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to estimate transfer functions of HR, sBP and dBP to the 
inputs. The results show that only the HR transfer functions 
to inclination input can explain the variance in the data to a 
reasonable extent (on average 69.8%). As in the other input 
types, the responses are nonlinear; the models are either not 
reliable or explain only a negligible amount of the observed 
variance. Analysis of both, the nonlinearities and the occa-
sionally occurring zero-crossings, is necessary before 
designing an appropriate MIMO controller for mobilization 
of bedridden patients.

Keywords  Rehabilitation · Bed rest · Robotic tilt table · 
Closed-loop control · Biofeedback · Hammerstein model 
identification

1  Introduction

Severe diseases often lead to long periods of bed rest which 
impose serious negative consequences on the body [8, 18, 
19] that can postpone the recovery and even reduce survival 
chances [3]. Very early mobilization can avert these nega-
tive effects, improve functional outcome and promote fast 
recovery in the patients [7, 9, 16, 31]. However, to enable 
early mobilization while avoiding any further adverse 
effects (e.g., fainting), patients’ cardiovascular variables 
have to be kept within safe ranges [12].

A bed with mobilization capabilities could be suited 
for very early mobilization. Mobilization modules such as 
an integrated passive robotic exercise could be used in a 
closed-loop manner to control and stabilize cardiovascular 
variables [17]. Therefore, we aimed at designing a novel 
intelligent rehabilitation bed that enables automatic mobili-
zation of bedridden patients while controlling and stabiliz-
ing their cardiovascular system [35, 36, 45]. As an initial 

Abstract   Long periods of bed rest negatively affect the 
human body organs, notably the cardiovascular system. To 
avert these negative effects and promote functional recov-
ery in patients dealing with prolonged bed rest, the goal 
is to mobilize them as early as possible while controlling 
and stabilizing their cardiovascular system. A robotic tilt 
table allows early mobilization by modulating body incli-
nation, automated passive leg exercise, and the intensity 
of functional electrical stimulation applied to leg muscles 
(inputs). These inputs are used to control the cardiovascular 
variables heart rate (HR), and systolic and diastolic blood 
pressures (sBP, dBP) (outputs). To enhance the design of 
the closed-loop cardiovascular biofeedback controller, we 
investigated a subject-specific multi-input multi-output 
(MIMO) black-box model describing the relationship 
between the inputs and outputs. For identification of the 
linear part of the system, two popular linear model struc-
tures—the autoregressive model with exogenous input 
and the output error model—are examined and compared. 
The estimation algorithm is tested in simulation and then 
used in four study protocols with ten healthy participants 
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prototype, we used a robotic tilt table that allows early 
mobilization by adjusting body inclination and providing 
automated passive leg exercise (stepping) without or with 
application of functional electrical stimulation (FES) to leg 
muscles. The FES might enhance the stepping effect [10]. 
Therefore, these external mechanical and electrical stimuli 
can be considered to provide early mobilization and fur-
thermore, as inputs to control the dynamics of cardiovas-
cular variables, i.e., heart rate (HR), systolic and diastolic 
blood pressures (sBP, dBP) (see Fig. 1a).

Various control strategies were pursued before [35, 36, 45]. 
Initially, based on drawbacks observed in [45], where we had 
applied a model-based control strategy, we investigated the 
development of model-free control strategies [35, 36]. Still, 
the results advocated the need for a model-based control strat-
egy incorporating some knowledge about the human body 
responses. Therefore, to enhance the controller design, in this 
work, we focused on the identification of models describing 
the cardiovascular responses to the external stimuli.

A physiological model like the one used in [45] usually 
possesses many parameters. The more parameters a model 
has, the more input variation is needed to be persistently 
exciting and to be able to estimate the model parameters 
reasonably [32]. In an identification phase before the ther-
apy, a lot of input variation might not be possible because 

it can be inconvenient or even dangerous for patients. This 
could lead to a lack of persistency of excitation if a complex 
model is considered. Black-box models omit the details of 
internal processes and, therefore, can compress the infor-
mation to describe the input-output relationship in a com-
pact form using a few parameters. Thus, a simple low-order 
black-box model could be suitable for our application 
due to two fundamental reasons: (1) it only possesses few 
parameters, and therefore, little input variation is needed 
for its identification; (2) it can be identified in a patient-spe-
cific way and independently from the underlying disease. 
Such a simplified model could also be consistent with the 
goal of our closed-loop multi-input multi-output (MIMO) 
biofeedback controller to control the long-term dynam-
ics (i.e., mean changes) of cardiovascular variables rather 
than detailed changes. Therefore, in this work, we consid-
ered identification of low-order (i.e., first- or second-order) 
models. This decision was also supported by other works 
focusing on the development of cardiovascular biofeedback 
systems to control long-term dynamics of cardiovascular 
variables. Most of these works have also usually considered 
low-order models (e.g., first-order model in [42] or second-
order model in [14]) and even the works which have con-
sidered higher orders, have usually found that a first-order 
model is sufficient to capture the system dynamics (e.g., 
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Fig. 1   a Diagram of inputs and outputs of the system (Picture 
adapted with permission from Hocoma AG, Switzerland.). b Study 
Protocol 1: Change of inclination angle in two experiments (α = 71◦ 
experiment, α = 60◦ not shown). c Study Protocols 2 and 3: Change 

of Stepping Frequency (solid) without and with application of mini-
mum FES amplitude (dashed). d Study Protocol 4: Change of FES 
amplitude (dashed) during constant stepping (solid). The highlighted 
areas show the data range used for model identification
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[13]). Having a simple model, issues such as nonlinearities, 
time-variance, etc. could still be addressed in the controller 
design using standard methods.

The contributions of the current work are twofold: First, 
we present a systematic approach to estimate low-order 
models of the human cardiovascular system response using 
black-box identification. The method uses K-fold cross-
validation technique [6] that enables efficient use of lim-
ited data for model estimation. For the identification of the 
linear part, we discuss two popular linear model structures; 
the AutoRegressive model with eXogenous input (ARX) 
and Output Error model (OE) [27]. To consider nonlin-
earity in the models, the Hammerstein model structure [2] 
which is widely used for nonlinear modeling of physiologi-
cal processes (e.g., in [24]) is considered and advantages of 
applying a step input over other input types such as pseu-
dorandom binary sequence (PRBS) or frequency sweep, 
when two-step (independent linear and nonlinear part) 
identification of such systems [2] for development of bio-
feedback systems is desired, is discussed.

Second, the estimation algorithm is tested in simulation 
and then applied in four study protocols (see Fig.  1b–d) 
with ten healthy participants to estimate the transfer func-
tions (TFs) of the cardiovascular responses (HR, sBP and 
dBP) to (1) passive tilting, (2) passive leg exercise (step-
ping) without and (3) with FES of leg muscles, and (4) 
modulation of FES intensity applied to the leg muscles, 
while rejecting the cardiovascular natural oscillations as 
noise. Based on the identified individual-specific MIMO 
systems from the experiments, we discuss potential chal-
lenges in the development of the cardiovascular biofeed-
back system for very early mobilization of bed-rest patients 
from a control engineering perspective. Furthermore, based 
on the simulation and experimental results, we compare the 
performance of the ARX and OE structures for identifica-
tion of first- and second-order models in the context of car-
diovascular biofeedback systems.

2 � Materials and methods

2.1 � Robotic tilt table and measurement equipment

The Erigo (Hocoma AG, Switzerland) is a robotic reha-
bilitation tilt table designed for early mobilization of bed-
rest patients and allows simultaneous verticalization and 
automated stepping training [11]. The inclination angle α 
of the table can be continuously adjusted between 0° and 
75°, where the effective maximum in our experiments 
was measured to be 71◦. The motor-driven stepping mod-
ule can automatically move the subject’s legs in a pas-
sive manner with equal extension and flexion periods and 
adjustable speeds between 0 and 80 steps per minute. The 

stepping consists of passive leg movements and cyclic leg 
loadings produced by two springs beneath the subject’s 
feet. It is believed that the stepping can enhance muscle 
pump function and venous return, and therefore, improve 
cardiovascular stability [28]. The table is furthermore 
equipped with an FES module that can stimulate the mus-
cles of the legs during the passive stepping. The robotic 
tilt table also has a harness to fix the subject and mini-
mize the weight bearing during the therapy.

The raw blood pressure (BP) signal was measured 
using a CNAP® monitor 500 (CNSystems Medizintech-
nik AG, Austria). The monitor uses a finger cuff and an 
arm cuff to measure the BP signal. Before starting each 
measurement, it needs a short calibration phase (about 
2 min). The BP measurement was done on the right arm 
of the subjects. For an accurate measurement, a sling was 
used to keep the arm and hand relaxed at the heart level.

To compute the biosignals (i.e., HR, sBP, and dBP), the 
raw BP signal (analog) was read out at 100  Hz from the 
monitor and sent to the tilt table PC. The signal was buff-
ered online, and its maxima (sBP) and minima (dBP) val-
ues were detected. The HR values were computed using the 
heart period calculated based on the time interval between 
consecutive dBP values. The beat-to-beat values of HR, 
sBP, and dBP were then linearly interpolated at about 
3.3 Hz (sampling time 0.3 s). For data processing, the input 
stimuli signals (e.g., 48 steps per minute constant signal of 
stepping) were also discretized at the same frequency.

2.2 � Participants

Ten healthy male subjects participated in the study (see 
Table 1). The subjects had no known cardiovascular dis-
ease and were not taking any medication. They were 

Table 1   Participants’ data

a  Body mass index

Participant Age (year) Weight (kg) Height (cm) BMIa

1 28 86.8 168 30.8

2 28 72.0 182 21.7

3 22 91.4 182 27.6

4 23 85.1 179 26.6

5 24 70.4 182 21.3

6 30 78.6 184 23.2

7 24 75.5 174 24.9

8 24 89.6 195 23.6

9 25 79.8 183 23.8

10 23 81.2 183 24.2

Mean 25.1 81.0 181.2 24.8

SD 2.6 7.2 6.97 2.9
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instructed not to consume caffeine, alcohol or nicotine 
eight hours before the experiments and not to eat or 
drink (larger than 1 dl) one hour before each study pro-
tocol. The experiments were generally performed in 1 
day between 8 am to 7 pm in a quiet room with normal 
ambient temperature. All participants provided written 
informed consent (ClinicalTrials.gov registration identi-
fier NCT02268266).

2.3 � Experimental protocols

The study consisted of four different study protocols (i.e., 12 
experiments) resulting in 4 h and 24 min of recorded data from 
each subject. The protocols were designed based on step inputs 
(see below, Sect. 2.4.7). The order of the protocols was not ran-
domized. However, the time intervals between the protocols 
were so long, that they were considered independent. Before 
each experiment, the subject was fixed to the tilt table using the 
provided harness and the tilt table was adjusted to the subject’s 
height. To minimize disturbances entering the cardiovascular 
system, during the measurements the subjects were asked not 
to talk unless in the case of a discomfort requiring experiment 
interruption. Furthermore, the subjects were asked to relax and 
stay passive during the experiments to ensure the minimum 
muscle activity during the protocols involving stepping [46]. 
The CNAP® monitor was calibrated every time before running 
an experiment. An initial 5-min rest period was considered at the 
beginning of each experiment to minimize any effects from the 
calibration or previous experiments. Part of the data recorded 
during the experiments was already analyzed for another study 
with a focus on overall observable patterns in cardiovascular 
responses [37], where we also reported the corresponding parts 
of the protocols. Here, we present the complete course of exper-
imental protocols and examine all the recorded data to investi-
gate subject-specific modeling of the relationship between the 
external stimuli and the cardiovascular variables.

2.3.1 � Inclination angle (study protocol 1)

The goal of this study protocol was to identify models describ-
ing the inclination angle effect on HR, sBP and dBP. In a 
first step, the subjects were tilted to the maximum tilt angle 
α = 71◦ and then to α = 40◦ with a 3 min supine period in 
between (see Fig. 1b). In a second step, the same experiment 
was conducted with α = 60◦ instead of α = 71◦ to make the 
potential input nonlinearity visible. A full tilt up or tilt down 
between supine and maximum tilt angle takes approximately 
20  s depending on the load and its duration can be upper 
bounded by 30 s. Thus, the step-up and step-down phases in 
this protocol were, in fact, a ramp-up–constant–ramp-down 
sequence, where the constant phase was longer than the ramp 
times so that it could be approximated with a step.

2.3.2 � Stepping without and with FES (study protocols 
2 and 3)

Study protocols 2 and 3 were considered for identifying 
the stepping effect without FES and with FES, respec-
tively, on HR, sBP, and dBP. The effects on the outputs 
are driven by the underlying exercise of such activity 
(e.g., 48 steps per minute stepping exercise). A 5  min 
phase of stepping with 48 steps per minute was followed 
by a 5-min rest period and 5-min stepping with 36 steps 
per minute (see Fig. 1c), where for comparative reasons 
the stepping frequency was chosen in a similar range as 
considered in [45, 47]. The change in the position of the 
legs and their movement occurs so quickly after a change 
in the input signal that step-up and step-down phases 
in the stepping frequency in these protocols could be 
assumed instantaneous. Both protocols were conducted 
at α = {20◦, 40◦, 60◦} of tilt (three experiments per pro-
tocol) in a random order. Since the tilt table was adjusted 
to the height of the subject, a meaningful range of motion 
for the legs could be guaranteed during the passive step-
ping performed in the protocols.

Using the FES module of the tilt table, the muscles of 
the legs can be stimulated according to a walking pattern, 
i.e., during leg extension Mm. quadriceps femoris and 
tibialis anterior are stimulated, whereas during flexion 
the Mm. biceps femoris and gastrocnemius. To produce 
a tetanic (i.e., sustained and smooth) muscle contraction 
while avoiding early fatigue, the FES frequency was set 
to 40  Hz [47]. The FES pulse was bipolar and biphasic 
with a width of 300 µs and its amplitude could be var-
ied between a minimum (IMIN) and a maximum (IMAX). 
We determined these two values before the experiments 
individually for each subject per muscle group similar 
to the approach used in [47] and they were between 7 
and 30  mA (see Supplementary Material, Chapter  1 for 
details). The minimum amplitude (IMIN) was defined as 
the minimum current I inducing a visually detectable 
muscle contraction and was the current applied in proto-
col 3. The maximum amplitude (IMAX) was set accord-
ing to the maximum tolerable stimulation amplitude by 
the subject. To ensure safe and comfortable application, 
only ξ = 80% of the IMAX was finally applied in the study 
protocols. The FES current amplitude can, therefore, be 
calculated as follows:

where IFES is the applied current amplitude, IMIN and 
IMAX are the identified thresholds, uFES ∈ [0, 1] is the FES 
input and ξ = 80% a safety factor. The change in the FES 
current occurs so fast after a change in the input signal 
that a step-up or a step-down phase in FES current ampli-
tude could be considered instantaneous.

(1)IFES = IMIN + uFES(ξ IMAX − IMIN),
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2.3.3 � FES amplitude (study protocol 4)

The aim of this study protocol was to identify the 
effect of the change in FES amplitude during the step-
ping with FES on the cardiovascular variables. A 5-min 
synchronized stepping with minimum FES input was 
applied (uFES = 0, i.e., IMIN) followed by a 5-min inter-
val of maximum FES input (uFES = 1, i.e., 0.8IMAX) and 
a 5-min period during which the amplitude was set back 
to minimum current strength (see Fig.  1d). Since a pro-
longed FES application could result in muscle fatigue 
[20], potentially affecting the results, the inclusion of 
a second step input in this study protocol was omitted. 
The protocol was conducted at four different tilt angles 
α = {0◦, 20◦, 40◦, 60◦} (four experiments) in a random 
order.

2.4 � System identification

2.4.1 � Problem formulation

As described before (see Sect. 1), we aimed at identifying 
low-order models. To this end, we considered identifica-
tion of first- or second-order linear TFs G and compen-
sating encountered nonlinearities through a Hammerstein 
model structure [2] (i.e., a memory-less nonlinearity fol-
lowed by a linear TF, see Fig.  2). Hammerstein models 
are widely used in modeling physiological processes 
(e.g., [23, 24, 43]) and are already applied in develop-
ment of cardiovascular biofeedback systems (e.g., [14, 
43]). Using a Hammerstein model could also simplify 
the controller design later by providing the possibility to 
use existing linear control approaches after inversion of 
the memory-less nonlinearity part of the model [43]. The 
goal was to obtain the nonlinear part of the model using 
basis functions estimated from the data of a sample popu-
lation, and identify the linear TFs individually for each 
person. Since HR and BP are discrete events, discrete-
time identification for the linear TFs is suitable, and the 
problem could be formulated as (see Fig. 2):

where y =

(

y1 y2 y3
)

⊤

=

(

HR sBP dBP
)

⊤ is the system 
output, v noise, G(θ , z) the discrete-time linear TF to be 
identified, and u the transformed input using the nonlin-
ear mapping:

with f(·) = (f1(·) f2(·) f3(·))
⊤ to be the static mapping 

vector including the corresponding nonlinear functions 
(representing nonlinearity in Fig. 2) and

(2)y = G(θ , z)u+ v

(3)u = f(ū) =
(

u1 u2 u3
)

⊤

to be the original untransformed input with α, fstep, and 
uFES representing the input values for inclination, step-
ping frequency, and FES, respectively. It is to note that 
the response to stepping frequency fstep could be identi-
fied in two variations (without or with FES, i.e., study 
protocols 2 and 3).

2.4.2 � Nonlinearity

Obtaining a nonlinearity for each subject individually in 
a short identification phase before the biofeedback ther-
apy is practically infeasible. Thus, a nonlinear mapping 
f(·) is introduced beforehand for all people such that it 
is enough to estimate one data point in the identification 
phase to infer the whole nonlinearity. The nonlinear part 
of the Hammerstein model is estimated using the data 
from the sample population rather than the subject-spe-
cific data.

It is reported that in tilting from supine to 90◦ most 
changes happen between 20◦ and 60◦ [22, 29] and in this 
range they are linearly related to the angle of tilt [22]. 
Therefore, the nonlinearities between HR, sBP and dBP, 
and the inclination angle were approximated using a logis-
tic sigmoid function:

with parameter values a = 0.0957, b = 1.04438, and 
c = 40. This function maps the inclination angle range 
between 0 and about 1, such that α = 40◦ corresponds to 
the half-value (0.5) and a slope of 1/40 preserves rather 
a linear relationship between 20◦ and 60◦. Accordingly, 
f1(ū1) = f1(α) = fsig(α) (see Eqs. 3, 4). Since no informa-
tion could be found from the literature about nonlinearities 
of stepping and FES inputs, in this initial stage only iden-
tification of the linear part of the response to these inputs 

(4)ū =

(

α fstep uFES
)

⊤

(5)fsig(α) = b

(

1

1+ e−a(α−c)
−

1

1+ eac

)

Linear SystemNonlinearity +

Hammerstein System

Fig. 2   Hammerstein model structure consists of a static nonlin-
earity followed by a linear dynamic system. Based on general linear 
model structure assumption, the output of the linear part is corrupted 
by noise v(k) which is the output of the stochastic TF H(θ , z) under 
white noise input e(k)
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was considered. Thus, it was assumed that f2(ū2) = ū2 and 
f3(ū3) = ū3.

2.4.3 � Linear system

Having three inputs and three outputs, for the linear 
part of the system an individualized linear discrete-time 
MIMO model G consisting of 9 TFs Gij was considered, 
where Gij is the TF from input j to output i.

To identify each single TF, the inputs were perturbed 
one at a time (see Sect. 2.3). The outputs were measured 
and then the TFs from each specific input (e.g., inclina-
tion α) to all the outputs (i.e., HR, sBP and dBP) were 
identified. The procedure was repeated for all the three 
inputs (in the case of fstep for both without and with FES 
conditions). A single discrete-time linear TF can be writ-
ten as [27]:

where

with na as order of the denominator, nb order of the 
numerator and nk the number of dead-time samples cor-
responding to the time delay. Z represents z-transform.

Although the goal was to identify low-order models, it 
was still desired to capture dynamics describing exponen-
tial adaptations or overshoots in response to the external 
stimuli. In continuous time domain, this can be achieved 
through first- or second-order models, respectively. In 
discrete-time domain, counterpart first- and second-order 
models can be captured with na = 1, nb ∈ [1, 2, 3] and 
na = 2, nb ∈ [1, 2, 3], respectively (assuming bilinear trans-
formation [41]). Therefore, we investigated identification 
of models up to na = 2 and nb = 3. We expected that the 
reaction would not be delayed more than 30 s and for the 
estimation of time delay nk, a resolution of about 1 s was 
considered acceptable. Thus, considering the sampling 
time 0.3  s, for the estimation of time delay nk ∈ [0, 100] 
in steps of 3 samples was investigated in the identification 
procedure (see below, Sect. 2.4.5). To fit the linear TF G, 
the ARX and OE structures were considered [27]. These 
linear model structures assume that the measured output 
is equal to the true output plus a noise signal v(k), being 

(6)Gij(θ , z) =
B(θ , z)

A(θ , z)
,

(7)A(θ , z) =

na
∑

i=0

aiz
−i

= 1+ ¯A(θ , z)

(8)B(θ , z) =

nb−1
∑

i=0

biz
−(i+nk)

(9)θ =

(

a1, . . . , ana , b0, . . . , bnb−1

)

the output of a noise model H(θ , z) with a white noise 
input e(k) (see Fig.  2). ARX assumes the noise model to 
be H =

1
A(θ ,z)

, whereas OE assumes simply H = 1. The 
parameters θ, which define the TF G(θ , z), are estimated by 
minimizing the squared sum of all errors e(k).

2.4.4 � Offset handling

Model structures such as ARX or OE can only cap-
ture the variations in the outputs caused by the applied 
inputs, and therefore, in the identification procedure the 
observed offset in the outputs needs to be accounted for 
separately. A constant offset can be handled in two ways; 
(1) by detrending the output biosignals before the identi-
fication; (2) by including the offset directly into the opti-
mization stage of the identification.

The first approach was implemented by simply consid-
ering the mean of the signal as offset and subtracting it 
from the original signal. For the second method, which 
was only applied in the context of ARX, similar as in [21] 
an affine transformation was used. By subtracting the off-
set d from the output, a normal ARX structure for the dif-
ference can be considered:

where y(k), u(k), and d(k) are the measurement, input, 
and the offset at each time step k, and q (replacing z) rep-
resents the system in time domain.

Since d(k) = d = const., the equation can be rewritten 
as:

which can be reformulated as a standard least squares 
problem:

where each row represents a data point, and is of the 
form:

where

With sufficient measurements, the least squares problem 
can be solved to obtain the parameters x. Then the offset 

(10)A(θ , q)(y(k)− d(k)) = B(θ , q)u(k)+ e(k),

(11)A(θ , q)y(k) = B(θ , q)u(k)+

(

1+

na
∑

i=1

ai

)

· d + e(k)

(12)y = Φ · x + e,

(13)
y(k) = [−y(k − 1), . . . ,−y(k − na),

u(k − nk), . . . , u(k − nk − (nb − 1)), 1] · x + e(k)

(14)x = [a1, . . . , ana , b0, . . . , bnb−1, c]
⊤

(15)c =

(

1+

na
∑

i=1

ai

)

· d
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d is calculated by transforming the parameter c using 
Eq.  15. We refer to this approach as Offset-free ARX 
(OARX) because the offset is handled directly within the 
method.

Thus, based on the offset handling approaches, three dif-
ferent model structures were investigated; (1) ARX with 
offset compensation using optimization (OARX); (2) ARX 
with detrending (referred as ARX); (3) OE with detrending 
(referred as OE).

2.4.5 � Identification framework

The identification framework was as follows:

(a)	 The data from each experiment were divided into two 
parts (see Fig. 3): (1) Training and validation set (iden-
tification set); (2) Testing set. The training and valida-
tion set was used to construct the model for each car-
diovascular variable, whereas the testing set was not 
touched in any step of the identification procedure. 
For study protocols 1, 2 and 3, and 4, the data between 
240–540, 60–800, and 480–960  s (highlighted areas 
in Fig. 1b–d) were used as training and validation set, 
respectively. These time periods were chosen such 
that both step-up and step-down phases (square-wave 
signal) of the response to the external stimuli were 
included (see below, Sect.  2.4.7). For the testing set, 
the data after the training and validation set until the 
end of the corresponding protocol was used.

(b)	 K-fold cross-validation technique [6] with K = 10 
was used to divide the training and validation set into 
two parts (see Fig.  3): (1) training set; (2) validation 
set. K − 1-folds were considered as the training set 
and ν-th-fold was considered as the validation set (see 
Fig. 3).

(c)	 Training set was used to train models based on com-
binations of model structures (OARX, ARX, OE), 
model orders na ∈ [1, 2], nb ∈ [1, 2, 3], and time delays 
nk ∈ [0, 3, 6, 9, . . . , 99] (see Sect.  2.4.3), resulting to 
3 · 2 · 3 · 34 = 612 estimated models for each cardio-

vascular variable. However, evaluation of the identi-
fication framework in simulation revealed that for 
first-order systems OARX and ARX can estimate the 
output well even if the model structure differs from the 
noise model assumptions, whereas for second-order 
systems OE might be required as well (see Supple-
mentary Material, Chapter  2). Therefore, for compu-
tational efficiency, the OE model estimation was only 
performed for second-order systems (i.e., na = 2 and 
nb ∈ [1, 2, 3] ). This reduced the number of models to 
be estimated from 612 to 510.

(d)	 The validation set was used to evaluate different model 
orders and time delays for each model structure. The 
outputs of the already estimated models from the train-
ing set were simulated, and the root-mean-square error 
(RMSE) and coefficient of determination (R2) [30] 
between the simulated response and the measured 
response (3.3 Hz, unfiltered) of the validation set was 
calculated.

(e)	 The steps (c) and (d) were repeated over all possible 
combinations of ν ∈ [1, . . . ,K] such that each fold 
was considered once as the validation set (K-fold 
cross-validation [6], for implementation details, see 
below, Sect.  2.4.6). The model order and time delay 
with the lowest average RMSE were selected for 
each model structure. To avoid overfitting a higher 
model order was only selected when the RMSE was 
decreased by more than 5% per model order (na + nb).  
This resulted in three models with three differ-
ent structures OARX, ARX, and OE. Then, for each 
model the median of the calculated R2 values in 
the cross-validation was compared with R2

= 0. If 
R2 < 0 the model was replaced with the mean model 
(i.e., considering mean of the data as the model). This 
resulted in three models which could be an OARX, 
ARX, OE, or mean model.

(f)	 Before selecting the best model describing the data, in 
a first step, the parameters of each model with already 
determined order and time delay were retrained on 
whole the training and validation set (identification 
set). This approach trained the models on more data, 
and therefore, it was expected that it results in a better 
fit. Then, for further improvement of estimated model 
parameters in the case of the OARX and ARX struc-
tures, an additional step of the instrumental variable 
method was also performed. The instrumental variable 
method allows consistent and unbiased estimation of 
model parameters [27]. As instruments, the simulated 
output of each model was used, and the model param-
eters were re-estimated.

(g)	 At this stage, we still had three models. However, 
the models that had unreasonable settling time (more 
than 180  s for inclination and 300  s for other inputs) 
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Validation Set
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Fig. 3   Data flow of the identification procedure with K-fold cross-
validation



1700	 Med Biol Eng Comput (2017) 55:1693–1708

1 3

were detected and rejected. If all the models were 
rejected, the mean of the data was considered as the 
final identified model. Otherwise, the RMSE between 
the simulated output and the filtered output (see below, 
Sect. 2.4.8) on the identification set was calculated for 
each model, the higher model orders were penalized 
by adding 5% extra error per model order (na + nb) to 
their newly calculated RMSE and finally, the model 
with the minimum error was selected as the final 
model.

(h)	 To evaluate the reliability of the final selected model in 
response prediction, the evaluation had to be done on 
a different set than the set used for pattern recognition 
and model training [6]. Thus, the selected model was 
used to predict the response in the testing test, which 
was not utilized before (see Fig. 3), and the R2 coeffi-
cients based on the filtered measured signal (see below, 
Sect. 2.4.8) was computed and reported.

2.4.6 �  Implementation of K‑fold cross‑validation

The OARX and ARX structures can be formulated as 
standard regression problems. Thus, implementation of 
the K-fold cross-validation for these approaches can be 
discussed more rigorously than the OE structure. In the 
OARX and ARX approach, each measurement sample 
provides one row (see Sect.  2.4.3, Eq.  13). If we stack 
all rows corresponding to the measurements, a stand-
ard least squares problem is obtained. Thus, each row 
can be either put into the training set or be used in the 
validation set. Omitting the first nk samples to consider 
the time delay in the model, N − nk rows were split into 
K folds and the K-fold cross-validation procedure (see 
Sect.  2.4.5) was followed. The only limitation of this 
approach was that since each output and input are pre-
sent in different rows (y(k) is in na different rows and 
u(k) in nb rows), the rows were related. This means that 
the validation and training set were not completely inde-
pendent. However, since only small model orders na 
were considered and relatively a high number of sam-
ples were available, the overlap between the training and 
validation set was small and therefore, the dependency 
could be neglected.

For the OE structure, the inputs and outputs were split 
into K sets and cross-validation was conducted; the ν-th 
set was selected for validation and the rest K − 1 sets 
were stacked together as the training set. This approach 
could be more problematic than the one implemented for 
OARX and ARX models, which could be formulated as 
a least squares problem. When the inputs and outputs 
are stacked to form the training set, they are put dif-
ferently together. This can introduce a discontinuity (a 
jump in the output values) in the data which in a linear 

regression task might result in a biased estimate of the 
model parameters [25]. However, since K and the num-
ber of samples N were relatively large, we did not expect 
that a drastic jump would occur and influences the result 
significantly.

2.4.7 � Input design

The input design plays an important role in the system 
identification. In our approach, we designed step inputs 
for identification. A simple step, however, is not qualified. 
Due to hardware issues as well as physiological mecha-
nisms, asymmetry in the responses, when the same amount 
of stimuli in opposite direction is applied, could happen. In 
fact, physiological responses are very often asymmetric, for 
example, in the case of inclination input, Toska and Walløe 
[44] describes that for a tilt up, most changes occur during 
the first 30 s after the tilt, whereas for a tilt down, changes 
take place within 10 s. Therefore, for the identification set 
we included both step-up and step-down phases (square-
wave signal) to get the best average fit (see highlighted 
areas in Fig. 1).

To decide the length of step input for the inclination 
input, some guidelines could be found in literature [40, 44]. 
These studies suggest that most hemodynamic changes to 
the upright posture happen during the first 30 s. The incli-
nation ramp-up to 71◦ takes about 20  s depending on the 
load and its duration can be upper bounded by 30 s. Con-
sidering the 30  s upper bound for tilting and adding 90-s 
extra time to the initial 30-s settling time to allow the sys-
tem to get even closer to steady state, a total time of 150 s 
for the inclination angle square-wave was considered. This 
period started at the beginning of the ramp-up and ended 
at the beginning of ramp-down, and therefore, in reality, 
the square-wave including ramp-down took about 180  s. 
No scientific study could be found about the response time 
for stepping and FES; however, based on the responses 
observed in some previous studies [45] a square-wave input 
of 300 s was considered acceptable.

There are many other popular input types such as 
pseudorandom binary sequence (PRBS) or frequency 
sweep that could be used for identification (e.g., [14, 
43]). Three reasons motivated our choice for a step 
input: (1) When dealing with human subjects, alternating 
inputs such as PRBS might be undesirable due to sub-
ject’s discomfort or associated clinical risks. (2) More 
importantly, these alternating inputs are not always 
ideal for identification of a nonlinear system such as 
the human cardiovascular system. For example, PRBS 
input, although ideal for linear system identification, is 
not suitable for nonlinear system identification. PRBS 
input can cause loss of identifiability [26], as its ampli-
tude changes between two levels and therefore, it may 
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linearize the nonlinear system dynamics and not be per-
sistently exciting [5]. A similar argument can be made 
for a step input. Nevertheless, a PRBS input can be quite 
beneficial for nonlinear system identification, when two-
step (independent linear and nonlinear part) identifica-
tion of a Hammerstein model is considered. This input 
type can decouple the linear and nonlinear part of the 
system, and turn identification of the Hammerstein 
model into a linear problem respecting the same conver-
gence and consistency results in the absence of unknown 
nonlinearity [2]. This enables application of any linear 
system identification method for estimation of the linear 
part of the Hammerstein model [2]. Following a similar 
proof as in [2] it can be shown that this benefit also holds 
for a step input (see Supplementary Material, Chapter 3 
for details). In contrast to a PRBS or a step input, the 
output of other input types such as a frequency-sweep 
signal might also include system nonlinearities, and 
therefore, their application in the context of two-step 
identification of the Hammerstein model structure (e.g., 
as in [14]) can be considered inefficient and error prone. 
(3) The focus of most cardiovascular biofeedback sys-
tems including ours is the steady-state (i.e., DC gain of 
the TFs) rather than the transient behavior of the cardio-
vascular variables (e.g., [13, 14, 36, 42, 45]). For a step 
input, more energy is assigned to lower frequencies and 
in particular DC gain. Therefore, considering the limited 
identification time when dealing with human subjects, 
and thus, the constrained amount of energy transfer 
to the plant, a step input was more suitable as it could 
emphasize the DC gain more.

2.4.8 � Filtering of the signals

The originally measured signals (3.3 Hz) contained vari-
ability that was out of interest, and thus, it could be con-
sidered as noise. Therefore, since the goal of the esti-
mated models was to describe long-term dynamics of the 
cardiovascular variables, the evaluation of the models in 
the last two steps of the identification framework (steps 
g and h, see Sect. 2.4.5) were done on the filtered meas-
ured signals. To filter the signals, the source of variability 
in the signals had to be considered. The oscillations of 
the HR and BP can be divided into three ranges based 
on their source: (1) Natural oscillations in the range 
0.02–0.4  Hz consisting of oscillations of 0.02–0.07  Hz 
related to cardiorespiratory phenomena, around 0.1  Hz 
produced by Mayer waves, and 0.2–0.4 Hz produced by 
normal respiratory activity [33]. (2) Adaptation to exter-
nal stimuli such as inclination, stepping and FES in the 
range from seconds to minutes [40, 44]. (3) Slow changes 
in the range of hours and days due to changes in the 
blood volume, hormonal changes, etc. To consider the 

long-term dynamics caused by the external stimuli, the 
mean changes in the signal needed to be considered and 
fast dynamics had to be filtered. The signals were low-
pass-filtered using a moving average filter with a length 
of 40 s and the time stamp was shifted such that no delay 
was introduced. With a sampling time of 0.3  s, this fil-
ter length corresponds to a cutoff frequency at 0.01  Hz 
and almost a complete attenuation of the signals from 
0.02 Hz on.

2.4.9 � Signal‑difference‑to‑noise ratio

To measure how much the externally-induced patterns dif-
fered from natural oscillations in the cardiovascular vari-
ables, the signal-difference-to-noise ratio (SDNR) [4] was 
applied in the context of the biosignals (see Supplementary 
Material, Chapter  4 for details). Due to very low SDNR 
values observed in the study protocol 4 and high probabil-
ity of overfitting, the identification of second-order models 
for this study protocol was omitted.

2.5 � Data processing and statistical analysis

For signal analysis MATLAB® R2014 (MathWorks Inc., 
Natick, MA, USA) was used. To evaluate the overall pre-
diction performance of the identified models, R2 coefficients 
evaluated on the testing set (see step h in Sect. 2.4.5) in the 
case of each experiment were compared with R2

= 0 statis-
tically. Since R2 is maximally 1, but has no limit on the min-
imum and can thus even become negative, we did not expect 
that computed R2 coefficients have a normal distribution. 
Therefore, for the evaluation of R2 coefficients nonparamet-
ric statistical tests were utilized. Accordingly, a one-sample 
Wilcoxon signed-rank test [39] with respect to R2

= 0 was 
used to compare whether the overall prediction performance 
of the models in each case is better than taking the mean 
of the signal or not. Note that this mean is the average of 
the testing set, which is not accessible in advance, and 
thus R2

= 0 cannot trivially be obtained by taking a mean 
at model generation step. In the case of inclination input, 
Wilcoxon signed-rank test was performed to compare R2 
values without and with the proposed sigmoid nonlinear-
ity (see Sect.  2.4.2) and to analyze whether consideration 
of this nonlinear function systematically leads to higher R2 
values. For each cardiovascular variable, the analyses were 
done independently. To compare the performance of differ-
ent model structures in modeling the experimental data (i.e., 
training and validation set), the number of identified mod-
els in each model structure was compared using the Chi-
squared test. The statistical analyses were done with IBM 
SPSS Statistics (version 22.0, Armonk, NY: IBM Corp.) and 
the minimum significance level was set at p = 0.05.
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3 � Results

The structure, order, and gain of identified TFs from the 
experiments together with the corresponding R2 coeffi-
cients and SDNR values for each subject are reported in the 
Supplementary Material, Chapter 5.

3.1 � Prediction performance

The one-sample Wilcoxon signed-rank test showed that 
only in some cases for inclination and stepping without 
FES, the identified models were systematically reliable 
(see statistically significant findings in Table 2). For incli-
nation, the HR TFs in 60◦ and 71◦ experiments were able 
to explain 65.5 and 74.0% of the observed variance in the 
data, respectively. The inclination sBP and dBP TFs per-
formed much worse. The sBP TFs were only reliable 
when obtained at 71◦ experiment (explaining 29.4% of the 
observed variance) and the dBP TFs only when obtained 
at 60◦ experiment (explaining 35.6% of the observed vari-
ance). Although a high prediction performance (78.5% 
explained variance) was also observed in the obtained dBP 
TFs for inclination input at α = 71◦ experiment, due to 
some extreme cases, this performance was not statistically 
significant, and it was, therefore, unreliable. The other reli-
able identified models were only the sBP TFs for stepping 
without FES at 40◦ experiment explaining only the negligi-
ble amount of 3.9% of the observed variance. Furthermore, 
in two cases (sBP and dBP TFs at 40◦ experiment for FES 
amplitude) it was observed that the models systematically 
perform worse than the mean signal of the testing set. The 

computed R2 values for FES amplitude TFs only evaluate 
the model in no FES input part. Therefore, low predic-
tion performances for these TFs imply that we even have 
problem to predict the testing set data offset, i.e., when 
we change back the FES amplitude input from uFES = 1 
(0.8IMAX) to uFES = 0 (IMIN), the response does not neces-
sarily go back to the initial observed steady-state value at 
uFES = 0 before applying the stimulus.

3.2 � Observable patterns

For the inclination input, HR and dBP gains were always 
positive, while the gain direction for sBP was more diverse 
(see Supplementary Material, Chapter 5). This observation 
is in agreement with the well-documented literature of tilt 
table experiments which is well discussed before for physi-
ological modeling approach presented before [45]. A sam-
ple response is shown in Fig. 4. In most cases (8 out of 10 
subjects), HR and dBP responses were monotonically posi-
tive, i.e., by increasing the angle from 60◦ to 71◦ also the 
gain values increased.

The identified TF for stepping without and with FES, 
as well as FES amplitude were different at each inclina-
tion angle. To exemplify this phenomenon, a single subject 
sample responses to stepping without FES at 20◦ and 40◦ 
are presented in Fig. 5. In this specific example, it can be 
observed that for the HR the system order changes over 
the angle (second-order OE model at 20◦ (see Fig.  5A-a) 
versus first-order ARX model at 40◦ (see Fig. 5B-a)), and 
for sBP and dBP, the responses are different at each angle 
(no response (mean model) at 20◦ (see Fig. 5A-b, c) versus 

Table 2   One-sample Wilcoxon signed-rank test analysis of R2 coefficients (test value R2
= 0)

Mdn stands for median of the R2 values of the identified models in the corresponding experimental condition. p values correspond to 2-tailed 
asymptotic p values. The signs * and ** show significant findings with p values ≤0.05 and 0.01, respectively

Cardiovascular variable HR sBP dBP

Input Experiment Mdn Z p value Mdn Z p value Mdn Z p value

Inclination 60◦ 0.656** 2.803 0.005 0.110 0.561 0.575 0.356** 2.599 0.009

71◦ 0.740** 2.803 0.005 0.294* 1.988 0.047 0.785 1.274 0.203

Stepping 20◦ −0.006 −1.178 0.859 0.001 0.059 0.953 −0.033 −1.481 0.139

40◦ −0.004 0.296 0.767 0.039* 2.192 0.028 0.012 0.255 0.799

60◦ −0.006 −0.764 0.445 0.102 0.968 0.333 −0.038 −1.718 0.086

Stepping + FES 20◦ −0.020 −0.357 0.721 0.005 0.102 0.919 −0.052 −1.172 0.241

40◦ 0.002 0.153 0.878 −0.000 0.051 0.959 −0.010 −0.663 0.508

60◦ 0.146 1.580 0.114 −0.016 −0.561 0.575 −0.015 −0.663 0.508

FES amplitude 0◦ −0.003 0.153 0.878 −0.013 −1.481 0.139 0.000 −0.459 0.646

20◦ 0.001 0.051 0.959 −0.002 0.255 0.799 −0.012 −0.459 0.646

40◦ −0.313 −1.478 0.139 −0.248* −2.293 0.022 −0.026* −2.429 0.015

60◦ −0.052 −0.459 0.646 −0.006 −1.601 0.109 0.003 1.429 0.153
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first-order ARX model at 40◦ (see Fig.  5B-b, c), respec-
tively). In some cases even the gain direction (i.e., the sign 
of the TF) changes over the angle (e.g., in HR response of 
6 out of 10 subjects to stepping without FES). This result 
is also supported by the sign of the SDNR values which in 
some cases change between negative and positive values by 
changing the inclination angle. These observations imply 
that stepping without and with FES, as well as FES ampli-
tude are coupled with the inclination input and in some 
subjects, a zero-crossing exist.

For the stepping without FES, the sBP responses are 
ordered such that often the DC gains show a positive 
monotonic behavior over the angle (7 out of 10 subjects), 
i.e., the gain never becomes more negative for higher incli-
nation angles. The responses for stepping with FES were 
more diverse than stepping without FES. No particular 
pattern in the estimated models for FES amplitude was 
observed.

3.3 � Performance assessment in experiments

In total 360 TF were estimated from which 246 are first-
order, 30 second-order, and 84 mean models. From the 
246 estimated first-order models, 165 cases are in the ARX 
structure and 81 cases in the OARX structure. Accord-
ingly, the first-order TFs showed a statistically significant 
tendency toward the ARX structure rather than the OARX 
structure, χ2(1,N = 246) = 28.683, p < 0.001. All the 
identified second-order TFs are in the OE structure, and 
no second-order model with ARX or OARX structure was 
selected based on the defined criteria in the identification 
framework. The percentage share of each model structure 
in the identified models is presented in Fig. 6. It is to note 
that the structure comparison is only based on training and 
validation set, i.e., which structure is well suited for mod-
eling the observed data in this set.

Excluding the identified models for FES amplitude, 
where we only focused on first-order models, the identi-
fied models for other protocols show that most often a 
first-order TF is sufficient to describe the cardiovascular 
system behavior with respect to the applied external stimuli 
in the training and validation set (70.1% of the 240 mod-
els), and only in case of HR response to stepping without 
FES a second-order system might be necessary to model 
the overshoot of 5–10 bpm observed in about 30% of the 
corresponding experiments (see Fig. 6). Figure 5A-a dem-
onstrates such a case where the HR response description 
requires a second-order model. In the case of stepping 
with FES such an overshoot was also observed, however in 
about 20% of the cases (see Fig. 6).

4 � Discussion

4.1 � Identified models and prediction performance

SDNR values revealed that for the inputs except the incli-
nation input, the steady-state change is as big as the nat-
ural oscillations and in the case of FES amplitude even 
smaller. This result implies that in general modeling of the 
responses to the inclination input is easier than the other 
input types. In particular, the observation generally holds 
for these inputs, since the intensity levels that we used for 
the input stimuli cover a substantial extent of the avail-
able ranges and thus, the corresponding SDNR values can-
not be increased significantly. For example, in the case of 
inclination, we tested both 60◦ and 71◦ (maximum incli-
nation). For stepping without and stepping with FES, we 
tested these inputs at tilt angles up to 60◦ and at frequencies 
more than half of the available range (48 steps per minute 
of the maximum possible 80 steps per minute). For FES, 
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we considered up to 80% of the maximum available range 
(pain threshold of the subjects).

The comparison of the computed R2 values based on the 
testing set with R2

= 0 answers the question whether the 
identified models systematically perform better than the 
case when we could access the testing set in advance and 
had considered the mean signal as a model. This simply 
means to what extent the identified models are systemati-
cally reliable to predict the responses when dealing with 
unseen data. We observed that only the identified mod-
els for HR response to inclination input can explain the 
observed variance in the data to a reasonable extent (on 
average 69.8%) and the other identified models either are 
not reliable or in general explain a negligible amount of the 
observed variance (maximum up to 35.6%, dBP TFs for 
inclination input at α = 60◦ experiment). Therefore, only in 
case of HR response to inclination input, reliable models 

with acceptable prediction performance for control system 
design could be achieved.

The low prediction performance of the identified models 
is not necessarily due to inappropriate modeling assump-
tions or the identification procedure, but rather due to the 
complexity of the system at hand, ignored nonlinearities, 
and the difference in the nature of the reaction in the iden-
tification and testing set. For inclination input, for exam-
ple, such a difference in the nature of reaction can be 
observed for sBP and dBP in Fig. 4b, c, where these vari-
ables in response to 40◦ of tilt (testing set, 540 s onward) 
show rather a second-order behavior with observable over-
shoots, instead of a first-order behavior, which is identified 
based on the identification set. These changes in behavior 
might be explained when we note that the cardiovascular 
responses are mainly controlled by baroreflex control [38], 
i.e., the human body internal controller, which we aim at 
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augmenting it with an external closed-loop controller. The 
set point of the baroreflex controller might be changed, 
for example, even by changing the inclination angle [38]. 
These potential changes in set point or adaptation strategies 
governed by the baroreflex circuit might explain why the 
nature of reaction in the identification and testing set is dif-
ferent, and consequently, why the introduced nonlinearity 
for inclination input did not improve the prediction perfor-
mance significantly.

Low prediction performance of the models obtained for 
other inputs (i.e., stepping without FES, stepping with FES, 
and FES amplitude), besides set point changes, might be 
explained by potential nonlinearities existing in response 
to these stimuli. Such a nonlinearity can be observed for 
example in sBP response to stepping input of subject 7 at 
α = 40◦ tilt (see Fig.  5B-b), where 36 steps/min (testing 
set) in comparison with 48 steps/min (identification set, 
i.e., highlighted area in Fig. 5B-b) results in higher increase 
of sBP.

Furthermore, in some cases, change in the direction of 
the gain was observed by changing the inclination angle, 
i.e., for the same input type and the same intensity, the 
direction of the change might be different at each incli-
nation angle. Here, although the gains are rather small in 
some cases and can be considered as oscillations around a 
set point considered by the baroreflex circuit, it can be said 
that for some subjects, a zero-crossing over the angle hap-
pens. To design a stable controller, the zero-crossing needs 

to be detected, as, without this knowledge, it would not be 
clear at each inclination angle, the input change in which 
direction has to be provided to move the cardiovascular 
variables toward the desired ranges. However, detection of 
such a zero-crossing might not be possible without exten-
sive experimental tests which might be infeasible due to 
associated risks.

These results were observed in a healthy population 
with healthy baroreflex responses, whether they hold for 
patients with impaired baroreflex circuit, and altered reflex 
responses [1], needs further investigation. Moreover, in 
contrast to a healthy population, the applicable inputs can 
be more restricted in our target population consisting of 
stroke, spinal cord injury, and any other patient groups, 
which face prolonged bed rest. While this study covers all 
the available inputs and their combinations, one might have 
to select a subset of these stimuli depending on the specific 
patient group. Particularly, for certain patient populations, 
it can be difficult to collect data for model identification of 
all the stimuli to cardiovascular variables. Our pilot study 
investigated the feasibility to find simple models for the 
best-case scenario, when there are no input restrictions 
by the target population present, and thus, it leaves study-
ing the group-specific restrictions in this regard for future 
work.

Various parameters might influence the efficacy of 
stepping and FES. For stepping, its frequency, the range 
of motion, and the amount of foot loading can affect the 
efficacy [45], where the subjects weight bearing affects the 
foot loading. The FES efficacy can depend on its ampli-
tude, frequency, pulse width, and even electrode placement. 
In the current work, the pain threshold of healthy subjects 
limited the applied FES intensities. Application of higher 
intensities without imposing higher pain might be feasi-
ble in some bed-rest patients (e.g., patients with complete 
paralysis). However, muscle recruitment in such patients is 
usually limited due to muscle atrophy [15, 34], and there-
fore, higher FES intensities, do not necessarily result in 
higher FES efficacy [15, 34, 37].

4.2 � Comparison of model structures

The assumptions, in particular about noise and model 
structures are not necessarily correct, i.e., the human car-
diovascular system natural oscillations do not necessarily 
follow the white noise assumption. Therefore, the compar-
ison of the algorithms solely based on simulation studies 
might not be reliable, and experimental confirmation can 
further enhance the reliability of the results. Our simula-
tions showed that for first-order models, the OARX, ARX, 
and OE structures might similarly perform well. However, 
statistical analysis of the experimental results revealed that 
overall, ARX with detrending performs better than OARX. 

Fig. 6   The frequency of the order of the identified TFs in each study 
protocol. For first-order models, the percentage share of OARX and 
ARX is also shown
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Therefore, it is recommended that when identification 
of first-order models is desired, and the ARX structure is 
considered, the offset be subtracted from the signal before 
further processing (ARX algorithm) rather than be con-
sidered in the optimization of the ARX structure (OARX). 
This might be explained when we consider that in the ARX 
structure the noise model is not independent of the system 
TF and therefore, the inclusion of the offset as another free 
dimension in the optimization algorithm might worsen 
the estimation results. For second-order systems, experi-
mental and simulation results are consistent and show that 
the OE structure performs better than the ARX structure 
(independent from the way offset is handled). This can 
be explained by the fact that for second-order models, the 
overshoot should be differentiated from natural oscillations 
and this is harder for the ARX structure, as it assumes that 
the noise model is dependent on the system model, and 
therefore, the overshoot might be considered as noise and 
overlooked. For the OE structure, this is less probable as it 
assumes that the noise structure is independent of the sys-
tem dynamics, and thus, the overshoot might be recognized 
better. Therefore, for identification of second-order models, 
the application of OE rather than ARX is recommended.

Although we acknowledge that the comparison of dif-
ferent model structures (OARX, ARX, and OE) and orders 
is performed with the assumption that our best-selected 
model in the identification procedure is the true TF of the 
system, it should not be ignored that the selected model in 
comparison with other model structures, orders, etc. is the 
best model describing the identification set data. Therefore, 
although the identified models might not be suitable to pre-
dict the responses in a new data (e.g., the testing set) due 
to issues such as nonlinearity, considering them as the true 
underlying systems to compare different model structures 
and orders might be a reasonable assumption.

5 � Conclusion and outlook

Integration of K-fold cross-validation in the identification 
framework enabled efficient use of data, which is neces-
sary when the goal is modeling physiological responses 
from human subjects. Only in HR TFs for inclination input, 
the response could be explained well by a single low-order 
linear TF and the models were reliable. In all cardiovascu-
lar variables, the responses to stepping and change in FES 
amplitude are dependent on the tilt angle and are highly non-
linear (as confirmed by low prediction performance of the 
identified models. So, nonlinearities (e.g., through nonlinear 
transformations) have to be considered for their modeling.

For black-box modeling of the cardiovascular system 
response to external stimuli, based on the insights provided 
in Sect. 2.4.7, it is more suitable to use a step input rather 

than other input types such as PRBS or frequency sweep, 
particularly when considering low-order models and two-
stage identification of a Hammerstein model. When the aim 
is to identify a first-order model, the OE and ARX struc-
tures both perform well. For ARX, it is better to subtract 
the offset directly rather than considering it as another opti-
mization parameter. For second-order models, OE outper-
forms the ARX structure.

We could show that responses to stepping and FES are 
dependent on the tilt angle. Furthermore, the responses are 
nonlinear. We conclude that exploring these nonlinearities 
and dependencies is necessary before designing an appropri-
ate controller for early mobilization of bedridden patients.
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