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I. INTRODUCTION

Since Shannon’s groundbreaking work on the fundamental
limits of communications [1], engineers have been seeking to
solve the task of “reproducing at one point either exactly or
approximately a message selected at another point” [1] or, in
other words, reliably transmitting a message from a source to
a destination over a channel by the use of a transmitter and a
receiver as illustrated in Fig. 1. “Classical” block-based signal
processing has shown to be close to optimal while each sub-
block can be optimized individually for a specific task such
as equalization, modulation or channel coding.

At first glance, machine learning techniques do not appear
to be a good match to communications on the physical
layer, with 50 years of tremendous progress based on clas-
sic signal processing, communication and information the-
ory, approaching close-to-optimal Shannon limit performance
on many channels. However, several open problems remain,
e.g., pertaining adaptivity and complexity of joint processing,
where first results using machine learning-based approaches
are promising (see [2], [3] and references therein).

Recently, the idea of deep learning (DL)-based communi-
cation was proposed in the literature [3], [4] based on the au-
toencoder concept ([5, Ch. 14]). In contrast to component-wise
optimizations, the autoencoder approach now enables end-to-
end training over any type of channel without the need for
detailed prior mathematical abstraction of the channel model,
breaking up restrictions commonplace in conventional block-
based signal processing by moving away from handcrafted,
carefully optimized sub-blocks towards adaptive and flexible
(artificial) neural networks, leading to many attractive research
questions. The benefits of machine learning approaches may
include more flexible hardware, highly adaptive systems and
less overall complexity. We thus pose the seemingly naive, yet,
in fact, rather complicated and attractive research question:
Can we learn to communicate?

We demonstrate the practical potential and viability of
such a system by extending the idea of end-to-end learning
of communications systems through deep neural network-
based autoencoders to orthogonal frequency division multiplex
(OFDM) with cyclic prefix (CP). This allows learning of
transmitter and receiver implementations—without any prior
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Fig. 1: Illustration of a simple communications system.

knowledge—that are optimized for an arbitrary differentiable
end-to-end performance metric, e.g., block error rate (BLER).
Our implementation shares the same benefits as a conventional
OFDM system, namely single-tap equalization and robustness
against sampling synchronization errors, which turned out to
be one of the major challenges in prior single-carrier imple-
mentations [6]. We show that the proposed scheme can be
realized with state-of-the-art deep learning software libraries,
since transmitter and receiver solely consist of differentiable
layers required for gradient-based training.

II. AUTOENCODER-BASED COMMUNICATION

As described in [3], a communications system can be
interpreted as an autoencoder [5]. This is schematically shown
in Fig. 2. An autoencoder describes a deep neural network
consisting of various hidden layers that is trained to reconstruct
the input (a so-called one-hot encoded vector representing one
of the m possible messages) at the output. As the information
must pass each layer, the network needs to find a robust rep-
resentation of the input message at every layer. In particular,
the transmitter output (a real vector of dimension n) must be
robust with respect to various channel impairments. Note that
the channel is also represented by network layers (without
trainable weights) that carry out stochastic transformations of
the input data. It is crucial to have a good model that accurately
reflects the real channel. The autoencoder is trained end-to-end
using stochastic gradient descent (SGD). After training, the
transmitter and receiver are fully described by their respective
layer dimensions and weights and can operate in standalone
mode to generate/process radio signals, e.g., on a software-
defined radio (SDR) platform as shown in [6].

During training, the encoder part of the autoencoder has
learned robust symbol sequence representations of all mes-
sages. Fig. 3 shows constellation diagrams of the IQ-symbols
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bŝM−1
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Fig. 2: Illustration of an end-to-end communications system as an autoencoder.

of all of the m = 256 possible messages of the single-
carrier system, i.e., per subcarrier of the multi-carrier system.
Each diagram shows all symbols at the same symbol position
within a message, as each message consists of 1

2 log2(m) = 4
complex-valued IQ-symbols (we assume n = 8 and consider
the first half of the transmitter output as the real and the second
half as the imaginary part). Interestingly, we can observe
that the autoencoder has learned some form of superimposed
piloting since the center of the constellations is shifted away
from the origin. For further details we refer to [6].
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Fig. 3: Scatter plot of the learned constellations for all
M = 256 messages using average power normalization
‖x‖2 ≤ n. The symbols of four individual messages are high-
lighted by different color markers.

III. OFDM EXTENSIONS

We extend our work of [6] from single-carrier to multi-
carrier, i.e., OFDM with CP as shown in Fig. 4. Note
that a single autoencoder message x is represented by n

2
complex-valued IQ-symbols. Instead of directly transmitting
the encoder’s output x, an inverse discrete Fourier-transform
(DFT) of width wFFT is applied on a set of wFFT independent
autoencoder messages, i.e., wFFT equivalent independent sub-
channels are created, where independent autoencoder mes-
sages are assigned to each subcarrier.1 As each autoencoder
still requires n

2 channel uses, we generate n
2 complex-valued

OFDM symbols xOFDM, each of length wFFT. For additional
robustness against sampling synchronization errors and to
avoid inter-symbol interference (ISI) , we further add a CP of
length `CP, i.e., wFFT independent autoencoder symbols form
one single OFDM symbol xOFDM,CP of total length wFFT+`CP.
Thus, a sequence of n

2 (wFFT + `CP) complex-valued symbols
is subsequently transmitted over the (mutlipath) channel.

1Remark: as no additional piloting is assumed, we cannot simply distribute
the n

2
symbols of a message within the same OFDM symbol. Otherwise the

unknown phase rotation per subcarrier would destroy the message.

At the receiver side, the CP can be used for frame syn-
chronization through autocorrelation with peak detection; syn-
chronization turned out to be a challenging step in singe-
carrier autoencoder-based communication [6]. Finally, a DFT
recovers the inputs for the wFFT independent autoencoder
receivers.
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Fig. 4: OFDM extension to the autoencoder system.

At first glance it may appear counterintuitive that the
autoencoder system benefits from such an explicit structure
as it could also learn to compensate for these effects with
a single (large) neural network. However, we observe for a
single neural network that training complexity tremendously
increases and practically limits the system performance (see
[7]). Thus, the benefits of the proposed system are:

1) robustness against sampling synchronization errors
2) single-tap equalization2

3) moderate training complexity due to independent and
short length sub-carrier messages (i.e., small n)

This enables reliable communication over multipath channels
and makes the communication scheme suitable for commodity
hardware with imprecise oscillators.
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2The autoencoder inherently has to learn how to synchronize.
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