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Contact Invariant Model Learning for Legged Robot
Locomotion

Ruben Grandia, Diego Pardo, and Jonas Buchli

Abstract—In this work we present a new formulation for
learning the dynamics of legged robots performing locomotion
tasks. Using sensor data we learn error terms at the level of rigid
body dynamics and actuation dynamics. The learning framework
deals with the hybrid nature of legged systems given by different
contact configurations: We use the projection of the rigid body
dynamics into a subspace consistent with the contact constraints.
The equations of motion in such subspace do not depend on the
contact forces, allowing to formulate a learning problem where
force sensor data is not required. Additionally, we propose to use
the columns of end-effector Jacobians as basis vectors, obtaining
a model that generalizes across contact configurations. Both
Locally Weighted Projection Regression and Sparse Gaussian
Process Regression are used as supervised learning techniques.
As application of the learned model, an inverse dynamics control
method is extended. Hardware experiments with a quadruped
robot show reduced RMS tracking error and a significant
reduction in RMS feedback effort during base-only, walking, and
trotting motions.

Index Terms—Legged Robots, Dynamics, Model Learning for
Control.

I. INTRODUCTION

IMPLEMENTING model-based torque controllers on
legged robots exposes the fact that analytical models often

do not fully capture the real dynamics. As a consequence, high
feedback gains are required, performance suffers, and in the
worst case, instabilities occur. Improving the accuracy of the
equations of motion increases the effectiveness of model-based
controllers, state estimators, and dynamic motion planners.

Parameter identification methods have been extensively ex-
plored in robotics research and applied to legged systems [1].
However, due to the fixed basis functions, parametric models
struggle to capture general unmodelled phenomena. In an
effort to overcome this, it has been shown that general super-
vised learning techniques can effectively capture unmodelled
dynamics for robotics [2]. Yet, to the best of our knowledge,
such methods have not been applied to the case of legged
robots. The presence of contact forces, velocity discontinuities,
and a large state space pose additional challenges for model
learning on these type of systems.
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Fig. 1: The Hydraulically-actuated Quadruped (HyQ) robot, used for the
experiments presented in this paper: base motions, walking, and trotting.

In that context, we envision a formulation that i) captures
the general dynamics of legged robots beyond the Rigid Body
Dynamics (RBD) assumption, ii) does not require contact
force sensor measurements, and iii) is able to learn and
predict the dynamics in a wide variety of motions and contact
configurations.

We emphasize that the contribution of this work is not a new
learning algorithm but rather a formulation that enables model
error learning for legged robots. We follow a direct learning
approach by learning a model from command/motion pairs.
This is in contrast to indirect approaches (e.g., feedback error
learning [3], [4]), where the output of a feedback controller
provides the learning signal.

We propose to learn error terms at the level of RBD
and actuation dynamics using existing supervised learning
algorithms. Inverse dynamic controllers are synthesised based
on these learned models. We validate the proposed method
by executing locomotion tasks (base-motions, walking and
trotting) with the Hydraulically-actuated Quadruped (HyQ)
robot [5] shown in Fig. 1.

A. Related work

The field of model learning for robot control has been
actively researched for a long time. A complete survey can
be found in [2]. Modern and successful approaches recognize
that the structure of RBD provides a useful prior on the
dynamics and exploit this together with the flexibility of
general supervised learning techniques in Semi-parametric
methods [6], [7], [8], [9]. With a focus on transfer learning
[10] proposes to learn multiple models on individual joint
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level instead of a single global model. It was shown that
such structure to the learning problem improves generalization
performance between tasks [11], [12].

Research on learning of system dynamics for robot control
has focused on fixed-base systems. In contrasts, legged robots
are floating-base systems permanently influenced by contact
forces. Additionally, during locomotion tasks different set of
points are in contact with the environment, i.e., the contact
configuration changes over time. For tackling model learning
in contact rich environments, [13] proposes to model the effect
of contact forces on a robot arm from skin measurements. A
mixture of experts is used to generalize from a single contact
to multi-contact situations. However, this approach requires the
contact free dynamics to be known to separate the contribution
due to contact forces from the rest of the dynamics.

Another viewpoint treats the contacts as part of the model
and learns a global model that implictely incorporates the
contact constraints [14]. However, this requires the constraint
to be a fixed function of the robot’s state. For legged robots
this assumption is too restrictive when we want a model that is
valid for general terrain geometry, not just the one experienced
during training.

Motivated by the challenge to approximate unknown non-
linearities in a high-dimensional input space, several non-
parametric supervised learning algorithms have been pro-
posed for robotic applications. Locally Weighted Projection
Regression (LWPR) [15] provides a fast, incremental learning
algorithm. At the same time, Gaussian Process Regression
(GPR)[16] provides higher regression accuracy, but has high
computational cost. Sparse [17], local [18], [19], and spectral
[20] approximations to GPR have been proposed to provide a
balance between accuracy and computation.

B. Method overview
In this work we propose a formulation for learning a

structured error in the dynamics of a legged robot. Starting
from one of the variants explored in [6], the analytical RBD
is fixed a priori and used as the nominal model around which
an error term is learned from data. As an advantage of this
formulation, the learned model falls back to the nominal model
in unexplored parts of the state space. We separately learn
model errors that occur at the RBD and actuation dynamics
level.

As presented in Section II, we use the approach proposed
in [21] for modelling constrained multibody systems based on
a linear projector operator: The equations of motion are pro-
jected onto the null-space of the constraints. In such subspace
the dynamics of the system does not depend on the contact
forces. Learning in this subspace thus means that contact force
measurements are no longer required. Additionally, we use
the columns of the end-effector Jacobians as a basis for the
models, which allows to obtain models that generalizes across
contact configurations.

In Section III the learning of actuator dynamics errors is
discussed. By learning actuator specific errors we aim to
achieve better generalization of such errors as in [10].

In Section IV, we show how the learned models are used in
an inverse dynamics control framework applied on a torque-

controlled, hydraulically-actuated quadruped robot. In Sec-
tion V, we show the results from two different perspectives:
(i) the quality of the error learning and (ii) the improvement
of the controller based on the learned model.

II. LEARNING RIGID BODY DYNAMICS ERRORS

In this section we provide the necessary background on the
projection of the RBD into the null-space of the constraints.
At the core of the contribution of this paper, we derive a
new projected RBD error term. In Section II-C, we propose
a change of basis that allows for foothold invariant model
learning. Finally, in Section II-D we formulate a supervised
learning problem for modeling the projected error term using
sensor data.

A. Projected rigid body dynamics

A legged robot can be described by n+6 degrees of freedom
(DoF): q =

[
qTb , q

T
j

]T
, where qb ∈ SE(3) is the floating base

position and orientation in Euler angles, and qj ∈ Rn is the
joint configuration.

The RBD of a floating base robot is given by

M(q)q̈ + h(q, q̇) = ST τ + JT
c (q)λc, (1)

where M ∈ R(n+6)×(n+6) is the inertia matrix, h ∈ R(n+6)

contains the Coriolis, centrifugal and gravitational forces,
S ∈ Rn×(n+6) is the torque selection matrix mapping each
torque τ ∈ Rn to the corresponding joint, Jc ∈ Rk×(n+6)

is the constraint Jacobian of the k constraints, and λc ∈ Rk

corresponds to the vector of constraint forces. The subscript c
is used throughout this paper to indicate that certain terms
explicitly depend on the set of points in contact, i.e., the
contact configuration.

As proposed in [21], we use the linear projection operator
Pc = I−J†cJc, to project the dynamics into the null-space of
the constraint Jacobian, i.e. PcJ

T
c = 0, where the remaining

free dynamics are consequently given by

Pc (Mq̈ + h) = PcS
T τ . (2)

As can be seen from (2), contact forces λc no longer
appear in the projected dynamics. The first contribution of this
paper consists in learning the RBD errors in such projected
subspace.

B. Projected rigid body dynamics errors

As in [6], a model error term Φ(q, q̇, q̈) is introduced as a
generalized force in (1),

M(q)q̈ + h(q, q̇) + Φ(q, q̇, q̈) = ST τ + JT
c (q)λc. (3)

The model error Φ depends on position, velocity, and accel-
eration. This allows to capture general unmodelled dynamics.
Multiplying this equation with the projection operator allows
us to solve for the projected RBD errors,

PcΦ(q, q̇, q̈) = Pc

(
ST τ −Mq̈ − h

)
. (4)

With only known terms on the right-hand side, (4) can
be used to compute the projected model errors PcΦ from
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measurements {c, q, q̇, q̈, τ}. The contact configuration c is
required since the projector depends on the contact Jacobian.
For a single contact configuration (4) is sufficient to learn a
projected model error.

However, this also implies that every contact configuration
has its own projected RBD error function. It would then be
necessary to independently learn m projected error models,
one per contact configuration. For example, for the case of a
point-feet quadruped robot we would have m = 24 separate
models.

The complexity of maintaining different models and switch-
ing between them motivates further developing our approach
to generalize across contact configurations.

We note that for a fixed contact constraint fc(q) = 0,
the contact state c can be determined from q. Each of the
m models would then live in a different part of the model
input space, and a consistent global model can be obtained.
However, for our application, we aim for a model that is
independent of terrain geometry. Already the arbitrary origin
of base position after state estimator initialization changes the
contact constraint fc(q) = 0 between experiments.

C. Contact invariant formulation

We propose a change of basis for the error term Φ. With
this change of basis, we find a space where the projected errors
PcΦ of one contact configuration can be related to those of
another configuration, forming a contact invariant formulation.

We assume that a legged robot only interacts with its
environment through the end-effectors, with Jacobian Jee,i. In
the case of point-contacts, only the rows associated to linear
velocity are used and the Jacobian becomes Jee,i ∈ R3×(n+6).

For our formulation we require that the block associated to
the joints, ∂pee,i/∂qj , is full row rank. This ensures that the
columns of our proposed basis remain linearly independent.

Next, we define the Jacobian between the floating base
and the generalized coordinates, trivially given by J0 =[
I6×6,06×n

]
. We proceed by concatenating the floating base

Jacobian and Jacobian of Nee end-effectors to obtain

JT =
[
JT
0 ,J

T
ee,1, . . . ,J

T
ee,Nee

]
. (5)

In case all end-effectors are without redundant joints, JT ∈
R(n+6)×(n+6) is a square, full rank matrix. When end-
effectors with redundancy are present, JT can be augmented
to a square, full rank matrix J′T =

[
JT ,JT

virt.

]
, where JT

virt.

is a virtual Jacobian whose columns span the null space of J.
The matrix JT is used as a basis to represent the generalized
force error Φ with:

Φ(q, q̇, q̈) = JT Φ̃(q, q̇, q̈). (6)

We refer to this new representation, Φ̃ ∈ Rn+6, as the contact
invariant model errors. Since JT is invertible, Φ̃ ∈ Rn+6 is
unique for a given input (q, q̇, q̈).

Furthermore, we introduce the notion of constrained and
unconstrained directions. Since JT contains all end-effector
Jacobians, it can form all possible constraint Jacobians JT

c

with a subset of its columns. The remaining columns then

Fig. 2: Contact invariant model error visualization for a point-feet quadruped
robot with the left-hind (LH) and right-front (RF) legs in contact. The
errors located at the feet in contact form the constrained model error
directions Φ̃c = [Φ̃T

RF , Φ̃T
LH ]T . The unconstrained directions are Φ̃u =

[Φ̃T
0 , Φ̃T

LF , Φ̃T
RH ]T .

form the unconstrained directions JT
u ∈ R(n+6)×(n+6−k) as

the complement. Now, for each contact configuration, we can
group the entries of the model errors as

JT Φ̃ = JT
c Φ̃c + JT

u Φ̃u, (7)

where Φ̃c ∈ Rk, and Φ̃u ∈ Rn+6−k denote the entries
corresponding to constrained and unconstrained model error
directions respectively.

The contact invariant model errors are visualized for a
point-feet quadruped robot in Fig. 2 to provide intuition for
the proposed method: model errors are represented by virtual
forces at the base and end-effectors.

Connecting to the previous discussion on projected errors,
we observe the projected model errors under the contact
invariant representation,

PcΦ = PcJ
T
c Φ̃c + PcJ

T
u Φ̃u = PcJ

T
u Φ̃u. (8)

The projection, PcJ
T
c = 0, removes the constrained directions

of the model errors. The new formulation is thus able to
represent the vector PcΦ ∈ Rn+6, which lives in a (n+6−k)-
dimensional subspace due to the projection, by using exactly
(n+ 6− k) elements of the contact invariant model errors Φ̃.

After substituting (8) into (4), we obtain

PcJ
T
u Φ̃u(q, q̇, q̈) = Pc

(
ST τ −Mq̈ − h

)
, (9)

which allows a unique observation of Φ̃u. Such solution
exists because the projected unconstrained Jacobian spans the
constraint consistent subspace:

S(PcJ
T
u ) = S(PcJ

T ) = S(Pc), (10)

where the second equality holds because JT is full rank.
The observation function is given by:

Φ̃u(q, q̇, q̈) =
(
PcJ

T
u

)†
Pc

(
ST τ −Mq̈ − h

)
. (11)

To summarize, we propose a change of basis for the
model errors in (6). Afterwards, we distinguish between terms
associated with constrained and unconstrained directions in
(7). With (11) we show how to uniquely solve for the ele-
ments associated with unconstrained directions. Each contact
configuration therefore provides a partial view on the contact
invariant error representation Φ̃. This error representation is
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shared by all configurations and thus enables generalization
among them.

D. Supervised learning

A supervised learning problem is formulated from (11) with
input and output spaces given by

x = [qT , q̇T , q̈T ]T , (12)

yu =
(
PcJ

T
u

)†
Pc

(
ST τ −Mq̈ − h

)
, (13)

where q is the vector of generalized coordinates without the
yaw orientation component as well as the base positions. These
states are removed because they have an arbitrary value and do
not affect the system dynamics. The target outputs yu can be
obtained from data samples {c, q, q̇, q̈, τ}. A separate model
is learned for each output dimension.

We assume that full body position and velocity estimates are
provided by a state estimator, but acceleration measurements
are not directly available. In the current work we therefore
use a linear phase finite impulse response (FIR) derivative
filter to obtain accelerations from velocity measurements. To
avoid the amplification of noise in the velocity signal, the
differentiation filter is convolved with a low pass filter with
a cutoff frequency of 10Hz. All position, velocity and torque
trajectories are then smoothed with the same low pass filter
so that the same frequency content is present in every signal.
A filter width of 31 samples is used for all signals, which are
all sampled at 250Hz.

In this work, we use LWPR [15] and Sparse GPR (SGPR)
[17] with the Matérn-3/2 kernel to learn the contact invariant
model errors Φ̃(q, q̇, q̈). For SGPR we use the GPy imple-
mentation [22].

III. LEARNING ACTUATION ERRORS

A second source of errors in the control of legged robots is
the difference between torque command u and the measured
torque τ . While low level controllers are in place, there
are still systematic errors made due to complex non-linear
phenomenon like friction inside the actuation subsystem. Here
we see an opportunity to learn these errors, include them in the
model, and compensate for them in the feedforward command.

The term Γ is introduced to model all errors between
commanded and measured torque. The learning of actuation
errors is done independently for each actuator, which results
into n supervised learning problems

Γi(qj,i, q̇j,i, q̈j,i) = τi − ui. (14)

Additionally, the input space for the learning problem is lim-
ited to the position, velocity, and acceleration of the particular
joint associated to the actuator.

In order to relate the RBD and actuation level error learning,
the measured torque in the RBD error formulation in (3) is
substituted for the commanded torque and actuation errors:

M(q)q̈ + h(q, q̇) + Φ(q, q̇, q̈) =

ST (u+ Γ(q, q̇, q̈)) + JT
c (q)λc.

(15)

Fig. 3: Control diagram of the feedforward QP controller based on the
learned model. The Inverse dynamics controller runs at 250Hz. The Feedback
controller contains a feedback linearized acceleration feedback running at
250Hz, and a joint position controller running at 1kHz.

Both sources of error can now be combined into a single model
error term ε(q, q̇, q̈), resulting in

M(q)q̈ + h(q, q̇) + ε(q, q̇, q̈) = STu+ JT
c (q)λc, (16)

ε(q, q̇, q̈) = Φ(q, q̇, q̈)− STΓ(q, q̇, q̈). (17)

IV. APPLICATION TO CONTROL

As hypothesized in the introduction, the use of a better
model should improve the performance of model based control
techniques. We extend an existing model based optimal control
method [23] for legged robots, incorporating the learned
model. We use the extended controller for executing locomo-
tion tasks on a real quadruped robot. A schematic overview
of the controller is provided in Fig. 3.

A. Feedforward control

The feedforward controller in [23] is based on inverse
dynamics control with optimal distribution of contact forces.
This controller defines a quadratic program (QP) and allows
cost functions quadratic in both torques and contact forces.
This formulation relies on the QR decomposition of the
constraint Jacobian,

JT
c = Q

[
R
0

]
=
[
Qc,Qu

] [R
0

]
. (18)

Multiplying the system dynamics with QT divides the sys-
tem into constrained and unconstrained subsystems. We apply
this decomposition to (16), extending the two subsystems with
the learned error models,

QT
u

(
Mq̈d + h

)
+ QT

u (J
T Φ̃− STΓ) = QT

uSTu, (19)

QT
c

(
Mq̈d + h

)
+ QT

c (J
T Φ̃− STΓ) = QT

c STu+ Rλc,
(20)

where all terms are evaluated at the desired trajectory(
qd, q̇d, q̈d

)
. The QP is posed with the unconstrained dynam-

ics as equality constraints,

argmin
u,λ

1

2
uTWuu+ bTuu+

1

2
λTWλλ+ bTλλ (21)

s.t. QT
uSTu = QT

u

(
Mq̈d + h

)
+ QT

u (J
T Φ̃− STΓ)

Cuu ≤ du
Cλλ ≤ dλ.

In [23] it is shown that this problem can be rewritten to a
QP with only the torque commands as decision variables by
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solving (20) for the contact forces and substituting them into
(21).

Here we use a simple cost function to minimize the applied
torque by setting Wu = I, Wλ = 0, bτ = 0, and
bλ = 0. The inequality constraint for the contact forces is
obtained by requiring normal forces to be positive and by an
octagon approximation to the friction cone constraint, where
the friction coefficient is set to 0.5 for all experiments.

B. Feedback control

The feedback controller is the same for all controllers, and
it is given by a sum of two stabilizing terms,

ufb = ufb,pd + ufb,lin.. (22)

The first term is a default joint position PD controller,

ufb,pd = −Kd,pdė−Kp,pde, (23)

where ė and e are the tracking errors in velocity and position.
The second feedback component is provided through a

feedback linearization of the nominal model,

ufb,lin. =
(
PcS

T
)†

PcM (−Kd,lin.ė−Kp,lin.e) . (24)

V. RESULTS

We apply these methods to the HyQ robot (see Fig. 1).
This robot weighs 80kg, and has 3 actuated joints per leg, i.e.
n = 12. Sensor data for the state of the base are provided by
a state estimator [24].

We use standing, walking, and trotting motions for both data
collection and validation. For the standing motion trajectories,
a reference is generated with a cubic spline interpolation
of waypoints. For walking and trotting, full body reference
trajectories are generated with a trajectory optimization frame-
work [25].

We collected data at 250Hz during repeated experiments and
obtained a training dataset of 42,481 data points for standing,
8,615 for walking, and 2,707 for trotting. This dataset is used
to learn error models using LWPR, and SGPR, on an Intel Core
i7/2.5 GHz Quadcore laptop. Training times for LWPR, with
5 training epochs, amount to 29min for the RBD and 2min
for the actuation model. The models per dimension converge
to between 100 and 250 receptive fields for the RBD errors
and around 15 for the actuation errors. For SGPR with 100
inducing inputs per dimension for actuation errors and 250 for
the RBD errors, 58min and 26min are required.

We use training motions, new executions of the training
tasks, to validate the learned models. Generalization between
tasks is evaluated on new motions; a set of different walking
and trotting motions. The hardware experiments are shown in
a video available at https://youtu.be/Kfy3IQ9wujk.

All experiments consist of only one gait cycle, because
stabilizing multiple gait cycles without replanning introduces a
larger performance variance per controller. We argue that such
variance distracts from the comparison between controllers
and that a cycle gait cycle is enough to expose performance
differences.
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Fig. 4: Root Mean Squared Error (RMSE) of model error predictions for the
RBD error term Φ̃ plotted per dimension for training motions (a) and new
motions (b). The predictions are grouped into base torques {1-3} and forces
{4-6}; and the feet forces: LF {7-9}, RF {10-12}, LH {13-15}, and RH
{16-18}.

A. Model learning performance

In this section, prediction accuracy of the learned models is
evaluated. The validation set consists of 7,413 data points for
standing, 1,419 for walking, and 897 for trotting. For the case
of new tasks, the validation set consists of 4,839 data points
for walking, and 1,629 for trotting. Note that for validating
the performance of the model learning, the controller used for
executing the experiments is irrelevant: The performance is
measured by comparing predicted and measured values of the
model errors Φ̃ and Γ. We report the Root Mean Squared
Error (RMSE) per dimension of the error term. The results
for the nominal model provide the baseline of predicting zero
for all errors, i.e. Φ̃i = 0. The model error subscript i in this
section is used to indicate the analysed dimension of the error.

The RMSE results for the RBD level are shown separately
for training motions in Fig 4a, and new motions in Fig 4b.
The accuracy of the learned model is significantly better than
the nominal case for the error at the floating base, Φ̃1−6, for
both the training and new motions.

For the model errors associated to the end-effectors, i.e.
Φ̃7−18, the performance of the nominal model is already

https://youtu.be/Kfy3IQ9wujk
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Fig. 5: Root Mean Squared Error (RMSE) of model error predictions for
the actuator error term Γ plotted per joint for training motions (a) and new
motions (b).

of high quality. As seen in Figs. 4a and 4b, most of the
dimensions have a RMSE in the order of 4N. The learned
models are able to slightly improve on that within the training
tasks, but this improvement does not generalize to the new
motions.

RMSE of the actuation dynamics model error is also shown
and reported per joint for training motions in Fig 5a, and
new motions in Fig 5b. The learned models show improved
prediction accuracy compared to the nominal model baseline
across joints and motions.

A closer look is provided at the model error predictions
during a 45cm trot experiment, which is part of the new
motions. The estimated gait pattern is shown in Fig. 6. Impacts
cause a discontinuity in velocity when changing foothold. The
acceleration estimate is affected while this contact change is
inside its filter window, which introduces noise in both model
error estimates and function learning input space. We therefore
discarded half a window size of training samples before and
after a change in contact configuration.

The RBD error predictions for the trotting trajectory are
shown in Fig. 7. The difference between the measured and
predicted model errors are indeed significantly worse in the
indicated areas around a foothold change. Outside of these
regions the model errors are consistent with the confidence
interval of the SGPR.

The actuation error predictions shown in Fig. 8 are much
less affected by the aforementioned issues. The SGPR is able
to accurately predict the error in both the stance phase and
the swing phase between 0.80s and 1.05s. We observe that
actuation errors are especially high during swing phases. The
next section shows how the ability to predict these model
errors with high accuracy is beneficial for control.
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Fig. 6: Estimated gait pattern for a trotting trajectory. The gray band indicate
the band in which the acceleration filter is still affected by the change in
contact.
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Fig. 7: Measured and predicted RBD errors in the roll direction of the base,
Φ̃1. The SGPR prediction are plotted together with the 95% confidence
interval. The grey bands around contact changes in Fig. 6 are repeated.

B. Controller performance

We analyse the effect of using a learned model in an
inverse dynamics based controller. To compare the controllers
performance we define the following metric to capture Root
Mean Square (RMS) feedback effort:

RMS(||ufb||) =

√√√√ 1

N

N−1∑

k=0

uT
fb,kufb,k, (25)

where ufb is the applied feedback signal. Similarly, RMS
tracking errors are defined for the attitude (eatt), position,
(epos), and joint (ejoint) errors. These metrics allow compar-
ison of controllers within a certain task. Comparison between
tasks is not possible, as some tasks are inherently more difficult
to stabilize.

0.2 0.4 0.6 0.8 1.0 1.2 1.4

time [s]

−50

0

50

100

150

Γ
6

[N
m

]

Actuation Errors

Measured

SGPR pred.

SGPR conf.

Fig. 8: Measured and predicted actuation errors in the right front knee joint,
Γ6. The SGPR prediction are plotted together with the 95% confidence
interval. The grey bands around contact changes in Fig. 6 are repeated.
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TABLE I: Controller performance for new executions of the training tasks.

RMS(·)
||ufb|| ||eatt|| ||epos|| ||ej ||

Motion Model [Nm] [deg] [mm] [deg]
Base-only Nominal 40.6 1.0 7.3 6.5

LWPR 17.4 0.8 4.3 3.1
SGPR 16.2 0.7 3.8 2.9

Walk 35cm Nominal 56.8 1.3 21.5 11.1
LWPR 28.8 0.9 17.1 4.8
SGPR 25.8 0.9 13.9 4.6

Trot 35cm Nominal 58.4 1.4 32.2 11.9
LWPR 27.2 0.9 11.1 5.1
SGPR 25.4 0.9 12.0 4.9

The results for all motion and controller combinations are
shown in Table I for new executions of the training tasks
and Table II for new tasks. The controller based on the
SGPR model uses the least amount of feedback effort and
achieves lower tracking errors on the training motions. This
shows that the inverse dynamics controller is able to exploit
the more accurate model predictions of the SGPR shown
in Figs. 4a and 5a. For the new motions in Table II, the
performance difference between LWPR and SGPR is less
pronounced.

The torque commands for the right front (RF) leg during
trotting are plotted in Fig. 9 to show the difference in control
signals when using different models. The controllers based on
the learned models have clearly different feedforward signals
across all joints. As a result, overall lower feedback signals as
seen in the bottom figure for each joint.

We did not encounter visual difference between experiments
with and without a learned model. As seen in Table I and II,
the tracking errors are not so large that visual differences are
expected. Stiff feedback gains were used to ensure tracking
under the nominal model. While the same feedback gains were
used with the learned models to allow comparison, these gains
could in the future be lowered due to improved feedforward
signals. This would in return reduce oscillations that we
occasionally experience due to high gains. Such compliant
behaviour while maintaining tracking performance will be
especially beneficial for rough terrain locomotion.

VI. DISCUSSION

In this work we verified generalization between repetitions
of the same task and to similar tasks. Each error element
showed a different degree of generalization. Actuation errors
generalize very well to the new motions and are naturally at
an advantage with respect to the RBD error model due to the
lower input dimensionality. RBD errors associated to the base
do, but those for the end-effector dimensions do not generalize
to new motions. We hypothesize that the latter are more locally
dependent on joint states, and thus generalize less to the new
motions, which differ more in joint motions than base motion.
It is therefore the combination of predicted base level RBD
errors and actuation errors that result in the improved control
performance on the new tasks.

To discuss generalization to a wider range of tasks, we
point back to the chosen error formulation in (3). We use
learning methods that have local support around training data

TABLE II: Controller performance for new tasks.

RMS(·)
||ufb|| ||eatt|| ||epos|| ||ej ||

Motion Model [Nm] [deg] [mm] [deg]
Walk 20cm Nominal 61.2 1.6 24.9 10.9

LWPR 30.4 1.2 20.5 6.2
SGPR 36.7 0.9 17.5 5.8

Walk 30cm Nominal 58.1 1.3 25.7 10.9
LWPR 29.3 0.8 11.3 4.6
SGPR 27.1 0.6 10.9 4.9

Rear Walk Nominal 54.6 1.0 21.9 10.4
30cm LWPR 32.8 0.8 20.4 4.8

SGPR 37.9 1.2 32.5 5.7
Side walk Nominal 55.8 1.3 21.3 8.8
25cm LWPR 26.8 0.8 17.6 4.0

SGPR 40.8 1.1 17.4 7.9
Trot 20cm Nominal 54.0 1.3 17.3 10.4

LWPR 24.4 0.8 7.8 4.8
SGPR 23.9 0.7 8.1 5.3

Trot 45cm Nominal 69.4 1.7 39.9 13.1
LWPR 25.5 0.9 16.8 5.1
SGPR 27.5 0.5 22.6 6.8

and adjust to the local landscape. Moreover, the user has
control over how much the learned models will extrapolate
training data. Stronger regularization will force the error
prediction back to zero when moving away from training
examples and returns the method to nominal performance. This
limits the generalization to tasks in unseen parts of the input
spaces. However, we prefer such conservative behaviour over
excessive extrapolation of the training data and believe that it
is important for a robust execution on hardware.

The reduced prediction quality around contact changes
limits performance on highly dynamic motions. We encoun-
tered the current filtering strategy to be a limiting factor.
An improved approach should address velocity discontinuities
around contact switches. Furthermore, fusing IMU measure-
ments with the filter based estimates could improve accelera-
tion estimates. Finally, increasing the filter’s cut-off frequency
results in noisier data for the learning problem, but can in
principle be compensated with more training data. Experiment-
ing with this trade off could benefit the overall performance,
especially for highly dynamic motions.

The assumption of non-singular end-effector Jacobians al-
lowed us to solve for the model errors in (11). A singular
Jacobian prevents a unique attribution of the model error to
the individual elements of the error vector. As often done
in robotics, this assumption can be relaxed by adding a
regularization term. For our case of three joints per end-
effector a small term of γI3×3 can be added to the block
∂pee,i/∂qj,ee, where qj,ee are the joints associated to that end-
effector. However, the effect of such a regularization on the
learning should be studied more carefully.

Throughout this work we have separated formulation from
learning methods and used established learning libraries to
focus on the formulation. The final control performance could
now be further improved with the state-of-the-art methods in
supervised learning.

VII. CONCLUSIONS

We presented a novel model learning formulation for legged
robots. The formulation enables learning of model errors that
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Fig. 9: Feedforward and feedback torques in the hip abduction/adduction (HAA), hip flexion/extension (HFE), and knee flexion/extension (KFE) of the right
front (RF) leg during the 45cm trot. The control signals from experiments with inverse dynamics controllers based on the Nominal, LWPR, and SGPR models
are compared. The swing phase of this leg occurs between 0.80s and 1.05s.

are contact invariant, without the need for contact force mea-
surements. The results show that using supervised learning, a
single model can improve model predictions across a variety of
motions and contact configurations. Even though the training
data does not cover the entire input space of the robot, we
showed generalization to new, similar tasks.

Additionally, we showed how inverse dynamics control
using a learned model significantly improves tracking perfor-
mance on hardware. The controller is able to exploit accurate
predictions by the learned model to achieve reduction in RMS
feedback effort and tracking errors.
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