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We introduce and discuss generalizations of the problem of independent transversals. Given
a graph property R, we investigate whether any graph of maximum degree at most d with
a vertex partition into classes of size at least p admits a transversal having property R.
In this paper we study this problem for the following properties R: “acyclic”, “H-free”,
and “having connected components of order at most r”.

We strengthen a result of [13]. We prove that if the vertex set of a d-regular graph is
partitioned into classes of size d+�d/r�, then it is possible to select a transversal inducing
vertex disjoint trees on at most r vertices. Our approach applies appropriate triangulations
of the simplex and Sperner’s Lemma. We also establish some limitations on the power of
this topological method.

We give constructions of vertex-partitioned graphs admitting no independent transver-
sals that partially settles an old question of Bollobás, Erdős and Szemerédi. An extension
of this construction provides vertex-partitioned graphs with small degree such that every
transversal contains a fixed graph H as a subgraph.

Finally, we pose several open questions.

1. Introduction

Let G be a graph and let P be a partition of V (G) into sets V1, . . . ,Vn. A
transversal (of P) is a subset T of V (G) for which |T ∩ Vi| = 1 for each
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i= 1, . . . ,n. The starting point of our discussion is the following theorem of
Haxell.

Theorem 1.1 ([11]). Let G be a graph of maximum degree d and
V1∪ ·· · ∪Vn = V (G) be a partition of its vertex set with |Vi| ≥ 2d. Then
there is a transversal T which is an independent set in G.

This theorem seems to have appeared first explicitly in Haxell [11], al-
though it is also a consequence of a more general result of Meshulam [16]
and implicitly, even earlier, of Haxell [10]. The result has two proofs: one
combinatorial [10] and another via combinatorial topology [1]; it is not clear
how closely these two arguments are related. The statement also has sev-
eral applications in different problems of graph theory, see [4,7,11]. In the
present paper we set to study the generalizations of Theorem 1.1 in two
different directions.

1.1. Acyclic transversals with bounded components

The first generalization we consider here was introduced in [13] in order
to improve on a result of Alon, Ding, Oporowski and Vertigan [7]. For a
fixed degree d and component size r, let us define p(d,r) to be the smallest
integer such that any graph with maximum degree at most d partitioned
into classes of size at least p(d,r) has a transversal that induces components
of size at most r. Theorem 1.1 can then be rephrased as p(d,1)≤2d. In [13]
a generalization of the combinatorial argument of [10] implied that p(d,r)≤
d+�d/r	 for any d and r. This was known to hold with equality only when
r=1 and d is a power of 2 [14,18]. In Corollary 3.4 we establish p(d,1)=2d
for every d.

Unfortunately, for r>1 even the asymptotical truth escapes us. The es-
timate is not tight in general: p(2,2) = 2 as shown in [13]. In fact, the best
lower bound known for r>1 is p(d,r)≥d and even p(d,2)=d is possible at
the moment. There was hope that a generalization of the “topological” argu-
ment could provide stronger upper bounds. In the present paper we provide
this missing proof via Sperner’s Lemma and appropriate triangulations of
the simplex. Alas, we end up with the exact same result which follows from
the combinatorial counterpart. For the proof we construct triangulations
which generalize the ones of Aharoni, Chudnovsky and Kotlov [1] and then
finish along the lines of Aharoni and Haxell [2] applying Sperner’s Lemma
for our appropriately defined colored triangulation. In fact, in Corollary 2.6
we obtain a slightly stronger statement. We prove that if the class sizes are
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at least d+ �d/r	, then a transversal could be selected inducing connected
components which are trees on at most r vertices.

One of our main tools for this strengthening is a triangulation from [1].
In Corollary 2.4 we obtain a bound p(d, forest )≤d on the minimum class size
p(d, forest) such that any graph of maximum degree at most d partitioned
into classes of size p(d, forest ) has a transversal inducing a forest. We allow
multigraphs in this definition. With Construction 3.3 we show that this
bound is optimal for even d. For simple graphs the analogous value might
be somewhat lower though. Our best construction here is Construction 3.7
for H = K3. For an even d this construction gives a maximum degree d

graph Gd whose vertices are partitioned into classes of size
⌈

3
4d

⌉
−1 and no

transversal of Gd is triangle-free.
In Corollary 2.9 we note that our proof implies that the r-component

complex Kr(G) of a d-regular graph G with many (more than (m+1)(d−
1 + (d+ 1)/r)) vertices is m-connected. Here Kr(G) denotes the simplicial
complex defined on the vertex set of G, where a subset forms a simplex if
all connected components of the induced subgraph is of order at most r.

Unfortunately our proof does not decide the asymptotics of p(d,r) for
r>1. Thus it is natural to investigate “how good” such proofs could become
with a possibly more clever choice of colored triangulations. With Construc-
tion 3.2 of Section 3 we find that for r=2, where the truth is between d and
3
2d, there is an intrinsic limit of 5

4d to where such type of arguments could
improve the upper bound. In particular, for d= 2, the combinatorial proof
[13] of p(2,2)=2 cannot be substituted by a topological argument.

1.2. H-free transversals

The second direction we intend to generalize Theorem 1.1 is about H-free-
transversals. Given a fixed graph H, let p(d,H) be the smallest integer such
that any graph of maximum degree at most d partitioned into classes of size
at least p(d,H) admits a transversal with no subgraph isomorphic to H.
Theorem 1.1 can be phrased as p(d,K2)≤ 2d. We find the case of H = Kk

particularly interesting, but at this point we are only able to provide a lower
bound which we conjecture to be best possible.

For any r-regular graph H on n vertices and for any d divisible by r, in
Corollary 3.8 we prove that p(d,H)≥ n

(n−1)rd. The special case of the same
construction establishes p(d,1) = p(d,K2) = 2d for every d. Earlier this was
only known for powers of 2. (See Jin [14] and Yuster [18].)

Construction 3.3 is a modified version of the above construction and
provides a partial solution for a problem of Bollobás, Erdős and Szemerédi
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[9] studied by several researchers [4,5,14,18,6]. Let ∆(r,n) be the largest
integer such that any r-partite graph Gr(n) with vertex classes Vi of size
n each and of maximum degree less than ∆(r,n) contains an independent
transversal, i.e., an independent set containing one vertex from each Vi. De-
fine ∆r =limn→∞∆(r,n)/n, where the limit is easily seen to exist. Trivially
∆(2,n) = n, thus ∆2 = 1. Graver (c.f. [9]) showed ∆3 = 1. Bollobás, Erdős
and Szemerédi [9] proved that

2
r
≤ ∆r ≤ 1

2
+

1
r − 2

,

thus establishing µ = limr→∞∆r ≤ 1/2. Alon [4] showed ∆r ≥ 1/(2e) for
every r. This was improved to ∆r ≥ 1/2 by Haxell [11] thus eventually
settling a conjecture of [9] and establishing µ=1/2. Exact values of ∆r were
known only when r=3,5 or a power of 2. Alon [6] observed that a theorem
of Aharoni and Haxell [3] also gives ∆r≥ r

2(r−1) . This can be paired with the
constructions of Jin [14] to provide ∆r = r

2r−1 for r=2p. For other integers r,
the upper bounds of Jin were somewhat improved by Alon, but exact results
were not known.

Here we extend the above for every even r. More precisely, in Corollary 3.6
we prove that for every r≥2 even and for every n,

∆(r, n) =
⌈

rn

2(r − 1)

⌉
.

2. Transversals spanning bounded connected components

Given a graph G, a simplicial complex K, and a mapping l :V (K)→V (G),
the pair (K, l) is called a G-labeled simplicial complex. If l is clear from the
context we simply use K to denote the G-labeled complex. A 1-dimensional
simplex {x,y} of K is called ruined if l(x) and l(y) are adjacent in G.
An r-dimensional simplex S of K is called ruined if the graph of ruined
1-dimensional faces of S is connected and spans all r + 1 vertices of S.
The m-dimensional solid ball is denoted by Bm; its boundary, the (m−1)-
dimensional sphere is Sm−1. S−1 is just the empty set.

The link of a simplex σ in a simplicial complex is defined as lkK(σ) :=
{τ ∈K :τ∩σ=∅,τ∪σ∈K}. The join of two simplicial complexes with disjoint
vertex sets is defined as K∗K′ :={τ ∪τ ′ :τ ∈K,τ ′∈K′}. For a more detailed
discussion of the topological concepts we refer the reader to the excellent
survey of Björner [8].

Throughout this paper when talking about a subdivision of a complex,
we mean PL-subdivision, when we speak of a triangulation of the sphere Sm
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or ball Bm we mean PL-triangulation, where PL stands for piecewise linear.
This technical property is needed to assure key properties like the following:
the link of a simplex of a PL-triangulated sphere or ball is itself a PL-
triangulated sphere unless the simplex is in the boundary of the ball [8]. We
mention here that one can avoid PL-triangulations and triangulated balls
and spheres by using an alternative homological approach, and speaking
about boundaries of chains. This alternative treatment is somewhat less
intuitive, and requires a homological version of Sperner’s theorem, but it
avoids most technical difficulties.

A triangulation T ′ of Bm is called a filling of the triangulation T of Sm−1

if T is the boundary of T ′. A G-labeled triangulation (T ′, l′) of Bm is called
a filling of the G-labeled triangulation (T , l) of Sm−1, if T ′ is a filling of T
and l′|V (T ) = l.

We say that a simplex σ is multi-colored if all its vertices are assigned
distinct colors.

We use Sperner’s Lemma [17]. It states that an appropriately colored
subdivision of a multi-colored simplex contains a multi-colored simplex.

Lemma 2.1 ([17]). Let T be a triangulation of the n dimensional sim-
plex σ. Suppose that the vertices of T are colored by n+1 colors, such that

(1) each vertex of σ receives a different color (i.e., σ is multi-colored) and
(2) the vertices of T on any face τ of σ are colored by the colors of the

vertices of τ .

Then there exists a multi-colored n-dimensional simplex in T .

As a warm-up let us discuss forest transversals. The next theorem is our
tool to construct forest transversals in graphs.

Theorem 2.2. Let m≥0 and d≥0 be arbitrary integers. Let G be a graph
of maximum degree d and W be a designated subset of the vertices V (G),
|W | > md. Every G-labeled triangulation (T , l) of Sm−1 has a G-labeled
filling (T ′, l′), such that

(i) l′(v)∈W for every v∈V (T ′)\V (T ).
(ii) Every cycle of ruined edges is contained in T .
(iii) Every path of ruined edges with both endpoints in T is fully contained

in T .

For the proof we use the following triangulation constructed by Aharoni,
Chudnovsky and Kotlov [1].
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Lemma 2.3 ([1, Lemma 1.2]). Given a triangulation T of Sm−1, there is
a filling T ′ of T and an ordering of the new vertices V (T ′)\V (T )={v1, . . . ,vs}
such that for all i, the vertex vi is connected to at most 2m vertices of
V (T )∪{v1, . . . ,vi−1}.

Proof of Theorem 2.2. The triangulation of Lemma 2.3 provides a filling
of T such that we add the vertices one by one and each new vertex is
connected to at most 2m older ones. Since |W |>md we can ensure that the
label of each new vertex is chosen such that there is only at most one ruined
edge from that vertex going to an older vertex. Thus we avoid the creation
of cycles of ruined edges and also paths of ruined edges connecting vertices
of T .

An immediate application of Theorem 2.2 is for forest-transversals. Let
us recall that p(d, forest) is the smallest integer, such that any d-regular
graph partitioned into classes of size at least p(d, forest ) has a cycle-free
transversal.

Corollary 2.4. p(d, forest)≤d.

Proof. Suppose G is a graph of maximum degree d and V (G)=V1∪ ·· · ∪Vn,
|Vi| ≥ d. We consider the (n− 1)-dimensional simplex σ with vertex set
{v1, . . . ,vn}. We create a G-labeled triangulation (T , l) of σ, such that

• for every vertex x of the triangulation and face τ of σ containing x,
l(x)∈∪i:vi∈τVi and

• the graph of ruined edges induces a forest.

We proceed by cell-induction, i.e., subdivide and label the faces of σ in an
arbitrary nondecreasing order of their dimension. We start by labeling each
vertex vi by an arbitrary element l(vi) of Vi. Let τ be an m-dimensional
face of σ, m > 0, whose boundary is subdivided and G-labeled. Let W =
∪i:vi∈τVi. As |W |≥ (m+1)d>md, we can apply Theorem 2.2 to obtain an
appropriate labeled subdivision of τ . Notice that we do not create a cycle of
ruined edges disjoint from the boundary, because of condition (ii). Cycles of
ruined edges intersecting the boundary could not be created either because
of condition (iii).

Eventually the whole simplex σ is subdivided without creating a cycle of
ruined edges. If each vertex of this triangulation is colored with the index of
the class of its label, then the assumptions of Sperner’s Lemma are satisfied
and the existence of a full-dimensional multi-colored simplex is guaranteed.
The labels of this multi-colored simplex determine a transversal with no
cycle.
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For multigraphs the bound in Corollary 2.4 is tight for even d, as it
is witnessed by doubling the edges of any family of graphs which provide
p(d/2,1)=d. These graphs are given in Construction 3.3. Our best example
for simple graphs is weaker. Construction 3.7 for H = K3 shows that the
analogous value ps(d, forest ) for simple graphs satisfies ps(d, forest )≥ 3

4d for
even d.

Next we prove a strengthening of the bounded component transversal
result from [13]. Our main tool is the following theorem about the existence
of labeled fillings with certain properties.

Theorem 2.5. Let m ≥ 0 and r ≥ 1 be arbitrary integers. Let G be a
graph of maximum degree d≥r−1 and designated subset W ⊆V (G) of size
|W |> m(d− 1 + (d+ 1)/r). Then a G-labeled triangulation (T , l) of Sm−1

admits a G-labeled filling (T ′, l′) satisfying the following properties:

(a) l′(v)∈W for every v∈V (T ′)\V (T ).
(b) Every cycle of ruined edges of (T ′, l′) is contained in T .
(c) There is no ruined edge between V (T ) and V (T ′)\V (T ).
(d) The ruined r-simplices of (T ′, l′) are contained in T .

For a vertex w of a graph G, N(w) denotes the set of vertices adjacent
to w.

Proof. We prove the theorem by induction on m. For m=0 the statement
is trivial.

Suppose m>0. We construct T ′ in three phases.
First we apply the “excising technique” of [1] to create an inner “crust”

which contains no ruined edges going to the boundary. We excise the vertices
of T one by one from the inner boundary and use the induction hypothesis
for (m−1) in each step.

In the second phase we fill (the inner boundary of) the crust constructed
in the first phase. We use Theorem 2.2 here. We obtain a filling S0 of T sat-
isfying properties (a)–(c). But we may create a number of ruined r-simplices
in this phase.

Finally, in the third phase we remove the ruined r-simplices constructed
in the second phase. We remove them one by one and fill up the resulting
“holes”. We use the induction hypothesis for (m−1) in each step.

Let us start with the first phase. We take the vertices u1, . . . ,ut of V (T )
and excise them one by one. We do this by creating an increasing se-
quence T = T0 ⊆ T1 ⊆ ·· · ⊆ Tt of labeled complexes. The complex Ti sat-
isfies properties (a)–(d), furthermore it has an “inner boundary” T ′

i with
V (T ′

i )∩V (T )={ui+1, . . . ,ut}, such that T ′
i is a triangulation of Sm−1 and the
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union of Ti with any filling of T ′
i is a filling of T . We start with T0 =T ′

0 =T .
For i>0 consider the vertex ui and its link lkT ′

i−1
({ui}), which is an (m−2)-

sphere. (Note that we talk about PL-triangulations.) By induction there is
a G-labeled filling T̃i of this link, with subset W̃i = W \N(l(ui)) satisfying
properties (a)–(d). (We naturally assume here, and later in this proof, that
the set of new vertices introduced in a filling is disjoint from the set of old
vertices, that is we have (V (T̃i) \V (lkT ′

i−1
({ui})))∩V (Ti−1) = ∅.) Observe

that |W̃i|≥|W |−d>(m−1)(d−1+(d+1)/r). We then create Ti by adding
the join of T̃i with ui to Ti−1. This operation excises ui from the interior
boundary of Ti. More formally, let Ti =Ti−1∪ (T̃i ∗{∅,{ui}}) and we obtain
the inner boundary T ′

i =(T ′
i−1\(T̃i∗{∅,{ui}}))∪T̃i. By the choice of W̃i, we

do not add a ruined edge going to ui. By property (c) of the induction hy-
pothesis there are no ruined edges added going to other vertices of V (T ). In
conclusion, the newly introduced ruined edges are “separated” from the old
ones, that is there are no ruined edges between V (Ti−1) and V (Ti)\V (Ti−1).
Thus properties (a)–(d) hold for Ti by the induction hypothesis.

Eventually all vertices of V (T ) excised from the inner boundary. Hence
Tt is a crust having properties (a)–(d) and its inner boundary T ′

t is disjoint
from T .

As the second phase of the construction, we apply Theorem 2.2 to fill T ′
t

such that the new labels are from W . This is possible, because our extra
condition on the maximum degree ensures that m(d−1+ (d+ 1)/r) ≥md.
Let S0 be the union of Tt and this filling of T ′

t . Clearly, S0 is a filling of T
satisfying properties (a), (b), and (c).

In the third phase of our construction we get rid of any ruined r-simplices
in S0 \T that we may have created in the second phase. For m<r no such
simplices are created, so property (d) is automatically satisfied. For m≥ r
our plan is to modify S0 to get rid of all ruined r-simplices one by one. We
will change our triangulation locally and be careful not to spoil properties
(a), (b), and (c). In one step we remove a ruined r-simplex σ /∈T , together
with all the simplices containing it, thus creating an m-dimensional “hole”
in Bm. Then we fill up this hole differently, such that we do not create new
ruined r-simplices, properties (a)–(c) are still satisfied, while σ is gone. Since
the number of ruined simplices was finite to begin with, after applying this
operation finitely many times we will have a triangulation T ′ with no ruined
r-simplices outside of T .

Suppose that Si is the filling of T we obtained after getting rid of the ith

ruined r-simplex in S0. Fix an arbitrary ruined r-simplex σi+1 of Si\T . In fact
σi+1∈S0\Tt. The link lkSi(σi+1) of the r-simplex σi+1 in Si is a triangulated
Sm−r−1. We find a filling S̃i of lkSi(σi+1) using the induction hypothesis for
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the designated subset Wi⊆W containing the non-neighbors of the labels of
the vertices of σi+1. Formally, let Nσi+1 be the set of vertices of G that are
neighbors to the label of some vertex of σi+1 and let Wi =W \Nσi+1 . Then
|Nσi+1 |≤d(r+1)−(r−1), since σi+1 is a ruined r-simplex. Hence

|Wi| ≥ |W | − |Nσi+1 | > m(d− 1 + (d + 1)/r) − dr − d + r − 1
= (m − r)(d− 1 + (d + 1)/r),

i.e., we can indeed use the induction hypothesis.
Now we are ready to define Si+1. First we remove all simplices from Si

which contain σi+1. This of course creates an m-dimensional “hole” in Bm.
Then in order to fill it, we add all simplices of the form σ′∪σ̃, where σ′�σi+1

and σ̃∈S̃i. That is, we add S̃i∗δσi+1, where δσi+1 is the boundary complex
of σi+1.

Starting from the filling Si of T we replaced a subcomplex with another,
both of them triangulated Bm and having lkSi(σi+1)∗δσi+1 as their bound-
ary, so the resulting complex Si+1 is also a filling of T . There are no ruined
edges between V (σi+1) and V (Si+1) \ V (Si) because of the choice of Wi.
All other edges between V (Si) and V (Si+1)\V (Si) are also edges between
lkSi(σi+1) and V (S̃i) \ lkSi(σi+1), hence not ruined by property (c) of the
induction hypothesis. In conclusion, there are no ruined edges between the
newly introduced vertices and the “old” vertices. Thus, we did not spoil
properties (b) or (c), and did not create any new ruined r-simplices. Clearly,
property (a) is also maintained.

The ruined simplex σi+1 is gone, so the number of ruined r-simplices
decreased by one. After finitely many steps we obtain a filling T ′ of T
satisfying properties (a)–(d).

The following corollary is immediate.

Corollary 2.6. Let r be an arbitrary positive integer. Let G be a graph of
maximum degree d, and let P be a partition V1∪·· ·∪Vm =V (G) such that
|Vi|≥d+�d/r	 for i= 1, . . . ,m. Then there exists a transversal T of P such
that the connected components of the induced subgraph G|T are trees on
at most r vertices.

Proof. It is enough to prove the statement for r≤ d+1 (for higher values
of r the statement of the Corollary is weaker than the one for r=d+1).

We construct a transversal T of P such that the connected components
of the induced subgraph G|T are trees on at most r vertices.

Let us denote the vertices of the (n − 1)-dimensional simplex σ by
v1, . . . ,vn.
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Our goal is to define a G-labeled subdivision of the complex consisting
of the faces of σ such that

• for every vertex x of the subdivision of a face τ of σ we have l(x) ∈
∪i:vi∈τVi ,

• the subdivision has no cycle of ruined edges and
• has no ruined r-simplex.

We, again, proceed by cell-induction. As a start, we label each vertex
vi of σ by an arbitrary vertex l(vi) ∈ Vi. Suppose we are given an m ≥ 1-
dimensional face τ of σ with a labeled subdivision of its boundary. Then, by
the previous theorem, it is possible to extend this triangulation to the interior
of τ without creating ruined r-simplices and cycles, such that the labels are
from the set ∪i:vi∈τVi. We just note that |∪i:vi∈τ Vi| ≥ (d+ �d/r	)(m+1) ≥
(d+d/r−(r−1)/r)(m+1)>(d−1+(d+1)/r)m.

Eventually, the whole simplex σ has such a labeled triangulation. Assign-
ing color i to the vertices with label from Vi we obtain a colored triangulation
respecting the assumptions of Sperner’s Lemma. Thus, a multi-colored sim-
plex could be found. The labels of the vertices of this multi-colored simplex
form a transversal having the desired property.

We also obtained a new proof of the following statement on finding
transversals with bounded connected components (which are not necessarily
acyclic).

Corollary 2.7 ([13, Theorem 4.1]). For arbitrary positive integers r
and d,

p(d, r) ≤ d +
⌊
d

r

⌋
.

For a graph G let Kr(G) denote the simplicial complex defined on the
vertices of G, which contains all simplices inducing connected components
of size at most r in G. In particular K1(G) is called the independent set
complex of G, it consists of the independent sets of G. We refer to K2(G) as
the induced matching complex of G. Using this notation Theorem 2.5 could
be stated in the language of topology.

A simplicial complex K is said to be m-connected if its body ‖K‖ (the
corresponding topological space) is m-connected, i.e., every continuous f :
Si→‖K‖ can be extended to a continuous map Bi+1→‖K‖ for −1≤ i≤m
(in other words f is nullhomotopic). The m-connectedness of Kr(G) can be
described using fillings of G-labeled triangulations.

In the remainder of this section a G-labeled simplex is called multi-labeled
if the labels of its vertices are all distinct.
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Proposition 2.8. For a graph G, and m,r ≥ 0 the complex Kr(G) is m-
connected if and only if the following holds for all −1 ≤ i ≤ m: Every G-
labeled triangulation of Si without a ruined, multi-labeled r-simplex has a
filling without a ruined, multi-labeled r-simplex.

Proof. Notice that for any complex K the map l : V (K) → V (G) is a sim-
plicial map l : K → Kr(G) if and only if the G-labeled complex (K, l) has
no ruined, multi-labeled r-simplex. Indeed, the image under l of a ruined,
multi-labeled r-simplex is a set of r+1 distinct vertices spanning a connected
subgraph in G, and such a set is not a simplex of Kr(G). To see the reverse
direction assume S is a simplex of K but its image under l is not a simplex
of Kr(G). Then l(S) contains r + 1 distinct vertices spanning a connected
subgraph, and taking inverse images of these we find a ruined, multi-labeled,
r-dimensional face of S.

Both directions of the proposition is a simple consequence of the above
observation and the simplicial approximation theorem.

Assume first that the filling property is satisfied. We need to show that
every continuous map f : Si → ‖Kr(G)‖ is nullhomotopic for i ≤ m. By
the simplicial approximation theorem, there exist a triangulation T of Si

and a simplicial map l : T → Kr(G) such that its affine extension ‖l‖ :
Si →‖Kr(G)‖ is homotopic to f . (In fact, any fine enough triangulation T
will do here.) Therefore, it is enough to show that ‖l‖ is nullhomotopic by
finding a continuous extension to Bi. As (T , l) has no ruined, multi-labeled
r-simplex it has a filling (T ′, l′) that has no ruined, multi-labeled r-simplex.
Thus l′ : T ′ → Kr(G) is a simplicial map and its affine extension ‖l′‖ is a
continuous function extending ‖l‖ to the ball Bi+1.

For the reverse implication assume Kr(G) is m-connected. Let i≤m, and
let (T , l) be a G-labeled triangulation of Si without ruined, multi-labeled
r-simplices. Now l is simplicial map from T to Kr(G) and its affine exten-
sion ‖l‖ is a continuous map from ‖T ‖ ∼= Si to ‖Kr(G)‖. Therefore it can
be extended to a continuous map f : Bi+1 → ‖Kr(G)‖. We use simplicial
approximation for f and find a suitable triangulation T ′ of Bi+1 and get a
simplicial map l′ :T ′→Kr(G) approximating f . As f |Si =‖l‖ we can make
sure that the boundary of the complex T ′ is T and l and l′ agree on T . This
means that l′ is a filling of l with no ruined, multi-labeled r-simplices.

Corollary 2.9. Let m≥ 0 and r≥ 1 be arbitrary integers. If G is a graph
on more than m(d−1+(d+1)/r) vertices with maximum degree d≥ r−1,
then Kr(G) is (m−1)-connected.

Proof. By Proposition 2.8 we need to show that a G-labeled triangulation of
Si without ruined, multi-labeled simplices has a filling still without ruined,
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multi-labeled simplices for i<m. Theorem 2.5 applies here with W =V (G)
and states the existence of a filling without any new ruined r-simplices, much
less ruined, multi-labeled simplices.

3. Constructions

3.1. Non-fillable labeled triangulations

First we give bounds on the connectedness of Kr(G) for r = 1 and 2. The
examples are very similar to each other. The graphs constructed are disjoint
unions of smaller graphs and we use the simple observation that for the
disjoint union of two graphs G and G′ the complex Kr(G∪G′) is the join of
the complexes Kr(G) and Kr(G′).

Our first example shows that Corollary 2.9 (and thus also Theorem 2.5)
is best possible when r=1. Note that independent set complexes are widely
studied and several lower bound on their connectedness and acyclicity is
known. The one closest to our result is Proposition 3.1 in [16] a special case
of which claims that K1(G) is (�γ̃(G)/2�−2)-acyclic over the reals for any
graph G. Here γ̃(G) is the total domination number, the cardinality of the
smallest set S of vertices in G such that every vertex of G is a neighbor of a
vertex in S. Using the obvious bound γ̃(G)≥n/d, where n is the number of
vertices of G and d is the maximum degree we obtain the same bound on the
acyclicity of K1(G) as Corollary 2.9 gives for its connectedness. We remark
that in the r= 1 case our argument also naturally generalizes to show that
K1(G) is (�γ̃(G)/2�−2)-connected.

Construction 3.1.

Take G1 to be the disjoint union of m copies of Kd,d. It has 2md vertices, one
too few for Corollary 2.9 to show that the independent set complex K1(G1)
is (m−1)-connected. We show that K1(G) is homotopy equivalent to Sm−1

and therefore it is not (m−1)-connected.
The complex K1(Kd,d) consists of two disjoint (d−1)-simplices, so it is

homotopy equivalent to S0. As G1 consists of m copies of Kd,d, the complex
K1(G1) is the m-fold join of K1(Kd,d) and therefore homotopy equivalent to
Sm−1 as claimed.

Although Corollary 2.9 is best possible in general for r = 1, the inde-
pendence complex K1(G) can be arbitrarily more connected for particular
graphs G, than what is guaranteed by this result. For the cycle Corollary 2.9



EXTREMAL PROBLEMS FOR TRANSVERSALS IN GRAPHS 345

gives that K1(Cn) is (�n/4�−2)-connected. Kozlov [15] determined the homo-
topy type of of the independent set complex of cycles and his result implies
the stronger statement that K1(Cn) is �(n+1)/3	−2 connected.

For r > 1 we don’t know whether Corollary 2.9 is tight. The following
construction for r=2 shows that in this case the lower bound of 3

2md− 1
2m

on the size of the graph in Corollary 2.9 cannot be lowered below 5
4md. For

r=d=2 the construction gives 5
2m, which is tight. Clearly, this construction

bounds also how far the lower bound on the size of W in Theorem 2.5 can
be lowered.

In [13] a combinatorial argument establishes that p(2,2)=2. Notice that
the standard topological proof of the same fact (similar to the proofs of
Corollaries 2.4 and 2.6) through the method of Aharoni and Haxell [2] is
impossible. It would require a strengthening of Theorem 2.5 for the r=d=2
case, which is impossible by the example below.

Construction 3.2.

Let d be even. A blown-up five-cycle Hd/2 is a graph on the vertex set
∪4

j=0Aj , |Aj | = d/2, where x ∈ Aj and y ∈ Al are connected if and only if
j−l≡±1 modulo 5. Let G2 be the disjoint union of k copies of the blown-up
five-cycle Hd/2. We claim that K2(G2) is homotopy equivalent to S2k−1 and
therefore it is not (2k−1)-connected.

As in the previous construction it is enough to prove that for a single
blown-up five cycle Hd/2 the complex K2(Hd/2) is homotopy equivalent to
the circle S1. This implies that K2(G2) is homotopy equivalent to the k-fold
join of S1, which is S2k−1.

The maximal simplices of the independent set complex K1(Hd/2) are
the sets Aj ∪Aj+2 for 0 ≤ j ≤ 4. Here (and later in this construction) the
indices are understood modulo 5. This complex is easily seen to be homo-
topy equivalent with the cycle S1. The maximal simplices of K2(Hd/2) are
the same simplices together with the simplices {x,y}∪Aj , where x∈Aj−2,
y∈Aj+2 and 0≤j≤4. Any 1-simplex spanning an edge in Hd/2 is contained
in a unique maximal simplex of K2(Hd/2). If a non-maximal simplex of a
simplicial complex is contained in a unique maximal simplex then one can
collapse this face, i.e., remove all simplices containing it and the remaining
complex is homotopy equivalent to the one before the collapse. Therefore we
can collapse any 1-simplex of K2(Hd/2) which spans an edge in Hd/2,d/2 and
the remaining complex is homotopy equivalent to K2(Hd/2). As the maxi-
mal simplices containing these 1-simplices are distinct we can collapse all
the 1-simplices spanning an edge simultaneously and the remaining com-
plex is still homotopy equivalent to (in fact a strong deformation retract
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of) K2(Hd/2). Notice, that the complex remaining after collapsing all the
1-simplices corresponding to edges of Hd/2 is exactly K1(Hd/2). Therefore
K2(Hd/2) is homotopy equivalent to K1(Hd/2) and to S1.

This example shows that with parameters m = 2k, r = 2 an d even,
|V (G)| = 5(d/2)k = 5

4dm, the statement of Corollary 2.9 is not true. The
question remains open, whether the topological proof for r = 2 could be
strengthened from 3

2dm or the counterexample improved from 5
4dm.

3.2. Partitioned graphs without independent transversals

Let n,d,k ≥ 1 be integers such that d ≥ kn/(2k − 1). In this section we
construct a graph Gk,n,d of maximum degree at most d, together with a
vertex set partition into 2k disjoint subsets V1, . . . ,V2k of size |Vi| = n, i =
1, . . . ,2k, such that there exists no independent transversal with respect to
this partition, i.e., every subset T ⊆ V (G) with the property |T ∩Vi| = 1,
i=1, . . . ,2k, spans at least one edge.

Construction 3.3.

If n≤d, then Gk,n,d could be chosen to be the disjoint union of k≥1 complete
bipartite graphs Kn,n, the bipartite classes forming the vertex partition into
2k parts.

Thus we can assume d < n and by our condition n ≤ 2d− d
k < 2d. Let

i=2d−n, q=�d−i
i � and r=d−qi. We have 1≤r≤ i≤d−1 and 1≤q≤k−1.

The graph Gk,n,d is the disjoint union of 2q+1 complete bipartite graphs
Hj with vertex sets Aj ∪Bj, j = 1, . . . ,2q + 1 and an independent set W of
2(k−q−1)n points. The graph Hq+1 is isomorphic to Kd−i+r,d−i+r and all
other graphs Hj are isomorphic to Kd,d.

The partition classes are defined as follows. For j = 1, . . . ,q, Vj = Aj ∪
B′

j+1, where B′
j+1 ⊆ Bj+1 is an arbitrary (d− i)-element subset of Bj+1.

Symmetrically, for j =q+2, . . . ,2q+1, Vj =Bj ∪A′
j−1, where A′

j−1⊆Aj−1 is
an arbitrary (d−i)-element subset of Aj−1. The leftover elements are divided
into two classes: Vq+1 =B1∪(∪q+1

j=2(Bj\B′
j)) and V2q+2 =A2q+1∪(∪2q

j=q+1(Aj\
A′

j)). This way all the classes are of size 2d− i = n. In case q < k−1, then
W �=∅ and we create the required 2k classes by arbitrarily partitioning the
independent set W .

Suppose for a contradiction that there exists an independent transversal
T of Gk,n,d. If T ∩Bj �=∅ for some index j≤ q, then T ∩Aj =∅ because T is
independent. Therefore T ∩Bj+1 �=∅ as well, since T is a transversal. Thus,
eventually, T ∩Bq+1 �= ∅, since Vq+1 ⊆∪q+1

j=1Bj ensures that there is at least
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V1 V2 V4 V5

V3

V6

B4 B5B3B2B1

A1 A2 A3 A4 A5

Figure 1. The partitioned graph G3,5,3

one index j ≤ q + 1 with T ∩Bj �= ∅. For symmetric reasons T ∩Aq+1 �= ∅,
which provides the contradiction sought after.

Generalization of this construction will be presented in the next subsec-
tion. We prefer to discuss the important special case of independent transver-
sals in this formulation, because we find it more transparent, than the (more
intuitive) way of Construction 3.7. We remark that if k = d is a power of 2
and n=2d−1, then our graphs are the same as the one used by Yuster [18],
but our vertex partitions are different.

Taking the parameters d=k, and n=2d−1 our construction establishes
p(d,1)=2d for every d. Previously this only was known for powers of 2 [14,
18].

Corollary 3.4. For every integer d≥1,

p(d, 1) = 2d.

The same construction partially answers a question of Bollobás, Erdős,
and Szemerédi [9], which was studied extensively by a number of researchers.
Let us recall that ∆(r,n) denotes the largest integer such that any r-partite
graph Gr(n) with vertex classes Vi of size n each and of maximum degree
less than ∆(r,n) contains an independent transversal, i.e., an independent
set containing one vertex from each Vi. The limit ∆r =limn→∞∆(r,n)/n is
easily seen to exist.

Haxell [11] showed µ = limr→∞∆r = 1/2, but until very recently the
exact values of ∆r were known only for r=2,3, [9], and r=4,5 [14]. Alon [6]
observed that the method of [11] actually implies ∆r≥

⌈
r

2(r−1)

⌉
. Thus Jin’s

construction [14] is optimal and for powers of 2 one has ∆r = r
2(r−1) .

Here we extend the above result for all even r and determine not only ∆r,
but all the values ∆(r,n) in this case. The following Proposition appears in
[6] and is an immediate consequence of a theorem of Aharoni and Haxell [3].
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Proposition 3.5 ([6, Proposition 5.2]).

∆(r, n) ≥
⌈

rn

2(r − 1)

⌉
.

For each r even and for arbitrary n our construction provides graphs of
maximum degree d = � rn

2(r−1)� with no independent transversal. Hence we
have

Corollary 3.6. For every integer n≥1 and r≥2 even,

∆(r, n) =
⌈

rn

2(r − 1)

⌉
.

Therefore for every r even we have

∆r =
r

2(r − 1)
.

3.3. Partitioned graphs without H-free transversals

Construction 3.7.

Let H be an r-regular graph on n vertices and let d be a multiple of r.
We prove a lower bound on p(d,H) (see definition in Section 1.2) by giving
an inductive construction. For every c < n

n−1 · d
r we construct a graph of

maximum degree at most d with a vertex partition into classes of size c
which does not admit an H-free transversal. We proceed by induction on c.
For a positive integer j, let H(j) be a blow-up of H, such that each vertex is
replaced with j independent vertices and each edge is replaced with a copy
of Kj,j.

For c≤ d/r, one can take the blow-up H(c) of H, with the independent
sets being the classes of its vertex partition.

Now let d
r < c < n

n−1 · d
r and suppose we have a graph G̃ with vertex

partition Ṽ1 ∪ ·· ·∪ Ṽm, and class size |Ṽi| = nc−nd/r containing no H-free
transversal. Such a partitioned graph exists by our induction hypothesis
since our assumption on c guarantees that nc−nd/r<c.

Our graph G will contain a copy of G̃ and m copies H1, . . . ,Hm of H(d/r).
The vertex partition of G will consist of mn classes of size c. For each i and
j, 1≤ i≤m, 1≤j≤n, we define a class V j

i =W j
i ∪W̃ j

i of G, where W j
i is the

set of d/r independent vertices corresponding to vertex j of H in Hi and
W̃ 1

i ∪·· ·∪W̃ n
i is an arbitrary partition of Ṽi into parts of size |W̃ j

i |=c−d/r.
Note that the size of Ṽi is n(c−d/r) and that the size of each class V j

i is c.
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It remains to see why there is no H-free transversal. Suppose there is
one, denoted by T . Since T is H-free, for each copy Hi of H(d/r) there is a
j, 1≤j≤n, such that T∩W j

i =∅. That is T∩W̃ j
i �=∅, since T is a transversal

with respect to the V j
i . Thus for each i, 1≤ i≤m, T ∩ Ṽi �=∅. So T contains

a transversal of G̃ with respect to the sets Ṽi, which cannot be H-free, a
contradiction.

Corollary 3.8. Let H be an r-regular graph on n vertices and d be a mul-
tiple of r. Then we have

p(d,H) ≥ n

(n− 1)r
d.

Note that for H =K3 this corollary gives p(d,K3)≥ 3
4d.

4. Remarks and open problems

Given an arbitrary graph property R, define p(d,R) to be the smallest inte-
ger p such that any graph G of maximum degree d with a vertex partition
into classes of size p admits a transversal spanning a subgraph having prop-
erty R. We propose the general question of determining p(d,R) for various
graph properties R. In this paper we investigated this function when R is
“H-free”, “acyclic”, or “having connected components of order at most r”.

The most interesting open question regarding H-free transversals is the
case of cliques, in particular triangle-free transversals. Currently we only
know 3

4d≤ p(d,K3)≤ d. For regular H we conjecture that our construction
is optimal. For non-regular H we don’t even have a conjecture.

Our other most important problem is the asymptotic determination of
p(d,r) for any fixed r, when d tends to infinity. This problem is already
open for r=2. The lone existing lower bound [13] makes even p(d,2) = d a
possibility. This in fact was shown to be true for d= 2 ([13]). The smallest
unknown case is p(3,2) which is either 3 or 4. The question is whether every
partition of the vertex set of a 3-regular graph into subsets of size 3 allows
for a transversal inducing only a matching.

An interesting line of research is to investigate the limits of the
triangulation-method of Aharoni and Haxell more thoroughly, i.e., to decide
whether Corollary 2.9 (or Theorem 2.5) is optimal. Let us formulate a special
case of this problem more precisely. Suppose C is a constant, 5/4≤C<3/2.
Given any G-labeled triangulation of Sm−1 containing no ruined 2-simplex,
does there exist an extension into a Bm with no ruined 2-simplex, provided
|V (G)|>Cmd? In other words, what is the smallest number of vertices in
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a d-regular graph, which guarantees the m-connectedness of the induced
matching complex.

We know that p(d, forest ) = d but the graphs showing the lower bound
have parallel edges. It would be interesting to find (at least asymptotically)
the minimum class size for a vertex partition of simple d-regular graphs that
ensures the existence of a cycle-free transversal. This value is between �3

4d�
and d.

The numbers ∆r for odd r≥ 7 are extremely intriguing. Currently it is
known that

r

2(r − 1)
≤ ∆r ≤ ∆r−1 =

r − 1
2(r − 2)

.

The fact that ∆2 =∆3 (or ∆4 =∆5) means that the freedom of an extra class
of size n besides the first two (or the first four) does not help to prevent an
independent transversal. It would be very interesting to decide whether this
phenomenon is just an artifact of the parameters being too small or there
is something deeper going on implying ∆2l =∆2l+1 for every l. We vote for
the latter.

Acknowledgement. We would like to thank Péter Csorba and Gábor
Moussong for fruitful discussions. Péter Csorba greatly simplified our first
proof of the bound on the connectedness of the complexes discussed in Con-
structions 3.1 and 3.2.

Note added in proof. The very last conjecture of the last section, namely
that ∆2l =∆2l+1 for every l was proved by P. Haxell and the first author [12].
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[9] B. Bollobás, P. Erdős and E. Szemerédi: On complete subgraphs of r-chromatic
graphs, Discrete Mathematics 13 (1975), 97–107.

[10] P. Haxell: A condition for matchability in hypergraphs, Graphs and Combinatorics
11(3) (1995), 245–248.

[11] P. Haxell: A note on vertex list colouring, Combinatorics, Probability and Comput-
ing 10 (2001), 345–348.
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