero for t0. This can be shown by a contradiction argument: If the claim was
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not true, then all basis functions τ p = (τ1, τ2, . . . , τp) would be zero at time t0. The basis

functions fulfill Assumption A2, and hence the first order differential equation τ̇ p = Mpτ
p,

which is guaranteed to have unique solutions. From τ p(t0) = 0, τ̇ p(t0) = 0 we can infer

that τ p(t) = 0 for all t ∈ (0,∞) is the (unique) solution to τ̇ p = Mpτ
p, contradicting

Assumption A1.

Thus, we we can choose the basis function τp that is nonzero for t0 and hence also

nonzero in a neighborhood around t0, due to the smoothness of the basis functions. The

same applies to the function τ 2
p , which is likewise contained in the set of basis functions

(the basis functions form an algebra that is closed under multiplication). Moreover, due

to the fact that the basis functions are orthonormal, it follows that∫
I

τ 2
pdt = 1. (4.110)

In the same way, the function δp̃i(t)τ
2
p (t) is also contained in the set of basis functions,

is non-negative for all t ∈ I, and is bounded and integrable for all integers i > 0 (|τ p| is

bounded, see App. F). Thus, it follows that the integral∫
I

τ 2
p δp̃i(−Cxkx− Cuku+ bk)dt (4.111)

exists. By assumption (x, u, xT ) ∈ lims→∞ CsL, and therefore

0 ≤
∫
I

τ 2
p δp̃i(−Cxkx− Cuku+ bk)dt (4.112)

=

∫
I

τ 2
p δp(−Cxkx− Cuku+ bk)dt (4.113)

+

∫
I

τ 2
p (δp̃i − δp)(−Cxkx− Cuku+ bk)dt, (4.114)

where the last term can be bounded by

εC1

∫
I

τ 2
p |Cxkx+ Cuku− bk|dt. (4.115)

The above integral is bounded due to the fact that τ 2
p is bounded and integrable, x ∈ L2

n,

u ∈ L2
m, and that bk is bounded, and therefore (4.114) can be made arbitrarily small by

sufficiently increasing i. However, this leads to a contradiction, since (4.113) is strictly

negative, according to (4.109). This proves that lims→∞ CsU ⊃ lims→∞ CsL. The desired

result is then established due to the fact that CsU ⊂ CsL holds for all integers s > 0.
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D. Proof of Prop. 8

Proof. The proof is taken from [33] and included for completeness. The following notation

is introduced: The closed-loop state and input trajectories are denoted by x(t) and u(t).

The predicted trajectories are referred to as x̃(tp|t), ũ(tp|t), where tp > 0 denotes the

prediction horizon. For tp = 0, the prediction matches the true trajectory, that is x̃(0|t) =

x(t), ũ(0|t) = u(t) for all t ∈ [0,∞). The predictions x̃(tp|t), ũ(tp|t) are obtained by

solving (4.64) subject to the initial condition x0 = x(t), which yields the parameters ηx
and ηu defining x̃(tp|t) and ũ(tp|t) by

x̃(tp|t) = (In ⊗ τ(tp))Tηx, ũ(tp|t) = (Im ⊗ τ(tp))Tηu. (4.116)

In order to highlight the dependence on the initial condition, the resulting optimal cost

of (4.64) is denoted by JMPC(x(t)).

By assumption, (4.64) is feasible at time t = 0. The resulting trajectories x̃(tp|0),

ũ(tp|0) fulfill the equations of motion, the initial condition x̃(0|0) = x(0), and the

constraints and hence, the system evolves according to x(t) = x̃(t|0), u(t) = ũ(t|0),

∀t ∈ [0, Td). Due to the time-shift property of the basis functions implied by Assumption

A2, the feasible candidates

x̃(tp + Td|0) = (In ⊗ τ(tp)T)(In ⊗ exp(MsTd)T)ηx,

ũ(tp + Td|0) = (Im ⊗ τ(tp)T)(Im ⊗ exp(MsTd)T)ηu
(4.117)

for the optimization at time Td can be constructed from the optimizer ηx and ηu at time

0. As a result, recursive feasibility of (4.64) follows by induction.

We will show that the optimal cost JMPC acts as a Lyapunov function. The function

JMPC is a valid Lyapunov candidate since JMPC(x) > 0 for all x 6= 0 and JMPC(x) = 0 if

and only if x = 0. Due to the fact that the shifted trajectories x̃(tp +Td|0) and ũ(tp +Td|0)

(as defined in (4.117)) are feasible for the optimization at time Td, the following upper

bound on JMPC(x(Td)) can be established

JMPC(x(Td)) ≤
∫ ∞
Td

x̃(tp|0)TQx̃(tp|0) + ũ(tp|0)TRũ(tp|0)dtp. (4.118)

The right-hand side can be rewritten as

JMPC(x(0))−
∫ Td

0

x̃(tp|0)TQx̃(tp|0) + ũ(tp|0)TRũ(tp|0)dtp, (4.119)
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resulting in

JMPC(x(Td))− JMPC(x(0)) ≤ (4.120)

−
∫ Td

0

x̃(tp|0)TQx̃(tp|0) + ũ(tp|0)TRũ(tp|0)dtp.

The right-hand side of (4.120) is guaranteed to be strictly negative, except for x(0) = 0,

and thus, by induction, JMPC(x(kTd)) is strictly decreasing, which concludes the proof.

E. Reduction of the semi-infinite constraint

The following section discusses the reduction of the semi-infinite constraint

a ≤ τ(t)Tη ≤ b (4.121)

over the interval t ∈ [0,∞), with a, b ∈ R, a < 0, b > 0 to a compact interval. Thereby

we consider the symmetric case, where |a| = |b| first, before discussing the asymmetric

case |a| 6= |b|. It is shown that the length of this compact time interval depends only on

the properties of the basis functions and on the ratio between |a| and |b|. Both a and b

are assumed to be finite.

E.1 The symmetric case

Proposition 10. Provided that the basis functions fulfill Assumptions A1 and A2 for all

t ∈ [0,∞) there exists a positive real number Tc such that

sup
t∈[0,∞)

|τ(t)Tη| = max
t∈[0,Tc]

|τ(t)Tη| (4.122)

holds for all parameter vectors η ∈ Rs.

Proof. Without loss of generality we restrict the parameter vectors to have unit magni-

tude, that is, |η| = 1.32

We prove the claim in 4 steps. We first derive an exponentially decaying upper bound

on the Euclidean norm of the basis function vector τ . We then use this bound to argue

that the basis functions are linearly independent over the interval [0, Ti] (the scalar Ti

will be determined). The third step consists of constructing a lower bound on

max
t∈[0,Ti]

|τ(t)Tη| (4.123)

32The claim holds trivially for η = 0; in case η 6= 0 we can always normalize η.
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that holds for all parameter vectors η with |η| = 1. Linear independence of the basis

functions on [0, Ti] will be used to argue that this lower bound is strictly positive. In the

last step, we show that if t is sufficiently large, |τ(t)Tη| will be below this lower bound,

which concludes the proof.

Step 1): The fact that Ms is asymptotically stable implies that there exists a quadratic

Lyapunov function that decays exponentially. This provides a means to establish the

following bound

|τ(t)|2 ≤ C2e
−c2t, ∀t ∈ [0,∞), (4.124)

where C2 > 0, c2 > 0 are constant.

Step 2): We use the Gram matrix to argue that the basis functions are linearly inde-

pendent over the interval [0, Ti]. According to [45, p. 2, Thm. 3] it holds that the basis

functions are linearly independent in the set [0, Ti] if and only if the matrix

∫ Ti

0

ττTdt (4.125)

has full rank. This is the case if the bilinear form

vT
∫ Ti

0

ττTdt v (4.126)

is strictly positive for all v ∈ Rs with |v| = 1. Combining the fact that the basis functions

are orthonormal with the Cauchy-Schwarz inequality, leads to the following lower bound

of the above bilinear form,

1−
∫ ∞
Ti

(vTτ)2dt ≥ 1−
∫ ∞
Ti

|τ |2dt. (4.127)

Using the upper bound (4.124) we therefore obtain

vT
∫ Ti

0

ττTdtv ≥ 1−
∫ ∞
Ti

C2e
−c2tdt = 1− C2

c2

e−c2Ti , (4.128)

for all v ∈ Rs with |v| = 1. Thus, we fix Ti > 0, such that

1 >
C2

c2

e−c2Ti , (4.129)

implying that the matrix (4.125) is positive definite and has therefore full rank. Con-

sequently, the basis functions are guaranteed to be linearly independent on the interval

[0, Ti].
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Step 3): We claim that

c∗ := inf
|η|=1

max
t∈[0,Ti]

|τ(t)Tη| (4.130)

is well-defined and strictly positive. To that extent we first prove that the function g :

Rs → [0,∞),

g(η) := max
t∈[0,Ti]

|τ(t)Tη| (4.131)

is continuous (in fact Lipschitz-continuous). Therefore we consider two parameter vectors

η1 and η2 with g(η1) ≤ g(η2) (without loss of generality). From the fact that g(η2) can be

rewritten as g(η1 + (η2 − η1)) and by invoking the triangle inequality it can be inferred

that

g(η1 + (η2 − η1)) ≤ max
t∈[0,Ti]

|τ(t)Tη1|+ |τ(t)T(η2 − η1)|. (4.132)

By noting that the maximum of the above sum is smaller than the sum of the summand’s

maxima it can be concluded that

g(η2) ≤ g(η1) + max
t∈[0,Ti]

|τ(t)T(η2 − η1)|. (4.133)

Moreover, by combining the Cauchy-Schwarz inequality and the bound (4.124) we obtain

|g(η2)− g(η1)| ≤
√
C2|η2 − η1|, (4.134)

showing that the function g is indeed (Lipschitz) continuous. As a result, the Bolzano-

Weierstrass theorem asserts that the infimum in (4.130), is attained and well-defined. It

remains to argue that c∗ > 0. For the sake of contradiction, we assume c∗ = 0. This

implies the existence of the minimizer η∗, with |η∗| = 1, which fulfills

max
t∈[0,Ti]

|τ(t)Tη∗| = 0. (4.135)

As a result, it follows that τ(t)Tη∗ is zero for all t ∈ [0, Ti], which contradicts the fact

that the basis functions τ are linearly independent on [0, Ti].

Step 4): From the upper bound (4.124) and the Cauchy-Schwarz inequality it follows

that

|τ(t)Tη| ≤
√
C2e

− c2t
2 , ∀t ∈ [0,∞), (4.136)

and for all η ∈ Rs with |η| = 1. Clearly, c∗ ≤ √C2 and therefore we can choose the time

Tc such that

c∗ =
√
C2e

− c2Tc
2 , (4.137)

implying

sup
t∈(Tc,∞)

|τ(t)Tη| < c∗ ≤ max
t∈[0,Ti]

|τ(t)Tη|, (4.138)
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for all η ∈ Rs with |η| = 1. This proves the claim.

E.2 The asymmetric case

Proposition 11. Provided that the basis functions fulfill Assumptions A1 and A2 for all

t ∈ [0,∞) there exists a positive real number Tc such that

a ≤ τ(t)Tη ≤ b, ∀t ∈ [0, Tc] (4.139)

implies

a ≤ τ(t)Tη ≤ b, ∀t ∈ [0,∞), (4.140)

for any η ∈ Rs, where a, b ∈ R, a < 0, b > 0.

Proof. We define f̃ := τTη and establish upper and lower bounds on f̃ . Without loss

of generality we assume η 6= 0. Combining Assumption A2 with the Caley-Hamilton

theorem leads to

f̃ (s)(t) + a1f̃
(s−1)(t) + · · ·+ asf̃(t) = ηTτ (s)(t) + a1η

Tτ (s−1)(t) + · · ·+ asη
Tτ(t) (4.141)

= ηT
(
M s + a1M

s−1 + · · ·+ asM
)
τ(t) = 0, (4.142)

where a1, a2, . . . as are the coefficients of the characteristic polynomial of the matrix M .

Thus, the trajectory f̃ and its time derivatives fulfill the following set of differential

equations

ḟ =


0 1 0 . . . 0

0 0 1 . . . 0
...

...
. . .

...

−as −as−1 −as−2 . . . −a1


︸ ︷︷ ︸

:=M̂

f, f(0) =


τ(0)T

τ(0)TMT

...

τ(0)T(M (s−1))T


︸ ︷︷ ︸

:=H

η, (4.143)

where f := (f̃, f̃ (1), . . . , f̃ (s−1)). The matrix M̂ is Hurwitz and therefore, due to the

Lyapunov theorem, there exists a symmetric matrix P > 0, P ∈ Rs×s that satisfies

PM̂ + M̂TP +Q = 0 (4.144)

for any symmetric matrix Q > 0, Q ∈ Rs×s. We fix the positive definite matrix Q and

consider the quadratic Lyapunov function V (t) = f(t)TPf(t), where P satisfies (4.144).
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The time derivative of V can be upper bounded by

V̇ = −fTQf ≤ −λQ|f |2 ≤ −
λQ
λP
fTPf (4.145)

≤ −λQ
λP
V, (4.146)

where the minimum eigenvalue of Q is denoted by λQ and the maximum eigenvalue of P

is denoted by λP . As a result, this yields the upper bound

V (t) ≤ V (0)e−
λQ

λP
t ≤ λPλH

TH |η|2e−
λQ

λP
t, (4.147)

where λH
TH denotes the maximum eigenvalue of the matrix HTH. According to the proof

of Prop. 10, we may choose Ti such that

1 >
C2

c2

e−c2Ti , (4.148)

implying that the basis functions are linearly independent on the interval [0, Ti] (see

(4.129) and Prop. 10 for the definition of the constants c2 and C2). Linear independence

can be used to establish the following lower bound, c.f. Prop. 10:

∫ Ti

0

|f̃ |2dt = ηT
∫ Ti

0

ττTdt η ≥ c3|η|2, (4.149)

where the constant c3 > 0 denotes the minimum eigenvalue of the matrix

∫ Ti

0

ττTdt. (4.150)

Without loss of generality it is assumed that |a| ≤ |b|. Choosing the real number Tc > Ti

implies that the constraint is imposed over the interval [0, Ti] and therefore

∫ Ti

0

|f̃ |2dt ≤ Ti|b|2. (4.151)

Combined with the above upper bound on |η|2 it follows that

|η|2 ≤ Ti|b|2
c3

. (4.152)
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This can be used to upper bound the squared magnitude of f̃(t), that is,

|f̃(t)|2 ≤ 1

λP
V (t) ≤ λPλH

TH |b|2Ti

λP c3

e−
λQ

λP
t, (4.153)

where λP denotes the minimum eigenvalue of the matrix P . As a result, we may choose

Tc such that the above upper bound is below |a|2. This may be achieved by choosing

Tc > max{t̂, Ti}, where

t̂ := −λ
P

λQ

(
2 ln

( |b|
|a|

)
+ ln

(
c3λP

TiλPλH
TH

))
(4.154)

and ln refers to the natural logarithm.

F. Additional properties

In the following we will discuss some of the properties of the basis functions that fulfill

Assumptions A1 and A2.

F.1 Conditions on Ms

The fact that the basis functions are orthonormal on the interval I = (0, T ) implies

τ(T )τ(T )T − τ(0)τ(0)T =

∫
I

d

dt
(ττT)dt (4.155)

= Ms +MT
s . (4.156)

In case the interval I has infinite measure, that is, I = (0,∞), the above formula reduces

naturally to

−τ(0)τ(0)T = Ms +MT
s . (4.157)

F.2 Bounds on the Euclidean norm

In case the interval I has infinite measure, that is, I = (0,∞), it holds that

|τ(t)| ≤ |τ(0)|, ∀t ∈ [0,∞). (4.158)

This results from

d

dt
(τ(t)Tτ(t)) = τ(t)T(Ms +MT

s )τ(t) (4.159)

= −|τ(0)Tτ(t)|2 ≤ 0, (4.160)
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for all t ∈ [0,∞), which follows from (4.157).

F.3 Finite number of minima and maxima

In the following we will argue that a function that is not everywhere zero and spanned

by basis functions fulfilling Assumptions A1 and A2, has a finite number of minima and

maxima. The function will be denoted by f̃ := τTη, η ∈ Rs, η 6= 0, where the function and

the basis functions are defined over the interval t ∈ I = (0, T ). If I has infinite measure,

it follows from App. E that f̃ takes is maxima and minima within a compact interval, and

hence, without loss of generality, we assume in the following that I has finite measure.

Moreover, due to the Caley-Hamilton theorem it holds that

f̃ (s)(t) + a1f̃
(s−1)(t) + · · ·+ asf̃(t) = 0, (4.161)

for all t ∈ I, where the ak, k = 1, 2, . . . , s are the coefficients of the characteristic poly-

nomial of the matrix Ms (see Prop. 11). According to [46], the time derivative of f̃ has

at most s− 1 zeros on any subinterval of length l, where

s∑
k=1

akl
k

k!
< 1. (4.162)

This proves readily that f̃ has a finite number of minima and maxima in the interval I.
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Paper P5

Distributed Event-Based State Estimation

for Networked Systems: An LMI-Approach

Michael Muehlebach and Sebastian Trimpe

Abstract

In this work, a dynamic system is controlled by multiple sensor-actuator agents,
each of them commanding and observing parts of the system’s input and output.
The different agents sporadically exchange data with each other via a common
bus network according to local event-triggering protocols. From these data, each
agent estimates the complete dynamic state of the system and uses its estimate
for feedback control. We propose a synthesis procedure for designing the agents’
state estimators and the event triggering thresholds. The resulting distributed and
event-based control system is guaranteed to be stable and to satisfy a predefined
estimation performance criterion. The approach is applied to the control of a vehicle
platoon, where the method’s trade-off between performance and communication,
and the scalability in the number of agents is demonstrated.
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1. Introduction

The majority of today’s control systems are implemented on digital hardware with a

periodic exchange of data between the various system’s components, e.g. reading sensor

values, providing actuation commands, etc. While periodic information exchange sim-

plifies the analysis of the resulting control systems, it is fundamentally limited: system

resources such as computation and communication are used at predetermined time in-

stants irrespective of the current state of the system, or the information content of the

data to be passed between the components. This is not the case with event-based strate-

gies, where information is exchanged or processed only when certain events indicate that

an update would be favorable, for instance, to improve the control or estimation per-

formance. System resources are therefore only used when necessary. As a consequence,

event-based communication for control, estimation, and optimization is an active and

growing area of research, see e.g. [1]–[6] and references therein.

In this work, we consider event-based communication for a distributed control system,

where multiple sensor and actuator agents observe and control a dynamic system and ex-

change data via a common bus network, as shown in Fig. 5.1. In previous work [7], [8],

an architecture for distributed state estimation with event-based communication between

the agents was proposed. Each agent consists of three main components: the controller

computes actuation commands based on the information obtained from the state estima-

tor; the event generator (EG) decides whether local measurements are transmitted over

the common bus network and shared with all agents; and the state estimator reconstructs

the system’s state based on the measurements communicated over the bus network. The

event generator compares the current measurement to the prediction of the measurement

by the state estimator for making effective transmit decisions. The architecture is dis-

tributed due to the fact that transmit decisions, state estimates, and control inputs are

computed locally. The common bus is a key element of the proposed architecture as it fa-

cilitates information sharing between all components. Bus systems as assumed herein are

common in industry automation [9], and have recently also been proposed for multi-hop

low-power wireless networks [10].

The approach in [7], [8] has been shown to be effective for reducing measurement

communication in experiments on the Balancing Cube test bed [11], which has a network

architecture as in Fig. 5.1. The method in [7], [8] relies on a distributed and event-based

implementation that emulates a given centralized observer and controller design. In [7],

closed-loop stability is shown in an ideal scenario with perfect communication (no de-

lay or packet loss) and identically initialized state estimates. To guarantee closed-loop

stability also for the case where state estimates may differ (e.g. due to packet losses), ad-

ditional periodic estimator resets are introduced in [8]. Both approaches require periodic

communication of the inputs.

In this work, a modified design is proposed, which further reduces network load by

avoiding the communication of the control inputs altogether and under favorable circum-

stances (to be made precise) also the periodic estimator resets. In contrast to [7], [8],
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Dynamic system (state x)

Common bus network

Estimator

EG

Controller

y1 u1

Estimator

EG

Controller

yN uN

measurement communication (event-triggered)
estimator resets (periodic, low frequency)

Figure 5.1. Networked control system considered in this paper. Each agent observes part of
the system state x through local sensors yi and sends commands ui to its local actuator. Event-
triggered communication is indicated by dashed arrows, while periodic communication is shown
by solid ones. The periodic estimator resets can be avoided under certain conditions (to be made
precise later). The common-bus architecture is motivated by commonly used field-bus systems
[9], such as CAN on the Balancing Cube [11], as well as recent wireless systems [10].

which obtain the estimator gains from a centralized Luenberger observer design and the

event triggering thresholds by manual tuning, we synthesize observer gains and triggering

thresholds specifically for the distributed and event-based estimation problem. A flexible

performance objective is derived, such that the state estimator design can be formulated

as an optimization problem. The optimization is augmented with linear matrix inequali-

ties (LMIs) imposing closed-loop stability. As a result, both, the state estimator and the

event generator, are designed by solving convex optimization problems, [12].

Preliminary results of those herein were presented in the conference papers [13] and

[14], which focused on stability and performance, respectively. The main extensions of

this article include a less conservative stability condition for the inter-agent error; a

relaxation of the LMI-design that scales linearly instead of exponentially in the number

of agents; new simulation examples; and the unified presentation of previous stability and

performance results.

Related Work: Distributed event-based state estimation designs based on LMI formu-

lations are also proposed in [15]–[18], whose relation to this work is discussed next. For

a general overview and references on event-based state estimation, the reader is referred

to the reviews in [5], [19], [20].

While herein filtering performance is considered in terms of an H2 index (e.g. like in

the steady-state Kalman filter), [15] considers H∞ performance and proposes an LMI-

based sufficiency condition for filter design. Similarly, [16] proposes a synthesis procedure

guaranteeing closed-loop stability and dissipativity for a type of event-based output feed-

back systems. In [17], the problem of distributed state estimation in a sensor network
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described by a directed graph with communication only between neighbors is considered.

As in [15] and [16], the transmit decision is based on the difference between the actual

measurement and the last measurement, which was transmitted. In contrast, the trans-

mit decision presented herein uses model-based predictions of the output and compares

it with the actual measurement, which typically yields more effective triggering decisions

(see [21], [22]).

In [18], local observers combining a Luenberger observer and consensus-like correction

are proposed. An LMI-based design is used to synthesize the observer gains according

to the periodic-update (full communication) scenario, and, only in a second step, the

event-based mechanism is introduced. While a similar Luenberger-type observer struc-

ture is used herein, the closed-loop stability conditions are not based on the periodic

communication scenario, but respect the event-based nature of the control system.

Most of the mentioned references treat the state estimation problem only, while we

simultaneously address stability and performance of the state estimation, and stability

of the distributed event-based control system that results when local estimates are used

for feedback control. The developed results generalize to the pure estimation problem; it

suffices to set the state feedback gain F (to be made precise below) to zero.

Outline: The distributed event-based estimation and control architecture is presented

in Sec. 2, and the problem formulation is made precise in Sec. 3. The closed-loop dynamics

are derived in Sec. 4 and are then used to obtain conditions guaranteeing closed-loop

stability in Sec. 5. The proposed synthesis procedure is introduced in Sec. 6 and illustrated

in simulation examples in Sec. 7. The article concludes with remarks in Sec. 8.

2. Architecture

The following section introduces the distributed event-based control system, which is

analyzed subsequently. The architecture is similar to [7] and [8].

2.1 Networked Control System

The following discrete-time linear system is considered

x(k) = Ax(k − 1) +Bu(k − 1) + v(k − 1)

y(k) = Cx(k) + w(k),
(5.1)

where k denotes the time index, x(k) ∈ Rn the state at time k, u(k) ∈ Rnu the input

at time k, and y(k) ∈ Rp the output at time k. The disturbances v and w are bounded

(but not necessarily deterministic), (A,B) is assumed to be stabilizable, and (A,C) is

assumed to be detectable.

The inputs and outputs of the system are measured by independent sensor-actuator

agents. Therefore the input u and output y is split up according to
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B u(k − 1) =
[
B1 B2 . . . BN

] u1(k − 1)
...

uN(k − 1)

 (5.2)

y(k) =

y1(k)
...

yN(k)

 =

C1...

CN

x(k) +

w1(k)
...

wN(k)

 , (5.3)

where ui(k) ∈ Rqi is agent i’s input and yi(k) ∈ Rpi its measurement. The agents can be

heterogeneous, thus the dimensions qi and pi may differ, including the cases qi = 0 and

pi = 0. It is not assumed that the system is detectable or stabilizable by a single agent,

i.e. (A,Bi) is not necessarily stabilizable and (A,Ci) not necessarily detectable.

The agents can exchange sensor data yi(k) with each other over a broadcast network;

that is, if one agent communicates, all other agents will receive the data. The commu-

nication is assumed to be instantaneous and the agents are synchronized in time. The

event-based mechanism determining when sensor data is exchanged will be made precise

in the next subsection. It is assumed that the network bandwidth is sufficient to support

such communication, and contention among the agents is resolved by low-level proto-

cols. In the Controller Area Network (CAN) on the Balancing Cube [11], for example,

contention is resolved through fixed priorities, and the network bandwidth is sufficient

to support communication of several agents in one time step. In contrast to [7], [8] the

agents do not share input data ui(k) among each other.

We assume that a static state-feedback controller u(k) = Fx(k) is given, rendering

A + BF asymptotically stable (all eigenvalues lie strictly within the unit circle). The

existence of such a feedback gain is guaranteed since (A,B) is stabilizable. The controller

can be designed using standard methods, see e.g. [23].

2.2 Distributed Event-Based State Estimation

Each agent implements an event generator that makes the transmit decision for the local

measurement, and a state estimator that computes a local state estimate.

1) Event Generator The event generator triggers the communication of a local mea-

surement yi(k) of agent i to all other agents. The transmit decision is made according

to

transmit yi(k)⇔ |∆−1
i (yi(k)− Cix̂i(k|k − 1)) | ≥ 1, (5.4)

where ∆i ∈ Rpi×pi is symmetric and positive definite, x̂i(k|k − 1) is agent i’s prediction

of the state x(k) based on measurements until time k − 1 (to be made precise below),

Cix̂i(k|k− 1) is agent i’s prediction of its measurement yi(k), and the Euclidean norm is

denoted by | · |. The communication thresholds ∆i will enter the design process as decision

variables.

The underlying idea of the trigger (5.4) is that a communication should happen whe-

never the predicted output does not match the actual measurement yi(k). Such triggers
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have been considered under the terms measurement-based trigger, innovation-based trig-

ger, or predictive sampling in [21], [22], [24], [25], for example.

To simplify notation, the index set of all agents transmitting their measurements at

time k is denoted by

I(k) :=
{
i ∈ N | 1 ≤ i ≤ N, |∆−1

i (yi(k)− Cix̂i(k|k − 1)) | ≥ 1
}
, (5.5)

where N denotes the set of natural numbers.

2) State Estimator Each agent estimates the full state x. Let x̂i(k) = x̂i(k|k) denote

agent i’s estimate of the state at time k given measurement data up to time k, which is

computed by

x̂i(k|k − 1) = Ax̂i(k − 1|k − 1) +Bûi(k − 1) (5.6)

x̂i(k) = x̂i(k|k − 1) +
∑
j∈I(k)

Lj
(
yj(k)− Cjx̂i(k|k − 1)

)
+ di(k), (5.7)

where ûi(k) is agent i’s belief of the input u(k), Lj are observer gains to be designed, and

di represents a disturbance, which is assumed to be bounded. The disturbance di models33

mismatches between the estimates of the individual agents, which may stem from unequal

initialization, different computation accuracy, or imperfect communication. For example,

if the communication from agent m to agent i fails at time k, the disturbance di(k) takes

the value

di(k) = −Lm(ym(k)− Cmx̂i(k|k − 1)). (5.8)

In Sec. 7, random packet drops are simulated in this way. While di cannot be bounded for

random drops in general, the simulation results demonstrate that the design is effective

also in this case. In App. D, we discuss a packet drop model where the assumption of

bounded disturbances is valid provided that packet drops are sufficiently rare.

The disturbance signal di in (5.7), which may cause the agents’ estimates to differ,

plays a crucial role with regards to stability. While closed-loop stability is shown in [7]

for di = 0, it was found in [8] that stability can be lost in case di 6= 0. To recover stability

even in case of nonzero disturbances di, periodic estimator resets were introduced in [8].

By incorporating the event-based and distributed nature of the control system in the

observer design herein, the communication of inputs and (under favorable circumstances)

the periodic estimator resets are avoided, while still guaranteeing closed-loop stability for

di 6= 0.

The communication protocol (5.4) implies that a measurement is either transmitted

to all agents (and thus included in all state estimates (5.7)), or it is discarded. In App. C,

the case where each agent updates its state estimate with its local measurements yi at

33We emphasize that di is introduced as a generic disturbance signal for the purpose of stability
analysis. When implementing the event-based estimator (5.6), (5.7), di(k) is omitted.
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every time step is discussed. It is shown that stability is still preserved, while at the same

time the estimation performance might be improved.

3) Distributed Control Given agent i’s state estimate, its local input ui is obtained by

ui(k) = Fix̂i(k), (5.9)

where FT = [FT
1 , F

T
2 , . . . , F

T
N ] is the decomposition of the feedback gain F according to

the dimensions of u1(k), u2(k), . . . , uN(k). Agent i’s belief ûi(k) of the complete input

u(k) is defined as

ûi(k) := Fx̂i(k), (5.10)

and is used in the state estimator update (5.6). This contrasts earlier work, [7], [8], where

it was assumed that each agent has access to the true input u(k). Hence, we do not require

the communication of the inputs ui(k) in this work, which reduces the communication

load.

3. Problem Formulation

The objective of this article is to present a synthesis procedure for both the estimator

gains Li and the communication thresholds ∆i. The estimators are designed to guarantee

i) closed-loop stability (stable dynamics (5.1), (5.6), (5.7), (5.9), and (5.10) for bounded

disturbances v, wi, and di), and ii) achieve a predefined H2 performance incorporating

estimation and communication objectives.

4. Closed-loop Dynamics

In this section, the closed-loop dynamics are expressed in terms of the system state, local

estimation errors, and inter-agent estimation errors, which forms the basis for deriving

the stability conditions in Sec. 5. This decomposes the closed-loop dynamics into a series

of subsystems connected in feedforward, which facilitates the subsequent analysis. We

obtain

x(k) =(A+BF )x(k − 1)−
N∑
i=1

BiFiei(k − 1) + v(k − 1), (5.11)
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dj − di

εji-Dynamics ei-Dynamics
εji

di, w, v, ξ

x-Dynamics
ei

v, w

x

Figure 5.2. Simplified block diagram representing the closed-loop system as a feedforward
connection of subsystems. The disturbances di, w, v, and ξ are bounded (either by assumption
or by the event-triggering rule (5.4)).

where ei is the estimation error of agent i defined by ei := x− x̂i,

ei(k) = (I − LC)Aei(k − 1) + (I − LC)v(k − 1)

+ (I − LC)
N∑
j=1

BjFjεji(k − 1) + ξ(k)− di(k)

+
∑

j∈Ic(k)

LjCj(A+BF )εji(k − 1)−
N∑
j=1

Ljwj(k)

(5.12)

with

ξ(k) :=
∑

j∈Ic(k)

Lj(yj(k)− Cjx̂j(k|k − 1)), (5.13)

where Ic(k) denotes the complement of I(k) and εji := x̂j − x̂i refers to the inter-agent

error, and

εji(k) = Acl(I(k))εji(k − 1) + dji(k), (5.14)

with dji defined as dji := dj − di, and

Acl(I(k)) := (I −
∑

m∈I(k)

LmCm)(A+BF ). (5.15)

5. Stability Analysis

Next, conditions on the observer gains Li are derived to guarantee stability of the closed-

loop system. These conditions are expressed as LMIs and can be used for the synthesis

of stabilizing observer gains Li as presented in Sec. 6.

Stability is discussed using the concept of input-to-state stability (ISS) as defined

in [26, Def. 3.1]. A feedforward connection of systems is ISS if each system is ISS by

itself [27, Cor. 1]. Since this applies to the closed-loop dynamics (see Fig. 5.2), conditions

guaranteeing ISS for each subsystem (i.e. the inter-agent dynamics (5.14), the agent error

(5.12), and the system state (5.11)) are derived first to subsequently conclude stability

for the entire system.
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5.1 Stability of the Inter-Agent Error

For the subsequent analysis, the inter-agent error (5.14) is regarded as a switched linear

system under arbitrary switching. While the event-based design will not typically lead

to arbitrary switching, it is difficult to determine all possible communication patterns

a-priori, without additional restrictions on the system’s structure and the disturbances.

However, the consideration of arbitrary switching provides a means to derive general

stability conditions that can be expressed as LMIs. The following theorem establishes

stability of the inter-agent error dynamics (5.14) by means of a switched quadratic Ly-

apunov function. This result extends the one in previous work [13], which employed a

common Lyapunov function leading to a more conservative condition.

Theorem 11. Let the matrix inequalities

AT
cl(Πi)P1Acl(Πi)− P1 < 0, AT

cl(Πi)P1Acl(Πi)− P2 < 0,

AT
cl(∅)P2Acl(∅)− P2 < 0, AT

cl(∅)P2Acl(∅)− P1 < 0,
(5.16)

be fulfilled for symmetric positive definite matrices P1, P2 ∈ Rn×n, and for all Πi ∈ Π \ ∅,
where ∅ denotes the empty set and Π the power set of {1, 2, . . . , N}. Then the inter-agent

error (5.14) is ISS.

Proof. Consider a trajectory εji(k), k = 1, 2, . . . , subjected to (5.14) and starting at

εji(0). Let the trajectory V be defined as

V (k) =

{
εTji(k)P1εji(k) I(k) 6= ∅
εTji(k)P2εji(k) I(k) = ∅,

(5.17)

k = 0, 1, . . . . Note that V (k) ≥ 0 for all k, where equality holds only if εji(k) vanishes.

Moreover, V can be bounded by

0 ≤
¯
σ|εji(k)|2 ≤ V (k) ≤ σ̄|εji(k)|2, (5.18)

where
¯
σ := min{σmin(P1), σmin(P2)} and σ̄ := max{σmax(P1), σmax(P2)}, and σmin(P ),

σmax(P ) denote the minimum and maximum singular values of a matrix P . The time

evolution of V is given by

V (k)− V (k − 1) = 2dTji(k)PmAcl(I(k))εji(k − 1)

+ εTji(k − 1)
(
AT

cl(I(k))PmAcl(I(k))− Pl
)
εji(k − 1)

+ dTji(k)Pmdji(k),

where m ∈ {1, 2}, l ∈ {1, 2}, depending on I(k) and I(k − 1). Denoting the maximum
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eigenvalue of AT
cl(Πi)PmAcl(Πi)− Pl over all Πi ∈ Π by λ̄, yields the bound

V (k)− V (k − 1) ≤ 2|dji(k)||PmAcl(I(k))||εji(k − 1)|+ λ̄|εji(k − 1)|2 + |Pm||dji(k)|2.

Completing the squares with an α > 0 results in

V (k)− V (k − 1) ≤ (λ̄+ α)|εji(k − 1)|2−
(√

α|εji(k − 1)| − |PmAcl(I(k))|√
α

|dji(k)|
)2

+

( |PmAcl(I(k))|2
α

+ |Pm|
)
|dji(k)|2.

Therefore

V (k)− V (k − 1) ≤ (λ̄+ α)|εji(k − 1)|2 +

( |PmAcl(I(k))|2
α

+ |Pm|
)
|dji(k)|2

and consequently

V (k) ≤ aV (k − 1) + b|dji(k)|2, (5.19)

where

b := max
Πi∈Π,m∈{1,2}

( |PmAcl(Πi)|2
α

+ |Pm|
)
, a :=

λ̄+ α

¯
σ

+ 1.

By assumption, c.f. (5.16), λ̄ is negative and therefore an α > 0 can be chosen such that

0 < a < 1. As a consequence, (5.19) implies that V (k) remains bounded for all k. In

particular, it follows that

V (k) ≤ akV (0) + b
k−1∑
l=0

al|dji(k − l)|2, (5.20)

and therefore

|εji(k)|2 ≤ ak
σ̄

¯
σ
|εji(0)|2 +

b

¯
σ

k−1∑
l=0

al|dji(k − l)|2. (5.21)

The constants
¯
σ, σ̄, a, b are all positive, which results in

|εji(k)| ≤ a
k
2

√
σ̄

¯
σ
|εji(0)|+

√
b

¯
σ

k−1∑
l=0

a
l
2 |dji(k − l)|, (5.22)
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and proves that the inter-agent error is ISS.

In Thm. 11, the Lyapunov function is switched depending on whether there is com-

munication or not. Using the Schur complement, the conditions (5.16) can be rewritten

as (
Pk Pk(I −

∑
m∈Πi

LmCm)(A+BF )

∗ Pl

)
> 0, (5.23)

for all Πi ∈ Π with k = 1 if ∅ 6∈ Πi, k = 2 if Πi = {∅} and l = 1, 2, where the placeholder

∗ is implied by symmetry of the matrix. Thus, using the change of variables Um = P1Lm,

the previous set of matrix inequalities is linear in Um, P1, and P2 for all m = 1, 2, . . . , N

and can therefore be used as auxiliary condition for the synthesis of the observer gains

Lm, as done in Sec. 6.

By introducing a Lyapunov function that switches for each communication pattern

(i.e. distinct Pi’s for each Πi ∈ Π), and not only between the case of communication or

no communication, the conservativeness of Thm. 11 could be reduced further. However,

in that case the resulting stability conditions are not suitable for synthesis, as they are

no longer linear in the decision variables. In addition, such an extension would result in

a significant increase in the number of LMIs (number of LMIs of the order 22N).

1) Relaxation of the LMI conditions in Thm. 11 In the following, we aim to reduce the

number of LMI conditions required to guarantee inter-agent error stability. We first note

that the result from [13] follows from Thm. 11 as a corollary,

Corollary 12. Let the matrix inequality

AT
cl(Πi)PAcl(Πi)− P < 0, (5.24)

be satisfied for a symmetric positive definite matrix P ∈ Rn×n and for all Πi ∈ Π, where

Π denotes the power set of {1, 2, . . . , N}. Then the inter-agent error is ISS.

Proof. Set P1 = P2 in Thm. 11.

The power set Π has cardinality 2N , which leads to a rapid growth in the number of

LMIs used to ensure inter-agent stability even in Cor. 12. For a large number of agents,

the corresponding synthesis problem may become intractable. Therefore the conditions

from Cor. 12 are further relaxed, such that the number of LMIs scales linearly with the

number of agents. This comes at the price of more conservative conditions.

Corollary 13. Let the matrix inequalities

H ≥
(

P P (A+BF )

(A+BF )TP P

)
> 0, (5.25)(

P P (I − LmCm)(A+BF )

∗ P

)
>
N − 1

N
H (5.26)
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be satisfied for a symmetric positive definite matrix H ∈ R2n×2n, a symmetric positive

definite matrix P ∈ Rn×n, and for all m ∈ {1, 2, . . . , N}. Then the inter-agent error is

ISS.

Proof. Applying the Schur complement to (5.24) results in

(
P PAcl(Πi)

Acl(Πi)
TP P

)
> 0, (5.27)

for all Πi ∈ Π and therefore (5.25) implies (5.24) for Πi = ∅. Note that the sum in the

expression of Acl(Πi) can be rearranged to

Acl(Πi)=−(|Πi|−1)(A+BF ) +
∑
m∈Πi

(I−LmCm)(A+BF ),

such that the LMI (5.27) can be reformulated as

∑
m∈Πi

(
P P (I − LmCm)(A+BF )

∗ P

)
> (|Πi| − 1)

(
P P (A+BF )

∗ P

)
, (5.28)

for all Πi ∈ Π. In contrast, combining (5.25) and (5.26) leads to

∑
m∈Πi

(
P P (I − LmCm)(A+BF )

∗ P

)
>
N − 1

N
|Πi|

(
P P (A+BF )

(A+BF )TP P

)

for all Πi ∈ Π\∅. It holds that |Πi|(N−1)/N ≥ (|Πi|−1), and therefore (5.25) and (5.26)

imply (5.28) (and thereby also (5.24)) for all Πi ∈ Π \ ∅, which concludes the proof.

In Sec. 7, the different stability conditions are compared by means of simulation

examples.

Remark. In case the open-loop system is unstable, it is essential for guaranteeing inter-

agent error stability that each agent reconstructs the input u based on its current state

estimate x̂i, as opposed to the case where all agents have access to the true input u

(proposed in [7], [8]). This seems counterintuitive, as providing the agents with more

information should potentially improve the closed-loop performance. The mechanism le-

ading to a destabilization is further discussed and illustrated on a simple example in

App. F.

5.2 Stability of the Agent Error

Stability of the agent error (5.12) follows directly from the agent-error dynamics (5.12),

the inter-agent error being bounded, and the communication protocol, which bounds the

disturbance ξ.
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Lemma 14. Let the inter-agent errors εji, j = 1, 2, . . . , N be bounded. Then the agent

error ei is ISS if and only if the eigenvalues of (I − LC)A have magnitude strictly less

than one.

Proof. See App. A.

We remark that (I−LC)A corresponds to the error dynamics for the estimator (5.6),

(5.7) with full communication; that is, stability of (I−LC)A is a natural requirement for

the estimator design. Due to the detectability of (A,C), the existence of such estimator

gains L is guaranteed.

5.3 Stability of the Closed-loop System

By combining the previous results, conditions for the closed-loop dynamics to be ISS can

be established. Provided that the agent error is bounded, it follows from (5.11) that the

state x is ISS, since, by assumption, A + BF has all eigenvalues strictly within the unit

circle. This leads to the following conclusion:

Theorem 15. Let the eigenvalues of A+BF have magnitude strictly less than one. The

closed-loop system is ISS if both, the agent error (5.12) and the inter-agent error (5.14)

are ISS.

6. Performance Analysis and Synthesis

In this section, a general H2 performance measure is introduced that can capture both

estimation performance and communication requirements. LMI-conditions will be esta-

blished guaranteeing a worst-case performance. Moreover, a unified synthesis procedure

for the distributed and event-based estimator (5.6), (5.7) is presented that combines

stability requirements (from Sec. 5) and performance criteria.

We will focus on the design of the estimator gains Li and the communication thres-

holds ∆i. However, a similar approach could be used to synthesize the feedback gain F

subject to the stability conditions provided by Thm. 11, Cor. 12, or Cor. 13. Likewise,

H2 or H∞ performance measures could be included in the design. The resulting synthesis

procedures are very similar to the ones presented herein and thus not discussed in detail.

6.1 Performance Measure

To simplify the derivation of the performance metric, we assume that the disturbances

di are absent and that all agents are initialized with the same state estimate. According

to (5.14), this implies εji(k) = 0 for all k (i.e., all agents’ estimates are identical), and

as a result, we formulate a performance metric based on the estimation error ei of a

single agent. We emphasize that this simplification only serves to obtain a tractable

performance criterion; the final synthesis procedure is then augmented with conditions
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s11

s1N

q1

qN

ei v, w

ei-dynamics

Figure 5.3. Block diagram of the simplified agent error dynamics (5.29). The error ei is driven
by the external disturbances v and w. The switches and the signals qi and s1i are used to model
the event-based communication. Based on the magnitude of the signal qi(k) at time instant k,
the ith switch is either closed (no communication in case |qi(k)| < 1) implying qi(k) = s1i(k), or
opened (communication in case |qi(k)| ≥ 1) implying s1i(k) := 0.

from the previous section ensuring ISS of the closed-loop system and account for the

general case of nonzero disturbances di.

With the above assumptions, the estimation error (5.12) simplifies to

ei(k) = (I − LC)Aei(k − 1) + (I − LC)v(k − 1)− Lw(k) + ξ(k). (5.29)

The disturbance ξ(k), as defined in (5.13), can be reformulated as ξ(k) = L∆s1(k), where

∆ := diag(∆1,∆2, . . . ,∆N) ∈ Rp×p, (5.30)

s1(k) := (sT11(k), sT12(k), . . . , sT1N(k))T ∈ Rp, (5.31)

s1i(k) := χi∈Ic(k)qi(k) ∈ Rpi , (5.32)

qi(k) := ∆−1
i (yi(k)− Cix̂i(k|k − 1)) ∈ Rpi , (5.33)

and χi∈Ic(k) denotes the indicator function, that is, χi∈Ic(k) = 1 if i ∈ Ic(k) and 0

otherwise, for k ∈ N and i = 1, 2, . . . , N . Note that the signal q is directly related to

the communication since a transmission is triggered if |qi(k)| > 1. Furthermore, the

communication protocol guarantees that |s1i(k)| is strictly less than one. The agent error

dynamics (5.29) can be represented by the block diagram shown in Fig. 5.3.

The communication protocol results in nonlinear feedback terms because of the swit-

ching behavior of the event triggers. Therefore, the direct minimization of the performance

criterion (to be made precise below) is difficult. Instead, we minimize an upper bound,

which is obtained by considering the worst-case performance with respect to all pertur-

bations s1i(k) with Euclidean norm less than one. This leads to a robust control problem

and, as a consequence, the resulting synthesis procedure can be formulated as a convex

optimization problem.
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6. Performance Analysis and Synthesis

The power semi-norm [28, p. 816] is used as performance objective:

||z||P := lim
K→∞

√√√√ 1

K

K∑
k=1

zT(k)z(k), (5.34)

where

z(k) := Ĉei(k − 1) + D̂21w(k) + D̂22v(k − 1), (5.35)

with Ĉ, D̂21, D̂22 arbitrary matrices of appropriate dimensions. In particular, (5.35) allows

for the choices z(k) = (qT1 (k), . . . , qTN(k))T and z(k) = ei(k), which can be used to reduce,

respectively, average communication and estimation error, as shall be demonstrated later.

In the following, a synthesis procedure for the observer gains Li and the communica-

tion thresholds ∆i is developed, which seeks to minimize ||z||P . However, for the reasons

stated above, we do not minimize ||z||P directly, but an upper bound, which is formulated

in terms of H2 and H∞ norms. Expressing the H2 and H∞ norms using LMIs, see e.g.

[29], leads to the following result:

Theorem 16. Let the disturbances v(k) and wi(k) be bounded, zero mean, indepen-
dent and identically distributed for all k with covariances V and Wi, respectively, i =
1, 2, . . . , N . Define

Â := (I − LC)A, B̂2 :=
[
−LW 1

2 (I − LC)V
1
2

]
,

D̂2 :=
[
D̂21W

1
2 D̂22V

1
2

]
,W := diag(W1,W2, . . . ,WN ),

and let the matrix inequalities I 0 Ĉ

0 P PÂ

ĈT ÂTP P

 > 0,

 I 0 D̂2

0 P PB̂2

D̂T
2 B̂T

2 P X

 > 0, (5.36)


Q ÂQ L∆ 0

QÂT Q 0 QĈT

∆LT 0 I 0

0 ĈQ 0 γI

 > 0, (5.37)

be fulfilled for symmetric matrices P ∈ Rn×n, Q ∈ Rn×n, X ∈ R(n+p)×(n+p), and a scalar

γ ∈ R. Then it holds that

||z||P <
√
Nγ +

√
tr(X). (5.38)

Proof. See App. B.

The bound (5.38) consists of two terms: The expression
√

tr(X) captures the H2 gain

from the disturbances v, w to the signal z, whereas the expression
√
Nγ captures the H∞

gain from the signal s1 to the signal z, and bounds as such the effect of the nonlinear
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feedback due to the event-based communication, see Fig. 5.3. In the full communication

scenario it holds that s1i = 0, and therefore the agent error reduces to a linear system

excited by the disturbances v and w, which implies ||z||P <
√

tr(X). Hence, the term√
tr(X) corresponds to the performance in the full communication case and represents a

lower bound on the achievable performance in the event-based scenario, which is attained

for ∆i → 0. The term
√
Nγ bounds the effect of the disturbance s1 due to the event-based

communication.

6.2 Synthesis

We first discuss the synthesis of the estimator gains Li and the thresholds ∆i for the

relevant special case where the performance measure is the estimation error, which cor-

responds to the steady-state Kalman filter objective. We then comment on a synthesis

procedure for a general performance measure.

1) Kalman Filter Objective In case the performance measure is chosen as z(k) = ei(k−
1), that is Ĉ = I, D̂2 = 0, and D̂3 = 0 in (5.35), it follows that (5.36) does not depend

on the communication thresholds ∆i. We therefore propose to design the observer gains

Li in a first step by minimizing
√

tr(X) subject to (5.36) and to the conditions ensuring

closed-loop stability. For example, if the stability conditions provided by Cor. 12 are used,

we synthesize the observer gains according to

inf
X,P,L

tr(X) subject to P = PT I 0 I

0 P PÂ

I ÂTP P

 > 0,

(
P PB̂2

B̂T
2 P X

)
> 0,

(
P PAcl(Πi)

Acl(Πi)
TP P

)
> 0, ∀Πi ∈ Π,

(5.39)

where (5.24) has been rewritten using the Schur complement. In the absence of the

stability conditions obtained from Cor. 12, this optimization would yield a centralized

steady-state Kalman filter. Note that the first condition in (5.36) ensures that (I−LC)A

will have all eigenvalues strictly within the unit circle, which implies ISS of the closed-loop

system according to Thm. 15.

As a result, the contribution c∗ =
√

tr(X) to the upper bound given by (5.38) can

be calculated, and captures the H2 gain from the signals v and w to the output ei in the

full communication case.

In a second step, the communication thresholds ∆i are synthesized such that an a

priori specified worst-case performance Jmax is guaranteed (i.e. ||ei||P < Jmax). This is
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7. Simulation Example

achieved by solving

sup
Q,∆,γ

tr(∆) subject to Q = QT and (5.40)
Q ÂQ L∆ 0

QÂT Q 0 QT

∆LT 0 I 0

0 Q 0 γI

 > 0, γ <
1

N
(Jmax − c∗)2,

while keeping the estimator gains Li fixed. Therefore this two-step procedure has the

following interpretation: In the first step, a lower bound on the achievable cost ||ei||P
is obtained based on the full communication scenario (i.e. s1 = 0), while respecting

the stability conditions for the inter-agent error. In the second step, the communication

thresholds ∆i are designed such that the a priori specified worst-case performance Jmax is

guaranteed. Hence, the second step can be interpreted as performance versus communica-

tion trade-off: increasing Jmax will generally downgrade estimation performance by giving

the optimization more flexibility to find larger ∆i, which tends to reduce communication.

In general, feasibility of (5.39) cannot be guaranteed. However, the optimization (5.40)

is guaranteed to be feasible provided that Jmax > c∗. Details regarding feasibility and

extensions in case (5.39) is not feasible are discussed in App. E and [13].

2) General Case This two-step procedure can also be applied in case of a more general

performance objective given by (5.35). The difference is that (5.36) might depend on

the communication thresholds ∆i. As a result, we propose to keep the communication

thresholds ∆i fixed in the first step, yielding the observer gains Li. In the second step, the

observer gains Li are kept fixed and the communication thresholds are updated by solving

an optimization similar to (5.40). The procedure is then repeated until convergence or

satisfactory performance.

7. Simulation Example

The presented framework for event-based estimation and control is applied in a simu-

lation example that is based on a simplified model for vehicle platooning. Thereby, the

communication versus performance trade-off of the proposed approach is discussed, as

well as the scalability with respect to a larger number of agents. Additional simulation

studies can be found in App. G, [13], and [14].

The problem of vehicle platooning has been studied extensively in the literature, see

e.g. [30], [31], and references therein. In [32], it is shown that the linear quadratic regulator

problem is ill-posed as the number of vehicles tends to infinity. Moreover, [33] shows that

string instability occurs for any local linear feedback law, where the input of the ith

vehicle depends linearly on the relative distance to its two neighbors. This motivates the
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use of a common network, where the different vehicles can exchange information across

the platoon.

Similar to [31], we consider a chain of M vehicles (agents), where each vehicle is

modeled as a unit point mass. The aim is to control the velocity and the position of each

vehicle relative to its neighbors. The following continuous-time model is introduced, c.f.

[31],

xi(t) :=

(
pi(t)

ri(t)− ri+1(t)

)
, ẋi(t) =

(
ui(t)

pi(t)− pi+1(t)

)
, (5.41)

i = 1, 2, . . . ,M − 1, and xM(t) := pM(t), ẋM(t) = uM(t) with t ∈ [0,∞), where ri and pi
denote the position and velocity of the ith vehicle and ui the normalized force generated

by the motor of the ith vehicle. The model is discretized with a sampling time of 20 ms

leading to the model (5.1).34

Each vehicle measures the distance to the previous vehicle, except for the first vehicle,

which measures its velocity. The measurements are corrupted by independent, uniformly

distributed noise, with [−0.1 m, 0.1 m] (distance measurements), [−0.1 m/s, 0.1 m/s] (velo-

city measurements). Likewise, the inputs ui(k) are corrupted by independent, uniformly

distributed noise [−0.01 m/s2, 0.01 m/s2] . The system is controllable and observable, but

neither controllable nor observable for each agent on its own.

A stabilizing feedback controller F is obtained by solving the linear quadratic regulator

problem with the identity I ∈ R(2M−1)×(2M−1) and the scaled identity 100 I ∈ RM×M for

weighting the state and input costs.

1) 3 Vehicles We consider first the case of three vehicles (M = 3). As performance

objective, the power of the estimation error, ||ei||P , is used, and the observer gains Li and

the communication thresholds ∆i are designed according to Sec. 6.2. The optimizations

are solved up to a tolerance of 10−8 using SDPT-3, [34], interfaced through Yalmip, [35].

The different stability conditions, that is, the conditions given by Thm. 11, Cor. 12, and

Cor. 13, lead in this case to a very similar design of the observer gains. We will therefore

focus on the results obtained by Cor. 12. However, this does not necessarily need to be

the case, as shown in App. G. For the synthesis of the communication thresholds, Jmax is

chosen to be roughly 35 times the power ||ei||P corresponding to the full communication

case, i.e. Jmax = 0.38, yielding ∆1 = 0.107, ∆2 = 0.092, and ∆3 = 0.106.

The resulting closed-loop system is studied in simulations, where the first car is ini-

tialized with a surplus velocity of 5 m/s. The state estimates of the different agents are

initialized with zero. In addition, a communication loss rate of 10% is introduced (indepen-

dent Bernoulli-distributed). The simulation results indicate that the approach is robust

also to non-deterministic and potentially unbounded disturbances di. Fig. 5.4 shows the

evolution of the distances between the three vehicles. In steady state, the distance error

between the vehicles is kept below ±0.1 m. The communication rates (smoothed with

34The same notation is used for continuous and discrete-time signals, e.g. x(t) refers to the continuous-
time state trajectory, x(k) to the discrete-time state trajectory.
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Figure 5.4. Left: Platoon with three vehicles, where the evolution of the absolute positions of
vehicle 1 (yellow), vehicle 2 (red), and vehicle 3 (blue) is shown. Right: Platoon with 20 vehicles.
The vehicles are initialized with an inter-vehicle distance of 20 m.

a moving average filter of length 200) of the different vehicles are depicted in Fig. 5.5.

The communication rate is normalized such that a rate of 1.0 corresponds to all agents

transmitting their measurements at every time step. In steady state, the second vehi-

cle communicates its measurement in around 8% of the time, whereas the first and last

vehicle communicate at a rate below 4%.

The trade-off between estimation performance and communication is obtained by va-

rying Jmax. The corresponding steady-state performance ||ei||P and the communication

rates of the different designs are evaluated in simulations. Their values were estimated

using 20 independent simulations (with different noise realizations) over 1000 s. The varia-

bility among the different noise realizations was found to be negligible and a time horizon

of 1000 s sufficiently long for transients to be insignificant. The communication versus

performance graph, as depicted in Fig. 5.5 is compared to a centralized discrete-time de-

sign with reduced sampling rates.35 This reveals that a better trade-off is achieved by the

event-based design as opposed to the centralized design with reduced periodic sampling

rates.

2) 20 Vehicles The design procedure is repeated for the case M = 20, which results in

an optimization including 1973 variables. For this example, the inter-agent error stability

conditions provided by Cor. 12 would lead to a numerically intractable problem (this

would amount to 220 LMIs).

The resulting closed-loop performance is evaluated in simulations, where the leading

car is initialized with a surplus velocity of 5 m/s, the state estimates of the different vehicles

are initialized with zero, and again a packet loss rate of 10% is introduced. The absolute

positions of all vehicles are shown in Fig. 5.4. In steady state, the distance error remains

below 0.2 m for all 20 vehicles. The communication rates are found to be higher for the

35The centralized design is obtained by re-sampling the discrete-time system (5.1) at increasingly
lower rates, and then performing a centralized steady-state Kalman filter design based on the performance
objective ||ei||P . The fact that the inputs are also communicated is not accounted for in the corresponding
communication rates shown in Fig. 5.5.
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Figure 5.5. Left: Communication rates corresponding to the three vehicles in Fig. 5.4. Right:
Performance versus communication plot for the event-based design (red) and the centralized
design with reduced sampling rates (blue). The graph focuses on communication rates below 0.5,
as the achieved performance ||ei||P changes only insignificantly for rates above 0.5.
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Figure 5.6. Communication at steady state for all 20 vehicles. The communication rates are
determined by 20 independent simulations (different noise realizations) of the system over a time
horizon of 1000 s, which was found to be sufficiently long for transients to die out. The error bars
indicate the standard deviation over the different noise realizations.

leading vehicles, see Fig. 5.6, which can be explained by the fact that the actions of the

leading vehicles influence all remaining vehicles.

A. Proof of Lemma 14

Proof. Sufficiency: Let the matrix (I − LC)A have eigenvalues with magnitude strictly

less than one. According to (5.12) it is enough to show that ξ is bounded, since εji, wi, ξ,

and di are bounded by assumption. From the triangle inequality, the submultiplicativity

of the two-norm, and the communication protocol (5.5), it follows that |ξ(k)| is bounded

by

∑
i∈Ic(k)

|Li∆i||∆−1
i (yi(k)− Cix̂i(k|k−1))|≤

N∑
i=1

|Li∆i|.
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B. Proof of Thm. 16

Necessity: The argument is based on contradiction. Thus we assume the system to be

ISS and the matrix (I − LC)A to have at least one eigenvalue of magnitude greater or

equal than one. Choosing disturbances di parallel to an eigenvector of (I − LC)A with

corresponding eigenvalue having magnitude greater or equal than one contradicts the

assumption that the agent error is ISS.

B. Proof of Thm. 16

Proof. The dynamics of the performance objective z, as defined in (5.35), can be written

as

ei(k) = Âei(k − 1) + L∆s1(k) + B̂2s2(k)

z(k) = Ĉei(k − 1) + D̂2s2(k),
(5.42)

where

s2(k) :=

[
W− 1

2w(k)

V −
1
2v(k − 1)

]
.

The communication protocol guarantees that |s1i(k)| is strictly less than one and therefore

|s1(k)| <
√
N .

Let the impulse response from s1 to z be denoted by g1 and the impulse response from

s2 to z by g2. Both are well defined, since the matrix Â has eigenvalues strictly within

the unit circle, which is implied by the first matrix inequality in (5.36). Using the fact

that || · ||P is a semi-norm yields

||z||P ≤ ||g1 ∗ s1||P + ||g2 ∗ s2||P , (5.43)

where ∗ denotes the convolution operator. The first term can be upper bounded by, [36,

p. 107]36

||g1 ∗ s1||P ≤ ||G1||∞||s1||P ≤ ||G1||∞
√
N, (5.44)

whereas the second term yields ||g2∗s2||P = ||G2||2, by the statistical properties of s2, [36,

p. 108]. Note that G1 and G2 represent the Z-transforms of g1, respectively g2, ||G1||∞ the

H∞ norm of G1, and ||G2||2 the H2 norm of G2, see e.g. [36, pp. 97-100]. Thus, combining

(5.43) and (5.44) yields

||z||P ≤ ||G1||∞
√
N + ||G2||2. (5.45)

According to [29, Lemma 2], it holds that ||G1||∞ <
√
γ, where γ ∈ R satisfies (5.37),

36A continuous-time derivation is presented in [36]. The discrete-time case used herein is analogous.
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and according to [14, Theorem A.2 (Appendix)], ||G2||2 <
√

tr(X) holds, where X = XT

satisfies (5.36).

C. Continuous Local Measurement Update

According to (5.4), (5.5), the measurement yi(k) is used in the estimator update (5.7)

only if the condition |∆−1
i (yi(k) − Cix̂i(k|k − 1))| ≥ 1 is satisfied. However, each agent

could include its local measurements yi in the update (5.7) continuously (irrespective of

the event trigger) without requiring additional communication. The implications of this

alternative scheme regarding closed-loop stability are analyzed next.

For each agent i, let the indicator function χi∈Ic(k) be defined as χi∈Ic(k) = 1 if

i ∈ Ic(k) and 0 otherwise, for k ∈ N. In case each agent continuously updates its state

estimate with local measurements, the estimation update (5.7) is replaced by

x̂i(k) = x̂i(k|k − 1) +
∑
j∈I(k)

Lj(yj(k)− Cjx̂i(k|k − 1))

+ χi∈Ic(k)Li(yi(k)− Cix̂i(k|k − 1)) + di(k)︸ ︷︷ ︸
:=d̄i(k)

, (5.46)

where the additional term can be regarded as a disturbance and forms, together with

di(k), the disturbance d̄i(k). In fact, |d̄i| is bounded by

|di(k)|+ χi∈Ic(k)|Li||yi(k)− Cix̂i(k|k − 1)| < |di(k)|+ |Li|σmax(∆i), (5.47)

since χi∈Ic(k) = 1 implies

|yi(k)− Cix̂i(k|k − 1)| < σmax(∆i). (5.48)

Hence, the conditions ensuring ISS of the closed-loop system established previously re-

main valid even in case each agent continuously updates his state estimate with local

measurements. While causing no additional communication, such a scheme potentially

improves the estimation performance since each agent exploits all locally available mea-

surements.

D. Modeling Packet Drops

If the communication from agent m to agent i fails at time k, the disturbance di(k) takes

the value

di(k) = −Lm(ym(k)− Cmx̂i(k|k − 1)). (5.49)
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D. Modeling Packet Drops

As shown below, (5.49) is a function of the agent errors ei, the process noise v, and

the measurement noise wm. Hence, if di is used to model packet drops, it is implicitly

dependent on the agent error ei, and boundedness of di cannot be guaranteed a priori.

However, we will argue that the di’s are indeed bounded if packet drops are sufficiently

rare, and the conditions given by Thm. 11, Cor. 12, or Cor. 13 are fulfilled. We provide

a qualitative argument, which can be turned into a quantitative statement about the

allowed frequency of packet drops so as to still guarantee boundedness of the disturbances

di. Although these statements tend to be conservative, the simulation examples presented

in Sec. 7 indicate that relatively frequent packet drops can be tolerated (e.g. packet loss

probability of 10%).

We assume di(1) arbitrary and di(k) = 0 for all agents i and for all 2 ≤ k ≤ k0, where

k0 is a positive integer, describing the earliest time instant at which the next packet drop

can occur. We therefore model the packet drops as being sufficiently rare, that is, the

number of time instants between two consecutive packet drops is greater or equal than k0.

We assume further that the conditions of Thm. 11 are fulfilled (the argument is analogous

in case the conditions of Cor. 12 or Cor. 13 are satisfied). From (5.22) it follows that the

inter-agent error decays exponentially due to the fact that di(k) = 0 for all 2 ≤ k ≤ k0.

The agent-error can be regarded as a linear time-invariant system with system matrix

(I − LC)A, which is Schur stable. Thus, an exponentially decaying input will lead to an

exponentially decaying output. As a consequence, the agent-error |ei(k)| can be bounded

by

ak1b1

N∑
j=1

|dj(1)|+ b2, (5.50)

where a1 < 1 is the decay rate and b2 is a constant depending on the bounds for ξ, v, w,

and |ei(0)|.
Provided that the communication from agent m to agent i fails at time k, the mea-

surement equation in (5.1) can be used to rewrite (5.49) as

di(k) = −LmCm(x(k)− x̂i(k|k − 1))− Lmwm(k), (5.51)

which leads, according to (5.6), (5.10), and (5.11), to

di(k) = −LmCm[(A+BF )ei(k − 1)−
N∑
j=1

BjFjej(k − 1) + v(k − 1)]− Lmwm(k). (5.52)

Given that packet drops happen at times mk0 + 1, m ∈ N (or less frequent), we bound

|di(mk0 + 1)| for all agents i using a worst case upper bound over all possible communi-
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cation failures; that is,

|di(mk0 + 1)| ≤ ak01 b3

N∑
j=1

|dj((m− 1)k0 + 1)|+ b4, (5.53)

where b3 > 0 and b4 > 0 are constants. For large enough k0, it follows that ak01 b3 < 1/N

and therefore
N∑
i=1

|di(mk0 + 1)| <
N∑
i=1

|di((m− 1)k0 + 1)|+Nb4, (5.54)

for all m ∈ N. Thus, if packet drops are sufficiently rare, the assumption that the distur-

bances di are bounded is indeed valid.

E. Feasibility

The stability conditions given by Thm. 11, Cor. 12, and Cor. 13 might be too restrictive,

resulting in an infeasible synthesis problem (in Step 1). In this case, the inter-agent error

is not guaranteed to be ISS. In [8], a reset strategy was introduced to periodically reset

the inter-agent error using additional communication. In the following, an extension to

this approach is provided ensuring input-to-state stability of the inter-agent error, even

in case the corresponding LMI conditions are infeasible. We will use the conditions in

Thm. 11 as starting point. The procedure is analogous if the conditions provided by

Cor. 12, and Cor. 13 are used to guarantee inter-agent error stability.

In a first step, the conditions given by (5.16) are relaxed to

AT
cl(Πi)PkAcl(Πi)− Pl < λ̄I, (5.55)

for all Πi ∈ Π with k = 1 if ∅ 6∈ Πi, k = 2 if Πi = {∅} and l = 1, 2. Note that λ̄ ≥ 0 is

either fixed, or can be included in the optimization problem as decision variable, see [13].

From the proof of Thm. 15, it follows that the function V in (5.17) can be bounded

by (c.f. (5.19))

V (k) ≤
(
λ̄+ α

¯
σ

+ 1

)
V (k − 1) +

(
γ̄2

α
+ δ̄

)
D2, (5.56)

where D is an upper bound to the disturbances dji(k), i.e. |dji(k)| ≤ D for all k, δ̄ :=

maxm∈{1,2} |Pm|, and γ̄ := maxΠi∈Π,m∈{1,2} |PmAcl(Πi)|. Therefore, an estimate V̂ (k) with

V̂ (k) ≥ V (k) is given by

V̂ (k) =

(
λ̄+ α

¯
σ

+ 1

)
V̂ (k − 1) +

(
γ̄2

α
+ δ̄

)
D2, (5.57)
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for k ∈ N, V̂ (0) = 0 (provided that all agents are initialized with the same state estimate).

Note that in order to tighten the bound, the right hand side of (5.56) can be minimized

with respect to α > 0, as done in [13].

As soon as V̂ exceeds the predefined threshold Vmax, i.e. V̂ (k) ≥ Vmax, a communi-

cation is triggered and the different agents’ state estimates are set to a common value,

which resets the inter-agent errors εji(k) = 0 and implies V̂ (k) = 0. There are many

different reset strategies that can be used, such as a majority vote, the mean, etc. Such

resets bound the inter-agent error since Vmax ≥ V (k) ≥
¯
σ|εji(k)|2 for all k. By the strict

feedforward structure of the closed-loop dynamics, this implies ISS of the state x and

the agents’ estimation errors ei, i = 1, 2, . . . , N . The time instants kreseti , where V̂ (kreseti)

exceeds Vmax for i = 1, 2, . . . , N can be precalculated, since the evolution of V̂ (k) is not

explicitly dependent on time. This amounts to periodic resets and extends the procedure

presented in [8] by providing a method for choosing the reset period.

The synthesis of the communication thresholds ∆i in Step 2 is guaranteed to be

feasible. This is because the full communication scenario can be recovered by making the

thresholds ∆i arbitrarily small; that is, γ → 0 in Thm. 16 (we refer to [14] for further

details).

F. Communication of the Inputs

In case of an unstable open-loop system, it is essential for guaranteeing inter-agent sta-

bility that each agent reconstructs the input u based on its current state estimate x̂i, as

opposed to the case where all agents have access to the true input u (proposed in [7], [8]).

The mechanism leading to a destabilization in case the inputs are communicated can

be illustrated by a simple two-agent system having an unstable mode, which is only

controllable by agent 1, and only observable by agent 2. Roughly speaking, in case the

agents cannot access the true inputs, the inter-agent error tends to decay (e.g. in case

there is no communication according to the stable closed-loop dynamics A+BF ) resulting

in communication by agent 2 if the predicted and actual measurements are too far apart,

thereby stabilizing the system. In case the agents have access to the true inputs, agent 2

might observe the unstable mode perfectly (but cannot control it), and might thus never

share a measurement with agent 1 (who cannot observe the unstable mode at all, but

would be able to control it).

Specifically, this mechanism can be illustrated on the system with matrices

A =

(
0.5 0

0 2

)
, B =

(
0 1

1 0

)
, C =

(
1 0

0 1

)
, (5.58)

F =

(
0 −2

0.1 0

)
, L =

(
1 0

0 1

)
, (5.59)
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where the first agent measures the first component of y and controls the first component

of u, and the second agent measures the second component of y and controls the second

component of u. Clearly, the matrices

A+BF =

(
0.6 0

0 0

)
, (I − LC)A = 0, (5.60)

are stable. The initial condition are chosen as

x̂1(0) =

(
0

1

)
, x̂2(0) =

(
0

2

)
, x(0) =

(
0

2

)
, (5.61)

and for simplicity, it is assumed that there is neither process noise nor measurement noise,

and that the communication thresholds ∆1 and ∆2 are set to 1.

In case the input u is communicated, the following sequences of inputs, states, and

estimates is obtained

Step 1: u(0) =

( −2

0

)
, x(1) =

(
0

2

)
, y(1) =

(
0

2

)
,

x̂1(1|0) =

(
0

0

)
, x̂2(1|0) =

(
0

2

)
no comm.−−−−−→ x̂1(1) =

(
0

0

)
, x̂2(1) =

(
0

2

)
Step 2: u(1) =

(
0

0

)
, x(2) =

(
0

4

)
, y(2) =

(
0

4

)
,

x̂1(2|1) =

(
0

0

)
, x̂2(2|1) =

(
0

4

)
no comm.−−−−−→ x̂1(2) =

(
0

0

)
, x̂2(2) =

(
0

4

)
,

leading to u(n) = x̂1(n) = 0 and

x(n) = y(n) = x̂1(n) = x̂2(n) =

(
0

2n

)
, (5.62)

for all n > 0. Agent 2, which can observe the unstable mode x2, tracks the state perfectly,

and as a result, will never communicate its local measurements y2. In contrast, agent 1,

which could control the unstable mode, obtains no information about x2. Thus, in the

above example, the state estimate x̂1 will stay at zero for all times, whereas x̂2 tracks x

perfectly. Overall an unstable closed-loop system is obtained, unless a periodic estimator
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reset (as proposed in [8]) is introduced. Such a reset strategy will periodically set the

agents’ state estimates to a common average, thereby providing agent 1 with information

about x2, resulting in a stabilization of the closed-loop system, as shown in [8].

In case the input is not communicated, the following evolution of the closed-loop

system is obtained

Step 1: u(0) =

( −2

0

)
, x(1) =

(
0

2

)
, y(1) =

(
0

2

)
x̂1(1|0) =

(
0

0

)
, x̂2(1|0) =

(
0

0

)
agent 2 comm−−−−−−−−→ x̂1(1) =

(
0

2

)
, x̂2(1) =

(
0

2

)
Step 2: u(1) =

(
0

−4

)
, x(2) =

(
0

0

)
, y(2) =

(
0

0

)
x̂1(2|1) =

(
0

0

)
, x̂2(2|1) =

(
0

0

)
no comm.−−−−−→ x̂1(2) =

(
0

0

)
, x̂2(2) =

(
0

0

)
,

leading to u(n) = x(n) = x̂1(n) = x̂2(n) = 0 for all n > 1. In that case, both agents track

the state perfectly, because agent 2 communicates its measurement y2(1) and thus shares

its information about the unstable mode with agent 1 who is able to drive the system to 0.

Thus, by not sharing the inputs, a stable closed-loop system is obtained. The conditions

from Cor. V.2 are clearly fulfilled, as the Lyapunov matrix P can, for example, be chosen

to be the identity. Thus, according to Thm. V.5 the closed-loop system is guaranteed to

be stable.

G. Inverted Pendulum System

The example is taken from [8], where it was proposed as an abstraction of the Balancing

Cube [11], which was the experimental test bed for the distributed and event-based met-

hods in [7] and [24]. The pendulum system is parametrized by the inclination angle θ, the

angle ϕ1 of the lower arm (called Agent 1), and the angle ϕ2 of the upper arm (Agent 2),

see Fig. 5.7. A state-space model (5.1) is obtained through discretization of the continuous

dynamics with a sampling time of 10 ms. The state is given by xT = (θ, θ̇, ϕ1, ϕ̇1, ϕ2, ϕ̇2),

and the inputs are the desired angular rates for the arms, u = (ϕ̇1des, ϕ̇2des). We refer to

[13] for details of the modeling and the numerical values of the state-space matrices.

Agent 1 measures ϕ1 +wϕ1 , ϕ̇1 +wϕ̇1 , and θ̇+wθ̇; and controls u1 = ϕ̇1des +vu1 . Agent

2 measures ϕ2 + nϕ2 and ϕ̇2 + vϕ̇2 ; and controls u2 = ϕ̇2des + vu2 . The signals vϕ1 , vϕ2 ,
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ϕ2

ϕ1

θ

0.2 0.4 0.6 0.8 1
0

5 · 10−2

0.1

0.15

0.2

0.25

Comm. rate

||e
i||
P

Figure 5.7. Inverted pendulum balanced by two independently controlled arms (left), and
resulting performance versus communication plots for different event-based estimator designs
(right). Blue: event-based design with the stability conditions of Cor. 12; Red: event-based design
with the less conservative conditions of Thm. 11; Yellow: centralized design with reduced sampling
rates.

vϕ̇1 , vϕ̇2 , vθ̇, wu1 , and wu2 are assumed to be independent, uniformly distributed with zero

mean and variances σ2
ϕi

= (0.05 ◦)2, σ2
ϕ̇i

= (0.1 ◦/s)2, σ2
θ̇

= (0.24 ◦/s)2, σ2
ui

= (1.73 ◦/s)2,

i = 1, 2. Note that both measurement noise and input noise are introduced. A packet

loss probability of 10% is assumed (independent Bernoulli-distributed). The simulation

results indicate that the approach is robust also to non-deterministic and potentially

unbounded disturbances di.

The system is controllable and observable, but neither controllable nor observable

for each agent on its own. In order to stabilize the upright equilibrium, communication

between the agents is indispensable.

A stabilizing state feedback controller F is obtained via a linear quadratic regulator

approach, whose values can be found in [13].

As performance measure, the power of the agent-error ei is used. Observer gains and

communication thresholds are synthesized according to Sec. 6.2. The optimizations are

solved up to a tolerance of 10−8 using SDPT-3, [34], interfaced through Yalmip, [35].

For the disturbance rejection properties of an event-based design based on Cor. 12,

and a design primarily aimed at reducing communication, we refer to [13], respectively

[14]. Herein, we focus on the trade-off between estimation performance and communi-

cation, which is obtained by varying Jmax. The steady-state performance ||ei||P and the

communication rates of the different designs (obtained by successively increasing Jmax)

are evaluated in simulations. Their values were estimated using 20 independent simulati-

ons (with different noise realizations) over 150 s. The variability among the different noise

realizations was found to be negligible and a time horizon of 150 s sufficiently long for

transients to be insignificant. The communication versus performance graphs, resulting

from the different designs, i.e. stability conditions according to Thm. 11 and Cor. 12, are

depicted in Fig. 5.7 (right), which also includes the graph for a centralized discrete-time
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design with reduced sampling rates for comparison. As in Sec. 7, the centralized design

is obtained by re-sampling the discrete-time system (5.1) at increasingly lower rates, and

then performing a centralized steady-state Kalman filter design based on the performance

objective ||ei||P . The fact that the inputs are also communicated is not accounted for in

the corresponding communication rates shown in Fig. 5.7. The communication rate is

normalized such that a rate of 1.0 corresponds to both agents transmitting their measu-

rements at every time step.

The comparison in Fig. 5.7 reveals that for communication rates above 40% the design

based on the stability conditions given by Cor. 12 is superior. In case the communication

is further reduced, but kept above 15%, the design based on the stability conditions given

by Thm. 11 achieves a lower cost. If Jmax is increased further, the communication rate

is found to increase again, which is possibly due to nonlinear effects. Compared to the

centralized design with reduced periodic sampling rates a better trade-off is achieved by

the event-based design.
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